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In non-relativistic electron vortex beams, the spin of an electron is treated as a degree of freedom
independent from the momentum of the electron. However, for a relativistic electron described
by the Dirac equation, its spin is intimately related to its momentum, as is manifested by spin-
orbit coupling, helicity conservation, etc. In this paper, we construct a Bessel beam solution by
superposing momentum eigen functions, whose spins are parallel to the momentum or at a constant
angle with the beam axis. By introducing a Gaussian envelope function for the normalization of
the wave functions, we calculate the expectation values for physical quantities such as the spin and
magnetic moment. Also, the differences from the results of previous studies are discussed.
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상대론적전자소용돌이의베셀빔해
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(2019년 11월 4일 받음, 2019년 12월 26일 수정본 받음, 2019년 12월 30일 게재 확정)

비상대론적 전자 소용돌이 빔에서 전자의 스핀은 운동량과 독립적인 자유도로 취급된다. 그러나 Dirac
방정식으로 기술되는 상대론적 전자의 경우 스핀-궤도 상호작용, 나선도 보존 등에서 보는 바와 같이

스핀은 운동량과 밀접한 관계가 있다. 따라서 상대론적 소용돌이 빔을 기술하는 파동함수에는 이러한

특성이 고려되어야 한다. 본 논문에서는 운동량 고유상태들을 중첩하여 Bessel 빔 해를 구하였는데, 이 때

스핀은 나선도 고유상태이거나 빔의 중심축과 일정한 각도를 이루도록 하였다. 규격화를 위한 가우시안

싸개함수를 도입하여 스핀, 자기모멘트 등의 물리량의 기대값을 구하였고 기존 연구 결과와의 차이점을

논의하였다.
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I. 서 론

각운동량을 수반하는 자유 전자 소용돌이 빔 (free elec-
tron vortex beam)에 대한 연구가 최근에 전자현미경, 양

자물리학, 고입자에너지 물리 등 다양한 물리학 분야에서
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점점 관심을 끌고 있다 [1–4]. 이 분야는 양자화된 궤도 각

운동량을 가지는 광학적 소용돌이 빔에 대한 연구로부터

[5,6] 파생되었다고 할 수 있다. 입자의 소용돌이 빔에 대한

선구적 연구는 Birula 등에 의해 이루어졌는데 [7–9], 이 후

Bliokh 등은 비상대론적 자유전자 소용돌이 빔을 예측하였

고 [10] 이에 자극받아 여러 연구 팀에서 소용돌이 빔을 실

험적으로 구현하기에 이르렀다 [11–13]. 최근의 실험에서는

전자의 에너지가 더욱 증가하여 상대론적 영역에(수백 keV)
도달하였다 [1,2]. 따라서 상대론적 효과를 바르게 고려하기

위해서는 전자의 운동의 기술에 Dirac 방정식을 사용해야

한다. Dirac 방정식은 스핀을 방정식의 구조에 자연스럽게

내재시키고 있으며 따라서 상대론적 전자 소용돌이 빔의

각운동량 특성을 바르게 이해하는 데 중요하다.

양의 에너지의 Dirac 파동함수로서 각운동량을 가지는

전자 빔을 나타내는 해를 구하기 위해 여러 가지 방법이 연

구되어 왔다. Bliokh 등은 Dirac 방정식을 정확하게 만족하

는 Bessel 빔 해를 운동량 고유상태인 성분파의 중첩을 통해

최초로 구하였고 [14], 양과 음의 에너지의 해가 분리되어

표현되도록하는 Foldy-Wouthuysen(FW) 변환 [15]을 이

용하여 물리량의 특성을 고찰하였는데 특히 스핀-궤도 상

호작용(spin-orbit interaction)에 의하여 스핀 각운동량이

궤도 각운동량으로 얼마나 전환되는지를 구하였다. Birula
등은 Klein-Gordon(KG) 방정식의 해로부터 Dirac 방정식

의 해를 얻어내는 방법을 사용하였으며 광학 등에서 개발된

기존의 KG 소용돌이 해들을 활용하였다 [16]. Barnett은

FW 변환을 한 뒤 빔을 구성하는 운동량 성분들의 방향이

거의 평행하다고 가정하는 근축(para-axial) 근사를 사용하

여 해를 구하였다 [17].
일반적으로 파동함수는 여러가지 운동량과 스핀을 갖는

성분파의 중첩으로 표시된다. 그런데 위의 연구들에서 논

의된 파동함수들은 스핀을 운동량에 의존하지 않는 상수로

간주하고 운동량 성분들을 중첩하여 얻은 것들이다. [14]에
서는 스핀 상태를 상수로 두고 운동량에 대해 중첩하였으

며, [16]에서는 KG 해를 스피너의 한 성분에 대입하는데

이 것이 스핀을 특정 값으로 두는 것에 해당하기 때문이다.

[17]의 경우도 FW 변환된 방정식에서 파동함수를 구하는데

이 때 스핀은 상수 취급을 하고 있다.

비상대론적 경우는 운동량과 스핀을 독립적으로 취급하

는 것이 가능하기 때문에 실제 빔을 나타내는 데 운동량과

상관없이 스핀을 일정하게 두는 위와 같은 기술 방식이 적절

하다고 할 수 있다. 그러나 전자의 속도가 상대론적이 되면

입자가 운동하는 계에서 본 스핀은 일반적으로 입자 정지계

에서 본 스핀(rest spin)과 다르게 된다. 상대론적인 경우

입자의 스핀의 기술에는 스핀의 방향이 운동량 p의 방향과

평행을 이루는 나선도(helicity) 고유상태를 기저(basis)로

사용하는 것이 편리하다. 운동량 p인 전자의 나선도 고유
상태 즉, p̂ · Σ의 고유상태는 정지계에서의 p̂ · Σ의 스핀
고유상태(rest spin)를 운동량 p가 되도록 로렌츠 부스트
(boost)를 가하여 만들수 있다. 여기서 Σ = diag(σ, σ)
이며 σ는 2× 2 파울리 행렬이다. 또한 나선도 고유상태의
전자는 극상대론적 (ultrarelativistic) 영역에서 전자기 상
호작용 등에 의한 산란 후에도 나선도 고유상태를 유지하
는 특성이 있다 (helicity conservation) [18]. 따라서 빔의
소스로 나선도 고유상태의 고에너지 전자를 사용하였다면
회절 격자 같은 장치를 이용하여 빔을 만들었을 때 빔의 각
성분파는 나선도 고유상태를 유지하고 있다고 볼 수 있다.

따라서 본 논문에서는 각 성분파의 스핀이 나선도 고유
상태인 경우의 Bessel 빔을 성분파 중첩에 의해 구한다. 또
한 빔 전체의 스핀이 성분파의 스핀의 방향에 따라 어떻게
변화하는가를 알아보기 위해 성분파의 정지계에서의 스핀
(rest spin)의 방향을 운동량과 평행한 경우를 포함하여 운
동량의 방향과 일정한 각도를 가지는 것으로 일반화 한다.
한편 구한 Bessel 빔 파동함수는 규격화가 불가능하여 물
리량들의 기대값을 구하기가 곤란하다. 여기서는 가우시안
(Gaussian) 싸개함수(envelope function)를 도입하는 방법
으로 물리량들의 기대값을 구하고 기존 연구에서 얻어진
결과와의 차이점을 논의한다.

II. 중첩에의한 Bessel 빔해

자유 공간에서의 질량 m인 입자의 Dirac 방정식은 다음
과 같다(h̄ = 1, c = 1).

i
∂

∂t
ψ = Hψ = (−iα · ∇+ βm)ψ (1)

여기서 H = −iα ·∇+βm 는 Dirac 해밀토니안이고, α, β
는 4 × 4 Dirac 행렬들이며 ψ(r, t)은 4개의 성분을 갖는
Dirac 파동함수이다. 방정식 (1)의 운동량 p, 양의 에너지
E = +

√
p2 +m2를 갖는 해는 다음과 같다.

ψp(x, t) =W (p) ei(p·x−Et), (2)

W (p) =
√
E +m

2E

[
w

p·σ
E+mw

]
(3)

위에서 w = (a, b)T (w†w = 1)는 양의 에너지 입자의
정지계에서 본 2성분의 스핀(rest spin) 상태를 의미하며,
W †W = 1이다. 잘 알려진 바와 같이 Dirac 해밀토니안
H에 대해 궤도각운동량 L과 스핀 S = 1

2Σ는 [H,L] ̸= 0,
[H,S] ̸= 0이므로 보존되지 않는다. 그러나 총 각운동량
J = L + S에 대해서는 [H,J] = 0이고 따라서 J는 보존
된다.
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운동량 벡터를 극 좌표계를 도입하여 (p, θ, ϕ)로 표시하

자. 일반적으로 Dirac 방정식 (1)을 만족하는 임의의 파

동함수는 위의 (2)의 상태들의 중첩으로 표시된다. Bessel
빔은 운동량 벡터를 원뿔 모양으로 분포시켜 중첩할 때 만

들어진다 [1,2]. 즉 단일 에너지(|p| = p 상수)이고 운동량

벡터의 방향이 빔의 방향(z축)과 일정한 각도 θ = θ0 (0 ≤
θ0 < π/2)를 이루며 원뿔 모양인, 즉 px = p sin θ0 cosϕ,

py = p sin θ0 sinϕ, pz = p cos θ0 (0 ≤ ϕ < 2π)인 운동량

고유상태들을 중첩하여 만들어진다. 이 때 z축에 대한 각

운동량을 가지는 비상대론적 Bessel빔을 형성할 때와 같이

위상 eiℓϕ (ℓ = 0,±1,±2, · · · )를 곱하여 중첩하자.

ψℓ(x, t) =
1

2π

∫ 2π

0

eiℓϕψp,sdϕ

=
1

2π

√
E +m

2m
eipzz

×
∫ 2π

0

eiℓϕ+i(pxx+pyy)
(

w
p·σ
E+mw

)
dϕ (4)

(4)에서 w = (a, b)T 가 일정한 상수인 경우는 [14]에서 구한

Bessel 빔이 얻어진다.

이제 서론에서 설명한 바와 같이 성분파의 스핀의 상태

W (p)가 나선도 고유상태인 경우를 고려하자. 이를 위해서

는 정지계에서의 스핀 w가 p̂ · σ의 고유값 ±1인 고유상태

즉 w = (cos θ02 , eiϕ sin θ0
2 )

T 또는 (− sin θ0
2 , e

iϕ cos θ02 )T

이면 된다. 한편 빔 전체의 스핀이 w의 방향에 어떻게 의

존하는지를 알아보기 위해 w의 방향이 z축과 θs의 각도를

이룬다고 일반화하면 w는 다음과 같다.

w(ϕ) =

(
cos θs2

eiϕ sin θs
2

)
(5)

여기서 w의 위상은 임의로 잡을 수 있으나 빔의 회전대칭성

을 고려하여 ϕ = 0, 2π에서 불연속이 되지 않도록 하였다.

나선도 고유값 ±1의 고유상태는 θs = θ0 또는 θ0 + π인

경우에 해당한다.

이 때 (4)의 적분은 Bessel 함수에 대한 Jn(x) =
(−1)n

2π

∫ 2π

0
exp(inϕ + x sinϕ)dϕ (n = 0,±1,±2, · · · ) 공식

을 이용하여 계산할 수 있다. 공간의 좌표를 원통형 좌표계

(r, φ, z) (단, r =
√
x2 + y2, φ = arctan y

x ) )로 표시할 때

그 결과는 다음과 같다.

ψℓ(r, φ, z, t) =

√
E +m

2m
e
−iEt

e
ip∥z×


cos θs

2
0

p
E+

cos Θs
2

0

 i
ℓ
e
iℓφ

Jℓ(p⊥r) +


0

sin θs
2

0
p

E+
sin Θs

2

 i
ℓ+1

e
i(ℓ+1)φ

Jℓ+1(p⊥r)


(6)

여기서 p∥ ≡ pz = p cos θ0 는 운동량의 빔 방향의 성분,

p⊥ ≡ p sin θ0 는 빔에 수직한 방향의 성분을 나타내며,

E± ≡ E ±m , Θs ≡ 2θ0 − θs 로 표시하였다.

해 (6)을 보면 [14]의 해와 유사한 형태이면서도 다른

특징을 가지고 있다. 먼저 [14]의 해는 임의의 스핀 방향의

경우 3개의 Bessel 함수 Jℓ, Jℓ±1로 표현되며 스핀 w의 방

향이 +ẑ(또는 −ẑ)인 경우에만 2개의 Bessel 함수 Jℓ, Jℓ+1

(또는 Jℓ−1, Jℓ)로 표현된다. 그러나 (6)에서는 스핀의 방향

과 무관하게 항상 2개의 Bessel 함수 Jℓ, Jℓ+1 로 표현되는

점이 특이하다고 할 수 있다. 이렇게 되는 이유는 w의 정

의에 eiφ가 포함되어 ℓ값을 증가시키기 때문이다. 한편 (6)
의 해와 [14]의 해는 운동량 상태의 중첩 시 2차원 공간인

스핀 상태를 다르게 잡았을 뿐이므로 서로 독립적인 것은

아니다. [14]에서 각운동량 계수 ℓ, z방향 스핀 s = ± 1
2

에 해당하는 해를 각각 ψBℓ↑, ψBℓ↓로 표시하면 (6)의 ψℓ과는

다음과 같은 관계가 있다.

ψℓ = η
(
cos θs2 ψ

B
ℓ↑ + i sin θs

2 ψ
B
ℓ+1↓

)
(7)

여기서 η = iℓ Em 는 규격화의 차이에 따른 상수이다. (7)
에서 우변의 두 항의 인덱스가 ℓ 과 ℓ+1로 다름을 볼 수 있

으며, θs = 0, π인 경우 ψℓ은 각각 ψBℓ↑, ψBℓ+1↓에 대응된다.

ψℓ = η ψBℓ↑ (θs = 0), ψℓ = iη ψBℓ+1↓ (θs = π) (8)

한편 해 (6)은
∫
ψ†
ℓψℓ d

3x = ∞으로 규격화가 불가능하

다. 이로 인해 빔 전체에 대한 기대값 등이 수학적으로 잘

정의되지 않는다. 그러나 3절에서와 같이 파동함수에 적

당한 가우시안(Gaussian) 싸개함수를 곱하여 규격화하고

기대값을 계산한 뒤 이 함수를 1로 접근시키는 방법으로

기대값 계산이 가능하다.

III. Bessel 빔의물리적특성및물리량의
기대값

Bessel빔의 물리적 특성 - 여기서는 해의 물리적 특성

들을 살펴보자. (6)은 연산자 Jz = Lz + Sz의 고유상태가

됨을 쉽게 알 수 있는데 고유값은 ℓ+ 1
2 이며 스핀의 방향 θs

와 무관하다.

Jzψℓ = (ℓ+ 1
2 ) ψℓ (9)

(고유값이 ℓ + 1
2 인 것은 w의 위상을 (5)와 같이 택했기

때문이며, 만약 w(ϕ) = (e−iϕ cos 1
2θs, sin 1

2θs)
T 과 같이

택한다면 고유값은 ℓ− 1
2 이 될 것이다.)
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해(6)의 확률밀도, 흐름밀도 및 궤도각운동량, 스핀 그

리고 자기모멘트의 밀도를 살펴보자. 밀도 ρ = ψ†
ℓψℓ와

흐름밀도 j = ψ†
ℓαψℓ는 다음과 같다.

ρ =
E+

2E

{
(cos2 θs2 +

E−

E+
cos2 Θs

2 )J2
ℓ (p⊥r)

+ (sin2 θs
2 +

E−

E+
sin2 Θs

2 )J2
ℓ+1(p⊥r)

}
(10)

jx = −p⊥
E

sinφ Jℓ(p⊥r)Jℓ+1(p⊥r) (11)

jy =
p⊥
E

cosφ Jℓ(p⊥r)Jℓ+1(p⊥r) (12)

jz =
p

E

{
cos θs2 cos Θs

2 J
2
ℓ (p⊥r)− sin θs

2 sin Θs

2 J
2
ℓ+1(p⊥r)

}
(13)

(10) ∼ (13) 에서 ρ와 jz는 스핀의 방향 θs에 의존하나 jx,

jy는 의존하지 않는다.

궤도각운동량 밀도 L ≡ ψ†
ℓLψℓ 와 스핀 밀도 S ≡

1
2ψ

†
ℓΣψℓ는 원통형 대칭성 때문에 z성분만 살펴보면 충

분하다. 다음과 같으며 θs에 의존한다.

Lz =
E+

2E

{
(cos2 θs2 +

E−

E+
cos2 Θs

2 )ℓJ2
ℓ (p⊥r)

+ (sin2 θs
2 +

E−

E+
sin2 Θs

2 )(ℓ+ 1)J2
ℓ+1(p⊥r)

}
(14)

Sz =
E+

4E

{
(cos2 θs2 +

E−

E+
cos2 Θs

2 )J2
ℓ (p⊥r)

− (sin2 θs
2 +

E−

E+
sin2 Θs

2 )J2
ℓ+1(p⊥r)

}
(15)

자기 모멘트 밀도는 µ = e
2ψ

†
ℓr × αψℓ이며, e는 전자의

전하이다. 그 중 z성분은 다음과 같으며 (11), (12)을 이용

하여 구할 수 있다. 스핀의 방향 θs에 의존하지 않음을 볼

수 있다.

µz =
e

2
(xjy − yjx) =

e

2E
p⊥rJℓ(p⊥r)Jℓ+1(p⊥r) (16)

물리량의 기대값 계산 방법 - 해 (6)은 ẑ방향으로 길이가

무한대인 빔을 나타내므로 규격화가 불가능하고 따라서 기

대값을 계산하기 곤란하다. 그러나 확률밀도 등 물리량들이

z에 의존하지 않으므로 빔의 ẑ방향으로의 단위길이 부분에

대한 기대값을 생각할 수 있다. 이는 z값을 고정한 2차원

(r, φ) 평면 위에서의 기대값을 고려하는 것과 같다. 즉 빔의

단위 길이에 대한 물리량 Q의 기대값은 다음과 같이 쓸 수

있다.

⟨Q⟩ =
∫
ψ†Qψ rdφdr∫
ψ†ψ rdφdr

(17)

그러나 r이 큰 영역에서 Jℓ(r) 이 0으로 수렴하는 속도가

느려 분모와 분자의 적분이 모두 발산하므로 역시 기대값

계산이 곤란하다. r이 큰 영역에서 파동함수가 0으로 보다

빨리 수렴할 수 있도록 가우시안 싸개 함수를 곱하여 파동

함수를 변형하자.

ψ̃ = e−
1
2a

2r2ψ (18)

실제 실험실의 Bessel 빔은 유한한 크기의 공간에서만 0이

아닐 것이므로 ψ̃는 물리적 Bessel빔을 근사적으로 나타낸

다고 할 수 있다. 파동함수 ψ̃를 사용했을 때 (17)의 기대

값은 분자와 분모가 모두 유한한 값이 되어 잘 정의된다.

이를 ⟨Q⟩a라 하자. 이제 a → 0 이면 ψ̃ → ψ이므로 이 때

⟨Q⟩a의 극한값으로 기대값 ⟨Q⟩를 정의할 수 있다. ⟨Q⟩a
의 계산 과정에서 나타나는

∫∞
0
xe−a

2x2

Jn(x)Jn(x)dx 와∫∞
0
x2e−a

2x2

Jn(x)Jn+1(x) dx적분은 [19]의 공식 6.633.2
와 6.633.5를 이용하여 구할 수 있다.

스핀 및 자기모멘트의 기대값 - 위의 방법을 적용하여

스핀 Sz의 기대값을 구한 결과는 다음과 같다.

⟨Sz⟩ =
E+

4E
{cos θs +

E−

E+
cos(2θ0 − θs)} (19)

스핀 Sz의 기대값은 ℓ과는 무관하고 성분파의 운동량 방향

θ0 와 정지상태 스핀 방향 θs에 의존함을 알 수 있다. 성

분파가 나선도 고유상태인 경우는 w가 ±p̂방향인 θs =

θ0, θ0 + π인 경우이며 기대값은 ± 1
2 cos θ0이다. 비상대론

적 극한에서는 E/m ≈ 1이므로 ⟨Sz⟩ ≈ 1
2 cos θs가 되는데

이는 정지상태에서의 기대값과 같으며 스핀이 운동량의 영

향을 거의 받지 않음을 보여준다. 한편 θs = 0, π인 경우는

[14]에서 스핀 w를 ±ẑ방향으로 놓았을 때에 해당 되는데,

⟨Sz⟩ = ± 1
2 (1 −

E−
E sin2 θ0)가 되며 [14]의 결과와 일치한

다. 각운동량 Lz의 기대값은 (9)로부터 ⟨Lz⟩ = ℓ+ 1
2 −⟨Sz⟩

로 주어진다.

(19)의 기대값 ⟨Sz⟩가 가질 수 있는 최대값을 알아보자.

최대값(최소값)일 때의 θs는 ∂
∂θs

⟨Sz⟩ = 0 으로부터 다음과

같이 정해진다.

tan θs =
E−
E+

sin(2θ0)

1 + E−
E+

cos(2θ0)
(20)

위 식을 만족하는 θs 값은 2개 있으며 최대값은 다음과 같다.

(최소값은 θs + π일 때로 −⟨Sz⟩max이다.)

⟨Sz⟩max =
1

2

√
m2

E2
sin2 θ0 + cos2 θ0 (21)

Figure 1에 (20)와 (21)을 그래프로 나타내었다. 비상

대론적 (E/m ≈ 1)일 때 ⟨Sz⟩의 값이 최대가 되기 위한

θs는 θs ≈ 0 즉 θ0 와 무관하게 ẑ방향임을 볼 수 있으며,

이 때 ⟨Sz⟩max ≈ 1
2 이다. 상대론적 극한 (E/m → ∞)일
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Fig. 1. For the Bessel beams with energies: E/m = 1.05,
2, 5, 10, 50, (a) Spin direction θs that maximizes ⟨Sz⟩ are
plotted vs. momentum direction angle θ0. (b) Maximum
⟨Sz⟩ values are plotted vs. momentum direction angle θ0.

때 ⟨Sz⟩의 값이 최대가 되는 것은 θs ≈ θ0 즉 스핀이 운동
량과 평행한 나선도 고유상태일 때임을 볼 수 있고, 이 때
⟨Sz⟩max ≈ 1

2 cos θ0이다. 한편 [14]에서 처럼 스핀을 운동
량과 무관하게 +ẑ방향으로 잡았을 때는 상대론적 극한일
때 ⟨Sz⟩의 최대값이 약 1

2 cos2 θ0 으로 오히려 이보다 작은
값이다.

(16)의 자기모멘트 밀도의 기대값을 구한 결과는 다음과
같다.

⟨µz⟩ =
e

2E
(ℓ+

1

2
) (22)

자기모멘트의 기대값은 Jz의 고유값 ℓ + 1
2 에 비례함을 알

수 있다. 또한 θs에 의존하지 않는데 이는 (11), (12)의 jx

와 jy가 θs에 의존하지 않는데서 비롯된 결과이다.

IV. 결과및논의

나선도 고유상태인 극상대론적 전자에 전자기 상호작용
을 가하여 만들어진 빔에서 각각의 성분파는 나선도 고유상
태를 유지(helicity conservation)하고 있다고 볼 수 있다.
본 연구에서는 이러한 특성을 반영하여 스핀이 나선도 고
유상태인 성분파의 중첩을 통해 Bessel 빔을 형성하였다.
성분파의 운동량과 스핀의 방향을 빔의 중심축과 각각 일정
한 각도를 이루며 원뿔 모양이 되게 분포시키고 궤도각운
동량을 위한 위상을 추가하였다. 성분파의 스핀의 방향을
운동량의 방향과 다를 수 있게 한 것은 전체 빔의 스핀 기대
값에 미치는 영향을 알아보기 위한 것이다. 구한 해 (6)은
두 개의 Bessel 함수로 표시되며 성분파의 스핀의 각도에
무관하게 총 각운동량 연산자 Jz의 고유값 ℓ + 1

2 인 고유
상태가 되는 특징이 있다. 규격화가 불가능한 이 해로부터
물리량의 기대값을 구하기 위해 규격화를 위한 가우시안
싸개 함수를 해에 곱하여 기대값을 계산한 뒤 싸개 함수를
1로 접근하게 하는 방법을 사용하였다.

빔 방향 스핀의 기대값 ⟨Sz⟩를 구한 결과 비상대론적 극

한에서는 운동량과 무관하게 성분파의 정지상태 스핀 w의

기대값과 동일하며 따라서 ⟨Sz⟩의 최대값은 w가 ẑ방향일

때 얻어진다. 상대론적 극한일 때는 w의 방향이 운동량

방향일 때 즉 나선도 상태일 때 기대값이 최대가 된다. 자기

모멘트의 기대값 ⟨µz⟩를 구한 결과 w의 방향과 무관하며 총

각운동량 Jz의 고유값 ℓ+ 1
2 에 비례하는 것으로 나타났다.

(6)의 해는 [14]와 비교할 때 정지계의 스핀 w만 다르게

잡은 것이므로 일반적으로는 (7)과 같이 [14]의 해들의 중첩

으로 표현된다. 스핀 w의 방향이 ±ẑ 즉 θs = 0, π인 경우는

(8)에 나타난 것처럼 [14]의 해와 동일해진다. 따라서 이

동일한 해에 대해서는 물리량들의 기대값을 [14]의 결과와

비교해 볼 수 있다.

빔의 스핀 기대값 ⟨Sz⟩는 앞서 보았듯이 [14]의 결과와

일치한다. 그러나, 자기모멘트 ⟨µz⟩의 기대값 (22)은 [14]의
결과인

⟨µBz ⟩ =
e

2E
(ℓ+ 2s−∆s), (s = ± 1

2 , ∆ = E−
E sin2 θ0)

(23)
와 일치하지 않는다. 예를 들어 (8)의 파동함수 ψℓ; θs=0 =

ψBℓ↑ 에 대해 (22)과 (23)에 의한 기대값을 비교해 보면
e
2E (ℓ+

1
2 ) ̸=

e
2E (ℓ+ 1−∆ 1

2 )로 일치하지 않는다.

기대값에 차이가 나는 이유에 대해서는 좀 더 논의가

필요할 것으로 보인다. 먼저 자기모멘트 밀도 µz는 (16)
과 같이 흐름밀도 jx, jy로 정해지므로 동일한 흐름밀도를

주는 상태를 살펴보자. 다음의 두 상태 ψℓ; θs=0 = ψBℓ↑ 와

ψℓ; θs=π = ψBℓ+1↓ 에 대해 jx, jy를 계산해 보면 동일하게

나타난다. 따라서 물리적으로 볼 때 이들로부터 얻어지는

자기모멘트 기대값 ⟨µz⟩도 동일할 것으로 예상된다. 본 논

문의 (22)는 이러한 결과를 보여주고 있다. 그러나 (23)의
⟨µBz ⟩는 동일한 값을 주지 않는다.

이러한 기대값 계산 결과상의 차이는 규격화 불가능한

파동함수로부터 기대값을 얻어내는 수학적 과정상의 차이

에서 발생한다고 생각된다. [14]에서는 먼저 FW 변환으로

연산자와 파동함수를 변환한 뒤 양의 에너지 파동함수 공간

으로의 투영을 통해 연산자를 재정의하여 기대값을 구하였

다. 본 논문에서는 양의 에너지의 파동함수를 사용하였는

데, 기대값 계산에 양의 에너지의 파동함수만 사용한다면

투영에 의한 파동함수의 변화는 없고, 연산자가 작용하는

대상 공간도 자동적으로 양의 에너지의 파동함수의 공간으

로 한정되기 때문에 같은 효과를 가진다. 즉 재정의로 인한

차이는 없다고 할 수 있다.

한편, FW 변환은 유니타리 (unitary) 변환인데 [15]의
eq.(20)에서 보듯이 비국소적 변환이다. 즉 FW 변환된

파동함수의 한 점에서의 값은 그 점 주변의 점들에서의 변
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환전 파동함수 값들로부터 얻어진다 [15]. 다시 말해 FW
변환 하에서 파동함수의 값들은 공간상에서 주변으로 퍼져

위치의 변동과 같은 효과를 준다고 볼 수 있다. Bessel 빔에

대한 기대값 계산 과정에는 무한한 영역에 대한 적분값을

구하는 과정이 있는데 이는 무한급수의 합을 구해나가는

것으로 볼 수 있다. 여기에 FW 변환을 적용하는 것은 누

적되는 항들의 순서를 바꾸는 것으로 볼 수 있다. 항들의

부호가 교대로 나타나는 수열같은 경우에는 항들의 재배치

(rearrangement)에 의해 극한값이 달라질 수 있는데 [20],
(16)의 µz의 함수 모양을 보면 rJℓ(p⊥r)Jℓ+1(p⊥r)로서 r

이 증가함에 따라 양의 값과 음의 값이 교대로 나타나고

있다. 따라서 FW변환을 가함으로써 기대값에 차이가 생긴

것으로 추정되는데, FW 변환의 문제이기 보다는 현실에

존재할 수 없는 무한한 공간 위의 이상적인 Bessel 빔을 다

루는데서 온 문제라고 생각된다. 실제 실험실에서 만들어

지는 유한한 공간 위의 근사적 Bessel빔에 대해서는 FW
변환이 사용되더라도 이러한 문제가 없을 것이다.
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