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Abstract: In particle physics, it is needed to evaluate the possibility that excesses of events
in mass spectra are due to statistical fluctuations as quantified by the standards of local
and global significances. Without prior knowledge of a particle’s mass, it is especially
critical to estimate its global significance. The usual approach is to count the number
of times a significance limit is exceeded in a collection of simulated Monte Carlo (MC)
“toy experiments.” To demonstrate this conventional method for global significance, we
performed simulation studies according to a recent Compact Muon Solenoid (CMS) result
to show its effectiveness. However, this counting method is not practical for computing
large global significances. To address this problem, we developed a new “extrapolation”
method to evaluate the global significance. We compared the global significance estimated
by our new method with that of the conventional approach, and verified its feasibility and
effectiveness. This method is also applicable for cases where only small toy MC samples
are available. In this approach, the significance is calculated based on p-values, assuming
symmetrical Gaussian distributions.

Keywords: local significance; global significance; toy MC; extrapolation method; G-V
method; log-likelihood ratio

1. Introduction

There are a variety of discoveries in every area of physics, and each of them needs to be
examined by statistical standards to determine their significance above random fluctuations.
In particle physics, local significance and global significance are two general standards to
evaluate claims of a new particle.

This article first illustrates the traditional method with MC simulated events to evalu-
ate the significance. We use a new particle X(7100) reported by the CMS Collaboration [1]
as an example to illustrate the calculation of the global significance. We also describe in
detail a method to estimate the chance of reaching a higher significance with additional
data. This is useful for projecting how much additional data are needed to reach a global
significance higher than five standard deviations (5¢) in cases when the significance of a
measured signal falls short of this benchmark, such as the case of the CMS X(7100). Note
that due to the size of the predefined search window, the global significance can always be
adjusted. This method for determining the significance, and the expected significance, is
general and can be applied, with appropriate modification, to most cases.
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The conventional method mentioned above of calculating global significance has limi-
tations when the significance is very high. For example, the Y (4140) structure discovered
by the CDF experiment [2,3] was confirmed in 2014 by the CMS experiment [4] to have a
local significance of 7.6, corresponding to a probability (p-value) of 1.5 x 10~14, which
means one would need an enormous collection of 1.5 x 10'* Monte Carlo experiments
to have, on average, one toy instance which fluctuates above 7.60. It is very difficult to
compute a global significance by the brute-force method of directly counting the number of
simulated experiments which have a significance level around 7.6¢.

In order to overcome this issue, we describe a new extrapolation method that we have
developed to evaluate the global significance when searching for new peaks by fitting
the x? distribution of modest MC samples, and extrapolating to the large significances
of interest. We use CDF’s Y (4140) as a test case to verify its feasibility and effectiveness.
Two approaches, the conventional toy MC method and the new extrapolation method, are
used to compute the global significance of the Y (4140) (which had a local significance of
5.30 [2,3]) and compare the two results. Within the margin of uncertainties, 0.1¢ in this
case, we demonstrate the validity of our new method. This approach can be applied in a
broad range of situations when searching for unknown particles.

As an additional cross-check, another method proposed by Gross and Vitells (the G-V
method) [5] can also be applied to estimate large global significances with a small set of
Monte Carlo simulations. This will allow us to obtain the global significance from the
G-V method and compare it with our extrapolation method, again using the CDF Y (4140)
example. We also apply the two methods to compute the global significance, for the first
time, of the Y (4140) observed by CMS, which has a much higher local significance (7.60).
Finally, to further demonstrate the universality of the extrapolation method across different
experiments, we apply it to the x;,(3P) resonance observed by ATLAS [6] and compare the
results with those obtained using the G-V method.

2. Significance Measurements
2.1. Local and Global Significances

When a small localized excess of events is seen in a mass spectrum, the question arises
whether this is a new particle, or merely a statistical fluctuation. The probability that the
data fluctuated specifically at that observed mass to fake a signal is referred to as the local
significance of this ostensible peak.

When studying a known particle, with known mass and width, the local significance
is the appropriate measure for the observation. However, in the case of searching for an
unknown particle, it is not known where it might appear in the mass spectrum, and one
must consider the possibility of statistical fluctuations occurring anywhere in the search
window—and not just where a particular fluctuation was observed. This is called the
“look-elsewhere-effect” and by accounting for it, one obtains the global significance.

2.2. Calculating the Local Significance

In actual experimental data, the signal and background components are described
by their respective PDFs (probability density functions). Mass spectra are commonly fit
using the unbinned log-likelihood method [7] as this is generally the optimum approach.
To evaluate the significance of a possible peak, one performs two fits. In the first, one con-
siders only the existence of the background component PDFs—this is the null-hypothesis
fit. The second fit is the background plus signal peak fit. L0 is defined as null fit’s negative
likelihood (NLL) and L1 is defined as the likelihood with the signal peak included. The log-
likelihood value of a fit is a parameter to show how good a fit is to the data, and lower value
means a better fit—typically, the signal-hypothesis fit has a lower value. The difference in
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the NLL, 2 x (LO — L1), is called the log-likelihood ratio, and the local significance of the
observed level of event excess is /2 x (L0 — L1). This will be further explained in detail
through an actual example in Section 3.1.

2.3. Using Toy MC to Calculate the Global Significance

The global significance can be calculated by simulating the background-only com-
ponent of the observed experimental distribution, and look for how often fluctuations as
large, or larger, than those seen in the data occur anywhere in the search range. To do
this, a “toy MC” is used. In each “toy” or “pseudo” experiment, a “data” set is simulated,
corresponding to the amount and shape of the background-only data distribution observed
in the real experiment. This simulation is referred to as a “toy” as it only simulates the final
distribution of interest in contrast to a full detector simulation of the data. A large number
of toys are generated simulating the distribution of interest, and they are used to conduct
null-hypothesis and signal-hypothesis fits to obtain the L0 and L1 values. For any given
toy, a local significance can be calculated for a limited region, as explained in Section 2.2.

However, the local significance estimation accounts for the probability of a fluctuation
occurring at a predetermined mass value, and the problem with this significance is that a
fluctuation may appear anywhere in the search window. In other words, the location of
the signal component function in the signal-hypothesis fit must freely float over the mass
and width search range that was defined in advance. For each toy, the null and signal
fits are conducted, and 2 x (LO — L1) ¢ is computed, as well as 2 X (LO — L1),¢1_gatq for
the log-likelihood ratio in the real experiment. Then, by counting the number of cases
where 2 X |LO — L1|pc > 2 X |LO — L1|,01 —data, the probability (p-value) of toy experiments
having a likelihood ratio above that observed in the real data is computed. A symmetrical
Gaussian distribution is used to convert this probability into a Gaussian equivalent for
the number of standard deviations, i.e., for some standard deviation X, the integral of a
normalized Gaussian function from X to positive infinity is equal to the observed p-value—
this X is the corresponding global significance in standard deviations. The details will be
further explained in the example in Section 3.2.

3. Conventional Global Significance Estimation

Here, we use an actual experimental example to illustrate the conventional method
for significance estimation. Recently, the CMS Collaboration tentatively identified three
exotic hadron candidates, referred to as X(6600) (m = 6638f§§f}£ MeV, T = 4403883}18
MeV), X(6900) (m = 68474448 MeV, T = 191792 MeV) and X(7100) (m = 7134125+
MeV, T = 971“%832 MeV), in the [/ ]/ mass spectrum in proton—proton collisions at
V/s = 13 TeV [1], as shown in Figure 1 with their non-interference fit model. They also used
an interference model to fit their spectrum, but we use the simpler non-interference case
as an example for our test. The local significances of X(6600) and X(6900) were far above
5 standard deviations. The large significances leave no doubt that these are not statistical
fluctuations. However, the local significance of the X(7100) was only approximately 4.1c.
Since the mass and width of X(7100) were not predicted before it was found, the evaluated
local significance did not consider its unknown mass and width. In this section, the global
significance of this potential new particle X(7100) with unknown mass and width will
be evaluated using simulated events, as a demonstration of the conventional method to
calculate global significance, as described in Ref. [8].
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Figure 1. CMS experiment’s /1] /1 invariant mass spectrum fit with the no-interference model
showing three structures [1].

3.1. Example of CMS Local Significance

In this CMS example, the background components are modeled with two threshold
functions used in the CMS analysis [9], while the signal component is described by a
standard relativistic Breit-Wigner formula [9]:

mI (m)
BW (m;mgy, T = : )
(Wl mo 0) m% _ 7’1’12 _ ll’}’lr(m)
2L+1
= 9 mo 2
r(m) o ro(q[)) m (BL(quOId)) ’
Bl (q,00,d) — q‘LBLW)_(%)LBL(q,d) (1)
' 9o "Br(q0,4) q) Bi(qod)’
BO(q/d> = 1,

z = (l91d)% 20 = (I90ld)?,

where g is the magnitude of momentum of a daughter in the resonance rest frame, the pa-
rameter L is the internal orbital angular momentum, and CMS chose the simplest case of
L = 0 (S-wave) for their baseline fit. The parameter 4 is set to be 3 GeV—1L

The signal and background formulas are implemented using the ROOT /RooFit [10]
software [version 6.32.08] package as PDFs. Each PDF is used to generate simulated
events according to its distribution. Each MC toy sample for the CMS mass spectrum
is generated with the following components, which are combined together for our test:
13,000 background events, 500 X (6600) events, 500 X(6900) events, and 150 X(7100) events.
Here, the number of events for each component is approximately based on the CMS
analysis [11]. An example of the mass spectrum generated for a toy experiment is shown in
Figure 2.

To obtain the local significance of the X(7100) peak for this toy, a log-likelihood fit to
this simulated data is performed where the X(7100) PDF is excluded, but all other PDF
components (including X(6600) and X (6900)) are included in the fitting model. This fit
is shown in the upper panel of Figure 2. The X(7100) mass and width are fixed to the
values from the CMS result—this glosses over the fact that its mass and width were not
known prior to CMS’s analysis. This fit is the null-hypothesis fit, and L0 is the value of
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the minimized log-likelihood. A signal fit is also conducted which has all components,
including the X(7100) PDF, and which is shown in the lower panel of Figure 2, and results
in the likelihood value L1. The difference between L1 and L0 determines the statistical size
of a potential X(7100) signal, which is quantified as a local significance by /2 x (LO — L1).
The significance value for the example shown in Figure 2 is 4.4c, which is close to the CMS
result of 4.1c.
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Figure 2. An example of a toy experiment simulating CMS’s | /¢] /¢ mass spectrum along with a
test fits. The upper panel shows the null-hypothesis fit to this toy, while the lower panel shows the
signal-hypothesis fit the same toy. A local significance of 4.4 standard deviations for the X(7100)
peak is obtained by comparing the likelihoods of the two fits.

3.2. Example of CMS Global Significance

To calculate the global significance for the CMS /] /¢ example, we performed a
large number of pseudo-experiments. In each experiment, a simulated background-only toy
MC sample similar to the one in Figure 2 but without X(7100) was produced. As suggested
in the CMS analysis [1], we searched for fluctuations mimicking signals in the mass region
between 7.05 and 7.8 GeV with a step size of 0.1 GeV, and with the width between 45 and
135 MeV—a range which spans one standard deviation of the value obtained in the CMS
analysis—and scanned the width with a step size of 25 MeV. The log-likelihood difference
(LO — L1)4iy is computed for the largest fluctuation found in each case. Figure 3 shows
the distribution of (LO — L1),,;, for these trials. In total, 14 out of the 13409 trials have a
log-likelihood difference of over 8.5 (the value obtained in CMS data), so the p-value is
calculated as 14 /13409 = 0.00104.

This small p-value signifies a low probability of the excess resulting from a random
fluctuation. The probability, 0.00104, is converted into a significance assuming the probabil-
ity follows a symmetrical Gaussian distribution: the p-value of 0.00104 corresponds to 3.1c,
i.e., 0.00104 is the area of the integral of a normalized Gaussian distribution from 3.1¢ to
positive infinity, as illustrated in Figure 4.
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Figure 3. The log-likelihood difference, (LO — L1);,;4;, of 13409 trials simulating the CMS case study.
The red line and arrow indicate that there are 14 trials with a value greater than 8.5.
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Figure 4. A normal distribution showing the 3.1¢ significance of the CMS example corresponding to
the p-value of 0.00104. The red arrow indicates the area with an integral value of 0.00104.

3.3. Expected Significance with Additional Data

To verify if a newly found signal is real, it may be necessary to increase the data sample
enough to surpass the desired statistical threshold. The following question arises before
conducting such an update: how much additional data are needed to combine with the
original sample to reach 5¢ significance? For instance, using the above CMS example of
a new signal, X(7100), with a local significance of 4.1c, a rough estimate often used to
estimate the expected significance of an updated analysis is that the expected significance
would be 4.1 x /F, where F is the fraction of the combined data size compared to the
original data size. Thus, the expected significance reaches 5¢ when F is 1.5 in this example;
that is to say, the 4.10 new signal can reach 5¢ if the original data are combined with 50%
additional data. This is a rough estimate, while in reality, the actual significance depends
on many factors such as background shapes, fractional increase in background, etc.

Here, we illustrate a more complete approach to estimate the average expectation
of reaching 50 given an existing 4.1¢ signal when an enlarged data sample contains 50%
additional signal events and 25%, 50%, or 75% additional background events. In total, 50%
of additional signal events are generated according the signal PDF function, and 25%, 50%,
and 75% of background events according to the background PDF function. These simulated
events are then combined with the original data and used to evaluate the local significance
of the combined signal using the likelihood method described earlier. Figure 5 shows the
likelihood differences for 81 examples where 50% additional signal and 50% additional
background are generated. In this distribution, 54 out 81 cases (66%) are at or above 5¢.
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Alternatively, the probability is about 39% and 92% if the additional background combined
is 75% and 25%, respectively.
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Figure 5. The log-likelihood difference distribution for a semi-simulated exercise to project the
significance of CMS'’s observed X (7100) signal. The original sample is supplemented by a simulation
of 50% more signal and 50% additional background.

This exercise illustrates that certain factors can alter the chance of reaching 5¢ when
adding additional data, and these effects can be estimated by using simulated events. To
effectively design and optimize an analysis, it is crucial to estimate the amount of new
data required to achieve statistical targets for updated analyses. Failing to determine this
beforehand may introduce bias into the results.

4. Methodology: A New Extrapolation Method for Global Significance
4.1. Limitations of the Conventional Toy MC Method

The conventional method of calculating global significance by directly counting the
number of cases out of a large set of toy experiments, as shown in the previous section, has
serious limitations.

As an example, in 2009, the Y (4140) structure was discovered by the CDF collaboration
with a local significance of 5.3¢, using a data sample corresponding to an integrated
luminosity of 2.7 fb~! [2]. The fitted distribution is shown in Figure 6 (left), and Table 1
lists the published fit parameters. CMS found that its global significance was 4.3¢ based
on a toy Monte Carlo (MC) computation including the ‘look-elsewhere-effect’. Later in
2011, CDF updated their result with more data and calculated its global significance to be
greater than 50 [3]. In 2014, the CMS experiment provided the first confirmation for the
existence of Y(4140) with very high significance, i.e., about 7.60 [4]. CMS’s fitted plot is
shown in Figure 6 (right), and some parameters are given in Table 1. The corresponding
global significance was rather difficult to compute for such a rare fluctuation hypothesis.
For a Gaussian distribution, the integral from 7.6¢ to positive infinity is 1.5 x 10714, which
means one would need an enormous collection of 1.5 x 10'* toy experiments to have,
on average, one toy instance which fluctuated above 7.6¢. Thus, an enormous number of
toy experiments are required by the standard counting method, a number far beyond any
plausible computing resources.

Here, we develop a new extrapolation method to evaluate large global significances
without the need for enormous toy samples, and verify it by comparing with the con-
ventional method. Also, we compare it to the G-V method [5] in Section 4.3, which also
allows the calculation of global significance with relatively small numbers of MC sam-
ples. From the comparison, we conclude that the new method is easier to implement and
interpret and gives similar results to those obtained from the G-V method.
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Figure 6. The fitted Y (4140) distributions from two collaborations. (Left) (CDF): The mass difference
(Am = m(uTu~KTK™) —m(uTu")) in the BT mass window [2]; (Right) (CMS): The number of
Bt — J/¢ppK™ candidates as a function of Am = m(uTu~KTK™) —m(utu~) [4].

Table 1. The recap of some parameters from the CDF and CMS collaboration [2,4].

Mass of Y(4140) Width of Y(4140)

. + .
Collaboration B™ Signal Events (MeV/c) (MeV/c?)
41430 +29(stat) = 117783 (stat) +
CDF 75+10 1.2(syst) 3.7(syst)
4148.0 £ 2.4(stat) + 28113 (stat) £
CMS 2320 +110 6.3(syst) 19 (syst)

4.2. Global Significance of CDF’S Y (4140): The Conventional, Extrapolation, and G-V Methods

We will apply both our new extrapolation method and that of Gross—Vitells [5] to
calculate the global significance for CDF’s Y (4140) report, and compare the two results
with those obtained by the conventional method to test the validity of our new method.

Notice that the local significance from the CDF case is only 5.3¢ [2], which means that
the number of MC samples needed to quantify such an excess by the conventional counting
method is still accessible.

4.2.1. Background and Signal Components

The Y(4140) structure was originally observed in the ] /¢ mass spectrum in B* —
J/¥¢K* decays produced in pp collisions at /s = 1.96 TeV collected by the CDF II de-
tector [2,3]. The fit functions used by CDF to model their data included a Breit-Wigner
function to describe the signal component:

1 r

flmimo 1) = o 12

(2)

where m is the spectrum’s variable mass, and mg and I are the resonance’s mass and width.
The background component is described by the three-body phase-space function [12]:

1 1
#/\j (T}’Z, m]/lp/ m(P)Aj (mB/ mg, m)

p(m) =

B f#)L%(m,m]/lp,m(p)/\%(mB,mK,m)dtzl
A2 (a,b,c) = Vit b4+ ot — 24262 — 2622 — 242¢2,
(myp +mg) <m < (mp —mg),

where m; /s M, Mp, and mg are the masses of |/, ¢, B*, and K+, respectively. Here, m is
the mass of the J /¢ system, and p(m) is the probability distribution of m.
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4.2.2. Generating and Fitting Simulated Events

We only investigate candidates below 4.665 GeV because of possible background
from BY — ¢(2S)¢ — ]/t ¢ at higher values. Therefore, in B* — J/¢ppK* decays,
the mass of the J /¢ ranges from 4.116 (m/, + mgp) to 4.665 GeV [2-4], which is the search
range for the new particle. We use the three-body phase-space function, Equation (3), to gen-
erate simulated background-only samples with a variable number of events with a mean of
75 and sigma of 10, according to the numbers reported by CDF [2]. It is computationally
inefficient to work with the unbinned sample when a sufficiently finely binned treatment
will yield a good approximation. Thus, our first task was to determine a sufficiently small
bin size by generating a small toy sample and comparing binned and unbinned results.
For the unbinned fit, we minimize the negative log-likelihood function summed over terms
for each individual event, while the binned fit has likelihood terms for a relatively small
number of narrow bins spanning the range of [4.116,4.665] GeV, so that events in the same
bin will be processed and fitted together. The unbinned fit will be more accurate than the
binned fit, but it is computationally much more intensive than the binned fit.

To determine an acceptable bin size, we define the fitting procedure for a given pseudo-
experiment as follows. We conduct the log-likelihood fits for the simulated samples for
the null and signal hypotheses to obtain LO and L1. For the signal-hypothesis fit, we
set up 15 loops to scan over the range of initial fit values of the parameters in the signal
function. The initial values of the signal mass are in the range [4.2,4.6] GeV (step size is
0.1 GeV), and the signal width uses 0.005, 0.015, and 0.05 GeV. After going through 15 loops
to scan the mass-width parameter space, we find the maximum signal log-likelihood L1.
By computing the final 2 x (L0 — L1), we obtain the maximum value of the log-likelihood
ratios for a given pseudo-experiment.

With a bin width of 1 MeV, the shape of the log-likelihood difference distribution
is very similar to the unbinned data, as can be seen in Figure 7. As the two results are
very similar, we choose binned log-likelihood fits with a 1 MeV bin to save time and
increase efficiency.

— Unbinned — Unbinned

—— Binned (1 MeV) —— Binned (1 MeV)

40 50 60 70 0 10 20 30 40 50 60

70
2ANLL 2ANLL

Figure 7. The null-signal likelihood ratio distribution for toy MC computed for 1 MeV binned (blue)
and unbinned (red) data. Left: linear scale; right: logarithmic scale.

4.2.3. The Conventional Method—Direct Counting

In order to demonstrate our extrapolation method, we generate a fairly large sample
of toy MC, but one which is still vastly smaller than would be needed for the conventional
method. We submitted 359,758 jobs to a computer cluster, with each job representing one
toy experiment mimicking CDF’s Y(4140) sample, and thereby one log-likelihood ratio.
We thereby obtain 359,758 simulated experiments. Figure 8 shows a histogram of the
distribution of all the log-likelihood ratio values for this sample of pseudo-experiments.
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Figure 8. The distribution of the binned log-likelihood ratios of the 359,758 toy experiments simulating
CDF’s Y(4140) result.

With a local significance of 5.3c, the reference level of the likelihood ratio should be
28. We can directly count that the number of toy experiments which had a likelihood
ratio beyond 28 is 9. With the total number of experiments being 359,758, the p-value is
9/359,758, or 2.50 x 1075, for a global significance of 4.1¢.

4.2.4. The Extrapolation Method

The strategy behind our extrapolation method is to exploit the fact that the tail of the
log-likelihood ratio distribution—which drives the significances—is well approximated by
a x2-distribution. The first step is to determine where to begin the tail we want to model.
After some trial and error, we found that using a tail above ratios of 15 worked well. Thus,
we divided all the simulated data into two ratio ranges: [0,15] and [15,70]. We separated
the latter range into 110 bins, and used the x? distribution as the PDF to fit the latter range.
Its probability density function is

1 2-1,—x/2
f(x) _ 2”/2F(n/2)x2 e ™ ifx>0 (4)
0 ifx <0,

where 7 is the number of degrees of freedom. The likelihood ratio distribution on a log
scale and fit with a x? function is shown in Figure 9.

The x2-distribution well describes the high tail of the likelihood ratio in Figure 9. So,
we can easily project to the expected number of toys that will exceed some given likelihood
ratio because the tail of the x? distribution at large values is linear on a log scale. The
likelihood ratio observed in the CDF experiment was 28, and from integrating the fitted
X2 function, the expected number of toy experiments above that value was 10.4. On the
other hand, the corresponding total toy sample is broken into two pieces: those below
a ratio of 15, and those above. We directly count the former to be 353,780 toys, and the
latter is obtained by integrating the fitted x? function above 15, for a rounded value of
5,978. Thus, the total toy sample is 359,758, and the p-value is 10.4/359, 758, which is about
2.89 x 107°. Assuming the fluctuations are Gaussian distributed, this corresponds to a
global significance of 4.0c.

Thus, we find that the global significance evaluated by our extrapolation method is
very close to that calculated by the conventional counting method. Notice that our goal is
to use the extrapolation method to estimate the global significance without aiming for preci-
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sion to several decimal places, so a difference of 0.1¢ is within the margin of uncertainty we
allow. Therefore, we successfully verified the validity of this simple extrapolation method.

Events/(0.5)
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Figure 9. The tail of the likelihood ratio distribution on a log scale and fit with a y? function for the
CDF case. The reduced x2 value of 0.69 indicates reasonably good fit quality.

4.2.5. The G-V Method

As an additional cross-check, we use the G-V method to verify the effectiveness of the
extrapolation method.

The G-V method’s strategy involves identifying the frequency of fluctuations beyond
the standard defined by local significance, which represents the probability of excesses
occurring anywhere in the whole mass range, rather than just at the specific location of a
particular fluctuation. The formula is given by

Pglobal = Plocal T < N(C) > ()

where N(c) denotes the number of "upcrossings’ of the level ¢ determined by the likelihood
ratio in local significance. However, < N(c) > is usually difficult to calculate for large
values of ¢, so it was proposed to estimate the expected number of upcrossings of likeli-
hood ratios at a low reference level ¢y using a small set of background-only Monte Carlo
simulations. Therefore, Equation (5) becomes

Pglobal = Plocal+ < N(CO) > X (C/CO)% X e—(c—CU)/Z (6)

where s are degrees of freedom of the x? distribution, which the likelihood ratio follows.

CDF reported the local significance of Y (4140) to be 5.3¢, corresponding to p-value
Plocal = 9.79 X 10~8 and likelihood ratio ¢ = 28. We have s = 1 (1 channel), so cy = 0.5 [5].
We performed 20 such pseudo-experiments in the mass range [4.116,4.665] GeV; one
likelihood ratio distribution with N(cg) = 19 is shown in Figure 10 and the average value,
< N(cg) >, for 20 experiments is found to be 15.55 + 4.41. Along with other inputs, we
obtain the global p-value = 1.67 x 10~° from Equation (6). The corresponding global
significance is 4.10.

The CDF experiment reported the global significance of Y (4140) to be 4.30. Com-
pared with our results, for direct counting, extrapolation, and the G-V method, the global
significances are 4.1c, 4.00, and 4.1, respectively.
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Figure 10. The likelihood ratio fluctuation curve obtained by fixing the signal mass parameter in
the fit to the CDF Y (4140) toy Monte Carlo sample. The horizontal axis represents the fixed signal
mass, while the vertical axis represents the obtained likelihood ratios. The red solid line shows the ¢
reference level, which is crossed about 19 times with the test of statistics (N (cp)=19).

4.3. Global Significance of CMS’S Y (4140) with the Extrapolation Method and the G-V Method

As mentioned in Section 4.1, the number of MC samples (1.5 x 10'%) required to
calculate the global significance for CMS’s Y (4140) [4] is so large that it would be difficult
to realize, so the conventional direct-counting method cannot be applied.

But in the previous section, using CDF’s Y (4140), the new extrapolation method and
the G-V method were successfully validated, so they can be used to calculate the global
significance with a smaller toy sample. So, in this section, we will use the extrapolation
method and the G-V method to evaluate the global significance for the CMS’s Y(4140),
which has never been calculated before. The two methods can be compared to each other.

There are in total 2320 4= 110 events in the mass range [4.116,4.665] GeV in the CMS
J /¢ mass spectrum [4]. We need to generate around 2320 background-only events for
each simulated experiment, according to phase-space, Equation (3). For a local significance
of 7.60 observed in the CMS case, the likelihood ratio is 58. Unfortunately, as expected,
after 272,443 simulated experiments generated, none of them have a likelihood ratio above
58, indicating that the conventional method is practically inapplicable in this case.

However, with the extrapolation method, we can still determine the number of toy
experiments expected above a likelihood ratio of 58 by the integrals of Equation (4). Af-
ter the fit (shown in Figure 11), we calculate the extrapolated number of toys above 58,
which should be around 4.30 x 10~°. And the total number of toys is obtained by directly
counting from 0 to 15 plus a integral from 15 to 70, which is 272443. We then compute the
p-value as 4.30 x 1076/272,443 = 1.58 x 10!}, and the corresponding global significance
is 6.60.

For the G-V method, a test of statistics 2 x (LO — L1) is shown in Figure 12. The
highlights are as follows:

e With a local significance of 7.6, pjoc. should be 1.48 x 107 14;
¢ Like the CDF case, s = 1 (1 channel), and ¢y = 0.5;
*  With 20 pseudo-experiments in the mass range [4.116,4.665] GeV, the value of
< N(cg) > is found to be 18.80 + 2.75.
With Equation (6) and the above parameters, pgjop, is calculated to be 6.16 x 10712,
which give us a global significance of 6.8¢.
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Figure 11. The likelihood ratio distribution on a log scale fit with a x> function for CMS’s Y (4140)
observation. The reduced x? value of 0.98 indicates reasonably good fit quality.
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Figure 12. The likelihood ratio fluctuation curve obtained by fixing the signal mass parameter in
the fit to the CMS Y (4140) toy Monte Carlo sample. The red solid lines shows the ¢( reference level,
which crosses about 19 times with the test of statistics.

For an analyzer, a global significance level of 6.8¢ is considered statistically significant,
as it exceeds the commonly accepted threshold of 5¢. Then, a difference of 0.20" between 6.8¢
(from the G-V method) and 6.60 (from extrapolation) may not be considered substantial.
And their corresponding p-values differ by an order of magnitude, making error calculation
challenging. Anyway, it is generally unnecessary to focus on small differences at this level
(6.8 vs 6.6), unless they are close to critical thresholds such as 3¢ or 5c. On the other hand,
5c is low enough to use the conventional method to obtain the more accurate result.

4.4. Global Significance of ATLAS’S x,(3P) with the Extrapolation Method and the G-V Method

To further demonstrate the versatility of the new method across different datasets, we
applied it to a resonance named yx;(3P), reported by the ATLAS collaboration in 2012 [6].
This resonance represents the first new particle discovered at the LHC among its four major
experiments. Using data points and fitting functions extracted from the ATLAS results, we
reproduced the ATLAS data fit, as shown in Figure 13.



Symmetry 2025, 17, 57

14 of 16

70 & ATLAS Data

— Fit

— Gaus1

===+ Gaus2

------- Gaus3
Background

60

Events /(0.025)

50

40

30

20

11+ ; i
. T
0 I} \ al 2l 1 @ *
g 2 ST SO S SIS S S N O P
P O [ERE SRR SENNE ) I FL SO W £ 5T AR SN
vl ?.ele Ll T?Tl ole IVl o0 "9 14! 14
o T J . o b hels T ]
2 ! $
9.6 9.8 10 10.2 10.4 10.6 10.8

mEy)-mp)+m  (GeV)
Figure 13. Reproducing ATLAS experiment’s m(ppy) — m(pp) + m(Y(1S)) invariant mass spectrum
with simulated events. The third peak from the left corresponds to the x; (3P) observed in 2012 by

ATLAS.

In the ATLAS m(ppy)m(up) + m(Y(1S)) mass spectrum, a total of 873 + 71 events
were collected within the mass range [9.5,10.8] GeV. Assuming the first two Gaussian peaks
are also background for the search of x;(3P), we generated approximately 873 background-
only events in each simulated experiment. Given the local significance of 60 reported by
ATLAS, the corresponding likelihood ratio is 36. To calculate the global significance, 60,219
pseudo-experiments are generated.

For each experiment, we searched for fluctuations mimicking the x;(3P) signal in the
mass region [10.48,10.60] GeV with a step size of 0.01 GeV. We also scanned signal widths in
the range [48,77] MeV, spanning one standard deviation of the value obtained in the ATLAS
analysis, with a step size of 1 MeV. The resulting likelihood ratio distribution, plotted on a
logarithmic scale and fitted with a x? function, is shown in Figure 14. After extrapolation,
we obtained a result of (3.53 £ 0.07) x 10~%, corresponding to a p-value of 5.87 x 10~%
and a global significance of 5.7¢.

As a cross-check, we also calculated the global significance using the G-V method and
obtained 5.60. The two results are consistent and we found that the agreement improves
further with an increased number of pseudo-experiments.
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Figure 14. The likelihood ratio distribution on a log scale fit with a X2 function for ATLAS's x;,(3P)
observation. The reduced x? value of 0.71 indicates reasonably good fit quality.
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4.5. Correlations

Sometimes, we want to check if there are any correlation among the significance, signal
mass, and signal width. We produced toy MC experiments and plotted the 2D distributions
for the log-likelihood ratio, signal mass, and signal width, as shown in Figure 15. From
the right column of the figures, it is evident that a narrower signal width can lead to
higher significance levels. The middle column of Figure 15 reveals that the signal mass has
minimal influence on the significance. The left column of Figure 15 indicates that there is
little correlation between the signal width and signal mass.

Overall, the log-likelihood ratio distribution in terms of fluctuated signal mass or
width towards a big fluctuation may appear randomly and uniformly anywhere in the
mass region, but often with a very narrow width. So, when we think about look-elsewhere
effects, we need to notice that the width distribution is not linear.
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Figure 15. Upper (lower) (left): signal width vs. signal mass in the CDF (CMS) case, indicating
a small correlation between the signal width and signal mass. Upper (lower) (middle): 2 x (L0 —
L1) vs. signal mass in the CDF (CMS) case, indicating the signal mass has minimal influence on
the significance. Upper (lower) (right): 2 x (L0 — L1) vs. signal width in CDF (CMS) case, indicating
that a narrower signal width can lead to higher significance levels.

5. Conclusions

We demonstrate the conventional method of calculating local and global significances,
and the way to estimate the increase in significance by adding new data. We also developed
a simple and effective extrapolation method to estimate large global significances for
situations in which the standard brute-force method of generating enormously large toy
MC samples is not computationally viable. Using the CDF and CMS reports of the Y (4140)
as well as the ATLAS report of the x;(3P) as test cases, with results summarized in Table 2,
the extrapolation method is consistent with the conventional and G-V methods. As a result,
we conclude that the extrapolation method gives good estimation of the global significance
with toy MC samples of modest sizes. And compared to the G-V method, the extrapolation
method is easier to understand and use, and closer to the conventional method.

Table 2. The global significances with different methods for the CDF, CMS, and ATLAS examples.

Direct Counting Extrapolation G-V Method
CDF'’s Y (4140) 4.1c0 4.00 410
CMS’s Y (4140) - 6.60 6.80

ATLAS's x,,(3P) - 5.70 5.60
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