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Abstract: Quantum optimization is a significant area of quantum computing research with antici-

pated near-term quantum advantages. Current quantum optimization algorithms, most of which

are hybrid variational-Hamiltonian-based algorithms, struggle to present quantum devices due to

noise and decoherence. Existing techniques attempt to mitigate these issues through employing

different Hamiltonian encodings or Hamiltonian clause pruning, but they often rely on optimistic

assumptions rather than a deep analysis of the problem structure. We demonstrate how to formulate

the problem Hamiltonian for a quantum approximate optimization algorithm that satisfies all the

requirements to correctly describe the considered tactical aircraft deconfliction problem, achieving

higher probabilities for finding solutions compared to previous works. Our results indicate that

constructing Hamiltonians from an unconventional, quantum-specific perspective with a high degree

of entanglement results in a linear instead of exponential number of entanglement gates instead

and superior performance compared to standard formulations. Specifically, we achieve a higher

probability of finding feasible solutions: finding solutions in nine out of nine instances compared to

standard Hamiltonian formulations and quadratic programming formulations known from quantum

annealers, which only found solutions in seven out of nine instances. These findings suggest that

there is substantial potential for further research in quantum Hamiltonian design and that gate-based

approaches may offer superior optimization performance over quantum annealers in the future.

Keywords: quantum computing; quantum optimization; quantum approximate optimization algorithm;

tactical aircraft deconfliction problem; quadratic unconstrained binary optimization; Hamiltonian;

noisy intermediate-scale quantum era

1. Introduction

As a relatively new and rapidly evolving field in both science and technology, the full
potential of quantum computing remains largely uncharted. Researchers are still exploring
its practical usefulness across various domains. While significant advancements have been
made, such as Shor’s algorithm [1] for factoring integers and Grover’s algorithm [2] for
unstructured search problems, which demonstrate the theoretical advantages of quantum
computing, its real-world applications are still being uncovered.

Among the different branches of quantum computing, one area has demonstrated
significant practical potential: quantum annealers. Quantum annealing, a method specifi-
cally designed for solving optimization problems, has shown promising results and near-
practical utility. Quantum annealers, such as those developed by D-Wave Systems, are
being increasingly utilized for their ability to find approximate solutions to complex op-
timization problems more efficiently than any other quantum architecture paradigm [3].
However, the downside is that quantum annealers are not universal quantum computers.
Despite the fact that the vast majority of combinatorial optimization problems can be repre-
sented as quadratic unconstrained binary optimization (QUBO) formulations, researchers
continue to explore and improve other approaches. With simultaneous advancements in
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the quality of universal quantum computers, the true leader in quantum optimization has
yet to be determined.

Most quantum optimization algorithms in the NISQ (noisy intermediate-scale quan-
tum) era involve representing the optimization problem as a Hamiltonian [4]. In physics, a
Hamiltonian represents the energy of a system and governs its time evolution. In quantum
computing, it often serves as a crucial component for determining measurable quantities
and finding the most favorable solutions by seeking the system’s ground state. Although
some general guidelines for constructing such Hamiltonians have been established [5],
there is no single, universal method for doing so. The construction of a Hamiltonian for a
given problem can vary based on the emphasis placed on different aspects of the problem
or by considering different quantum paradigms. For example, quantum annealers are de-
signed to handle optimization problems in QUBO form, which constrains the Hamiltonian
to contain entanglements of at most second-degree, i.e., entangling at most two qubits with
each other.

Another aspect of encoding the Hamiltonian is to introduce interpretability to the
energy values. In its simplest form, the Hamiltonian can be monotonic, meaning that
better solutions have lower energy than worse ones. However, the Hamiltonian can also
be encoded to provide more detailed information. For instance, the energy value might
represent the number of unsatisfied constraints, giving a clear indication of how far a
solution is from being feasible. Additionally, each digit or component of the Hamiltonian’s
energy value could correspond to different constraints or optimization criteria, allowing
for a more granular analysis of the solution’s quality.

Choosing the encoding for a Hamiltonian should not be considered in isolation from
the performance of the algorithm. Hamiltonians that encode more detailed information in
their energy values tend to be more complex. This complexity often necessitates the algo-
rithm to invest more time and computational effort to achieve convergence. Additionally,
such Hamiltonians may require the construction of more intricate quantum circuits, which
involve costly operations and are more susceptible to noise. This is particularly problematic
for current quantum computers, which are limited by noise and error rates in the NISQ era.
Therefore, a balance must be struck between the richness of the information provided by
the Hamiltonian and the practical limitations of the quantum hardware.

In this paper, we focus on a specific subset of gate-based quantum optimization
algorithms: namely, variational algorithms. We explore an approach for constructing a
Hamiltonian for the standard quantum approximate optimization algorithm (QAOA) [6].
Although we primarily discuss the vanilla QAOA, our approach is also applicable to more
recent and advanced versions of QAOA [7], potentially enhancing their performance in the
same way as it benefits the standard QAOA.

2. Idea of Better Quantum Optimization

The QAOA is a gate-based hybrid classical quantum algorithm inspired by the adia-
batic theorem. The adiabatic theorem states that a quantum system initially in an eigenstate
will remain in that eigenstate if the Hamiltonian governing the system changes sufficiently
slowly [8]. The core idea of QAOA is to approximate this adiabatic process using a sequence
of quantum gates, enabling the transition from an easy-to-prepare initial state to a state
that approximates the solution to a given optimization problem. To implement this, QAOA
uses a combination of two Hamiltonians: HC, the problem Hamiltonian, and HM, the
mixing Hamiltonian. The evolution is discretized using the Lie–Trotter product formula [9],
resulting in a sequence of alternating unitary operations. The final state of the algorithm
after p steps is given by:

|ψp(
−→γ ,

−→
β )⟩ = e−iβp HM e−iγp HC . . . e−iβ1 HM e−iγ1 HC |+⟩⊗R. (1)

We can clearly see that the problem Hamiltonian serves a dual role in QAOA. Firstly, it
acts as a quantum observable, measuring the energy of the system and providing feedback
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to adjust the variational parameters −→γ and
−→
β . Secondly, it defines the structure of the

quantum circuit, determining the gates and operations required for the algorithm. Because
the Hamiltonian directly influences both the optimization process and the quantum circuit’s
complexity, it is beneficial to simplify and reduce its complexity wherever possible. A
simpler Hamiltonian can lead to shorter quantum circuits with fewer entanglement gates,
which, in turn, might increase the chances of achieving good results and solving larger
problem instances.

The structure of the Hamiltonian is also influenced by the chosen variable encoding of
the problem. Often, a binary encoding is employed, where a qubit in the state |0⟩ indicates
that a particular option is not selected, and |1⟩ indicates that it is selected. This encoding
is straightforward for problems with binary variables. For problems with more than two
choices, one-hot encoding is typically used. In one-hot encoding, a string of length m
is constructed, where m corresponds to the number of possible choices. Each string is
designed to have a Hamming weight of 1, meaning that only one qubit in the string is
in the state |1⟩, while all others are in the state |0⟩. This ensures that only one option is
chosen out of the m possible choices, providing a clear and unambiguous representation of
the selection.

There are two main approaches for encoding the one-hot constraint. The first approach
uses the QUBO formulation:

HQUBO-onehot(x) =

(

m

∑
j=1

Hx(xj)− 1

)2

, (2)

where xj is further replaced using the Pauli-Z term:

Hx(xj) =
1

2
(I − Zj), (3)

and the Pauli matrices are defined as follows:

I =

(

1 0
0 1

)

, Z =

(

1 0
0 −1

)

.

The encoding from Equation (2) has the advantage of using at most
n(n−1)

2 entan-
glements. However, if we need to sum many such partial Hamiltonians as constraints,
we cannot derive any meaningful interpretation from the energy value, as this encoding
increases quadratically with the Hamming distance from the one-hot encoding.

If we want better interpretability, we can use entanglements with higher degrees,
which are unavailable in, e.g., D-Wave quantum annealers, with the following formula:

Hfull-onehot = I −
m

∑
j=1











Hx(xj)
m

∏
j′=1
j′ ̸=j

Hnot(xj′)











, (4)

where

Hnot(xj′) =
1

2
(I + Zj′). (5)

Equation (4) evaluates to 1 if and only if the one-hot value is encoded correctly, and
it is 0 otherwise. However, a significant disadvantage is that after Hermitian evolution,
this approach results in a quantum circuit with many entanglement gates of high degree,
introducing substantial noise into the model.

In this paper, we observe that not all encodings known from classical problem defini-
tions are as effective as possible for quantum computing. It might seem counterintuitive,
but it turns out that by extending the search space, we actually increase the chances of
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measuring a feasible/optimal solution while simultaneously simplifying the Hamiltonian.
For example, the one-hot constraint can, in some cases, be replaced by a relaxed “at least
one” constraint, which ultimately serves the same purpose but significantly reduces circuit
length and noise. We show how to do that using a concrete example in Section 4.

3. Literature Review

Many researchers have investigated reducing noise and improving experimental
results through circuit manipulations or truncations. For instance, using imperfect Hamil-
tonian representations for NISQ-era adiabatic quantum optimization has been shown to
yield better results when employing specific techniques [10]. Additionally, several studies
have examined the variable encoding procedures, noting that different encodings and
embeddings significantly affect circuit performance [11–13].

A particularly interesting branch of research related to our approach involves specific
variants of the QAOA algorithm [7]. One notable example is the ADAPT-QAOA algorithm,
which iteratively selects operators to enhance the QAOA mixer Hamiltonians based on
gradient descent algorithm outputs, thereby reducing the overall number of necessary
entanglement gates [14]. Another algorithm, focusing on problem Hamiltonians, draws
inspiration from classical neural networks by introducing a quantum dropout approach [15].
This method shows that selectively dropping clauses that define the problem Hamiltonian
while maintaining the cost function can enhance QAOA performance.

Our work diverges from these approaches by being the first, to our knowledge, to
design a QAOA problem Hamiltonian from the beginning to be simpler than its ideal
counterpart. This simplification involves the relaxation of constraints within the problem
Hamiltonian, aiming to retain the core structure and characteristics of the original problem
while making it more amenable to efficient quantum optimization. By doing so, we strive
to balance the complexity of the problem representation with the capabilities of current
quantum hardware, which is often limited by noise and decoherence.

4. Exemplary Optimization Problem

In this paper, we consider the tactical aircraft deconfliction problem; however, the
following approach can also be used to deal with similar constraints in other problems,
such as the job shop scheduling problem [16]. The tactical deconfliction problem involves
predicting and resolving conflicts between aircraft in airspace from 5 to 30 min into the
future. A conflict is defined as a violation of the safety cylinder of an aircraft by another
aircraft. Most approaches to solving this problem involve mixed-integer linear/non-linear
programming [17], but there are also some recent quantum approaches.

We base our work on the approach described by Pecyna et al. [18], who first formulated
the quantum approach for this problem. For a detailed explanation of the approach, we
refer the reader to the original paper. Following this approach, for each of n aircraft, we
propose m maneuvers and define a set of n × m binary variables as follows:

X = {xij : i = 1, . . . , n, j = 1, . . . , m, xij ∈ {0, 1}}, (6)

where the variable xij taking the value 1 means that aircraft i is assigned maneuver j; it
takes the value 0 otherwise. Each variable directly corresponds to a specific qubit in a
quantum environment. From this set of variables, we form two types of constraints. The
first constraint ensures there are no conflicts, while the second constraint ensures that an
aircraft performs one and only one maneuver. The Hamiltonian representing the no-conflict
constraint is originally written as:

H1 = ∑
i,j,i′ ,j′ :CM(i,j,i′ ,j′)=1

Hand(xij, xi′ j′). (7)

where the CM matrix is defined as in [18]: Hand(xij, xi′ j′) =
1
4 I − 1

4 (Zij + Zi′ j′ − ZijZi′ j′).
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The Hamiltonian for the constraint that ensures an aircraft can perform one and only
one maneuver is originally formulated as:

H2 =
n

∑
i=1

I −
m

∑
j=1











Hx(xij)
m

∏
j′=1
j′ ̸=j

Hnot(xij′)











, (8)

where Hnot(xij′) =
1
2 (I + Zij′) and Hx(xij) =

1
2 (I − Zij).

If these two types of constraints are satisfied, it means that aircraft are assigned conflict-
free trajectories and each aircraft performs only one maneuver. The deconfliction problem
that is formulated this way does not have an optimization function, so a solution satisfying
these two types of constraints is a correct, feasible solution to the problem.

In this work, we focus on improving the second constraint. Note that due to the
products in Equation (8), the number of summands containing Pauli-Z terms is n2m, with
most necessitating entanglements of degree higher than two. This, in turn, can make it
challenging to find the ground state of the final Hamiltonian and can make the quantum
circuit prone to errors in noisy quantum environments.

Classical optimization of hard problems almost always benefits from reducing the
search space. Setting up more constraints while simultaneously keeping the number of fea-
sible solutions constant prevents classical algorithms from wasting their computing cycles
on exploring unprofitable dead ends that do not yield valuable solutions. In quantum com-
puting, however, qubits can be put into superposition, allowing operations on many states
simultaneously. This enables virtually cost-free computation on unfeasible solutions with-
out adding any additional overhead. Considering this, we note that the one-hot constraint
for the tactical aircraft deconfliction problem is superfluous when using quantum optimiza-
tion algorithms, and removing it can lead to significant performance improvements.

Counterintuitively, let us replace the constraint that an aircraft can perform one and
only one maneuver with the constraint that an aircraft must perform at least one maneuver.
The no-conflict constraint remains intact. Feasible solutions would then include solutions
with aircraft performing multiple maneuvers simultaneously, which is obviously impossible
in real-life situations. This, however, does not concern us, because we can interpret the
solution of an aircraft performing multiple maneuvers as if all those maneuvers were
conflict-free. The solution would then be a subset of possible non-conflict maneuvers for
the aircraft, with the specific maneuver selection postponed until the post-processing phase.
Moreover, at this stage, one can define an optimization criterion and select such a solution
that optimizes the criterion.

As promising as it might sound, this approach does not help us much. The reason is
that if we encoded a Hamiltonian for the at least one maneuver constraint, the number of
Pauli-Z summands would be the same as for the one-hot constraint.

We can shift our perspective and identify the fundamental criteria that our constraints
must meet:

1. The state 0 . . . 0 must have a value of 1;
2. Each state with a Hamming weight of 1, representing the feasible solution, must yield

a value of 0;
3. All other possible states must have a non-negative value to ensure that no bitstrings

have a lower Hamiltonian value than any correct solution.

These three requirements do not correspond to the one-hot or the at-least-one con-
straint. However, they are sufficient to form a sensible constraint that contains all essential
and indelible requirements for a correct Hamiltonian for the tactical deconfliction problem.

There is one function that directly meets these criteria, which is the multi-variable
NOT XOR function. For example, consider an aircraft with m = 5 possible maneuvers. The
Hamming weights for all 26 = 32 bitstrings would range from 0 to 5. Moreover,
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• Bitstrings with Hamming weights of 0, 2, and 4 would yield a value of 1, fulfilling the
first requirement and partially the third requirement;

• Bitstrings with Hamming weights of 1, 3, and 5 would yield a value of 0, fulfilling the
second requirement and completing the third requirement.

We present a more visual representation of the behavior of the NOT XOR function
in Table 1. Subsequently, the Hamiltonian for the NOT XOR function can be encoded
as follows:

HNOT XOR = − 1
2 I + 1

2 Z1Z2 . . . Zm. (9)

Table 1. Example of possible maneuver assignments for one aircraft and the corresponding evaluation

of the NOT XOR function.

Number of Maneuvers
(Hamming Weight)

0 1 2 3 4 5

Bitstring 00000

00001
00011 00111

01111

11111

00101 01011

00010
00110 01101

10111
01001 01110

00100
01010 10011

11011
01100 10101

01000
10001 10110

11101
10010 11001

10000
10100 11010

11110
11000 11100

NOT XOR 1 0 1 0 1 0

Using the NOT XOR function, we see that there is only one Pauli-Z term with an
entanglement of degree m. This represents a significant improvement, as the number of
Pauli-Z terms directly corresponds to the number of entanglement gates needed to encode
such Hamiltonians in a quantum circuit, as shown in Figure 1. For an aircraft with m
possible maneuvers, the one-hot encoding requires O(2m) entanglements, the quadratic
encoding requires O(n2) entanglements, while the NOT XOR encoding requires only
O(1) entanglements.

• • • • • •

RZ (0.25 ∗ γ1) • • • •

RZ (0.25 ∗ γ1) RZ (0.25 ∗ γ1) RZ (0.75 ∗ γ1)

(a) One-hot (standard) encoding

• • • •

RZ (1.0 ∗ γ1) • •

RZ (1.0 ∗ γ1) RZ (1.0 ∗ γ1)

(b) Quadratic (QUBO) encoding

• •

• •

RZ (1.0 ∗ γ1)

(c) NOT XOR encoding

Figure 1. Quantum circuit representations resulting from Hamiltonian evolution for three different

encodings of an aircraft (n = 1) with m = 3 possible maneuvers. The symbol RZ represents a

parameterized quantum gate rotation around the Z-axis.

5. Computational Experiment

Having introduced the NOT XOR Hamiltonian, we compare it with standard one-hot
encoding with many entanglements of high degree and with quadratic encoding, which
uses only second-degree entanglements. We benchmark these three approaches against
nine artificially generated instances of the same size: n = 3 aircraft with m = 5 alternative
maneuvers. The difference between these instances lies in the number of potential conflicts
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between maneuvers, resulting in a varying number of feasible solutions to the problem. We
choose to test instances with difficulties of 1, 3, 5, 10, 20, 30, 50, 100, and 124 solutions. The
reason for choosing such a set of instances is that the first constraint for conflict avoidance
(see Equation (7)) already contains the quadratic Pauli-Z terms. Thus, with an increasing
number of potential conflicts, the entanglement complexity of the constraint determining
the number of maneuvers performed by the aircraft may lose its significance.

The test instances are generated using an iterative graph-based algorithm that detects
cycles between nodes. Each node in the graph represents an aircraft performing a maneuver,
while edges represent possible coexistence between these maneuvers. By removing an edge
between two nodes, we introduce a conflict, reducing the number of solutions. Starting
from a complete graph with no conflicts, the number of solutions removed corresponds to
the number of cycles that include removing an edge.

We tested the instances in a noisy simulator environment using the noise model
derived from the ibm_torino quantum device. The 3 × 5 size of instances was the largest
we could compute within a reasonable time frame and required several days of HPC
computations across multiple nodes. For the optimization of QAOA parameters, we used
the Constrained Optimization BY Linear Approximation (COBYLA) [19] algorithm with
the default 1000 iteration threshold. We fixed 10 random initial points, optimized each
instance starting from each of these random points, and averaged the results. The results
are presented in Figure 2.

0.000

0.001

0.002

0.003

Pr
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ilit

y

0 0

#sol. 1

1 10 4
1 10 4

#sol. 1

2 10 4
2 10 4

#sol. 1

1 10 4
1 10 4

#sol. 3

3 10 4
3 10 4

#sol. 3

5 10 4
5 10 4

#sol. 3

1 10 4
1 10 4

#sol. 5

7 10 4
7 10 4

#sol. 5

9 10 4
9 10 4

#sol. 5 evaluation strategy
onehot
at least one
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0.03
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ilit

y

5 10 4
8 10 4

#sol. 10

0.001 0.001

#sol. 10

0.002 0.003

#sol. 10

0.002 0.004

#sol. 20

0.003 0.004

#sol. 20

0.004 0.007

#sol. 20

0.003 0.008

#sol. 30

0.004 0.009

#sol. 30

0.008
0.016

#sol. 30

onehot qubo not xor
0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

0.007 0.026

#sol. 50

0.01 0.031

#sol. 50

0.013 0.04

#sol. 50

onehot qubo not xor
0.01

0.237

#sol. 100

0.028
0.209

#sol. 100

0.018

0.264

#sol. 100

onehot qubo not xor
0.01

0.657#sol. 124

0.024

0.519

#sol. 124

0.016

0.715#sol. 124

Figure 2. Probabilities of measuring a feasible solution as a function of the number (denoted by

#) of feasible solutions in the instance and the chosen encoding. The probabilities are evaluated in

two ways. First, we sum the probabilities for all correct one-hot-measured bitstrings (blue bars).

Second, we sum the probabilities for all bitstrings that correspond to the aircraft performing at

least one maneuver (green bars). After performing a set of measurements, each probability bar

represents the ratio of feasible solutions, as defined by the aforementioned rules, to the total number

of measurements.

The figure answers two questions: Firstly, is the NOT XOR encoding better in terms of
the number of feasible solutions we can find, i.e., does it make the optimization landscape
simpler? Secondly, does the NOT XOR encoding introduce less noise to the circuit? One
could argue that it would be unfair and biased to report that the NOT XOR solution gives
better results when we treat all solutions that have no conflicts and where aircraft perform
at least one maneuver as feasible. This is because optimizers with the one-hot and QUBO
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Hamiltonians as observables do not aim to increase the probability of measuring states
where aircraft perform more than one maneuver. For this purpose, we also evaluate all
these Hamiltonians against the one-hot evaluation strategy, which is theoretically not
favorable from the perspective of an optimizer aiming to minimize the energy measured
with the Hamiltonian that encodes the NOT XOR observable.

We report that in the considered instances, the NOT XOR Hamiltonian outperforms the
standard one-hot Hamiltonian in both evaluation strategies. This means that using this kind
of encoding is always favorable, as it both simplifies the optimization landscape and reduces
potential noise. This also indicates that this approach would be preferred over the standard
one-hot encoding even if the goal was to fully satisfy the one-hot encoding, i.e., it was not
possible to choose one maneuver for an aircraft out of many at the postprocessing stage.

Moreover, for all instances, the NOT XOR Hamiltonian achieves better results than the
QUBO Hamiltonian for the evaluation strategy where bitstrings of aircraft performing at
least one maneuver are considered feasible. Additionally, for seven out of nine instances, the
NOT XOR Hamiltonian outperforms the QUBO Hamiltonian when we consider bitstrings
satisfying the one-hot encoding as feasible. The two instances where the QUBO encoding
outperforms the NOT XOR encoding are the two easiest instances, i.e., the two instances
with 100 and 124 solutions, which also means fewer conflicts. This result can be easily
explained by noting that when there are few possible feasible solutions in an instance, most
of them have a Hamming weight of 1. Conversely, when there are many feasible solutions,
there are also many solutions having a Hamming weight greater than 1.

6. Conclusions and Future Work

In this paper, we have presented an alternative approach to formulating the problem
Hamiltonian for the quantum approximate optimization algorithm that reduces the total
number of necessary entanglements from exponential to linear. This formulation employs
high-degree entanglements (higher than quadratic), resulting in significant performance
benefits, such as fewer noise-induced errors and a higher probability of measuring the
correct solution. Our solution outperforms the standard Hamiltonian formulation for
the tactical deconfliction problem in all considered instances and surpasses the quadratic
formulation known from quantum annealers in seven out of nine instances.

We see two evident directions for further research. Firstly, our experiments were
conducted on a noisy simulator designed to closely resemble real quantum machines. How-
ever, there are quantum architectures, such as ion traps, that are particularly well-suited
for performing high-degree entanglements in a single operation. It would be beneficial
to repeat these experiments on real hardware that is optimized for such setups. Secondly,
we have demonstrated only one use case of this Hamiltonian formulation. It would be
valuable for the community to conduct in-depth research on various well-known opti-
mization problems and explore how to reformulate existing encodings to enhance their
efficiency. A key area of interest would be to propose a set of general rules for constructing
custom Hamiltonians.
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