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Zusammenfassung

Die vorliegende Dissertation widmet sich der Untersuchung verschiedener physikalischer Sys-
teme im Grenzbereich zwischen statistischer Physik und Quantenfeldtheorie mithilfe nicht-
storungstheoretischer Methoden.

Im ersten Kapitel wird der von P.A.M. Dirac im Rahmen der Quantenelektrodynamik (QED)
eingefiihrte Dressingformalismus zur Behandlung eichinvarianter Ladungen auf den Fall nicht-
abelscher Eichtheorien ausgeweitet. Zunéchst wird dazu eine Methode entwickelt, die es er-
laubt, verschiedene Ansétze fiir den unbekannten Grundzustand einer Eichtheorie bei Anwe-
senheit eines Paares von statischen Ladungen miteinander vergleichen zu kénnen. Dabei kon-
zentrieren wir uns auf zwei Klassen von Zustédnden, die eng mit der Wahl der axialen Eichung,
sowie der Coulomb-Eichung verkniipft sind. Anhand der funktionalanalytisch zuginglichen
QED wird gezeigt, dass der Vergleich der Persistenzamplituden von Zusténden, die durch
Verwendung unterschiedlicher Dressings der Ladungen konstruierten werden kénnen, auch im
Rahmen der numerischen Behandlung der zugehotrigen Gittereichtheorie mittels Monte-Carlo-
Simulationen einen gangbaren Weg zur Untersuchung der Physik des Grundzustands darstellt.
Nach einer Diskussion der Gribov-Ambiguitidt und der daraus resultierenden Grenzen fiir
eine storungstheoretische Konstruktion von Dressings im Falle nicht-abelscher Eichtheorien
wird der nicht-perturbative Zugang zunéchst in zwei verschiedenen Realisierungsphasen einer
SU (2)—Eichtheorie mit fundamentalem Skalarfeld weiter verfolgt. Uberraschenderweise wird
der Coulomb-Zustand dabei beidesmal gegeniiber dem axialen Zustand bevorzugt. Zuletzt
steht die reine SU(2)— Yang-Mills-Theorie im Kontinuumslimes auf dem Priifstand. Es zeigt
sich, dass der Uberlapp des wahren Grundzustands im mesonischen Sektor mit dem axialen
Zustand letztlich verschwindet, selbst wenn dessen string-artige Geometrie durch sukzessive
Anwendung von Smearing-Schritten zu einem Flussschlauch endlicher Ausdehnung verédndert
wird. Die Kongruenz von Coulomb- und Grundzustand hingegen nimmt im Kontinuumslimes
scheinbar kontinuierlich zu.

Im zweiten Kapitel wird die Rolle von Zentrumsvortices in der Theorie der starken und elek-
troschwachen Wechselwirkung bei endlichen Temperaturen studiert. Zunéchst wird gezeigt,
dass sich das in der Theorie der Quarks und Gluonen beobachtete Phidnomen des string
breaking im Rahmen des Random-Vortex-Modells auf eine Verdnderung der Perkolationsei-
genschaften der Vortices zuriickfithren lassen sollte. In der anschlielend durchgefiihrten nume-
rischen Simulation einer vierdimensionalen SU(2)—Eichtheorie mit dynamischem Skalarfeld
in fundamentaler Darstellung konnte diese Vermutung bestétigt werden, was einen weiteren
wichtigen Hinweis auf die Relevanz der in Direkter Maximaler Zentrums-Eichung (DMCG)
identifizierten Zentrumsvortices fiir die Beschreibung des Infrarot-Regimes der Theorie der
starken Wechselwirkung liefert. Bei der Untersuchung des elektroschwachen Standardmodells
bei endlichen Temperaturen hat sich gezeigt, dass eine sinnvolle Definition von Zentrums-
vortices — im Gegensatz zu elementaren Z—Strings und Nambu-Monopole — auch in der
dimensional reduzierten Theorie mit Hilfe von lokalen Operatoren moglich ist, die es er-
laubt, Objekte zu detektieren, deren Dichte sich als invariant unter Renormierungsgruppen-
Transformationen erweist. Die in der Nihe des elektroschwachen crossover durchgefiihrten
Untersuchungen der Profilfunktionen und des Perkolationsverhaltens der vortex-artigen De-
fekte haben dabei erste Hinweise darauf geliefert, dass die Zentrumsvortices, die sich in der
Hochtemperaturphase als deutlich erkennbare Inhomogenitéten im Eichfeldsektor der Theo-
rie manifestieren, eine wichtige Rolle bei der Beschreibung des elektroschwachen Phaseniiber-
gangs spielen konnten.



Das dritte Kapitel widmet sich der Untersuchung frustrierter Systeme. Anhand des proto-
typischen zweidimensionalen Ising-Spin-Glases wird zunéchst die Moglichkeit einer eichin-
varianten Charakterisierung der Frustration durch die Dichte von Zy—Vortices erldutert,
was eine Klassifizierung verschiedener Instanzen von Spin-Gléasern unter dem Gesichtspunkt
identischer thermodynamischer Eigenschaften erméglicht. Die Rolle der Landau-Eichung bei
der Berechnung der Energie des Grundzustands wird diskutiert, bevor diese als Funktion
des neuen Komplexitdtsparameters mit Hilfe des minimal matching algorithm von Edmonds
exakt bestimmt wird. In anschlieBenden Simulationen von Spin-Glésern bei endlichen Tem-
peraturen wird ein Algorithmus eingesetzt, welcher in der Lage ist, der Eichinvarianz des
jeweiligen Modells bei der Definition der zu aktualisierenden Cluster von Spins umfassend
Rechnung zu tragen und eine effiziente numerische Behandlung dieser frustrierten Systeme in
der Umgebung ihres jeweiligen pseudo-kritischen Punktes erlaubt. Nahe 7" = 0 erscheint dieser
Cluster-Algorithmus aufgrund von stark anwachsenden Autokorrelationen fiir Untersuchun-
gen des Grundzustands allerdings weniger gut geeignet zu sein. Die Dimensionsunabhéngig-
keit des Algorithmus erméglicht es jedoch, diesen auch bei der Simulation der dimensional
reduzierten Quantenchromodynamik in der N#he ihrer kritischen Temperatur einzusetzen,
da diese Theorie durch Einbettung von Ising-Spins auf ein frustriertes Spin-Modell in d = 3
Dimensionen mit dynamisch generierten Kopplungskonstanten abgebildet werden kann. In
einer detaillierten Untersuchung des induzierten Modells hat sich zum einen die Effizienz
des Cluster-Algorithmus in der Nédhe des kritischen Punktes bestétigt, zum anderen wurde
deutlich, dass die QCD bei hohen Temperaturen einem stark frustrierten statistischen Sy-
stem entspricht, wihrend sie sich in der Phase gebrochener globaler Reflexionssymmetrie der
adjungierten Skalarfelder bei niedrigeren Temperaturen als praktisch rein ferromagnetisches
System erweist.

Gegenstand des letzten Kapitels ist die Untersuchung der Grundlagen des Standardmodells
der elektroschwachen Wechselwirkung sowie die Frage nach einer Alternative zur Freisetzung
von schwacher Isospinladung durch Kondensation der Bosonen des fundamentalen Higgs-
Feldes. Zu diesem Zweck wird eine vierdimensionale SU(3)—Eichtheorie mit dynamischem
Skalarfeld in adjungierter Darstellung untersucht, welche nach Fixierung der Eichsymmetrie
durch Wahl der Landau-Eichbedingung, sowie einer globalen unitéren Eichbedingung einen
Phaseniibergang zweiter Ordnung erméglicht, der mit der spontanen Brechung der residuellen
globalen SU(3)—Symmetrie einhergeht und auf eine Realisierungsphase fiihrt, welche durch
die residuelle Symmetriegruppe H = SU(2) x U(1) charakterisiert ist. Die vorliegenden Er-
gebnisse weisen darauf hin, dass die Kondensation der Bosonen des adjungierten Skalarfeldes
wihrend des Phaseniibergangs denselben Effekt hervorruft, wie die Ausbildung eines Konden-
sats von fundamentalen Higgs-Bosonen bei der spontanen Symmetriebrechung im Modell von
Glashow, Weinberg und Salam. Obwohl es sich beim schwachen Isospin um eine nicht-abelsche
Symmetrie handelt, kann Materie, welche schwache Isospinladung tréigt, im Rahmen der un-
tersuchten effektiven Theorie dennoch frei beobachtet werden. In Verbindung mit den Un-
tersuchungsergebnissen zum Spektrum dieser Theorie ergibt sich dabei ein sehr interessantes
Bild. Neben vier massiven Anregungen im Eichfeldsektor, die mit den gebrochenen Genera-
toren assoziiert sind, treten scheinbar auch vier mit H assoziierte masselose Anregungen auf.
Eine bestimmte Linearkombination derselben ldsst sich dabei als Kandidat fiir ein physika-
lisches Photon interpretieren, welches auf eichinvariante Weise nachgewiesen werden konnte.
An dem im Rahmen der vorliegenden Studie untersuchten Punkt im Phasendiagramm scheint
somit eine effektive Quantenfeldtheorie vorzuliegen, die weder das Confinement-Phidnomen,
noch das Auftreten eines mass gap zeigt, obwohl die zugrunde liegende Symmetriegruppe H
einen nicht-abelschen Faktor enthélt.
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Kapitel 1

Der Grundzustand der Yang-Mills-
Theorie

1.1 Einleitung

Eine bis heute offene Frage bei der Beschreibung der starken Wechselwirkung ist die Ursache
fiir das Confinement-Phinomen, also der Beobachtung, dass Farbladungen nicht frei, sondern
immer nur als Konstituenten insgesamt farbneutraler Systeme aufzutreten scheinen. Im Rah-
men der Quantenchromodynamik als Theorie der starken Wechselwirkung wird dabei davon
ausgegangen, dass der Einschluss von farbgeladenen Quarks in Hadronen bereits allein durch
die Physik der Gluonen zu verstehen ist. Die géingige Vorstellung im Falle eines Mesons
beispielsweise sieht dabei so aus, dass sich nach Einbringen eines Quark-Antiquark-Paares
in das Vakuum der SU(3)—Yang-Mills-Theorie eine Gluonenverteilung einstellt, welche die
Ladungsquellen umgibt und die Gesamtenergie minimiert, wobei das Vakuum mit der Aus-
bildung eines gluonischen Flussschlauchs zwischen den Quellen reagiert, wenn man versucht,
diese durch schrittweise Vergroferung ihres Abstands voneinander zu trennen. Zwar ist die
genaue Form dieser Reaktion des Vakuums nach wie vor unbekannt, ein reizvoller Aspekt bei
der Annahme eines solchen String-Zustands ist aber zweifelsohne, dass die im Flussschlauch
konzentrierte Energie linear mit der Lénge des Schlauchs anwéichst. Dadurch wird auf elegante
Weise eine natiirliche Erkldrung fiir die Abwesenheit von farbgeladener Materie im Spektrum
der Theorie der starken Wechselwirkung bereitgestellt. Tatséchlich gibt es eine Vielzahl von
Hinweisen, die diese Vorstellung unterstiitzen. So hat sich bei der numerischen Untersuchun-
gen diverser Yang-Mills-Theorien gezeigt!, dass das Wilson’sche Inter-Quark-Potential V (r)
fiir groe Abstéande r zweier statischer Ladungen — bei Abwesenheit von dynamischen Quarks
— tatséchlich linear mit r» anwéchst. Der Zustand, der dabei in die Konstruktion des soge-
nannten Wilson-Loops einflieit, ist ein insgesamt eichinvariantes und farbneutrales Objekt,
in dem der gluonische Fluss auf einen infinitesimal diinnen Schlauch begrenzt ist. Bemerkens-
wert dabei ist allerdings, dass ein solcher axialer Zustand selbst bei kiirzesten Absténden r
weder die Identifizierung von eichinvarianten Konstituentenquarks zuldsst, noch irgendwelche
Hinweise auf einen Coulomb-artigen Potentialverlauf zeigt, der aufgrund der asymptotischen
Freiheit der zugrunde liegenden Yang-Mills-Theorie zu erwarten wére. Tatsdchlich kann die-
ser Potentialverlauf jedoch bei kurzen Abstéinden der Quellen in numerischen Simulationen

Vergleiche etwa [BSS95] fiir den Fall der SU(3)— Yang-Mills-Theorie, sowie die weiterfiihrende Diskussion
in der Einleitung zu Kapitel 4.
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beobachtet werden, allerdings nur dann, wenn man mittels overlap enhancement [AT87] das
UV -Verhalten der Gitterkonfigurationen, und damit faktisch die Gestalt des axialen Testzu-
stands, verdndert.

Obwohl der axiale Zustand also eichinvariant ist und damit die Grundvoraussetzung eines
physikalischen Zustands erfiillt, konnen die zugehorigen Wilson-Loops jedoch nicht als Am-
plituden eines Prozesses interpretiert werden, der die zeitliche Entwicklung von individuell
physikalischen Zusténden eines (statischen) Quarks bzw. Antiquarks beschreibt. Um einen
Zustand konstruieren zu konnen, der eine solche Interpretation erlaubt, miisste es folglich
die Moglichkeit geben, ein einzelnes Quark auf eichinvariante Art und Weise beschreiben zu
konnen. Tatséchlich existiert ein solcher Zugang zur Konstruktion von Ladungen in Eichtheo-
rien [LM97, BLM00a, BLM0Ob, ILM07]. Die grundlegende Idee geht dabei auf Dirac [Dir55]
zuriick, der das Konzept des sogenannten Dressings bei der Behandlung eines statischen
Elektrons im Rahmen der QED bereits 1955 initiiert hat. Die Details der Konstruktion von
zusammengesetzten Operatoren, die sowohl Materiefelder als auch Eichfelder beinhalten und
zur Erzeugung von physikalischen Zustidnden wohldefinierter Ladung geeignet sind, werden
in Kapitel 1.2.2 diskutiert.

Es hat sich gezeigt, dass jede Eichfixierungsbedingung dazu verwendet werden kann, ein
zugehoriges Dressing zu definieren und dadurch einen eichinvarianten Zustand zu konstruie-
ren [LM97]. Im Falle statischer Ladungen erweist sich dabei die Coulomb-Eichung als beson-
ders geeignet, da das Dressing in diesem Fall seine einfachste Form annimmt [BLMO00a].
Diese Beobachtung fiihrt nicht nur zu erheblichen Vereinfachungen bei der Konstrukti-
on von Vielteilchenzustinden und der Auswertung interessierender Observablen, sondern
ermdoglicht es auch, eine Verbindung zwischen der Untersuchung von manifest eichinvari-
anten Zustinden auf dem Gitter und der Verwendung von analytischen Untersuchungs-
methoden wie etwa dem funktionalen Hamilton-Zugang in Coulomb-Eichung [SS02, LS04,
Szc04, FR04, AKKWO06,SLR06, ERS07] oder der Untersuchung des nicht-abelschen Coulomb-
Potentials [CZ02,Zwa03, GO03,LM04,NS06, NNS*06] herzustellen.

Das Ziel der vorliegenden Untersuchung ist es, neue Erkenntnisse zur Gestalt des Grundzu-
stands von Yang-Mills-Theorien bei Anwesenheit eines Paares von statischen Testladungen
unterschiedlichen Vorzeichens zu gewinnen und bereits dazu bestehende, géingige Vorstellun-
gen auf ihre Tragfahigkeit hin zu tiberpriifen. Zu diesem Zweck soll zunéchst eine Methode
entwickelt werden, die es erlaubt, verschiedene Ansétze fiir den unbekannten Grundzustand
miteinander zu vergleichen, um beurteilen zu kénnen, inwiefern das jeweilige Modell in der
Lage ist, die Physik des Grundzustands verschiedener Eichtheorien adédquat wiederzugeben.
Dabei konzentrieren wir uns auf zwei Klassen von Zustidnden, die eng mit der Wahl der
axialen Eichung, sowie der Coulomb-Eichung verkniipft sind. Der axiale Zustand, den wir
mit |y ) bezeichnen wollen, beschreibt dabei ein insgesamt eichinvariantes Objekt, das durch
Verbindung der statischen Ladungen mit einem gluonischen Flussschlauch entsteht und im
Rahmen der QCD iiblicherweise als Kandidat fiir ein sehr schweres Meson interpretiert wird.
Der Coulomb-Zustand | ®) hingegen beschreibt im perturbativ zugénglichen Regime zwei
individuell eichinvariante Ladungen [BLMOOb]. In der Quantenelektrodynamik, die wir in
Kapitel 1.2 behandeln wollen, handelt es sich dabei um den Grundzustand der Theorie. Da
in diesem Fall explizite Rechnungen zum Verhalten von |®) und | x ) durchgefiihrt werden
konnen, wird sich diese erste Untersuchung als ausgesprochen hilfreich dabei erweisen, um
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eine Intuition fiir die relevanten Vorgénge zu entwickeln, die fiir das Verstéindis der Grundzu-
standsphysik in komplexeren Theorien wichtig werden wird. Insbesondere wird die Definition
von R(r,t) in Kapitel 1.2.5 als das Verhéltnis der Persistenzamplituden zweier Zustinde ei-
ne wesentliche Rolle spielen, denn diese Grofle wird es uns ermdglichen, eine Verbindung
von funktionalanalytischen und numerischen Methoden herzustellen. Durch einen Vergleich
von Resultaten, die bei der Untersuchung der gewdhnlichen QED im Kontinuum, sowie der
Deconfinement-Phase der kompakten QED,4 auf dem Gitter gewonnen wurden, werden wir
uns davon iiberzeugen, dass die Untersuchung von R(r,t) es uns auch in analytisch nicht
mehr exakt zugénglichen Theorien erlauben sollte, unterschiedliche Ansétze fiir den wahren,
noch unbekannten Grundzustand, miteinander zu vergleichen.

Die Ausweitung des Dressingformalismus auf den Fall nicht-abelscher Eichtheorien ist Gegen-
stand von Kapitel 1.4. Nach einer Diskussion der perturbativen Konstruktion von Dressings
in Yang-Mills-Theorien wird die Rolle von Gribov-Kopien [Gri78, Sin78| erldutert, die bei
der Fixierung unterschiedlicher Eichungen typischerweise auftreten. Aufgrund der bereits
erwihnten Abwesenheit von farbgeladener Materie als asymptotischem Zustand im Spek-
trum der QCD, besitzt das Bild von eichinvarianten Konstituentenquarks innerhalb eines
Hadrons offensichtlich nur einen begrenzten Giiltigkeitsbereich. In [LM97,ILMO07] wurde ar-
gumentiert, dass das Zusammenbrechen der Interpretation des Inter-Quark-Potentials bei
groffen Abstédnden als Wechselwirkung zwischen individuellen Quarks aufs Engste mit dem
nicht-perturbativen Zusammenbrechen der Eichinvarianz der , bekleideten“ Ladungen ver-
kniipft sei, was durch das Auftreten der Gribov-Ambiguitit verursacht wird. Da aber ande-
rerseits in [HLLMO7] gezeigt werden konnte, dass sich das Potential nach Mittelung tiber alle
auftretenden Gribov-Kopien hervorragend aus der Persistenzamplitude des nicht-abelschen
Coulomb-Zustands | @) fiir alle Absténde der Quellen gewinnen lisst, stellt sich natiirlich die
Frage nach dessen Relevanz fiir die Physik des Grundzustands im mesonischen Sektor von
Yang-Mills-Theorien.

Dieser Frage gehen wir zunéchst in Kapitel 1.5 durch Untersuchung von zwei verschiedenen
Realisierungsphasen einer SU(2)—Eichtheorie mit skalarem Feld in fundamentaler Darstel-
lung nach. Zuletzt steht in Kapitel 1.6 die einfachste Yang-Mills-Theorie SU(2) auf dem
Priifstand. Dabei liegt der Fokus unserer Untersuchungen auf dem Verhalten der beiden
oben diskutierten Ansitze |®) und | x ) fiir den Grundzustand im Kontinuumslimes.

1.2 Analytische Behandlung der QED

Quantenelektrodynamik ist die Theorie der Wechselwirkung von Licht und Materie. Die
Eichfelder dieser abelschen U(1)-Eichtheorie werden mit den Photonen assoziiert und die
elektrisch geladene Materie wird durch fermionische Felder reprisentiert. In diesem Kapi-
tel soll das Verhalten der Quantenelektrodynamik bei Anwesenheit von statischen externen
Quellen untersucht werden. Dazu soll zunéchst die Quantisierung der Theorie in funktiona-
ler Schrodinger-Darstellung unter Vernachlédssigung von dynamischen Fermionen besprochen
werden, danach wird eine Einfiithrung in den Dressingformalismus anhand dieser abelschen
Eichtheorie gegeben.
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1.2.1 Quantisierung im Schroédinger-Bild

Die Quantisierung der Elektrodynamik in Schréodinger-Darstellung soll im Folgenden kurz dis-
kutiert werden. Wir verwenden die Weyl-Eichung, Ay = 0 [Wey50], in welcher der Hamilton-
Operator durch

H= %/de [ Bi(2) Ei(x) — Ai(2)(5,0% — 0:0;)As() ] (L.1)

gegeben ist. Einfiihrung von magnetischen Feldern der Form
Bi(x) = €,0; A () (1.2)
erlaubt die alternative Darstellung

!

H= 2/d3a: [E*(x) + B*(7)] , (1.3)

welche mit dem bekannten Ergebnis fiir freie Eichfelder iibereinstimmt. Statische externe
Quellen kénnen durch die Einfiihrung eines entsprechenden Kopplungsterms in der zugehori-
gen Lagrangedichte auf klassischer Ebene beriicksichtigt werden. Die entsprechende Konstruk-
tion wird in Kapitel 1.3.1 am Beispiel eines statischen Fermion-Anti-Fermion-Paares erlautert.
In der quantisierten Theorie fiithrt dies zum Auftreten eines Quellterms im Gaufi’schen Ge-
setz, was ebenfalls weiter unten diskutiert wird. In Weyl-Eichung lisst sich die kanonische
Quantisierung unmittelbar durchfiithren [Wey50,Jac80,Jac], da Eichpotentiale und elektrische
Felder kanonisch konjugierte Variablen sind. Wir fordern also fiir den nicht-verschwindenden
Kommutator von Operatoren, die zur selben Zeit ausgewertet werden

[Ai(x,1), Bj(y,1)] = i6;6°(x — y) . (1.4)

In der Schrodinger-Darstellung sind die Zusténde | W, ¢) (im Gegensatz zu den Operatoren)
zeitabhéngig und entwickeln sich geméfl der Schrodingergleichung

i%m,w:mm,w — |, t) = T y,0). (1.5)

Die Zusténde | ¥,¢) werden mit Wellenfunktionalen W[A,t] identifiziert, die durch Bildung
des Skalarproduktes der Zustdnde mit einem zeitunabhéngigen Eigenzustand |.A) des Eich-
feldoperators A;(z) gewonnen werden:

|0, t) & UlA L= (A|T,t), Az t)]A) = A(x)|A) V. (1.6)

Der Kommutator (1.4) kann auf dem Zustandsraum durch Diagonalisierung des Eichfeld-
operators A;(x) (zur Zeit t=0) und Forderung der Wirkungsweise von FE;(x) als Ableitung
geméf

(AAj(x)| U, ) = A;(z)T[A, 1],

] S (1.7)
<A‘Ez(w)’\1/7t> = _Z(SAZ(w)\Il[Avt] )

in direkter Analogie zur Ortsdarstellung in der gewthnlichen Quantenmechanik realisiert

werden. Die Eichfelder lassen sich mittels der Projektoren

_ Dbipj i(p) = bip;
Ip[?” Y Ipl*

Ty(p) = b (1.8)
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in transversale (7)) und longitudinale (L) Anteile zerlegen, wobei T+ L =1,T? =T, L?> =L
und T'L = 0. Folglich sind transversale Felder in Orts- und Impulsdarstellung definiert durch

f(x) = /d3y Tz —y)fily) < fl(p)="T;®)fP) . (1.9)

und Analoges gilt fiir die longitudinalen Teile. Bei der Quantisierung des vollen Eichpoten-
tials muss die Fichvarianz des longitudinalen Anteils beriicksichtigt werden. Eichinvarianz
wird durch die Forderung nach Erfiillung des Gaufi’schen Gesetzes auf dem Hilbertraum
implementiert,

A ) )
(A|0jEj(z)| VU, t) = —zﬁjW\II[A, t] = p(z)V[A,t], (1.10)

wobei p(z) die bereits erwiihnte Ladungsdichte der externen Quellen bezeichnet. Man verifi-
ziert leicht, dass aufgrund der Zerlegung

o 0 o

SA(x) E’“(""’)Mg(m) - L““(“’)Mg(m)

(1.11)

das Gaufy’sche Gesetz tatséichlich nur die longitudinalen Eichfreiheitsgrade betrifft, weswe-
gen bei der Auswertung von (1.10) stets angenommen werden soll, dass sich die Ableitung
auf AX(x) bezieht. Der Hilbertraum wird somit auf den Raum der physikalischen Zustéinde
eingeschrénkt. Mittels der Projektoren (1.8) ist ebenfalls leicht nachzuweisen, dass sich der
Hamilton-Operator in eine Summe aus transversalen und longitudinalen Anteilen zerlegen
lasst, H = HT + H", wobei

+ A (2) VA (2)

1 5
HT — 3
2 /d © 5AT(2) 0AT(2)
1 5 5
)2 R 3 .
2 /d ® 5AL(z) 6 AL (2)

Die Zerlegung (1.12) impliziert, dass die Eigenfunktionen des Hamilton-Operators in Pro-
dukte von Wellenfunktionalen faktorisieren, W[.A, ¢] — WAL ] UT[AT ], welche entweder
ausschliefllich von longitudinalen oder transversalen Feldern abhéingen und daher separat un-
tersucht werden konnen. Fiir die Konstruktion des Grundzustandswellenfunktionals Wo[.A]
im Vakuumsektor bedeutet dies, dass die Schrodingergleichung in zwei Teile zerfillt,

(1.12)

HT9l1AT) = ETwlAT), (1.13)
HEwl[AL] = ELwl[AT]. (1.14)

Die Losung von (1.13) ist gegeben durch das Gaufi’sche Wellenfunktional

3
VAT = Det VR x| - 5 [ S E Aw) T A)| . (119

Die Determinante ist dabei im transversalen Sektor zu berechnen, und die Vakuumenergie

ist durch ,
d’p
ET = 60:/d3a:/(2ﬂ_)3 Ip| (1.16)
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gegeben, welche die Gesamtenergie eines nicht-wechselwirkenden Photonengases darstellt, das
den gesamten Raum ausfiillt. Die Losung von (1.14) ist gegeben durch

Uh[AY] == Const. x exp [/d?’x J,(m)AZL(w)] : (1.17)

wobei J;(x) ein zunéchst beliebiges Vektorfeld bezeichnet. Offensichtlich geht hier nur der
longitudinale Anteil von J;(x) ein und der zugehorige Energiebeitrag berechnet sich zu

EF = —%Tr(JZ) = —%/d% Ji(x)J;(x) . (1.18)

Fiir den Grundzustand im Vakuumsektor (p(z) = 0) folgt aus dem Gaufl’schen Gesetz (1.10),
welches ja Einschriankungen an die longitudinalen Eigenfunktionen stellt, dass J transversal
sein muss, was sofort impliziert, dass die einzige Losung J = 0 ist, und der Grundzustand
im Vakuumsektor folglich unabhingig von A% sein muss. Bei der Berechnung der Norm
des Grundzustands ergibt das Integral iiber A" daher als Faktor das (unendliche) Volumen
der Eichgruppe, welches herauszuteilen ist und daher im Folgenden vernachléssigt wird, das
transversale Integral hingegen ist korrekt normiert.

1.2.2 Dressing in der abelschen Theorie

Die Fermionen, die in der Lagrangedichte der QED auftauchen, sind selbst nicht eichinvariant
und koénnen daher auch nicht direkt mit physikalischen Objekten identifiziert werden. Dieses
Problem wird im Rahmen des Dressingformalismus durch Einfithrung einer Funktion zu I6sen
versucht, die von den Eichfeldern abhéngt und gewéhrleistet, dass der aus Fermionen und um-
gebenden Fichfeldern konstruierte Gesamtzustand ein eichinvariantes Objekt darstellt. Die
Fermionen werden also mit speziellen Eichfeldkonfigurationen , bekleidet*, wobei die Termi-
nologie wie bereits erwdhnt auf Dirac [Dirb5] zuriickgeht, der die Idee des Dressings bei der
Konstruktion einer statischen, eichinvarianten Ladung begriindet hat.

In unserem Fall sind vorrangig jene Zustédnde von Interesse, die aus zwei schweren Fermionen
aufgebaut sind und in der Form [Zar98b)]

VM g(22)q(1)[0) (1.19)

geschrieben werden kénnen, wobei ¢(x3) und g(x1) die Feldoperatoren eines Fermions am
Ort @9 bzw. Anti-Fermions am Ort @1 darstellen und |0) den Vakuumzustand bezeichnet.
Das Hauptaugenmerk liegt hierbei auf dem Funktional W [.A], welches so gewihlt wird?, dass
der Zustand unter residuellen Eichtransformationen der Form

Aj(@) — Aj(x) = Aj(x) + 0i\(=)
gx) = qMz) = e MPg(x) (1.20)
Mz) = M),

&
4

q(

2Das Dressing besteht typischerweise aus einem ,minimalen® Anteil, der die Eichinvarianz gewihrleistet,
sowie einem ,nicht-minimalen* Anteil, der so gewihlt wird, dass die schweren Fermionen statisch bzgl. Zeit-
entwicklung sind. In Weyl-Eichung ist dieser Anteil allerdings trivial. Fiir eine weiterfithrende Diskussion siehe
auch [BLMO00Oa, BLMOOb].
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welche nach Fixierung der Weyl-Eichung noch erlaubt sind, invariant bleibt. Diese Forderung
impliziert, dass sich W[A] folgendermaflen transformieren muss:

WIAN = W[A] + ie A(z2) — ie A(z1) . (1.21)
Das Gaufl’sche Gesetz impliziert ferner fiir Zusténde der Form (1.19)

I
0zt 0.A;(x)

WIA] =ied(x — xp) —ied(x — x1) . (1.22)

Als Ansatz zur Losung dieser Gleichung wéhlen wir

=1
n=1

Unter der Annahme, dass die Integralkerne I';, ; symmetrisch beziiglich Permutationen der
Argumente (i, yj) sind, beschrinkt das Gaufi’sche Gesetz die longitudinale Komponente I';

auf
0 0 . .
—%I‘i(az) = —%Ff(m) = e (x — x2) —ied(x —x) . (1.24)
Auflerdem folgt aus dem Gaufy’schen Gesetz, dass die Integralkerne I';, ; fiir jeden Index
n > 2 transversal sein miissen. Wir beschrinken uns fiir den Moment auf denjenigen Anteil

von W[A], der linear in A ist. Durch Fourier-Transformation finden wir als Losung von (1.24)
L € —ip-T —ip-T
L'; (p):—W pj (e7PT2 — TP (1.25)

Dabher ist der longitudinale Beitrag das sogenannte ,, Coulomb-Dressing*

L ) . 1
WY = [ S5 TPl p) = ie i) e 0,4 @)

(2m)? (1.26)

1 1
= e ﬁaj,ztf(mz) — ZeﬁajAJL(ml) ,

welches zuerst von Dirac als Konstruktion eines eichinvarianten, statischen Elektrons vor-
geschlagen wurde [Dir55]. Die allgemeine Form eines Dressings, welches (zusammen mit den
fermionischen Erzeugungsoperatoren) einen eichinvarianten Zustand eines Paares von Ladung
und Anti-Ladung beschreibt, ist daher gegeben durch

1 o1
exp |ie ﬁ(‘)jflj(azg) — e ﬁﬁjflj(wl) + J[AT] (1.27)

wobei die transversalen Beitrige hoherer Ordnung in den Eichfeldern geméf (1.23) zum Funk-
tional J[.A7] zusammengefasst wurden. Die Eichfelder .A; kénnen in den ersten beiden Termen
in (1.27) auch durch ihren longitudinalen Anteil A]L ersetzt werden. An dieser Stelle sollte
nochmals betont werden, dass wir unter einem eichinvarianten Zustand mit wohldefinierter
Ladung das Resultat der Wirkung eines nackten (Anti-)Fermion-Operators (oder mehrerer)
auf das Vakuum in Verbindung mit einem Funktional des Eichfeldes verstehen wollen, das
per Gauf’schem Gesetz (1.10) so zu konstruieren ist, dass das Eichfeld den Effekt der nack-
ten Ladung(en) bei der Anwendung von Eichtransformationen (1.20) gerade kompensiert. Im
Folgenden sollen nun verschiedene Formen von J[.A] untersucht werden.
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1.2.3 Grundzustand und axialer Zustand

Der longitudinale Anteil unserer Wellenfunktionale wird bereits durch das Gaufi’sche Ge-
setz festgelegt. Dabei handelt es sich um das ,,Coulomb-Dressing*, welches Eigenzustand
des longitudinalen Hamilton-Operators H” ist. Den niedrigsten Eigenwert des transversa-
len Hamilton-Operators findet man fiir das Vakuumwellenfunktional (1.13). Der Grund-
zustand im Fermion—Anti-Fermion—Sektor ist daher gegeben ist durch eine Kombination
aus [RT80, Jac, Zar98a]

1 1
D[A] := exp [z’e 20 A (@) — e 70,4 (x1) WlAT] (1.28)

und den fermionischen Feldoperatoren, so dass |®) = ®[A]¢(x2)G(x1)|0) einen Zustand
minimaler Energie beschreibt, bestehend aus einer statischen, eichinvarianten Ladung bzw.
Anti-Ladung. Der Erwartungswert des Hamilton-Operators

d3p 1 —cosp-(za — 1)
(2m)? Ipl?

ist endlich fiir kleine Impulse, nach Regulierung der UV-Divergenz durch Einfiihrung eines
Cut-Off |p| < A findet sich fiir groe Wert von A

eZA €2

ﬁ - 47T|$2 —$1|

(®|H|®) = Ec:eo+62/ (1.29)

Ec =€+ (1 + O(A—1)> . (1.30)
Der erste Term ist die bereits bekannte Vakuumenergie (1.16), und der zweite Term beschreibt
die Selbstenergie der Quellen. Der dritte Term ist unabhéngig vom Cut-Off und liefert das
Coulomb-Potential zwischen den statischen Quellen. Der Grundzustand bei Anwesenheit ei-
nes Fermions und eines Anti-Fermions wird daher durch zwei Quellen beschrieben, die jeweils
eichinvariant sind und von einem Coulomb-Feld umgeben werden.

Der Zustand (1.28) wurde als Produkt des Vakuumwellenfunktionals ¥ [.A7] und des allge-
meinen Dressings (1.27) fiir die einfachsten Wahl des transversalen Funktionals, J[.AT] = 0,
gewonnen. Ein naheliegendes Konstruktionsprinzip fiir andere Arten von Dressings besteht
daher in der Verwendung nicht-trivialer Funktionale J[AT]. In diesem Abschnitt soll ein
Dressing untersucht werden, das durch

JAT =ie [ Az Al (2) (1.31)
/

gegeben ist, wobei die Kurve C die fermionischen Quellen an den Orten 1 und x5 miteinander
verbindet. Wéhlen wir fiir den Kurvenverlauf die direkte Verbindung

C={z(s)=a1 +s(wy—x)|s€[0,1]} (1.32)

so erhalten wir das sogenannte ,axiale Dressing“ . Den Einheitsvektor in Richtung die-
ser Verbindungsachse &y — x1 bezeichnen wir mit n. Der Zusammenhang zwischen axialem
Dressing und dem des Grundzustands (1.28) ist also gegeben durch

IA] = exp [z‘e / dziA;f(z)] B[A] (1.33)
C
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folglich beschreibt | x ) = x[A] ¢(x2)d(x1)|0) ebenfalls einen eichinvarianten Zustand. Dies ist
derselbe Zustand, den man im Zuge der iiblichen Konstruktion eines string-artigen Zustands

x[A] = exp [z’e /dzi.Ai(z)} vlAty, (1.34)

durch eichinvariante Verbindung der ins Vakuum eingebrachten statischen Quellen erh:lt?.
Dabei ist zu beachten, dass hier auch die longitudinalen Anteile des Eichfeldes in das Linien-
integral eingehen. Eine Fourier-Transformation desselben fiihrt ndmlich bei Wahl der Kontur
(1.32) auf

] d3 eip-mz _ eipml eip-m2 _ eip'ml
Ze/(2771))3 [( ilp|2 )ijjL(p) + ( ) njA;‘-F(p) , (1.35)

wobei der erste Term gerade das bekannte Coulomb-Dressing (1.26) ergibt.

Der axiale Zustand | x ) ist dabei kein Eigenzustand des Hamilton-Operators. Die Berechnung
des Erwartungswertes liefert
- 2N €2
(X [H][x) —ﬁo—m‘i‘ﬂ
wobei wiederum der maximale Wert der Norm des Impulses durch Einfiihrung eines Cut-Off
|p| < A beschrinkt wurde und im letzten Term diejenigen Beitriige angedeutet sind, die fiir
A — oo verschwinden. Wie in Gleichung (1.30) gibt es auch hier wieder die Vakuumenergie
und einen Selbstwechselwirkungsbeitrag zum Gesamtenergie. Der dritte Term liefert ein fiir
das Confinement-Phinomen charakteristisches Potential, die Fermionen scheinen also auf-
grund des linear mit dem Abstand der Quellen anwachsenden Potentials eingeschlossen zu
sein. Jedoch divergiert der Vorfaktor bei Entfernung des Cut-Off, daher handelt es sich bei
X[A] ¢(x2)@(x1)| 0) um einen unendlich hoch angeregten Zustand [HJ97]. Der Grund dafiir
ist in der Konstruktion des Flussschlauchs zu suchen, der die beiden Fermionen auf eichin-
variante Weise miteinander verbindet. Die infinitesimal kleinen Ausdehnung des strings in
den beiden Richtungen senkrecht zu m fiithrt im Endeffekt bei kleinen Absténden auf eine
Divergenz der Form §2(0), welche vom (Quadrat des) UV-Cut-Off A? reguliert wird. Aus der
klassischen Theorie ist bekannt, dass ein solcher Zustand instabil ist und durch Abstrahlung
von Energie mit der Zeit in den energetisch bevorzugten Zustand zweier Quellen iibergeht,
die von einem Coulomb-Feld umgeben sind [PFS93]. Betrachtet man den Zusammenhang
der beiden Zustinde (1.33) unter diesem Gesichtspunkt, so liegt die Vermutung nahe, dass
der zerstrahlende string aus der klassischen Theorie sein quantenmechanisches Analogon im
transversalen, linienartigen Dressing findet.

A2’$2—w1‘+... s (136)

Zur Untersuchung dieser Behauptung ist es nétig, die Zeitentwicklung der quantenmechani-
schen Zusténde zu studieren, welche durch die Schrodingergleichung diktiert wird. Im von
uns gewahlten Zugang, bei dem Zustdnde mit Wellenfunktionalen identifiziert werden, wird
die Zeitentwicklung mittels des Schrodingerfunktionals S realisiert?,

S[A, A = (A le A (1.37)

3Diese Beobachtung wird fiir das Verstindnis des Zusammenhangs von Wilson-Loops und der Zeitentwick-
lung von Zusténden mit axialem Dressing — auch in der Formulierung auf dem Gitter — wichtig werden.
1Fiir die explizite Form des Schrodingerfunktionals siche beispielsweise [RT80,LNWW92].
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und zwar durch Bildung eines Funktionalintegrals der Wellenfunktionale mit S
VAL = (A T,0) = /DA (A e A) (AT, 0)
_ /DA SIA, A 1] LA, 0] (1.38)

Fiir die Zeitentwicklung des axialen Zustands finden wir [HIL*08b]

VA = e Eet oAl exp B/\/(t)—%/\/(o)
3 ) eip-mg o eip-ml
. / (;sz)13 e_zm< = )nk Ag(p)] (1.39)
mit
o2 [ e (locosp(@mom)Y
M) = & [k et (S st (o

Der axiale Zustand zur Zeit ¢ beinhaltet also zum einen den Coulomb-artigen Zustand ®[.A],
zum anderen einen zusétzlichen transversalen Beitrag sowie die zeitabhédngige Normierung
N (t). Bemerkenswert ist, dass in keinem der Ausdriicke fiir n - p = 0 eine Divergenz auftritt,
da die Differenz der Exponentialfunktionen im Zahler die tiblicherweise in axialer Eichung vor-
handenen Divergenzen zu regulieren scheint [KC]. Die Diskussion des Verhaltens des axialen
Zustands fiir grofie Zeiten t setzt erneut die Regularisierung der auftretenden UV -Divergenzen
durch Abschneiden der Impulsintegration voraus. Bei Anwesenheit eines solchen Cut-Off in
(1.39) und (1.40) finden wir

lim ePoly[A 1] = e NO/2 3[A] . (1.41)

t—o00
Dieses Resultat spiegelt also tatséchlich das aus der klassischen Theorie bekannte wider.
Sowohl klassisch als auch quantenmechanisch ,,zerfiallt“ der axiale Zustand im Limes ¢ — oo in
den Coulomb-artigen Zustand. Die neben dem zeitlich oszillierenden Phasenfaktor auftretende
Normierung garantiert die Wahrscheinlichkeitserhaltung, was im Rahmen der Diskussion der
Uberlappmatrixelemente von axialen und Coulomb-artigen Zustinden weiter unten nochmals
aufgegriffen werden soll.

1.2.4 Ladungen in der QED: Confinement versus Deconfinement

Es wurde im vorigen Kapitel gezeigt, dass der Grundzustand der U(1)-Eichtheorie bei An-
wesenheit eines Paares von gegensétzlich geladenen Fermionen durch den mittels Coulomb-
Dressing konstruierten Zustand (1.28) gegeben ist. Der niedrigste Energiebeitrag aufgrund der
Wechselwirkung zwischen den elektrischen Ladungen ist dabei durch das bekannte Coulomb-
Potential gegeben, was unsere Erwartungen fiir den Fall statischer Quellen bestétigt. Im Falle
des mittels axialem Dressing konstruierten Zustands (1.34) hingegen generiert der (unendlich)
diinne Flussschlauch, mit dem die fermionischen Quellen verbunden sind, ein linear mit dem
Abstand zwischen den Ladungen anwachsendes Potential. |y ) stellt dabei einen unendlich
hoch angeregten und physikalisch wenig sinnvollen Zustand dar, der im Laufe der Zeit in
den energetisch bevorzugten Grundzustand | ®) iibergeht. Es ldge daher nahe, den axialen
Zustand einfach als unbrauchbar zu verwerfen, insbesondere da wir ja den Grundzustand in
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dieser einfachen Theorie bereits exakt bestimmen konnten. Im Folgenden soll aber gezeigt
werden, dass sich eine weitere Untersuchung der Unterschiede zwischen beiden Zustéinden
als fruchtbar fiir das Versténdnis der Grundzustandsphysik in Theorien erweisen wird, von
denen bekannt ist, dass sie das Confinement-Phénomen zeigen.

Der Zustand ®[A]q(x2)G(x1)| 0) beschreibt zwei separat eichinvariante Fermionen, denn das
Coulomb-Dressing (1.28) ldsst sich in zwei Bestandteile faktorisieren,

1
v2

P[A] = exp [z’e 8]-./4]-(:1:2)] exp [— ie %@-Aj(azl) ulAT]. (1.42)

Dabei stellt der erste Faktor das Dressing fiir g(a2) dar, so dafl wir ein insgesamt eichinva-
riantes Fermion erhalten, der zweite Faktor leistet dasselbe fiir g(«1). In einer Theorie ohne
Confinement ist dies genau die Situation, die wir erwarten wiirden, ndmlich die Existenz
und Beobachtbarkeit einzelner Ladungen, welche sich daher durch individuell eichinvariante,
asymptotische Zustinde beschreiben lassen sollten. Im Gegensatz dazu existiert diese Fakto-
risierungseigenschaft fiir den axialen Zustand nicht. Jeder Versuch einer Faktorisierung des
transversalen Anteils in (1.35), der aufgrund des linienartigen Beitrags (1.31) zum Dressing
auftritt, fithrt auf Polstellen der Form, wie sie bei der Behandlung von Eichtheorien in axialer
Eichung typischerweise auftreten [HILT08b]. Ohne die Einfithrung von weiteren Regularisie-
rungsvorschriften ist es folglich nicht méglich, den transversalen Anteil auf eindeutige Weise
zu faktorisieren, und somit individuelle axiale Dressings zu konstruieren, die es uns ermdogli-
chen wiirden, einer einzelnen Ladung (bzw. Anti-Ladung) einen Sinn zu verleihen.

Die physikalische Relevanz dieses Resultats ist folgende: Wir haben bereits gesehen, dass das
axiale Dressing scheinbar auf einen Potentialverlauf fiihrt, der fiir das Phdnomen des Confine-
ments typisch ist. Die sich anbietende physikalische Interpretation besteht nun darin, dass die
Abwesenheit von individuell eichinvarianten Elektronen und Positronen in der Unmoglichkeit
der Faktorisierung des Dressings zum Ausdruck kommt. Anstelle von individuellen Ladungen
beschreibt der Testzustand |y ) ja nur ein einziges elektrisch neutrales Objekt, zu dem die
Konstituenten durch einen (unendlich) diinnen Flussschlauch zusammengebunden sind. Es
ist daher interessant zu spekulieren, ob nicht der axiale Zustand in einer Theorie, die das
Confinement-Phénomen zeigt, eine bessere Beschreibung des Grundzustands bietet als der
Coulomb-artige Zustand.

Zur Uberpriifung dieser Hypothese bietet sich die Untersuchung der kompakten QED
an, welche als einfaches Modell einer Theorie mit Confinement zunéchst von Polyakov
[Pol75] eingefiihrt wurde. Hier wurde argumentiert, dass das zugehorige Gittermodell in
vierdimensionaler Raumzeit einen Phaseniibergang von einer Confinement-Phase zu einer
Deconfinement-Phase aufweisen sollte, was spéter auch analytisch® bewiesen werden konnte
[BMK77,Pes78,Gut80]. Wir erwarten, dass sich das elektrische Feld in der Confinement-Phase
in einem Flussschlauch bisher nicht néher zu spezifizierender Gestalt konzentrieren wird, der
die beiden Quellen miteinander verbindet, was qualitativ vom Verlauf eines Coulomb-Feldes
deutlich abweicht. Es besteht daher durchaus die Moglichkeit, dass der Grundzustand in die-
ser Phase signifikant von dem in Gleichung (1.28) angegebenen abweicht.

5Vgl. hierzu ebenfalls [Sei82] und [Kog83)].
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Wir stellen nun eine Methode vor, mit der es uns gelingen wird, die verschiedenen Ansétze
fir den Grundzustand miteinander zu vergleichen und somit Informationen iiber den wah-
ren Grundzustand zu erhalten. Diese Methode soll im Folgenden bei der analytischen und
numerischen Untersuchung der (kompakten) QED angewandt werden.

1.2.5 Eine Methode zur Untersuchung des Grundzustands

Unser Ziel ist es, einen Zustand |¥), der als Kandidat fiir den Grundzustand in Frage
kommt, mit dem unbekannten, wahren Grundzustand |2) vergleichen zu kénnen. Als Ma8
fiir die Ubereinstimmung kommt das Betragsquadrat der Uberlappungsamplitude |( | ¥)|?
in Frage. Dieser Uberlapp kann fiir groie Zeiten t aus der sogenannten Persistenzamplitude
(W |e~| U} extrahiert werden, denn nach Einfiigen der Identitt als Summe von Projekto-
ren auf ein vollstindiges Funktionensystem und Ubergang zur euklidischen Raumzeit mittels
Wick-Rotation (vgl. dazu etwa [Rot97, MM94, PS95]) erhalten wir

(Wle 0y =S (W e n) (n| W)

" (1.43)
=Y [n|w)Pe P,

wobei wie iiblich E, den Eigenwert von H zum Eigenzustand |n) bezeichnet. Nach hinrei-
chend grofler Zeitentwicklung sind alle Beitrdge, die von angeregten Zustédnden herriihren,
exponentiell unterdriickt, der Grenzwert ¢ — oo entspricht also einem Grundzustandspro-
jektor [HIO7]. Im Folgenden wollen wir zunéichst das Verhéltnis zweier Persistenzamplituden
betrachten, da der von der Grundzustandsenergie bestimmte exponentielle Faktor fiir unsere
Untersuchung des Uberlapps der Testzustinde mit dem Grundzustand nicht von Interesse
ist. Betrachten wir also

R(r,t) = 7<X [e=™ ] x) (1.44)

(@l ®)
wobei 1 := |x2 — x1| den Abstand der beiden Quellen bezeichnet, die Teil der mittels (1.28)
und (1.34) priparierten Zustinde | ®) und | x ) sind. Falls dieses Verhéltnis fiir grofie Zeiten
t kleiner als eins ist, so hat |®) einen besseren Uberlapp mit dem wahren Grundzustand,
wohingegen | x ) dem Grundzustand &hnlicher ist, falls das Verhéltnis grofier als eins ist.

In der gewohnlichen, nicht-kompakten U(1)-Theorie, die wir bisher studiert haben, kann
(1.44) exakt berechnet werden und ist gegeben durch

R(r,t) = " (x|e ™)
A

— exp [—62 / (jif)’g ﬁ(l—e"”)(1_(Cffz(;;"p»nm-(p)nj} o (14p)

— exp[-N(0)] fiir ¢t— 0.

Dabei wurde in der ersten Zeile ausgenutzt, dass |®) ein Eigenzustand des Hamilton-
Operators ist. Die Abhéngigkeit des zeitlichen Limes vom Abstand r der Quellen steckt
in der UV-divergenten Konstante A/(0), vgl. (1.40) im Limes A — oo, so dass der Uber-
lapp formal verschwindet. Fiihren wir einen UV-Regulator ein, so ist N'(0) positiv definit
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_"2;”3 Abbildung 1.1: Das in
y v Gleichung (1.44) definier-

\ —--rNn=4 te Verhaltnis R(r,t) in
.\ der nicht-kompakten QED
0.9\ im Kontinuum. Die Ein-
AN heiten werden unterhalb
Ro.s \' ~ von Gleichung (1.46) er-
\ lautert. Bei Zunahme des
\ Abstands zwischen den La-
N dungen zeigt sich, dafl der
\ T axiale Zustand eine zuneh-
0.6 . mend schlechtere Beschrei-
~— bung des Grundzustands
zu bieten vermag.

und somit gilt notwendigerweise R(r,t) < 1, was zu erwarten war, da es sich bei | x) um
einen unrealistischen Testzustand, bei | ®) hingegen um den Grundzustand handelt. Schlief-
lich ist festzuhalten, dass (1.45) bei Anwesenheit eines Regulators korrekterweise gegen das
Betragsquadrat des Uberlapps zwischen dem axialem und dem Coulomb-artigem Zustand
konvergiert, dieser berechnet sich im Limes ¢ — oo zu

(x| ®) = exp [-N(0)/2]. (1.46)

In Abbildung 1.1 finden sich die Ergebnisse unserer Berechnungen des Verhiéltnisses (1.44).
Um mit den Daten vergleichen zu kénnen, die durch Gittersimulationen gewonnen wurden
und im nichsten Abschnitt prisentiert werden, wurde e~2 = 1.05 gewihlt. Lingen werden in
Einheiten von 7/A gemessen. Die Wahl dieser dimensionslosen Einheiten bietet den Vorteil,
dass 1/A mit der Gitterkonstanten in Verbindung gebracht werden kann; die Impulsintegrati-
on wird dabei auf |p| < 7 beschréankt. Zunéchst ist festzustellen, dass R(r, t) fiir alle gezeigten
Werte von r und ¢ kleiner ist als eins. Fiir feste Werte von r strebt R(r,¢) mit zunehmendem
t rasch gegen den jeweiligen asymptotischen Wert exp[—N(0)]. AuBerdem ist zu beobachten,
dass sich das Verhiltnis bei zunehmendem Abstand der Quellen r zu kleineren Werten hin
verschiebt, und zwar fiir alle Zeiten ¢, insbesondere auch fiir den Grenzfall ¢ — oo, der ja
die Grundzustandsphysik sondiert. Eine Vergroflerung des Abstands r fithrt zur Ausbildung
eines immer ldngeren Flussschlauchs, in dem immer mehr Energie konzentriert wird, was eine
zunehmend schlechtere Beschreibung des wahren Grundzustands darstellt, dessen Coulomb-
Felder radialsymmetrisch proportional zu 1/r abfallen.

Zuletzt wurde iiberpriift, wie sensibel diese Ergebnisse auf eine Anderung des zur Berechnung
von R(r,t) verwendeten Wertes des Cut-Off reagieren. Es konnte dabei festgestellt werden,
dass sich bei einer weiteren Vergréfferung von A qualitativ nichts an dem in Abbildung 1.1 ge-
zeigten Verhalten dndert. Die prinzipielle Frage nach der Abhéngigkeit dieser Ergebnisse von
der Wahl des Regularisierungsschemas wird in Kapitel 1.3.4 diskutiert werden. Dort werden
wir die vorliegenden Ergebnisse mit Resultaten vergleichen kénnen, die in einer diskretisierten
Raum-Zeit nach Einfiihrung eines Gitterregulators gewonnen werden konnten.
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1.3 Der Dressingformalismus auf dem Gitter

Fine exakte analytische Behandlung der kompakten QED in D = 3+ 1 Dimensionen ist nicht
moglich, obwohl die in unserem bisherigen Zugang gewihlte Methode der Wellenfunktionale
erfolgreich im Falle einer D = 241 dimensionalen Raumzeit angewandt werden konnte [KK95,
Nol04]. Wir verdndern daher unseren Zugang und erweitern unsere Untersuchungsmethoden
um die Technik der Gittersimulation von Eichtheorien.

1.3.1 Eichfixierung und Dressingformalismus

Die fiir einen erfolgreichen Ubergang von der funktionalen Kontinuumsformulierung zur Git-
terformulierung entscheidende Frage ist, ob — und wenn ja, wie — es gelingen kann, den
Dressingformalismus auf dem Gitter einzufithren. Es empfiehlt sich daher vor dem Ubergang
auf das Gitter noch einmal einen systematischen Blick auf die Konstruktion von Dressings
im Rahmen der Kontinuumsformulierung zu werfen.

Die Lagrangedichte der Quantenelektrodynamik ist gegeben durch [CL84]

Lapn(a) =~ Fu (@)™ () + §(a)(ir" Dy — m)b(z) (1.47)

wobei der abelsche Feldstéarketensor des Vektorpotentials F),, (x) und die kovariante Ableitung
durch

Eu(z) = (ie)"'[Dy,D)] = 9,A,(x) — 0,A,(x) (1.48)
Dp(x) = [0, +ieA,(x)]v(z) (1.49)

gegeben sind. Vektorpotential und Materiefelder transformieren sich unter lokalen Eichtrans-
formationen Q(x) = exp|—ieA(z)] € U(1) gemif

Au(z) = Al(z) = Qa)Au(2)Q " (z) —ie” ' Q2)0,0 " (x) (1.50)
Y(z) = ) = Q) y(x) (1.51)
b(z) = Pz) = P(@) Q7 (). (1.52)

Die Motivation fiir die Einfiihrung von Dressings wurde bereits im vorigen Kapitel gegeben:
Zwar ist die Lagrangedichte (1.47) per Konstruktion eichinvariant, die Materiefelder aber
konnen per se aufgrund von (1.51) weder direkt mit eichinvarianten, physikalischen Observa~
blen assoziiert werden, noch kénnen sie allein als Erzeuger fiir Zusténde mit wohldefinierter
Ladung dienen. Dies gilt sowohl fiir dynamische, als auch fiir statische Fermionen, die uns im
Folgenden bei der Untersuchung externer Quellen besonders interessieren werden.

Die Idee ist nun, stattdessen einen zusammengesetzten Operator der Form
V[A, ] (z) := hlA, z](x) (1.53)

zu verwenden, wobei sich das Dressing h[A, |, welches auch als feldabhéngige Eichtransfor-
mation begriffen werden kann, unter Eichtransformationen wie folgt transformieren soll:

hlA, z] — h[A® z] = h[A, 2] Q1 (z) . (1.54)
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Dadurch wird die Anderung des Materiefeldes unter Eichtransformationen (1.51) gerade kom-
pensiert und das resultierende Objekt W[A,](x) ist eichinvariant. Dies ist die minimale
Forderung, die ein zu konstruierendes Dressing erfiillen muss. Die Ausnutzung des engen Zu-
sammenhangs, der zwischen Dressings und denjenigen Eichtransformationen besteht, die zur
Realisierung einer Eichfixierungsbedingung notwendig sind, erlaubt dabei eine systematische
Konstruktion von Dressings, die (1.54) erfiillen. Um dies zu verstehen ist es hilfreich, die Si-
tuation unter geometrischen Gesichtspunkten zu betrachten. Eine schematische Darstellung
findet sich in Abbildung 1.2.

rungsbedingung. Die Fixierung einer Ei-
chung hat den Sinn, auf einem Orbit von
x( Ah) =0 / Eichfeldkonfigurationen Q4 genau einen
Représentanten auszuwéhlen, um zu ei-
ner Einschrinkung des vollen Konfigura-
tionsraum J auf den Faktorraum Jy =
J/G beziiglich der Wirkung der Eich-
gruppe G zu gelangen, der den eigentli-
/ chen Phasenraum der Theorie darstellt.
A Fiir jede Konfiguration A € Oy soll-
te demnach eine eindeutige Eichtrans-
formation h := h[A] existieren, welche
diese Konfiguration an diejenige Stel-
le auf dem Orbit transformiert, an der
die Eichfixierungsbedingung x(A") = 0
erfiillt ist. Dadurch gelangt man zu einer konkreten Beschreibung des Faktorraums, den man
mit der Menge aller Eichfeldkonfigurationen, die diese sogenannte Schnittbedingung erfiillen,
identifiziert.

A% / Es bezeichne x(A) = 0 eine Eichfixie-

Abbildung 1.2: Die Schnittbedingung ermoglicht
lokal die Auswahl eines eindeutigen Reprasentan-
ten auf Q4. Der Einfluss von Gribov-Kopien wird
in Kapitel 1.4.2 diskutiert.

Sei nun A® ein anderer Reprisentant auf dem Orbit, so iiberfiihrt nun eine andere Eichtrans-
formation A := h[A%] diese Konfiguration in diejenige, welche die Eichfixierungsbedingung
erfiillt, X((.AQ)hQ) = 0. Die Eichtransformation h‘ kann auch als Hintereinanderausfiihrung
zweier Eichtransformationen betrachtet werden, und unter der Annahme der Eindeutigkeit
der Eichfixierungsbedingung folgt somit

(AQ)h[AQ] — APATR _ phlAL (1.55)

fiir jedes €2, und folglich
hAYQ = h[A] = h[AY] = hlA]Q7". (1.56)
Daher besitzt h[A] offenbar genau das gewiinschte Transformationsverhalten eines Dressings.
Wiéhlen wir nun im Falle der QED als eine mit der bereits fixierten Weyl-Eichung Ay = 0

kompatiblen Bedingung beispielsweise die Coulomb-Eichung (fiir den longitudinalen Anteil
der Eichfelder)

XA (@) == 9;40(z) = 0, (1.57)



16 1.3. Der Dressingformalismus auf dem Gitter

so fithrt dies nach (1.50) auf die das Funktional h[A, 2| bestimmende Gleichung

9, <h(3:).,4j(3:)h_1(:n) _ éh(:ﬂ)ﬁjh_l(az)) ~0, (1.58)

die in der Schrodingerdarstellung auszuwerten ist, in welcher der zum Vektorpotential ge-
horende Operator Diagonalgestalt besitzt. Es ist leicht nachzurechnen, dass ein Ansatz der
Form h[A](x) = exp(iv[A, ]) auf die bereits von Dirac [Dirb5] angegebene Losung

v[A, x| =e %@-Aj(a:) (1.59)

zur Beschreibung eines einzelnen, statischen Elektrons fithrt. Durch Verwendung von h™!
kann das physikalische Positron konstruiert werden, fiir einen Elektron-Positron-Zustand fin-
det sich daher die bereits auf anderem Wege gewonnene Lésung (vgl. 1.28) wieder.

Durch Wahl unterschiedlicher Eichbedingungen koénnen also systematisch unterschiedliche
Dressings konstruiert werden, deren physikalische Bedeutung fiir die daraus konstruierten
Zustidnde zu untersuchen bleibt. Fiir die beiden bisher betrachteten Dressings handelt es sich
bei den zugehorigen Eichbedingungen um die Coulomb-Eichung (1.57) und um die axiale
Fichung

XA A (2)) = nj Al(z) = 0. (1.60)
Erfiillen die Eichfelder bereits die jeweilige Eichfixierungsbedingung, so erweist sich das zu-
gehorige Dressing als trivial:

h[Av me(A’L(gc)ZO) = 1. (1.61)

Zur Vorbereitung des Ubergangs von der Kontinuumsformulierung auf das Gitter wollen wir
zuletzt die Behandlung von externen Ladungen im Rahmen des Pfadintegralformalismus kurz
rekapitulieren. Dazu betrachten wir zunéchst die Zustandssumme

Z[4] :/DA exp [— /d%{ﬁ(m)—l—ju(x)flu(x)} , (1.62)

wobei j,(x) die Stromdichte der &dufleren Quellen bezeichnet. AuBerdem soll implizit ange-
nommen werden, dass sowohl das Integrationsma$, als auch die Lagrangedichte in (1.62) eich-
fixierende Terme enthalten, die es uns erméglichen, Z[j] in einer Eichung unserer Wahl aus-
zuwerten. Zunéchst soll die Quelle aus einem statischen Fermion, sowie einem Anti-Fermion
im Abstand r voneinander bestehen. Wéhlen wir die Coulomb-Eichung (1.57), so reduziert
sich das Dressing des Zustands (1.28) auf die Identitét

18) |0 = la@2)a@) = alwa)()] WHLAT)) | (1.63)

und die Erzeugung eines statischen Fermions am Ort a2 sowie eines Anti-Fermions am Ort
@1 kann durch die Quellenfunktion

p(2) = jolz) = e[d(z — @2) — 6(z — 1) (L.64)

beschrieben werden. Nehmen wir ferner an, dass dieser Zustand fiir einen Zeitraum 7T exi-
stieren soll, bevor die Ladungen schliellich wieder annihiliert werden, so berechnet sich die
zugehorige Amplitude zu

(@) = Z[0]! /DA exp [—/d‘*:c{c(x)m(m),%(m,t)} . (1.65)
0; A;=0
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Fiihren wir schliefilich noch sogenannte kurze Polyakov-Linien

P(x,T) := Texp [ie/OTtho(t,a:)} (1.66)

ein, so lisst sich die interessierende Persistenzamplitude als Zweipunkt-Funktion in der Form
[HLLMO7]

(@17 T|®) = (P (s, T)P (a1, T)") (1.67)

schreiben, wobei die kurzen Polyakov-Linien in Coulomb-Eichung auszuwerten sind. Die-
se Konstruktion wurde urspriinglich von Marinari et al. [MPPT93] zur Untersuchung des
asymptotischen Anteils des Inter-Quark-Potentials der SU(3)—Eichtheorie auf dem Gitter
eingefithrt und im Folgenden auch bei der Untersuchung des (Farb-) Coulomb-Potentials
zwischen statischen Quellen in diversen Theorien [GO03, GOZ04] erfolgreich eingesetzt. Un-
ser Interesse hingegen richtet sich primér auf den Uberlapp des Coulomb-artigen Zustands
| @), sowie des axialen Zustands |y ) mit dem wahren Grundzustand | Q). Die Extraktion
des statischen Inter-Quark-Potentials aus den Amplituden (1.43) wird daher nur zu Illustra-
tionszwecken durchgefiihrt.

1.3.2 Gitterformulierung der kompakten QED

Auf dem Gitter sind die mit den Eichfeldern assoziierten Freiheitsgrade die Felder
Uu(x) = exp(if,(z)) , - <0u(x) <, (1.68)

welche auf den Verbindungen (links) zwischen den Gitterpunkten x des vierdimensionalen
euklidischen Raum-Zeit-Gitters leben, und daher oft selbst als Links oder Link-Variablen
bezeichnet werden. Die Zustandssumme der Theorie ist gegeben durch

Z = /DHH exp [ﬁ ZZ cos (0, ()] , (1.69)

r pu<v

wobei der Simulationsparameter § mit e, der nackten elektrischen Kopplungskonstanten,
iiber B = e~2 verkniipft ist und die auf Wilson zuriickgehende Form der Wirkung verwendet
wurde. Die sogenannten Plaquetten-Winkel sind dabei definiert durch

O (x) == Ou(x) + 0, (x+p) — O (x+v) —0,(x) . (1.70)

In der Kontinuumsformulierung der QED kann der abelsche Wilson-Loop exakt berechnet
werden [BBJ81,7J96] und das daraus gewonnene Potential stimmt in D = 3 + 1 Dimensio-
nen mit dem erwarteten Coulomb-Potential iiberein. In der durch Einfiithrung eines Gitters
regularisierten Theorie besteht in zwei Grenzfillen die Moglichkeit, interessierende Observa-
blen in Stérungstheorie zu berechnen. Dabei handelt es sich um die Limites starker (8 — 0)
und schwacher Kopplung (8 — o0). Es zeigt sich, dass der Wilson-Loop in D = 3 + 1 Di-
mensionen fiir jede betrachtete Ordnung einer Entwicklung im Limes schwacher Kopplung
ein Umfangsgesetz aufweist®, was einem asymptotisch konstanten Wert des Potentials ent-
spricht, hingegen im Limes starker Kopplung einem Flidchengesetz folgt, was einem linearen

5Der Beweis der Existenz einer Coulomb-Phase der Theorie in diesem Grenzfall wurde dabei unter Ver-
wendung der Villain’schen Form der Wirkung gefithrt [Gut80].
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Ansteigen des Potentials entspricht [Rot97,ZJ96]. Die perturbative Untersuchung weist also
darauf hin, dass die Theorie in den beiden Grenzfillen in unterschiedlichen Phasen realisiert
sein sollte.

Aufgrund der Kompaktheit des Definitionsintervalls der Freiheitsgrade (1.68) ermoglicht die
U(1)-Theorie auf dem Gitter das Auftreten magnetischer Monopole. Durch hochgenaue Mes-
sungen konnte gezeigt werden, dass fiir einen kritischen Wert von St = 1.0111331(15) in der
D = 3+1 dimensionalen Theorie [VAF04] tatsdchlich ein Phaseniibergang auftritt. Unterhalb
des Phasentibergangs (8 < (i) fiihrt das Auftreten der magnetischen Monopole mittels des
dualen Meissner-Effekts [Pol75] zum Einschluss der elektrischen Ladungen, was durch Git-
tersimulation eindrucksvoll bestétigt werden konnte [DT80,SW92]. Am Phaseniibergang fllt
die Monopoldichte rapide ab und fiir 3 > B ist die Monopolbildung so stark unterdriickt,
dass die Theorie in der gewthnlichen Coulomb-Phase realisiert ist. In diesem Zusammenhang
sollte darauf hingewiesen werden, dass die gewohnliche QED am kritischen Punkt 8 — oo der
kompakten QED realisiert ist und der Phaseniibergang erster Ordnung bei St die Coulomb-
Phase strikt von der Confinement-Phase trennt, welche daher keinen Kontinuumslimes besitzt
und somit letztlich als Artefakt der diskretisierten Formulierung anzusehen ist.

Unsere Simulationen wurden fiir die Parameterwerte § = 1.0 (Confinement-Phase), sowie
3 = 1.05 (Coulomb-Phase) auf Gittern der GréBe 12* durchgefiihrt. Ein wichtiges Detail ist,
dass offene Randbedingung fiir die rdumlichen Richtungen, sowie periodische Randbedingun-
gen in zeitlicher Richtung verwendet wurden. Dies erweist sich als notwendig, um die axiale
Eichung auf dem Gitter richtig implementieren zu kénnen, was weiter unten noch diskutiert
wird. Um Randeffekte zu minimieren wurde daher bei allen Messungen immer ein Abstand
von zwei Gitterkonstanten zum Rand eingehalten. Den Messergebnissen der untersuchten
Observablen liegt in jeder der beiden Phasen ein Ensemble von je 20.000 Konfigurationen
zugrunde. Diese wurden mittels des in Anhang B beschriebenen Heatbath-Algorithmus in
Verbindung mit mikrokanonischen Reflexionen erzeugt, wobei ein sogenannter supersweep als
Zusammenfassung eines Heatbath-Updates des gesamten Gitters, gefolgt von einer dreimali-
gen Anwendung des Algorithmus zur mikrokanonischen Reflexion der Link-Variablen definiert
wurde. Zum Start der Simulationen wurden sowohl véllig geordnete (cold), als auch vollig
ungeordnete (hot) Konfigurationen herangezogen und im Folgenden die Entwicklung des Sy-
stems ins thermische Gleichgewicht iiberwacht. Dabei konnte nachgewiesen werden, dass die
Wahl der Ausgangskonfiguration nach einer Thermalisierungsphase von 1000 supersweeps in
keiner der beiden Phasen einen nachweisbaren Einfluss auf die Messergebnisse hatte.

1.3.3 Coulomb-Eichung und axiale Eichung

Wie bereits diskutiert, erweisen sich die Korrelationsfunktionen von kurzen Polyakov-Linien
der zeitlichen Ausdehnung 7' und rdumlichem Abstand r als besonders relevant bei der Be-
schreibung der Zeitentwicklung eines Zustands, bestehend aus einem statischen Quark und
Antiquark. Auf dem Gitter wird dabei die Propagation eines statischen Fermions am Ort x
iiber einen Zeitraum T hinweg durch die Polyakov-Linie

T-1
Pz, T) = [] Uy, 1) (1.71)
t=0
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in Analogie zu (1.66) beschrieben, wobei {U, ,7 ) ()} die Links nach Fixierung der Coulomb-
Eichung bezeichnet. Im Falle eines Anti-Fermions ist die hermitesch konjugierte Polyakov-
Linie zu verwenden, so dass sich fiir die Persistenzamplitude Ceq(r,T") des eichinvarianten
Zustands | ® ), bestehend aus einem statischen Fermion am Ort a2 sowie einem Anti-Fermion
am Ort &1 im Abstand r der Ausdruck

Coa(r,T) = (®]e HT|®) = (Ph(xy, T)P (21, T)) (1.72)

ergibt. Es ist dabei interessant zu beobachten, dass sich der Effekt von Eichtransformationen
Q(z) = explia(x)], welche an den Link-Variablen geméis

Up(xz) — Ug(az) = exp[—ia(z + p) +ia(z)| Uy(z), —m<oafz)<mw (1.73)

durchgefiihrt werden, nur an den Enden der Polyakov-Linien bemerkbar macht. In Coulomb-
Eichung ist das Dressing des eichinvarianten Coulomb-Zustands | ® ) trivial und die gesamte
Information tiber die urspriingliche Konstruktion des Zustands steckt nun in den Enden der
Polyakov-Linien. Genau dasselben geschieht, wenn wir die Persistenzamplitude des axialen
Zustands | x ) untersuchen wollen. W#hlen wir die axiale Eichung, so iibertrigt sich der Effekt
des axialen Dressings von den Ladungen wieder auf die (Enden der) kurzen Polyakov-Linien.
Im allgemeinen Fall betrachten wir also Korrelatoren von Polyakov-Linien, die in der Zeit-
schicht z* = 0 beginnen und bei z* = T enden, wobei diese Zeitschichten in eine spezielle
Eichung gebracht werden, was der Wahl des Dressings h[U] fiir die Testladungen entspricht.
In unserem Fall miissen daher sowohl die Coulomb-Eichung, als auch die axiale Eichung auf
dem Gitter realisiert werden.

Die Fixierung der Coulomb-Eichung wurde dabei durch iterative Maximierung des eichfixie-
renden Funktionals

3
FIUY = Y Re U (1) (1.74)

x,t i=1

fiir jede Zeitschicht separat beziiglich o(x) implementiert. Die Details der numerischen Reali-
sierung finden sich in Anhang C. Unseren Simulationen liegt ein Wert von 6% < 10~'2 fiir das
Abbruchkriterium der Eichfixierungsprozedur zugrunde, dabei ist zu beachten, dass die in die
Definition von 62 eingehende Anzahl an Gitterpunkten aufgrund der Verwendung von offe-
nen Randbedingung auf die Anzahl innerer Gitterpunkte Ny, = (N; — 2)3 x Ny, (i = 1,2,3),
reduziert ist. Nach Abschluss der Eichfixierung existiert noch immer die Mdoglichkeit, rein
zeitabhéngige Eichtransformationen der Form

Ui(z,t) — Uiz, t) = Q) Ui(z,t) Q1 (),  (i=1,2,3) (1.75)

2

Us(,t) — Ui, t) = Qt) Uy, t) QN (t + 1) (1.76)

durchzufiihren, welche mit der Eichbedingung vertriglich sind. Dabei handelt es sich in jeder
festen Zeitschicht um eine globale Symmetrietransformation. Da die Durchfiithrung derartiger
Eichtransformationen aber keinen Einfluss auf die von uns zu untersuchenden Groen (1.72)
hat, war es nicht notig, diese residuelle Eichfreiheit noch vollstindig zu fixieren.

Wiéhrend die Fixierung der Coulomb-Eichung ein nicht-lineares Optimierungsproblem dar-
stellt, kann die Fixierung der axialen Eichung ohne Probleme direkt implementiert werden.
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Die Eichfixierungsbedingung lautet
As(z) =0, gleichbedeutend mit Us{(x) =1, (1.77)

wobei der im Rahmen der analytischen Behandlung eingefiihrte Einheitsvektor n nun in die
3—-Richtung zeigen soll. Nehmen wir an, es gibe N3 Gitterpunkte in der 3-Richtung, und dass
die Eichtransformationen geméf

Q= Qz) mit xp = (21, 2% ka,z?), k=1...N3 (1.78)

nummeriert seien. Die entscheidende Beobachtung ist nun, dass die Eichtransformationen €2y
und Qp, aufgrund der offenen Randbedingungen unabhéngig voneinander sind, und es daher
immer moglich ist, die Eichtransformation 211 so zu wéhlen, dass

U () = Q Us(ar) ), = 1 (1.79)

erfiillt ist”. Bis auf eine residuelle Eichfreiheit in der Wahl des unbestimmten §2; ist die axiale
Fichung in Richtung n damit vollstéindig fixiert.

1.3.4 Sondierung des Grundzustands

Nachdem nun geklért ist, wie der Dressingformalismus auf dem Gitter implementiert werden
kann, soll nun die Relevanz verschiedener, im Rahmen des Dressingformalismus zu konstru-
ierenden Testzusténde fiir die Grundzustandsphysik geklirt werden, indem ihr Uberlapp mit
dem wahren Grundzustand durch Berechnung der in (1.44) definierten Grofle R(r,t) unter-
sucht wird.

Zu diesem Zweck ist es sinnvoll, zunéchst die folgende Matrix von Ubergangsamplituden
Cyryp = (' |[e7Ht| 1)) einzufithren:

. C@qp(’r’, t) C @(T‘,t)
M(r,t) = ( Can (1) Cix r t)> : (1.80)

Dadurch wird es uns ermdoglicht, fiir feste Werte von r den minimalen Wert von ¢ zu be-
stimmen, fiir welchen die Beitréige von angeregten Zustéinden zu den Amplituden Cyry(r,t)
bereits hinreichend unterdriickt sind, so dass wir tatséichlich den Uberlapp mit dem Grund-
zustand extrahieren koénnen (vgl. die Diskussion um 1.43). Die Berechnung der Determinante
der Matrix M liefert im Limes grofler Zeiten

Qo) (xIa(Q]®)

@0y [(Qr | (181)

ot det[M (r,t)] — '

Weicht also der Wert der Determinanten von M (im Rahmen des statistischen Fehlers) noch
wesentlich von Null ab, so ist dieser Grenzwert offensichtlich noch nicht erreicht, und es muss
daher noch eine lingere Zeitentwicklung der zu untersuchenden Zusténde zugelassen werden.

Die Berechnung von Cgg(r,t), dem Korrelator der Polyakov-Linien mit Coulomb-Dressing,
stellt keine Schwierigkeit dar. Eine schematische Darstellung dieses Objekts findet sich in

"Universelle Losbarkeit: N3 — 1 Bedingungen fiir N3 zu bestimmende Eichtransformationen.
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Abbildung 1.3: Darstellung der Persistenzamplituden auf dem Gitter. Zeitentwicklung im Fal-
le (a) des Zustands | ® ) in Coulomb-Eichung, sowie (b) des Zustands |y ) in axialer Eichung.

Abbildung 1.3 (a). Die graue Schattierung der Ladungen soll dabei andeuten, dass sich das
Dressing der Ladungen an den Enden der Polyakov-Linien bemerkbar macht, und zwar durch
eben diejenigen Eichtransformationen, die insgesamt notig waren, um Anfangs- und Endzeit-
schicht in Coulomb-Eichung zu bringen.

Die Berechnung von C\,(r,t) lduft auf die Berechnung eines eichinvarianten Wilson-Loops
hinaus. Dies wird folgendermaflen ersichtlich: Es bezeichne P(x1,x2) den Korrelator zwei-
er Polyakov-Linien von zeitlicher Ausdehnung ¢, welche in der von der Zeitrichtung und n
aufgespannten Ebene im rdumlichen Abstand r parallel zueinander verlaufen,

P(x1,22)[U})] Xy = a1 + 110, (1.82)

und mittels eichfixierter Link-Variablen {U S(x)} konstruiert werden. Da es sich in axialer
Eichung (1.77) bei den Links U$*(z) (aufgrund unserer Wahl n = é3) um die Eins-Elemente
der Gruppe handelt, kann dieser Korrelator auch zu einem r x t Wilson-Loop in der éz—t
Ebene ergénzt werden. Da aber der Wilson-Loop offensichtlich eichinvariant ist, finden wir

P(z1,22)[U] = WU = WU, . (1.83)

Mit anderen Worten bedeutet dies, dass zum einen zur Berechnung der Persistenzamplitu-
de des axialen Zustands die losen Enden der Polyakov-Linien zur Anfangs- und Endzeit auf
direktem Wege in den jeweiligen Zeitschichten des Gitters durch Paralleltransporter U, (z)
miteinander verbunden werden miissten, zum anderen, dass die Eichtransformation, welche al-
le Zeitschichten in axiale Eichung bringen soll, effektiv tiberhaupt nicht durchgefiihrt werden
muss. Zur Herleitung des Wilson-Loop-Erwartungswertes als Ergebnis der Zeitentwicklung
eines axialen Zustands im Rahmen der Kontinuumsformulierung wird auf Kapitel 4.6 verwie-
sen, eine schematische Darstellung der Situation findet sich in Abbildung 1.3 (b).

Das Vorgehen zur Berechnung der Nebendiagonalelemente der Matrix M ist nun ebenfalls
unmittelbar offensichtlich. Im Falle des Korrelators Cgy(r,t), der den Zerfall des axialen



22

1.3. Der Dressingformalismus auf dem Gitter

\ \ \
0.0\~ ——
Abbildung 1.4: Die Deter- A (D) :;;1@;18
minante det[M (r,t)] der in o025 & v r=3a,B=10
(1.80) definierten Matrix i ° :::a’gzi'&
M]|r,t]. Die Ergebnisse der 0.02 ‘\ G r=2a,B=1.05
Simulationen fiir 8 < Berit % L "\ Z Z ::ii‘ﬁ:i'gi
sind durch Einzelsymbole = 0.015 \ S i
dargestellt, fiir 8 > Bait = L ““ i
wurden die verwendeten © oot - §
Symbole zur besseren Un- - “3 ,
terscheidbarkeit durch Li- 0.005/— 4
nien miteinander verbun- N .
denen. 0 2 \&«»—&—-—g—-a--«a
[ - \ ! \ !

in den mittels Coulomb-Dressing zu konstruierenden Zustand beschreibt, bedeutet dies, die
beiden Polyakov-Linien in der Anfangszeitschicht durch Paralleltransporter miteinander zu
verbinden, nicht aber in der Endzeitschicht, so dass die Gestalt des dabei entstehenden Ob-
jekts schematisch durch einen Biigel der Form LI wiedergegeben werden kann. Analog dazu
entspricht das durch M veranschaulichte Objekt dem Korrelator Cy4(r,t), wobei sich die An-
fangszeitschicht in Coulomb-Eichung, die Endzeitschicht hingegen in axialer Fichung befindet.

In Abbildung 1.4 ist das Verhalten der Determinante det[M (r,t)] fiir verschiedene Werte von
r als Funktion der Zeit t aufgetragen. Es ist zu beobachten, dass der Wert der Determinante
fiir alle betrachteten Werte von r mit zunehmende Zeit sehr schnell sinkt und bereits um
tmin = 3a sowohl unterhalb (8 = 1.0), als auch oberhalb (5 = 1.05) des Phaseniibergangs
effektiv auf Null abgefallen ist. Daher wird der bereits diskutierte ,,Limes grofler Zeiten“ (vgl.
1.43) schon sehr friih erreicht, es sollte daher moglich sein, bereits nach einer relativ kurzen
Zeitentwicklungsphase aus den Korrelatoren einen guten Uberlapp mit dem Grundzustand

extrahieren zu konnen. Fiir Zeiten T > t,,,;, erwarten wir daher fiir die Persistenzamplituden
des Coulomb- bzw. Axial-Zustands die Form

Coa(r,T) = (2 @) e~ baw.  Cu(r,T)=[(Q[x)[e T, (1.84)
wobei die Grundzustandsenergie Ey im Falle sehr schwerer Quellen gerade durch das Poten-

tial V'(r), welches zwischen den statischen Testladungen herrscht, bestimmt wird.

Die Werte des Potentials V(r), sowie die des Betragsquadrats der Uberlappmatrixelemente,
konnen aus den (fehlerbehafteten) Messwerten fiir die Persistenzamplituden (1.84) extrahiert
werden. Zu diesem Zweck wurde fiir einen festen Wert des Abstands r der Quellen der negative
Logarithmus des Erwartungswertes von Caq(r,T") bzw. Cy,(r,T) gebildet, und mittels der
Methode der gewichteten kleinsten Quadrate (siehe z.B. [PTVFO07], Kapitel 15) eine Gerade
an die auf diese Weise fiir verschiedene Werte von T erhaltenen Datenpunkte angepasst.
Die Qualitéit eines solchen Fits kann durch die Uberpriifung zweier Parameter kontrolliert
werden: @, die Giite des Fits (Goodness-of-Fit), sowie der Wert des reduzierte x?, welcher

iiblicherweise mit x?/v bezeichnet wird, wobei v = N —2 die Anzahl der Freiheitsgrade (DoF)
fiir einen linearen Fit an N Datenpunkte bezeichnet.
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Abbildung 1.5: Das statische Potential in Abbildung 1.6: R(r,t) in der Coulomb-Phase
kompakter QED unterhalb (8 = 1.0) und der kompakten QED. Analytische Erg. aus
oberhalb (8 = 1.05) des Phaseniibergangs. Abb. 1.1 sind zum Vergleich unterlegt.

Durch Messung des statischen Potentials konnte sowohl fiir den Fall der von axialen, als auch
von Coulomb-artigen Dressings umgebenen Ladungen verifiziert werden, dass wir in unseren
Simulationen, die bei den zwei verschiedenen Werten der (inversen) Kopplungskonstanten
6 = 1.0 und B = 1.05 durchgefithrt wurden, tatsichlich die zwei verschiedene Realisie-
rungsphasen der Theorie untersuchen, die fiir uns von Interesse sind. Diese Ergebnisse sind in
Abbildung 1.5 zu sehen. Oberhalb des Phaseniibergangs finden wir das fiir die Deconfinement-
Phase erwartete Coulomb-Potential, unterhalb hingegen scheint das Potential linear mit dem
Abstand der Quellen anzuwachsen (vgl. auch [Pan05] fiir weitere numerische Untersuchungen
der Confinement-Phase der kompakten QED). Zur Illustration wurde jeweils noch ein Fit der
beiden Sitze von Datenpunkten (ohne Beriicksichtigung der statistischen Fehler) an einen
Potentialverlauf der Form

Vir) = V()—%-FO"T’ (1.85)

durchgefiihrt. Zu diesem Zweck wurden dabei sowohl fiir die Deconfinement-Phase (blau),
als auch fiir die Confinement-Phase (schwarz) alle verfiigharen Datenpunkte herangezo-
gen, unabhéingig davon, aus welcher der beiden Persistenzamplituden (1.84) sie urspriing-
lich extrahiert worden sind. Die weitgehende Ubereinstimmung der Datenpunkte aus den
beiden Zugéngen scheint die Untersuchungsergebnisse, die im Fall der SU(2)—Yang-Mills-
Theorie [HLLMO07] gewonnen wurden, auch fiir die kompakte QED zu bestétigen. Danach
erweist sich der Korrelator (1.72) in Coulomb-Eichung als ein mit der Qualitét des Wilson-
Loops durchaus vergleichbares Werkzeug zur Untersuchung des vorherrschenden Potentials
zwischen zwei statischen, gegensitzlich geladenen Quellen.

Die numerischen Ergebnisse fiir das Verhéltnis des Uberlapps R(r,t) in der Coulomb-Phase
(8 = 1.05) sind in Abbildung 1.6 zu sehen — zum Vergleich wurden die analytischen Er-
gebnisse aus Abbildung 1.1 in die Graphik integriert. Bemerkenswert ist zunédchst die gute
Ubereinstimmung zwischen der analytischen Lésung und den Gitterresultaten, obwohl die
UV-Divergenzen auf ganz unterschiedliche Weise reguliert wurden. Die Isotropie des Raumes
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Abbildung 1.7: Das Uberlappverhiltnis R(r,t) in der Confinement-Phase (8 = 1.00) der
kompakten QED. Gitter: 12%, Randbedingungen: réumlich offen, zeitlich periodisch.

in der Kontinuumsformulierung reduziert sich beim Ubergang zur Gitterformulierung auf eine
Invarianz des Raumes unter diskreten Symmetrietransformationen, die Elemente der kubi-
schen Gruppe sind [MM94]. Dementsprechend fungiert die endliche Gitterkonstante a(f3), wel-
che den Abstand benachbarter Netzebenen des Gitters charakterisiert, durch Beschriankung
der Brioullin-Zone By = [-7Z, %]4 in jeder Dimension des zugehorigen Impulsraums als Cut-
Off, wohingegen bei den Rechnungen im Kontinuum eine O(3)-symmetrische Einschrinkung
Ip| < A verwendet wurde. In Ubereinstimmung mit dem Verhalten der Determinanten von
M (r,t) (siehe Abbildung 1.4) beobachten wir, dass sich das Uberlappverhltnis R(r,t) in der
Nahe von t = 3a zu stabilisieren beginnt. Jenseits dieses Punktes bildet sich ein Plateau aus,
und das Verhéltnis néhert sich seinem asymptotischen Wert, und zwar um so schneller, je klei-
ner der Abstand r der Testladungen ist. Vergroflern wir diesen rdumlichen Abstand, so kann
dadurch das physikalisch interessantere Regime der langreichweitigen Wechselwirkungen zwi-
schen dem Ladungspaar studiert werden. In der Coulomb-Phase nimmt das Verhilnis R(r,t),
wie bereits anhand der analytischen Rechnungen gesehen, mit zunehmendem réumlichen Ab-
stand 7 ab. Die Energie des axialen Zustands nimmt (nach Regulierung der UV-Divergenzen
auf dem Gitter oder im Kontinuum) linear mit r zu, so dass dieser einen zunehmend schlech-
teren Uberlapp mit dem Grundzustand — welcher ja der Coulomb-Zustand ist — aufweist.

Die gute Ubereinstimmung von analytischen und numerischen Ergebnissen bei der Untersu-
chung der in der Coulomb-Phase realisierten kompakten QED ist ein Indiz dafiir, dass der
oben vorgestellte Zugang zum Dressingformalismus auf dem Gitter funktioniert und es die
von uns betrachtete Grofie R(r,t) tatséichlich ermdglicht, zwei Ansétze fiir den Grundzustand
miteinander zu vergleichen. Als néchstes wenden wir uns der Confinement-Phase zu, was auf
dem Gitter ohne Probleme moglich ist.
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Die Ergebnisse unserer Simulationen finden sich in Abbildung 1.7. Zunéchst ist festzustel-
len, dass das Verhéltnis nun stets grofler als eins ist. Dies zeigt an, dass nun der axiale
Zustand einen besseren Uberlapp mit dem unbekannten Grundzustand hat. Zwar ist das in
der Confinement-Phase gemessene Signal im Vergleich zu dem in der Deconfinement-Phase
gemessenen um einiges weniger deutlich, jedoch kann man immer noch beobachten, wie sich
im Uberlappverhiltnis R(r,t) ein Plateau ausbildet, zumindest bis zu einem Abstand r = 3a
der Quellen. Fiir noch groflere Abstéinde geht das Signal zunehmend im statistischen Rau-
schen verloren, unser Akzeptanzkriterium fiir die aus den Messungen extrahierten und in der
Abbildung gezeigten Datenpunkte war ein relativer Fehler von weniger als 10%. Ein Trend ist
jedoch klar erkennbar: Bei Vergréferung von 7 nimmt auch das Uberlappverhiltnis weiter zu.

Offenbar unterscheiden sich also die beiden Realisierungsphasen der Theorie in Bezug auf den
Grundzustand grundlegend voneinander. Intuitiv wiirde man vermuten, dass in einer Theo-
rie ohne Confinement zwei einzelne, eichinvariante Ladungen den Grundzustand angemessen
beschreiben sollten, wohingegen in einer Theorie mit Confinement der Grundzustand einem
einzigen, insgesamt ungeladenen und eichinvarianten Objekt entsprechen sollte. Tatséchlich
unterstiitzen unsere Ergebnisse diese Vorstellung. Oberhalb des Phaseniibergangs ist die
vierdimensionale kompakte QED in einer Deconfinement-Phase realisiert und der mittels
Coulomb-Dressing konstruierte Testzustand wird klar bevorzugt. Unterhalb des Phaseniiber-
gangs hingegen bietet dieser Zustand aus individuellen, physikalischen Ladungen keine gute
Beschreibung des Grundzustands mehr. Stattdessen scheint der insgesamt ungeladene, axiale
Zustand, bei dessen Konstruktion zwei Ladungen durch einen diinnen Flussschlauch mitein-
ander verbunden wurden (und dessen Divergenzen durch den endlichen Wert der Gitterkon-
stanten reguliert werden), dem wahren Grundzustand mehr zu &hneln.

1.4 Nicht-abelsches Dressing

1.4.1 Perturbative Konstruktion

Die Verallgemeinerung der U(1)—Eichtheorie auf den Fall nicht-abelscher Eichtheorien ge-
schieht zunéchst durch die Identifizierung des Vektorpotentials A;(z) mit A% (z)T. Dabei
bezeichnet T* die hermiteschen Generatoren der zur Eichgruppe G gehoérenden Lie-Algebra.
Die elektrische Kopplungskonstante e (e < 0) wird gemél ¢ — —g durch die zur Gruppe G
gehorige ersetzt. Dadurch verdndern sich die kovariante Ableitung (1.49), der Feldstirketensor
(1.48) sowie die Transformation des Vektorpotentials (1.50) unter lokalen Eichtransformatio-
nen, fiir die nun eine Darstellung der Form Q(z) = exp[ig\®(x)T?] gilt.

Unser Ziel ist die Untersuchung des Grundzustands in nicht-abelschen Eichtheorien bei Anwe-
senheit von statischen Ladungen. Dieser Zustand wird iiblicherweise mit einem sehr schweren
Meson identifiziert: Nach Einbringen eines sehr schweren Quarks bzw. Antiquarks in das
Vakuum der reinen Yang-Mills-Theorie reagiert dieses durch Verdnderung der gluonischen
Feldverteilung, so dass sich ein insgesamt farbneutraler, eichinvarianter Zustand ausbildet.
Die genaue Form der resultierenden gluonischen Hiille der Farbladungen ist noch immer un-
bekannt, zumindest fiir grofle Abstidnde dominiert aber die Vorstellung einer zigarrenférmigen
Feldkonfiguration [BSS95]. Die einfachste Moglichkeit, einen solchen Zustand zu konstruie-
ren, besteht in der (direkten) Verbindung der Quellen durch einen linienartigen gluonischen
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Flussschlauch. Im Rahmen des Operatorformalismus ist dieser Zustand gegeben durch

]

) = a<m2>P{exp ig [dzs,(2)] } a(21)]0) . (1.86)

T2

wobei ¢(x) den Feldoperator eines schweren Fermions bezeichnet und die pfadgeordnete Ex-
ponentialfunktion des gluonischen Linienintegrals die Eichinvarianz des Zustands als Ganzes
garantiert. Wie schon im Falle der bereits behandelten QED wollen wir annehmen, dass der
Flussschlauch die beiden statischen Ladungen am Ort @7 und xo auf direktem Wege mit-
einander verbinden moge, und bezeichnen den Zustand (1.86) daher als den nicht-abelschen
axialen Zustand.

Eine Alternative zu dieser Konstruktion bietet die Verallgemeinerung von Diracs statischem
Elektron [Dir55] auf ein statisches Quark in nicht-abelschen Eichtheorien [LM97]. Im Rahmen
des Dressingformalismus kann dadurch ein Mesonenzustand konstruiert werden, welcher eine
Identifizierung von individuellen, eichinvarianten Farbladungen zulésst und somit das im Rah-
men der QCD zumindest fiir kleine Abstéinde erwartete Wechselwirkungsverhalten [LM97]
angemessen wiederzugeben vermag. Die Konstruktion eines eichinvarianten Quarkzustands
verlduft in kompletter Analogie zum abelschen Fall®, wobei das Eichpotential A sowie die
Eichtransformationen 2(x) durch ihre nicht-abelschen Gegenstiicke zu ersetzen sind. Aus der
Coulomb-Eichbedingung (1.57) folgt die nicht-abelsche Version der Gleichung (1.58), welche
durch Entwicklung in Potenzen der Kopplungskonstanten ¢ eine storungstheoretische Kon-
struktion des Coulomb-Dressings h(x), und somit einer statischen, eichinvarianten Ladung
mit wohldefinierter Farbe erméglicht [LM97,ILMO7]. Die Beitréige niedrigster Ordnung zum
nicht-abelschen Dressing

h[A, x| = exp [’L Zg” vn [A] (:L')] (1.87)
berechnen sich zu 94 5 )
v = ZV2Z7 Vg = V—g([vl,flj] + 5[@-@1,1)1]) . (1.88)

Arbeiten wir in Coulomb-Eichung, so reduziert sich das Dressing auf die Identitét im Farb-
raum (vgl. 1.61) und das Farbsingulett, welches aus zwei eichinvarianten, nicht-abelschen
Ladungen im Abstand r voneinander besteht, wird durch den Zustand

| @) =7"(x2)q"(z1)|0) (1.89)

beschrieben. Eine storungstheoretische Behandlung liefert beziiglich dieses Zustands fiir den
Erwartungswert des Hamilton-Operators das Resultat

02(N) 4 o 92
" + O(g"), as—4ﬂ.

(®H|®) = eq — ag

(1.90)

Dies ist der Beitrag niedrigster Ordnung zum bekannten statischen Inter-Quark-Potential,
wobei die Selbstenergiebeitriige zu €y zusammengefasst wurden und Co(N) den quadrati-
schen Casimir-Operator (D.24) der fundamentalen Darstellung der SU(N) bezeichnet.

8Die in Kapitel 1.3.1 gewiihlte Konvention unterscheidet sich von der in [LM97,ILM07, BLM00a, BLMOOb]
verwendeten durch die Ersetzung Q(z) — Q~'(z) und entsprechenden Konsequenzen fiir das Transformati-
onsverhalten des zu konstruierenden Dressings h — h™'.



Kapitel 1. Der Grundzustand der Yang-Mills-Theorie 27

In Storungstheorie hoherer Ordnung treten neben den aus der Behandlung des abelschen
Falles bekannten abschirmenden Strukturen auch die fiir die nicht-abelsche Natur der zu-
grundeliegenden Symmetriegruppe charakteristischen Anti-Screening-Effekte auf [BLMO0G].
Es ist bekannt, dass die Gluonen dabei sowohl in der Lage sind, die statischen Ladungen
abzuschirmen, als auch den gegenteiligen Effekt hervorzurufen [Dre]. Es konnte von Lavelle
und McMullen gezeigt werden [LM98], dass das Dressing (1.87) dabei fiir das Auftreten der-
jenigen Terme verantwortlich ist, die eine mafigebliche Erhohung der Wechselwirkungsenergie
verursachen. Es scheint folglich so zu sein, dass diejenige Gluonenkonfiguration, welche dazu
beitrigt, die Quarkzustidnde eichinvariant werden zu lassen, auch die dominanten Beitriage
zu den Anti-Screening-Effekten liefert, welche bei der perturbativen Untersuchung des Po-
tentials auftreten. Die Screening-Effekte hingegen, welche ebenfalls in zweiter Ordnung einer
storungstheoretischen Behandlung auftreten, kénnen auf die eichinvarianten Beitrige der
Gluonen zum ,nicht-minimalen® Dressing zuriickgefithrt werden, welches bereits in Kapitel
1.2.2 kurz erwihnt wurde?.

Die storungstheoretische Konstruktion des Coulomb-Dressings erméglicht also scheinbar die
Beschreibung individuell eichinvarianter Farbladungen. Die Verteilung der zugehorigen Gluo-
nenfelder erstreckt sich dabei iiber den ganzen Raum. Da aber keine farbgeladenen Objekte
in der Natur als asymptotische Zusténde beobachtet werden, ist klar, dass jede Beschreibung
einer individuellen, physikalischen Farbladung im nicht-perturbativen Regime zusammenbre-
chen muss. Im folgenden Abschnitt soll zunichst das zuerst von Gribov [Gri78| diskutier-
te Problem skizziert werden, mit dem man sich beim Versuch der Fixierung einer Eichung
in nicht-abelschen Theorien konfrontiert sieht, anschliefend sollen die daraus resultierenden
Konsequenzen fiir die Konstruierbarkeit von Zustdnden mit eindeutiger Farbladung erliutert
werden.

1.4.2 Gribov-Kopien im Rahmen des Dressingformalismus

Der Ausgangspunkt der Untersuchungen von Gribov war die Frage nach der Eindeutigkeit
eines Eichpotentials A, fiir das eine die Eichung fixierende Bedingung y(A) = 0 gestellt wird.
Im Folgenden wollen wir uns auf den Fall der Coulomb-Eichung beschridnken. Falls diese
Bedingung eine eindeutige Fixierung der Eichung zulésst, so sollte es ldngs eines Eichorbits
O 4 keine weitere Konfiguration geben, die der Transversalititsbedingung geniigt. Nehmen
wir also an, es gidbe ein Eichpotential A, das der Bedingung V-4 = 0 geniigt, so sollte die
einzige Losung Q der Gleichung V- A? = 0 fiir ein gemiB (1.50) eichtransformiertes Po-
tential A (unter der Annahme geeigneter rdumlicher Randbedingungen) die Identitit sein.
Dass dem nicht so ist, wurde von bereits 1978 von Gribov erkannt [Gri78], der zeigte, dass
die Quantisierung von Yang-Mills-Theorien aufgrund der Uneindeutigkeit der Definition des
FEichpotentials nicht ohne weiteres moglich ist, und einen Weg vorschlug, wie man dem heute
allgemein als Gribov-Problem bekannten Phénomen des Auftretens von Eichkopien begegnen
konnen sollte. Betrachten wir zu diesem Zweck die infinitesimale Form einer Eichtransforma-
tion Q = exp(igw) des Potentials A, dann fiihrt eine linearisierende Entwicklung auf

A=A+ Duw, (1.91)

9Vgl. hierzu auch [HLLMO7] sowie die Resultate im abelschen Fall [BLMT02].
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die infinitesimale Anderung von A ist also durch die kovariante Ableitung von w € su(N)
gegeben. Aus der Coulomb-FEichbedingung folgt

V-D%W(xz) =0, (1.92)

was als Eigenwertgleichung des (negativen) Faddeev-Popov-Operators M := —V-D fiir den
Figenwert 0 aufgefasst werden kann. Der Definitionsbereich des Faddeev-Popov-Operators
héngt vom Eichpotential A ab, und es kann gezeigt werden, dass M in einer hinreichend
kleinen Umgebung K (A = 0) des perturbativen Vakuums |A| = 0 positiv ist und nur die
triviale Losung w = 0 des Problems (1.92) zulésst.

Es ist in diesem Zusammenhang interessant festzuhalten, dass sich der Faddeev-Popov-
Operator im Falle der U(1)-Eichtheorie auf den positiven Laplace-Operator M = —A redu-
ziert, unabhéngig vom Eichpotential. Mit der in (1.2.2) gewihlten Notation erhilt Gleichung
(1.92) die Form

AXz)=0. (1.93)

Fordern wir das Verschwinden von A(z) auf dem Rand des dreidimensionalen rédumlichen
Unterraums, so ist unter der Annahme offener Randbedingungen die einzige Losung der
Laplace-Gleichung gegeben durch die triviale Losung, A(z) = 0 V. Somit ist die identische
Eichtransformation die einzige Losung von y(A?) = 0, und folglich ist die U(1)-Theorie in
Coulomb-Eichung bei geeigneter Wahl der Randbedingungen frei von Gribov-Kopien.

Im Falle einer nicht-abelschen Eichtheorie besteht jedoch bei Vergréfierung der Norm von A
auch die Moglichkeit, dass M negative Eigenwerte entwickelt. Das Auftreten von Nullstellen
der Determinante des Operators M signalisieren dabei das Uberschreiten der Rénder von
Gebieten €),,, in die der Phasenraum des Eichpotentials anhand der Anzahl m von negativen
Figenwerten des Faddeev-Popov-Operators unterteilt werden kann. Der Vorschlag von Gribov
zur Vermeidung der auf die Mehrdeutigkeit des Eichpotentials zuriickzufithrenden Probleme
bei der Auswertung von Funktionalintegralen bestand darin, die Integration im Raum der
Eichfeldkonfigurationen auf das Gebiet )y zu beschrinken. Dieses heute als Gribov-Region
bekannte Gebiet ist die maximale Umgebung der Losung A =0, in welcher M > 0 gilt. Das
Auftreten der erste Nullstelle der Determinante des Faddeev-Popov-Operators wird durch
das Verschwinden des kleinsten Eigenwertes von M hervorgerufen und signalisiert das Errei-
chen des sogenannten ersten Gribov-Horizonts. Es stellt sich jedoch heraus, dass diese Art der
Einschrinkung des Integrationsgebietes noch immer nicht ausreichend ist, um eine eindeutige
Fixierung der Eichung zu gewéhrleisten.

Um dies zu verstehen, betrachten wir die L?-Norm F4[Q] = |A®|? des Potentials A auf
E* beziiglich derjenigen Transformationen (2, die eichiquivalente Konfigurationen auf O 4
ineinander {iberfiihren:

3
Fal] = Tr(A2AL) = / o S AN AND)], Q) = expligu(@)  (1.94)
pn=1

Die Behauptung ist nun, dass durch Minimierung der L?-Norm, ausgehend von einer gege-
benen Konfiguration A, eine Konfiguration A gewonnen werden kann, welche in der ersten
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Gribov-Region g zu liegen kommt. Zum Beweis entwickeln wir das eichtransformierte Po-
tential bis zur zweiten Ordnung in w(x)

A (2) = Au(@) + () — iglAu (), w(@)] + %[w(w)v O ()]

2
— L1’ (@), Au(@)} + 9 w(@) Au@)w(@) + 0w
woraus sich fiir (1.94) die Form
FalQ] = Fa[l] — 2Tr(wdA) + Tr(w [-0D] w) + O(w?) (1.95)

ergibt. Wird nun {2} so gewdhlt, dass F4[?] ein Minimum annimmt, so verschwindet
zum einen die ersten Variation, was auf die Eichbedingung V- A = 0 fiihrt, zum ande-
ren ist die Hesse-Matrix positiv definit, was der Positivitit des Faddeev-Popov-Operators
M = —V-D[AY] in Coulomb-Eichung entspricht. Die Definition der Gribov-Region Qg iiber-
setzt sich also in die Menge aller Minima von F4[€2]. Da nun aber die Moglichkeit besteht,
dass F 4[] mehrere lokale Minima ldngs eines Eichorbits O 4 besitzen kann, ist unmittelbar
einsichtig, dass auch g nicht frei von Kopien sein kann. Eine eindeutige Fixierung der Ei-
chung gelingt durch die weitere Einschriankung des Integrationsgebietes auf die sogenannte
Fundamental Modular Region (FMR), definiert als die Menge aller absoluten Minima von
(1.94), die im Zuge der Minimierung liangst der Eichorbits angenommen werden kénnen. Die
FMR ist eine konvexe Teilmenge von €y, welche die Konfiguration A =0 enthélt. Auf das
Problem der numerischen Implementierung einer solchen Eichfixierungsbedingung wird im
Anhang C eingegangen. Es zeigt sich, dass eine systematische Wahl von Konfigurationen aus
der FMR nicht moglich ist und daher im Vorfeld unklar ist, ob der ermittelte Reprisentant
aus (g tatsdchlich dem absoluten Minimum von F4[€?] entspricht.

Das Auftreten von Ambiguitéiten beim Versuch der Fixierung einer Eichung beschrankt sich
nicht nur auf die von Gribov [Gri78] studierte Situation der Coulomb-Eichung im Rahmen
einer SU(2)—Eichtheorie, sondern ist ein intrinsisches Problem linearer Eichungen in nicht-
abelschen Theorien in einer Realisierungsphase ungebrochener Symmetrie [Sin78]. Die nun
im Rahmen des Dressingformalismus zu diskutierenden Auswirkungen des Auftretens von
Fichkopien besitzen daher allgemeinere Giiltigkeit, die Coulomb-Eichung wurde in der vorlie-
genden Untersuchung ja aus dem einfachen Grund gewihlt, dass statische Quellen beschrieben
und ihre Wechselwirkung untersucht werden sollten.

Nehmen wir also fiir einen Moment an, dass die Eichfixierungsbedingung es erlauben wiirde,
eine eindeutige Stelle auf dem Eichorbit O 4 auszuwihlen (vgl. Abbildung 1.2), und nehmen
wir ferner an, dass wir uns bereits an dieser Stelle befianden. In diesem Fall ist das Dressing
trivial (1.61) und die Farbe des eichinvarianten Zustands W(x) ist durch diejenige des nackten
Feldes v(z) gegeben. Das Dressing wird also in diesem Sinne transparent, wenn die Eichfi-
xierungsbedingung erfiillt ist. Die durch ¢ (x) vorgegebene Farbe bleibt auch dann erhalten,
wenn man Eichtransformationen Q(z) durchfiihrt, die aus der durch x(A") = 0 beschriebe-
nen Untermannigfaltigkeit des Konfigurationsraums herausfithren [ILM07]. Dabei wird sich
zwar das Dressing verdndern, die Gesamtfarbe von W(z) bleibt aber erhalten, denn h[.A] kom-
pensiert ja per Konstruktion den Effekt der Farbédnderung der nackten Materiefelder, welche
durch die Eichtransformationen Q(z) hervorgerufen werden:

V[A?, 07 (2) = AAY](2) ¥ (2) = hlA](z) Q' (2) Q(z) (@) = VA, ¥)(x) . (1.96)
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Q
Abbildung 1.8: Die Eichfixierungsbedingung A /
ist an mehreren Stellen ldngs des Eichorbits

O 4 erfiillt. Gribov-Kopien treten auf, falls O 4 X(A") =0
von der durch y(A") = 0 beschriebenen Un- 5 4

termannigfaltigkeit des Konfigurationsraums /\ 2
mehr als einmal geschnitten (Punkte 1,2,3) 1
oder tangiert wird (Punkt 4). /

A

Dies gilt allerdings nur, solange h|A] auf die angewandten Eichtransformationen richtig zu
reagieren vermag. Das unvermeidliche Auftreten von Eichkopien fiithrt nun aber gerade zu
einer Situation, in der dies nicht mehr lidnger gewéhrleistet ist. Die Situation ist in Abbildung
1.8 skizziert. Wird eine Eichtransformation ©'(x) durchgefiihrt, die zwei Kopien ineinander
tiberfiihrt, die beide der Eichfixierungsbedingung gentigen, so verdndert sich dadurch auf jeden
Fall das Materiefeld +(x). Eine Anderung von h[A](z) tritt bei einer solchen Transformation
aber nicht mehr unbedingt auf, da an beiden Stellen auf dem Eichorbit die Eichfixierungsbe-
dingung erfiillt ist und beide Punkte gleichermafien dazu herangezogen worden sein kénnten,
um ein Dressing zu konstruieren, das in der Schnittebene trivial wird. In diesem Fall finden
wir fiir den Zustand W[A, 1] das Verhalten

VA, %] (z) = WA )(2) ™ (2) = h[A](z) ' (2) () # VA, ¥](@) . (1.97)

Falls sich das Dressing beim Ubergang von einer Kopie zur anderen doch éndern sollte, so
ist ebenfalls unklar, ob dies zu einer Abschwichung, einer vollstéindigen Kompensation oder
moglicherweise sogar zu einer Verstirkung des Effekts fiihren wird, der durch die Verdnde-
rung des Materiefeldes hervorgerufen wird. Das Verhalten des Dressings wird folglich unbe-
stimmt. Die Voraussetzung dafiir, einem Zustand eine wohldefinierte Farbladung zuordnen
zu konnen, war die Eichinvarianz desselben, was die Konstruktion des Dressings und des zu-
sammengesetzten Operators W (z) iiberhaupt motiviert hat. Die Eichinvarianz wurde durch
die Transformationseigenschaften des Dressings garantiert, und diese wurden im hier vorge-
stellten Zugang zum Dressingformalismus aus der Annahme der Eindeutigkeit einer Eichfi-
xierungsbedingung hergeleitet (vgl. die Diskussion in Abschnitt 1.3.1). Da in [LM97] gezeigt
wurde, dass das Auftreten von Gribov-Kopien ab einer gewissen Skala eine Eichabhéngigkeit
des Dressings einer einzelnen Ladung induziert und somit die Konstruktion eines physikali-
schen Zustands wohldefinierter Farbe unmoglich macht, stellt sich natiirlich die Frage nach
der Relevanz des mittels (1.87) konstruierten Zustands fiir den nicht-perturbativen Bereich
der Grundzustandsphysik.

1.4.3 Nicht-perturbativer Zugang zum Dressingformalismus

Zur Untersuchung dieser Fragestellung wollen wir wiederum die Methoden der numerischen
Simulation von Gittereichtheorien verwenden, wobei wir uns auf die einfachste Yang-Mills-
Theorie (zunéchst erweitert um ein komplexes skalares Feld) beschrénken werden. Nicht-
abelsche Dressings sollen dabei auf dem Gitter in kompletter Analogie zum abelschen Fall
durch Fixierung von entsprechenden Eichungen realisiert werden. Die fundamentalen Objekte
sind dabei Korrelatoren von nicht-abelschen Polyakov-Linien endlicher zeitlicher Ausdehnung.
Fiir den Korrelator der Polyakov-Linien in axialer Eichung gilt die bereits im Rahmen der Be-
handlung des abelschen Falls (Abschnitt 1.3.4) angegebene Argumentation. Der Unterschied
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bei der Berechnung von nicht-abelschen Wilson-Loops, die durch eichinvariante Verkniipfung
der Enden der kurzen Polyakov-Linien entstehen, besteht in der Relevanz der Pfadordnung
aufgrund der Nicht-Kommutativitdt der Link-Variablen. Die Entwicklung des axialen Zu-
stands (1.86) iiber einen Zeitraum 7' wird im Wesentlichen durch den Erwartungswert des
nicht-abelschen Wilson-Loop-Operators

Wil A] = trP{ exp [ig ﬁ dz; A;(2)] } (1.98)

beschrieben, sofern man fiir die Kontur I" ein Rechteck von rdumlicher Ausdehnung r und
zeitlicher Ausdehnung 7" wihlt. Im Falle des Coulomb-Dressings der statischen Testladungen
ergibt sich A

Coo(r,T) == (@l 1| @) = (tr[ P"(2o, T)P"(21,T)'] ) | (1.99)

wobei die Bildung der Spur ihren Ursprung in der Singulettstruktur des Zustands (1.89) in
Coulomb-Eichung hat.

FEine erste Untersuchung der bereits angesprochene Fragestellung, welche Relevanz einem
Zustand aus individuell eichinvarianten Ladungen fiir den nicht-perturbativen Bereich der
Grundzustandsphysik beizumessen ist, wurde in [HLLMO7] durchgefiihrt. Dabei wurde insbe-
sondere untersucht, welchen Einfluss die im Rahmen der numerischen Fixierung der Coulomb-
Fichung auftretenden Gribov-Kopien auf den Erwartungswert des Polyakov-Linienkorrelators
(1.99) haben. Es hat sich gezeigt, dass das zwischen statischen Farbladungen herrschende Po-
tential, welches aus dem untersuchten Erwartungswert extrahiert werden konnte, nicht nur
im perturbativ zugéinglichen Bereich, sondern auch dariiber hinaus hervorragend mit dem
aus der iiblicherweise durchgefiihrten Analyse von eichinvarianten Wilson-Loops gewonnenen
Verlauf iibereinstimmt. Dies ist insofern bemerkenswert, als dass man aufgrund der oben aus-
gefithrten Uberlegungen erwarten wiirde, dass das Bild von der Wechselwirkung der durch
Dressings wohldefinierten, individuellen Ladungen bei grofien Abstdnden zusammenbrechen
und mit dem Verlust eines verwertbaren Signals fiir den Potentialverlauf einhergehen soll-
te. Ferner wurde beobachtet, dass eine Mittelung iiber Gribov-Kopien keine nennenswerten
Auswirkungen auf den Verlauf des Potentials hatte, wohl aber den Uberlapp mit dem Grund-
zustand mafigeblich beeinflusst.

Fine mogliche Interpretation dieser Resultate besteht darin anzunehmen, dass die beiden
Dressings h™![A, x;] fiir g(z1) und h[A, x2] fiir ¢(z2) im nicht-perturbativen Regime gleich-
sam zu einem einzigen mesonischen Dressing fiir beide Ladungen ,,verschmelzen“, wobei der
zugrunde liegende Mechanismus moglicherweise auf dem Auftreten von Gribov-Kopien bei
der Konstruktion der individuellen Dressings beruhen kénnte. Dadurch wéire der Coulomb-
artige Zustand (1.89) in der Lage, jenseits einer Lingenskala, unterhalb derer die storungs-
theoretische Behandlung und Beschreibung des Problems als Wechselwirkung individueller
Ladungen gerechtfertigt erscheint, den Einschluss der Farbladungen zu beschreiben. Unter
dieser Annahme stellt der Zustand (1.89) also einen aussichtsreichen Kandidaten fiir den
Grundzustand im g-G—Sektor der Yang-Mills-Theorie dar. Tatséchlich existieren numerische
Untersuchungen, die zeigen, dass das in Coulomb-Eichung berechnete nicht-abelsche Potenti-
al, welches eine obere Schranke fiir das volle Potential darstellt, im Gegensatz zur abelschen
Theorie einen linearen Anstieg mit zunehmendem Abstand der Quellen voneinander auf-
weist [Zwa03, GOZ04].



32 1.5. Der Grundzustand im SU(2)—Higgs-Modell

1.5 Der Grundzustand im SU(2)—Higgs-Modell

Bisher wurde der Uberlapp der beiden untersuchten Zustéinde mit dem Grundzustand der
kompakten QED oberhalb und unterhalb eines Phaseniibergangs untersucht, der die zwei
Realisierungsphasen dieser Theorie voneinander trennt. Idealerweise wiirden wir daher nun
dieselbe Untersuchung im Falle einer nicht-abelschen Eichtheorie durchfiihren wollen, die
sowohl eine Confinement-Phase, als auch eine Deconfinement-Phase aufweist. Im Falle der
SU(N)—Yang-Mills-Theorie zeigt jedoch die Berechnung der 5(g)-Funktion, dass es als Folge
der asymptotischen Freiheit in D = 4 Dimensionen im Raum der Kopplungskonstanten g nur
einen einzigen Fixpunkt, ndmlich den (trivialen) UV -Fixpunkt g — 0, gibt [ZJ96]. Daher exi-
stiert fiir die reine SU(N)—Eichtheorie bei Abwesenheit von Materiefeldern fiir alle Werte von
g nur eine einzige Realisierungsphase, und dies ist im Falle verschwindender Temperatur die
Confinement-Phase. Fiir hohe Temperaturen 7" wird jedoch die Realisierung der Yang-Mills-
Theorie in der Deconfinement-Phase erwartet, daher sollten Simulationen bei Temperaturen
oberhalb und unterhalb einer kritischen Temperatur 7. die Mdoglichkeit erdffnen, Untersu-
chungen zum Verhalten der Uberlappverhéltnisse des axialen und Coulomb-artigen Zustands
mit dem Grundzustand in zwei grundlegend verschiedenen Realisierungsphasen durchfiihren
zu koénnen. Es zeigt sich aber, dass dieses Vorgehen fiir die einfachste Yang-Mills-Theorie auf
dem Gitter nicht praktikabel ist, da im Falle der SU (2)—Eichtheorie die kritische Temperatur
niaherungsweise T, ~ 300 MeV betrigt und die zeitliche Ausdehnung des Gitter zur Reali-
sierung von Temperaturen oberhalb des Phaseniibergangs soweit verkleinert werden miisste,
dass dadurch eine ausreichende Unterdriickung von angeregten Zustdnden bei der Berech-
nung von Amplituden der Form (1.43) nicht mehr gewéhrleistet werden kann [HILT08b].

Als Alternative dazu verfolgen wir die Strategie, der SU(2)—Yang-Mills-Theorie ein skalares
Feld hinzuzufiigen, welches sich unter der fundamentalen Darstellung der Eichgruppe trans-
formiert'?. Der Vorteil dieser Theorie besteht darin, dass keinerlei physikalisch motivierte
Einschréinkungen beziiglich der zeitlichen Ausdehnung des Gitters gemacht werden miissen,
da die um ein skalares Feld erweiterte Theorie sowohl die Realisierung einer Confinement-
Phase, als auch die Realisierung einer Phase ohne Farbeinschluss fiir verschwindende Tem-
peraturen ermoglicht.

In Kapitel 2.4.1 werden wir die Diskretisierung einer SU (2)—Eichtheorie mit Higgs-Feld ¢(z)
in fundamentaler Darstellung vornehmen. Neben der Erliuterung der von mir verwendeten
Notationskonvention findet sich an dieser Stelle auch eine Diskussion des Phasendiagramms
der Theorie. Fiir die folgende Untersuchung geniigt es dabei zu wissen, dass durch Vergrofie-
rung des Parameters x ein Phaseniibergang der Theorie von einer Quasi-Confinement-Phase
in eine Higgs-Phase hervorgerufen werden kann, und dass die Stérke des Phaseniibergangs
mit zunehmendem Wert der (nackten) Selbstkopplungskonstanten A abnimmt. Der Grenz-
fall A — oo im Potentialterm der Wirkung (2.44) geht mit der Einschrénkung des radialen
Freiheitsgrades des Higgs-Feldes auf p(x) = 1 Vx einher. Folglich reicht es bei der Untersu-
chung dieser Grenzfliche des dreidimensionalen Phasendiagramms am Temperaturnullpunkt
aus, allein die Winkelvariablen (2.41) zu betrachten. Dies fiihrt dazu, dass sich die bei der
Simulation zu verwendende Wirkung auf die beiden Terme (2.39) und (2.42) reduziert, und
diesen numerischen Vorteil wollen wir im Folgenden ausnutzen.

10Vergleiche Anhang D.
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Abbildung 1.9: Die Suszeptibilitit der Abbildung 1.10: Das nicht-abelsche Uber-
Wirkung des Higgs-Felds X higes (1.100) als lappverhéltniss R(r,t) (1.44) im Limes
Funktion von &. 3 = 2.2, Gitter: n*. grofer Zeiten, tmi, = 4a(B). Gitter: 16,

1.5.1 Numerische Ergebnisse fiir das SU(2)—Higgs-Modell

Die Simulationen wurden auf Gittern unterschiedlicher Gréfle durchgefiihrt, wobei der Wert
der (inversen) Kopplungskonstanten auf g = 2.2 fixiert wurde!'. Um den Phaseniibergangs-
punkt zu detektieren, wurden in einem ersten Schritt die Erwartungswerte der mittleren
Plaquette und des Hopping-Terms (2.42) als Funktion von x untersucht. Nach der groben
Bestimmung des kritischen Wertes k. wurde in einem néchsten Schritt die Suszeptibilitét
XHiggs der mittleren Wirkung des Higgs-Feldes (2.42) in der Umgebung des vermuteten Pha-
seniibergangs gemessen:

1
XHiggs = N |:<SI-2Iiggs> - <SHiggs>2} . (1.100)

Die Ergebnisse dieser Messungen, welche auf Gittern der GroBe n* (n = 8,12,16,20) durch-
gefiihrt wurden, finden sich in Abbildung 1.9. Die Suszeptibilitéit scheint praktisch unabh#ngig
von der verwendeten Gittergréfie zu sein und weist ein ausgeprigtes Maximum bei einen Wert
des Hopping-Parameters x auf, der zu k. ~ 0.839(2) bestimmt wurde. Dieses Skalierungs-
verhalten von xmiggs mit der GroBe des Gitters ist ein Indikator fiir das Vorliegen eines
sogenannten crossover des Modells von der Quasi-Confinement-Phase in die Higgs-Phase bei
ke und deckt sich mit unseren Erwartungen fiir die Ordnung des Phaseniibergangs im Grenz-
fall A — co.

Um sicherzustellen, dass unterhalb und oberhalb des so bestimmten . tatsichlich zwei ver-
schiedene Realisierungsphasen der Theorie vorliegen, wurde das statische Potential aus dem
sowohl fiir k = 0.825, als auch fiir kK = 0.88 gemessenen Erwartungswert des Wilson-Loops
extrahiert. Wie in Kapitel 2 erlautert wird, stellt die string tension o aufgrund der analy-
tischen Verbindung der beiden Phasen keinen echten Ordnungsparameter mehr dar, kann

HKleinere Werte von 8 wurden nicht betrachtet um die Effekte von Gitterartefakten méoglichst klein zu
halten, die im (nicht-universellen) strong coupling — Regime auftreten.
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jedoch zumindest noch als Indikator fiir das Vorliegen der Quasi-Confinement-Phase (o # 0),
bzw. der Higgs-Phase (0 ~ 0) dienen. Fiir x = 0.825 konnten wir ein lineares Anwachsen des
Potentials fiir grofie Abstéinde zwischen dem Quark-Antiquark-Paar beobachten [HILT08b],
wobei eine im Vergleich zur reinen SU(2)—Yang-Mills-Theorie leicht reduzierte string tension
aus den Daten extrahiert wurde. Das Phinomen des Stringbreakings wurde nicht beobachtet.
Die fiir k = 0.88 gemessenen Daten konnten hingegen sehr gut durch einen Fit beschrieben
werden, der auf der Annahme eines reinen Coulomb-Potentials basiert. Fiir diesen Wert des
Parameters x ist also bereits die Higgs-Phase der Theorie realisiert. Beide Simulationen wur-
den auf Gittern der GroBe 16* durchgefiihrt.

Als néchstes wurde fiir diese beiden Punkte im Phasendiagramm der Theorie das nicht-
abelsche Analogon des in (1.44) definierten Verhélnisses R(r,t) untersucht. Im Fall der Higgs-
Phase (k = 0.88) zeigte das Ergebnis deutliche Parallelen zum Verhalten von R(r,t), welches
in der Coulomb-Phase der U(1)-Theorie gefunden wurde und in Abbildung 1.6 gezeigt wird:
Der mittels Coulomb-Dressing konstruierte Zustand (1.89) weist also wiederum einen bes-
seren Uberlapp mit dem Grundzustand in dieser Phase auf, als es fiir den mittels axialem
Dressing konstruierten Zustand (1.86) der Fall ist. Der asymptotische Wert von R(r,t) wurde
fiir alle untersuchten Abstédnde r der Quellen in dieser Phase bereits ab etwa tyi, = 4a(8)
erreicht [HILT08b], anhand der in Abbildung 1.10 gezeigten Darstellung des Verhaltens von
R(r,tmin) (rote Quadrate, x = 0.88) ist deutlich zu erkennen, dass der Uberlapp des axia-
len Zustands mit dem wahren Grundzustand fiir groflie Absténde der Ladungen rasch gegen
Null tendiert. Uberraschend ist das Resultat unserer Untersuchungen zum Grundzustand
in der Quasi-Confinement-Phase. Fiir » = a(f) finden wir zwar einen (zeitlich) praktisch
konstanten Wert fiir R(r,t), der etwas grofler als eins ist, mit zunehmendem Abstand der
Quellen fillt das Uberlappverhéltnis jedoch wiederum auf Werte kleiner als eins ab. Obwohl
das Signal wie im Falle der Untersuchung der Confinement-Phase der kompakten QED un-
terhalb von k. weniger deutlich ist, lassen unsere in Abbildung (1.10) zusammengefassten
Ergebnisse (schwarze Kreise, k = 0.825) den Schluss zu, dass der aus einem Quark bzw. An-
tiquark mit nicht-abelschem Coulomb-Dressing konstruierte Zustand (1.89) scheinbar auch
in der Quasi-Confinement-Phase der Theorie in der Lage ist, die wesentlichen Merkmale des
Grundzustands besser wiederzugeben als der axiale Zustand.

Eine mogliche Erkldarung fiir dieses Verhalten wire, dass der wahre Grundzustand durch
einen Flussschlauch charakterisiert ist, dessen Profil sich in der Ebene orthogonal zur Ver-
bindungsachse der Ladungen iiber mehrere Gitterkonstanten a(f3) erstreckt und daher durch
den axialen Zustand (1.86), welcher ja eine Feldverteilung beschreibt, die eher als linienartig
zu bezeichnen ist, nur ungeniigend angenihrt wird. Unsere Ergebnisse scheinen daher das
traditionell vorherrschende Bild [Lus81] eines dicken Flussschlauchs zu bestétigen. Allerdings
muss dabei beriicksichtigt werden, dass bei den bisherigen Untersuchungen nur ein fester
Wert der Gitterkonstanten a(f) betrachtet wurde. Im néchsten Kapitel soll daher eine de-
taillierte Untersuchung zum Uberlappverhalten der beiden Zustinde (1.89) und (1.86) mit
dem Grundzustand in der Confinement-Phase einer reinen Yang-Mills-Theorie durchgefiihrt
werden, wobei insbesondere das Verhalten bei der Annéherung an den Kontinuumslimes der
Theorie untersucht werden wird, um auszuschlieflen, dass Diskretisierungsartefakte bei der
Interpretation unserer Ergebnisse eine Rolle spielen kénnten.
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1.6 Der Grundzustand der SU(2)—Yang-Mills-Theorie

Bevor wir die Details der Simulationen darlegen und unsere numerischen Ergebnisse sowie
die daraus gewonnenen Erkenntnisse prisentieren werden, ist es hilfreich, sich nochmals kurz
das Verhalten des analogen Zustands in der QED mit statischen Quellen in Erinnerung zu
rufen.

In der analytisch zugénglichen Deconfinement-Phase der kompakten QED fillt der exakt
bekannte Grundzustand mit dem mittels Coulomb-Dressing aus den zwei statischen Ladun-
gen konstruierten Zustand zusammen. Berechnet man den Uberlapp von Grundzustand und
axialem Zustand (1.46), so findet man, dass dieser verschwindet. Wie bereits diskutiert ist
der Grund hierfiir in der infinitesimalen Ausdehnung des Flussschlauchs orthogonal zur Ver-
bindungsachse der Ladungen zu suchen, in welchem das Eichfeld konzentriert ist. Reguliert
man dieses divergente Verhalten bei kurzen Absténden durch Einschrinkung der Impulsin-
tegration auf |p| < A, so findet sich fiir den Uberlapp

](le>]2:(TA)4O‘/“exp[—arA+...] , (1.101)

wobei o = €2 /(4r), und im Exponenten noch Terme angedeutet sind, die fiir A — oo endlich
bleiben. Der Uberlapp ist also eine Funktion von rA. Fiir groBe Werte von A dominiert
das exponentiell abfallende Verhalten, so dass der Uberlapp mit dem Grundzustand beim
Entfernen des Cut-Off (A — 00) letztlich verschwindet.

1.6.1 Der axiale Zustand

Wenden wir uns nun der Berechnung von Wilson-Loops in der reinen SU(2)—Eichtheorie zu.
Zur Messung der Persistenzamplituden wurde ein Ensemble von 1000 Konfigurationen heran-
gezogen, welches mittels eines Algorithmus erzeugt wurde, der in seiner urspriinglichen Form
auf Creutz [Cre80] zuriickgeht und in Anhang B.2 beschrieben wird. Zusétzlich zu den lokalen
Update-Schritten wurden mikrokanonische Reflexionen zur Erhchung der Ergodizitiat des Al-
gorithmus eingebaut, was inzwischen ebenfalls als Standard bei Monte-Carlo-Simulation der
SU(2)—Eichtheorie angesehen werden kann. Die Beschreibung des Verfahrens wurde eben-
falls in den Anhang verschoben und findet sich im Abschnitt B.4.

Im Rahmen der von uns durchgefiihrten Simulationen haben wir eine Kombination von
drei Heatbath sweeps durch das gesamte Gitter, gefolgt von sieben mikrokanonischen Re-
flexionen zu einem sogenannten supersweep zusammengefasst. Es hat sich gezeigt, dass die
Durchfithrung von 250 derartigen supersweeps auf Gittern der GroBe 20* bei allen von uns
untersuchten Gitterkonstanten a(f) fiir das Erreichen des thermischen Gleichgewichts ausrei-
chend war. Die nach dieser Thermalisierungsphase gemessenen Ergebnisse zeigten keinerlei
Abhéngigkeit mehr von der verwendeten Anfangskonfiguration. Alle Messungen wurden auf
Gittern mit zeitlich periodischen und rdumlich offenen Randbedingungen durchgefiihrt, wo-
bei die einzelnen Konfigurationen eines Ensembles bei festem Wert des Parameters 8 Glieder
einer Markov-Kette waren, die durch zehn supersweeps voneinander entfernt sind. Bei der
Datenanalyse wurden alle Messwerte fiir die Persistenzamplitude, die mit einem relativen
Fehler von mehr als 0.5 behaftet waren, verworfen. Wie im Falle der kompakten QED wurde
versucht, die Daten mit einer Funktion der Form

(W leT0) = [(Q[w)P e V0T (1.102)
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Abbildung 1.11: Der Uberlapp
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Grundzustand fiir verschiedene 0.8
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in Einklang zu bringen. Dieser Ansatz ist sicherlich gerechtfertigt, sofern die bei der Entwick-
lung des Zustands | ¥ ) verstrichene Zeit T bereits so grof} ist, dass angeregte Zustinde die
Moglichkeit hatten, zu entkoppeln, und somit von diesen kein Beitrag mehr zur Persistenz-
amplitude zu erwarten ist (vergleiche auch die Diskussion um 1.43). Die Ergebnisse fiir den
Uberlapp des axialen Zustands | x) mit dem Grundzustand der Yang-Mills Theorie, die in
den Abbildungen 1.11 und 1.12 zu sehen sind, wurden aus Messungen der Erwartungswerte
von Wilson-Loops mit einer zeitlichen Ausdehnung von T' > 5a extrahiert, fiir die keine signi-
fikante Abweichung von (1.102) mehr zu beobachten war. Das Vorgehen bei der numerischen
Extrahierung der Betragsquadrate der Uberlappmatrixelemente war dasselbe wie im Falle
der abelschen Theorie (vgl. die Diskussion in Kapitel 1.3.4), die Akzeptanzkriterien fiir die
durchgefiihrten linearen Fits waren x?/v < 3 sowie @ > 1073,

Zuniichst wollen wir den Uberlapp des axialen Zustands mit dem Grundzustand als Funk-
tion der dimensionslosen Grofle n betrachten, die den Abstand der auf das Gitter gesetzten
statischen Ladungen als Vielfaches der Gitterkonstanten a(3) angibt. Unsere Ergebnisse fin-
den sich in Abbildung 1.11 wieder, in der nur Datenpunkte gezeigt werden, deren relativer
Fehler kleiner als 0.35 ist. Zunéchst ist festzustellen, dass alle Datenpunkte in dieser Dar-
stellung praktisch iibereinander liegen. Der Uberlapp scheint daher nur eine Funktion von
n, und somit unabhéingig von der verwendeten Gitterkonstanten zu sein. Nimmt man eine
Anleihe beim Uberlappverhalten des axialen Zustands in der U(1)-Theorie (1.101), welches
durch eine Funktion von rA beschrieben wird, so ist denkbar, dass das Uberlappverhalten
im Falle der SU(2) durch eine Funktion von r/a richtig wiedergegeben wird, da a=! ja mit
dem UV-Cut-Off auf dem Gitter in Verbindung gebracht werden kann. Das Ergebnis eines
Fits der fiir die Parameterwerte 8 = 2.625 und 8 = 2.675 gemessenen Datenpunkte an eine
Funktion der Form

|<Q|><>I2=CeXp<—A2> (1.103)

ist als durchgezogene Linie in Abbildung 1.11 zu sehen. Zu beobachten ist eine sehr gute
Ubereinstimmung der Messdaten mit der fiir die Parameterwerte C' = 1.307 und A = 0.359
erhaltene Kurve, wobei die auftretenden Abweichungen (besonders deutlich fiir n = 4) mit
zunehmendem Wert von (8 immer kleiner werden.
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Der Kontinuumslimes a — 0 entspricht fiir einen festen Abstand r der Ladungen dem Grenz-
wert n — oo. Unsere Simulationen zeigen eindeutig, dass der Uberlapp des axialen Zustands
mit dem Grundzustand mit zunehmendem n exponentiell abféllt. Es ist interessant festzuhal-
ten, dass dieses Verhalten, genau wie auch die funktionale Abhingigkeit des Uberlapps vom
dimensionslosen Verhiltnis r /a uns bereits bei der Untersuchung des analogen Zustands in der
Deconfinement-Phase der U(1)-Theorie in dhnlicher Weise begegnet ist (1.101). Obwohl die
hier untersuchte SU(2)—Eichtheorie (fiir alle Werte des Parameters () in der Confinement-
Phase realisiert ist, scheint der Uberlapp des string-artigen Zustands mit dem Grundzustand
bei der Anndherung an den Kontinuumslimes a — 0 (5 — oo) auch hier aufgrund dessel-
ben Effekts zu verschwinden, der schon im Rahmen der Diskussion des unendlich angeregten
axialen Zustands der QED mit statischen Ladungen beschrieben wurde. Die Ausdehnung des
Raumbereichs, auf den der gluonische Fluss im Rahmen der Gitterformulierung beschrinkt
ist, ist in der Richtung transversal zu xo — x; von der Gréflenordnung einer Gitterkonstan-
ten. Wird diese bei der Annidherung an den Kontinuumslimes nun kontinuierlich verkleinert,
bis im Grenzfall ein Flussschlauch infinitesimaler Dicke vorliegt, so gewinnen die dabei auf-
tretenden UV-Artefakte zunehmend an Bedeutung, die den Uberlapp stetig verkleinern und
schliefflich génzlich verschwinden lassen.

Der Uberlapp kann auch als Funktion des physikalischen Abstands der Quellen voneinan-
der ausgedriickt werden. Dies setzt die Kenntnis einer dimensionsbehafteten Skala in der
Theorie voraus. Im Falle der SU(2) wird dabei iiblicherweise die aus Experimenten zum Me-
sonenspektrum gewonnene string tension o ~ 440 MeV? verwendet. Die Umrechnung der in
Gittereinheiten gemessenen Absténde in physikalische wurde durch Interpolation zwischen
verschiedenen Werten der (dimensionslosen) string tension ca®(3) durchgefiihrt, welche fiir
eine Reihe von Werten der Kopplungskonstanten /3 bekannt sind. Diese Werte fiir ca?(3), so-
wie die storungstheoretisch berechnete Ein-Loop-Interpolationsformel finden sich in [Lan07].
Das Ergebnis dieser Umrechnung ist in Abbildung 1.12 zu sehen, der Uberlapp ist nun als
Funktion von r fiir verschiedene Werte von (8 aufgetragen. Bei Vergréflerung von § nimmt der
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Uberlapp fiir alle Abstéinde 7 zwischen den Quellen ab. Falls sich dieser Trend auch fiir noch
kleinere Gitterkonstanten als die hier von uns betrachteten weiter fortsetzen sollte, so hétte
dies im Kontinuumslimes 5 — oo das Verschwinden des Uberlapps fiir jeden festen Wert von
r zur Folge.

Interessanterweise widerspricht dieses Resultat einer von zwei Thesen, die in kiirzlich ver-
offentlichten Arbeiten zur Gestalt des Flussschlauchs in der SU(2)—Eichtheorie aufgestellt
wurden. Zum einen wurde in [BGM07a, BGMO07b] behauptet, dass der Flussschlauch sich mit
zunehmender Entfernung der Quellen — fiir feste Gitterkonstante — vergroflert, zum anderen,
dass die Zunahme der Dicke des Flussschlauchs fiir kleinere Gitterkonstanten ein untergeord-
neter Effekt sei, da die Breite des Schlauchs proportional zur Gitterkonstanten ist. Die Inter-
pretation unserer Resultate steht in Einklang mit der ersten These, denn wir haben ja beob-
achten, dass ein sehr diinner Flussschlauch eine eher unzureichende Beschreibung des Grund-
zustands zu bieten vermag, deren Qualitdt mit zunehmender Entfernungen der Quellen noch
weiter abnimmt. Die zweite Behauptung wiirde jedoch implizieren, dass der Flussschlauch
der SU(2)—Eichtheorie im Kontinuumslimes tatsdchlich unendlich diinn sein miisste, da jed-
wede Zunahme an Profildurchmesser unterdriickt sein sollte. In [BGMO07a, BGMO07b] wur-
de berichtet, dass bei sukzessiver Verkleinerung der Gitterkonstanten ab einem Wert von
a ~ 0.06 fm (8 ~ 2.600) ein linearer Zusammenhang zwischen Gitterkonstanten und Dicke
des Flussschlauchs beobachtet werden konnte. Die grofiten beiden in unseren Simulationen
verwendeten Werte fiir 5 ermoglichen eine Untersuchung des besagten Bereichs sehr feiner
Gitterkonstanten, dennoch zeigte sich beim Ubergang zu Werten von 3 > 2.600 keinerlei
Abweichung von dem fiir alle Diskretisierungen gefundenen exponentiell abfallenden Verhal-
ten des Uberlapps. Es gibt daher keinen Grund anzunehmen, dass der Uberlapp des axialen
Zustands mit dem wahren Grundzustand im Kontinuumslimes nicht verschwinden sollte,
was wiederum bedeutet, dass ein Zustand, der durch Verbindung zweier Ladungen mittels
eines diinnen Flussschlauchs konstruiert wurde, nicht geeignet ist, den Grundzustand der
SU (2)—Eichtheorie angemessen zu beschreiben.

1.6.2 Alternative Formen des Flussschlauchs: Die Smearing-Prozedur

Da ein diinner Flussschlauch scheinbar nicht dazu geeignet ist, die Gestalt des gluonischen
Grundzustand bei Anwesenheit eines schweren ¢ §—Paares angemessen zu beschreiben, stellt
sich die Frage nach moglichen Alternativen, die eine weniger singuldre rdumliche Verteilung
des Gluonfeldes aufweisen. Wir haben bereits in der U(1)-Theorie gesehen, dass die Ursache
fiir das Verschwinden des Uberlapps des axialen Zustands mit dem wahren Grundzustand
in der infinitesimalen transversalen Ausdehnung des Flussschlauchs zu finden ist, und die
numerischen Ergebnisse unserer Untersuchungen im Falle der SU(2)—Eichtheorie legen ei-
ne #hnliche Interpretation nahe. Ein dickerer Flussschlauch sollte daher zu einem weniger
dramatischen UV-Verhalten fithren und es ist folglich zu erwarten, dass sich das Uberlapp-
verhalten dieser Zustdnde mit dem Grundzustand bei Zunahme der Dicke des Flussschlauchs
verbessern wird.

Auf dem Gitter kann ein solcher Zustand durch , Verschmieren“ (smearing) eines infinite-
simal diinnen Flusschlauchs pripariert werden [Tep87, BS92, AT87]. Dabei werden réumli-
che Links durch die Summe der umliegenden Biigel ersetzt, welche zuvor wieder auf ein
SU (2)-Gruppenelement projiziert wurde (vgl. B.15, B.18). Da wilhrend dieses Prozesses In-
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Abbildung 1.13: Uberlapp der ausgeschmierten Zustéinde | ys ) mit der Grundzustand | Q) fiir
verschiedene Werte der Gitterkonstanten a(/3). Fiir eine fixe Anzahl an Smearing-Schritten
S sind die Daten unabhéngig von der Kopplungskonstanten .

formationen aus der Umgebung eines bestimmten Links gleichsam auf diesen iibertragen
werden, spricht man dabei auch von der Erzeugung von fat links. Der verschmierte axiale
Zustand entsteht durch Ausschmieren derjenigen Links, welche die beiden Ladungen mitein-
ander verbinden, was zur Folge hat, dass sich der gluonische Flussschlauch vergréfiert bzw. an
Durchmesser zunimmt. Es ist bekannt, dass die Genauigkeit von Messungen bei Verwendung
von Operatoren, die zuvor einer Verschmierungsprozedur unterzogen wurden, im Vergleich
zur Verwendung von nicht verschmierten Operatoren, deutlich zunimmt. Beispiele sind das
Glueballspektrum [MP99], sowie das bereits mehrfach erwihnte statische Potential [JKMO3],
welches iiblicherweise aus verschmierten Wilson-Loops extrahiert wird. Der Grund fiir die
eintretende Verbesserung bei Verwendung von verschmierten Operatoren ist, dass die zu-
grundeliegenden Eichfeldkonfigurationen geglittet werden, bzw. die Operatoren die héheren
Anregungen der Theorie zugunsten einer verbesserten Projektion auf den Grundzustand weni-
ger gut detektieren konnen. Dadurch erklart sich auch der in der englischsprachigen Literatur
fiir die Verschmierungsprozedur synonym verwendete Terminus overlap enhancement — Ver-
groferung des Uberlapps mit dem Grundzustand. Wir erwarten daher, dass die Entfernung
von UV-Moden durch Verschmierung des Flussschlauchs einen Zustand generiert, der eine
bessere Beschreibung des Grundzustands bietet, als der bisher von uns betrachtete generische
axiale Zustand |y ).

Es ist ferner zu erwarten, dass eine wiederholte Durchfithrung der Verschmierungsprozedur
schrittweise immer glattere Konfigurationen erzeugen wird, die einem immer weiter ausge-
dehnten Flussschlauch entsprechen. Die Anzahl dieser Verschmierungsschritte bezeichnen wir
mit S und die zugehérigen Zustéinde mit | xg ). Fiir jeden Wert des Parameters § wurden
500 Konfigurationen erzeugt und in jeder dieser Konfigurationen wurden Zustéinde | xg ) fiir
S € [1,10] pripariert. Eine Zeitentwicklung von T' > 4a war ausreichend, um auf den Grund-
zustand projizieren und aus den verschmierten Wilson-Loops den Uberlapp mit demselben
extrahieren zu konnen. Zur Auswertung wurden keine Korrelatoren herangezogen, deren rela-
tiver Fehler grofier als 0.5 war. Die Kriterien fiir den lineare Fit waren x?/v < 3und Q > 1072
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Unsere Ergebnisse werden in Abbildung 1.13 als Funktion von r/a, und in Abbildung 1.14 als
Funktion des physikalischen Abstands r gezeigt. Zum Vergleich wurden ebenfalls Ergebnisse
der Untersuchung des axialen Zustands |y ) (S=0) aus den Abbildungen 1.11 und 1.12 mit
aufgenommen. Es ist zu erkennen, dass sich der Uberlapp mit dem Grundzustand durch die
schrittweise Durchfiihrung der Verschmierungprozedur fiir festen Abstand der Quellen sukzes-
sive erhdht. Wir erinnern uns, dass der Uberlapp des axialen Zustands mit dem Grundzustand
als Funktion von r/a unabhingig vom Wert des Parameters [ war. Die Verallgemeinerung
dieses fiir S = 0 gefundenen Resultats wird exemplarisch anhand der Kurven fiir die beiden
Werte § = 2.475 und § = 2.675 fiir S = 2 und S = 4 in Abbildung 1.13 gezeigt. Fiir eine feste
Anzahl an Verschmierungsschritten S weist der Uberlapp keinerlei Abhingigkeit vom Wert
des Parameters 3 auf und ist daher nach wie vor eine Funktion des dimensionslosen Verhélt-
nisses n = r/a. Folgt man nun einer der Kurven in Abbildung 1.13 zu gréfieren Werten von
n, so kann dies fiir festes r als Anndherung an den Kontinuumslimes verstanden werden. Jede
der gezeigten Kurven féllt monoton bei Verkleinerung der Gitterkonstanten a(/3), wenn auch
immer langsamer, je hiufiger die Konfigurationen der Verschmierungsprozedur unterworfen
wurden. Dies legt die Vermutung nahe, dass letztlich der Uberlapp eines jeden Zustands | xs )
mit dem Grundzustand — unabhéngig von S — fiir einen festen Wert des Abstands r der Quel-
len im Kontinuumslimes verschwinden wird.

Eine alternative Darstellung der Situation findet sich in Abbildung 1.14. Hier kénnen die
Auswirkungen der Verschmierungsprozedur fiir S = 0,2 und 4 auf den Uberlapp der entspre-
chenden Zustinde mit dem Grundzustand im Kontinuumslimes (8 — oo) fiir feste physikali-
sche Abstdnde der Ladungen direkt abgelesen werden. Betrachtet man ein festes Level S, so
liegen die auf einem feineren Gitter gemessenen Daten (8 = 2.675, unverbundene Symbole)
unterhalb der Kurve, welche zur Messung derselben Grofie auf einem Gitter mit groferer Git-
terkonstanten a(/3) gehoren (8 = 2.475, verbundene Symbole). In jedem der drei betrachteten
Fille zeigt ein vertikaler Schnitt bei festem r, dass eine Erhhung der Anzahl an Verschmie-
rungsschritten zwar den Uberlapp der so priparierten Zustinde bei fester Gitterkonstante
a(B) erhshen kann, dieser sich jedoch bei der Anndherung an die Kontinuumformulierung
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stets wieder verkleinert. Anders ausgedriickt, um einen festen Wert des Uberlapps im Kon-
tinuumslimes fiir ein bestimmtes r garantieren zu konnen, miisste die Anzahl an Verschmie-
rungsschritten immer weiter erh6ht werden.

Die rdumliche Verteilung der gluonischen Felder verdndert sich bei Erhéhung von S vom
Extremfall eines infinitesimal diinnen Flussschlauchs hin zu einer rdumlich immer weniger klar
lokalisierten, die statischen Quellen umgebenden Verteilung. Da dies (fiir festes 3) mit einer
Erhshung des Uberlapps mit dem Grundzustand einhergeht, soll im nichsten Abschnitt ein
Modell des Grundzustands betrachtet werden, von dem zu erwarten ist, dass die zugehorige
Gluonenfeldverteilung den gesamten Raumbereich durchdringt, ohne dabei auf einer wie auch
immer gearteten Smearing-Prozedur zu beruhen.

1.6.3 Nicht-abelsches Coulomb-Dressing

Die Berechnung der Persistenzamplitude eines Coulomb-artigen Zustands erfordert die Fixie-
rung der Coulomb-Eichung und die Auswertung von Korrelatoren nicht-abelscher Polyakov-
Linien, was in Kapitel 1.4.3 beschrieben wurde. Die Grundlage unserer Untersuchungen bil-
den dabei diejenigen Konfigurationen, die bereits bei der Untersuchung des axialen Zustands
in der SU(2)—Eichtheorie (Kapitel 1.6.1) verwendet wurden. Die verschiedenen Ensembles
wurden anschliefend durch iterative Minimierung des eichfixierenden Funktionals

N 3
Fol] = o D3 Rewr[1 - UP(@) (1104)

z=1i=1

in Coulomb-Eichung gebracht. Die allgemeine Darstellung der eingesetzten numerischen Me-
thoden zur Fixierung diverser Fichungen findet sich im Anhang C, die Konkretisierung
auf den im Fall der SU(2)—Yang-Mills-Theorie in Coulomb-Eichung verwendeten Iteration-
Overrelazation-Algorithmus geschieht in Abschnitt C.1.1. Wéahrend des Eichfixierungsprozes-
ses wurde die in Gleichung (C.11) definierte Groe 62 protokolliert, sobald diese einen Wert
von 62 < 10710 erreicht hatte, wurde die Iteration beendet.

Die Ergebnisse zum Verhalten des Uberlapps von Coulomb- und Grundzustand als Funktion
des Abstands n = r/a der Quellen sind in Abbildung 1.15 zu sehen. Diese unterscheiden
sich deutlich vom Uberlappverhalten des Grundzustands mit dem axialen Zustand einerseits,
wie auch mit den verschmierten Zustinden |ygs) andererseits. In den Abbildungen 1.11 und
1.13 ist zu sehen, dass alle Datenpunkte fiir einen festen Wert von S auf ein und derselben
Kurve zu liegen kommen und durch eine von § unabhéngige Funktion beschrieben werden
konnen, die nurmehr vom Verhéltnis r/a abhéingt. Dies ist hier nicht mehr der Fall. Vielmehr
erhiht sich der Uberlapp des Coulomb-Zustands mit dem Grundzustand fiir jeden Wert von
r/a, wenn wir den Wert von 8 erhéhen. Zu Beginn dieses Kapitels wurde darauf hingewie-
sen, dass die Ursache fiir die Parametrisierbarkeit des axialen Uberlapps |( x| 2)|? durch das
dimensionslose Verhéltnis r/a in der Geometrie des string-artigen Zustands und dessen UV -
Verhalten zu finden ist. Da der Coulomb-Zustand keine derartige Struktur aufweist, ist es
plausibel, dass UV-Artefakte keine dominierende Rolle spielen sollten und |(® | )|? separat
von r und a abhéngen kann.

Die in Abbildung 1.16 gezeigte Skalierung der Messdaten auf physikalische Abstédnde r der
Quellen macht die Unterschiede zum Verhalten des axialen Zustands (sowie der durch Anwen-
dung der Smearing-Prozedur aus diesem hervorgegangenen) nochmals auf besondere Weise
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deutlich. Unsere Simulationen umfassen dabei eine Untersuchung des Uberlappverhaltens
bei Quellenabstdnden von etwa r ~ 1.6 fm bis hinunter zu r ~ 0.05 fm. Bei sehr kleinen
Absténden ist der Uberlapp des Coulomb-Zustands mit dem Grundzustand praktisch per-
fekt. VergroBert man nun den Abstand der Quellen, so verringert sich der Uberlapp zuniichst,
jedoch bei weitem nicht in dem MafBle, wie es fiir den axialen Zustand (Abbildung 1.12) der
Fall ist, dessen Uberlapp mit dem Grundzustand exponentiell schnell abfillt. Dariiber hinaus
verschérft sich dieses Verhalten fiir zunehmende Werte von 8 noch, wihrend die Skalierung
im Falle des Coulomb-Uberlapps dazu fiihrt, dass praktisch alle Datenpunkte auf ein und
derselben Kurve zu liegen kommen, was die Unabhéngigkeit dieses Resultats von der jewei-
ligen Gitterkonstanten a(f3) anzeigt. Der Kurvenverlauf befindet sich bis hierher in Einklang
mit den gingigen Erwartungen zur Gestalt des Grundzustands der Yang-Mills-Theorie bei
Anwesenheit eines Paares von statischen Testladungen. Nimmt man ndmlich an, dass sich
ein mehr oder weniger schlanker, gluonischer Flussschlauch zwischen dem Quark-Antiquark-
Paar ausbildet und dieses zu einem Meson verbindet, wenn man versucht, das Ladungspaar
zu trennen, so diirfte die Beschreibung der Situation durch einen mittels Coulomb-Dressing
konstruierten Zustand eher unangemessen sein. SchliefSlich entspricht dieser in stérungstheo-
retischer Behandlung einem Zustand, der fiir kleine Absténde in fithrender Ordnung aus zwei
individuellen, eichinvarianten Ladungen besteht!2.

Tatséichlich nimmt aber der Uberlapp des nicht-perturbativen Analogons des Coulomb-
Zustands (1.89) bei weiterer Vergréflerung von r nicht beliebig weit ab, sondern es tritt
ein iiberraschendes Phinomen auf. Ab einem bestimmten physikalischen Abstand rg, dessen
Wert von der verwendeten Gitterkonstanten a(f) abhéngt, stellt sich fiir » > 7y ein nahezu
konstanter Wert fiir [(® |Q)|? ein. Dieses Phéinomen tritt fiir zunehmende Werte von 3 bei
immer kleineren Werten von ry auf, wobei sich der zugehorige Grenzwert auf einem immer
hoheren Niveau stabilisiert. Bei den kleinsten von uns verwendeten Gitterkonstanten wird
bereits eine Ubereinstimmung mit dem Grundzustand von iiber 75% erreicht.

12yg]. die Diskussion in Abschnitt 1.4.1.



Kapitel 1. Der Grundzustand der Yang-Mills-Theorie 43

T | T | T T T T T T T
1 % —
L %%x _
0.8 -
i *® i
T T YT
N 06— o A kB .
S | £ oo ]
) X Bi2.675 - i E
Y oosl |© B=2.625 n
B=2.575 T ¢
L |v B=2525 % -
A B=2475
02— o PB=2425 —
|0 B=2375 |
o PB=2325
O — —
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1

0 02 04 06 08 1 12 14 16 1.8
r [fm]

Abbildung 1.16: Der Uberlapp des Coulomb-Zustands mit dem Grundzustand als Funktion
des physikalischen Abstands der statischen Quellen. Wilson’sche Wirkung, Gitter: 20%.

Zur Uberpriifung dieses Resultats wurden weitere Simulation unter Verwendung einer soge-
nannten improved action [Lan07] fiir physikalische Absténde der statischen Ladungen von
etwa 0.1fm < r < 0.9fm durchgefiihrt. Die dabei realisierten Verbesserungen beziehen sich
im Vergleich zur Wilson’schen Gitterwirkung (2.39) auf das Skalierungsverhalten bei der
Annédherung an den Kontinuumslimes sowie die Minimierung von Diskretisierungsartefakten,
welche zur Brechung der Rotationssymmetrie der Theorie beitragen. Die Ergebnisse dieser
detaillierten Untersuchung finden sich in [HIL'08a] und bestétigen unsere Resultate auf Basis
der Wilson’schen Wirkung.

1.7 Zusammenfassung und Ausblick

Das Ziel des vorliegenden Projektes war es, neue Erkenntnisse zur Gestalt des Grundzu-
stands von Yang-Mills-Theorien bei Anwesenheit eines sehr schweren Paares von Testladun-
gen unterschiedlichen Vorzeichens zu gewinnen und bereits bestehende Vorstellungen auf ihre
Tragfiahigkeit hin zu iiberpriifen. Zu diesem Zweck sollte eine Methode entwickelt werden, die
es erlaubt, verschiedene Ansétze fiir den unbekannten Grundzustand miteinander vergleichen
zu koénnen, um zu beurteilen, inwiefern das jeweilige Modell in der Lage ist, die Grundzu-
standsphysik addquat wiederzugeben.

Zu diesem Zweck wurde in einem ersten Schritt eine Untersuchung der Quantenelektrody-
namik als einfachster Eichtheorie mit kontinuierlichen Symmetrietransformationen durch-
gefiihrt, da in diesem Fall der Grundzustand bei Anwesenheit von statischen Ladungen be-
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kannt ist und die Theorie analytisch gelost werden kann. Die beiden Ladungen werden dabei
jeweils von einer Coulomb-artige Konfiguration des Eichfeldes umgeben, was zu einem lokal
eichinvarianten, und somit physikalisch sinnvollen Zustand fiihrt. Inspiriert durch die weit
verbreitete Vorstellung zur Gestalt des Grundzustands im mesonischen Sektor der QCD wur-
de als néchstes ein Zustand betrachtet, der die lokale Eichinvarianz dadurch herstellt, dass
Elektron und Positron durch einen (infinitesimal) diinnen Flussschlauch miteinander verbun-
den werden, in welchem das Eichfeld konzentriert ist. Es konnte gezeigt werden, dass dieser
Zustand einem hoch angeregten Zustand in der QED entspricht, der im Laufe der zeitlichen
Entwicklung zerstrahlt und in den Coulomb-artigen Grundzustand iibergeht. Dieses Ergebnis
befindet sich im Einklang mit der Vorstellung von zwei individuellen elektrischen Ladungen,
die als Grundzustand der Quantenelektrostatik von einem Coulomb-artigen elektrischen Feld
umgeben sind.

Fine systematische Konstruktion von Losungen, die der Forderung nach lokaler Eichinvari-
anz geniigen, geschieht mittels des Dressingformalismus, welcher auf Dirac zuriickgeht und
zunichst anhand der QED erliutert wurde. Anschliefen wurde zum einen auf die Verbin-
dung hingewiesen, die zwischen der Fixierung einer Eichung und der Konstruktion von ver-
schiedenen Testzusténden im Rahmen des Dressingformalismus besteht, zum anderen wurde
daraus eine konkrete Vorschrift zur Berechnung der Persistenzamplituden dieser Zusténde
im Rahmen eines numerischen Zugangs abgeleitet. Der Einfiihrung des in Gleichung (1.44)
definierten Verhéltnisses R(r,t) kommt dabei eine zentrale Bedeutung zu, denn beim Ver-
gleich des axialen Zustands mit dem Coulomb-Zustand hat sich gezeigt, dass die Ergebnisse
der analytischen Untersuchung der QED mit denjenigen aus einer Simulation der kompakten
QED in der Deconfinement-Phase sehr gut iibereinstimmen und daher davon auszugehen ist,
dass wir mit R(r,t) tatsidchlich ein Werkzeug gefunden haben, das es uns erméglicht, ver-
gleichende Untersuchungen zur Gestalt des Grundzustands in Eichtheorien bei Anwesenheit
von statischen Ladungen durchzufithren. Dies gilt insbesondere fiir den Fall nicht-abelscher
Eichtheorien, die sich einem vollstédndig analytischen Zugang bislang entziehen.

Zunéchst wurde jedoch eine weitere Simulation der kompakten U(1)—Theorie durchgefiihrt,
diesmal in der Confinement-Phase der Theorie. Unsere Resultate weisen darauf hin, dass
der axiale Zustand gegeniiber dem Coulomb-Zustand klar bevorzugt wird. Beim Uberschrei-
ten der Phasengrenze scheint also eine Umkehrung der Situation im Vergleich zur analy-
tisch zugénglichen Deconfinement-Phase einzutreten. Dieses Resultat ist nicht allzu iiberra-
schend, beschreibt das axiale Dressing doch einen insgesamt elektrisch neutralen Zustand,
fiir den die Frage nach einer einzelnen, eichinvarianten Ladung als Konstituent des Zustands
ihren Sinn verliert und folglich nicht beantwortet werden kann, was iiblicherweise als In-
diz fiir das Confinement-Phénomen gewertet wird. Als néchstes wurde das Verhalten einer
SU(2)—Eichtheorie untersucht, die an ein fundamentales Skalarfeld gekoppelt wurde. Dieses
Modell wurde ausgewihlt, da es die Sondierung des Grundzustands einer nicht-abelschen
FEichtheorie ermdoglicht, die in zwei verschiedenen Realisierungsphasen vorliegen kann. Diese
unterscheiden sich grundlegend voneinander, wie durch die Berechnung des statischen Poten-
tials unterhalb und oberhalb des detektierten crossover gezeigt werden konnte. Unsere Resul-
tate lassen den iiberraschenden Schluss zu, dass der Coulomb-artige Zustand | ® ) gegeniiber
dem axialen Zustand |y ) sowohl in der Deconfinement-Phase, als auch in der Confinement-
Phase vom wahren Grundzustand bevorzugt wird.
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Zur Klarung der Frage, ob die Geometrie des string-artigen Zustands alleinige Ursache dafiir
ist, dass der axiale Zustand keine gute Beschreibung des Grundzustands einer Yang-Mills-
Theorie in der Confinement-Phase zu bieten scheint, oder ob es sich dabei mdoglicherwei-
se um den Einfluss des Higgs-Feldes handelt, wurden weitere Simulationen einer reinen
SU(2)—Eichtheorie durchgefiihrt, wobei besonderes Augenmerk auf das Verhalten der Uber-
lappmatrixelemente von | ®) und | x ) mit dem Grundzustand bei Verdnderung der Gitter-
konstanten a(f) wihrend der Annéherung an den Kontinuumslimes gelegt wurde. Im Falle
des axialen Zustands konnte dabei beobachtet werden, dass der Uberlapp mit dem Grund-
zustand fiir alle betrachteten Abstéinde der Fermionen exponentiell mit dem UV-Cut-Off
abnahm, der durch den Wert der inversen Gitterkonstante a(3)~! gegeben ist. Interessan-
terweise hatten wir dieses Verhalten schon bei der analytischen Untersuchung des axialen
Zustands in der QED beobachtet. Tatsédchlich entspricht dies genau dem im Kontinuums-
limes der U(1)—Eichtheorie in der Deconfinement-Realisierungsphase erwarteten Verhalten,
denn die infinitesimale Ausdehnung des Strings orthogonal zur Verbindungsachse der Ladun-
gen fithrt schlieflich dazu, dass der Uberlapp des axialen Zustands mit dem Grundzustand
verschwindet. Eine Gluonenverteilung in Form eines diinnen Flussschlauchs, der sich nach
Finbringen eines Paares von sehr schweren fermionischen Quellen in das Vakuum einer Yang-
Mills-Theorie ausbildet, kann folglich als Modell des Grundzustands verworfen werden. Es
ist in diesem Zusammenhang interessant, den Blick nochmals auf die Confinement-Phase der
kompakten QED zu richten: Hier hat sich der axiale Zustand als eine gute Beschreibung des
Grundzustands prisentiert, wobei eingerdumt werden muss, dass unsere Untersuchungen nur
fiir eine einzige, feste Gitterkonstante durchgefithrt wurden. Sollte sich das Ergebnis jedoch
im Kontinuumslimes erhéarten, so konnte dies einen wertvollen Beitrag zur Kldarung der Frage
nach den Unterschieden zwischen abelschem und nicht-abelschem Confinement leisten (siehe
auch [Shi08]).

Auf dem Gitter besteht auf einfache Art und Weise die Moglichkeit, Testzustéinde zu pripa-
rieren, die einer ,zigarrenférmigen* Gluonenfeldkonfiguration entsprechen. Dazu wurden im
Rahmen der Smearing-Prozedur gewohnliche Links durch sogenannte fat links ersetzt, was
dazu gefithrt hat, dass der Einfluss von UV-Moden zuriickgedréingt wurde und das Profil
des Flussschlauchs sich {iber mehrere Plaquetten erstrecken konnte. Unsere Untersuchungen
haben gezeigt, dass der Einfluss des sogenannten overlap enhancement fiir eine feste Anzahl
S von Verschmierungsschritten unabhéngig von [ ist, was zur Folge hat, dass der Uber-
lapp eines Zustands | xs) mit dem Grundzustand fiir einen festen Abstand der Quellen im
Kontinuumslimes noch immer verschwindet, wenngleich durch eine Erhchung von S dafiir
gesorgt werden kann, dass dieses Verhalten im Vergleich zum rein axialen Zustand |x) in
abgemilderter Form auftritt. Die vorliegenden Ergebnisse geben Anlass zu der Vermutung,
dass sowohl bei der Anndherung an der Kontinuumslimes, als auch bei der Verwendung von
grofleren Gittern, eine immer grofiere Anzahl an Verschmierungsschritten benotigt wird, um
den Uberlapp mit dem Grundzustand zu verbessern bzw. auf einem festen Niveau zu halten.
An dieser Beliebigkeit zeichnet sich bereits ab, dass keiner der Zusténde | xg ) als Kandidat fiir
den wahren Grundzustand der Yang-Mills-Theorie im Kontinuum in Frage kommen kann. Es
ist auBerdem aufschlussreich, sich klarzumachen, dass die vorliegenden Ergebnisse ebenfalls
als eine systematische Untersuchung zur Auswirkung des overlap enhancement von Wilson-
Loop-Operatoren mittels Smearing interpretiert werden koénnen. Ist man namlich lediglich
am Verlauf des statischen Potentials V' (r) interessiert, so geniigt es nach Gleichung (1.102)
theoretisch, einen Testzustand | ¥ ) zu verwenden, der einen nicht-verschwindenden Uberlapp
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mit dem wahren Grundzustand hat. Die einfachste Annahme ist dabei der axiale Zustand
(1.86), dies fiihrt auf den gewohnlichen Wilson-Loop!®. Da aber das Signal-/Rauschverhéltnis
mit zunehmender Grofle der Wilson-Loops immer schlechter wird, ist man darauf angewie-
sen, diesen Uberlapp auf irgendeine Weise zu maximieren, damit der Wert des Potentials fiir
grofle Abstédnde r der Quellen iiberhaupt noch aus den Erwartungswerten der Wilson-Loop-
Operatoren extrahiert werden kann. Die Smearing-Prozedur ist dabei ein probates Mittel,
welches zunéchst vor allem bei der Untersuchung des Glueball-Spektrums eingesetzt wurde
(vgl. [Rot97] §17.4), jedoch ist auch hier bekannt, dass sich der Uberlapp mit dem Grund-
zustand im Kontinuumslimes stetig verringert, und daher eine immer grofiere Anzahl an
Blocking-Schritten zur Erzeugung von Fuzzy Links eingesetzt werden muss, um den Vorfak-
tor der Exponentialfunktion in Gleichung (1.102) nicht zu klein werden zu lassen.

Zuletzt wurde der Coulomb-Zustand (1.89) untersucht, der in storungstheoretischer Be-
handlung zwei individuell eichinvariante Farbladungen beschreibt, die von nicht-abelschen
Coulomb-Feldern umgeben sind. Da die Dressing-Konstruktion jedoch aufs Engste mit dem
Auftreten von Gribov-Kopien im Rahmen der Coulomb-Eichfixierung verkniipft ist, steht
zu erwarten, dass dieser Ansatz wesentliche nicht-perturbative Effekte aufweisen wird. Es
konnte beobachtet werden, dass der Coulomb-Zustand | ®) fiir jeden Wert der verwendeten
Gitterkonstanten a(f3) einen wesentlich besseren Uberlapp mit dem Grundzustand aufweist,
als dies fiir den axialen Zustand der Fall war. Dieses Ergebnis erwies sich als unabhéngig von
der Wahl der Wirkung, die zur Simulation der diskretisierten SU(2)— Yang-Mills-Theorie
verwendet wurde. Da der Uberlapp bei einer Verkleinerung der Gitterkonstanten sogar noch
zunimmt, kann nicht ausgeschlossen werden, dass es sich bei dem nicht-abelschen Coulomb-
Zustand moglicherweise tatsdchlich um den wahren Grundzustand des gg—Sektors im Kon-
tinuumslimes der Yang-Mills-Theorie handelt. Ob sich der von uns beobachtete Trend bei
der Anndhrung an den Kontinuumsfall tatséchlich fortsetzt, miisste durch weitere Simula-
tionen auf grofleren Gittern bei feinerer Diskretisierung gekldart werden. Auflerdem wire es
interessant, den Einfluss der Gribov-Kopien auf unsere Ergebnisse als Funktion der Gitter-
konstanten systematisch zu untersuchen, um eine Antwort auf die Frage zu finden, welcher
Mechanismus hinter der plétzlich einsetzenden Veréinderung des Uberlappverhaltens bei ei-
ner bestimmten Langenskala steckt, deren Wert von der verwendeten Gitterkonstanten ab-
zuhéngen scheint. Eine naheliegende Fortsetzung der vorgestellten Untersuchungen besteht
sicherlich auch in der Anwendung des Dressingformalismus auf die Untersuchung von Ladun-
gen in der SU(3)—Yang-Mills-Theorie. Aufgrund ihrer besonderen Bedeutung fiir die Theorie
der starken Wechselwirkung wére es schlieflich wiinschenswert zu iiberpriifen, ob sich unsere
Ergebnisse zur Gestalt des Grundzustands auch bei der Beschreibung von Mesonen in der
QCD bestéitigen lassen. Da man erwartet, dass SU (N, )-Yang-Mills-Theorien fiir grofie N, eine
duale Beschreibung als String-Theorie besitzen [tHT74al, ist es interessant, nochmals iiber die
Rolle des axialen Zustands in derartigen Theorien nachzudenken. Es wire durchaus moglich,
dass sich der axiale Zustand in diesem Grenzfall wieder als die bessere Alternative bei der Be-
schreibung des Grundzustands erweist. Ebenfalls vorstellbar ist, dass das optimale Dressing
auf einer Art interpolierenden Eichung [tH71,tH81, CH86,L.589, LvN94] beruht, welche in der
Lage ist — moglicherweise als Kompromiss zwischen axialer Eichung und Coulomb-Eichung —
den idealen Kandidaten fiir den Grundzustand der jeweilige SU(N.,)-Yang-Mills-Theorie zu
erzeugen.

13Die zugehorige Konstruktion wird im Detail in Kapitel 4.6 besprochen.
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Zusammenfassend lésst sich konstatieren, dass unsere Untersuchungen zur Gestalt des Grund-
zustands im mesonischen Sektor der Yang-Mills-Theorie ein unerwartetes und sehr {iberra-
schendes Frgebnis geliefert haben. Die genaue Geometrie des wahren Grundzustands bleibt
zwar nach wie vor unbekannt, das vorherrschende Bild eines diinnen gluonischen Fluss-
schlauchs, der sich zwischen dem Fermionen-Paar ausbilden und auf diese Weise verhindern
soll, dass die Ladungen voneinander getrennt werden kénnen, hat sich jedoch nicht als un-
eingeschrankt tragfahig erwiesen und muss daher moglicherweise revidiert werden.






Kapitel 2

Topologische Anregungen in der
Theorie der starken und elektro-
schwachen Wechselwirkung

2.1 Einleitung

In Kapitel 1.3.2 wurde im Rahmen der Diskussion des Phasendiagramms der kompakten
U(1)-Eichtheorie darauf hingewiesen, dass die Kondensation magnetischer Monopole fiir
das Auftreten des Confinement-Ph&nomens in dieser Theorie verantwortlich gemacht werden
kann [Pol75], und dass dies in numerischen Simulationen auf eindrucksvolle Weise bestétigt
werden konnte [DT80,SW92]. Der Ubergang in die gewohnliche Coulomb-Phase wird dabei
durch eine rapide Anderung der Monopoldichte angezeigt, das Kondensat ,,schmilzt“ und die
Theorie verliert ihre Confinement-Eigenschaften. Untersuchungen von nicht-abelschen Feld-
theorien haben gezeigt, dass auch in diesem Fall unter Umstdnden Monopolkonfigurationen
als Losungen der zugehorigen Feldgleichungen gefunden werden konnen. Es zeigt sich, dass
die Existenz derartiger Losungen eng mit der Topologie der Gruppenmannigfaltigkeit und
der Gestalt der Raumzeit verkniipft ist, welche die Grundlage der betrachteten Eichtheorien
bilden. Es ist daher nicht verwunderlich, dass eine Klassifizierung der verschiedenen Losungen
auf einer topologischen Unterscheidung von Abbildungen aus der Gruppenmannigfaltigkeit
auf den Rand der Raumzeit-Mannigfaltigkeit beruht, die mittels der sogenannten Homoto-
piegruppe 7, (G) charakterisiert werden kénnen.

Neben magnetischen Monopolen, die wir kurz anhand des sogenannten dualen Supraleiters
als Modell des Vakuums der QCD und im Rahmen der Einbettung von topologischen Defek-
ten in Yang-Mills-Theorien diskutieren werden, spielen auch sogenannte Vortez-Ldsungen als
topologische Anregungen in der Theorie der starken und elektroschwachen Wechselwirkung
eine wichtige Rolle. In Kapitel 2.3 werden wir zunéchst die Rolle von Zentrumsvortices in
einem populdren Mechanismus zur Erkldrung des Confinement-Phinomens diskutieren. Da-
von ausgehend werden wir uns der Untersuchung des sogenannten Stringbreaking-Phdnomens
im Zentrumsvortexbild des Confinements in einem Modell der Theorie der starken Wechsel-
wirkung mit dynamischen Materiefeldern widmen. Danach wenden wir uns in Kapitel 2.5
dem Standardmodell der elektroschwachen Wechselwirkung bei endlichen Temperaturen zu.
Dabei soll das Perkolationsverhalten der Zentrumsvortices in der Néhe des elektroschwachen
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crossover mit dem der sogenannten elektroschwachen Z-Strings verglichen werden, die sich
als topologisch instabile Vortex-Losungen in die elektroschwache Theorie einbetten lassen und
eine phénomenologisch hochst interessante Rolle im Rahmen von alternativen Bayogenese-
Szenarien bei der Abkiihlung des frithen Universums spielen konnten. Eine Untersuchung zum
Verhalten der Dichte sowie einer Profilfunktion der Zentrumsvortices im Kontinuumslimes der
Theorie in der symmetrischen Phase schlielen diese Untersuchung ab.

2.2 Dualitidt und Confinement durch Monopole

2.2.1 Der duale Supraleiter

Die Idee des dualen Supraleiters als Modell des Vakuums der Quantenchromodynamik wur-
de im Wesentlichen durch die experimentelle Beobachtung eines Phénomens inspiriert, das
bei der Untersuchung von Typ-II-Supraleitern in externen Magnetfeldern festgestellt werden
kann. Wahrend Supraleiter vom Typ I unterhalb einer kritischen Temperatur 7, in einem
perfekten diamagnetischen Zustand realisiert sind und aufgrund des Meissner-Ochsenfeld-
Effektes ein dufleres Magnetfeld komplett aus ihrem Inneren verdréingen, besteht fiir Supra-
leiter vom Typ II die Moglichkeit zum Ubergang in die sogenannte Shubnikov-Phase, die durch
die Ausbildung von rdumlich recht klar begrenzten normalleitenden Bereichen innerhalb der
Probe charakterisiert ist, in die das externe Magnetfeld eindringen kann. Diese sogenannten
Abrikosov-Vortices bilden eine regelméflige, gitterartige Struktur und erméglichen es einem
quantisierten magnetischen Fluss in ein ansonsten feldfreies Vakuum einzudringen'. Da ma-
gnetische Feldlinien in einem Typ-II-Supraleiter in der Shubnikov-Phase also auf einen mehr
oder weniger klar begrenzten rdumlichen Bereich komprimiert werden, sollte dies auch fiir ein
Magnetfeld gelten, das sich zwischen zwei magnetischen Elementarladungen unterschiedlichen
Vorzeichens ausbildet. Stellt man sich also vor, dass magnetische Monopole in ein Shubnikov-
Vakuum eingebracht werden, so wird das urspriinglich zu erwartende radiale Coulomb-Feld
eines Monopols deformiert und schliefllich aufgrund des Meissner-Ochsenfeld-Effekts in Kom-
bination mit anderen Monopolfeldern die Gestalt von Flussschliuchen annehmen, die sich
zwischen den magnetischen Ladungen ausbilden.

Im Rahmen der Untersuchung des Grundzustands der Yang-Mills-Theorie in Kapitel 1 haben
wir bereits gesehen, dass sich ein solches Bild als durchaus tragfihig fiir die Beschreibung des
Confinement-Mechanismus erweisen kann, wobei hier die Rollen von (chromo-) magnetischen
und elektrischen Ladungen und Feldern vertauscht werden miissen. Dies ist der Grund dafiir,
dass sich die Bezeichnung des nun noch genauer zu erlduternden Modells des Vakuums der
QCD als dualer Supraleiter [tH75,Pol75,Man76] etabliert hat. Die Ursache fiir die Ausbildung
eines supraleitenden Zustands in einem Festkorper liegt in der Kondensation von sogenannten
Cooper-Paaren begriindet. Jeweils zwei Elektronen bilden dabei durch phononische Wechsel-
wirkung des Gitters ein Quasi-Boson, und dieser Bindungszustand sorgt dafiir, dass sich eine
Energieliicke (energy gap) im Anregungsspektrum der Ladungstriger unterhalb des normal-
leitenden Zustands ausbilden kann. Dieser Phaseniibergang wird also durch die Kondensation
elektrischer Monopole, namlich der Elektronen, angezeigt, und da sich diese in der supralei-
tenden Phase in einem quasi-bosonischen Zustand befinden, ist es nicht verwunderlich, dass
die einfachste Beschreibung dieses Phanomens durch eine abelsche Eichtheorie geschieht, die

!Eine elementare Diskussion der Abrikosov-Vortices im Rahmen der Landau-Ginzburg-Theorie der Supra-
leitung findet sich in [Fel98].
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an ein komplexes Skalarfeld gekoppelt wird, das die elektrische Ladung ¢ = —2e tragt und
das Auftreten des Phdnomens der spontanen Symmetriebrechung erméglicht.

Fiir die Realisierung eines dualen Supraleiters als Modell des Vakuums der QCD, in wel-
chem nun farb-elektrische Ladungen durch farb-elektrische Flussschliuche zu mesonischen
Zustdnden gebunden werden konnen, miissen konsequenterweise farb-magnetische Ladungen
existieren, welche die Rolle der Elektronen in einem gewohnlichen Supraleiter bei der Aus-
bildung eines Cooper-Paar-Kondensats iibernehmen. Daher ist es wichtig zu kldren, unter
welchen Umstéinde magnetische Monopole in Yang-Mills-Theorien auftreten kénnen.

2.2.2 Dualitdt und magnetische Monopole

Beginnen wir zunéchst mit einer Untersuchung der in Kapitel 1.3 definierten abelschen U(1)—
Eichtheorie. Bei Anwesenheit von elektrisch geladener Materie nehmen die Maxwell-Gleich-
ungen in kovarianter Form die Gestalt

OuFt(z) = j'(z),  GuxF™(x) = 0,  j"(z) = ep(x)y"(x) (2.1)

an, wobei der duale Feldstirketensor als «F* (x) = %e’“’ M\ (2) definiert ist. Tm Fall ver-
schwindender elektrischer Strome j¥(x) besitzt die Theorie neben Lorentz- und Eichsymme-
trie eine weitere Symmetrie unter der Dualitétstransformation?

D: F,(x) - *F,(zx) <= D: E(@x)—B(z), B(r)— -E). (2.2)

Fordern wir nun, dass auch bei Anwesenheit von elektrischen Quelltermen diese Symmetrie
erhalten sein soll, so miissen die Gleichungen (2.1) durch Hinzufiigen eines magnetischen
Stroms kY (z) modifiziert werden. Ein solcher Term ist aber aufgrund der Bianchi-Identitét
fiir glatte Eichpotentiale A, (z) nicht zuldssig, daher ist es notwendig, den Losungsraum auf
nicht-differenzierbare Eichfelder zu erweitern. Dabei stellt sich die Frage nach der Konsi-
stenz einer solchen symmetrisierten Elektrodynamik angesichts der Kopplung an quanten-
mechanisch zu behandelnde Materiefelder. Eine erste Untersuchung dieser Art wurde von
Dirac [Dir31] durchgefiihrt, die hier kurz erldutert werden soll. Ein magnetischer Monopol,
lokalisiert im Ursprung des R?, ruft das Feld

_ 9

B(T‘) = mer (23)
hervor, wobei g die magnetische Elementarladung bezeichnet. Ein solches Feld besitzt in
Kugelkoordinaten eine Darstellung als Rotation des Eichpotentials

g 1—cos(¥) .

Ay= S 7Y
N drr  sin(d) “

(2.4)

auf R3, welches eine Singularitit im Ursprung besitzt, die sich linienartig fiir 9 = 7 ins Un-
endliche fortsetzt. Dieser sogenannte Dirac-String ist allerdings unphysikalisch, da sich seine
Position als eichabhéngig erweist und nur die Singularitdt im Ursprung physikalisch relevant
ist. Die Konsistenz der resultierenden Quantentheorie eines geladenen Teilchens im Feld des
magnetischen Monopols (2.3) wird durch das Dirac’sche Veto gewéhrleistet, nach dem die
Trajektorie den Dirac-String nicht kreuzen darf.

2Im Minkowski-Raum My gilt x* = —1, die Theorie ist somit anti-selbstdual.
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In der Einleitung wurde bereits darauf hingewiesen, dass die Existenz und Charakterisierung
von nicht-perturbativen Losungen der Bewegungsgleichungen von Eichtheorien mafigeblich
von der Topologie der Eichgruppe sowie (dem Rand) der Raumzeit-Mannigfaltigkeit abhéngt,
auf der die Eichtheorie definiert ist. Es lohnt sich daher, die Monopollésung von Dirac noch-
mals unter topologischen Gesichtspunkten zu betrachten. Diese alternative Formulierung geht
auf Wu und Yang [WY75] zuriick und macht von glatten Eichpotentialen Gebrauch, die in
zwei verschiedenen offenen Umgebungen definiert sind, die den topologisch nicht-trivialen
Raum R3\{0} ~ S? iiberdecken. Die Position des Monopols ist also aus der Mannigfaltigkeit
ausgenommen. Die beiden Karten, welche die S? iiberdecken, werden als Nord- und Siidhélfte
des Atlas bezeichnet, da die Region, in der die beiden Karten iiberlappen, iiblicherweise als
der Aquator der Kugel gewiihlt wird. Dies ist zweckmiBig aber nicht zwingend, denn der
geometrische Ort, an dem der Dirac-String die Kugeloberfliche durchstoft, ist ja nur in einer
speziellen Eichung der Nord- bzw. Siidpol der S?. Wihlen wir also auf der Nordhélfte das
Eichpotential (2.4) und auf der Siidhilfte

g 1+cos(¥) .

A =— L S
5 drr  sin(0) >

(2.5)
so sind die Eichpotentiale in ihrer jeweiligen Karte wohldefiniert und ergeben eine stetige
Feldstiirke auf 82, Die Konstruktion nutzt die Invarianz der Feldstéirke unter Eichtransfor-
mationen (1.50), die am FEichfeld durchgefiihrt werden konnen. Solange sich némlich die
Fichpotentiale in der Uberlappregion der verschiedenen Karten nur um eine Eichtransforma-
tion unterscheiden, erhalten wir im abelschen Fall eine glatte Feldstirke auf ganz R*\{0}. Im
vorliegenden Fall besteht die Uberlappregion aus dem Aquator S' ~ R?\{0} bei 9y = 7/2
und die Differenz der Eichpotentiale ist gegeben durch

An(D0) = As() = VA(),  Ag)= . (2.6)
Folglich ist durch Qns(¢) = exp(—ieA(¢)) € U(1) eine Ubergangsfunktion definiert, die die
magnetische Ladung des Monopols im Ursprung charakterisiert:

g:jé B-daz/
S2 S

Die Forderung nach Stetigkeit der Eichtransformationen fiihrt auf die beriithmte Quantisie-
rungsbedingung [Dir31] fiir magnetische Ladungen:

2w

By - do + Bs.da:f (Ay —Ag)-ds = A(p) (2.7)
3 8 5 0

2
Qns(0) = Qng(2n) < g = gn new. (2.8)

Der entscheidende Punkt ist, dass die auf einem kompakten Intervall definierte Funktion
A : [0,27] — R nicht stetig sein muss, sondern i.A. Spriinge um 27wm, m € Z aufweisen kann.
Die nach Gleichung (2.6) zu berechnenden Transformationen der Eichpotentiale kénnen da-
her singulidr werden. Zu beachten ist ferner, dass es sich bei A\(¢) um eine Abbildung einer
(rdumlichen) S! auf die Gruppenmannigfaltigkeit der U(1) ~ S! handelt. Daher kann die
magnetische Ladung ¢g auch als ein Element der ersten Homotopiegruppe m(U(1)) = Z in-
terpretiert werden, die diese Abbildung charakterisiert.

Die erste numerische Untersuchung zur Detektierung von magnetischen Monopolen innerhalb
der Konfigurationen einer kompakten abelschen Eichtheorie wurde von deGrand und Tous-
saint [DT80] durchgefiihrt. Dabei wurde eine Vorschrift angegeben, welche es erlaubt, den
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mit den Dirac-Strings verkiipften magnetischen Fluss durch die Oberfliche eines elementa-
ren Wiirfels zu bestimmen. Dabei wird angenommen, dass sich der gemifi Gleichung (1.70)
berechnete Fluss durch eine elementare Plaquette aus zwei Teilen zusammensetzt, ndmlich
physikalischen Fluktuationen aus dem Intervall [—7, 7], sowie ganzzahligen Vielfachen von
27, die dem Fluss eines Dirac-Strings entsprechen. Definiert man also

0(2) = [0(@)w —2rnuw(z)] € [-m, 7], nuw(v) €7, (2.9

)
wobei 1y, (x) die Anzahl der Dirac-Strings bezeichnet, die die elementare Plaquette P, (x)
durchsto8t, so lasst sich die magnetische Ladung M innerhalb eines ausgedehnten Wiirfels C
berechnen als

1 - 1 =
M = o ZGW = o Z Vue;wneun = Z €Y pNur - (2.10)
ac ceC ceC

In der zweiten Gleichung, die das Analogon zu M = fVc V - B auf dem Gitter darstellt,
wird iiber alle elementaren Kuben ¢ summiert, deren magnetische Ladungen sich zu der in C
enthaltenen Ladung addieren. Eine Alternative zu dieser sogenannten Typ-II-Konstruktion
besteht dabei in der Verwendung von ausgedehnten Plaquetten 6(*) (%) v, deren Verwendung
in Kapitel 2.5 im Kontext einer moglichen Definition von elektroschwachen Z-Strings disku-
tiert werden wird. Zuletzt ist festzuhalten, dass eine Eichtransformation der Link-Variablen
den Wert einer einzelnen Plaquette zu verdndern vermag, nicht jedoch die Summe iiber eine
geschlossene Oberfliche. In dieser Beobachtung manifestiert sich die Erkenntnis, dass dem
Verlauf der Dirac-Strings keine physikalische Bedeutung beizumessen ist, die eingeschlossene
magnetische Ladung jedoch eine eichinvariante Grofie darstellt, die mithilfe von unphysikali-
schen Objekten bestimmt werden kann.

2.2.3 Yang-Mills-Theorie und abelsche Eichungen

Die Kompaktheit der U(1) Eichgruppe ist notwendig und hinreichend fiir die Existenz von
magnetischen Monopolen in der oben diskutierten abelschen Eichtheorie. Dabei wurde deut-
lich, dass die Topologie eine wesentliche Rolle fiir die Klassifizierung der nicht-perturbativen
Losungen spielt, die fiir das Confinement-Phinomen verantwortlich sein sollen. Eine Auswei-
tung der hier vorgestellten Techniken in Anwendung auf Yang-Mills-Theorien mit Eichgruppe
G = SU(N) ist nicht direkt moglich, da m1(SU(N)) = {0}. Die Idee ist nun, sich auf eine
abelsche Untergruppe zu konzentrieren, deren Kompaktheit aus der Einbettung in eine kom-
pakte Eichgruppe G resultiert. Im Fall der SU (V) handelt es sich um die Cartan-Untergruppe
H = U()N=! ¢ G, deren N — 1 Generatoren die groBte abelsche Unteralgebra der su(N)
bilden. Diese konnen immer diagonal gewéhlt werden. Im Hinblick auf eine in Kapitel 4
zu besprechende Verallgemeinerung der hier diskutierten Ergebnisse auf Eichtheorien, de-
ren volle Symmetriegruppe G durch das Phénomen der spontanen Symmetriebrechung auf
eine residuelle Symmetriegruppe H eingeschrankt wird, empfiehlt es sich, bereits an dieser
Stelle den Coset G/H einzufiihren, der all die Elemente aus G enthélt, die nicht durch einen
Eichtransformation h € H miteinander verkniipft sind. Schematisch lisst sich diese Zerlegung
als

G = HOHM ®HM;--- (2.11)

darstellen, wobei die Mengen M; Elemente enthalten, die zwar zu GG, nicht aber zu H gehtren
und dabei untereinander verschieden sind. Die Existenz von magnetischen Monopolen ist gesi-
chert, sofern die mit mo(G/H) bezeichnete zweite Homotopiegruppe von G/ H nicht trivial ist,
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und im Fall G = SU(2) ist dies aufgrund von mo(SU(2)/U(1)) = m1(U(1)) gerade der Fall?.
Das Interesse an den (maximal) abelschen Eichungen [tH81] resultiert nun aus der Annahme,
dass sich durch Fixierung der vollen Symmetrie G der Theorie auf eine durch H beschrie-
bene residuelle abelsche Symmetrie die wesentlichen Informationen iiber den Confinement-
Mechanismus, die in den Eichfeldern enthalten sind, in den abelschen Freiheitsgraden konzen-
trieren lassen, auf die anschlielend projiziert werden kann. Das Frgebnis dieser sogenannten
abelschen Projektion auf die Cartan-Untergruppe ist eine effektive abelsche Eichtheorie, die
aufgrund von 71 (H) # {0} das Auftreten von magnetischen Monopolen erlaubt.

Konkretisieren wir diese Uberlegungen zunichst fiir den Fall einer SU(2)—Yang-Mills-
Theorie. Die maximale abelsche Eichung (MAG) wird in der Gitterformulierung dieser Theo-
rie durch Maximierung des eichfixierenden Funktionals

A = =3 w[Uf@) ot U2@)0%] L max. (2.12)
realisiert®. Dabei bezeichnet konventionsgemif o3 die diagonale Pauli-Matrix innerhalb der
su(2) (siehe Anhang D.32). Das Funktional (2.12) ist invariant unter abelschen Eichtransfor-
mationen der Form Qa(z) = explia(z)o?] mit a(z) € [0,27[, daher wird die SU(2) Eich-
symmetrie der Theorie bis auf eine U(1) Untergruppe fixiert, deren Einbettung durch die
Wahl der z-Richtung in su(2) gegeben ist. Nach Abschluss der Eichfixierung sind die Links
U f}(m) 80 diagonal wie mdoglich“, d.h. die dominierenden Komponentenfunktionen in der
Parametrisierung (D.33) sind ag(x) und af’L(x). Die abelsche Projektion besteht nun in der
Extraktion der Felder 6,(x) aus den eichfixierten Links nach der Vorschrift

Ou(x) = arg [[U/?A(x)]n} = arg [ag(x) +iai(a:)] , Ou(x) € [—m . (2.13)

Diese verhalten sich unter den residuellen abelschen Transformationen wie ein (kompaktes)
abelsches Eichfeld:

Ou(x) — 09 (z) = Qa(2)0,(z) Qh(z + 1) = [04(2) + a(z) — alz + p)] mod 27 . (2.14)

Diese Konstruktion eroffnet die Moglichkeit, das Konzept der sogenannten abelschen Domi-
nanz in numerischen Simulationen der SU(2)—Yang-Mills-Theorie direkt testen zu kénnen.
Zur Extraktion des Potentials, das zwischen zwei statischen farbelektrischen Ladungen vor-
herrscht, wird dabei der eichinvariante Wilson-Loop-Operator herangezogen. Da der Erwar-
tungswert dieses Operators unabhéngig von der gewéhlten FEichung ist, kann dieser insbeson-
dere durch Verwendung von Konfigurationen berechnet werden, die sich in maximal abelscher
Fichung befinden. Das Ergebnis wird mit dem Resultat einer zweiten Berechnung des Erwar-
tungswertes des Wilson-Loop-Operators verglichen, wobei diesmal ausschlielich die durch
abelsche Projektion (2.13) gewonnenen Felder 6,(x) in die Berechnung einflieen. Dabei hat
sich gezeigt [BBMPS96], dass der lineare Anstieg des Confinement-Potentials, der in der vol-
len SU(2)—Eichtheorie gemessen wurde, zu 92% durch die Verwendung der Link-Variablen
in abelscher Projektion reproduziert werden kann. Auflerdem liel sich ein Phdnomen beob-
achten, dass als Monopol-Dominanz Eingang in die Literatur gefunden hat: Die gemessene

3Eine Diskussion des allgemeineren Theorems, das die Isomorphie von m2(G/H) zum Kern des natiirlichen
Homomorphismus von 71 (H) nach 71 (G) beweist, findet sich beispielsweise in [Ryd85].
4Vgl. [CGI98, DDFG198] und die darin enthaltenen Referenzen.
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abelsche string tension oa resultiert zu etwa 95% aus Konfigurationen, in denen magnetische
Monopole nachgewiesen werden konnten. Weitere Hinweise auf die Relevanz der in abelschen
Eichungen definierten Monopole fiir das Confinement-Phénomen sind das Skalierungsverhal-
ten der Monopoldichte p,,(3) ~ a3(), sowie die beobachteten Anderungen im Verhalten der
Dichte beim Ubergang der Theorie in die Deconfinementphase®. Zusammenfassend kann ge-
sagt werden, dass die Kondensation von magnetischen Monopolen in der Confinement-Phase
der SU(2)—Yang-Mills-Theorie durch numerische Untersuchungen, durchgefiihrt in maximal
abelschen Eichungen, bestétigt werden konnte. Diese Resultate scheinen somit das Bild des
dualen Supraleiters als Modell des Vakuums der Quantenchromodynamik zu unterstiitzen.

2.2.4 Einbettung topologischer Defekte

Werden zusitzliche skalare Felder an reine Yang-Mills-Theorien angekoppelt, so ertffnen sich
neue Moglichkeiten, abelsche Eichungen fiir derartige Theorien zu definieren. Insbesondere
erlaubt das Phénomen der spontanen Symmetriebrechung, welches in Kapitel 4.2 ausfiihrlich
diskutiert wird, die Konstruktion von statischen Losungen der Bewegungsgleichungen, die ei-
ner Monopolkonfiguration endlicher Energie entsprechen, ohne den Kunstgriff der abelschen
Projektion bemiihen zu miissen. Umgekehrt ermoglichen solche Theorien die Einbettung ei-
ner abelschen Theorie. In diesem Kapitel soll eine kurze Diskussion der Situation anhand des
Georgi-Glashow-Modells [GGT2] erfolgen.

Dabei handelt es sich um eine Yang-Mills-Theorie mit G = SO(3) Eichsymmetrie, an die
ein skalares Isovektorfeld ¢*(z) (a = 1,2, 3) gekoppelt ist. Die Eichgruppe ist lokal isomorph
zu SU(2) und das Higgs-Feld transformiert sich somit unter der adjungierten Darstellung
der Gruppe. In Kapitel 4.3 werden wir eine Erweiterung dieser Theorie durch Verwendung
der Eichgruppe SU(3) vornehmen. Die dort getroffenen Konventionen fiir die Parameter der
Lagrangedichte (4.26) sollen auch hier beibehalten werden: Als Basis der Lie-Algebra LG
wihlen wir im vorliegenden Fall die Generatoren T%=0%/2 (a = 1,2,3) und ersetzen in Ko-
ordinatendarstellung die Strukturkonstanten f®¢ durch ¢ Fiir m? < 0 kann eine spontane
Brechung der G—Symmetrie auftreten. Dabei entwickelt das adjungierte Skalarfeld & = ¢%T°
einen Vakuumerwartungswert |®g|?> = —m?/A, der das Potential minimiert. Die Vakuum-
mannigfaltigkeit ist durch S? ~ G//H gegeben, wobei H die Gruppe der residuellen abelschen
U(1)-Symmetrie der Theorie bezeichnet. Diese ist realisiert durch Drehungen (U(1) ~ SO(2))
in einer Ebene, welche den Vakuumerwartungswert ®y des Isospinvektors invariant lassen.
Da die Orientierung von ¢y € LG durch die Bedingung Viyee(Pp) = 0 nicht festgelegt ist,
kann diese Beliebigkeit ausgenutzt werden, um fiir den Einheitsvektor

=n%(x)T" n(x) := () n*(z)n(z) =

eine spezielle Wahl zu treffen, welche die Einbettung von H in G charakterisiert und somit
eine spezielle Eichung definiert. Im Folgenden wollen wir die Losung (2.4) in die elektro-
magnetische Untergruppe H einbetten. Dazu wéhlen wir die sogenannte unitdire Fichung
n%(z) = 6% (Vz), in der das Vektorpotential des magnetischen Monopols mit Dirac-String
léings der negativen z-Achse als dritte Komponente im Isospinraum fungiert. Der Vakuumer-
wartungswert des Skalarfeldes ist ebenfalls in diese Richtung orientiert. Insgesamt betrachten

®Eine Diskussion der wegbereitenden Arbeiten findet sich in [Sch01].
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wir also die Konfiguration

g 1—cos(¥) 3

- S b = | Dy T3 . 2.16

Ay=A, =A4y=0, A, =
Eine allgemeine Eichtransformation Q(z) € SU(2) kann durch die drei Euler’schen Winkel
(a, B,7) parametrisiert werden und besitzt die Darstellung

Q(z) = exp {ia(z)T?} exp {iB(x)T? } exp {iy(z)T?} . (2.17)

Wird nun eine Eichtransformation des Potentials und des adjungierten Skalarfeldes gemé&f
der Gleichungen (1.50) und (4.43) fiir die spezielle Wahl v = —a = ¢, = —9 durchgefiihrt,
so erhélt man die von 't Hooft und Polyakov [tH74b,Pol74] angegebene asymptotische Losung

b

a
A=0, A=, " =[D]=  (r— ) (2.18)
er r
der Feldgleichungen des Georgi-Glashow-Modells. Diese sogenannte Hedgehog-Losung be-
schreibt einen magnetischen Monopol im Ursprung des Koordinatensystems, wie sich durch
die Berechnung der in Gleichung (4.91) definierten verallgemeinerten Feldstérke leicht zeigen
ldsst. Die Eichtransformation hat dafiir gesorgt, dass der unphysikalische Dirac-String ver-
schwunden ist und das kovariant konstante Skalarfeld am Rand des rdumlichen Universums
S2 seinen Vakuumerwartungswert bei nicht-trivialen Randbedingungen annimmt. Dabei ist
zu beachten, dass keinerlei abelsche Projektion vorgenommen werden musste. Die magnetische
Ladung ist rein topologischer Natur, denn obwohl die Felder A, (z) und ®(x) ausschlieflich
elektrische Ladung tragen, findet sich bei der Berechnung des magnetischen Stroms k*(z)
mittels des zu (4.91) dualen Feldstéirketensors nach (2.1) eine quantisierte erhaltene Ladung
M = 2g, welche der zweifachen Ladung des Dirac’schen Monopols entspricht. Dies ist ei-
ne Folge der Charakterisierung der Vakuummannigfaltigkeit von ® durch 7o(G/H) als den
geraden ganzen Zahlen [Har96]. Die Existenz der magnetischen Monopole in diesem Modell
ist also eine Folge der Nichttrivialitdt der zweiten Homotopiegruppe von SO(3)/U(1) und
héngt nicht von der gewéhlten Eichung ab. Die unitédre Eichung hat sich dabei lediglich als
besonders geeignet erwiesen, um magnetische Monopolkonfigurationen detektieren zu kénnen.

In Kapitel 2.5.1 werden wir auf diesen Punkt nochmals zuriickkommen. Dort wollen wir
uns der Untersuchung von Zentrumsvortices und der Einbettung von sogenannten Nambu-
Monopolen und elektroschwachen Z-Strings in das Standardmodell der elektroschwachen
Wechselwirkung bei endlichen Temperaturen zuwenden, die als topologische Defekte auf eich-
invariante Weise charakterisiert und detektiert werden koénnen. Zunéchst soll jedoch noch ein
weiteres Confinement-Szenario fiir die Theorie der starken Wechselwirkung diskutiert werden,
welches auf der Annahme perkolierender Zentrumsvortices beruht. Insbesondere soll unter-
sucht werden, ob diese kollektiven Freiheitsgrade in der Lage sind, neben dem Einschluss von
Farbladungen auch das Phénomen des Stringbreakings zu erkléren, welches sich in Streuex-
perimenten stark wechselwirkender Teilchen durch den Einfluss von dynamischer Materie in
der Hadronisierung von angeregten farbneutralen Zustidnden manifestiert.
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2.3 Confinement und Zentrumsvortices

Fin alternativer Mechanismus zur Erklirung des Confinement-Phénomens basiert auf der
bereits Ende der siebziger Jahre des vorigen Jahrhunderts entstandenen Vorstellung von
kondensierenden Zentrumsvortices als den relevanten Freiheitsgraden in einer gluonischen
Feldkonfiguration, welche das Vakuum einer Yang-Mills-Theorie durchziehen [tH78, Cor79,
tH79,NO79]. Ein Vortex stellt in drei Dimensionen eine zylinderférmige Feldkonfiguration dar,
welche quantisierten magnetischen Fluss trigt®. Handelt es sich um eine auf einer Eichgruppe
G basierenden Theorie, so sind die moglichen Werte fiir das Flussquantum & im Falle eines
Zentrumsvortex aufs Engste mit denjenigen Eichfeldern verkniipft, die aus dem Zentrum der
Gruppe G stammen.

2.3.1 Zentrums-Eichung und Zentrumsvortices

Das Zentrum einer Gruppe G ist die Menge aller Elemente Z, die mit allen anderen Elementen
der Gruppe kommutieren. Im Fall G = SU (V) handelt es sich dabei um die zyklische Gruppe

Zn = {exp(2min/N)|n=0,... , N —1}. (2.19)

Wie schon bei der Diskussion des dualen Supraleiters spielt offensichtlich auch hier wieder eine
abelsche Untergruppe der SU(N) eine entscheidende Rolle. Im Gegensatz zu den unphysika-
lischen Dirac-Strings ist es im Falle der Zentrumsvortices jedoch mdoglich, diese mithilfe des
Wilson-Loop-Operators zu detektieren. Betrachten wir namlich eine Kontur I', die den Rand
des (rdumlichen) Universums beschreibt, so wird ein Vortex, welcher die durch I" berandete
Ebene durchdringt, dadurch génzlich umschlossen und es gilt

Wr[A] = trP{exp[z’ jépdzuAM(z)]} =: exp[i ®(I)] . (2.20)

Die Pfadordnung spielt fiir Eichfelder aus der Cartan-Algebra €(G) keine Rolle und die
Anwendung des Satzes von Stokes liefert im Exponenten gerade den magnetischen Fluss
®(I') € €(G) durch die von I' berandete Fldche A. Fasst man den Wilson-Loop als eine
ortsabhéngige Eichtransformation fermionischer Felder auf, so beschreibt Wr[A] die Pha-
senédnderung der Wellenfunktion W[.A], die sich beim Transport eines Fermions um den Vortex
herum ergibt. Aufgrund der Quantisierungsbedingung (2.8) ist ein Dirac-String fiir Fermio-
nen unsichtbar?, ein Zentrumsvortex kann jedoch nicht-trivialen Zentrumsfluss tragen und
ist daher fiir den Wilson-Loop-Operator sichtbar. Dies bedeutet, dass das Eichpotential als
reine Eichung A,,(2) = Q(2)9,927(z) auf dem Rand I" des Universums nicht global definiert
sein kann, da sich ansonsten stets ®(I') = 0 ergeben miisste. Anstelle der kanonischen Kon-
struktion verschiedener Karten und der Verkniipfung der lokal definierten Potentiale durch
Ubergangsfunktionen, besteht eine dquivalente Moglichkeit darin, eine globale Abbildung der
Form Q : I' — G/Z zu definieren, welche auf G/Z eingeschréinkt ist und somit das Auftre-
ten von Spriingen um ein Zentrumselement bei der Berechnung der sogenannten Holonomie

5Das klassische Beispiel ist die Nielsen-Olesen-Losung im abelschen Higgs-Modell in D = 2 + 1. Diese
stellt eine spezielle Verkniipfung des elektrisch geladenen Skalarfeldes mit dem Eichfeld dar, welche aufgrund
der Randbedingungen zu einer statischen Konfiguration endlicher Energie pro Linge des Vortex fiihrt, der
innerhalb einer endlichen Querschnittsfliche ein Magnetfeld fithrt, und somit magnetischen Fluss & = 2?” n
triagt [Ryd85, Fel98].

"Vgl. dazu auch die Diskussion des Aharonov-Bohm-Effektes in [Fel98].
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Abbildung 2.1: Links: Der Fluss ®(I') eines (ausgedehnten) Zentrumsvortex wird von der
Holonomie Wr[A] detektiert. Rechts: Eine rechteckige Kontur I' g7 wird auf triviale (unten)
und nicht-triviale Weise (oben) von geschlossenen (diinnen) P—Vortices ,,gelinkt*.

(2.20) ermoglicht. Nimmt man bei der Betrachtung der Situation einen topologischen Stand-
punkt ein, so wird im vorliegenden Fall in Analogie zur Behandlung des Wu-Yang-Monopols
die Position des unendlich diinnen Vortex, an dem eine Singularitéit auftreten konnte, aus der
Mannigfaltigkeit ausgenommen, und die Charakterisierung der Zentrumsvortices auf dieser
nicht-trivialen Mannigfaltigkeit geschieht durch 71 (G/Z). Im Fall G = SU(N) ist dies gerade
s 1(G / Z ) =7 N-.

Konkretisiert auf G = SU(2) bedeutet dies, dass das Zentrum (2.19) durch Zy = {—1,+1}
gegeben ist, was einem Fluss von ®(I') = 27mn T3 (n € N) entspricht, wobei n lediglich als
n mod 2 definiert ist:

WrlA] = (—)"1. (2.21)

Da Zentrumsvortices als Rénder von (D —1)-dimensionalen Volumen geschlossene Flichen 0%
der Dimension (D — 2) bilden, schneiden diese kohomologisch trivialen Flidchen eine Wilson-
Loop-Fliche sowohl in D =4, als auch in D=3 Dimensionen in einem Punkt. In letzterem Fall
bilden Zentrumsvortices also geschlossene Linien. Folglich muss ein nicht-trivialer Beitrag,
der von einem einzelnen Zentrumsvortex zum Fluss ®(I") geliefert wird, von einer nicht-
triviale Verkniipfung (Linking) von Vortex und Wilson-Loop herriithren. Die Situation ist in
Abbildung 2.1 skizziert.

Zur Detektierung der Zentrumsvortices auf dem Gitter fixieren wir zunéchst die sogenannte
Direkte Mazimale Zentrums-FEichung (DMCG) durch iterative Maximierung des eichfixieren-
den Funktionals

1 N D 2 g
FRMCGQ) = ND ZZ <tr [Ug(aj)] ) — max. (2.22)
z=1p=1

Es ist dabei wichtig, festzuhalten, dass die Extremumsbedingung (2.22) auch nach Abschluss
der Eichfixierung immer noch mit der Durchfithrung von Eichtransformationen vertraglich ist,
die aus dem Zentrum von G stammen. In Anhang C.2 wird neben der detaillierten Erlaute-
rung des von mir verwendeten Algorithmus zur Fixierung der Direkten Maximalen Zentrums-
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Eichung auch die Aquivalez der DMCG zur sogenannten Minimalen Adjungierten Landau-
Eichung (MALG) diskutiert, welche von ,,zentrumsblinden“ Eichpotentialen Gebrauch macht.
Angesichts dieser Verbindung der beiden Eichbedingungen wird klar, dass durch (2.22) ei-
ne Theorie mit residueller Zo—Symmetrie definiert werden kann. Dies ist mit der Definition
der maximal abelschen Eichung und dem zugehorigen Funktional (2.12) zu vergleichen. Die
Eichfreiheit wurde dort bis auf eine abelsche Untergruppe fixiert, auf welche anschlieend
projiziert wurde.

Nach Abschluss der Eichfixierung befindet sich jede der Link-Variablen U, g(x) € SU(2) ,s0
nahe wie moglich® an einem der beiden Zentrumselemente der SU(2). Zerlegen wir die Links
in fundamentaler Darstellung geméaf

Ua) = Zu(x) Uylx) (2.23)

wobei U, () ein Element aus dem Coset SU(2)/Zs ~ SO(3) bezeichnet® und das sogenannte
Zentrumsfelder Z,(x) gemaf

Zu(z) = sign {tr [Ug(az)]} ; Zu(x) € {—1,+1} (2.24)

definiert wird, so besteht im Falle der DMCG die sogenannte Zentrumsprojektion darin, die
eichfixierte Theorie auf eine effektive Zo-Theorie zu reduzieren:

Ulz) = Zu(z) € {-1,+1} (2.25)

Berechnet man nun mithilfe dieser projizierten Freiheitsgrade die Plaquettenvariablen, die
im nicht-abelschen Fall als

PulU)(2) = Up(@) Uy(e + 1) Uf(x + ) Uf (@) (2.26)

definiert sind, so ermdoglicht dies die Detektierung von diinnen Vortices auf dem Gitter. Eine
Plaquette
PuZ(x) = Zu(x) Z,(x + p) Z,(x +v) Z,(x) (2.27)

gilt im Fall einer auf der Gruppe SU(2) basierenden Zsa-Theorie als von einem sogenannten
P-Zentrumsvortex durchstoffen, wenn sie den Wert —1 annimmt, was dem (einzigen) nicht-
trivialen Fall n =1 in (2.19) entspricht. Zentrumsvortices leben also auf dem dualen Gitter.
Betrachtet man dreidimensionale Unterrdume des Gitters, die sich als Schnitte durch die
Raumzeit (sogenannte Raum- oder Zeitschichten) ergeben, so handelt es sich bei den Zen-
trumsvortices um verbundene Netzwerke negativer Links des dualen Gitters. In D=4 bilden
die Vortices zusammenhéngende Fliachen, die durch negative Plaquetten des dualen Gitters
beschrieben werden. Dabei handelt es sich stets um geschlossene Fliachen. Dies ist eine Folge
der Bianchi-Identitét in Gitterfomulierung. Betrachten wir zur [llustration einen elementaren
Wiirfel ¢ innerhalb eines dreidimensionalen Schnittes. Da bei der Berechnung der Plaquet-
ten, die die Oberfliche des Wiirfels bedecken, negative Links an den Kanten stets zu zwei
Plaquetten beitragen, erhdlt man

II Pulz) =1. (2.28)

P/J,UE dc

8Diese Elemente koénnen durch ,,zentrumsblinde* adjungierte Links (C.50) reprisentiert werden. Dadurch
ist gewéhrleistet, dass der Zentrumsgehalt vollstindig auf die Felder Z,(z) transferiert wird.
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(a) Zentrumsvortices durchdringen drei ele- (b) Zur Definition der Wahrscheinlichkeit poaa(R) vgl.
mentare Plaquetten eines Wilson-Loops. Kapitel 2.4.2, R =r/a.

Abbildung 2.2: (a) Nicht-trivialer Zentrumsfluss entsteht durch eine ungerade Anzahl von
P-Vortices (Kreise), die einen Wilson-Loop durchdringen. (b) Durchstopunkte zweier ver-
schiedener Vortices (Kreise und Quadrate) in einer Ebene. Zweidimensionaler Schnitt durch
eine typische Konfiguration. Gitter: 124, 3 = 2.3, k = 0.533, A = 0.5.

Somit wird die Oberfliche eines Wiirfels stets von einer geraden Anzahl an Vortices durch-
stoBen. Dies ermoglicht das Auftreten von Netzwerken, die aus verzweigten Vortices beste-
hen konnen, immer aber sind diese geschlossen. Tatséchlich konnte eine Unterbrechung der
Zentrumsvortextrajektorien in keiner unserer Untersuchungen bei der Lokalisierung dersel-
ben beobachtet werden. Die Invarianz der Plaquetten P, [Z](x) unter Eichtransformationen
Q(x) € Zy ermoglicht im Falle offener Randbedingungen eine vollstéindige Klassifizierung ei-
ner Zo-Konfiguration, da es sich bei Zs-Vortices in derartigen Systemen um die einzigen nicht-
trivialen kollektiven Anregungen handelt. Dieser Punkt wird in Kapitel 3 bei der Konstruktion
eines eichinvarianten Cluster-Algorithmus fiir Ising-Spingléser (in D = 2) eine wichtige Rol-
le spielen und wir werden dort auf die Frage nach der Eindeutigkeit nochmals zuriickkommen.

Die Bezeichnung P-Vortex fiir die mittels der oben beschriebenen Methode detektierten Ob-
jekte rithrt daher, dass nur die projizierten Zentrumsfelder in die Berechnung der Plaquetten
eingehen. Es konnte jedoch gezeigt werden, dass diese diinnen Vortices bei der Identifizierung
von ausgedehnten Vortices, welche als die eigentlich physikalisch relevanten Freiheitsgrade
angesehen werden und deren Querschnittsfliche sich iiber eine Vielzahl von Plaquetten er-
stecken kann, eine wichtige Rolle spielen [DDFG198]°. Wenden wir uns nun der Berechnung
eines Wilson-Loops auf dem Gitter zu. In der zentrumsprojizierten Zs-Theorie spielen dabei
gerade die elementaren Plaquetten, welche die minimale Fliche A des durch die Kontur I’
charakterisierten Wilson-Loops iiberdecken, die entscheidende Rolle.

“Insbesondere ist es notwendig, ausgedehnte Vortices zu betrachten, um das sogenannte Casimir-Scaling
der string tension [FGO98,Bal00] erklidren zu kénnen.
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Da I' = 0A, gilt nach dem Satz von Stokes:

wrizl = [[2 =[] P (2.29)

ler PcA

Folglich erhélt der Wilson-Loop Wr[Z] von jedem Vortex, der die minimale Fliche A durch-
stoBlt, einen Faktor —1 als Beitrag. Eine Illustration der Situation findet sich in Abbildung
2.2a. Angesichts der Tatsache, dass die moglichen Messwerte des Wilson-Loop-Operators auf
die Menge {—1, +1} beschrinkt sind, ist es hochst iiberraschend, dass die Fluktuationen in der
Anzahl an Durchstoflpunkten n gerade in einer solchen Art und Weise auftreten sollten, dass
bei der Berechnung des Erwartungswertes von Wr[Z] ein Fldchengesetz (area law) resultiert,
was dem Confinement-Kriterium von Wilson entspricht. Taséchlich konnte aber nachgewiesen
werden [DDFGT98]|, dass im Grenzfall grofier Flichen eine weitestgehende Ausléschung der
Beitrage von Wilson-Loops mit gerader und ungerader Anzahl von durchstoflenden Vortices
auf eine solch subtile Weise geschieht, dass sich aus dem Erwartungswert (Wr[Z]) tatséchlich
ein Confinement-Potential mit asymptotischer string tension extrahieren lisst, die mit der im
Falle der SU(2)—Yang-Mills-Theorie gemessenen ausgezeichnet iibereinstimmt [DDFG™98].
Auflerdem konnte gezeigt werden, dass sich die Fldchendichte p der Zentrumsvortices, die
unter Zuhilfenahme der DMCG innerhalb der Vakuumeichfeldkonfigurationen identifiziert
wurden, als eine physikalische Grofie erweist, deren Skalierungsverhalten dem der string ten-
sion folgt und die im Kontinuumslimes einen wohldefinierten Wert annimmt [LRT98].

2.3.2 Das Random-Vortex-Modell: Perkolation und Confinement

Ein sehr attraktives Modell, welches eine einfache Erkldrung fiir das Auftreten des Con-
finement-Phénomens im Zentrumsvortexbild zu geben vermag, ist das sogenannte Random-
Vortex-Modell, in dem die zuféllige Verteilung von Durchstopunkten der Vortices durch eine
Ebene innerhalb der Raumzeit die entscheidende Rolle spielt.

Zur Erlduterung des Modells betrachten wir also einen Schnitt durch das Gitter, wobei die
Fliche innerhalb der dadurch definierten Ebene den Flicheninhalt L? besitzen soll. Nehmen
wir ferner an, dass N Durchstofpunkte zufillig auf dieser Fliche verteilt seien, so ergibt
sich fiir die Flichendichte p = N/L?. Betrachten wir als nichstes einen von der Kontur I
berandeten Wilson-Loop mit Fliche A, der in dieser Ebene zu liegen kommt, so ist die Wahr-
scheinlichkeit p, dass ein bestimmter Durchsto3punkt innerhalb des Wilson-Loops zu finden
ist, gegeben als das Verhéltnis der Flichen: p = A/L?. Die Wahrscheinlichkeit dafiir, dass
genau n Durchstopunkte innerhalb des Wilson-Loops auftreten, ist durch die Binomialver-
teilung

Py(n) = <JZ> pr(1—ph" (2.30)

gegeben. Wie bereits diskutiert, liefert eine ungerade Anzahl an Durchstofipunkten einen
negativen Beitrag zum Erwartungswert des Wilson-Loop-Operators, wohingegen eine gerade
Anzahl einen positiven Beitrag liefert. Daher finden wir

N
(Wr[Z]) = lim Y (~1)"Py(n) =

N — o0
n=0

im ( - %)N — e A (2.31)

1
N — oo
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Die Fldchendichte p wurde bei der Bildung des Grenzwertes konstant gehalten. Unter der
Annahme vollig zuféllig verteilter DurchstofSpunkte der Vortices findet sich also fiir den Er-
wartungswert (2.31) ein Flichengesetz, aus dem sich ein Confinement-Potential mit asym-
ptotischer string tension

o=2p (2.32)

extrahierten ldsst. Ein Vergleich dieses Wertes mit dem in [LTER99] berichteten Ergebnis
o=(14+£01)p (2.33)

in DMCG, weist darauf hin, dass die Durchstopunkte nicht vo6llig unkorreliert sein kénnen.
Tatséichlich konnte eine kurzreichweitige attraktive Korrelation der Vortices nachgewiesen
werden [ELRTO98]|, die fiir diese Abweichung verantwortlich ist. Die Annahme der volligen
Unabhéngigkeit der Vortices sowie deren Durchstolpunkte in einer Ebene stellt also den Ide-
alfall in Bezug auf die Moglichkeit dar, ein Confinement-Potential zu generieren. Nimmt deren
Korrelation zu, so sinkt der Wert der string tension. Es ist daher nicht verwunderlich, dass
sich durch Modifizierung des Random-Vortex-Modells ebenfalls die Situation eines Umfangs-
gesetzes fiir den Erwartungswert des Wilson-Loop-Operators herbeifiihren lésst, sofern man
annimmt, dass die DurchstoSpunkte immer in Paaren auftreten, welche einen maximalen Ab-
stand d besitzen sollen, der sehr viel kleiner als das Minimum der raumlichen bzw. zeitlichen
Ausdehnung der Kontur I' ist. Dadurch kénnen von den zufillig auf der Ebene verteilten
Paaren nur diejenigen einen nicht-trivialen Beitrag zum Erwartungswert (2.31) liefern, die in
einem schmalen Streifen um I' zu liegen kommen, wobei einer der Durchstopunkte innerhalb,
der andere aulerhalb des Wilson-Loops lokalisiert sein muss. Die Fléiche dieses Streifens ist in
erster Naherung proportional zum Umfang des Wilson-Loops und eine Rechnung analog zu
(2.31) zeigt, dass sich fiir den Erwartungswert (Wp[Z]) ein Umfangsgesetz (perimeter law),
und somit ein asymptotisch konstantes Potential ergibt [ELRT00].

Die Confinement-Phase einer effektiven Zs-Theorie sollte also durch Vortices bzw. Netz-
werke von Vortices charakterisiert werden konnen, die das gesamte Universum durchzie-
hen. Dieses Verhalten wird als Perkolation bezeichnet. Tatséchlich wurde bei der Unter-
suchung des Phaseniibergangs der SU(2)—Yang-Mills-Theorie von der Confinement-Phase in
die Deconfinement-Phase bei endlicher Temperatur festgestellt, dass sich das Verhalten der
Zentrumsvortices signifikant dndert. Der Phaseniibergangspunkt kann allein durch die Un-
tersuchung der Zentrumsfelder {Z,(x)} bzw. der zugehérigen Vortexkonfigurationen bereits
richtig reproduziert werden, und wéihrend die Verteilung der Vortexmaterie unterhalb von T,
tatsdchlich auf einige wenige perkolierende Vortices beschrinkt ist, tritt oberhalb der kriti-
schen Temperatur eine Umverteilung hin zu vielen kleinen Vortices auf, die in sogenannten
Containern endlicher Grofle eingeschlossen werden kénnen [ELRTO00]. Der Deconfinement-
Phaseniibergang kann somit als Deperkolations-Phaseniibergang im Zentrumsvortexbild ver-
standen werden, wenn man sich auf dreidimensionale raumliche Schnitte des Gitters kon-
zentriert. Ks ist interessant festzuhalten, dass diese Sichtweise eine intuitive Erkléarung fiir
das unterschiedliche Verhalten der (gewohnlichen) string tension o, sowie der in Analogie
dazu definierten rdumlichen'® string tension oy unter- und oberhalb des Phaseniibergangs

"Diese wird aus dem Erwartungswert rein riumlicher Wilson-Loops extrahiert und ist als solche nicht mit
der Zeitentwicklung eines Testzustands zweier Ladungen und dem zwischen diesen herrschenden Potential in
Verbindung zu bringen.
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ermoglicht [BFH'93]. Da eine Erhohung der Temperatur auf dem Gitter durch eine Redu-
zierung der zeitlichen Ausdehnung Nia(/3) des Gitters bei periodischen Randbedingungen fiir
bosonische Felder realisiert wird, ist diese Richtung nun ausgezeichnet. Bei hohen Temperatu-
ren findet eine Polarisierung der Zentrumsvortices statt. In [ELRTO00] konnte gezeigt werden,
dass sich die Deconfinement-Phase bei der Betrachtung eines rdaumlichen Schnittes durch das
Gitteruniversum hauptséchlich durch kurze Vortices charakterisieren lédsst, die sich um die
»zeitliche” Richtung des Gitters wickeln und residuelle transversale Fluktuationen aufweisen.
Dadurch wird eine starke Korrelation der DurchstofSpunkte von Vortices in Wilson-Loops
erzeugt, deren Kontur I'.«; in einer raum-zeitlichen Ebene liegt. Dies fiihrt zum Verschwin-
den der ,regulédre” string tension o oberhalb von 7T, die rdumlichen Wilson-Loops hingegen
bleiben von dieser anisotropen Verteilung weitgehend unbeeinflusst [ELRTO00]. Zuletzt soll
erwiahnt werden, dass sich auf einfache Art und Weise eine Modifizierung der thermalisier-
ten und eichfixierten Konfigurationen {Uf}(:ﬂ)} durchfiihren ldsst, welche es gestattet, die
Zentrumsvortexstruktur aus den Vakuumkonfigurationen zu eliminieren [dFD99]:

{U/@)} = {Uh@)} = {Zu(2) U (@)} = {Uu(a)} (2.34)
Zy(x) = sign{tr [U,(z)]} = +1. (2.35)

Dieses Verfahren erméglicht eine zu (2.25) komplementére Sichtweise und somit eine indi-
rekte Untersuchung der Rolle der Zentrumsvortices. Dabei hat sich zum einen gezeigt, dass
eine Priparierung von Konfigurationen in der oben beschriebenen Weise zur Wiederherstel-
lung der chiralen Symmetrie fithrt und alle Konfigurationen nach Entfernen der Vortices ver-
schwindende topologische Ladung besitzen [dFD99]. Zum anderen konnte festgestellt werden,
dass die Zentrumsvortexstruktur des gluonischen Vakuums fiir den linear ansteigenden An-
teil des Interquark-Potentials verantwortlich sein muss, da die Konfigurationen {U},(x)} nicht
mehr ldnger in der Lage sind, ein Confinement-Potential zwischen statischen Farbladungen
aufrechtzuerhalten [DDFG™98]. Der Ursprung der topologischen Ladungen im Zentrumsvor-
texbild wird in [Rei02, RSTZ02] diskutiert. Dort wird auch eine Verbindung zur Dichte der
Nullmoden des Dirac-Operators aufgezeigt, welche die entscheidende Rolle bei der Berech-
nung des chiralen Kondensats als Ordnungsparameter der spontanen chiralen Symmetrieb-
rechung spielt [LMP*03, GT05]. Des Weiteren konnte gezeigt werden, dass die Nullmoden,
bzw. die Dichte p(A) der Eigenmoden des Faddeev-Popov-Operators in Coulomb-Eichung zu
sehr kleinen Eigenwerten A, entscheidend von der Vortexstruktur des Vakuums beeinflusst
werden [GOZ05b]!. Dadurch wurde es méglich, eine Verbindung zwischen dem Confinement-
Szenario von Gribov und Zwanziger einerseits, sowie dem Zentrumsvortexbild anderseits, auf-
zuzeigen [GOZ05a).

Fine vollsténdige Diskussion der Ergebnisse, die bei der Untersuchung des Zentrumsvortex-
Modells bisher gewonnen werden konnten, kann und soll im Rahmen dieser Arbeit nicht
stattfinden. Stattdessen haben wir uns auf die fiir die folgenden Untersuchungen wesentlichen
Punkte beschrinkt und verweisen zur Vervollstindigung des Bildes auf den umfangreichen
Ubersichtsartikel von Greensite [Gre03].

HVergleiche hierzu auch die Diskussion der Rolle von Gribov-Kopien im Rahmen des Dressingformalismus
in Kapitel 1.4.2.
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2.4 Das Phinomen des Stringbreaking im Zentrumsvortex-
Szenario

Die Bezeichnung Stringbreaking fiir das im Rahmen von Kollisionsexperimenten beobachtete
Ph&nomen der Hadronisierung bringt z.B. im Falle eines Mesons die Vorstellung zum Aus-
druck, dass der gluonische Flussschlauch, der die beiden farbgeladenen Konstituentenquarks
miteinander verbindet, zerreissen wird, sofern die Anregungsenergie des Zustands hoch genug
ist, um durch Paarerzeugung die Abschirmung der Farbladungen zu erméglichen. Dabei ver-
binden sich die spontan erzeugten Quarks und Anti-Quarks gleichsam mit den losen Enden
des gerissenen Flussschlauchs und sorgen auf diese Weise dafiir, dass wiederum nur insgesamt
farbneutrale asymptotische Zustdnde beobachtet werden koénnen. Es ist daher zu erwarten,
dass der Grundzustand in diesem Bereich eher durch zwei Mesonen beschrieben werden sollte,
die sich jeweils als Kombination eines statischen Quarks mit einem leichten Anti-Quark (und
umgekehrt) ergeben und iiber ein Yukawa-Potential miteinander in Wechselwirkung treten.
Dieses Phénomen sollte jenseits einer Anregungsenergieschwelle von etwa 2mjy beobachtet
werden kénnen, wobei m; die Masse des leichtesten Fermions bezeichnet.

Ob es sich bei dem Grundzustand im mesonischen Sektor der QCD tatséchlich um eine
string-dhnliche Konfiguration handelt, muss angesichts der Ergebnisse unserer in Kapitel 1
vorgestellten Untersuchungen zwar bezweifelt werden, der Verlauf des statischen Potentials
legt jedoch nach wie vor nahe, dass man der Gluonenkonfiguration, die sich um die Quellen
herum ausbildet, fiir grole Absténde r der Quellen eine konstante Energie pro Lénge zuord-
nen kann. Auf jeden Fall ist das Phdnomen ein Resultat des dynamischen Verhaltens von
Quarks und Gluonen, so dass es nicht langer hinreichend ist, eine reine Yang-Mills-Theorie
zu untersuchen. Vielmehr miissen dynamische Fermionen beriicksichtigt werden, welche sich
unter der fundamentalen Darstellung der SU(N.) transformieren und daher in der Lage sind,
die statischen Farbladungen, die als Konstituenten eines Mesons in das Vakuum eingebracht
werden, abzuschirmen. Eine schematische Darstellung der Situation findet sich im rechten
Teil der Abbildung 2.3.

Die numerische Simulation der Quantenchromodynamik ist sehr aufwendig, da bei der Bertick-
sichtigung von dynamischen Fermionen die Berechnung der Fermionen-Determinante un-
umggnglich wird'2. Da es sich dabei um ein hochst nicht-lokales Objekt handelt, ist die-
ser Schritt mit dem groften Aufwand innerhalb einer Monte-Carlo-Simulation verkniipft
[MM94, Rot97], der nicht wie bei der sonst iiblichen Beschrinkung auf Rechnungen mit
konstanter Fermionen-Determinante (Quenching) umgangen werden kann, weil es fiir das
Auftreten des Stringbreaking-Phénomens gerade auf die Effekte der dynamischen Materie
ankommt.

Eine Alternative zur brute-force-Untersuchung des vollen Problems besteht darin, sich einem
vereinfachten Modell zuzuwenden, von dem zu erwarten ist, dass es die fiir das Verstéindnis
des Stringbreaking-Ph&nomens wesentlichen Eigenschaften mit der Quantenchromodynamik
teilt. Dabei handelt es sich um die SU(2)—Yang-Mills-Theorie in D = 4 Dimensionen, an
die ein skalares Feld in fundamentaler Darstellung angekoppelt wird. Die Komplexitit des
urspriinglichen Problems wird also durch die Verwendung eines dynamischen Skalarfeldes
anstelle dynamischer Fermionen, sowie der Wahl von N, = 2 statt N, = 3 mafigeblich re-

12yg]. auch die Diskussion in Kapitel 4.6.
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Abbildung 2.3: Links: Das skalierte statische Interquark-Potential im Fall der reinen
SU (3)—Yang-Mills-Theorie. Gitter: 16*, per. b.c. Rechts: Schematische Darstellung des Po-
tentials, an dem sich das Phédnomen des Stringbreaking erkennen lésst.

duziert. Tatséchlich konnte bei der Untersuchung dieses Modells das Stringbreaking-Phéno-
men beobachtet werden [KS98, PW98|. In einem strikten Sinne besitzt diese Theorie zwar
weder eine Confinement-Phase noch eine Higgs-Phase, da aufgrund der analytischen Ver-
bundenheit des Phasendiagramms kein thermodynamischer Phaseniibergang existieren kann,
der eine klare Trennung erméglichen wiirde. Dies ist die Aussage eines Theorems, das von
Osterwalder und Seiler [OS78], bzw. Fradkin und Shenker [FS79] formuliert wurde. Dennoch
kann eine Unterscheidung zweier verschiedener Realisierungsphasen der Theorie vorgenom-
men werden, denn es existiert — als Fortsetzung der thermodynamischen Phasengrenzlinie,
welche im strong coupling Regime (8 — 0) des Phasendiagramms einen Endpunkt besitzt
— eine sogenannte , Kertész-Linie“ [Lan02], bei deren Uberschreitung sich das Perkolations-
verhalten der P-Vortices dramatisch #ndert [BFGOO04]!3. Da perkolierende Vortices in ei-
ner reinen Yang-Mills-Theorie am Temperaturnullpunkt das Vorliegen eines Vakuums mit
Confinement-Eigenschaften anzeigen, wird im Falle der vorliegenden Eichtheorie mit Higgs-
Feld die dadurch charakterisierte Phase entsprechend als Quasi-Confinement-Phase bezeich-
net. Jenseits der ,, Kertész-Linie* weisen die Vortexcluster nur noch eine endliche Ausdehnung
auf, was nach Kapitel 2.3.2 mit dem Verlust der Fahigkeit, ein Confinement-Potential zu ge-
nerieren, einhergeht. Wir vermuten daher, dass genau diese endliche Ausdehnung der Cluster
mit dem charakteristischen Abstand ry der statischen Quellen verkniipft sein sollte, an dem
das asymptotisch linear anwachsende Confinement-Potential sich plotzlich dndert und einen
konstanten Verlauf annimmt, wie es fiir Erwartungswerte von Wilson-Loops charakteristisch
ist, die einem perimeter law folgen (vgl. Abbildung 2.3). Sollten die Zentrumsvortices also
tatséichlich die fiir alle Aspekte des Confinement-Phénomens verantwortlichen Freiheitsgrade
sein, so muss es moglich sein, diesen Potentialverlauf auch aus den Erwartungswerten von
Wilson-Loops Wr[Z] zu extrahieren, welche beziiglich reiner, durch Projektion gewonnener
Zentrumsfeld-Konfigurationen {Z,(x)} berechnet werden.

Bevor wir uns der Untersuchung dieser Fragestellungen mit den Methoden der Gittersimula-
tion zuwenden werden, soll zunéchst die Diskretisierung der SU(2)—Yang-Mills-Theorie mit
Higgs-Feld in fundamentaler Darstellung erldutert werden.

13Hier findet sich auch eine Skizze des Phasendiagramms der Theorie.
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2.4.1 SU(2)—Yang-Mills-Theorie mit fundamentalem Higgs-Feld

Die Zustandssumme Z der euklidischen Quantenfeldtheorie auf einem hyperkubischen vier-
dimensionalen Gitter ist gegeben durch

Z = /DUD(I) exp{— S[U,®]} . (2.36)

In die Konstruktion des Gibbs’schen Mafles

dp(U,®) = DUD® 27} exp {— S[U, 9]}, (2.37)
geht dabei die Wirkung!

S[U,®] = Sa[U] + Shiges|[U, ®] + Spot[®] (2.38)

ein, welche in drei Anteile zerfillt. Der erste Term stellt die von Wilson [Wil74] eingefiihrte
Wirkung der Eichfelder im Fall der SU(2)— Yang-Mills-Theorie dar,

SalU] = ﬁZ<1—%Re{tr[P[U]] }>, 5:%
p

o (2.39)

wobei iiber alle Plaquetten (2.26) des Gitters zu summieren ist. Das komplexe Higgs-Doublett

¢2()

welches an die reine Eichtheorie gekoppelt werden soll, besitzt eine zweidimensionale Ma-
trixdarstellung, die wir mit ®(z) bezeichnen. Dies ermdglicht es, die vier reellen Freiheitsgrade
des Higgs-Feldes auf einen radialen Anteil p(z), sowie eine winkelabhéingige Parametrisierung
a(x) € SU(2) abzubilden:

o(z) = <¢1(””)> . o Tu C, (k=1,2), (2.40)

¢1(z) —o5(x) 4 +
) = = - T R™. 2.41
® ( IR ) pwale), i T o (241)
Fiir den Kopplungsterm existieren daher die beiden Darstellungen
Stigs[U, 2] = -3 Z; tr [ @1 (@)Uu(@)0 (@ + p)] . (2.42)
StigeslU, 8] = -3 Z; 61 (@) Uu() dla + 1) + coc.. (2.43)

Ahnliches gilt im Fall des Potentialterms, der sich auch als reines Funktional der Radialkom-
ponente des Higgs-Feldes ausdriicken lésst:

Spu[®] = > %tr [CDT(J:)Q)(:E)] A <%tr [qﬂ(:g) cp(:c)] - 1)2 , (2.44)

xT

Spalel = > p@)? + A (p(x)? —1)* . (2.45)

xT

Bis auf ein globales Vorzeichen fiir die Wirkung folgen wir der in [CGIS98a] gewihlten Konvention.
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Die Wirkung (2.38) ist invariant unter Eichtransformationen 2(z) € SU(2) der Form

Ud(2) = Q) Uula) Q' (2 + 1),

(z) = Qz) ®(x) . (2.46)

Um zu garantieren, dass sich das Gibbs-Maf} (2.37) und somit auch die Zustandssumme Z
insgesamt invariant unter den Transformationen (2.46) zeigen, wird mit DU das invariante
Haar’sche Maf} auf der Gruppenmannigfaltigkeit der SU(2) fiir die Integration eines jeden
Links U, (x) des Gitters verwendet. Auch das Integrationsmaf fiir die skalaren Felder D®
erweist sich als invariant, was an der zweiten der beiden komplementéren Darstellungen

4
DO = H H do*(z) = H dp(z) p*(z) Da(z) (2.47)

T a=1

offensichtlich wird. Da bezeichnet dabei wiederum das (linksinvariante) Haar’sche Maf} (sie-
he Anhang B.2). Die Existenz dieser beiden Darstellungen in Verbindung mit der Zerlegung
(2.41) ist insofern besonders fiir den numerischen Zugang interessant, als dass es dadurch
moglich wird, eine Verbindung zwischen Eichfeldern und Higgs-Feldern herzustellen, die sich
dazu nutzen lidsst, bei der Simulation der Quantenfeldtheorie in beiden Sektoren zur Ak-
tualisierung der Felder einen Hybrid-Algorithmus zu verwenden, der durch einfache Modifi-
zierung des von Creutz [Cre80] angegebenen Heatbath-Algorithmus gewonnen werden kann.
Die ausfiihrliche Beschreibung des von uns eingesetzten Verfahrens findet sich in Anhang B.3,
welches die Vorschlidge von Bunk [Bun95] aufgreift.

2.4.2 Numerische Ergebnisse

Um den Effekt der Zentrumsvortices auf den Verlauf des Potentials V' (r) in der Néhe der Pha-
sengrenzlinie studieren zu koénnen, musste diese zunéchst im Phasendiagramm der Theorie
lokalisiert werden. Zu diesem Zweck wurden die Werte 5 = 2.3 und A\ = 0.5 fiir die Kopplungs-
konstanten im Sektor der Eich- bzw. Higgs-Felder fixiert und der Parameter x variiert. Der
Ubergang von der Quasi-Confinement-Phase in die Quasi-Higgs-Phase wird dabei durch ei-
ne rasche Anderung des Erwartungswerts von thermodynamischen (lokalen), eichinvarianten
Observablen wie beispielsweise der Energie der Eichfelder (~ P[U]), der kinetischen Ener-
gie des Higgs-Feldes (Ey ~ Y, tr [®7(2)Uy(z)®(z + k)]) oder des Quadrats der zugehérigen
Radialkomponente angezeigt. Die von uns verwendete Observable war

2 1N
P:NZ

r=1

tr[®%(z)], N =N; x N2, (2.48)

N |

welche sowohl fiir k € [0.5,0.6] auf einem Gitter der GroBe 8%, als auch auf einem Gitter der
Grofe 12* im Intervall £ € [0.48,0.6] gemessen wurde, wobei fiir jeden Wert des Hopping-
Parameters in beiden Féllen ein Ensemble von 250 thermalisierten Konfigurationen verwendet
wurde. Das Ergebnis wird im linken Teil der Abbildung 2.4 gezeigt. Der Phaseniibergang
scheint in der Nidhe des Wertes k = 0.53 aufzutreten, wobei sich bei der Betrachtung von
(p?) allein keine wesentliche Abhiingigkeit dieses Punktes von der verwendeten GittergroBe
feststellen ldsst. Als néchstes wurden die thermalisierten Konfigurationen in DMCG (erldutert
im Anhang C.2) gebracht und die eichfixierten Feldkonfigurationen nach (2.25) anschlieflend
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Abbildung 2.4: Lokalisierung des Phaseniibergangs bzw. crossover auf Gittern unterschiedli-
cher Grofle. Links: Das mittlere Quadrat der Radialkomponente p? des Higgs-Feldes. Rechts:
Die Flachendichte pz, der Zentrumsvortices. Periodische Randbedingungen, 5 = 2.3, A = 0.5.

auf ihren Zentrumsgehalt projiziert. Dadurch lésst sich die planare Dichte py, der P-Vortices
als das Verhéltnis der Anzahl nicht-trivialer Plaquetten (P, [Z](x) = —1) zur Gesamtzahl
aller Plaquetten des Gitters definieren:

1
P2 = N DD -1)/2 %: dpiz)-1) - (2.49)

Im Fall einer reinen SU(2)—Yang-Mills-Theorie in D = 4 konnte gezeigt werden [LRT98],
dass es sich dabei um eine physikalische Grofile handelt, welche sich als invariant unter
Renormierungsgruppen-Transformationen erweist und einen wohldefinierte Kontinuumslimes
besitzt. Die Messergebnisse dieser Observable sind im rechten Teil der Abbildung 2.4 zu
sehen. Der Ubergang von der symmetrischen Quasi-Confinement-Phase in die Quasi-Higgs-
Phase wird dabei von einem raschen Abfallen der Zentrumsvortexdichte von pa®(3) ~ 0.08,
was in etwa dem Wert der reinen Yang-Mills-Theorie (k = 0) bei 3 = 2.3 entspricht, beglei-
tet. Bei einer weiteren Vergroflerung des Hopping-Parameters nimmt die Dichte allméhlich
weiter ab und es ist zu erwarten, dass pz, tief in der Quasi-Higgs-Phase letztlich vollstandig
verschwinden wird. Im Rahmen der von uns in dieser ersten Phase der Untersuchung ange-
strebten Genauigkeit ist festzustellen, dass das Auftreten einer Phasenéinderung durch beide
Observablen fiir den selben Wert von k angezeigt wird, und dieses Ergebnis auch im Falle
der Zentrumsvortexdichte nur minimal von der Gréfle des verwendeten Gitters abzuhéngen
scheint.

In einem néchsten Schritt sollen die Perkolationseigenschaften der Vortices untersucht wer-
den. Dazu ist es zunéchst notwendig, den Verlauf der Vortices innerhalb einer Konfiguration
verfolgen zu konnen. Dabei stellen wir uns auf den Standpunkt, dass es hinreichend ist,
zu diesem Zweck die P-Vortices heranzuziehen, da wir annehmen, dass deren Trajektorie
in etwa mit dem Verlauf des Kerns eines Vortexprofils zusammenfillt, das die ausgedehn-
ten, physikalischen Vortices charakterisiert. Es wurde bereits darauf hingewiesen, dass sich
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Vortices in dreidimensionalen Schnitten durch eine vierdimensionale Raumzeit als linienar-
tige Objekte charakterisieren lassen. Dementsprechend definieren wir einen Vortex-Cluster
in einem solchen Schnitt als die Menge aller miteinander verbundenen negativen Links des
zugehorigen dualen Gitters. Da es fiir die Trajektorien der Vortex-Cluster die Moglichkeit zur
Verzweigung bzw. Selbstdurchdringung gibt, wurde zur Identifizierung derartiger Netzwerke
von Clustern ein rekursiv operierender Algorithmus implementiert, wie er bei der Simula-
tion von Spin-Systemen h#ufig eingesetzt wird. Die Details der Konstruktion eines solchen
Cluster-Algorithmus werden wir in Kapitel 3 besprechen, dort wird ein sogenannter Bond-
Percolation-Algorithmus im Rahmen der numerischen Behandlung eines zweidimensionalen
Spin-Glas eingesetzt werden. Das Auftreten von Kreuzungs- und Verzweigungspunkten auf
dem dualen Gitter kann durch die Untersuchung der zugehorigen elementaren Wiirfel des
dreidimensionalen Schnittes durch das Originalgitter leicht detektiert werden. Dabei charak-
terisiert die sogenannte Multiplizitit M die Anzahl der durchstoflenen Plaquetten, welche
die geschlossene Oberfliche der besagten Wiirfel bilden. Da die Trajektorien der Vortices fiir
G = SU(2) stets geschlossen sind, gilt folglich M € {0,2,4,6}. In Abbildung 2.5 finden sich
unsere Ergebnisse zur Messung der Wahrscheinlichkeitsverteilung p(M) der Multiplizitét als
Funktion des Hopping-Parameters. In der symmetrischen Phase sind etwa 80% aller elemen-
taren Wiirfel in dreidimensionalen Schnitten durch das Gitter frei von Vortices (M =0). Falls
Wiirfel jedoch von Vortices durchdrungen werden, so geschieht dies zu einem Grofiteil als
einfaches Passieren (M = 2), Verzweigungen erster Art (M =4) treten mit einer Wahrschein-
lichkeit p(4) < 1% auf. Noch seltener war der Fall, dass die Oberfléiche von elementaren Kuben
komplett von sich verzweigenden Vortex-Clustern perforiert wurde. Beriicksichtigt man die
Dimension des verwendeten Gitters, so ldsst sich vermuten, dass diese Verzweigungen zwei-
ter Art (M =6) fiir O(1) elementare Wiirfel des Gitters zu beobachten sein sollte. Unsere
Ergebnisse fiir p(M) beim Ubergang in die Pseudo-Higgs-Phase bestiitigen nochmals das in
Abbildung 2.4 gezeigte Bild, wonach die Dichte der Vortexmaterie fiir x > 0.53 rasch ab-
nimmt. Besonders deutlich nimmt die Wahrscheinlichkeit dafiir ab, iiberhaupt einen elemen-
taren Wiirfel der Multiplizitdt M =6 zu finden. Wie schon die Dichte pyz, (k) signalisiert auch
der Verlauf von p(0)(k), dass die Zentrumsvortices tief in der Pseudo-Higgs-Phase vollsténdig
verschwinden werden.

Wihrend die einzelnen Vortex-Cluster identifiziert wurden, wurde fiir jeden Cluster ein soge-
nannter minimaler Container des Volumens V = [[,; (in Einheiten der Gitterkonstanten)
konstruiert. Ausgehend von einem negativen dualen Link als Startpunkt auf einem Vortex
wurde dabei die Ausdehnung des zugehérigen Containers (I; = 0 Vi zu Beginn) in jeder der
drei moglichen Richtungen é; immer dann um eins erhcht, wenn dies beim rekursiven Besu-
chen der Elemente des Clusters notwendig wurde, um diesen noch vollstdndig einschlieffen zu
konnen. Perkolation der Cluster bedeutet also, dass sich als Erwartungswert der Container-
grofle gerade die maximal mogliche Grofie ergeben muss. Legen wir periodische Randbedin-
gungen fiir das Gitter zugrunde, so wird die maximale Kantenlédnge eines Containers l,x in
einem (z.B. zeitlichen) dreidimensionalen Schnitt (N; x N2 x N3) durch

3. /N2
2
12, = Z <7> (2.50)
i=1
bestimmt. Dabei ist aus Isotropiegriinden zu erwarten, dass der Erwartungswert der Kan-
tenldnge von minimalen Containern fiir alle drei Dimensionen gleich sein sollte.
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Abbildung 2.5: Die Wahrscheinlichkeitsverteilung p(M) der Vortex-Intersection-Multiplicity
M fiir elementare Wiirfel als Funktion des Parameters x. Gitter: 124, = 2.3, A = 0.5.

In Kapitel 2.3.1 wurde zum einen bereits darauf hingewiesen, dass nicht-trivialer Zentrums-
fluss, der einen Wilson-Loop durchsetzt, nur durch eine ungerade Anzahl an Durchsto3punk-
ten innerhalb einer von der Kontur I' berandeten Fliche entstehen kann, zum anderen wurde
bei der Diskussion des Random-Vortex-Modells in Kapitel 2.3.2 deutlich, dass gerade das
subtile Ausbalancieren der beiden moglichen Messwerte, die fiir einen Wilson-Loop-Operator
Wr[Z] innerhalb der zentrumsprojizierten Theorie anfallen kénnen, die zentrale Rolle fiir das
Auftreten des Confinement-Phénomens im Zentrumsvortexbild spielt. Daher sollte die Un-
tersuchung der Wahrscheinlichkeit poqq(R), in einer von einem Vortex durchstoflenen Ebene
innerhalb einer Fliche A = 7R? mit Zentrum in diesem Durchstopunkt eine insgesamt un-
gerade Anzahl von Durchstoipunkten (auch anderer Vortices) zu finden, Aufschluss dariiber
geben kénnen, ob in einer bestimmten Realisierungsphase der Theorie eine maximale Grofle
fiir (kreisformige) Wilson-Loops existiert, innerhalb derer die Voraussetzungen des Random-
Vortex-Modells fiir das Auftreten von Confinement noch erfiillt sind. Konkret wurde dazu
fiir jedes Segment, das bei der rekursiven Identifizierung der Trajektorie eines Vortex besucht
wurde, in der lokal dazu orthogonalen Ebene die Anzahl weiterer Vortexsegmente inner-
halb von konzentrischen Kreisflichen mit (euklidischem) Radius R = r/a bestimmt. Das
Verhiltnis aller auf diese Weise konstruierter Kreisflichen, die eine ungeraden Anzahl an
Durchstoflpunkten aufwiesen, zur Anzahl aller derartigen Flichen stellt ein Maf fiir die oben
beschriebene Wahrscheinlichkeit poqq(R) dar. Abbildung 2.2b illustriert die Situation anhand
eines zweidimensionalen Schnittes durch eine exemplarisch ausgewihlte Konfiguration.

Das Ergebnis unserer auf einem Gitter der Groe 16* durchgefiihrten Untersuchung der Wahr-
scheinlichkeit poqq(R) findet sich in Abbildung 2.6a. Fiir k = 0.6 fillt poqq(R) rapide mit
zunehmendem Abstand ab und nimmt bereits fiir B > 2 einen konstanten Wert an. Dies
legt den Schluss nahe, dass es an diesem Punkt im Phasendiagramm der Theorie zwar noch
eine endliche Anzahl von Zentrumsvortices gibt (vgl. Abbildung 2.4), deren Trajektorien sich
aber nicht mehr iiber das gesamte Gitter erstrecken kénnen. Vielmehr muss die Verteilung
der Zentrumsvortices von einigen sehr kleine Loops dominiert werden, deren Durchsto3punk-
te in einer bestimmten Ebene im Mittel einen Abstand von weniger als zwei Gitterkonstanten
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Abbildung 2.6: Gitter: 16, 3 = 2.3, A = 0.5, periodische Randbedinungen.

voneinander aufweisen. Nihert man sich dem kritischen Wert k. aus der Pseudo-Higgs-Phase
kommend (k — kJ), so veréindert sich dieses Verhalten dahingehend, dass die Wahrschein-
lichkeit, eine ungerade Anzahl an Durchstofpunkten im Abstand R um einen Vortex herum
zu finden, langsamer mit zunehmendem Radius der umgebenden Kreisfliche A abfillt. Be-
trachten wir also einen festen Wert von R = r/a, so kann daraus geschlossen werden, dass sich
fiir kK — kI das Verhéltnis der geraden Anzahl zur ungeraden Anzahl an Durchstopunkten
dahingehend verdndert, dass die fiir das Auftreten eines Flidchengesetzes fiir den Erwartungs-
wert eines Wilson-Loop-Operators mit Radius R notwendigen Fluktuationen in der Anzahl
von positiven zu negativen Messwerten zunehmen sollten. Fiir £ < 0.532 dndert sich der Ver-
lauf von poqq(R) praktisch nicht mehr, dieser scheint also charakteristisch fiir die Verteilung
der Durchstoipunkte der P-Vortices in der Quasi-Confinement-Phase zu sein. Die Ergebnisse
unsere Untersuchung dieser Wahrscheinlichkeitsverteilung legen daher die Vermutung nahe,
dass sich fiir 0.532 < k < 0.533 eine signifikante Anderung im Perkolationsverhalten der
Zentrumsvortices ergeben sollte.

Da es das Ziel der vorliegenden Untersuchung ist, herauszufinden, ob sich ein Zusammen-
hang zwischen der Verteilung der Zentrumsvortices bzw. der Anderung ihre Perkolationsei-
genschaften und dem Auftreten des Stringbreaking-Phénomens in einer Yang-Mills-Theorie
mit dynamischer Materie nachweisen lésst, wurde zu diesem Zweck als néchstes eine detail-
lierte Untersuchung des Grundzustandspotentials der vollen Theorie, sowie der durch Zen-
trumsprojektion (2.25) gewonnenen, effektiven Zs-Theorie in dem nochmals verfeinerten In-
tervall k € [0.5321,0.5329] durchgefiihrt. Die Berechnung des Potentials V(r) erweist sich
dabei fiir Absténde r > 7o der Quellen als schwierig [KS98], da der wahre Grundzustand in
diesem Fall durch zwei kaum miteinander wechselwirkende Mesonen gegeben ist, und der iibli-
cherweise verwendete Wilson-Loop-Operator — wie bereits in Kapitel 1 erldutert wurde — die
zeitliche Entwicklung eines string-artigen axialen Zustands |y ) beschreibt, dessen Uberlapp
mit dem wahren Grundzustand sich daher als gering herausstellt. Tatséchlich konnte gezeigt
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werden [PW98], dass fiir r ~7¢ das Phinomen des level crossing auftritt, wobei ein Ubergang
vom ,,String-Zustand“ zum ,,Zwei-Mesonen-Zustand“ als Kandidat fiir den Grundzustand
stattfindet und sich der axiale Zustand fiir » > 7o als erster angeregter Zustand erweist'®.
Die dabei verwendete coupled channel Methode erweist sich als sehr effizient bei der Suche
nach dem wahren Grundzustand | Q ), der durch Anwendung des Variationsprinzips zur Mini-
mierung der Energie eines Ansatzes bestimmt wird, welcher als Superposition verschiedener
Testzustande konstruiert wird. Dabei werden neben dem bereits erwdhnten axialen Zustand,
sowie dem zwei eichinvariante Mesonen repréisentierenden Zustand auch weitere Kandidaten,
welche durch Anwendung verschiedener Smearing-Vorschriften aus diesen erzeugt wurden,
in die Superposition mit einbezogen. Durch diese Vergrofferung der Basis des Raums der
Testzusténde wird es moglich, leichter zwischen Grundzustand und angeregten Zusténden
unterscheiden zu kénnen [LW90], insbesondere geniigt eine immer kiirzere Zeitentwicklung
der Zusténde, um deren Energie aus dem Studium von Matrix-Korrelationsfunktionen zu-
verlédssig extrahieren zu koénnen.

Obwohl sich dieses Verfahren inzwischen als Standard bei der spektroskopischen Untersu-
chung insbesondere angeregter Zustinde etabliert hat, haben wir bei unseren Untersuchun-
gen des Grundzustandspotentials bewusst auf den Einsatz dieser Methode verzichtet. Um
zu verhindern, dass ein moglicherweise vorhandener Effekt der Zentrumsvortices auf das be-
obachtete Phénomen des Stringbreakings durch die Vermischung von Freiheitsgraden aus
dem Eich- und Skalarfeldsektor verschleiert wird — was bei der Anwendung der verschiede-
nen Smearing- und Blocking-Prozeduren [AT87] zur Konstruktion der erweiterten Basis von
Testzustinden [KS98] de facto geschieht — versuchen wir, den Effekt des erwartungsgemés
geringen Uberlapps des axialen Zustands mit dem Grundzustand oberhalb der durch rq ge-
setzten Skala durch eine entsprechend hohere Anzahl an Messungen zu kompensieren und
nehmen dabei ebenfalls in Kauf, dass ein Verzicht auf das iiblicherweise eingesetzte overlap
enhancement eine vergleichsweise lange Zeitentwicklung des Zustands erforderlich machen
wird, bevor die minimale Energie verldsslich ermittelt werden kann. Zur Reduzierung des
statistischen Fehlers nutzen wir bei der Berechnung von Erwartungswerten wie iiblich die
kubische Symmetrie des Gitters, sowie die aufgrund der periodischen Randbedingungen vor-
liegende Translationsinvarianz aus.

In Abbildung 2.6b ist der Verlauf des Potentials zwischen zwei statischen Quellen in der effek-
tiven Zo-Theorie zu sehen, der aus Erwartungswerten von Wilson-Loops Wgryr[Z] unter der
Annahme verschiedener Werte T, fiir das Erreichen des large time limit extrahiert wurde.
Die Erwartungswerte wurden dabei durch Messungen in einem Ensemble von 5000 Gitter-
konfigurationen der Dimension 16 fiir den Wert x = 0.5323 gewonnen und die Fit-Parameter
fiir die Extraktion der Werte des Potentials V (1) waren Q > 1073, sowie x?/v < 3. Wihrend
der Verlauf fiir kleine Abstéinde r/a der Quellen in allen drei gezeigten Féllen iibereinstimmt,
ergibt sich fiir grofle Abstdnde eine Abweichung vom linearen Anstieg des Potentials. Er-
wartungsgeméf sinkt die Energie im Limes grofler Zeiten, und es scheint, als wiirde dieser
erst fir Ty > 6a erreicht. Fiir den im Rahmen unserer Simulationen maximal zugénglichen
Grenzfall Ty, = 6a deuten unsere Resultate jedenfalls darauf hin, dass das Potential V' (r)
ab rg ~ 7a gegen einen asymptotisch konstanten Wert strebt, was sich grundlegend von dem
Verlauf des Confinement-Potentials unterscheidet, welches man unter ausschliellicher Beriick-
sichtigung der Zentrumsfreiheitsgrade einer reinen Yang-Mills-Theorie findet. Um zu kldren,

15Vergleiche dazu auch die Diskussion der Rolle des axialen Zustands im Rahmen der QED in Kapitel 1.2.3.
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Abbildung 2.7: (a) Das Phidnomen des Stringbreaking manifestiert sich im Potentialverlauf
des Grundzustands sowohl in der Yang-Mills-Theorie mit dynamischem Skalarfeld, als auch in
der Theorie der Zentrumsvortices. (b) Der Deperkolationsiibergang wird durch ein Einbrechen
der mittleren Containergréfie angezeigt.

ob es sich bei diesem Ergebnis tatséichlich um ein Anzeichen des Stringbreaking-Phénomens
im Zentrumsvortexbild des Confinement handelt, wurde unter Verwendung derselben Para-
meter das Potential Vi7(r) aus Erwartungswerten von Wilson-Loops Wr[U]| extrahiert, die
diesmal in unprojizierten Konfigurationen {U,(x)} gemessen wurden. Das Ergebnis dieser
Analyse wird in Abbildung 2.7a mit dem Verlauf des Potentials V7, (r) verglichen, das fiir die
effektive Zs-Theorie gemessen wurde. In beiden Fillen wurde dabei die Annahme Ty, = 6a
zugrunde gelegt. Zusétzlich wurde zur besseren Orientierung ein Fit an die Datenpunkte eines
statischen Confinement-Potentials (gestrichelte blaue Linie) in die Abbildung mit aufgenom-
men, das fiir 5 = 2.3 in einer reinen SU(2)—Eichtheorie gemessen wurde.

Zunichst ist zu beobachten, dass das Potential Vi (r) fiir 7 < 7a praktisch genau dem Ver-
lauf des Confinement-Potentials folgt. Fiir groflere Abstdnde der Quellen hingegen stellen wir
eine Abweichung fest: Wahrend das Confinement-Potential weiterhin linear anwéchst, folgt
Vi (r) eher dem Verlauf von Vg, (r), wobei sich die statistischen Unsicherheiten mit zuneh-
mendem Wert von r ebenfalls zu vergroflern scheinen. Dies war zu erwarten und ist, wie
oben bereits diskutiert, Ausdruck der Tatsache, dass der wahre Grundzustand oberhalb der
Stringbreaking-Skala 7 eine zunehmend geringere Ahnlichkeit mit dem axialen Testzustand
aufweist. Offensichtlich miisste also die Anzahl der von uns durchgefithrten Messungen noch
weiter erhoht werden, um groflere Sicherheit iiber das Verhalten des Potentials V7 (r) in die-
sem Bereich zu gewinnen. Dies ist mit dem Ergebnis der in Abbildung 2.3 gezeigten Messung
des Potentials der reinen SU(3)—Yang-Mills-Theorie zu vergleichen. Durch die Verwendung
einer overlap enhancement Prozedur, der die rdumlichen Links unterworfen wurden, konnte
das dort gezeigte Potential aus jeweils 100 Messungen fiir jeden Wert der Kopplungskonstan-
ten 8 bei einem durchaus akzeptablen statistischen Fehler extrahiert werden. Vergleicht man
in diesem Licht die Messergebnisse fiir V() und Vg, (r) inclusive ihrer statistischen Fehler
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im Bereich r > 8a miteinander, so ist zu konstatieren, dass es vorteilhaft erscheint, sich bei
der Beschreibung der Infrarotphysik auf die Zentrumsvortices als den relevanten Freiheits-
graden innerhalb der vollen Theorie zu stiitzen. Weiterhin ist festzustellen, dass sowohl die
sogenannte intermedidre string tension, die aus Vyy(r) im Bereich des linearen Anstiegs (ca.
3a < r < Ta) extrahiert werden konnte, mit der des Zentrumsvortex-Potentials in diesem
Bereich iibereinzustimmen scheint, als auch die Skala ro, an der sich Vi (r) entscheidend
verdndert, richtig von den Vortices reproduziert werden kann. In diesem Zusammenhang ist
es ebenfalls sehr interessant, sich das Verhalten der Vortex-Cluster in der Ndhe des Pha-
seniibergangs nochmals aus anderer Perspektive anzusehen.

Treten in einer Gitterkonfiguration sowohl perkolierende Vortices als auch Vortex-Cluster
endlicher Ausdehnung auf, so sollten die (wenigen) perkolierenden Vortices noch immer in
der Lage sein, ein Flichengesetz fiir den Erwartungswert des Wilson-Loop-Operators hervor-
zurufen. Bei der direkten Berechnung einer mittleren Containergréfie wiirde dabei allerdings
der entscheidende Effekt dieser wenigen perkolierenden Vortex-Clusters im Gegensatz zu den
vielen Containern endlicher Ausdehnung nicht angemessen bertiicksichtigt werden. Diesem
Faktum versuchen wir durch die Definition einer gewichteten mittleren Ausdehnung F (j)
der Vortex-Cluster (beziiglich der Richtung é;) Rechnung zu tragen, indem die Lénge L(¢)
der Ny verschiedenen, innerhalb einer Konfiguration detektierten, disjunkten Vortex-Cluster
V (i), beriicksichtigt wird:
Ny . .
Eu(j) = Zi:lNlJ @) LG (2.51)
> iz L)

In Abbildung 2.7b ist der Erwartungswert der Kantenlénge der minimalen Container (2.51),
exemplarisch fiir die é,-Richtung, als Funktion des Parameters x aufgetragen. Die Messun-
gen wurden auf einem Gitter der Grofie 12* durchgefiihrt, wodurch sich bei der Betrachtung
von dreidimensionalen Schnitten durch das Gitter nach Gleichung (2.50) eine maximale Kan-
tenldnge von lyax ~ 10.4 ergibt. Dieser Wert stimmt sehr gut mit dem von uns fiir kK = 0
gemessenen Wert iiberein. Da die Vortices in dieser Realisierungsphase der Theorie bekann-
termaflen das gesamte Gitteruniversum durchziehen, darf angenommen werden, dass die De-
finition der gewichteten Cluster-Ausdehnung in Gleichung (2.51) eine sinnvolle Moglichkeit
zur Charakterisierung der Perkolationseigenschaften von Zentrumsvortices darstellt. Beim
Ubergang in die Quasi-Higgs-Phase nimmt die mittlere Ausdehnung Ey(x) rapide ab und
fiir k > 0.54 konnen die verbliebenen Vortices bereits in Containern mit einer Kantenldnge
von weniger als zwei Gitterkonstanten untergebracht werden. Vergleicht man die Messwerte
fiir die maximale Ausdehnung der Container unmittelbar unter- und oberhalb des Punktes
x = 0.5323, an dem die Untersuchung der Potentiale durchgefiihrt wurden, so ist es interessant
dariiber zu spekulieren, ob die Skala 7, bei der das Auftreten des Stringbreaking-Phéinomens
verortet wurde, moglicherweise in direktem Zusammenhang mit der maximalen Grofie der
Vortex-Cluster steht, die an diesem Punkt des Phasendiagramms der Theorie vorliegen. Die
Vorhersagen des Random-Vortex-Modells geben jedenfalls Grund zur Vermutung, dass dies
tatséchlich der Fall sein miisste. Zuletzt wurde verifiziert, dass ein Entfernen der P-Vortices
aus den thermalisierten Konfiguration geméf (2.34) das Verschwinden des linearen Anteils
des Potentials Vi7(r) (auch in einem intermediéren Bereich des Quellenabstands) zur Folge
hatte.
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2.5 Die Natur des elektroschwachen Phaseniibergangs

2.5.1 Z—Strings, Nambu-Monopole und Zentrumsvortices

Obwohl keine topologisch stabilen monopol- oder vortexartigen Defekte im Standardmo-
dell der elektroschwachen Wechselwirkung auftreten kénnen [Ryd85], lassen sich dennoch
eingebettete Defekte identifizieren, ndmlich die sogenannten Nambu-Monopole [Nam77] und
elektroschwache Z-Strings [Man83]. Letztere entsprechen den bereits in Kapitel 2.3 erwéhn-
ten Vortex-Losungen von Abrikosov und Nielsen-Olesen, die mit der abelschen Untergruppe
der SU(2) verkniipft sind und dadurch in die Eichfelder der elektroschwachen Theorie einge-
bettet werden konnen'®. Die grundlegenden Ideen zum Thema Einbettung und Detektierung
dieser Objekte werden in Kapitel 2.5.3 erldutert, fiir eine ausfiihrlichere Diskussion wird auf
den umfangreichen Ubersichtsartikel von Achucarro und Vachaspati [AV00] verwiesen.

Nachdem einerseits gezeigt werden konnte [GIS97], dass sich der elektroschwache Phaseniiber-
gang erster Ordnung im Rahmen des Glashow-Salam-Weinberg-Modells in einen flieBenden
Ubergang in der Umgebung einer kritischen Temperatur 7, verwandelt, sofern die Masse des
(hypothetischen) Higgs-Bosons grofier als My ~ 73 GeV ist, andererseits eine derart niedrige
Masse aber experimentell ausgeschlossen werden kann [AT08], hat das Interesse an eingebet-
teten topologischen Defekten eine Renaissance erfahren. Diese spielen némlich eine entschei-
dende Rolle in verschiedenen alternativen Szenarien zur Bayogenese im frithen Universum,
die im Gegensatz zu den lange Zeit favorisierten Ideen!” (u.a. der sogenannte bubble nucleati-
on mechanism) auf die Annahme eines hinreichend starken Phaseniibergangs erster Ordnung
verzichten konnen. Eines dieser alternativen kosmologischen Modelle geht dabei von perko-
lierenden elektroschwachen Z-Strings'® in der symmetrischen Hochtemperaturphase aus, die
bei Unterschreitung einer kritischen Temperatur in stabile kleinere, nicht-trivial (twisted) ge-
schlossene und miteinander verkniipfte Loops iibergehen, welche eine von Null verschiedene
Baryonenzahl tragen koénnen und dadurch das Auftreten der Baryonenzahl-Asymmetrie im
Universum erkldren kénnten [VF94]. Ob sich diese nicht-trivialen Feldkonfigurationen jedoch
als stabil erweisen oder nicht, ist eine Frage der Dynamik bosonischer und fermionischer Quan-
tenfelder, die an die klassischen Z-Strings koppeln kénnen. Eine Untersuchung in D =2 4+ 1
hat dabei gezeigt, dass eine energetische Stabilisierung der topologisch nicht geschiitzten
Z-Strings (m1(SU(2)) = 0) allein durch den fermionischen Sektor des GSW-Modells fiir reali-
stische Werte der physikalisch relevanten Parameter N, sowie m; nicht moglich ist [GQW09].
Falls sich dieses Ergebnis auch in D = 3 + 1 Dimensionen unter Hinzunahme aller bosoni-
schen Fluktuationen der Theorie bestétigen sollte, so erscheint es zumindest fraglich, ob die
elektroschwachen Z-Strings tatséchlich einen wesentlichen Einfluss auf die Entwicklung des
elektroschwachen Vakuums gehabt haben kénnen, oder ob man nicht nach anderen Anregun-
gen in der Theorie der elektroschwachen Wechselwirkung Ausschau halten muss, welche die
Rolle der Z-Strings iibernehmen kénnten.

Wie die elektroschwachen Z-Strings, so miissen auch alternative Kandidaten, die magneti-
schen Fluss fithren sollen, entweder geschlossen sein oder aber einen Bindungszustand mit
einem Paar von Nambu-Monopolen unterschiedlichen Vorzeichens eingehen. Derartige abge-
schlossene Strings, die auch als Monopolium bezeichnet werden, konnten den Kern einer insta-

16Vergleiche auch die Diskussion in Kapitel 2.2.4.
"Eine Ubersicht findet sich in dem Artikel von Rubakov und Shaposhnikov [RS96].
8Tn der Literatur findet sich auch die Bezeichnung kosmische Strings.
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bilen Sphaleron-Konfiguration [Man83] darstellen, welche unterhalb des crossover als einzige
Konfiguration Ubergiinge zwischen Vakua mit verschiedenen Chern-Simons-Zahlen vermitteln
kann. Tatséchlich wurden bei der Untersuchung von klassischen Sphaleron-Konfigurationen
auf dem Gitter Anzeichen fiir das Vorliegen solcher Monopol-Antimonopol-Bindungszustinde
gefunden [CGI98|. Die dort eingefiihrten Operatoren zur Detektierung der (elementaren) Z-
Strings und Nambu-Monopol-Strome konnten spéter [CGIS98a] auch dazu verwendet werden,
die Dynamik dieser Defekte in einem Modell der Glashow-Salam-Weinberg-Theorie im ther-
mischen Gleichgewicht nahe T, zu untersuchen. Dabei handelt es sich um das in D=3 Dimen-
sionen definierte SU(2)—Higgs-Modell, wobei das skalare Feld sich unter der fundamentalen
Darstellung der Gruppe transformiert. Die Beriicksichtigung der U(1)y durch Verwendung
eines nicht-trivialen Wertes fiir den Weinberg-Winkel 6w wiirde dabei zu einer Kopplung
zwischen der Hyperladungsgruppe und der abelschen Untergruppe der SU(2) fiihren, was
wiederum zur Folge hétte, dass neben den Z-Strings auch W-Strings als Losungen der Theo-
rie moglich wiirden. Der Einfluss der mit der Hyperladung Y assoziierten U(1)—Eichgruppe
auf die Natur des elektroschwachen Phaseniibergangs bzw. crossover wurde in [KLRS97b] stu-
diert, wobei sich gezeigt hat, dass dieser als eher gering einzuschétzen ist. Wie in [GQWO09]
wollen wir uns daher auch zunéchst nur auf den Fall 8y, =0 beschrénken, fiir den sich die W —
und Z—Loésungen nur um eine globale Eichtransformation voneinander unterscheiden. Da der
Finfluss von Fermionen auf die physikalisch relevanten Parameter der effektiven dreidimensio-
nalen SU(2)—Higgs-Theorie im Zuge der dimensionalen Reduktion ebenfalls beriicksichtigt
werden kann [KLRS96a, KLRS96b], gehen wir davon aus, dass dieses Modell bereits eine
hinreichend gute Approximation fiir das elektroschwache Standardmodell bei endlichen Tem-
peraturen und realistischen Higgs-Massen darstellt, so dass aus dem Studium dieser Theorie
wichtige Erkenntnisse zum Verhalten der eingebetteten Defekte nahe des crossover gewonnen
werden konnen.

Bevor wir uns der Untersuchung der Dynamik von Zentrumsvortices in der elektroschwachen
Theorie wihrend eines Abkiihlungsvorgangs des Universums zuwenden wollen, soll zunéchst
noch das bereits erwihnte Konzept der dimensionalen Reduktion einer Quantenfeldtheorie
erlautert werden.

2.5.2 Dimensionale Reduktion und endliche Temperaturen

Das Konzept der dimensionalen Reduktion beinhaltet die Annahme, dass sich die wesentli-
chen FEigenschaften einer 4D Theorie bei hohen Temperaturen im thermischen Gleichgewicht
aus der Untersuchung einer einfacheren, effektiven 3D Theorie verstehen lassen sollten. Die
Verbindung der beiden wird dabei durch das Studium der statischen bosonischen Green’schen
Funktionen der vierdimensionalen Theorie, ausgewertet in einem sinnvoll gewéhlten Regime
niedriger Energie, und einer Anpassung der Parameter der entsprechenden Green’schen Funk-
tionen der aussschlieBlich bosonischen, effektiven Theorie hergestellt'®. Auf die enge Ver-
bindung von euklidischer Quantenfeldtheorie und klassischer statistischer Feldtheorie wurde
bereits bei der Diskussion der Wick-Rotation in Kapitel 1 hingewiesen, es ist daher nicht ver-
wunderlich, dass der Formalismus der imaginiren Zeit auch im Rahmen der dimensionalen
Reduktion eine entscheidende Rolle spielt.

9Die Unterscheidung der verschiedenen relevanten Energie- und Impulsregime, sowie die Einteilung der
zugehorigen Anregungen in unterschiedliche ,,Gewichtsklassen“ bei hohen Temperaturen wird in der Arbeit
von Kajantie et al. [KLRS96a] vorgenommen.
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Um eine D =d+1 dimensionale Quantenfeldtheorien bei endlichen Temperaturen 1" zu studie-
ren, wird die zeitliche Dimension der zugrunde liegenden Mannigfaltigkeit kompaktifiziert, so
dass diese topologisch #quivalent zu R¢ x ST ist. Die Zustandssumme Z eines solchen Systems
berechnet sich bekanntermafien als

Z = Tr[exp{—ﬂ?—l}] , B =T7", (2.52)

wobei H den Hamilton-Operator der Quantenfeldtheorie bezeichnet und ein Einheitensystem
gewahlt wurde, in dem fiir die Boltzmannkonstante kg =1 gilt. Bezeichnen wir die fermio-
nischen Felder mit ¢(x,t) und alle bosonischen Felder der Theorie mit x(x,t), so kann die
Zustandssumme der Theorie als Funktionalintegral der Form

z= / Dy Dy exp{—S[x. ]} (2.53)

ausgedriickt werden, wobei die bosonischen Felder periodische, die fermionischen Felder hin-
gegen anti-periodische Randbedingungen beziiglich der imaginéren Zeitrichtung é, erfiillen:

x(x,7=0) = x(x,7=1/T), PY(x,7=0) = —(x,7=1/T) . (2.54)

Die quantenmechanische Zustandssumme (2.53) kann also als Zustandssumme einer klassi-
schen statistischen Feldtheorie in d + 1 Dimensionen gedeutet werden, wobei die endliche
Temperatur, bei der die Quantenfeldtheorie betrachtet wird, gerade durch die endliche Aus-
dehnung L; = 1/T der ,,zeitlichen* Dimension realisiert wird:

1 1

T = — = ——. 2.55

Ly Ny a(B) (2.55)
Eine euklidische Quantenfeldtheorie am Temperaturnullpunkt entspricht folglich einer klas-
sischen statistischen Feldtheorie im thermodynamischen Grenzfall. Fiihrt man nun bei end-
lichen Temperaturen eine partielle Fourier-Zerlegung der Quantenfelder durch

[e.e]

X(XvT) = Z Xn(X)eXp{Z"ng}, ¢(X77) = Z %(X)GXP{W#}’ (2'56)

n=—oo n=—oo

so ergeben sich aufgrund von (2.54) fiir die Matsubara-Frequenzen der bosonischen bzw.
fermionischen Felder in zeitlicher Richtung die Moden w? = 2n7T und wih = (2n 4+ )7 T
(n € Zp). Diese werden auf tree level mit den Massen der Felder x,(x) und v¢,(x) der d-
dimensionalen Theorie identifiziert [KLRS96a]. Die sogenannten nicht-statischen Moden (n #
0 fiir Bosonen und alle fermionischen Moden) sind im Grenzfall hoher Temperaturen 7" stark
unterdriickt, daher wurde zunéchst angenommen [AP81], dass sich diese sogenannten ,super-
schweren“ Beitriage vollstindig ausintegrieren lassen miissten. Dadurch lésst sich geméf

exp{—Serlp(x)]} = / DDz expl{—Slx. 1]} (2.57)

eine effektive d-dimensionale Theorie allein fiir die statische Mode ¢(x) (n = 0) definieren,
die sich durch eine Entwicklung von Seg[p(x)] stérungstheoretisch behandeln lassen sollte?”.

*’In fithrender Ordnung findet sich Seg[p] = L [d"x L (¢(x)).
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Es wurde allerdings schon friih erkannt [Lan89], dass sich als Folge der Integration neue
Wechselwirkungen fiir die statische Mode ergeben, was zu Problemen bei einer systemati-
schen Entwicklung bereits auf 2-Loop-Ebene fiihrt, da die Massen der verschiedenen Felder,
die Bestandteil der urspriinglichen vierdimensionalen Theorie waren, unterschiedliche tempe-
raturabhéingige Korrekturen erfahren kénnen. Im Rahmen des bereits erwidhnten matching
approach [KLRS96a] zur dimensionalen Reduktion wird dieses Problem insofern umgangen,
als dass bei der Berechnung der Diagramme, die zum Erreichen einer vorgegebenen Genau-
igkeit beim Abgleich der D = 4 und D = 3 Parameter betrachtet werden miissen, interne
Linien zu allen auftretenden Massenskalen (leicht, schwer und super-schwer) beriicksichtigt
werden.

Die Verallgemeinerung dieser Uberlegungen auf den Fall nicht-abelscher Eichtheorien bei
endlichen Temperaturen ist mit einigen Schwierigkeiten behaftet. Diese resultieren vor allem
daraus, dass die Anzahl der Feldkomponenten von der Dimension der Raumzeit abhéngig
ist und die Isolierung der statischen Mode dadurch erschwert wird, dass die Zerlegung der
Felder in ihre Fourier-Komponenten eichabhéngig ist [ZJ00]. Im Fall einer vierdimensionalen
reinen Yang-Mills-Theorie bei asymptotisch hohen Temperaturen findet man als Ergebnis
der dimensionalen Reduktion eine effektive dreidimensionale Yang-Mills-Theorie, die an ein
zuséatzliches Skalarfeld gekoppelt ist, welches sich unter der adjungierten Darstellung der
Gruppe transformiert [LMR92, KLM*94]. Die zugehorige effektive Wirkung liest sich als

Seff [A7 AO] = \?’f\l/[ [A] + Sadj [A, AO] + Sint [AO] ; (258)

wobei die rdumlichen Komponenten des Eichfeldes zu A zusammengefasst wurden und das
adjungierte Higgs-Feld konventionsgemif mit Ag(x) = Af(x)T bezeichnet wird, um anzu-
deuten, dass dies ein Relikt aus der Integration der nicht-statischen Moden ist und aus der
temporalen Komponente des Eichfeldes stammt. Die Wirkung der dreidimensionalen Yang-
Mills-Theorie ist durch

Sl = 57 [x u[POP, () . g = ()T (259)

3

gegeben, wobei die zugehorige Kopplungskonstante g3(7") — im Gegensatz zur temperatur-
bzw. energieabhéngigen Kopplungskonstanten ¢(7') der urspriinglichen vierdimensionalen
Theorie — nicht mehr langer dimensionslos ist. Der kinetische Term des adjungierten Higgs-
Feldes Ap(x) ist gegeben durch

Sugi| A, Ao] = / &x o[ [Di(A), Ao(x)][Di(A), Ao(x)]] , (2.60)

und der letzte Beitrag, welcher die quadratische und quartische (Selbst-)Wechselwirkung des
Higgs-Feldes beschreibt, ist das Result einer Integration der nicht-statischen Moden in 1-
Loop-Néherung [Lan89]:

Sint[Ao] = /dgx m? tr [A%(x)] + Az tr [A(Q)(x)]2 (2.61)

Werden weitere Diagramme hoherer Ordnung beriicksichtigt, so erfahren die Parameter
g3, A3, sowie die Debye-Masse mp Korrekturen, die sich im Falle einer 2-Loop-Naherung
in [KLRS97a] finden. Fiir die Kopplungskonstante g3 etwa ergibt sich eine Anderung der
Form

g% =9(1)T (1+0(g*)) . (2.62)
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2.5.3 Die elektroschwache Theorie bei endlichen Temperaturen

Da wir daran interessiert sind, Ergebnisse zur Untersuchung der Dynamik von Zentrumsvor-
tices in der elektroschwachen Theorie bei endlichen Temperaturen mit bereits vorliegenden
Ergebnisse zur Entstehung und Dynamik von Z-Strings und Nambu-Monopolen vergleichen
zu konnen, studieren wir wie in [CGIS98a] als eine erste Approximation der Theorie das
dreidimensionale SU (2)—Higgs-Modell mit der Wirkung

SU® = B8 <1 — %Re{tr[P[U]] }>
P
- g > [@T(:L")Uk(a:)@(a: + k)} +) " p(x)? + A (p(2)? — 1)° . (2.63)
x,k T

Dabei verwenden wir die in Kapitel 2.4.1 eingefiihrten Konventionen fiir das Higgs-Feld ®(z).
Die Parameter 3, k, A konnen mit den (dimensionsbehafteten) Parametern gs,ms(g3) und A
der super-renormierbaren SU(2)—Kontinuumstheorie mit fundamentalem Higgs-Feld in D=3
Dimensionen in Verbindung gebracht werden [KLRS96a]. Die Kopplungskonstante gs sowie
die Selbstkopplung A3 sind Renormierungsgruppeninvariante, die renormierte Masse mg(gg)
der Kontinuumstheorie wird an der Skala u3 = g3 ausgewertet. Die Temperaturabhingigkeit
von g3 (siehe Gleichung 2.62) fiihrt zu einer Temperaturabhingigkeit von mg, was dazu
fiihrt, dass iiber eine Verénderung des Parameters x die Temperatur geregelt werden kann.
Wir verwenden die in [GIS97] eingefiihrten Konventionen und betrachten die dimensionslosen

Verhiltnisse )
4 A3 k21 Mj, K2
R A:_2_2_< H> Ly (2.64)
ags g5 B 8\80GeV I3
wobei die Selbstkopplungskonstante des Higgs-Feldes durch die Masse Mj}; des zugehorigen
Bosons?! ausgedriickt werden kann. Der Kontinuumslimes der diskretisierten Theorie wird
entlang der ,Linien konstanter Physik“ der Kontinuumstheorie durch Vergréflerung von
erreicht, wobei sowohl das dimensionslose Verhiltnis A3/g3 (M), als auch ms(g3)/93 (k)
konstant gehalten werden miissen.

Wie bereits in Kapitel 2.2.4 angedeutet, kénnen Nambu-Monopole und Z-Strings im Falle
des elektroschwachen Standardmodells bei endlichen Temperaturen auf eichinvariante Weise
detektiert [CGIS98a] bzw. in dieses eingebettet werden [Nam?77]. Dazu wird zunéchst das
zusammengesetzte adjungierte Einheitsvektorfeld

H(z)o(x
n(x) =n(z)o®, n(z) = ¢(z)o"¢(x) (2.65)

¢t (z)d(x)
definiert, das die Rolle des adjungierten Skalarfeldes bei der Definition des 't Hooft-Polyakov-
Monopols im Georgi-Glashow-Modell iibernimmt und die Orientierung der ungebrochenen
abelschen Untergruppe innerhalb von G anzeigt. Unter Verwendung der neuen, projizierten
Linkfelder
VulUsn|(z) = Up(z) + n(@)Upu(z)n(z + p) (2.66)

lasst sich der eichinvariante Fluss

0,,[U,n](z) := arg (tr[(1+ n(z))Pw[V](2)]) €[ ] (2.67)

2! Nsherungsweise gleich der physikalischen Masse des Higgs-Bosons My fiir T = 0.
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berechnen (vgl. dazu auch Gleichung 2.9), wobei die nicht-abelsche Plaquette P, [V](x) aus
den Links (2.66) geméf Gleichung (2.26) zu berechnen ist und auf n(z) projiziert wird.

Der Sinn dieser Konstruktion erschliefit sich, wenn die Theorie in unitérer Fichung betrachtet
wird, welche durch

()

bestimmt ist. In dieser Eichung sind die Felder (2.66) diagonal

ni(z) =%, ¢'(x) = <¢0 > (2.68)

. ei@ﬁ(x) 0 .
ViU, 6% (z) = ( 0 i@ | 0 (x) = arg (U} (z)) , (2.69)

und die Phasen ¢;(z) stellen ein kompaktes abelsches Eichfeld beziiglich der residuellen abel-
schen Eichtransformationen

Quz) = e @@ o (z) € [0, 2n] (2.70)

dar. Die Nambu-Monopole sind also die topologischen Defekte des kompakten abelschen
Feldes und die Auswertung von (2.67) in unitérer Eichung fithrt auf die abelsche Plaquette,
die iiblicherweise direkt unter Verwendung der Felder ¢jj(z) in maximal abelscher Eichung
nach Projektion konstruiert wird [CGI98]. In unitdrer Eichung kann die Ladung der Nambu-
Monopole innerhalb eines elementaren Wiirfels C dann durch die in Kapitel 2.2.2 besprochene
Standardprozedur von deGrand und Toussaint [DT80] definiert werden:

je = —% > b, O,=0,—2mm,. (2.71)

pedC
In dieser Eichung lassen sich die Z-Strings als die topologischen Vortexdefekte in den abel-
schen Matriefeldern ¢%(x) (den unteren Komponenten des Higgs-Doubletts 2.40) auffassen.
Unter der residuellen Transformation (2.70) gilt ¢(z) — e**@¢(x), folglich trigt das Feld
¢(z) elektrische Ladung eins beziiglich des abelschen Eichfeldes 0}(x). Auf dem Gitter lassen
sich die Z-Strings durch nicht-triviale Messwerte fiir den sogenannten Z- Vortizitits-Operator

1 _
UMV(x) = % (X/w(x) - H;W(x)) (2.72)
detektieren, wobei die eichinvariante Definition der Felder
Xu(z) = —arg ((b*(w)Vu(ww(w + u)) (2.73)

zur Berechnung der zugehorigen Plaquette X, (x) verwendet wird. Die Auswertung der Kon-
struktion in unitédrer Eichung verdeutlicht nochmals die Quantisierung des Flusses, der von
den Z-Strings getragen wird [CGI98]. Ein Z-String ist dabei definiert als die Kollektion aller
verbundenen nicht-trivialen Links auf dem dualen Gitter, denen Plaquetten des Original-
gitters mit einer von Null verschiedener Vortizitdt (2.72) entsprechen. Die Trajektorien der
Z-Strings sind dabei entweder geschlossen, oder beginnen und enden an Positionen, an denen
Nambu-Monopole bzw. Anti-Monopole lokalisiert sind.

An dieser Stelle soll nochmals die Eichinvarianz der gesamten Konstruktion zur Detektierung
der Nambu-Monopole (2.71) sowie der Z-Strings (2.72) auf dem Gitter betont werden. Die
unitdre Eichung (2.68) wurde dabei nur zu Illustrationszwecken gewéhlt und muss bei der
konkreten Untersuchung der Feldkonfigurationen des Gitters nicht fixiert werden.
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2.5.4 Zentrumsvortices bei endlichen Temperaturen

Die eichinvarianten Definitionen der Operatoren zur Detektierung von elementaren Nambu-
Monopolen (2.67) und Z-Strings (2.72) eroffnen folglich die Méglichkeit, sowohl das Verhalten
dieser eingebetteten Defekte, als auch die Rolle und Dynamik von Zentrumsvortices anhand
derselben Konfigurationen einer Gittersimulation des elektroschwachen Standardmodells bei
endlichen Temperaturen zu studieren. Dazu muss jedoch zunéchst geklart werden, auf welche
Weise Zentrumsvortices in derartigen Konfigurationen zu detektieren sind.

Eine Zerlegung des eichfixierenden Funktionals (2.22) in einen Anteil, welcher ausschlieflich
Eichfelder raumlicher Natur beinhaltet, sowie einen Anteil fiir rein zeitartige Links, legt die
Konstruktion eines analogen Funktionals zur Definition einer DMCG bei endlichen Tempe-
raturen nahe:

1 N 3 2 2
Fpveelg) = L [Z (wvf@]) + (o U W)] S

r=1 Li=1

Da die Spur der zeitartigen Link-Variablen im letzten Term invariant unter zeitunabhéngigen
Eichtransformationen ist, kann die DMCG in D =3+ 1 Dimensionen fiir eine feste Zeitschicht
als Eichbedingung fiir die dimensional reduzierte Theorie herangezogen werden:

3
FCS 0] = 1 303 (1r [U260] )" (275)

x =1

Offensichtlich besteht eine Verbindung zwischen den flichenhaften Vortices einer vierdimen-
sionalen Theorie bei endlichen Temperaturen, sowie den geschlossenen Vortexfilamenten der
zugehorigen dreidimensionalen Theorie: Letztere ergeben sich als Schnitte durch die geschlos-
senen Vortexflichen in einer festen Zeitschicht der vierdimensionalen Theorie. Bei der iterati-
ven Maximierung des Funktionals (2.75) werden neben den Eichfeldern auch alle an die drei-
dimensionale Yang-Mills-Theorie gekoppelten Skalarfelder einer entsprechenden Eichtransfor-
mation unterworfen.

2.5.5 Numerische Ergebnisse

Zunéchst waren wir daran interessiert, das Verhalten der Dichte von Z-Strings, Nambu-
Monopolen und Zentrumsvortices im Bereich des crossover der Theorie zu untersuchen. Da-
bei wurde eine Higgsmasse von M, = 100 GeV angenommen und Simulationen auf Gittern
der GroBe 20° fiir die Parameterwerte 3 = 8 und s € [0.34,0.36] durchgefiihrt, wobei die
Selbstkopplungskonstante A\ nach Gleichung (2.64) berechnet wurde. Fiir jeden Wert des
Parameters & wurde ein Ensemble von 1000 Konfigurationen mit demselben Algorithmus
erzeugt, der schon bei der Untersuchung der vierdimensionalen Theorie in Kapitel 2.4.1 ein-
gesetzt wurde. Autokorrelationen stellten dabei kein Problem dar. Der iterativen Fixierung
der modifizierten DMCG (2.5.4) wurde ein Abbruchkriterium von §? < 10710 zugrunde gelegt.

In Abbildung 2.8 sind die Erwartungswerte der drei Operatoren

1 ) 1
Pm = 3 zc: |JC| > PZ—String = 3? Ep: |0117| > Ptz = m Z 5(P[Z]7—1) (2'76)
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(a) Dichte der Z-Strings und der Nambu-Monopole. (b) Die Dichte der Z-Strings und der Zsa-Vortices.

Abbildung 2.8: Die Dichte der Nambu-Monopole, Z-Strings und Zentrumsvortices in der Nédhe
des elektroschwachen crossover. Gitter: 203, 3 = 8, M;i; =100 GeV.

zu sehen, wobei die Ladung der Nambu-Monopole je und die Vortizitét der Z-Strings o, in
jeder Konfiguration nach (2.71) und (2.72) berechnet wurden. Zur Untersuchung der Dichte
der Zo-Vortices wurde der in Gleichung 2.49 definierte Operator fiir D = 3 herangezogen.

Die Dichten der Nambu-Monopole und Z-Strings in Abbildung 2.8a zeigen als Funktion des
Parameters x ein dhnliches Verhalten. In der symmetrischen Phase scheinen in etwa ein Vier-
tel aller Plaquetten bzw. elementaren Wiirfel von elektroschwachen Z-Strings durchstofien
bzw. von Nambu-Monopolen besetzt zu sein. Beide Dichten nehmen bei der Anndherung an
den crossover-Bereich kontinuierlich ab, wobei sich ein Wendepunkt des Funktionsverlaufs
ausmachen lédsst, an dem die Dichten p,, und pz_string etwa auf die Hilfte ihres asymptoti-
schen Werts in der symmetrischen Phase abgefallen sind. Dieser Punkt liegt bei .~ 0.353.
Dringt man weiter in die geordnete Phase vor, so nehmen sowohl pp, als auch pz_string €x-
ponentiell ab, was am Verhalten der Z-String-Dichte in Abbildung 2.8b illustriert wird. Ein
Vergleich mit dem Verhalten von py, zeigt, dass sich die Dichte der Zentrumsvortices in der
symmetrischen Phase iiber einen weiten Bereich des Parameters x annédhernd konstant verhalt
und mindestens eineinhalb GréBenordungen kleiner zu sein scheint als die Dichte der (elemen-
taren) Z-Strings. Dabei ist zum einen bemerkenswert, dass der Ubergang in die geordnete
Phase scheinbar bei derselben Temperatur durch eine Anderung von pz, angezeigt wird, wie
sie bei der Untersuchung der eichunabhingig definierten Z-Strings (und Nambu-Monopole)
gefunden wurde, zum anderen sinkt die Dichte der Zentrumsvortices bei abnehmenden Tem-
peraturen nicht so schnell, wie dies fiir die Z-Strings der Fall ist.

Als néchstes wurde das Perkolationsverhalten der Zentrumsvortices untersucht. Da sich ge-
zeigt hat, dass der Ubergang der Theorie von der symmetrischen Hochtemperatur-Phase in
eine kiltere, geordnete Phase von einem Deperkolationsiibergang der Z-Strings begleitet wird,
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und zwar sowohl im Falle eines echten thermodynamischen Phaseniibergangs (fiir unrealistisch
kleine Higgs-Massen bzw. Selbstkopplungen) [CGIS98a|, als auch im Fall des realistischeren
crossover [CGIS98b], ist es interessant zu untersuchen, ob sich dieser Umstrukturierungspro-
zess auch in der Topologie der Zentrumsvortices beobachten ldsst. Dazu betrachten wir die
bereits in Kapitel 2.4.2 definierte gewichtete Cluster-Ausdehnung E,,(j) (2.51) und verglei-
chen unsere Resultate mit den Ergebnissen zur Messung der z.B. in [CGIS98a] definierten
Perkolationswahrscheinlichkeit C. In Abbildung 2.9 werden die Erwartungswerte der mittle-
ren Cluster-Ausdehnung fiir die Zentrumsvortices und Z-Strings — normiert auf die maximal
mogliche Containergrofie (2.50) nach Mittelung tiber alle méglichen rdumlichen Orientierun-
gen — miteinander verglichen. Im Fall der Zentrumsvortices erweist sich diese Observable als
hervorragend dazu geeignet, den Ubergang von der symmetrischen Phase der Theorie, in der
tatséchlich perkolierende Vortices vorliegen, in die unsymmetrische Phase zu detektieren. Der
Deperkolationsiibergangspunkt wird von einem Abfallen der normierten Cluster-Ausdehnung
vom Wert eins bei x, ~ 0.353 angezeigt und scheint mit dem kritischen Wert k., an dem
sich die Dichte der Zentrumsvortices édndert, iibereinzustimmen. Wéhrend sich das System
weiter abkiihlt, tritt eine signifikante Anderung in der Verteilung der Zentrumsvortices auf,
die wir folgendermaflen interpretieren: Die Anzahl der detektierten Vortices nimmt ab und
diese organisieren sich statt in einem Netzwerk von perkolierenden Filamenten (mit einer
Verzweigungsh#ufigkeit von ca. 2%) in kleineren Clustern, die praktisch keinerlei Verzwei-
gungspunkte mehr aufweisen und deren mittlere Ausdehnung sich bei etwa 70% des be-
trachteten Gittervolumens zu stabilisieren scheint. Die Ausdehnung der Z-String-Container
hingegen ist fiir k > 0.355 bereits auf einen Wert kleiner 0.1 abgefallen, was einer Léinge
von ca. zwei Gitterkonstanten entspricht. Dies steht in Einklang mit den in [CGIS98b] be-
richteten Beobachtungen, wonach zu erwarten ist, dass sich ein Grofiteil der Z-Strings in
einem hinreichend weit von x, entfernten Bereich im Phasendiagramm der Theorie mit ei-
nem Paar von Nambu-Monopolen gegensétzlichen Vorzeichens verbunden hat, und dass dieser
Monopolium-Bindungszustand, der als Kern einer Sphaleronkonfiguration interpretiert wer-
den kann [CGI98], eine maximale Ausdehnung von etwa zwei Gitterkonstanten aufweist.
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In diesem Zusammenhang ist es interessant festzuhalten, dass eine genaue Bestimmung von
die Verwendung von nicht-lokalen Defekt-Operatoren agf) und jgk) fiir ausgedehnte Z-Strings
und Nambu-Monopole mit einer zunehmenden Anzahl an sogenannten Blocking-Schritten
k € N [CGIS98a] erforderlich macht, um eine Stabilisierung des Grenzwertes im Kontinu-
umslimes der Theorie zu erreichen. Unser Ergebnis zur Untersuchung der Perkolationseigen-
schaften der Z-Strings in Abbildung 2.9 liefert ebenfalls einen Hinweis auf dieses Phéanomen:
Wihrend fiir die Zentrumsvortices bereits eine recht klare Trennlinie zwischen den Phasen
perkolierender und nicht mehr perkolierender Vortices angezeigt wird, ist der Ubergang im
Falle der elementaren Z-Strings fiir = 8, also weit entfernt vom Kontinuumslimes, noch sehr
flielend. Die mittlere Cluster-Ausdehnung verhilt sich dabei gewissermafien komplementér
zur Perkolationswahrscheinlichkeit C'. Wihrend letztere als echter Ordnungsparameter (im
thermodynamischen Limes) den Deperkolationsiibergang bei «, durch ein Abfallen auf den
Wert Null signalisiert [CGIS98a|, zeigt der (normierte) Erwartungswert von E,, im Fall der
Zentrumsvortices das Vorliegen einer Phase perkolierender Vortices durch einen maximalen
Wert von eins fiir k < K, an.

Sollte es sich bei den Z-Strings und Zentrumsvortices tatsédchlich um physikalisch relevan-
te Freiheitsgrade handeln, so miisste sich ihr Auftreten in der elektroschwachen Theorie bei
endlichen Temperaturen zumindest dahingehend bemerkbar machen, dass es in unmittelba-
rer Nahe ihrer Trajektorien zu Inhomogenitéiten in der Energiedichte des Eichfeldes kommt.
Dariiber hinaus steht im Fall der Z-Strings zu erwarten, dass diese auch einen Einflufl auf das
Higgs-Feld haben diirften, da die klassischen Vortex-Losungen im Kontinuum in ihrem Zen-
trum durch |#(0)| = 0, sowie asymptotisch durch lim, . |¢(r)| = ¢o charakterisiert sind?2.
Diese Vermutung konnte im Fall der Z-Strings bereits in entsprechenden Gittersimulationen
der Theorie bestitigt werden [CGIS99, CIS00]. Um die Situation auch im Fall der Zentrums-
vortices zu kldren, haben wir Messungen der Energiedichte £9(Z) der Eichfelder, sowie des
mittleren Betragsquadrats p?(#) des Higgs-Feldes

B =1-gun[PO@)] 4@ = Y W) (277
x€0P

durchgefiihrt. Dabei bezeichnet & den Ort einer Plaquette auf dem dualen Gitter. Die Vor-
schrift zur Berechnung der Feldenergiedichte entlang der Trajektorie eines Vortex (Core) ist
offensichtlich, da dessen Kern ja gerade durch Plaquetten mit nicht-trivialer Vortizitiat de-
finiert ist. Im Fall des Higgs-Feldes wird das arithmetische Mittel aller vier p?(x) gebildet,
die an den Ecken einer von einem Vortex durchstoflenen Plaquette P ausgewertet werden. In
die Berechnung des Mittelwertes auflerhalb der Vortices (Bulk) gehen definitionsgeméif alle
Plaquetten der equilibrierten Gitterkonfigurationen mit trivialer Vortizitéit (op = 0, O'IZ32 =1)
ein.

Die Ergebnisse dieser Untersuchung sind in Abbildung 2.10 zusammengefasst. Zunéchst ist
festzustellen, dass sich das Betragsquadrat des Higgs-Feldes (Abb. 2.10a) im Innen- und Au-
Benbereich nur im Falle der Z-Strings mafigeblich voneinander unterscheidet. Dabei finden
wir im Inneren einen kleineren Wert fiir (p?) als auBerhalb, wobei sich dieser Effekt beim
Ubergang in die Higgs-Phase der Theorie noch weiter verstirkt. Eine mogliche Erklirung

22Vergleiche dazu auch die Untersuchungen in D = 2 + 1 zur Stabilitit von elektroschwachen Strings,
charakterisiert durch verschiedene Profilfunktionen f#(p) und fe(p) im Fall T'= 0 [GQWO09].
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Abbildung 2.10: Das Verhalten des Higgs-Feldes und der Energiedichte des Eichfeldes in un-
mittelbarer Néhe (Core) und auBerhalb (Bulk) des Zentrums der Z-Strings und Zs-Vortices.
Gitter: 203, 8 =8, M} = 100 GeV.

dafiir wurde in [CGIS98b] gegeben: Wie in Abbildung 2.8 zu sehen, nimmt die Dichte der De-
fekte oberhalb des crossover ab, was dazu fiihrt, dass sich die Zentren der Z-Strings in dieser
Phase weniger stark iiberlappen kénnen und somit eine Unterscheidung zwischen Innen- und
Auflenbereich besser moglich wird. Aulerdem wurde darauf hingewiesen, dass dem Absolut-
wert des Erwartungswertes von p? aufgrund von additiven Renormierungskorrekturen keine
Bedeutung beigemessen werden kann, lediglich die Differenz zwischen den quantenmechani-
schen Mittelwerten des Betragsquadrates von ¢(z) im Inneren und AuBeren der Z-Strings
spielt fiir den Kontinuumslimes eine Rolle. Dass das Higgs-Feld von der Anwesenheit der
Zentrumsvortices in den thermalisierten Konfigurationen praktisch keinerlei Notiz nimmt,
ist nicht weiter verwunderlich, da sich das zur Fixierung der DMCG herangezogene Funk-
tional (2.75) einzig und allein auf den Eichfeldsektor der Theorie bezieht. Folgerichtig zeigt
sich der Einfluss der Zentrumsvortices auf die Verteilung der Energiedichte aber in diesem
Sektor umso deutlicher. Aus Abbildung 2.10b geht hervor, dass in den Zentrumsvortices im
Vergleich zur Umgebung eine deutliche Konzentration der Energie des Eichfeldes stattfin-
det. Vergleich man jeweils die Differenz der Energiedichte im Innen- und Auflenbereich von
Zentrumsvortices und Z-Strings miteinander, so ist festzustellen, dass die in den Zentrums-
vortices konzentrierte Energie des Eichfeldes in der symmetrischen Phase um mehr als eine
Grofienordnung hoher liegt als im Fall der Z-Strings. Auflerdem ist dabei zu beachten, dass
in dieser Phase zusétzlich pz,/pz—String < 1071 (vgl. Abb. 2.8) gilt. Die Zentrumsvortices
scheinen also gewissermaflen deutlich , kontrastreicher” zu sein als die Z-Strings. Unterhalb
der kritischen Temperatur tritt eine interessante Verinderung der Situation auf: Die Differenz
der Energiedichte zwischen Core und Bulk nimmt im Falle der Zentrumsvortices ab, fiir die
Z-Strings hingegen beobachten wir eine Zunahme derselben. Dies ist insofern erstaunlich, als
dass die Abkiihlung des (Gitter-) Universums wie in Abbildung 2.8 gezeigt in beiden Fillen
von einer Abnahme der jeweiligen Dichte pyz, bzw. pz begleitet wird. Moglicherweise spielt
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daher das Profil der beiden Arten von Strings eine wichtige Rolle bei der Erkldrung dieses
Verhaltens, da bei der Berechnung von pyz, bzw. pz ja nur der Kern der jeweiligen Vortices
herangezogen wurde, diese aber vielleicht eine viel grofiere (radiale) Ausdehnung besitzen als
angenommen und somit auch das Ergebnis der Berechnung der zugehorigen Bulk-Energie
korrigiert werden muss. Des Weiteren ist durchaus vorstellbar, dass fiir £ > 0.36 noch ei-
ne Stabilisierung des (sinnvoll definierten) Energiegehalts der Defekte eintreten konnte, so
dass sowohl Z-Strings als auch Zentrumsvortices eine Rolle bei der Beschreibung des Kosmos
nach dem elektroschwachen Ubergang in eine kiltere Phase spielten kénnten. Um zu einer
Entscheidung iiber die physikalische Relevanz der mit den hier vorgestellten Methoden detek-
tierten Defekte zu gelangen, muss letztlich iiberpriift werden, ob eine solche Energiedifferenz
einen wohldefinierten Kontinuumslimes besitzt.

Zur Uberpriifung dieser Thesen soll in einem ersten Schritt eine detaillierte Untersuchung
der Profilfunktionen der (elementaren) Z-Strings und Zentrumsvortices durchgefiihrt werden.
In [CIS00] wurden dazu Korrelationsfunktionen der Form

Cp(R) = (*(@)p*(®)) .  Cp(R) = (*@)E(F)) . R=[z-9l (2.78)

vorgeschlagen, die es gestatten, sogenannte ,, Quanten-Vortex-Profile“ der Z-Strings in der
Nahe des elektroschwachen crossover zu messen. Dabei ist zu beachten, dass zum einen die
Messwerte der in (2.77) definierten Operatoren EY9(y) und p(y) unabhingig von der Wahl
einer bestimmten Eichung sind, zum anderen der von dem in Gleichung (2.72) definierte
Defekt-Operator o(z) lings einer jeden Trajektorie der linienartigen elementaren Defekte
angenommene Wert eine Konstante ist. Zur Untersuchung der Profilfunktion der Zentrums-
vortices greifen wir bei der Berechnung der Korrelatoren in Gleichung (2.78) fiir o(Z) auf
den in Gleichung (2.27) definierten Operator zuriick, dessen einziger nicht-trivialer Messwert
(—1) sogar fiir jede mogliche Trajektorie identisch ist. Die dualen Plaquetten Z und g sind
Elemente derselben Ebene, die stets lokal orthogonal zur Richtung des untersuchten Seg-
ments eines String bzw. Vortex orientiert ist. Die Korrelationsfunktionen (2.78) messen also
auf eichinvariante Weise die radiale Verteilung der Energie und des Modulus der Eich- und
Higgs-Felder beziiglich eines Ursprungs, der im Fall der Zentrumsvortices durch Wahl der
DMCG und anschlieBender Projektion auf die Zentrumsfelder lokalisiert wird, im Fall der
Z-Strings sogar ohne Fixierung einer Eichung bestimmt werden kann. Die Profilfunktionen
erhalten dabei sowohl Beitrdge von Quantenfluktuationen, als auch von thermischen Fluk-
tuationen, die sich besonders unterhalb der kritischen Temperatur bemerkbar machen.

Unsere Messergebnisse der Vortex-Profilfunktionen (2.78) fiir Z-Strings und Zs-Vortices wer-
den in Abbildung 2.11 miteinander verglichen. Im Fall von C,(R) (Abb. 2.11a) finden wir zum
einen eine Bestitigung unserer Beobachtung, dass sich das Higgs-Feld als ,,blind“ gegeniiber
Zentrumsvortices erweist, und zwar unabhéngig von der Realisierungsphase der Theorie. Zum
anderen deutet der Verlauf von C' pZ (R) im Falle der Z-Strings darauf hin, dass deren Profil sich
tiber einen Radius von mehreren Gitterkonstanten Ry hin veréndert, bevor der asymptotische
Wert angenommen wird, der mit dem der Bulk-Messungen (vgl. Abb. 2.10a) iibereinstimmt.
Das Profil erfihrt eine deutliche Verinderung beim Uberqueren des crossover-Bereichs in
Richtung abgekiihlte Phase, so nimmt zum einen der mittlere Profilradius von Ry ~ 3a
(k=0.348) auf Ry ~ 5a (k=0.355) zu, zum anderen vergréBert sich der Unterschied zwischen
den Werten des Korrelators im Zentrum und weit davon entfernt. Es scheint jedenfalls so zu
sein, als ob sich das Profil der (elementaren) Z-Strings iiber eine so grofie Fliche um den
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Abbildung 2.11: Die Vortex-Profile C\,(R) und Cg(R) oberhalb (x = 0.348) und unterhalb
(k = 0.355) der crossover-Temperatur T,. Gitter: 203, 8 =8, Mj; = 100 GeV.

auf eichinvariante Weise (2.72) detektierten Kern herum erstreckt, als dass dies auch un-
ter der Annahme der hier verwendeten relativ grobkornigen Diskretisierung der dimensional
reduzierten Theorie noch nachweisbar ist. Im Gegensatz dazu finden wir fiir das Profil der
durch Zentrumsprojektion in DMCG (2.75) definierten Vortices, dass C’gz(R) in Abbildung
2.11Db bereits im Abstand Ry = a auf den asymptotisch konstanten Bulk-Wert abgefallen ist.
Falls fiir C’%Q (R) ein dhnliches Verhalten wie fiir CPZ (R) beim Ubergang in die Higgs-Phase
gelten sollte, so scheint die hier verwendete Gitterkonstante jedenfalls noch zu grofl zu sein,
als dass es moglich wire, ein etwaiges stetiges Abfallen von C’gz(R) iiber einen grofieren
Radius (in physikalischen Einheiten) als in der symmetrischen Phase feststellen zu kénnen.
Moglicherweise offenbart sich ein solches Verhalten also erst durch Simulationen bei kleine-
ren Gitterkonstanten. Fiir die Z-Strings zeigt die Funktion C’g (R), eingebettet in Abbildung
2.11b, hingegen einen Verlauf, der zusammen mit CPZ (R) an das Profil einer klassischen
Vortex-Losung erinnert: Die Energie des Eichfeldes nimmt im Zentrum ihr Maximum an —
wobei gleichzeitig der Betrag des Higgs-Feldes ein Minimum aufweist — und fillt iiber eine
charakteristische Liange Ry mit zunehmendem Abstand vom Kern auf einen asymptotisch
konstanten Wert ab, wobei gleichzeitig der Betrag des Higgs-Feldes iiber eine vergleichbare
Skala hin anwichst.

Bevor wir uns mit der Frage beschéftigen kénnen, ob sich fiir die Zentrumsvortices moglicher-
weise ein dhnlicher Profilverlauf wie fiir die Z-Strings bei einer sehr viel hoheren Auflésung
nachweisen ldsst, muss zunéchst geklédrt werden, ob sich den hier untersuchten P-Vortices im
Rahmen des elektroschwachen Standardmodells bei endlichen Temperaturen iiberhaupt eine
physikalisch sinnvolle Bedeutung im Kontinuumslimes geben ldsst. Bei der Untersuchung des
Perkolationsverhaltens der Z-Strings im Kontinuumslimes des diskretisierten SU(2)-Higgs-
Modells hat sich ndmlich gezeigt, dass es erforderlich ist, die Konstruktion von den elemen-
taren Defekt-Operatoren der Form (2.72) und (2.71) auf sogenannte ausgedehnte Operato-
ren [CGIS98a] zu verallgemeinern, um zu einer Perkolationstemperatur zu gelangen, die sich
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Abbildung 2.12: Das Skalierungsverhalten der Dichten von Zentrumsvortices, Z-Strings und
Nambu-Monopolen im Kontinuumslimes der Theorie in der symmetrischen Phase. k = 0.335,
M7, =130 GeV.

als annéhernd stabil gegeniiber einer Erhohung des Auflésungsvermogens des Gitter (5 — 00)
erweist [CGIS98b].

Um zu entscheiden, ob sich die Definition der P-Vortices in ihrer elementaren Form im Kon-
tinuumslimes als sinnvoll erweist, soll eine Untersuchung der Skalierungseigenschaften der
zugehorigen Dichte pz, ldngs der Linien konstanter Physik, wie in Kapitel 2.5.3 beschrieben,
durchgefiihrt werden. Ausgehend von einem durch x = 0.335 charakterisierten Punkt in der
symmetrischen Phase der Theorie bei fester Temperatur (konstantem g3) wurde fiir die Si-
mulationsreihe eine Higgs-Masse von Mj; = 130 GeV gewihlt und die Kopplungskonstante
£ im Intervall [5, 18] variiert. Die Selbstkopplungskonstante A des Higgs-Feldes wurde dabei
jeweils geméfl (2.64) berechnet. Da zu erwarten ist, dass sich die endliche Grie des Gitters
aufgrund der relative hohen Higgs-Masse sehr viel deutlicher bemerkbar machen wird als im
Fall einer Higgs-Masse, die das Auftreten eines Phaseniibergangs erster Ordnung erlaubt,
wurde die Gittergrofie bei der Anndherung an den Kontinuumslimes schrittweise erhoht, um
das physikalische Volumen annihernd konstant zu halten. Nach (2.64) gilt 8 oc a~!, folglich
sollte die Anzahl der Gitterpunkte bei einer Verdopplung von [ ebenfalls verdoppelt werden,
um das zugrunde liegende physikalische Volumen fix zu halten?3. Die Simulationen wurden
auf Gittern der GroBe 203, 243 und 323 durchgefiihrt und umfassten jeweils 1000 Messungen.

Im Hauptteil der Abbildung 2.12a zeigen wir die Ergebnisse zur Messung der dimensionslosen
Dichte pz, der Zentrumsvortices im Kontinuumslimes. Da es sich dabei nach (2.76) um die
mittlere Anzahl der Zentrumsvortices pro Einheitsfliche in Einheiten der Gitterkonstanten

%Die Konstruktion der k-fach ausgedehnten Operatoren ch) und jék) in [CGIS98a] basiert auf dieser Ska-
lierungsvorschrift.
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a handelt, sollte die in physikalischen Einheiten gemessene Dichte pz, die Dimension einer
inversen Fliche ([a2]) besitzen, und folglich

pz,(B) = Pz, a2(/8) (2.79)

gelten. Das Verhalten der Gitterkonstanten a(/3) als Funktion des Simulationsparameters (3
findet sich in Gleichung (2.64). Die gestrichelte Kurve stellt dabei einen least-x2-fit der fiir
B € [8,18] gemessenen Datenpunkte an eine Funktion der Form

f(B) = A%,  Ap=0.44292 , x> =331-10"¢ (2.80)

dar. Offensichtlich folgt die Dichte im Wesentlichen dem erwarteten Verlauf einer flichen-
haften Grofle langs der Linie konstanter Physik. Fiir die kleinsten Werte der untersuchten
Gitterkonstanten (8 > 14) kann das Auftreten von finite-size-Effekten in unseren Simulatio-
nen beobachtet werden: Wird die Anzahl N der Punkte des Gitters erhoht, so geht damit
auch eine systematische Vergrofierung des Wertes von pyz, (f) einher. Obwohl dieser Effekt
nicht allzu gravierend zu sein scheint, muss dennoch vermutet werden, dass zumindest die fiir
B < 14 auf Gittern der GroSe 202 erzielten Ergebnisse im thermodynamischen Limes noch
merkliche Korrekturen erfahren werden. Umso erstaunlicher ist es, dass sich die Messdaten
dabei so gut durch eine Funktion eines einzigen freien Parameters iiber das gesamte Intervall
der inversen Kopplungskonstante beschreiben lassen. Eine komplementéire Sichtweise bietet
die Messung der Dichte in natiirlichen Einheiten ag?. Die Einbettung in Abbildung 2.12a
zeigt dabei den mit $% multiplizierte Verlauf der Messdaten, was den Vorteil einer besseren
Auflosung bietet und nach (2.79) einer Grofle entspricht, die direkt proportional zur Dichte
der Zentrumsvortices in physikalischen Einheiten pyz, ist. Der Verlauf der Kurve gibt zum
einen Grund zu der Annahme, dass die Zentrumsvortexdichte tatsédchlich einen wohldefinier-
ten Kontinuumslimes besitzen sollte, zum anderen wird hier auch nochmals deutlich, dass
sich der tatséchliche Grenzwert vermutlich erst fiir Gitter N > 32 und [ > 18 stabilisieren
wird.

Neben pz, wurden auch die beiden anderen in (2.76) definierten Dichten der elementaren
Z-Strings und Monopole gemessen. In Abbildung 2.12b werden die auf physikalische Einhei-
ten skalierten Groen pz_giring B? PZ—String und pnm B3 o pym mit dem Verhalten der
physikalischen Zentrumsvortexdichte py, aus Abbildung 2.12a verglichen. Dabei zeigt sich
ein gravierender Unterschied: Withrend sich pz, 3% wie bereits gesehen annihernd konstant
verhélt, skalieren die Dichten der elementaren Z-Strings und Nambu-Monopole nicht mit
der erwarteten Potenz zwei bzw. drei der Gitterkonstanten, wie es fiir physikalisch relevante
Flachen- bzw. Volumendichten der Fall sein sollte, sondern scheinen im Kontinuumslimes zu
divergieren.

Wahrend sich also die elementaren Defekt-Operatoren im Fall der Z-Strings und Nambu-
Monopole als ungeeignet fiir die Untersuchung der Gittertheorie im Kontinuumslimes er-
wiesen haben und durch zunehmend nicht-lokale Konstruktionen ersetzt werden miissen
[CGIS98al, deuten unsere Ergebnisse zum Skalierungsverhalten von pgz, darauf hin, dass
sich die Definition der elementaren P-Vortices als robust gegeniiber einer Verfeinerung der
Diskretisierung des Gittermodells erweist und die so detektierten Objekte durchaus eine phy-
sikalische Relevanz haben konnten. Daher scheint es sinnvoll zu sein, unter Verwendung der
P-Vortex-Operatoren die bereits angesprochene Frage zu untersuchen, ob sich bei genauerer
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Betrachtung auch eine Profilfunktion fiir die Zentrumsvortices messen lidsst. Dazu wurde die
Funktion Cg(R) (2.78) lings der oben beschriebenen Linie konstanter Physik in der Hochtem-
peraturphase gemessen. Ein iiberraschendes Resultat war dabei, dass der Wert der Korrela-
tionsfunktion Cg(R) von einem Maximum am Ort des Kern in allen untersuchten Féllen
bereits fiir R = 1 auf den asymptotischen Randwert abgefallen war. Dies legt die Interpre-
tation nahe, dass sich die Gestalt der Zentrumsvortices in der Theorie der elektroschwachen
Wechselwirkung bei endlichen Temperaturen signifikant von der Gestalt der Zentrumsvortices
unterscheidet, die in der Theorie der starken Wechselwirkung fiir verschwindende Tempera-
turen eine Rolle spielen. Wihrend in letzterer davon auszugehen ist, dass die P-Vortices nur
als Indikator fiir den Ort des Kerns der rdumlich weit ausgedehnten, dicken Vortices die-
nen, scheint es im Fall der elektroschwachen Theorie zumindest bei hohen Temperaturen in
der symmetrischen Realisierungsphase so zu sein, als ob die Zentrumsvortices auf einen sehr
klar begrenzten faser- oder schlauchférmigen Raumbereich beschrankt werden kénnen, dessen
Querschnittsfliche kleiner oder gleich der Fliche sein muss, die einer elementaren Plaquette
der feinsten von uns untersuchten Rasterung des Gitters (8 = 18) entspricht. Bis zu dieser
maximal erreichbaren Auflésung konnte keine Abweichung von einem stufenformigen Vortex-
Profil nachgewiesen werden. Es bleibt die Frage zu kldren, wie es sich mit dem ,,Kontrast*
der Zentrumsvortices im Kontinuumslimes verhélt. Dazu wurde die Differenz

AC’E(anax) = H CE(O) - CE(Rmax) H (2'81)

der Profilfunktionswerte am Ort des Vortex-Kerns und in maximaler Entfernung Ry, da-
von untersucht. Das Ergebnis ist in Abbildung 2.13 zu sehen. Dabei ist zu beobachten, dass
die Differenz ACE(Rpnax) iiber das gesamte untersuchte Intervall kontinuierlich abzunehmen
scheint. Ob sich diese letztlich bei einem von Null verschiedenen asymptotischen Wert stabi-
lisieren wird, oder ob im Kontinuumslimes anhand der Profilfunktion keine Unterscheidung
mehr zwischen den Zentrumsvortices und der umgebenden Eichfeldkonfiguration moglich sein
wird, ldsst sich nicht mit Sicherheit sagen, zumal unsere Untersuchungsergebnisse zum Ver-
halten der Zentrumsvortexdichte im Kontinuumslimes gezeigt haben, dass der Einfluss der
endlichen Grofle des Gitters auf die Messergebnisse sicherlich noch nicht vernachléssigt wer-
den kann und weitere Messungen im Bereich § > 18 durchgefiihrt werden miissen.
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2.6 Zusammenfassung und Ausblick

Im vorliegenden Kapitel wurde die Rolle von Zentrumsvortices in der Theorie der starken
und elektroschwachen Wechselwirkung bei endlichen Temperaturen studiert. Dabei konnte in
einer Untersuchung der vierdimensionalen euklidischen SU(2)—Eichtheorie mit dynamischem
Skalarfeld in fundamentaler Darstellung nachgewiesen werden, dass sich das beobachtete
Stringbreaking-Phédnomen allein durch die Betrachtung von Zentrumsvortices als den rele-
vanten Freiheitsgraden verstehen und beschreiben lidsst. Die Beschreibung des Confinement-
Phénomens als Resultat einer hinreichend zuféllig flukutierenden Anzahl an DurchstofSpunk-
ten von Zentrumsvortices durch eine von einer Wilson-Loop-Kontur berandeten Fliche im
Rahmen des Random-Vortex-Modells hat die Konstruktion einer Observable motiviert, die
es ermoglicht hat, die fiir das Auftreten eines Flidchengesetzes fiir den Wilson-Loop-Operator
notwendige Unkorreliertheit der Durchstopunkte in einer Ebene rdumlich aufgeldst zu er-
fassen. Dadurch wurde es moglich, einen Punkt im Phasendiagramm zu bestimmen, an dem
sich die Theorie gleichsam an der Schwelle zwischen zwei Realisierungsphasen, charakterisiert
durch das Perkolationsverhalten der Zentrumsvortices, befindet. Das Studium des Potentials
zwischen zwei externen statischen Farbladungen an diesem Punkt hat dabei einen starken
Hinweis darauf geliefert, dass das Auftreten des Stringbreaking-Phénomens aufs Engste mit
den Perkolationseigenschaften der Zentrumsvortices verkniipft sein sollte. Nach einem inter-
medidren linearen Anstieg des Potentials mit zunehmendem Abstand der Quellen voneinan-
der wurde eine plotzliche Verinderung zu einem asymptotisch konstanten Verlauf beobachtet,
die bei einer Skala aufgetreten ist, die wir mit der mittleren gewichteten Gréfle der Cluster-
Container identifizieren konnten. Innerhalb der Container liegt also gewissermafien noch eine
Realisierungsphase von perkolierenden Clustern vor, so dass eine Messung des statischen
Potentials zwischen Farbladungen innerhalb der Winde eines solchen Containers den typi-
schen Verlauf eines Confinement-Potentials zeigt. Auflerhalb machen sich die zunehmenden
Korrelationen zwischen den Durchstopunkten der Vortices in einer fest gewéhlten Ebene
bemerkbar und man erhélt ein Umfangsgesetz fiir den Erwartungswert eines in dieser Ebene
positionierten Wilson-Loop-Operators, was zu dem beobachteten, praktisch konstanten Po-
tentialverlauf im Auflenbereich fithrt. Dieses Verhalten konnte im Infrarotbereich der Theorie
allein durch die Untersuchung des Zentrumsanteils der Eichfelder in Direkter Maximaler
Zentrums-Eichung (DMCG) reproduziert werden. Da anzunehmen ist, dass die von uns un-
tersuchte Theorie wesentliche Eigenschaften der Quantenchromodynamik aufweist, kénnen
diese Ergebnisse als ein weiteres wichtiges Indiz fiir die Relevanz der Zentrumsvortices im
Infrarotregime der Theorie der starken Wechselwirkung gedeutet werden.

Eine natiirliche Fortsetzung der hier vorgestellten Untersuchungen bestiinde zunéchst darin,
den Zusammenhang zwischen der Ausdehnung der perkolierenden Cluster und der String-
breaking-Skala im Potential genauer zu untersuchen. Des weiteren sind zumindest zweierlei
Erweiterungsrichtungen des Projektes denkbar. Zum einen wére es interessant, als néchstes
Simulationen der SU(2)—Yang-Mills-Theorie mit dynamischen Fermionen statt eines Higgs-
Feldes in fundamentaler Darstellung durchzufiihren und die daraus resultierenden Unter-
schiede systematisch zu untersuchen. Zum anderen kénnte zuniichst der Materiefeld-Sektor
unverédndert bleiben, dafiir aber die Eichgruppe auf den realistischeren Fall der SU(3) fiir
drei statt zwei verschiedener Farben der Quarks bzw. der skalaren Substitute verdndert wer-
den. Dies wére insofern interessant, als die Untersuchung von Zentrumsvortices in der rei-
nen SU(3)—Yang-Mills-Theorie bisher zumindest in Bezug auf die Reproduzierbarkeit der



92 2.6. Zusammenfassung und Ausblick

string tension der vollen Theorie im Vergleich zum Fall der SU(2) noch keine vollstindig
iiberzeugenden Ergebnisse geliefert hat und es daher interessant wére, den prinzipiellen Ein-
fluss der skalaren Materie nidher zu studieren. Zuletzt muss es natiirlich das Ziel sein, das
Stringbreaking-Ph#nomen im Vortex-Bild in der vollen vierdimensionalen SU (3)—Eichtheorie
mit realistischen dynamischen Fermionen zu studieren, um eine abschlielende Aussage zur
Relevanz der bisher sehr erfolgversprechenden Zentrumsvortices als kollektiven Freiheitsgra-
den machen zu kénnen.

Im Rahmen der Untersuchungen zum elektroschwachen Standardmodell bei endlichen Tem-
peraturen konnte festgestellt werden, dass eine sinnvolle Definition von Zentrumsvortices
in der dimensional reduzierten Theorie mit Hilfe von lokalen Operatoren moglich ist, die es
erlaubt, Objekte zu detektieren, deren Dichte sich als invariant unter Renormierungsgruppen-
Transformationen erweist und daher einen wohldefinierten Kontinuumslimes besitzen sollte.
Im Gegensatz zur Theorie der starken Wechselwirkung bei verschwindenden Temperaturen
ist die in den Vortex-Freiheitsgraden lokalisierte Energie der Eichfeldkonfigurationen dabei
auf einen rdumlich sehr eng begrenzten Bereich eingeschrénkt. Die in der Literatur berichtete
topologische Signatur eines Deperkolationsiibergangs der eingebetteten Z-Strings am elek-
troschwachen crossover konnte bestéitigt werden und findet sich ebenfalls fiir die Zentrums-
vortices wieder. Die Auflésung und Umstrukturierung eines weit verzweigten Netzwerkes von
perkolierenden Zentrumsvortices, das noch bei hohen Temperaturen vorliegt, wird von ei-
nem Abfallen der Dichte in der kiihleren Phase begleitet. Dieser Vorgang scheint langsamer
abzulaufen, als es fiir die exponentiell geringer werdende Dichte der Z-Strings der Fall ist.
Auch in Bezug auf die mittlere Grofle der Cluster von Z-Strings und Zentrumsvortices in
der Higgs-Phase konnte ein Unterschied festgestellt werden. Wahrend unsere Daten mit den
in der Literatur berichteten Beobachtungen zur Formierung von sehr kleinen Z-String-Loops
und Nambu-Monopolium-Zustédnden in hinreichend grofler Entfernung vom Deperkolations-
punkt in Einklang stehen, weisen unsere Ergebnisse im Fall der Zentrumsvortices darauf hin,
dass sich die wenigen verbliebenen Vortices in Strukturen organisieren, die immer noch eine
mittlere Ausdehnung von fast drei Vierteln des betrachteten (Gitter-) Universums besitzen
und sich dieser Wert, wie auch die Dichte selbst, bei einer weiteren Abkiihlung zu stabilisie-
ren scheint. In derselben Untersuchung hat sich gezeigt, dass sich beim Studium von Profil-
funktionen fiir die Z-Strings nach einer Mittelung iiber quantenmechanische und thermische
Fluktuationen Anzeichen fiir die semi-klassische Natur dieser Objekte finden lassen. Im Ver-
gleich dazu scheint das Auftreten von Zentrumsvortices in der Theorie der elektroschwachen
Wechselwirkung das Higgs-Feld weder unter- noch oberhalb des crossover merklich zu beein-
flussen, wohl aber sind die Zentrumsvortices in der Hochtemperaturphase anhand ihrer im
Vergleich zu den Z-Strings deutlich hoheren Energie als Inhomogenitédt im Fichfeldsektor sehr
gut zu erkennen. Eine Untersuchung des Kontrastes im Kontinuumslimes hat dabei bisher
kein eindeutiges Ergebnis geliefert. Die Durchfithrung einer solchen Untersuchung im Falle
der Z-Strings wiirde die Verwendung von geblockten Vortizitéits-Defekt-Operatoren zwingend
erforderlich machen, da gezeigt werden konnte, dass die Dichte der mittels elementarer Ope-
ratoren detektierten Z-Strings (und Nambu-Monopole) keinen Kontinuumslimes besitzt.

In diesem Zusammenhang wire es interessant zu untersuchen, ob sich fiir den kritischen
Wert x, des Deperkolationsiibergangs im Kontinuumslimes derselbe Grenzwert bei der Ver-
wendung von eichinvariant definierten, aber beliebig nicht-lokalen Operatoren als Ergebnis
eine Blocking-Prozedur im Vergleich zur Verwendung der eichabhéngigen, dafiir aber lokalen
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Zentrumsvortex-Operatoren ergibt. Im Rahmen der in dieser ersten Untersuchung erreichten
Genauigkeit scheint der Ubergang jedenfalls in beiden Sektoren am selben Punkt im Phasen-
diagramm stattzufinden. Dies ist insofern interessant, als dass sich dadurch die Moglichkeit
eroffnen konnte, ein neues Szenario zur Erklirung der Bayonenzahl-Asymmetrie auf Basis
eines Deperkolationsiibergangs entwerfen zu kénnen, wobei die Rolle der Z-Strings nun von
Zentrumsvortices eingenommen wiirde. Obwohl der Einfluss der U(1)y auf die Stérke des
elektroschwachen Phaseniibergangs nur eine geringe Auswirkung hat, erscheint es dennoch
lohnenswert, diese abelsche Gruppe in zukiinftigen Untersuchungen der dimensional redu-
zierten SU (2)-Higgs-Theorie mit zu beriicksichtigen, um ein noch realistischeres Bild von der
Natur des elektroschwachen crossover gewinnen zu kénnen. Insbesondere wére es interessant
zu untersuchen, welchen Effekt die zusétzlich durch Mischung der beiden abelschen Anteile
der elektroschwachen Eichgruppe auftretenden W-Strings auf die Zentrumsvortexstruktur in
dieser Theorie haben.






Kapitel 3

Ising-Spin-Gliser versus QCD bei
endlichen Temperaturen

3.1 Einleitung

Spinglédser sind magnetische Materialien, die sich als statistische Systeme mit einer ausge-
priagten magnetischen Frustration charakterisieren lassen, welche entweder geometrischer
Natur sein kann, oder auf ein konkurrierendes Verhalten von ferromagnetischen und anti-
ferromagnetischen Wechselwirkungen der magnetischen Momente innerhalb eines Festkorpers
zuriickzufiihren ist [BY86]. Wahrend im ersten Fall die Struktur des Kristallgitters die ent-
scheidende Rolle spielt!, handelt es sich im zweiten Fall hauptsichlich um die Auswirkungen
stochastischer Unordnung, wie sie in Form von zufilligen Dotierungen in Legierungen auf-
treten konnen. Die Frustration eines solchen Systems &uflert sich also darin, dass es i.A.
unmoglich ist, die Grundzustandskonfiguration der Spins in einem solchen Kristallgitter zu
bestimmen, indem man sich ausschlieBlich auf die Auswirkungen lokaler Anderungen einzel-
ner Spins konzentriert. Die Fluktuationen eines einzelnen Spins kénnen mit anderen Worten
die Umordnung eines Grofiteils der Spins des Gitters hervorrufen, wihrend sich das System
einem neuen energetischen Minimum annédhert [AR98]. Die Folge ist, dass dieser Vorgang auf
vielen verschiedenen Zeitskalen abliduft und insbesondere bei niedrigen Temperaturen davon
auszugehen ist, dass sich der Weg ins thermische Gleichgewicht als extrem lang erweisen und
iiber eine Reihe von metastabilen Zustédnden fiihren wird. Bei hohen Temperaturen verhalten
sich diese Systeme dhnlich wie paramagnetische Materialien. Wird die Temperatur abgesenkt,
so tritt irgendwann ein Ubergang in die sogenannte Spin-Glas-Phase auf, in der sich Doméinen
gleich orientierter Spins ausbilden, die den geordneten Zustand repréisentieren.

Seit der Einfithrung des zweidimensionalen Prototyps durch Edwards und Anderson [EA75]
im Jahr 1975 wurden diverse Modifizierungen dieses Modells hinsichtlich ihrer Grund-
zustandseigenschaften mittels Monte-Carlo-Simulationen untersucht [MB79, MB80, MY82,
OMS85, HM85, RSB196, MSKS97]. Neben der Erweiterung auf eine realistischere kubische
Geometrie des Gitters wurde auch die Dimensionalitdt der Spin-Variablen erhéht und aufler
den Ising-Spins (n=1) auch XY —Modelle (n=2) und Heisenberg-Magnete (n=3) mit den
unterschiedlichsten Arten und Verteilungen von Bindungen zwischen den Spins untersucht.

'Ein klassisches Beispiel ist das von Wannier studierte planare Ising-Modell mit ausschlieSlich anti-
ferromagnetischen Bindungen auf einem trianguliren Gitter [Wan50].

95



96 3.1. Einleitung

Fiir alle drei Modelle konnte dabei gezeigt werden, dass sie einen Ubergang in die Spin-
Glas-Phase bei einer endlichen kritischen Temperatur 7, >0 aufweisen, sofern die Bindungen
zwischen den magnetischen Momenten an benachbarten Gitterpldtzen einer Normalvertei-
lung entstammen [BCF100,LY03]. Auf einem d =2 dimensionalen Gitter hingegen kann es
unter der Annahme einer solche Verteilung keinen Phaseniibergang oberhalb von T, =0 ge-
ben, die untere kritische Dimension wurde zu d. >2 bestimmt [RSB*96]. Der Grundzustand
am Temperaturnullpunkt erweist sich dabei als eindeutig. Anders sieht die Situation im Fal-
le einer bimodalen Verteilung der Bindungen aus. In diesem generischen Modell nimmt die
Wechselwirkung zwischen benachbarten magnetischen Momenten mit gleicher Wahrschein-
lichkeit einen der diskreten Werte +.J an und der Grundzustand ist entartet [LGM104]. Es
war lange Zeit unklar, ob der Ubergang in die Spin-Glas-Phase bei einer endlichen kritischen
Temperatur stattfindet oder nicht [SM97,Hou01], bevor Hartmann und Young [HY01] letzt-
lich zeigen konnten, dass eine geordnete Phase ebenfalls nur am Temperaturnullpunkt stabil
ist. Die Theorie zeigt jedoch marginales Verhalten (d.=2) und eine sorgfiltige Messung der
kritischen Exponenten hat ergeben, dass die beiden Modelle fiir T, = 0 in unterschiedliche
Universalitétsklassen fallen. Eine entsprechende Untersuchung bei niedrigen, aber von Null
verschiedenen Temperaturen hat erste Hinweise darauf geliefert [JLMMO06], dass beide Mo-
delle fiir endliche Temperaturen zu derselben Universalitidtsklasse gehoren kénnten, wobei in
einer nachfolgenden Untersuchung [KLCO07| jedoch festgestellt wurde, dass zur Bestitigung
dieser Hypothese weitere Simulationen auf deutlich gréfleren Gittern durchgefithrt werden
miissten.

FEine nahe liegende Verallgemeinerung dieses generischen bimodalen +.J—Modells besteht dar-
in, die Wahrscheinlichkeit x, mit der eine anti-ferromagnetische Wechselwirkung (—.J) fiir eine
bestimmte Bindung innerhalb des Gitters auftritt, zu verdndern. Dies beschreibt beispielswei-
se eine Anderung des Mischungsverhiltnisses zweier Komponenten einer Legierung. Folglich
ist es aus experimenteller Sicht nahe liegend und durchaus sinnvoll, ein bestimmtes Spin-Glas
durch das Verhéltnis x von anti-ferromagnetischen zur Gesamtzahl aller Bindungen innerhalb
einer solchen Probe zu charakterisieren. Tatséchlich wird & iiblicherweise auch in numerischen
Simulationen als der geeignete Parameter zur Messung der Frustration innerhalb einer be-
stimmten Realisierung oder Instanz des Modells herangezogen. Die Bindungen werden dabei
als quenched variables aufgefasst, d.h. jede Instanz ist durch eine feste (rdumliche) Verteilung
der Bindungen gegeben und beziiglich dieses Hintergrunds, der durch einen bestimmten Wert
von k charakterisiert werden kann, wird dann die Thermodynamik der Spin-Variablen unter-
sucht. Die Berechnung von statistischen Mittelwerten interessierender Observablen geschieht
dabei in zwei Schritten. Zum einen wird ein thermisches Mittel (---) beziiglich einer festen
Instanz berechnet, zum anderen ist iiber die verschiedensten Realisierungen der Unordnung
im Gitter [---]ay zu mitteln. Dies entspricht der Untersuchung verschiedener Proben eines
Materials, das durch ein festes Verhiltnis von ferromagnetischen zu anti-ferromagnetischen
Bindungen charakterisiert ist, deren rdumliche Anordnung innerhalb des Festkorpers sich
aber von Instanz zu Instanz stark unterscheiden kann. Die Grenzfille k = 0 sowie k = 1 ent-
sprechen dabei einem rein ferromagnetischen bzw. anti-ferromagnetischen Ising-Modell. In
beiden Fillen kann der Grundzustand exakt berechnet werden und weder der Ferromagnet,
dessen Grundzustand einer Konfiguration von parallelen Spins entspricht, noch der Anti-
Ferromagnet mit einer schachbrettartigen Grundzustandskonfiguration zeigen Anzeichen fiir
das typische Verhalten eines Spin-Glases. Aus diesem Grund gelten Instanzen mit x ~ 0.5
iiblicherweise als besonders schwierig zu handhaben, da man bei der Untersuchung dieser
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echten“ Spin-Gléser besonders hiufig mit dem bereits diskutierten nicht-lokalen Verhalten
des Modells konfrontiert wird.

Neben der iiblichen Charakterisierung durch den Parameter s gibt es noch eine alternati-
ve Moglichkeit, die verschiedenen Instanzen eines frustrierten Ising-Modells zu klassifizieren.
Diese beruht auf einer Entdeckung, die zuerst von Bieche et al. [LBR80] berichtet wur-
de und anschlieflend von Nishimori et al. [Nis81,NS83] in erweiterter Form dazu genutzt
werden konnte, exakte Resultate bei der Untersuchung des Modells fiir spezielle Werte der
Temperatur und Dotierung zu gewinnen: Da das bimodale Ising-Modell eine (,,versteckte®)
Zo— Eichsymmetrie besitzt, kann sich bei einer entsprechenden Transformation der Spin-
und Bindungsvariablen eine dramatische Anderung sowohl in der Anordnung, als auch insbe-
sondere in der Anzahl der anti-ferromagnetischen Bindungen innerhalb des Gitters ergeben,
ohne dass sich bestimmte Observablen wie beispielsweise die thermische Energie oder die
spezifische Wirme des Systems éndern wiirden, da diese Groflen eichinvariant sind. Folglich
konnen verschiedene Instanzen zu ganz unterschiedlichen Werten von x genau dieselben phy-
sikalischen Eigenschaften aufweisen, weshalb eine alternative Klassifizierung wiinschenswert
erscheint, welche diese thermodynamischen Gemeinsamkeiten betont.

Das Ziel der vorliegenden Untersuchung ist es, die Konsequenzen dieser Zs—Eichsymmetrie
des Modells zunéchst in d = 2 Dimensionen ndher zu untersuchen. Zur Quantifizierung der
Frustration des bimodalen Ising-Modells wird dazu eine eichinvariante Kenngrofie vorgeschla-
gen. Dabei handelt es sich um die Vortex-Dichte p, d.h. den Bruchteil nicht-trivialer Plaquet-
ten innerhalb einer festen Instanz, die uns bereits im vorigen Kapitel bei der Behandlung einer
zentrumsprojizierten Eichtheorie begegnet ist. Zunéchst bestimmen wir die exakte Energie des
Grundzustands im Rahmen des alternativen Klassifizierungsschemas als Funktion des Para-
meters p, wobei ein sogenannter minimum-weight perfect matching Algorithmus zum Einsatz
kommt. Anschliefend wenden wir uns der Untersuchung des frustrierten Ising-Modells bei
endlichen Temperaturen in der Néhe des (pseudo-) kritischen Punktes . mit den Methoden
der Monte-Carlo-Simulation zu. Es wird gezeigt, dass der von Kessler und Bretz [KB90] vorge-
schlagene Algorithmus tatséchlich in der Lage ist, Cluster von Spins auf eichinvariante Weise
zu konstruieren und zur Aktualisierung vorzuschlagen. Dies stellt eine der Grundvorausset-
zungen fiir die erfolgreiche Anwendbarkeit derartiger Algorithmen auf Spin-Glas-Probleme
dar, da die physikalisch relevanten Observablen eichinvariant und folglich Funktionen von p
sind. Als erste Anwendung untersuchen wir das Verhalten der spezifischen Wéarme bei einer
Verénderung der Frustration des Systems und verifizieren die Unabhéingigkeit der Ergebnisse
von einer speziellen Wahl der Eichung.

Als weitere Anwendung untersuchen wir das Verhalten der Quantenchromodynamik in ih-
rer dimensional reduzierten Form in der Nidhe der kritischen Temperatur T.. Das Modell
besitzt eine globale Zy—Symmetrie, was die Einfithrung zusétzlicher Freiheitsgrade im Ska-
larfeldsektor der Theorie motiviert und eine Abbildung derselben auf ein dreidimensionales
Ising-Spin-Glas mit dynamisch generierten Bindungen erméglicht, das mittels einer Erweite-
rung des bereits diskutierten Cluster-Algorithmus auf den Fall d = 3 in der Nihe des Pha-
seniibergangs simuliert werden kann. Eine Analyse der Autokorrelationszeiten verschiedener
Observablen runden die Untersuchungen zur Effizienz des Cluster-Algorithmus im Kontext
nicht-abelscher Eichtheorien mit Skalarfeldern in adjungierter Darstellung ab.
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3.2 Die eichinvariante Klassifizierung von Ising-Spin-Glisern
durch Vortices

Die Zustandssumme des zu untersuchenden frustrierten Ising-Modells in d Dimensionen ist

durch
Z = Z exp (=S H|U,0]) = Z exp(ﬁ Z Up oy ay) (3.1)
{0} {0z} 1=(zy)

gegeben, wobei die Spins 0, € {—1,+1} in einem d—dimensionalen Gitter angeordnet sind
und nur in Wechselwirkung mit ihren néchsten Nachbarn stehen sollen. Im Exponenten wird
dabei iiber alle diese mit ¢ = (zy) bezeichneten Verbindungen zwischen benachbarten Git-
terplatzen x und y summiert. Die Frustration des Modells, die sich fiir verschwindende Tem-
peraturen (S — oo) bemerkbar macht, rithrt daher, dass sowohl ferromagnetische (U, > 0)
als auch anti-ferromagnetische (U; < 0) Wechselwirkungen zwischen den Spins des Gitters
auftreten konnen. Im Folgenden untersuchen wir ein Modell mit bimodaler Verteilung der
sogenannten Bonds U, € {—1,+1}, welche iiblicherweise durch den Parameter x € [0,1]
charakterisiert wird, der den Bruchteil der anti-ferromagnetischen Bonds des Gitters angibt.
Dabei legen wir den Fall offener Randbedingungen zugrunde und beschrinken uns zunéchst
auf ein planares Gitter.

In der Einleitung wurde bereits erwéhnt, dass schon frith die Moglichkeit erkannt wurde,
dass Bond-Verteilungen zu ganz unterschiedlichen Werten von x dennoch dieselben thermo-
dynamischen Eigenschaften aufweisen sollten [LBR80, Nis81, NS83]. Der Grund dafiir liegt
in der besagten Zs—Eichsymmetrie des Modells, denn sowohl die Zustandssumme (3.1), als
auch Observablen wie beispielsweise die innere Energie oder die Warmekapazitéit, die sich als
(logarithmische) Ableitungen von Z ergeben,

(E(B)) = —%mz - —< 3 angay>, (3.2)
(=(zy)
2
Cv(®) = yyminZ = $[(B6) - (B, (3.3

sind nvariant unter den folgenden Eichtransformationen €2, € Zy der Spin- und Bond-
Variablen:

ot = Q, 0, (3.4)
Q —1
Uy = Qa Ugay) Q-

Betrachten wir eine bestimmte Konfiguration von Spins {0} auf einer bestimmten Instanz
eines Spin-Glases, die durch die Verteilung der Bonds {U;} bestimmt wird. Fiithrt man nun
eine Eichtransformation durch, so resultiert daraus eine neue Konfiguration von Spins {o%,},
die auf einer anderen Instanz {U;} des Spin-Glases definiert ist, wobei die alten und neu-
en Spin- und Bondverteilungen gerade in einer solchen Weise aufeinander abgebildet werden,
dass sich die beiden Zusténde in thermodynamischer Hinsicht nicht unterscheiden. Wohl aber
unterscheiden sich die Verteilungen der ferro- und anti-ferromagnetischen Bindungen inner-
halb der beiden Instanzen, so dass sich der Wert von x durch Eichtransformationen also
drastisch #&ndern kann, obwohl die thermodynamischen Observablen und somit die Physik
unbeeinflusst bleiben.
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Eine Moglichkeit zur eichinvarianten Klassifizierung der Frustration einer Instanz eines
Ising-Spin-Glases besteht darin, eine Anleihe bei der Identifizierung von Zentrumsvortices
in einer Zg—projizierten SU(2)—Eichtheorie (Kapitel 2.3) zu nehmen. Dazu definieren wir
Plaquetten-Variablen auf dem dualen Gitter

Pl = [ v, (3.6)

lex

die fiir die vorgegebene Verteilung der Bonds einer bestimmten Instanz berechnet werden.
Die Plaquette P(Z) entspricht dabei der in Gleichung (2.26) definierten Plaquette. Ein nicht-
trivialer Wert P(Z) = —1 signalisiert eine nicht-triviale duale Feldstirke, diese Plaquette wird
bekanntermafien als von einem Zy— Vortex durchstof3en bezeichnet. Da wir offene Randbedin-
gungen verwenden, ist eine vorgegebene Verteilung der Bonds {U;} durch die Kenntnis aller
dualen Plaquetten — bis auf Z,—Eichtransformationen — vollstindig rekonstruierbar?. Folglich
ist eine Kategorisierung aller Instanzen eines Ising-Spin-Glases in Aquivalenzklassen maglich,
die durch die Verteilung der Vortices eindeutig bestimmt sind. Die einfachste Moglichkeit
besteht dabei darin, alle Instanzen zu einer festen Anzahl an Vortices, unabhéngig von ihrer
Position auf dem dualen Gitter, zu einer Aquivalenzklasse zusammenzufassen, da jede der
so definierten Aquivalenzklassen durch einen einzigen, eichinvarianten Parameter charakte-
risiert wird. Um dariiber hinaus die Komplexitéit des Problems charakterisieren zu kénnen,
ohne jeweils auf die Grofie des zugrunde liegenden Gitters Bezug nehmen zu miissen, fithren

wir die Vortez-Dichte
Ny

P (-1
ein, wobei Ny die Anzahl der Vortices bezeichnet und (L1 — 1) (L2 — 1) die Gesamtzahl aller
Plaquetten eines zweidimensionalen Gitters der Dimension Li X Lo mit offenen Randbedin-
gungen ist. Dadurch wird es moglich, eine Vielzahl von auf den ersten Blick génzlich voneinan-
der verschiedenen Instanzen mit hochst unterschiedlicher Anzahl von anti-ferromagnetischen
Bonds einheitlich zu behandeln. Eine Illustration findet sich in Abbildung 3.1. Alle drei In-
stanzen sind durch p = 0 charakterisiert und eichdquivalent zu einem reinen Ferromagneten.

(3.7)

Wie bereits in der Einleitung diskutiert, erfordert die Berechnung des Erwartungswerts einer
Observable O auch die Mittelung iiber die herrschende Unordnung des Systems, die primér
durch die Verteilung der Bonds charakterisiert ist:

[(O)] = N1 271" O[U, 0] exp(-BHIU, 0]) . (3.8)
{U} {o}

Dies bedeutet in unserem Fall, eine Mittelung iiber ein Ensemble von Instanzen zu einem
festen Wert von p vorzunehmen. Zu beachten ist dabei, dass die beiden Instanzen (a) und
(b) in Abbildung 3.1 im Rahmen des konventionellen Klassifizierungsschemas bei der Un-
tersuchung des generischen +J—Modells als unterschiedliche Realisierungen von Unordnung
gewertet und bei der Berechnung von (3.8) bertiicksichtigt werden miissten. Umgekehrt besteht

2Fiir periodische Randbedingungen ist dies nicht der Fall, da auch eichinvariante Wilson-Loops mit einer
von Null verschiedenen Windungszahl die Verteilung der negativen Bonds charakterisieren. Wird eine Quan-
tenfeldtheorie betrachtet, so bezeichnet man iiblicherweise einen iiber die zeitliche Richtung der zugehorigen
Mannigfaltigkeit geschlossenen Wilson-Loop als Polyakov-Loop, fiir das hier vorliegende statistische System
enfillt die Unterscheidung von zeitlicher und rdumlicher Dimension, weshalb wir jeden tiber periodische Gren-
zen hinweg geschlossenen Loop als Polyakov-Loop bezeichnen wollen.



100 3.2. Die eichinvariante Klassifizierung von Ising-Spin-Glisern durch Vortices

L

|_|_|_|r

2

iy

B e

31
)

k=05 p=0 (c) k=0, p=0

(a) k=05, p=0

Abbildung 3.1: Drei verschiedene Instanzen eines planaren 30 x 30—Spin-Glases zu p = 0.
Die Verteilung der Bindungen in (a) und (b) ergeben sich als unterschiedliche Eichtransfor-
mationen (3.5) eines reinen Ferromagneten (c).

das Ensemble zu x = 0.5 auch aus einer Vielzahl von eichindquivalenten Konfigurationen zu
ganzlich verschiedenen Werten von p. Die Verwendung von « oder p zur Charakterisierung der
Frustration bringt daher gewissermaflen komplementére Sichtweisen auf das Ising-Spin-Glas
zum Ausdruck.

3.2.1 Der Grundzustand in Landau-Eichung

Der Entartungsgrad des Grundzustands hiangt wesentlich von der Art der Wechselwirkung ab,
die zwischen den Spins eines frustrierten Ising-Modells herrscht. Wahrend der Grundzustand
eines Spin-Glases mit Gaussischer Verteilung der Bonds (Mittelwert 0, Breite 1) eindeutig ist,
erweist sich dieser im Falle einer bimodalen Verteilung i.A. als hochgradig entartet [APO7].
Aufgrund der Eichinvarianz lésst sich jedoch zeigen, dass sich unter all diesen moglichen
Grundzustinden eines +.J—Modells? immer die durch eine parallele Ausrichtung aller Spins
des Gitters charakterisierte Konfiguration finden ldsst, sofern unter allen eichédquivalenten
Instanzen diejenige mit der minimalen Anzahl an anti-ferromagnetischen Bonds ausgewihlt
wird. Dies entspricht der Bedingung

FloY = Y U % max. (3.9)
l=(zy)

Bei F[U] handelt es sich dabei gerade um das eichfixierende Funktional der Landau-Eichung
in einer Zo—Eichtheorie?.

Zum Beweis der Behauptung nehmen wir an, eine vorgegebene Bond-Verteilung {U} sei
gemiB (3.5) in eine Verteilung {Uf?} transformiert worden, welche der Bedingung (3.9)

geniige. Dann stellt die Energie der Spin-Verteilung {¢°}, in der alle Spins parallel zuein-

ander ausgerichtet sind (o0 - 0'2 = 1, Vx,y), eine untere Schranke fiir die Energie einer

3Eine Reskalierung der Temperatur fithrt auf den hier betrachteten Fall J € {—1,+1}.
4Vergleiche dazu die Diskussion der iterativen Fixierung der Landau-Eichung in Anhang C.
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beliebigen Spin-Konfiguration {o,} in der Instanz {U§*} dar:

Elo] = - Z O'xU?LO'y:— Z UZ'QL
(=(zy) (=(zy)
> —ZUZQL:—ZO'QUZQLUSZE[UO]. (3.10)
l=(zy) l=(zy)

Dabei wurde benutzt, dass im Fall einer Zy—Eichtheorie Q! = Q, gilt. Folglich handelt es
sich wegen Elo] > E[0] bei dem uniformen Zustand {c"} tatsichlich um einen Grundzu-
stand des frustrierten (bimodalen) Ising-Modells in zwei Dimensionen. Aufgrund der residu-
ellen, ungebrochenen globalen Zs-Symmetrie, welche die Theorie in Landau-Eichung (3.9)
noch aufweist, ist der Grundzustand zumindest zweifach entartet. Falls mehrere Eichtrans-
formationen {{2,} existieren, die alle das eichfixierende Funktional maximieren und nicht
durch eine triviale globale Transformation (£, — —€,, V) auseinander hervorgehen, fiihrt
dies auf einen Entartungsgrad des Grundzustands, der sich als zweimal der Anzahl dieser
unterschiedlichen Transformationen berechnet.

3.2.2 Die Energie des Grundzustands

Die exakte Bestimmung des Grundzustands eines Spin-Glases in d > 2 Dimensionen gehort
zur Klasse der NP-schweren Probleme [Bar82,PS82,Dev(2]. Sofern externe Magnetfelder eine
Rolle spielen, gilt dies sogar fiir planare Systeme, was die Untersuchung von groflien Gittern
selbst fiir d = 2 extrem aufwendig macht, da fiir Probleme aus dieser Klasse keine Algo-
rithmen bekannt sind, deren Laufzeiten t. wie t. o< L™ skalieren. Erstaunlicherweise kann
aber ein zweidimensionales Spin-Glas-Problem ohne externe Felder auf ein sogenanntes least-
weight minimal matching problem abgebildet werden, das eine graphentheoretische Losung
in polynomialer Zeit erlaubt. Werden offene Randbedingungen in beiden Richtungen des Git-
ters zugrunde gelegt, bietet sich dazu der von Edmonds [Edm65a, Edm65b] vorgeschlagene
Algorithmus an. Problemstellungen mit gemischten Randbedingungen kénnen ebenfalls in
polynomialer Zeit gelost werden [LBR80], was sich als wichtig erweist, wenn zu kléren ist,
ob eine bestimmte Art von Wechselwirkung zwischen den Spins das Auftreten einer sta-
bilen Spin-Glas-Phase bei endlichen Temperaturen erlaubt®. Der Grundgedanke all dieser
Algorithmen besteht darin, nicht-triviale Plaquette des Gitters paarweise auf eine solche Art
miteinander zu verbinden, dass die Summe der zugehorigen (gewichteten) Verbindungswege
minimiert wird und keine der Vortices bei diesem Abgleich unberiicksichtigt bleiben. Genau
diese Idee, welche nochmals den Aspekt der Eichinvarianz des Problems in den Vordergrund
riickt, wird es uns auch erlauben, unsere numerischen Ergebnisse zur Energie des Grundzu-
stands als Funktion des neuen Komplexitdtsparameters p auf natiirliche Weise zu deuten.

Im vorigen Kapitel wurde gezeigt, dass die Eichinvarianz des Systems dazu genutzt werden
kann, eine vorgegebene Instanz {U,} des frustrierten Ising-Modell gemifi Gleichung (3.5) in
eine Instanz {U, ? L} zu transformieren, fiir welche die Anzahl an anti-ferromagnetischen Bin-
dungen N4 minimal ist. Die Abschiitzung (3.10) hat weiterhin gezeigt, dass der Zustand {o°}
(ebenso wie auch {—c"}) ein Grundzustand des Spin-Glas-Gitters in Landau-Eichung (3.9)
ist. Folglich lésst sich die Energie des Grundzustands in dieser Eichung direkt als Differenz

5Siehe beispielsweise [HY01] und Referenzen darin.
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von N4 und der Anzahl ferromagnetischer Bindungen Ng berechnen:

Ey = —Za Upboy=— > U™
(=(zy)

_ _[NA.(—1)+NF.(+1)] =Na—Np. (3.11)

Da die Energie eine eichinvariante Grofle ist, handelt es sich bei FEy natiirlich auch um
die Grundzustandsenergie des urspriinglichen Spin-Glases {U;}, die Berechnung der Ener-
gie gemifl Gleichung (3.11) kann aber nur in Landau-Eichung erfolgen.

Zur Berechnung der Energie des Grundzustands wird daher folgender Algorithmus verwendet:

1. Fiir eine vorgegebene Instanz {U,} des Spin-Glases werden die zugehorigen Vortices auf
dem dualen Gitter berechnet.

2. Die minimale Anzahl N4 der anti-ferromagnetischen Bindungen, die mit der im ersten
Schritt berechneten Verteilung der Vortices kompatibel ist, muss bestimmt werden.

3. Die Energie des Grundzustands pro Bindung berechnet sich dann zu

Ey Ny — Np Ny
= - =" - _14+2-= 12
N, N, + N, (3.12)

wobei Ny die Gesamtzahl aller Bindungen des Spin-Glas-Gitters bezeichnet.

Die Spin-Konfiguration {5}, die einen Grundzustand beziiglich der urspriinglichen Instanz
{U,} darstellt, kann durch Invertierung der Eichtransformation €; rekonstruiert werden.
Dazu miissen im zweiten Schritt des Algorithmus neben der Anzahl auch die Positionen der
anti-ferromagnetischen Bindungen bestimmt werden. Unter Verwendung von o -02 =1Vuz,y
fiihrt dies auf die Gleichungen

Ug/‘ZLD =02 Uy 0y (3.13)

welche sukzessiv fiir ganz {5} gelost werden konnen. Insgesamt ist der zweite Schritt des
Algorithmus dabei mit dem gréfiten numerischen Aufwand verbunden, denn die Konstrukti-
on der minimalen Instanz ist nach (3.9) dquivalent zur Fixierung der Landau-Eichung, und
dieses Problem gehort bekanntlich in d > 3 Dimensionen selbst fiir eine so einfache Gruppe
wie Zo zur Klasse der NP-schwierigen Probleme. In d = 2 Dimensionen kann jedoch unter der
Voraussetzung offener Randbedingungen der Algorithmus von Edmonds [Edm65a, Edm65b]
herangezogen werden, dessen Wirkungsweise in Abbildung 3.2 illustriert wird: Werden zwei
benachbarte dualen Plaquetten (e) durch einen anti-ferromagnetischen dualen Bond (gestri-
cheltes Segment) miteinander verbunden, so entspricht dies auf dem Originalgitter einem
anti-ferromagnetischen Bond (schwarzes Segment) an der gemeinsamen Kante der beiden
Plaquetten. Endet ein solcher anti-ferromagnetischer dualer Bond an einem Punkt Z, so
gilt P(z) = —1, daher muss notwendigerweise eine zusammenhdngende Kollektion von anti-
ferromagnetischen dualen Bonds (gestrichelte Linie) konstruiert werden, welche die vorgege-
benen Vortices (rote Quadrate) auf dem dualen Gitter miteinander verbindet. Da aber jeder
anti-ferromagnetische Bond auf dem dualen Gitter einem anti-ferromagnetischem Bond auf
dem Originalgitter entspricht, fithrt die Minimierung der Gesamtlange aller Verbindungswege
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Abbildung 3.2: Vortices (rote Qua-
drate) sind Punkte des dualen
Gt-e-1e-1e-|-e-1-0 Gitters und werden durch Pfa-
de aus dualen Bonds (gestrichel-

te Linien) minimaler Lénge mit-

1| A einander verbunden. Den dualen
' Bonds entsprechen die N4 anti-

CH-e ferromagnetische Bonds (schwarze

Segmente) im Originalgitter.

zwischen Paaren von Vortices auf dem dualen Gitter zur Minimierung der Anzahl N4 anti-
ferromagnetischer Bonds auf dem Originalgitter.

Im linken Teil der Abbildung 3.3 wird das Ergebnis der Anwendung des Algorithmus von
Edmonds im realistischen Fall eines Gitters der Dimension 30 x 30 mit offenen Randbedin-
gungen gezeigt. Zunédchst wurden Ny = 150 Vortices zufillig auf dem Gitter verteilt, danach
wurde die zugehorige minimale Instanz {UZQ L} in polynomialer Zeit [LBR80] berechnet. Die
verwendeten Symbole sind dieselben wie in Abbildung 3.2.

Als néchstes wurde die auf die Anzahl der Bindungen normierte Energie des Grundzustands
als Funktion der Vortexdichte p untersucht. Das Ergebnis ist im rechten Teil der Abbildung 3.3
zu sehen. Die Messungen wurden auf Gittern der Dimension L x L fiir L = 60, 90,120 Git-
terpunkte durchgefiihrt, wobei offene Randbedingungen zugrunde gelegt wurden. Die exakte
Berechnung der Grundzustandsenergie ersetzt die Berechnung eines thermischen Mittelwertes
am Temperaturnullpunkt und fiir die nach Gleichung (3.8) durchzufiihrende Mittelung [ - - .y
itber die Unordnung des Systems, die durch den Wert des Parameters p = Ny /(L — 1)? cha-
rakterisiert wird, wurde fiir jeden der betrachteten Werte von p € [0, 1 ein Ensemble von 100
Instanzen herangezogen, die durch zufillige Verteilung der jeweiligen Ny, Vortices generiert
wurden. Unabhéngig von der Ausdehnung L des Gitters scheinen alle Datenpunkte fiir €(p)
auf derselben Kurve zu liegen. Dies deutet darauf hin, dass Korrekturterme, die aufgrund der
endlichen Grofie der verwendeten Gitter zu erwarten sind, fiir L > 60 bereits sehr klein oder
schon vernachléssigbar sind. Fassen wir alle verfiigharen Messwerte fiir p < 0.3 zusammen,
so kann die Energie des Grundzustands pro Bindung fiir kleine Werte der Dichte p sehr gut
durch eine Funktion der Form

e(p) ~ —1 + 0.39(7) p*49) (3.14)

approximiert werden. Dies deutet auf ein Verhalten der Form €(p) 41 o< \/p hin. Tatséchlich
ist es moglich, unter der Annahme eines Wertes von 1/2 fiir den Exponenten einen ausge-
zeichneten Ein-Parameter-Fit an dieselben Datenpunkte mit einem vergleichbaren y? durch-
zufithren [LLQRO9]:

e(p) = —1 + 0.403(5) - /p . (3.15)
Eine storungstheoretische Behandlung des Systems fiir kleine Werte der Vortexdichte p er-

scheint aufgrund der singuléren Ableitung de/dp am Nullpunkt wenig sinnvoll. Méglicherweise
lasst sich aber das Verhalten von €(p) in diesem Regime im Rahmen einer Beschreibung des
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Abbildung 3.3: Links: Ny = 150 zufillig auf einem (dualen) 30 x 30 Gitter verteilte Vortices
(rote Quadrate) mit zugehorigem minimal matching durch anti-ferromagnetische (schwarze)
Bindungen: € = Ey/Ny = —0.82759(1). Rechts: Die Energie des Grundzustands pro Bindung
als Funktion der Vortexdichte €(p), berechnet fiir offene Randbedingungen.

Systems als (stark verdiinntes) semi-klassisches Gas von Vortices auf dem dualen Gitter ver-
stehen.

In einem ersten Schritt in diese Richtung konnte jedenfalls eine einfache Erkldrung fiir die
GesetzméBigkeit, die in Gleichung (3.15) zum Ausdruck kommt, gefunden werden [LLQRO09]:
Bei einer zufilligen Verteilung der Vortices auf dem Gitter nimmt jeder Vortex im Mittel
die Fliche 7° = p~! ein, wobei ihr mittlerer Abstand (die mittlere freie Weglinge) mit ¢
bezeichnet werde. Da der minimal matching Algorithmus darauf basiert, die Gesamtlange der
Verbindungen zwischen den Vortices zu minimieren, ist davon auszugehen, dass die mittlere
Léinge der Verbindungen zwischen Paaren von Vortices (¢) := Na/(Ny /2) etwas kleiner sein
wird als ihr mittlerer Abstand. Zumindest fiir hinreichend kleine Werte der Dichte sollte
daher die Relation (/) ~ o/ fiir @ < 1 unabhingig von der Grée des Gitters gelten. Fiir die
minimale Anzahl an anti-ferromagnetischen Bindungen N4 finden wir daher die Abschitzung

1 1
§NV<€>’~*§(L—1)204\//_),

und dies fithrt nach Gleichung (3.12) mit N, = 2L(L — 1) unter der Annahme offener Rand-

bedingungen auf
« 1
—1+= 1——|.
e(p) T3 VP [ L]

Die Formel erkldrt also zum einen das experimentell beobachtete Anwachsen der Grundzu-
standsenergie des Spin-Glases pro Bindung mit der Wurzel der Vortexdichte, zum anderen
liefert sie eine Voraussage fiir den Koeffizienten «/2 < 0.5, die bereits ziemlich gut mit dem
numerisch gefundenen Wert in Gleichung (3.15) iibereinstimmt. Auflerdem kann der ebenfalls
beobachtete Einfluss von Korrekturtermen abgeschétzt werden, der auf die Verwendung von
Gittern endlicher Ausdehnung L zuriickzufiihren ist.

Ny = (3.16)

~
~

(3.17)

Fiir die beiden Grenzfélle p = 0 und p = 1 ist eine exakte Bestimmung der Grundzustands-
energie moglich. Ersterer entspricht dem bereits anhand von Abbildung 3.1 diskutierten Fall
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eines reinen Ferromagneten (x = 0), bzw. einer durch Eichtransformation daraus hervorge-
gangenen Instanz. Fiir alle Elemente dieser durch p = 0 charakterisierten Aquivalenzklasse
gilt €(0) = —1, insbesondere auch fiir den reinen Anti-Ferromagneten (k = 1). Der andere
Extremfall entspricht einem Vortex-Gas grofitmoglicher Dichte, jede der Plaquetten des Git-
ters wird dabei von einem Vortex durchstoflen. Das zugehorige minimal matching ergibt sich
durch Verbindung von jeweils zwei benachbarten Vortices auf dem dualen Gitter, entspre-
chend einer anti-ferromagnetischen Bindung auf dem rdumlichem Gitter. Fiir ungerade L ist
N4 = (L —1)?/2 und aus Gleichung (3.12) ergibt sich

1 1
)=— 14— . 3.18
) =-3 |1+1] (3.18)
Im thermodynamischen Limes erwarten wir daher den Wert €(1) = —%, vgl. dazu nochmals

den rechten Teil von Abbildung 3.3.

3.3 Ein eichinvarianter Cluster-Algorithmus

Die generische Schwierigkeit bei der Simulation von Spin-Systemen besteht darin, Autokor-
relationen der Konfigurationen innerhalb einer Markov-Kette gering zu halten. Dies ist ins-
besondere dann von hochster Bedeutung, wenn die physikalische Korrelationsliange & auf
einen Wert von der Groflenordnung des gesamten betrachteten Systems anwichst, da sich
die (integrierte) Autokorrelationszeit 7 iiblicherweise wie 7 o< £* verhéilt, wobei z den dyna-
mischen kritischen Exponenten bezeichnet®. Dieses Phiinomen ist bereits an dem einfachsten
zweidimensionalen Spin-System, dem ferromagnetischen Ising-Modell, zu beobachten, dessen
exakte Losung 1944 von Onsager gefunden wurde. Das Modell zeigt einen ferromagnetischen
Phaseniibergang bei T, = 2.27.J/kp (vgl. [LB91]), was bei Verwendung unserer Konventio-
nen (. ~ 0.44053 bedeutet. Wihrend das System in der symmetrischen Phase (5 < 3.) das
thermische Gleichgewicht unabhéngig von der Wahl der Ausgangskonfiguration einer Markov-
Kette in wenigen Schritten auch auf groflen Gittern erreicht, ist eine Simulation unterhalb
der kritischen Temperatur bereits auf Gittern mit einer linearen Ausdehnung von L > 100
Punkten unter Verwendung eines lokalen Update-Algorithmus praktisch unmoglich. Derar-
tige Algorithmen weisen einen dynamischen kritischen Exponenten von z ~ 2 auf. Einen
Ausweg bieten die sogenannten Cluster-Algorithmen [SW87, Wol89], die in der Lage sind,
ganze Doménen von gleich orientierten Spins zu identifizieren und auf einmal zu aktuali-
sieren, wodurch sich Autokorrelationen drastisch verringern lassen. Die niedrigen Werte der
zugehorigen dynamischen kritischen Exponenten — fiir translationsinvariante planare Ising-
Ferromagnete gilt beispielsweise 0 < z < 0.3 [CEPS93] — ermdglichen dabei zum einen die
Simulation von Spin-Systemen einer realistischeren Grofle, zum anderen wird dadurch auch
signalisiert, dass die Cluster-Algorithmen offensichtlich iiber weite Bereiche der Tempera-
turskala in der Lage sind, die Physik des jeweiligen Grundzustands angemessen zu erfassen.
Tatséchlich wird ja die Ausbildung von Doménen in Ferromagneten unterhalb von T, ex-
perimentell beobachtet und im Grenzfall verschwindender Temperatur wird der Betrag der
(spontanen) Magnetisierung maximal, da der Grundzustand einem einzigen Cluster von par-
allel orientierten Spins entspricht.

5Vgl. auch die Diskussion im Anhang B.4.
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Bei der Konstruktion von effizienten Cluster-Algorithmen zur Simulation von reinen ferro-
bzw. anti-ferromagnetische Spin-Systeme spielt die Kenntnis des Grundzustand am Tempe-
raturnullpunkt eine wichtige Rolle. Da der Grundzustand von Spin-Glédsern i.A. aber gerade
nicht exakt bestimmbar ist, erweist sich eine derartige Konstruktion als extrem schwierig.
Vielmehr wird h#ufig auf eine Mischung verschiedener Algorithmen zuriickgegriffen. Prinzi-
piell sollte aber ein Cluster-Algorithmus zur Simulation von Ising-Spin-Glésern ferro- und
anti-ferromagnetische Bindungen gleichermaflen behandeln kénnen und muss somit eine Ver-
allgemeinerung des urspriinglich von Swendsen und Wang [SW87] vorgeschlagenen Prototyps
darstellen. Es soll dabei nochmals betont werden, dass die Identifizierung von Clustern auf
eichinvariante Weise geschehen muss, um der (versteckten) Eichinvarianz des Modells Rech-
nung tragen zu koénnen. Dies wird sich insbesondere im Hinblick auf die in Kapitel 3.5 zu
besprechende Anwendung eines solchen Algorithmus auf den Fall eines Modells der QCD bei
endlichen Temperaturen als unabdingbar erweisen. Wére es namlich erforderlich, zunéchst
eine Eichung zu fixieren, um zu einer Definition von Clustern zu gelangen, so wiirde dies einen
jeden so gearteten Algorithmus aufgrund des erhéhten numerischen Aufwands von vornher-
ein als wenig praktikabel erscheinen lassen. Das eigentliche Problem wire dabei nur verlagert
worden, da die meisten Algorithmen zur (iterativen) Fixierung einer Eichung bekanntermafien
gerade unter dem Problem des critical slowing down leiden. Legen wir das im vorherigen Ka-
pitel anhand des elektroschwachen Standardmodells bei endlichen Temperaturen diskutierte
Konzept der dimensionalen Reduktion auch bei der Behandlung der Quantenchromodyna-
mik bei endlichen Temperaturen zugrunde, so muss ein aussichtsreicher Kandidat fiir einen
Cluster-Algorithmus zur Simulation dieses Modells zumindest in der Lage sein, auf Gittern
der Dimension d = 3 zu operieren.

Obwohl fiir die Simulation von planaren Spin-Gléasern zuletzt sehr effiziente Algorithmen
vorgeschlagen wurden (siehe z.B. [Hou01,LGM™04]), untersuchen wir im Folgenden den we-
niger spezialisierten Algorithmus von Kessler und Bretz [KB90] niher, da dieser sich véllig
unabhéngig von der Dimension des Gitters formulieren ldsst. In der Tat stellt sich die da-
bei verwendete Update-Vorschrift auch als eichinvariant heraus, so dass der Algorithmus das
Potential zur Verallgemeinerung im oben beschriebenen Sinne besitzt. Um dies zu verstehen,
folgen wir der Konstruktion des Swendsen-Wang-Algorithmus [SW87] und beriicksichtigen
bei der Umformulierung der Zustandssumme (3.1) das Auftreten von anti-ferromagnetischen
Bindungen durch eine Symmetrisierung der Zerlegung. Die grundlegende Idee bei der Kon-
struktion eines solchen Cluster-Algorithmus stellt die Verkniipfung des Spin-Modells mit ei-
nem Perkolations-Modell dar [MM94], das Resultat ist eine (umfassendere) Zustandssumme,

die sich in die Form
Z =M NN Ployn) (3.19)
{0z} {ne}

bringen lidsst, wobei mit ny € {0,1} zusétzliche (Bond-)Variablen eingefiihrt wurden, die
Auskunft dariiber geben, ob zwei benachbarte Spins Teil eines noch genauer zu definierenden
Clusters von Spins sind. In die Definition der Wahrscheinlichkeit

Po.n) = T [(1=0)6u0 + 0001 a1, (3.20)
(=(zy)

gehen dabei neben den Cluster-Bonds ny, die aktiviert (ny, = 1) und deaktiviert (ny = 0)
sein konnen, auch ein verallgemeinertes Kronecker-Delta §(,) sowie die inverse Temperatur (3
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geméf

_ 1 firx=+1
—1—e 2B Y— 3.21
7 c (@) { 0 firxz=-1 } ( )

ein. Es ist leicht zu sehen, dass das Ergebnis einer Integration beziiglich der Bonds das ur-
spriingliche, durch die Zustandssumme (3.1) beschriebene frustrierte Ising-Modell darstellt,
umgekehrt erhilt man nach Ausfithrung einer Integration beziiglich der Spins das Analogon
des Perkolationsmodells im rein ferromagnetischen Fall [MM94]. Wir greifen nun die Idee
von Swendsen und Wang auf, eine alternierende Aktualisierung der Spins {o} und Bonds
{n¢} zur Simulation von (3.19) durchzufiihren. Der Erfolg des Algorithmus bei der Behand-
lung von ferromagnetischen Systemen bei tiefen Temperaturen beruht hauptsédchlich darauf,
dass die dominierenden langreichweitigen Moden, die sogenannten ,langsamen* Spin-Wellen,
als die relevanten kollektiven Anregungen richtig identifiziert und kohérent in einem Schritt
aktualisiert werden koénnen. Ein Cluster von Spins ldsst sich dabei charakterisieren als ei-
ne Kollektion von verbundenen, aktivierten Bonds. Zur Konstruktion eines solchen Clusters
wihlen wir in einer vorgegebenen Konfiguration von Spins {o} eine bestimmt Variable o, als
Startpunkt und gehen dann wie folgt vor:

1. Uberpriife alle (2d) Nachbarn o, des vorgegebenen Spins o, sowie die zugehorigen
Bindungen U; = Uy, zwischen ihnen: Falls Uy anti-ferromagnetisch ist und o, und oy,
parallel zueinander stehen, oder falls U, ferromagnetisch ist und o, und o, anti-parallel
orientiert sind, so wird die zugehorige Bondvariable stets deaktiviert (ny = 0). In allen
anderen Fillen findet eine Aktivierung (n, = 1) mit der Wahrscheinlichkeit ¢ = 1—e~28
statt, wodurch neue Spins an der Peripherie des Clusters hinzukommen kénnen.

2. Ausgehend von den neu hinzugekommenen Spins wird der vorherige Schritt erneut
durchgefithrt. Die Rekursion endet, wenn alle Nachbarn iiberpriift wurden und der
Cluster nicht mehr weiter anwachsen kann.

Ein Schritt innerhalb einer Markov-Kette zur Aktualisierung des Gitters besteht nach Swend-
sen und Wang darin, diese Prozedur solange durchzufiihren, bis jeder Spin des Gitters Teil
eines Clusters ist und dann alle Cluster mit einer Wahrscheinlichkeit von 50% zu aktuali-
sieren. Stattdessen verwenden wir eine Variante, die auf einen Vorschlag von Wolff [Wol89]
zuriickgeht, und die sich als besonders vorteilhaft erwiesen hat, wenn wenige grofie Cluster
innerhalb der Verteilung der Spins dominieren: Nachdem per Zufall ein Ausgangspunkt x
gewahlt wurde, wird der zugehorige Cluster konstruiert und immer aktualisiert. Dies wird
solange wiederholt, bis insgesamt mindestens Ny Bonds aktualisiert wurden, wobei diese nicht
notwendigerweise alle verschieden sein miissen.

Die Eichinvarianz des Algorithmus beruht auf der Invarianz des relevanten Terms o,U 0y
in Gleichung (3.20) unter Eichtransformationen. Dabei enthalten die durch diese Vorschrift
definierten Cluster sowohl parallele, durch ferromagnetische Bindungen verkniipfte Spins,
als auch anti-parallele Spins an benachbarten Gitterpunkten, die iiber anti-ferromagnetische
Bindungen gekoppelt sind. Wird nun eine Eichtransformation durchgefiihrt, so kehren sich die
Verhiiltnisse innerhalb eines Clusters (moglicherweise) um”’, die Identifizierung aller zu einem
bestimmten Cluster gehdrigen Spins bleibt davon aber unberiihrt, da das Produkt o,U 0y
stets invariant bleibt.

"Parallele Spins mit ferromagnetischer Wechselwirkung werden zu anti-parallelen Spins mit anti-
ferromagnetischer Wechselwirkung.
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Abbildung 3.4: Links: Die thermische Energie pro Bindung, berechnet fiir die in Abbildung 3.3
gezeigte Instanz zu Ny = 150 als Funktion der inversen Temperatur 5. Rechts: Die zugehorige
integrierte Autokorrelationszeit der thermischen Energie. Beidesmal offene Randbedingungen.

3.4 Anwendung I: Thermische Energie und spezifische Warme

In einem ersten Schritt wurde die thermische Energie (3.2) pro Bindung fiir die in Abbil-
dung 3.3 gezeigte Instanz eines Spin-Glases mit Ny = 150 Vortices als Funktion von
berechnet. Die minimale Anzahl anti-ferromagnetischer Bindungen in Landau-Eichung be-
trigt in diesem Fall Ny = 150, gleichbedeutend mit rymi, = 150/1740 ~ 0.086. Zum Nachweis
der Eichinvarianz des Algorithmus wurde eine weitere Berechnung der thermischen Ener-
gie in einer zweiten Instanz mit Ny = 834 bzw. x =~ 0.48 durchgefiihrt, die durch An-
wendung einer zufilligen Eichtransformation auf die erste, in Landau-Eichung befindliche
Instanz, erzeugt wurde. Obwohl sich die beiden Instanzen also beziiglich ihres Anteils an
anti-ferromagnetischen Bindungen stark unterscheiden, sollte dies fiir die mittlere thermische
Energie irrelevant sein, sofern der Algorithmus in der Lage ist, eichdquivalente Modell gleich
zu behandeln. Der Nachweis dieser Behauptung findet sich im linken Teil von Abbildung 3.4.
Es ist zu erkennen, dass die Monte-Carlo-Simulationen im gesamten von uns betrachteten
Temperaturintervall fiir beide Instanzen iibereinstimmende Ergebnisse liefern, und zwar un-
abhéngig von der Wahl der Ausgangskonfiguration innerhalb der jeweiligen Markov-Kette.
Die gestrichelte Linie in der Abbildung markiert die Energie des Grundzustands pro Bindung
e = Ey/Ny, die sich im Grenzfall § — oo ergibt und bereits in Kapitel 3.2.2 mit Hilfe des
Algorithmus von Edmonds fiir diese Instanz exakt berechnet wurde (vgl. Abbildung 3.3).

In der rechten Hilfte der Abbildung 3.4 finden sich unsere Ergebnisse zur Untersuchung der
integrierten Autokorrelationszeit Tin(€) der thermischen Energie pro Bindung als Funkti-
on der inversen Temperatur. Die Messwerte ergeben sich als Mittelung iiber ein Ensemble
von 1000 verschiedenen Instanzen zu p = 0.178, die durch zufillige Verteilung von jeweils
Ny = 150 Vortices auf Gittern mit 30 x 30 Punkten erzeugt wurden. Fiir hohe Tempera-
turen (8 < 0.6) verhélt sich der Algorithmus optimal, aufeinander folgende Konfigurationen
sind praktisch unkorreliert (7in;(€) < 1). Wird die Temperatur weiter abgesenkt (5 > 0.6), so

nimmt die Autokorrelationszeit der thermischen Energie kontinuierlich zu. Da zu erwarten ist,
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Abbildung 3.5: Links: Die spezifische Wérme Cy () fiir planare Systeme (L = 30) mit unter-
schiedlicher Frustration p. Rechts: Einfluss der Gittergrofie auf die spezifische Wéarme eines
Ferromagneten (p = 0). In beiden Féllen wurden offene Randbedingungen zugrunde gelegt.

dass sich das beobachtete Verhalten im Limes f — oo nicht wesentlich &ndern wird, bedeutet
dies, dass der Algorithmus zur Simulation des Systems in der Néhe des kritischen Punktes
T, = 0 letztlich nicht geeignet ist. Es zeigt sich aber, dass die Durchfithrung von héchstens 50
Sweeps zur Aktualisierung der Gitterkonfigurationen fiir g < 0.9 ausreichend erscheint, um
minimal korrelierte Messwerte zu erhalten. Das bedeutet aber, dass das Spin-Glas-System in
der Umgebung des pseudo-kritischen Punktes, der durch Messung der spezifischen Wirme
Cy(B) bestimmt werden kann (vgl. Abbildung 3.5), durchaus einer numerischen Untersu-
chung zugénglich ist.

Als néchstes wurde eine Untersuchung der Autokorrelationszeiten der normierten thermischen
Energie in einem Ensemble von eichdquivalenten Instanzen durchgefiihrt. Die Resultate waren
in allen Fillen identisch, was wir als eine weitere Bestétigung fiir die eichinvariante Opera-
tionsweise des Cluster-Algorithmus werten. Eine Erlduterung der eingesetzten Methode zur
Bestimmung der Autokorrelationszeiten findet sich in Anhang B.4.

Zuletzt haben wir das Verhalten der spezifischen Wérme (3.3) verschiedener Spin-Gléser bei
zunehmender Vortexdichte p untersucht. Alle Simulationen wurden fiir eine einzelne Instanz
der jeweiligen Vortexdichte durchgefiihrt, der Extremfall p = 0.178 entspricht dabei einer
zufilligen Dotierung eines Ferromagneten mit Ny = 150 Vortices. Unsere Ergebnisse wer-
den in Abbildung 3.5 gezeigt. Der (pseudo-) kritische Punkt 8* ergibt sich als Position des
Maximums von Cy (), das sich bei Vergroferung des Systems immer deutlicher ausprégt.
Im rechten Teil von Abbildung 3.5 wird dies anhand des ferromagnetischen Ising-Modells
(p = 0) bei Annahme offener Randbedingungen illustriert. Die gestrichelte vertikale Linie
markiert den kritischen Punkt 8., an dem der Ubergang des Systems von der nicht magneti-
sierten in die ferromagnetische Phase im thermodynamischen Limes auftritt [LB91]. Wihrend
fiir Gitter mit einer linearen Ausdehnung von L = 100 Gitterpunkten bereits eine ziemlich
gute Ubereinstimmung mit der von Onsager berechneten Losung beobachtet werden kann,
macht sich der Einfluss der endlichen Grofie des Gitters im Fall L = 30 aufgrund der offenen
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Randbedingungen noch recht deutlich bemerkbar. Bei Verwendung von periodischen Rand-
bedingungen fiir ein ansonsten gleichartiges Gitter kommt die Position des Maximums der
spezifischen Warme némlich bereits deutlich ndher an 3. zu liegen, wobei die Breite des peaks
von dieser Verdnderung nur unwesentlich beeinflusst wird. Eine prézise Bestimmung von £*
der untersuchten Spin-Glas-Instanzen ist folglich im Rahmen der auf Gittern der Ausdehnung
L = 30 durchgefiihrten Simulationen sicherlich noch nicht moglich, nichts desto trotz lasst
sich das interessierende Verhalten der spezifischen Wirme als Funktion der Dotierung p aber
dennoch bereits fiir moderate Gittergrofien illustrieren.

Im linken Teil der Abbildung 3.5 ist zu erkennen, dass sich der pseudo-kritische Punkt bei
einer Zunahme der Dichte p von nicht-triviale Plaquetten zu niedrigeren Temperaturen hin
verschiebt. Gleichzeitig nimmt auch die Ausprigung des jeweiligen Maximums immer mehr
ab, was darauf hindeutet, dass der Phaseniibergang zweiter Ordnung des reinen Ferroma-
gneten bei S, zu einem crossover abgeschwicht wird und der Ubergang fiir groBere Werte
von p zunehmend flielend wird. Auch dieses Resultat hat sich wie erwartet als eichinvari-
ant erwiesen. Scheinbar fiihrt also die zunehmende Unordnung bzw. Frustration des Spin-
Modells zu einer Art ,,Gefrierpunktserniedrigung”. Zur Klirung der Frage nach der Natur
dieser Uberginge sind jedoch sicherlich noch weitere Untersuchungen auf Gittern gréferer
Ausdehnung erforderlich.

3.5 Anwendung II: QCD bei endlichen Temperaturen

Cluster-Algorithmen spielen nicht nur eine wichtige Rolle bei der Simulation von reinen Ising-
Spin-Systemen mit verschiedenartigen Wechselwirkungen, sondern auch bei der numerischen
Untersuchung von komplexeren Systemen der statistischen Physik, fiir die eine geeignete Ein-
bettung von Ising-Spins gefunden werden kann. In einigen Féllen hat sich diese Idee [CEPS93]
als duflerst fruchtbar erwiesen und zu sehr beeindruckenden Resultaten gefiihrt. Im Fall des
O(N)-symmetrischen o—Maodells konnte beispielsweise gezeigt werden [Wol89], dass der Wert
des dynamischen kritischen Exponenten z sogar unterhalb desjenigen eines entsprechenden
Ising-Modells liegt. Die grundlegende Idee besteht darin, das urspiinglich zu untersuchende
System auf ein resultierendes Spin-System abzubilden, welches dann (hoffentlich) effizienter
simuliert werden kann, als es ohne den Kunstgriff der Einbettung moglich wire. Dabei ist
zu beachten, dass die Effizienz eines solchen Algorithmus in Bezug auf die Bekdmpfung des
ceritical slowing down durch zwei vollig verschiedene Aspekte bestimmt wird. Zum einen muss
die gewahlte Einbettung der Ising-Spins in der Lage sein, die Dynamik der langreichweitigen
Moden des urspriinglichen Modells iiberhaupt richtig zu erfassen. Dadurch ist zumindest im
Prinzip gewihrleistet, dass eine Aktualisierung der Spins sich sinnvoll in die Aktualisierung
kollektiver Anregungen im urspriinglichen Modell {ibersetzen kann. Zum anderen muss der
verwendete Monte-Carlo-Algorithmus zumindest in einem Parameterbereich zur Aktualisie-
rung des effektiven Spin-Modells geeignet sein, der fiir das urspriingliche Modell von Inter-
esse ist. Diese beiden Aspekte konnen letztlich nur durch eine Vielzahl sehr zeitaufwendiger
Simulationen getrennt voneinander untersucht werden, da es leicht passieren kann, dass der
positive Effekt einer im Prinzip sinnvollen Einbettung durch einen ungeeigneten Monte-Carlo-
Algorithmus zunichte gemacht und die entsprechende Einbettung daher filschlicherweise als
ungiinstig verworfen wird. Umgekehrt zeigt sich beispielsweise im Fall des bereits erwéihn-
ten o —Modells mit globaler O(N)—Symmetrie, dass sich gleich mehrere Cluster-Algorithmen
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als gleichermaflen geeignet bzw. ungeeignet erweisen, je nachdem, ob fiir die Einbettung des
Ising-Spins die Untergruppe der Reflexionen bzgl. einer zufiilligen Richtung # € SV~! oder
aber alle Rotationen herangezogen werden [Nie96].

Der Erfolg dieser Methode beruht im Fall der O(N)—Modelle wesentlich darauf, dass sich
das resultierende Modell bei einer geschickten Wahl der Einbettung als ein Ising-Modell mit
ortsabhéngigen, aber ferromagnetischen effektiven Bindungen By~ erweist®, fiir welches
eine direkte Verkniipfung der Korrelationslange mit der Grofle der Cluster besteht, was die
Einfithrung sogenannter improved estimators erlaubt [Nie96]. Das generische Problem bei der
Suche nach wirksamen Cluster-Algorithmen fiir reine Eichtheorien besteht nun darin, dass die
lokale Symmetrie der Wirkung i.A. dazu fiihrt, dass es sich bei dem resultierenden Spin-Modell
um ein frustriertes System handelt, in dem zusétzliche Wechselwirkungen, beispielsweise zwi-
schen nicht benachbarten Spins oder einem effektiven externen Magnetfeld, auftauchen. Bei
der Konstruktion von Cluster-Algorithmen wird daher hidufig versucht, zunéchst eine globale
Symmetrie des Systems — wie beispielsweise die globale Reflexionssymmetrie {o} — {—o} des
(frustrierten) Ising-Modells (3.1) — zu identifizieren, um dann eine entsprechende Transfor-
mation auf inhomogene Art und Weise — im Falle des von Wolff vorgeschlagenen Algorithmus
beispielsweise beschriinkt auf einzelne Cluster — durchzufithren [CEPS93]. Dieses Konstrukti-
onsprinzip ist nicht allein auf Ising-Spins beschréankt, beispielsweise fithrt die Einbettung von
U(1)—Spins in Theorien mit SU(N)—Symmetrie zu interessanten effektiven XY —Modellen.
Es hat allerdings bisher eher den Anschein, als ob sich das Einbettungsprinzip letztlich als
ungeeignet zur Uberwindung der Probleme erweisen wird, mit denen man sich bei der Simu-
lation von Eichtheorien mit kontinuierlicher Symmetrie konfrontiert sieht [CEPS93].

Im vorigen Kapitel wurde gezeigt, dass sich ein planares Ising-Spin-Glas als eine Zy—FEich-
theorie auffassen liasst, wobei sich die Wechselwirkung zwischen benachbarten Ising-Spins als
ortsabhéingig erweist und sowohl ferromagnetischer wie auch anti-ferromagnetischer Natur
sein kann. Bei der anschlieenden numerischen Untersuchung hat sich der eingesetzte ei-
chinvariante Cluster-Algorithmus als sehr gut dazu geeignet erwiesen, verschiedene derartige
Modelle, deren Frustration durch den Komplexitéitsparameter p charakterisiert werden kann,
in der Néhe ihres jeweiligen pseudo-kritischen Punktes zu simulieren. Es besteht daher die
Hoffnung, dass das Prinzip der Einbettung von Spins also durchaus zum Erfolg fithren kénnte,
sofern es sich bei dem resultierenden Modell um eine Eichtheorien mit diskreter Symmetrie-
gruppe handelt. Zur Uberpriifung dieser Hypothese wollen wir als néchstes eine Erweiterung
auf den dreidimensionalen Fall vornehmen und eine Zs—Eichtheorie untersuchen, die sich als
Abbildung der QCD bei endlichen Temperaturen auf ein Ising-Spin-System mit dynamisch
generierten, effektiven Kopplungen ergibt.

3.5.1 Diskretisierung und Einfiihrung von Spin-Variablen

Die Zustandssumme dieser euklidischen, dimensional reduzierten Theorie (vgl. Kapitel 2.5.2)
ist durch

Z = /DUDAO exp {— S[U, A} (3.22)

8 Ahnliches gilt auch fiir die klassischen Gittermodelle mit perfekter Wirkung [Nie96].
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gegeben und wird in diskretisierter Form von der Wirkung [KLR198]

S[U, Ao] BZ(l——Re{trUp >——Ztr[A0 R(X) Ag(x + k) Ul (x)|  (3.23)

2163:

+ Y Balw,y, B) tr [A5(x)] + + g5t [Ao(x ik

bestimmt. Die auftretenden Summationen beziehen sich dabei auf raumliche Punkte, Richtun-
gen und Plaquetten eines dreidimensionalen kubischen Gitters. Die dimensionslosen Grofien
x,y ermoglichen es, unter Verwendung der Relationen

A3 m?(g3) 6
Tr = 5 Yy = 1 3 9 B = T3> (324)
g3 g3 ags

sowie der einzigen dimensionsbehafteten Gréfie g3, eine Verbindung zur Kontinuumsformu-
lierung der Theorie herzustellen®. Wie bereits in Kapitel 2.5 erldutert, tritt als Ergebnis der
dimensionalen Reduktion der reinen Yang-Mills-Theorie neben den rdumlichen Komponen-
ten des Eichfeldes Ay(x) (bzw. Ui(x)) in der effektiven Wirkung (3.23) auch ein skalares
Feld Ag(x) auf, welches sich unter der adjungierten Darstellung der Gruppe transformiert.
Die Selbstkopplung dieses Feldes wird mittels des Parameters x reguliert, und die Tempe-
ratur in der vollen D =4 dimensionalen Eichtheorie entspricht dem Parameter y. Wird die
Temperatur abgesenkt, so lidsst sich bei einer kritischen Temperatur 7, ein Ubergang von
der (symmetrischen) Coulomb-Phase (y > y.) in die (gebrochene) Higgs-Phase (y < y.)
der Theorie beobachten. Die kritische Temperatur ist dabei eine monoton fallende Funktion
der Selbstkopplungskonstanten, y.(x). Gleichzeitig nimmt bei einer VergroBerung von z die
Ordnung des Phaseniibergangs zu. Bevorzugt man die bei der Formulierung von Eichtheorien
mit skalaren Feldern auf dem Gitter beinahe universell gebriduchliche Parametrisierung der
Wirkung durch den Hopping-Parameter x und eine Selbstkopplungskonstante A (vgl. dazu
Kapitel 2.4.1 und 4.3.2), so kénnen die jeweiligen Ergebnisse durch eine Reskalierung der
Form

X) = /B2 Ap(x), A = 21623, %673, Kk = 6(68)7" (3.25)

miteinander verglichen werden, sofern x und A dabei als Parameter einer effektiven, dimen-
sional reduzierten Theorie mit der entsprechenden Verdnderung der Kopplung 8 im Sektor
der Eichfelder aufgefasst werden.

Neben der Eichsymmetrie weist die Theorie noch eine diskrete Symmetrie (R-Parity) unter
globalen Reflexionen des adjungierten Skalarfeldes

Ap(x) — —Ap(x) Vx, Ap(x) = Af(x)T* (3.26)

auf. Dies motiviert die Einfiihrung eines zusétzlichen Freiheitsgrades o(x) € {—1,1}, der
durch eine Koordinatentransformation

[ Ao(x) Ao(x)\  [o(x)Ag(x)
o () o () ()

Die Definition der Funktion B2(z,y, 8) findet sich in [KLR'98]: GI. (7).
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Eingang in die Zustandssumme der Theorie findet:

Z = /Da DU DAy exp {— S[U, Ag]} = /DUDJDAO J[Ag, 0] exp {— S[U, Ao, 0]} .

(3.28)
Das normierte Zo—Maf ist dabei gegeben durch
Do = ! d 2
7= ona ];[ o(x) (3.29)
und die Jacobische Determinante der Transformation (3.27) ergibt sich zu
JlAg,0] = |Det(& [Ag,o))| = |J[o(x) = 1. (3.30)

Es erscheint wichtig zu betonen, dass es sich dabei nicht um eine Zerlegung der , Spin-
Variablen“ { A3} im iiblichen Sinne handelt [CEPS93], da dies — im Gegensatz zu den Vektor-
Modellen mit einer globalen Symmetrie — aufgrund der Eichsymmetrie des kinetischen Terms
des Skalarfeldes zu nicht-diagonalen Wechselwirkungen fiithren wiirde, die als zusétzliche
Kopplung der Ising-Variablen {o} an ein effektives externes Magnetfeld interpretiert wer-
den konnen. Stattdessen erhélt der kinetische Term des Skalarfeldes in Gleichung (3.23) die
Form eines im Allgemeinen frustrierten Ising-Modells

SHiggS[U7 AOva] = - Z /8<XY>U(X)U(Y)7 (331)

<xXy>
wobei die effektiven Kopplungen

Bexys = % tr [Ao(x) Uk (x) Ag(y) Ug(x)} , Yy = X + aéy (3.32)

zwischen den Spins an benachbarten Orten des Gitters x und y von der Dynamik der zu-
grunde liegenden SU (3)—FEichtheorie diktiert werden. Fiir den quadratischen und quarti-
schen Anteil in der Selbstwechselwirkung des Skalarfeldes spielt die Einfiihrung der neuen
Variablen ebenso wenig eine Rolle wie fiir die Yang-Mills-Wirkung. Folglich ist zu erwar-
ten, dass sich besonders Anderung im kinetischen Term des Skalarfeldes in der Verteilung
der ,Kopplungskonstanten®“ (3.32) widerspiegeln werden und somit ein Phaseniibergang der
QCD bei endlichen Temperaturen auch von einer Verédnderung der Frustration des zugehori-
gen Spin-Glas-Modells begleitet sein wird. Fassen wir die Kopplungen (3.32) als reellwertige
Link-Variablen {U,} (1-Formen) auf,

uk(x) = 5<xy> ) y=x-+ aék (k = 17 27 3) (333)

so ldsst sich zusammen mit den Ising-Spins {o} wie in Gleichung (3.4) und (3.5) eine dreidi-
mensionale Zo—FEichtheorie definieren. Die Link-Variablen kénnen dabei wie schon in Kapitel
3.2 zur Charakterisierung der induzierten Spin-Glas-Instanzen herangezogen werden, durch
eine Berechnung von P[U](X) (2.26) kann ndmlich die Frustration des Systems wieder auf
eichinvariante Weise als Dichte p der negativen Plaquetten des Gitters quantifiziert werden.
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3.5.2 Numerische Ergebnisse

Das Ziel der vorliegenden Untersuchung ist es zu kldren, ob der in Kapitel 3.3 vorgestellten
Cluster-Algorithmus prinzipiell zur Simulation der QCD bei endlichen Temperaturen geeignet
sein konnte. Da sich die Stérke eines solchen Algorithmus besonders in der Nihe eines kri-
tischen Punktes im Phasendiagramm der Theorie zeigen sollte, wollen wir als ,, Testgeldande*
ein Gebiet heranziehen, innerhalb dessen ein Phaseniibergang zweiter Ordnung auftritt und
die Korrelationslinge des Systems folglich divergiert. Wir orientieren uns an den in [KLR 98]
berichteten Ergebnisse und untersuchen im Folgenden das Intervall y € [—1,+1] fiir = 0.3
und § = 12.0.

Zur Aktualisierung der Eichfelder {U} und Skalarfelder {4y} wurde in den meisten Fillen
ein einfacher Metropolis-Algorithmus herangezogen, damit die Auswirkungen des Cluster-
Algorithmus moglichst direkt zu Tage treten kénnen und nicht aus einer Vielzahl von Ef-
fekten extrahiert werden miissen, die der Kinsatz der iiblicherweise verwendeten, elaborier-
ten Simulationsmethoden (vgl. Anhang B sowie [KLR98]) nach sich zieht. Die Aktualisie-
rungstabellen wurden dabei mit jeweils 5000 Elementen (und ihren Inversen) befiillt, die im
Eichfeldsektor durch Wahl von drei verschiedene Einbettung von zufillig generierten SU(2)-
Elementen (9, = 0.15) konstruiert wurden (siche Anhang C.1.1). Im Skalarfeldsektor wurden
die Aktualisierungsvorschlige fiir die Komponenten {d4¢} zufiillig aus einer Normalverteilung
mit Breite §, = 0.15 gewéhlt [GH84]. Dadurch ergaben sich im Intervall y € [—1, 41| mittlere
Akzeptanzraten von etwa [0.55,0.61] im Eichfeldsektor, sowie [0.82,0.83] im Skalarfeldsek-
tor fiir alle untersuchten Gitter (N = 8,12, 16,20), wobei withrend eines schachbrettartigen
Sweeps durch das Gitter immer N,, = 5 Multihits fiir jede Variable durchgefiihrt wurden.
Die einzige Modifizierung des Cluster-Algorithmus zur Aktualisierung der Ising-Spins {o}
bestand in der Verdnderung der Aktivierungswahrscheinlichkeit der Bonds

Gary> = 1 — e 2o (3.34)

in Gleichung (3.20). Vor jeder Messung wurden die urspriinglichen Freiheitsgrade {Ag} mit
Hilfe von (3.27) wieder restauriert.

In einem ersten Schritt haben wir uns von der korrekten Implementierung des Cluster-
Algorithmus iiberzeugt. Dazu wurden Messungen des dimensionslosen Ordnungsparameters
(Tr(A3)/g3) fiir die spontane Brechung der globalen Reflexionssymmetrie!?, sowie des ska-
laren Kondensats (Tr(A3)/g3) in der Nihe des kritischen Punktes y. durchgefiihrt, und
zwar sowohl unter Verwendung eines Heatbath-Overrelaxation-Algorithmus (Anhang B.3)
ohne Einfiihrung der Spin-Variablen, als auch unter Verwendung des oben beschriebenen
Metropolis-Cluster-Algorithmus. Bei der Aktualisierung der Spins wurde die von Wolff vor-
geschlagene Variante adaptiert: Es wird ein Ausgangspunkt x gewahlt, der zugehorige Cluster
wird konstruiert und unbedingt aktualisiert. Ist die Anzahl der Spins in diesem Cluster klei-
ner als die Gesamtzahl aller Spins des Gitters, so wird nochmals per Zufall ein (anderer)
Ausgangspunkt fiir die Routine gewéhlt. Ein Sweep ist beendet, wenn die Summe der auf
diese Weise aktualisierten Spins die Anzahl aller Spins des Gitters tibersteigt. Dies beinhaltet
auch die Moglichkeit, dass manche Cluster mehrfach, andere dafiir nicht aktualisiert werden.

9 Aufgrund der Spurfreiheit der Generatoren T (D.2) handelt es sich bei Tr(A3) um den ersten nicht-
trivialen Operator, der in der Lage ist, den Effekt von (3.26) zu detektieren.
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Abbildung 3.6: Skalare Kondensate und Dichte der frustrierten Plaquetten. Der kritische
Punkt liegt bei y. ~ 0.0. Periodische Randbedingungen, g = 12.0, x = 0.3.

Die symmetrische Phase ist durch einen verschwindenden Wert des Ordnungsparameters cha-
rakterisiert, da betragsgleiche positive und negative Messwerte fiir Tr(A3)/g3 mit derselben
Wahrscheinlichkeit anfallen. Im Idealfall des thermodynamischen Limes wird die spontane
Brechung der globalen Symmetrie (3.26) dadurch angezeigt, dass (Tr(A43)/g3 ) einen (posi-
tiven oder negativen) endlichen Wert annimmt. Da in praktischen Simulationen aber immer
nur Gitter endlicher Grofle untersucht werden, kann das Phinomen der spontanen Symme-
triebrechung bzw. eines Phaseniibergangs im strengen Sinne also iiberhaupt nicht auftre-
ten!!. Stattdessen werden beide mogliche Realisierungsphasen zu positivem und negativem
Vorzeichen von Tr(A3) innerhalb der erzeugten Markov-Kette simuliert, und zwar mit einer
Gewichtung, die von der Giite des Algorithmus abhingt. Idealerweise sollte der Algorithmus
dabei nicht nur Konfigurationen erzeugen, die zu ein und demselben Vorzeichen von Tr(A3)
fiihren, sondern immer zwischen den beiden Extrema hin- und herspringen. Paradoxerweise
wiirde aber bei der Verwendung von ( Tr(A3)) als Ordnungsparameter auf dem Gitter gerade
im Falle eines solchen idealen Algorithmus ein méglicher Phaseniibergang unentdeckt bleiben.
Ein iiblicher Ausweg besteht nun darin, eine Projektion auf den Betrag des jeweils gemesse-
nen Wertes durchzufiihren, und somit (|Tr(43)/g3|) als Ordnungsparameter heranzuziehen.

Die Ergebnisse unserer Messungen sind in Abbildung 3.6a zu sehen und wurden so skaliert,
dass sie mit den in [KLRT98] berichteten Werten verglichen werden kénnen. Die Ubereinstim-
mung beider Ergebnisse hat sich als quasi perfekt erwiesen. Wir schlieflen daraus, dass der
Cluster-Algorithmus richtig implementiert wurde und funktioniert, zumal ein Vergleich mit
den Resultaten der Heatbath-Overrelaxation-Simulationen gezeigt hat, dass sich auch hier
keine nennenswerten Unterschiede ergeben. Als néichstes wurde die Dichte p der frustrierten

"Vergleiche dazu auch die Diskussion des Phénomens der spontanen Symmetriebrechung in Kapitel 4.2
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(b) Veranderung der Verteilung von [exys fir
y = — 0.5 bei Simulationen mit (NC1=1) und ohne
(NC1=0) Verwendung des Cluster-Algorithmus.

Abbildung 3.7: Das Verhalten der effektiven Kopplungskonstanten Sy~ in der Néhe des
Phaseniibergangs. Gitter: 163, 8 = 12, x = 0.3.

Plaquetten bei feinerer Rasterung des Intervalls y € [—1,+1] untersucht. Dazu wurde ein
Ensemble von 2000 thermalisierten Konfigurationen pro y—Wert erzeugt. Das Ergebnis findet
sich in Abbildung 3.6b. Deutlich ist zu erkennen, dass es sich bei dem induzierten Ising-Spin-
Glas in der symmetrischen Hochtemperaturphase (y > y.) um ein stark frustriertes System
handelt, welches durch einen Wert von p ~ 0.37 charakterisiert werden kann. Mehr als ein
Drittel aller Plaquetten wird in dieser Phase von einem Vortex durchstofien. Auf der anderen
Seite, tief in der Higgs-Phase (y < y.), erweist sich das Spin-System hingegen praktisch als
ferromagnetisch (p ~ 0). In der Umgebung des vom Ordnungsparameter Tr(A3)/g5 ange-
zeigten Phaseniibergangs bei y. ~ 0 dndert sich die Dichte der frustrierten Plaquetten rasch.
Direkt bei y = 0 finden wir eine moderate Frustration von p ~ 0.11, wobei sich hier auch
am deutlichsten zeigt, welche Auswirkungen die Verwendung von relativ kleinen Gittern hat.
Ansonsten scheinen die Ergebnisse auch auf den grofleren Gittern unabhéngig davon zu sein,
welche Anfangsbedingungen (Cold/Hot) fiir die Simulationen verwendet wurden.

Es ist in diesem Zusammenhang auch sehr aufschlussreich, sich die Verteilung der dynamisch
generierten effektiven Kopplungen B4y~ in der Umgebung des Phaseniibergangs anzusehen.
In Abbildung 3.7 finden sich die entsprechenden Histogramme, die unter Verwendung eines
Zehntels aller Konfigurationen fiir die Werte y = —0.5, y = 0 und y = 0.5 erstellt wurden. In
der symmetrischen Phase (y = 0.5) liegt eine glockenférmige Verteilung der Kopplungen mit
einem Mittelwert nahe Null vor, deren Gestalt an die in der Einleitung erwéhnte Normal-
verteilung der Gaufi’schen Spin-Gléser erinnert. Wird das System abgekiihlt, so verindert
sich die Verteilung langsam, wobei die Breite zunimmt und das Maximum immer weniger
ausgeprigt wird. Direkt am Phaseniibergang (y = 0) tritt eine signifikante Anderung auf, die
in Abbildung 3.7a illustriert wird. Es bildet sich eine Verteilung mit zwei Maxima aus, die
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Abbildung 3.8: (a) Unbridled growth der Ising-Spin-Cluster. (b) Skalierung der Clustergréfie
in der Phase gebrochener R-Parity. Periodische Randbedingungen, g = 12.0, z = 0.3.

annéhernd symmetrisch zum Nullpunkt bei etwa +2 zu liegen kommen. Dringt man weiter
in die Phase gebrochener Symmetrie vor, so setzt sich dieser Trend fort. In Abbildung 3.7b
findet sich fiir y = —0.5 (NC1=1) eine Verteilung mit zwei sehr ausgeprigten Maxima und
einem Minimum in der Mitte bei einem leicht negativen Wert. Auch diese Verteilung weist
die Reflexionssymmetrie (3.26) der Theorie auf, ihre Gestalt erinnert allerdings eher an eine
verwaschene bimodale Verteilung der Wechselwirkungen wie im Falle eines 4+J-Spin-Glases.
Wiirde man also versuchen, allein anhand dieser Verteilung die Frustration des induzierten
Spin-Glases durch den Anteil an anti-ferromagnetischen Bindungen innerhalb des Gitters zu
charakterisieren, so entspriiche dies einem Wert von s ~ 0.5. Ahnliches miisste man dann
aber konsequenterweise auch in den beiden in Abbildung 3.7a gezeigten Féllen fiir y = 0 und
y = 0.5 feststellen. Angesichts unserer in Abbildung 3.6b gezeigten Ergebnisse zum Verlauf
der Dichte p(y) zeigt sich also wie schon bei der Diskussion der planaren Spin-Gléser in Kapitel
3.2, dass nicht nur das Verhéltnis von ferromagnetischen zu anti-ferromagnetischen Bindun-
gen bei der systematischen Klassifizierung von Spin-Glédsern eine Rolle spielt, sondern vor
allem deren rdumliche Verteilung, welche (fiir offene Randbedingungen) bis auf Eichtrans-
formationen vollstindig durch die Verteilung der Vortices festgelegt ist. Zuletzt wurde die
Verteilung der Kopplungen im Rahmen einer Simulation bei y = —0.5 unter Verwendung
eines Heatbath-Overrelaxation-Algorithmus ohne Einfiihrung der Spins untersucht. Das FEr-
gebnis wird in Abbildung 3.7b (NC1=0) gezeigt und entspricht nach Gleichung (3.31) der
Verteilung der lokalen Beitridge zum kinetischen Term des Higgs-Feldes. Die Verteilung weist
dabei im Gegensatz zu dem bereits besprochenen Fall (NC1=1) keine Reflexionssymmetrie
auf, es ist aber zu beachten, dass die Berechnung des Mittelwertes von Syiges nach Gleichung
(3.31) dasselbe Ergebnis liefert, da der Einfluss der Spin-Variablen bei der Invertierung der
Transformation (3.27) berticksichtigt wird.
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Wihrend es fiir die Charakterisierung der Frustration innerhalb der induzierten Spin-Gléser
hauptséichlich von Bedeutung ist, die rdumliche Verteilung der Vorzeichen von {U;} zu ken-
nen, spielt der Betrag der effektiven Kopplungen (3.32) nach Gleichung (3.34) die entschei-
dende Rolle bei der Definition der Cluster und daher vermutlich auch fiir die Effizienz des
Algorithmus. Betrachtet man unter diesem Aspekt nochmals die Kopplungsverteilungen in
Abbildung 3.7, so steht zu erwarten, dass fiir die Akzeptanzwahrscheinlichkeit (3.34) bereits in
der Ndhe des Phaseniibergangs limy Lyt Qexy> = 1 gelten diirfte, und somit typische Cluster
praktisch alle Spins des Gitters umfassen werden. Fiir dieses erstmals anhand des bimodalen
+J—Ising-Glases in d = 3 Dimensionen beobachtete Problem [KB90] hat sich in der Lite-
ratur inzwischen der Begriff unbridled growth etabliert. Tatsédchlich konnte dieses Phanomen
in dhnlicher Weise auch bei unseren Simulationen des in ein Ising-Spin-System iiberfiihrten
Modells der QCD in der Néhe des thermischen Phaseniibergangs beobachtet werden. In Ab-
bildung 3.8a ist zu erkennen, dass fiir y = —1 praktisch alle Spins Teil ein und desselben
Clusters sind. An diesem Punkt des Phasendiagramms bestand ein Sweep zur Aktualisierung
von {o} im Mittel aus zwei Schritten. Ndhert man sich dem kritischen Punkt (y — y. ), so
sinkt zwar die mittlere Clustergréfe, allerdings gehoren in der Nédhe des Phaseniibergangs
immer noch etwa 90% aller Spins des Gitters zu einem Cluster. Beim weiteren Vordringen
in die symmetrische Phase sinkt dieser Wert innerhalb des von uns untersuchten Intervalls
nur noch um weitere 2%, wobei im Mittel nun zumindest vier Cluster-Aktualisierungen pro
Sweep durchgefiihrt wurden. Aus Abbildung 3.8b geht zusétzlich hervor, dass das Auftreten
des Phénomens zumindest in der Phase gebrochener Reflexionssymmetrie (y = —0.5) nicht
von der Grofle des verwendeten Gitters abhéngt.

Im Fall eines reinen Spin-Systems ist von einem Algorithmus, der ein solches Verhalten in
der Umgebung eines kritischen Punktes zeigt, keine Verbesserung bei der Bekdmpfung des
Problems divergierender Autokorrelationszeiten zu erwarten. Andererseits wurde aber auch
darauf hingewiesen [CEPS93], dass eine Beschrinkung der Clustergréfie durch die Moglich-
keit zur kompletten Entkopplung von benachbarten Spins'? kein grundlegendes Kriterium
dafiir darstellen kénne, um die Effizienz eines entsprechenden, auf der Finbettung von Ising-
Variablen beruhenden Algorithmus a priori einschétzen zu kénnen. Auflerdem sollte betont
werden, dass der Algorithmus nach wie vor korrekt funktioniert, selbst wenn alle Spins simul-
tan aktualisiert werden. Dabei handelt es sich um eine mikrokanonische Reflexion (vgl. B.4),
die bereits allein zu einer Reduzierung des dynamischen kritischen Exponenten fithren kénnte.
Durch die Kombination mit den Update-Schritten im Sektor der Eich- und Skalarfelder bleibt
aulerdem die Ergodizitit gewéhrleistet, daher erscheint es durchaus sinnvoll, die Giite des
Cluster-Algorithmus in Bezug auf die Dekorrelierung aufeinander folgender Konfigurationen
einer Markov-Kette noch etwas detaillierter zu untersuchen.

Zu diesem Zweck wurden zum einen Simulationen des Systems unter Verwendung eines ein-
fachen Metropolis-Algorithmus durchgefiihrt, wobei auf die Einfithrung von Spin-Variablen
komplett verzichtet wurde. Zum anderen wurde eine Variante herangezogen, bei der die
Aktualisierung der Ising-Spins {o} mittels eines gewohnlichen Metropolis-Algorithmus mit
N, = 5 Multihits pro Spin und einer variablen Anzahl (N-Metro) von Updates des komplet-
ten Gitters pro Sweep durchgefiihrt wurde. Die Vorschriften zur Aktualisierung der Eichfelder
{U,} und Skalarfelder {4y} blieben dabei in allen Féllen unveréindert.

12Beispielsweise wird im Fall eines rein ferromagnetischen Ising-Modells das Wachstum per Konstruktion
durch das Auftreten von ¢ = 0 fiir anti-parallele Spins begrenzt.
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Abbildung 3.9: Thermalisierungsverlauf am Phaseniibergang. Links: Verwendung eines rei-
nen Metropolis-Algorithmus (N-Metro: 1) zum Update der Spins. Rechts: Verwendung eines
Multi-Hit-Metropolis-Algorithmus (N-Metro: 50). Gitter: 163, x = 0.3, y = 0.0.

In Abbildung 3.9 wird die Entwicklung der Messwerte fiir den Ordnungsparameter Tr(A3)/g3
am Phaseniibergang als Funktion der Thermalisierungsschritte T;c unter Verzicht auf den
Einsatz des Cluster-Algorithmus gezeigt. Im Fall des einfachsten Metropolis-Algorithmus zur
Aktualisierung der Spins beobachten wir in der linken Teilabbildung (N-Metro=1) eine sehr
langsame Entwicklung des Systems im Verlauf der aufgezeichneten 10° Iterationen. Die an-
fallenden Werte oszillieren dabei innerhalb des gesamten durch |Tr(A3)/g3| ~ 0.3 begrenzten
Intervalls, und zwar unabhéngig von der Wahl des Ausgangszustands. Fiir Ty;¢ > 80.000 spal-
ten sich die Entwicklungsgeschichten der Systeme mit geordneter (Cold) und véllig zufilliger
(Hot) Startkonfiguration erstmals merklich auf, wobei erstere dem negativen, letztere dem
positiven Extremum zustrebt. Ob sich der Thermalisierungsverlauf dann in der Néhe der
Intervallréinder stabilisieren wird, oder ob danach allméhlich wieder eine Entwicklung des
Systems mit Nulldurchgang auftreten wird, wie sie schon im Bereich 50.000 < Ty < 80.000
beobachtet werden konnte, lésst sich jedoch nicht vorhersagen. In jedem Fall kann aller-
dings festgestellt werden, dass die Ubergangsphasen zwischen den Randbereichen recht grof3
sind. Da eine Berechnung des Erwartungswerts von |Tr(A43)/g3| fiir y = 0 auf Basis die-
ser Daten einen deutlich kleineren Wert als den in der Literatur berichteten und in Ab-
bildung 3.6a gezeigten Wert liefert, weist dieser Algorithmus also offensichtlich erhebliche
Schwéichen bei der Simulation des Systems nahe des Phaseniibergangs auf. Hinzu kommt
eine signifikant hohere statistische Unsicherheit bei der Berechnung des Erwartungswerts aus
den Daten, die mittels dieses Metropolis-Algorithmus im Vergleich zu dem bereits erwéhnten
Heatbath-Overrelaxation-Algorithmus erzeugt wurden. Ein dhnlich unbefriedigendes Verhal-
ten wurde auch bei der Untersuchung des reinen Standard-Metropolis-Algorithmus (ohne
Spin-Variablen) festgestellt.

Erhoht man die Anzahl der Updates im Spin-Sektor auf N-Metro=>50, so ergibt sich ein deut-
lich anderes Bild, welches im rechten Teil der Abbildung 3.9 zu sehen ist. Nach etwa 20.000
Monte-Carlo-Schritten hat sich die Entwicklung des Systems in einer Phase stabilisiert, die
durch einen mittleren Wert des Ordnungsparameters von Tr(A43)/g3 ~ 0.2 charakterisiert
ist. Fiir Thzc > 90.000 findet ein Ubergang in die zweite mogliche Gleichgewichtsphase des
Systems statt, und zwar innerhalb von etwa 10.000 Iterationen. Damit erweist sich diese Va-
riante zumindest als deutlich besser dazu geeignet, die Physik des effektiven Spin-Systems
fir y = 0 zu erfassen, als die beiden zuvor untersuchten Metropolis-Algorithmen. Daher
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Abbildung 3.10: Thermalisierungsverlauf am Phaseniibergang bei Verwendung des Cluster-
Algorithmus (N-Cluster: 1). Gitter: 163, z = 0.3, y = 0.0.

werden wir im Folgenden hauptséichlich diese Variante als Referenz heranziehen, wenn Au-
tokorrelationszeiten von Observablen verglichen werden sollen, die mit und ohne Einsatz des
Cluster-Algorithmus gewonnen wurden.

Betrachten wir zuniichst aber noch den Thermalisierungsverlauf von Tr(A43)/g3 in Abbildung
3.10, der sich bei Verwendung des Cluster-Algorithmus (N-Cluster: 1) ergibt. Der grofite
Unterschied zu den Metropolis-Algorithmen besteht augenscheinlich darin, dass beide Rea-
lisierungsphasen gebrochener R—Symmetrie durch den Cluster-Algorithmus gleichermafien
sondiert werden konnen, wobei der Ubergang von der einen in die andere Phase innerhalb
weniger Aktualisierungsschritte vollzogen wird. Der alternierende Cluster-Algorithmus er-
reicht dabei ebenfalls nach etwa 20.000 Monte-Carlo-Schritten das thermische Gleichgewicht
(unabhéingig von der gewiihlten Ausgangskonfiguration), wobei zu beriicksichtigen ist, dass in
diesem Fall insgesamt hochstens zweimal die Anzahl aller Spins des Gitters pro Entwicklungs-
schritt aktualisiert werden muss, im Fall des effizienteren der beiden Metropolis-Algorithmen
(N-Metro: 50) aber bereits 250 Aktualisierungsversuche jedes einzelnen Spins pro Monte-
Carlo-Schritt durchzufiihren sind.

Als néchstes wurde die integrierte Autokorrelationszeit 7, der Energie der Eichfelder Eq,
des Hopping-Terms Fjyy, sowie des Betrags von Tr(Ag) in der Umgebung des Phaseniibergangs
analysiert:

Ho = 5 EP: <1 -2 Re {tr[Up]}> L Bu= o ;tr [ A0(x) Uk(30) Aox + W UL ()]

Fiir jeden der untersuchten Werte y € [—1, 41| wurde dabei zunéchst der Thermalisierungs-
verlauf der interessierenden Observablen wie in Abbildung 3.9 und 3.10 iiberpriift. Dabei
hat sich gezeigt, dass die Durchfithrung von 30.000 Iterationen in allen untersuchten Fillen
geniigen sollte, um das jeweilige System ins thermische Gleichgewicht zu bringen, da sich
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Abbildung 3.11: Vergleich der integrierten Autokorrelationszeiten von Eg, Ey und |Tr(A3)|
bei Verwendung des Referenz-Metropolis-Algorithmus (schraffierte Symbole) sowie des
Cluster-Algorithmus (verbundene Symbole). Reiner Metropolis-Algorithmus (gerasterte Sym-
bole) zum Vergleich. Gitter: 163, 3 = 12.0, z = 0.3.

die Equilibrierungsdauer des Ordnungsparameters bei y = 0 als Obergrenze fiir alle anderen
Observablen und Punkte des Phasendiagramms erwiesen hat. Die entsprechenden Konfigu-
rationen wurden daher verworfen und die Analyse der Autokorrelationszeiten unter Beriick-
sichtigung der nachfolgenden 70.000 Konfigurationen durchgefiihrt.

Eine graphische Darstellung unsere Ergebnisse findet sich in Abbildung 3.11, wobei die vol-
len Symbole den Resultaten entsprechen, die wir bei Verwendung des Cluster-Algorithmus
erhalten haben. Zur Erhohung der Ubersichtlichkeit wurden diese durch Linien miteinander
verbunden und die schraffierten Symbole, welche die Resultate bei Verwendung des Referenz-
Algorithmus (N-Metro: 50) repriisentieren, gegeniiber den vollen Symbolen leicht verschoben.
Auflerdem haben wir die Resultate einer Analyse der Autokorrelationen von Eq und Ey bei
Verwendung des gewohnlichen Metropolis-Algorithmus am Phaseniibergang zum Vergleich
mit in die Abbildung aufgenommen. Dabei handelt es sich um die (ebenfalls leicht verschobe-
nen) gerasterten Symbole. Eine Autokorrelationszeit fiir den Betrag des Ordnungsparameters
konnte in diesem Fall — wie bereits diskutiert — nicht bestimmt werden.

Zunéchst ist festzustellen, dass die Autokorrelationszeiten aller Observablen wie erwartet bei
der Ann#iherung an den kritischen Punkt aus der symmetrischen Phase zunehmen. In die-
ser Phase dominieren starke rdaumliche Fluktuationen des Skalarfeldes, die sich sowohl im
Verschwinden des (Betrags des) Ordnungsparameters als auch in einer geringen Autokor-
relationszeit desselben bemerkbar machen. Diese liegt in derselben Groflienordnung wie die
der Energie der Eichfelder. Wird das System nun abgekiihlt, so setzt ein Ordnungsvorgang
ein, der sich besonders bei der Betrachtung des induzierten Spin-Systems bemerkbar macht.
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Wiirde es sich dabei um ein rein ferromagnetisches Spin-System handeln, so wére zu erwarten,
dass sich die einsetzende Ordnung durch eine zunehmend parallele Ausrichtung aller Spins
bemerkbar machen sollte und sich die Autokorrelationszeit der zugehorigen (spontanen) Ma-
gnetisierung nach einem dramatischen Anwachsen am Phaseniibergang bei weiterem Vordrin-
gen in die Higgs-Phase allméhlich auf einem &dhnlich hohen Niveau wie am kritischen Punkt
stabilisieren sollte. Tatsdchlich beobachten wir ein dhnliches Verhalten fiir den Betrag des
Ordnungsparameters, der sich in der Ndhe des kritischen Punktes wie eine Magnetisierung
verhélt [KLR'98]. Der Einfluss der vorhandenen Frustration des induzierten Spin-Modells
zeigt sich jedoch daran, dass die Autokorrelationszeit nach einem dramatischen Anstieg iiber
etwa zwel Groflenordnungen ihr Maximum am Phaseniibergang erreicht und beim weiteren
Vordringen in die Higgs-Phase wieder sinkt, und zwar in dem Mafle, wie auch die Frustration
p allméhlich auf Null fillt. Dabei ist eine einsetzende Stabilisierung von 7int (Tr(A3)) auf einem
Niveau zu beobachten, das demjenigen des Ferromagneten entspricht und etwa eine Groflen-
ordnung unterhalb des Werts direkt am kritischen Punkt zu liegen kommt. Die Fluktuationen
der Eichfelder kénnen sich dabei {iber den Hopping-Term in den ansonsten bereits ziemlich
geordneten Higgs-Sektor ausbreiten. Auch fiir Eg ist namlich zu beobachten, wie die Au-
tokorrelationszeit am Phaseniibergang zunéchst zunimmt, allerdings weniger dramatisch als
im Fall des Ordnungsparameters. Hat man aber den kritischen Punkt {iberschritten, so sinkt
Tint (Fq) allm#hlich wieder auf praktisch denselben Wert wie am anderen Ende des betrachte-
ten Intervalls y € [—1,1], tief in der symmetrischen Phase. Der Hopping-Term nimmt durch
die direkte Vermischung der Freiheitsgrade aus dem Eich- und Higgs-Sektor als Observable
eine Zwischenstellung ein, die sich auch im Verhalten der zugehorigen Autokorrelationszeit
widerspiegelt. Diese zeigt einen praktisch symmetrischen Verlauf beziiglich y. = 0, wobei be-
merkenswert ist, dass die Autokorrelationszeit von Ey auch in der symmetrischen Phase etwa
um einen Faktor zehn grofler ist als die von Eg und des Ordnungsparameters, der zwischen
den beiden Extremen zu interpolieren scheint.

Wie bereits festgestellt wurde, macht sich der Einsatz des Cluster-Algorithmus am Rand des
untersuchten Intervalls praktisch nicht bemerkbar. Tief in der Higgs-Phase besteht dessen
Effekt nur noch in einer mikrokanonischen Reflexion aller Spins (und somit auch der Skalar-
felder) und die Akzeptanzrate des Spin-Updates durch den Metropolis-Algorithmus ist auf
8.2(4) - 1077 gesunken. Am anderen Ende scheinen die Auswirkungen des Cluster-Updates
(Clustergrofie etwa 88% aller Spins) und des Metropolis-Updates (Akzeptanzrate: 0.03195(6))
in etwa gleich effektiv zu sein. Die Uberlegenheit des Cluster-Algorithmus deutet sich erst bei
der Anndherung an den kritischen Punkt an, an dem die Korrelation aufeinander folgender
Konfigurationen einer Markov-Kette erwartungsgemifl am stéarksten ist. Aus Abbildung 3.11
geht dabei hervor, dass sich der Einsatz des Cluster-Algorithmus interessanterweise besonders
bei der Verringerung von iy (Eqg) bemerkbar macht, obwohl sich die kollektive Aktualisie-
rung von langreichweitigen Spin-Moden ja nur indirekt, ndmlich {iber den kinetischen Term
der Skalarfelder (3.31) auf die Eichfelder auswirken kann. Auch fiir den Hopping-Term er-
gibt sich eine Verbesserung in etwa derselben Gréflenordnung. Bezeichnen wir das Verhéltnis
der integrierten Autokorrelationszeiten einer Observablen O bei Verwendung des Metropolis-
bzw. Cluster-Algorithmus mit R(O) = 72£(0) /1<, (0), so finden wir fiir die drei untersuchten
Observablen:

R(Eg) =333+£1.25, R(Ey)=331+174, R(Tr(A3)])=267+148.  (3.35)
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Die vergleichsweise grofien Fehler sind dabei eine Folge der beachtlichen Unsicherheiten
bei der Bestimmung der Autokorrelationszeiten unter Verwendung des Referenz-Metropolis-
Algorithmus, dessen Akzeptanzrate bei der Aktualisierung der Spins am Phaseniibergang
zu 1.2(1) - 1072 bestimmt wurde. Insbesondere im Fall von Ey und |Tr(A3)|, fiir die sich
integrierte Autokorrelationszeiten Té‘{{ > 2000 ergeben haben, erscheint es daher im Nachhin-
ein als unbedingt notwendig, lingere Zeitreihen als die hier verwendeten zu analysieren, um
den Fehler weiter eingrenzen zu konnen. Noch gravierender erweisen sich die Unsicherheiten
beim Vergleich dieser Ergebnisse mit den Autokorrelationszeiten, die fiir Fq und Ey aus Si-
mulationsergebnissen extrahiert wurden, die ohne die Einbettung von Ising-Spins mit einem
reinen Metropolis-Algorithmus gewonnen wurden. Fiir die Energie der Eichfelder finden wir
ungefihr eine Reduktion der integrierten Autokorrelationszeit um einen Faktor sieben, fiir
den Hopping-Term um etwa einen Faktor fiinf bei Verwendung des Cluster-Algorithmus.

Obwohl diese Werte sicherlich nur einer groben Orientierung dienen kénnen, lassen sich dar-
aus bereits mehrere Einsichten gewinnen: Zum einen erscheint es klar zu sein, dass der
Einsatz des Cluster-Algorithmus bei der Simulation einer dreidimensionalen euklidischen
SU (3)—Eichtheorie mit Skalarfeld in der adjungierten Darstellung tatséchlich einen messba-
ren Effekt bei der Bekdmpfung von Autokorrelationen am kritischen Punkt der Theorie hat.
Dies bestiitigt die in [CEPS93] geduflerte Vermutung, dass das in unserem Fall tatséchlich
beobachtete ungeziigelte Anwachsen der Cluster in einer vergleichsweise groflen Umgebung
des kritischen Punktes nicht notwendigerweise die vollige Nutzlosigkeit eines solchen Algo-
rithmus zur Folge haben muss, sofern dieser auf der Einbettung von Ising-Spins basiert. Zum
anderen scheint sich die gewihlte Einbettung der Spins als durchaus sinnvoll zu erweisen,
denn unabhéngig von der Wahl des Algorithmus zur Aktualisierung dieser zusétzlichen Va-
riablen gelingt es durch deren Einfiihrung iiberhaupt erst, das System am kritischen Punkt
in akzeptabler Zeit ins thermische Gleichgewicht zu bringen, so dass es moglich wird, eine
Autokorrelationszeit auch fiir den Ordnungsparameter Tr(A%), die sensibelste der untersuch-
ten Observablen, bestimmen zu konnen. Vergleicht man zuletzt die Effizienz des Cluster-
Algorithmus mit der des Referenz-Metropolis-Algorithmus in Bezug auf die Verminderung
von Korrelationen im Verhéltnis zum numerischen Aufwand, so kann festgestellt werden,
dass ersterer auch in diesem Punkt iiberlegen ist und dariiber hinaus vermutlich noch gréfieres
Entwicklungspotential besitzt. Beispielsweise hat sich bei der Untersuchung des zweidimen-
sionalen o—Modells mit O(4)—Symmetrie gezeigt, dass die mehrfache Durchfiihrung eines
Wolff-artigen Updates je nach Einbettung der Ising-Spins eine weitere Reduzierung der Au-
tokorrelationszeiten um einen Faktor 2 — 10 bei einer moderaten Erhchung des numerischen
Aufwands ermoglicht [CEPS93].

Eine wirklich rigorose Aussage zur Giite einer gewihlten Einbettung ldsst sich dabei, wie
eingangs bereits erwahnt, im Prinzip nur durch das Studium von idealisierten Algorithmen
machen. Diese werden durch schrittweise Erhchung der Anzahl an Aktualisierungsschritten
pro Sweep approximiert, wobei die Hoffnung besteht, dass sich die Ergebnisse der Untersu-
chung von integrierten Autokorrelationszeiten irgendwann stabilisieren und so die wirkliche
Leistungsfahigkeit zu Tage tritt und mit der anderer Algorithmen verglichen werden kann.
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3.6 Zusammenfassung und Ausblick

Im vorliegenden Kapitel wurde die Physik frustrierter Systeme untersucht, und zwar zum
einen anhand des prototypischen zweidimensionalen Ising-Spin-Glases, zum anderen im Zu-
sammenhang einer dimensional reduzierten nicht-abelschen Eichtheorie, welche in einem ge-
wissen Parameterbereich die Quantenchromodynamik in der Niahe ihres thermischen Pha-
seniibergangs modelliert.

Dabei wurde zunéchst die Notwendigkeit einer eichinvarianten Klassifizierung der Frustration
erlautert, falls man daran interessiert ist, verschiedene Instanzen von Ising-Spin-Glésern un-
ter dem Gesichtspunkt identischer thermodynamischer Eigenschaften zu klassifizieren. Unter
Ausnutzung der Zs—FEichinvarianz der Theorie konnte gezeigt werden, dass sich die Energie
des Grundzustands in Landau-Eichung auf einfache Weise berechnen lésst, wobei die Anzahl
der anti-ferromagnetischen Bindungen in dieser Eichung minimal wird und die zugehorige
Konfiguration der Spins groffitmogliche Homogenitéat aufweist. Mit Hilfe des minimal mat-
ching Algorithmus von Edmonds wurde die exakte Energie des Grundzustands als Funktion
des neuen Komplexitidtsparameters p bestimmt, wobei eine einfache Erkldrung des beob-
achteten Verhaltens fiir kleine Werte von p gegeben werden konnte, welche nochmals die
Wichtigkeit der Rolle von Zs-Vortices bei der Klassifizierung der Frustration betont. Bei
der anschliefenden Simulation von Ising-Spin-Glésern bei endlichen Temperaturen wurde ein
Algorithmus eingesetzt, dessen theoretische und praktische Untersuchung gezeigt hat, dass
dieser in der Lage ist, der Eichinvarianz des Modells bei der Definition der zu aktualisierenden
Cluster von Spins umfassend Rechnung zu tragen. Des weiteren konnte festgestellt werden,
dass dieser eichinvariante Cluster-Algorithmus zwar eine effiziente numerische Behandlung
der untersuchten frustrierten Systeme in der Umgebung ihres jeweiligen pseudo-kritischen
Punktes erlaubt, fiir Untersuchungen des Grundzustands nahe T' = 0 allerdings aufgrund von
stark anwachsenden Autokorrelationen ungeeignet erscheint.

Das zweite Anwendungsgebiet fiir den dimensionsunabhéingig operierenden Cluster-Algorith-
mus war die Simulation der Quantenchromodynamik in dimensional reduzierter Form in der
Nahe der kritischen Temperatur. Durch eine Einbettung von Ising-Spins in den Sektor der
adjungierten Skalarfelder der Theorie konnte diese als ein frustriertes Spin-Modell in d = 3 Di-
mensionen aufgefasst werden, dessen Kopplungskonstanten dynamisch generiert werden. Eine
detaillierte Untersuchung des induzierten Modells hat dabei gezeigt, dass die QCD in der sym-
metrischen Realisierungsphase bei hohen Temperaturen einem stark frustrierten statistischen
System entspricht, wihrend sie sich in der Phase gebrochener globaler Reflexionssymmetrie
der adjungierten Skalarfelder bei niedrigeren Temperaturen als praktisch rein ferromagneti-
sches System erweist. Wie schon bei der Untersuchung der planaren Ising-Spin-Gléser hat sich
dabei auch in diesem Fall gezeigt, dass die Verteilung der Kopplungskonstanten alleine keine
sinnvolle Moglichkeit zur Klassifizierung der Frustration bietet. Die beobachtete Veréinderung
in Bezug auf den mittleren Betrag der Kopplungen in der Nihe des Phaseniibergangs fiihrt da-
bei jedoch nochmals zu einem Anwachsen der ohnehin schon verhéltnisméfig grofien Cluster.
Eine abschlieende Untersuchung der Autokorrelationszeiten diverser Observablen hat aber
gezeigt, dass sich dies nicht unbedingt nachteilig auf die Effizienz des Cluster-Algorithmus
im Vergleich zu verschiedenen anderer Algorithmen zur Simulation des Gesamtsystems am
Phaseniibergang auswirken muss.
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Da sich bei der Untersuchung der planaren Ising-Spin-Gléser angedeutet hat, dass eine
Erhohung der Vortexdichte p eine Abschwichung des ferromagnetischen Phaseniibergangs
zweiter Ordnung in einen crossover zur Folge hat, wére es interessant zu untersuchen, wie sich
eine Verdnderung der Ordnung des Phaseniibergangs der QCD bei endlicher Temperatur auf
die induzierte Dichte der Vortices und damit auch auf die Effizienz des Cluster-Algorithmus in
der Nihe dieses Punktes auswirkt. Die Ergebnisse unserer bisherigen Untersuchungen weisen
bei der Frage nach der Bekdmpfung des critical slowing down ja bereits darauf hin, dass durch
den Finsatz des Cluster-Algorithmus eine merkliche Reduzierung von Autokorrelationen in
der Nihe des kritischen Punktes moglich ist. Um diese ersten Ergebnisse quantitativ noch
erhérten zu konnen, sollten sich aber weitere Untersuchungen anschliefien, die zunéichst in die
bereits angedeutete Richtung der Analyse von idealisierten Algorithmen gehen miissten. Erst
wenn die Autokorrelationszeiten dieser Algorithmen bestimmt wurden, ldsst sich auch iiber
eine Alternative zur hier untersuchten Einbettung von Ising-Spins nachdenken, die vielleicht
zu einer weiteren Verbesserung fithren konnte. Es erscheint dabei sehr gut moglich, dass die
in unseren bisherigen Simulationen gefundene Reduzierung der Autokorrelationen um einen
Faktor der Ordnung drei nurmehr eine untere Schranke fiir die wahre Leistungsfahigkeit des
Cluster-Algorithmus darstellt. Auflerdem wiire es interessant zu iiberpriifen, wie der Cluster-
Algorithmus in Kombination mit anderen Algorithmen zur Aktualisierung der Eichfelder
und Skalarfelder, wie beispielsweise dem in Anhang B.3.3 diskutierten Heatbath-Algorith-
mus, funktioniert. Zuletzt muss es natiirlich, wie auch im Fall der planaren Ising-Spin-Gléser,
das Ziel sein, die Grofie der untersuchten Systeme schrittweise zu erhdhen, um durch die
Messung der jeweiligen Autokorrelationszeiten und Korrelationslingen letztlich den Wert des
kritischen dynamischen Exponenten des eingesetzten Algorithmus bestimmen zu kénnen. Die
Durchfiihrung der dazu nétigen Simulationen erscheint in jedem Fall interessant und lohnens-
wert.






Kapitel 4

Elektroschwache Wechselwirkung
und freie Isospinladungen

4.1 Einleitung

Das Konzept des schwachen Isospins spielt eine wichtige Rolle bei der Beschreibung von Pro-
zessen, die durch die schwache Wechselwirkung hervorgerufen werden. Das historisch gesehen
erste Beispiel ist dabei der durch Enrico Fermi 1934 beschriebene (-Zerfall des Neutrons
n — p-+e 4+ U, der im Rahmen der Quantenfeldtheorie, die sich als heute allgemein
akzeptiertes Standardmodell der elektroschwachen Wechselwirkung durchgesetzt hat!, als ei-
ne Reaktion aus der Klasse der semi-leptonischen Zerfélle iiber geladene schwache Strome
verstanden werden kann:

d'— u+W~ — ute +70. (4.1)

Im GSW-Modell werden die sechs mittlerweile bekannten Quarks (up, down, charm, stran-
ge, top, bottom) und Leptonen (e, u, 7, ve, vy, v7) zu drei Generationen zusammengefasst,
innerhalb derer jeweils zwei linkshéindige Leptonen sowie zwei linkshidndige Quarks in einem
SU (2)y-Doublett mit schwacher Isospinladung 7% = 41/2 angeordnet werden:

Leptonen : ( Ve ) ( Vi ) ( v )
“JL k)L /L

Quarks : <Z,> (Z,) (Z,)
L L L

Eine Umwandlung zwischen den Fermionen eines Doubletts geschieht dabei durch Emission
bzw. Absorption der W*—Bosonen (T3[W¥*] = £1), und die elektrische Ladung Q ergibt
sich in dieser Theorie als Q = T3 + Y, wobei die sogenannte Hyperladung Y mit einer
zusétzlichen abelschen U(1)y —Symmetrie verkniipft ist. Dadurch ist die Gruppenstruktur
SU@2)w x U(1)y des GSW-Modells festgelegt. Die Eigenzustéinde (d’,s’,b") der schwachen
Wechselwirkung stimmen jedoch nicht mit den Eigenzustdnden der starken Wechselwirkung
iiberein, sondern ergeben sich als Linearkombinationen der Quark-Felder (d,s,b) der QCD.
Diese Mischung wird durch die sogenannte CKM-Matrix (Cabibbo 1963, Kobayashi, Maskawa

(4.2)

! Ausfithrliche Darstellungen des von Glashow und Weinberg (1967), sowie unabhiéngig davon von Salam
(1968) vorgeschlagenen GSW-Modells finden sich beispielsweise in [Wei96, PS95].
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1973) parametrisiert [CL84]. Durch Wahl eines geeigneten Potentialterms fiir ein fundamen-
tales Higgs-Feld, welches neben schwacher Isospinladung auch Hyperladung Y = 1/2 trégt
und auf diese Weise an die SU(2) x U(1) Eichtheorie angekoppelt wird, kann — nach Wahl
einer Eichung — das Phénomen der spontanen Symmetriebrechung bzw. die Ausbildung eines
skalaren Kondensats beobachtet werden. Das Ergebnis im Spektrum der resultierenden Theo-
rie ist das Auftreten einer masselosen vektoriellen Anregung, die mit dem Photon identifiziert
wird, sowie die Generierung von Massentermen fiir die intermedidren geladenen Vektorbo-
sonen W¥ und dem neutralen Vektorboson ZY, welche die schwache Wechselwirkung iiber
geladene bzw. neutrale Stréme vermitteln?. Diese vier verschiedenen Eigenzustinde ergeben
sich dabei als unterschiedliche Linearkombinationen der vier Eichfelder, die in der symme-
trischen Realisierungsphase der Theorie als masselos angenommen werden und mit den drei
Generatoren der Symmetriegruppe des schwachen Isospins SU(2)y,, sowie dem Generator
der Hyperladungssymmetrie U(1)y verkniipft sind. Die Massen der Fermionen ergeben sich
ebenfalls im Rahmen des Higgs-Mechanismus durch Ausbildung eines Kondensats fiir das
fundamentale Skalarfeld, das die links- und rechtshidndigen Fermionen in der Lagrangedichte
der Theorie durch eine Yukawa-Kopplung auf eichinvariante Weise miteinander verkniipft.

Offensichtlich kommt dem Higgs-Feld in dieser Konstruktion eine entscheidende Bedeutung
zu. Allerdings ist zunéchst nicht klar, ob davon ausgegangen werden kann, dass die Annahmen
iiber das Verhalten der Theorie beim Ubergang von der Ebene der klassischen Feldtheorie,
auf der die Konstruktion des GSW—Modells erfolgt, zur zugehtrigen quantisierten Feldtheo-
rie ihre Giiltigkeit in vollem Umfang behalten. Numerische Untersuchungen weisen ndmlich
darauf hin, dass sich die Hypothese eines mass gap in quantisierten Yang-Mills-Theorien
(ohne Materiefelder) zu bestitigen scheint, und zwar in dem Sinne, dass sowohl die soge-
nannten glue balls als (eichinvariante) Anregungen niedrigster Energie im Spektrum massiv
sind [BB83,MT89], als auch den Gluonen selbst formal eine dynamisch erzeugte Masse zuge-
ordnet werden kann®, obwohl in der Lagrangedichte der reinen Yang-Mills-Theorie keinerlei
Massenterme auftreten. Ferner liegt tiberwéltigende numerische Evidenz dafiir vor, dass das
Auftreten des Confinement-Phénomens in reinen Eichtheorien auf der nicht-abelschen Natur
der Symmetriegruppe beruht, denn ein lineares Anwachsen des Potentials zwischen statischen
Materiefeldquellen bei zunehmendem Abstand derselben konnte nicht nur im Fall der fiir
die QCD relevanten SU(3)—Yang-Mills-Theorie nachgewiesen werden [Sta84, BS92|, sondern
ebenfalls bei der Untersuchung der speziellen unitéiren Gruppen SU(2) [Cre80, LR82, Sta83],
SU(4) [WOO01], SU(5) [Cre81], SU(6) [CM82b], sowie den exzeptionellen Lie-Gruppen Sps
und G [HMPWO03,HPWO04]. Dies ist insofern von Bedeutung, als dass der schwache Isospin im
Standardmodell der elektroschwachen Wechselwirkung ebenfalls eine nicht-abelsche Eichsym-
metrie ist, gleichwohl jedoch die (linkshéndige) Leptonen (4.2) frei beobachtet werden kénnen.
AufBlerdem hat der experimentelle Nachweis der massiven Vektorbosonen W+ [PRSZ01] auf
direktem Wege gezeigt, dass die Eichbosonen des GSW—-Modells trotz ihrer schwachen Isospin-
ladung ebenfalls frei beobachtet werden kénnen, wohingegen die Fichbosonen reiner Yang-
Mills-Theorien, wie beispielsweise die Gluonen im Fall der QCD, nicht als asymptotische
Zusténde auftreten.

*Die direkte Einfithrung eines Massenterms der Form m?®A{ (z)A"*(z) in der Lagrangedichte £(z) einer
Theorie verbietet sich bereits aufgrund der Forderung nach Eichinvarianz von £(z).

3Die Analyse des Gluon-Propagators in Landau-Eichung weist auf dem Gitter typischerweise auf ein solches
decoupling behaviour hin [LRG02], jedoch wird momentan auch die Relevanz einer weiteren Losung diskutiert,
die unter der Annahme einer global definierbaren und erhaltenen BRST-Ladung ein sogenanntes IR scaling
behaviour zeigt. Einen Uberblick vermitteln beispielsweise [BQROY], sowie die darin enthaltenen Referenzen.
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Das Higgs-Feld muss folglich in der Lage sein, zweierlei Aufgaben zugleich zu erfiillen: Zum
einen sollen Massenterme fiir die Eichbosonen generiert werden, die mit dem beobachteten
Spektrum iibereinstimmen, zum anderen miissen schwache Isospinladungen freigesetzt werden
(isospin liberation). Letzteres wirft insbesondere die Frage nach dem Begriff des Confinement
und einem zugehorigen Ordnungsparameter in einer Theorie mit dynamischer Materie auf,
die sich unter der fundamentalen Darstellung der Eichgruppe transformiert. Die im Fall einer
Eichtheorie mit nicht-trivialer Zentrumssymmetrie geeigneten Wilson-Loops oder Polyakov-
Linien zur eichinvarianten Charakterisierung eines Confinement-Deconfinement-Ubergangs
scheiden dabei aus, da die Zentrumssymmetrie durch die fundamentalen Materiefelder ex-
plizit gebrochen wird. Mogliche Alternativen wurden von Caudy und Greensite [CGO8] bei
der Untersuchung eines SU(2)—Higgs-Modells aufgezeigt. Dabei wurde eine Verbindung zwi-
schen der Verletzung des Kriteriums von Kugo-Ojima bzw. des Coulomb-Confinements und
der spontanen Brechung einer globalen (remanenten) Symmetrie, welche der Theorie nach
Fixierung der Landau- bzw. Coulomb-Eichung noch verbleibt, hergestellt. Die Auswirkungen
der Fixierung verschiedener Eichungen auf das Phanomen der spontanen Symmetriebrechung
sowie den Higgs-Mechanismus werden wir in Kapitel 4.2 ausfiihrlich diskutieren. Ein wesent-
liches Ergebnis wird die Trennung des Higgs-Mechanismus zur Erzeugung von Massentermen
fiir Eichbosonen vom Phénomen der spontanen Symmetriebrechung sein. Dies ist insofern fiir
das elektroschwache Standardmodell relevant, als dass die Ergebnisse von Caudy und Green-
site [CGO8] darauf hinweisen, dass sich eine eindeutige Unterteilung des Phasendiagramms
nur vornehmen lésst, wenn Confinement als Phase magnetischer Unordnung aufgefasst wird,
charakterisiert durch hinreichend starke Vakuumfluktuationen, die fiir beliebige Langenska-
len ein Fliachengesetz des Wilson-Loops hervorrufen. Die SU(2)—Higgs-Theorie befindet sich
demnach (in Einklang mit der in Kapitel 2 diskutierten analytischen Verbundenheit des
Phasendiagramms) immer in einer Higgs-artigen Deconfinement-Phase (im Sinne der magne-
tischen Unordnung), sobald eine Kopplung (k > 0) des Higgs-Feldes an die Eichfelder vor-
liegt. Unter Vernachlissigung der Hyperladungsgruppe U(1)y sollte folglich die Freisetzung
von schwacher Isospinladung allein durch die Anwesenheit des fundamentalen Higgs-Feldes
ermoglicht werden, unabhingig vom Phénomen der spontanen Symmetriebrechung? oder der
Ausbildung eines skalaren Kondensats, obwohl alle reinen nicht-abelschen Eichtheorien ihre
Farbladungen (Isospin) permanent einschlielen.

Die Postulierung des Higgs-Feldes hat zweifelsohne einen grofien Beitrag zum Erfolg des elek-
troschwachen Teils des Standardmodells der Elementarteilchenphysik in heutiger Form gelie-
fert, dennoch wurde das Higgs-Boson in Experimenten an Teilchenbeschleunigern bis heute
noch immer nicht gefunden. Dariiber hinaus befinden sich einige Voraussagen des Standard-
modells, wie beispielsweise die Baryonenzahlasymmetrie®, nicht in Einklang mit den Beob-
achtungen in der Natur. Es besteht daher durchaus die Moglichkeit, dass durch Experimente,
welche in naher Zukunft am Beschleuniger LHC (CERN) durchgefiihrt werden sollen, die
Existenz eines schwach wechselwirkenden fundamentalen Higgs-Bosons ausgeschlossen wer-
den kann.

“Dies lisst in Abwesenheit eines thermodynamischen Phaseniibergangs keine eindeutige Unterteilung des
Phasendiagramms zu, da das Kugo-Ojima-Kriterium und das Coulomb-Confinement-Kriterium an unterschied-
lichen Stellen des Phasendiagramms einen Verlust der Confinement-Eigenschaft der Theorie anzeigen [CGO0S].

5Vergleiche dazu auch die Diskussion des Einflusses der Higgs-Masse auf die Ordnung des elektroschwachen
Phaseniibergangs in Kapitel 2
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Angesichts dieser Tatsachen stellt sich die Frage, ob die Ursache fiir das deconfinement des
schwachen Isospins einzig und allein im bisher postulierten Higgs-Mechanismus zu finden ist,
oder ob es mogliche Alternativen gibt, welche ebenfalls zu isospin liberation fiihren konnten.
Im Rahmen der vorliegenden Untersuchung soll zu diesem Zweck eine auf der Symmetrie-
gruppe SU(3) basierende Eichtheorie betrachtet werden, die um ein skalares Feld in der
adjungierten Darstellung erweitert wurde. Fiir diese Theorie bestehen verschiedene Reali-
sierungsmoglichkeiten einer residuellen Symmetrie nach spontaner Brechung der Ausgangs-
symmetrie. Insbesondere ist der Ubergang in eine Phase mdglich, in welcher die residuelle
Symmetriegruppe mit der Eichgruppe des elektroschwachen Standardmodells tibereinstimmt.
Das Ziel ist es — zunéchst unter Vernachlassigung aller moglichen weiteren Kopplungen an
stark wechselwirkende oder leptonische Materie — zu untersuchen, ob die resultierende effekti-
ve Theorie mit residueller Symmetriegruppe SU(2) x U(1) dazu geeignet ist, als Wegbereiter
einer alternativen Theorie der elektroschwachen Wechselwirkung zu fungieren, die sich nicht
auf die Annahme der Existenz eines fundamentalen Higgs-Bosons stiitzen muss. Insbesondere
sollte die Farbe (Isospin) der resultierenden SU(2) x U(1) Theorie nicht permanent einge-
schlossen sein®, sondern die aus der GSW-Theorie bekannten Felder (Wi, ZY massiv, v mas-
selos) sollten als Isospin tragende Zusténde im asymptotischen Teilchenspektrum auftauchen.

Bevor wir uns der Untersuchung des konkreten Modells zuwenden werden, wird zunéchst
noch das Phanomen der spontanen Symmetriebrechung samt zugehoriger phédnomenologischer
Konsequenzen diskutiert, wobei insbesondere auf die Feinheiten bei der Formulierung einer
Quantenfeldtheorie auf dem Gitter hingewiesen werden soll.

4.2 Das Phinomen der spontanen Symmetriebrechung

Ausgangspunkt der Diskussion des Phénomens der spontanen Symmetriebrechung im feld-
theoretischen Kontext ist iiblicherweise die Untersuchung des Verhaltens einer Lagrangedich-
te, sowie des Vakuumzustands 2 der zugehorigen Quantentheorie unter Transformationen,
denen die Felder y(z), welche in die Konstruktion der Lagrangedichte eingehen, unterworfen
werden. Erweist sich die Lagrangedichte L£(x) der klassischen Feldtheorie als invariant un-
ter einer bestimmten Klasse von Transformationen, so spricht man von einer Symmetrie der
Theorie unter diesen Transformationen, da sich die Invarianz von £(z) in die Invarianz der
zugehérigen Wirkung S[x|= [ dz £(x) iibersetzt, und dies wiederum die Invarianz der Euler-
Lagrange-Gleichungen nach sich zieht, welche auf der Grundlage des Prinzips der stationdren
Wirkung als klassische Bewegungsgleichungen der Theorie bestimmt werden:

0L(x) 0L(x)

s =0 = o) < R

Erweist sich nun der Grundzustand der zugehorigen Quantenfeldtheorie als nicht invariant
unter derselbe Klasse von Symmetrietransformationen, so spricht man von einer spontanen
Brechung dieser Symmetrie. Die Symmetrie der Lagrangedichte spiegelt sich also in diesem
Fall nicht im Verhalten des Vakuums wieder.

(4.3)

5Bei einer Erweiterung des Modells um dynamische Materiefelder sollten diese ebenfalls, anders als die
Quarks der QCD, als asymptotische Zustéinde des physikalischen Spektrums moglich sein. In dieser Arbeit
haben wir uns jedoch als vorbereitende Studie fiir die volle Theorie auf eine Untersuchung der Yang-Mills-
Theorie mit adjungiertem Skalarfeld und rein statischen Materiefeldern beschrénkt.
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Die Bestimmung von 2, des Zustands minimaler Energie einer konkreten Quantenfeldtheo-
rie, sowie die Kldrung der Frage, unter welchen Bedingungen das Phénomen der spontanen
Symmetriebrechung auftreten kann, machen daher die Berticksichtigung von Quantenfluktua-
tionen unumginglich. Die hiufig anzutreffende semi-klassische Ndherung, bei der die (kon-
stante) Vakuumkonfiguration als das Minimum des Potentialterms der Lagrangedichte £(x)
bestimmt wird, greift daher zu kurz. Allenfalls kann eine solche Niaherung zur Orientierung
bei der Untersuchung des Phasendiagramms einer Theorie von Interesse dienen. Im Folgenden
soll daher der Formalismus der effektiven Wirkung einer Quantenfeldtheorie in Anwesenheit
von externen Quellen als eine elegante Methode vorgestellt werden, die eine angemessene
Diskussion des Phanomens unter Beriicksichtigung von Quantenkorrekturen erlaubt und sich
auch im Hinblick auf die spéter durchzufithrende Analyse von Propagatoren verschiedener
Felder in der Realisierungsphase einer Theorie mit spontan gebrochener Symmetrie als niitz-
lich erweisen wird.

Der Einfachheit halber wollen wir zuniichst den Fall einer Theorie von skalaren Feldern y*(x)
betrachten, die an klassische externe Quellen J4(z) gekoppelt werden. Die zugehérige La-
grangedichte L£(z) sei dabei wie iiblich ein Funktional der Felder sowie der zugehorigen Ab-
leitungen. Zunéchst wird durch die Relation

Z1J) = exp {iW|J]} (4.4)

das Funktional W[7] als Analogon der Helmholtz’schen freien Energie eines thermodynami-
schen Systems der statistischen Mechanik nach Wick-Rotation definiert, wobei die Zustands-
summe Z[J] der Theorie in Anwesenheit von externen Quellen bzw. Strémen J gegeben ist
durch

z17] = / Dy exp {i / d'z £(x) + xa(@)TA (@)} . (4.5)

W[J] ist das erzeugende Funktional der verbundenen (connected) n—Punkt-Funktionen, wel-
che sich geméf
"W ([JT] ‘
0T A1) - 0T N () l7=0

= ()" (xala1) - xn(@n) ) (4.6)

berechnen. Der Erwartungswert bezieht sich dabei allein auf die durch £(z) bzw. Z[0] de-
finierte Theorie, ohne Beriicksichtigung des Einflusses der externen Quellen. Eine wichtige
Anderung ergibt sich, wenn die Quellen auch nach Ausfithrung der Differentiation wirksam
bleiben und nicht ,,abgeschaltet werden. Betrachten wir dazu speziell die erste Funktional-
ableitung von W[7]| beziiglich J(z):

ow
e = (), = ) (47)

Der Erwartungswert des Feldes ya(x), den wir mit Xﬂ(:ﬂ) bezeichnet haben, hingt nun von
der externen Quelle ab und wird haufig auch als das klassische Feld bezeichnet. Dieses spielt
dieselbe Rolle wie die Magnetisierung M in einem Spinsystem mit lokalen Spinvariablen o(x)
in Gegenwart eines externen Feldes H, ndmlich das gewichtete Mittel iiber alle moglichen
Fluktuationen. Bezeichnen wir mit J,(z) diejenige Quellenfunktion J(z), fiir welche die
Berechnung von (4.7) aus (4.5) gerade das klassische Feld liefert, so ist x!(z) also die zu
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Jy(x) konjugierte Variable. Die effektive Wirkung der Quantenfeldtheorie wird dann durch
eine Legendre-Transformation der Form

] = W7, - / dtx XU (x) T (@) (48)

als Funktional des klassischen Feldes definiert. Diese stellt nach Wick-Rotation das Analogon
der Gibbs’schen freien Energie eines entsprechenden thermodynamischen Systems dar. Die
effektive Wirkung I'[x°!] ist ebenfalls ein erzeugendes Funktional, und zwar das der sogenann-
ten Ein-Teilchen-Irreduziblen (1PI) Korrelationsfunktionen (proper vertices). Betrachten wir
auch hier zunéchst wieder nur die erste Funktionalableitung beziiglich des klassischen Feldes:

ST [x B

X3 () *

Insbesondere bedeutet dies, dass also die klassischen Felder yo(x), welche bei Abwesenheit
von duBeren Quellen berechnet werden, die ,,stationéiren Punkte* der effektiven Wirkung (4.8)
sind:

ST [x“]

ox () Yo(z)

Da sich nach Gleichung (4.3) aus der Stationaritit der Wirkung S[x] die klassischen Bewe-
gungsgleichungen fiir die Felder ergeben, kann Gleichung (4.10) folglich auch als die Bewe-
gungsgleichung der Felder xo(x) aufgefasst werden, in der sémtliche durch Quantenfluktuatio-
nen hervorgerufene Korrekturen beriicksichtigt wurden. Die Konfigurationen x((x) beschrei-
ben also die stabilen Vakuumzustinde der Quantentheorie [Wei96]. Eine besondere Rolle neh-
men dabei die Poincaré-invarianten Losungen xo := x0(0) ein, wobei & = 0 einen beliebigen
Ursprung in der Raum-Zeit bezeichnet”. Fiir diese Klasse von konstanten Vakuumzustinden
berechnet sich die effektive Wirkung zu [Wei96]

= 0. (4.10)

Ixo] = —VaVeg(xo), Vi = /d4:c. (4.11)

Das sogenannte effektive Potential Veg(x() ist dabei eine gewohnliche Funktion von x(, welche
auf Grund der Konvexitit der effektiven Wirkung (4.8) ebenfalls konvex ist [Roe91]. Die
Bestimmung des Vakuumzustands der Quantenfeldtheorie geschieht in diesem Fall durch
Aufsuchen des absoluten Minimums von Vg (xo):

Vet (X) — 0. (4.12)

Ox X0

Das Phédnomen der spontanen Symmetriebrechung ist im feldtheoretischen Kontext untrenn-
bar mit einer Entartung des Vakuums verkniipft. Um dies zu verstehen, betrachten wir die
wichtige Klasse der linearen Transformationen L

L:x = X',  xul@) = xu(@) = LomXm(z) (4.13)
die eine infinitesimale Transformation der Felder in der Form

Oxn(z) = 1€ [t nm Xm(T) (4.14)

"Eine Diskussion der Konstruktion rdumlich lokalisierter, interpolierender Losungen x(z) von Gleichung
(4.10) findet sich beispielsweise in [PS95].
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hervorrufen, wobei die t* endlichdimensionale, darstellungsabhéngige Generatoren der in-
finitesimalen Transformation darstellen®. Lineare Transformationen spielen deshalb eine so
wichtige Rolle, da fiir sie aus der Invarianz von Lagrangedichte und Maf$ in (4.5) auch die
Invarianz der effektiven Wirkung (4.8) unter derartigen Transformationen folgt [Wei96]:

ST [x“]
oxs!(z)

Durch Anwendung der Kettenregel in Gleichung (4.9) ldsst sich leicht zeigen, dass dies aber
auch die Invarianz des erzeugenden Funktionals W[J7,] zur Folge hat. Spontane Symmetrieb-
rechung liegt nun vor, wenn sich mindestens eine der verbundenen n—Punkt-Funktionen (4.6)
(bzw. Wightman-Funktionen im Kontext der konstruktiven Feldtheorie [Str77]) als nicht in-
variant unter der Wirkung der (nicht-trivialen) Transformationen L (4.13) erweist:

[t Xin () = 0. (4.15)

Py = TR < / d'e

(Xa(@1) - Xn(an)), # (xal@1)-xn(zn)), - (4.16)

Insbesondere ist dies erfiillt, wenn xo(z) geméf Gleichung (4.10) eine nicht-triviale Losung
der Minimumsbedingung der effektiven Wirkung (bzw. x(¢ im Fall der Poincaré-invarianten
Losungen von (4.12) fiir das effektive Potential) darstellt. Da zu jeder solchen Losung aber
nun auch eine transformierte Losung Lyo(x) existiert, welche derselben Minimumsbedingung
gentigt, liegt eine Entartung des Vakuums vor. Weist die Theorie beispielsweise eine globale
Reflexionssymmetrie der Form

x(z) — —x(x) Vae My (4.17)
auf, so handelt es sich um eine zweifache Entartung des Vakuums.

An dieser Stelle soll darauf hingewiesen werden, dass eine rein storungstheoretische Behand-
lung des Phénomens der spontanen Symmetriebrechung mit einigen Schwierigkeiten verbun-
den ist, und zwar bereits selbst dann, wenn es sich nur um die Brechung einer diskreten
globalen Symmetrie handelt. Um dies zu verstehen, soll fiir das Potential, welches in die
Konstruktion der Lagrangedichte der Theorie eingeht, wie iiblich die typische, unter Spie-
gelungen symmetrische Form des Querschnitts eines Sombreros (mezican hat) angenommen
werden. Die klassischen Minima dieses Potentials seien die beiden (konstanten) Losungen xg
und —yjg, was die Reflexionssymmetrie der Theorie widerspiegelt. Die spontane Brechung der
Symmetrie geschieht nun durch die Wahl von einem der beiden Zusténde als Ausgangspunkt
einer storungstheoretischen Behandlung, welche auf der Betrachtung kleiner Fluktuationen
um eben dieses Minimum beruht. Allerdings zeigt eine Analyse des Potentialterms V' (xo)
auf Ebene der Lagrangedichte, dass zwischen den beiden Losungen xo und —yq ein Intervall
existiert, in dem die zweite Ableitung des Potentials negativ wird, also ein lokales Maximum
vorliegen muss. Dies stellt aber einen Widerspruch zu der Annahme eines stabilen Minimums
dar, auf der die storungstheoretische Entwicklung basiert, welche folglich nur in einem ein-
geschrinkten Bereich Giiltigkeit besitzen kann. Ausschlaggebend fiir die Klarung der Frage,
ob sich das System in einer beziiglich (4.17) symmetrischen oder unsymmetrischen Phase
befindet, ist wie bereits erldutert vielmehr die Form des effektiven Potentials. Da das effek-
tive Potential ebenfalls die Reflexionssymmetrie von V' (xo) besitzt, folgt zusammen mit der

8Fiir hermitesche Skalarfelder beispielsweise handelt es sich bei [t*]nm um die Generatoren [ta]nm in ad-
jungierter Darstellung (D.17), folglich ist i[t], eine reelle, anti-symmetrische Matrix.
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Konvexitit von Vig(xo), dass ein solches Potential notwendigerweise genau ein Minimum
(bei xo = 0) besitzen muss, sofern es sich bei Vg (xo) um eine analytische Funktion handelt.
Das Phénomen der spontanen Symmetriebrechung lasst sich daher (wie auch das Phinomen
eines Phaseniibergangs) durch den Verlust der Analytizitit einer bestimmten Funktion cha-
rakterisieren’. Da Vg(xo) auf einem endlichen Gitter immer analytisch ist, ergibt sich als
wichtige Konsequenz, dass das Phénomen der spontanen Symmetriebrechung strenggenom-
men nur im thermodynamischen Limes einer diskretisierten Quantenfeldtheorie beobachtet
werden kann, falls die Analytizitéit des effektiven Potentials dabei moglicherweise verloren
geht. In quantenmechanischen Systemen hingegen erweist sich der Grundzustand immer als
eindeutig [GJ8T7]. Bei der Untersuchung von Quantenfeldtheorien auf endlichen Gittern sind
daher besondere Mafinahmen zu treffen, die es erlauben, die spontane Brechung einer Sym-
metrie dennoch beobachten zu kénnen. Diese Mafinahmen werden im konkreten Fall weiter
unten noch zu diskutieren sein.

4.2.1 Globale Symmetrie und das Theorem von Goldstone

Als néchstes soll die spontane Brechung einer globalen kontinuierlichen Symmetrie betrach-
tet werden. Dieser Vorgang ist mit dem Auftreten von masse- und spinlosen Anregungen im
Spektrum der Theorie verkniipft, den sogenannten Goldstone-Bosonen [Gol61]. Ein besonders
einfacher Beweis des Theorems von Goldstone kann im Rahmen des Formalismus der effek-
tiven Wirkung gegeben werden und soll hier kurz rekapituliert werden. Dies dient vor allem
dem Zweck, die bei der Diskussion der spontanen Brechung einer kontinuierlichen Symmetrie
tiblicherweise verwendete Terminologie einzufiihren, was uns in die Lage versetzen wird, die
im Folgenden jeweils zu diskutierenden Unterschiede bei der Betrachtung von globalen und
lokalen Symmetriegruppen besser zu verstehen.

Die globale kontinuierliche Transformation der Felder sei in infinitesimaler Form durch Glei-
chung (4.14) gegeben, und die Invarianz der effektiven Wirkung unter dieser Transformation
findet ihren Ausdruck in Gleichung (4.15). Beschrinken wir uns wiederum nur auf Poin-
caré-invariante Konfigurationen, deren Spektralzerlegung folglich nur eine Komponente zum
(Vierer-) Impuls p = 0 besitzt, so folgt nach nochmaliger Differentiation von (4.15) beziiglich
der [—Komponente eines solchen Feldes y; und anschliefender Auswertung des gewonne-
nen Ausdrucks fiir eine Konfiguration o, welche zu einem stationéiren Punkt des effektiven
Potentials (4.12) gehort:

0*Vogr (X)

t%m [Xolm = 0. 4.18
T | 0 (4.18)

Unter Verwendung von Gleichung (4.7) und (4.9) lassen sich leicht die folgenden Ausdriicke
fir die verbundenen Zwei-Punkt-Funktionen und ihre zugehotrigen 1PI-Anteile berechnen:

FWI XGW)
045 (z,y) = _OT]_ 0T%() |
’ 5x(z) X (y) x4 (x)

9Das effektive Potential erweist sich dabei als eine symmetrische, aber nunmehr stiickweis konstante Funk-
tion, welche die konvexe Hiille des Potentials V' (xo) bildet. Die Menge aller Minima des effektiven Potentials
Vegt (X0) besteht daher aus der Vereinigung aller Linearkombinationen x = axo + (o — 1)xo0, « €10, 1[ mit den
Werten xo und —xo, welche sich als Erwartungswerte sogenannter ,extremaler Zustinde“ ergeben [Roe91].
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Definieren wir nun wie iiblich den allgemeinen Propagator D sop(z,y) eines Feldes x(x) gemés

2
Da(ed) = (oo =~ saonaTbos| (4.20

so erweist sich —i IT45 (2, ) aufgrund von Gleichung (4.19) als dessen Inverse. Da die zweite
Ableitung des effektiven Potentials in Gleichung (4.18), ausgewertet fiir eine zu J = 0 gehori-
ge konstante Konfiguration yg, gerade die Summe aller 1PI-Diagramme darstellt, deren mit
[ und n bezeichnete externe Linien (Vierer-)Impuls Null tragen, ldsst sich Gleichung (4.18)
ebenfalls umformulieren zu:

Dl:zl(p =0) [t"]am[xolm = 0. (4.21)

Falls nun das Vakuum einer Theorie mit globaler kontinuierlicher Symmetrie eine nicht-
triviale Konfiguration xq ist, die das effektive Potential minimiert, so ist aufgrund von Glei-
chung (4.16) die spontane Brechung dieser Symmetrie gleichbedeutend mit der Feststellung,
dass o nicht von allen Generatoren [t%] der Symmetriegruppe G annihiliert werden kann.
All diese Vektoren sind aber nach Gleichung (4.21) die nicht-trivialen Eigenvektoren von
Dlzl(O) zum Eigenwert Null, folglich besitzt der zugehorige Propagator Dy, (p) fiir jeden
dieser Vektoren eine Polstelle bei p? = 0. Anders ausgedriickt bedeutet dies, dass der Rang
des Residuums dieses Pols gleich der Dimension des durch die t*x¢ (mit a = 1...dim(LG))
aufgespannten Vektorraums ist [Wei96]. Dies ist die Aussage des Theorems von Goldstone:

Fiir jede unabhéngige, spontan gebrochene kontinuierliche globale Symmetrie tritt
ein masseloses Boson im Spektrum der Theorie auf.

Eine wvollstindige Symmetriebrechung tritt auf, wenn keiner der Generatoren der urspriing-
lichen Lie-Gruppe G der Theorie das Vakuum annihiliert. In diesem Fall transformiert die
gesamte Symmetriegruppe G, die gebrochen erscheint, alle Vakuumzustinde €2 ineinander
und die Entartung des Grundzustands ist maximal. Transformationen, die das Vakuum in-
variant lassen, werden hingegen von denjenigen Generatoren erzeugt, die yo annihilieren.
Diese Transformationen bilden die sogenannten residuellen Symmetrien der Theorie, und die
zugehorige Untergruppe wird iiblicherweise mit H bezeichnet. Handelt es sich dabei um ei-
ne invariante Untergruppe von G, so ist der Coset G/H ebenfalls eine Gruppe, welche alle
spontan gebrochenen Symmetrien umfasst. Im Gegensatz zu den mit G/H assoziierten bo-
sonischen Anregungen macht das Theorem von Goldstone keine Aussage iiber Anregungen,
die mit der residuellen Symmetriegruppe H verkniipft sind, da diese trivialerweise im Kern
der durch D~1(0) vermittelten linearen Abbildung (4.21) liegen.

Zuletzt soll angemerkt werden, dass die Renormierung einer Quantenfeldtheorie in der
Nambu-Goldstone-Phase durch Verwendung derselben G—invarianten Konterterme wie in
der Wigner-Weyl-Phase moglich ist [Col84], die Frage nach der Renormierbarkeit einer Theo-
rie bleibt daher vom Phénomen der spontanen Symmetriebrechung unberiihrt [Col88].

4.2.2 Eichsymmetrie und das Higgs-Phinomen

Weitet man die globale kontinuierliche Symmetrie durch Hinzunahme von Eichfeldern auf
eine lokale Symmetrie der Theorie aus, so ergeben sich einige wesentliche Anderungen, die vor
allem die phénomenologischen Konsequenzen betreffen und im Folgenden zusammen mit den
eher subtilen Punkten der {iblicherweise vorzufindenden Erklarungen des Higgs-Mechanismus
zur Generierung von Eichbosonenmassen diskutiert werden sollen.
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Zunichst ist es wichtig sich zu vergegenwértigen, dass physikalische Observablen in einer
Fichtheorie gerade durch die Invarianz der anfallenden Messwerte unter Eichtransformatio-
nen ausgezeichnet sind. Folglich besteht bei der Untersuchung einer auf eichinvariante Weise
formulierten Quantenfeldtheorie im Prinzip auch keine Notwendigkeit, eine Eichung zu fixie-
ren, um physikalisch relevante Groflen, wie etwa das Massenspektrum der Theorie, berechnen
zu konnen. Die Wahl einer bestimmten Fichung wird jedoch erforderlich, wenn eine Verbin-
dung zu einer Kontinuumsformulierung der Theorie hergestellt werden soll, deren Behandlung
im Rahmen einer storungstheoretischen Entwicklung die Fixierung einer Eichung unumgéng-
lich macht.

Obwohl die stérungstheoretisch gewonnenen Resultate im Falle des Modells von Glashow,
Salam und Weinberg sicherlich zur Akzeptanz des Higgs-Mechanismus als Option bei der
Beschreibung von elektroschwachen Wechselwirkungen beigetragen haben, hat der pertur-
bative Zugang riickblickend betrachtet allerdings ebenso mafigeblich zur Etablierung einer
irrefithrenden Terminologie, sowie einer unnotigen Verkniipfung des Higgs-Phinomens mit
dem Phénomen der spontanen Symmetriebrechung beigetragen. Eine spontane Brechung der
Eichsymmetrie kann nimlich unter keinen Umstéinden!® auftreten, wie von Elitzur [Eli75] be-
wiesen wurde. Dies hat zur Folge, dass alle Green’schen Funktionen der Theorie aufgrund ihrer
Eichvarianz verschwinden. Insbesondere gilt dies fiir den Vakuumerwartungswert des Skalar-
feldes, der nun nicht mehr langer als Ordnungsparameter fungieren kann, wodurch auch eine
direkte Ubertragung der im Falle einer kontinuierlichen globalen Symmetrie durchgefithrten
Analyse unméglich wird. Ublicherweise wird das Problem durch die Wahl der sogenannten
unitiren Eichung!' gelost. Dass sich dies als besonders geschickt erweist, wird folgenderma-
Ben klar: Zum einen wird durch die Fixierung einer Eichung die lokale Symmetrie der Theorie
en passant explizit gebrochen und somit dem Theorem von Elitzur die Grundlage entzogen,
so dass das Skalarfeld nun wieder einen Vakuumerwartungswert entwickeln kann. Dieser wird
ebenfalls mit xo bezeichnet und stimmt in unitidrer Eichung mit der Vakuumkonfiguration
der zugehorigen ungeeichten Theorie iiberein'?. Zum anderen macht man sich die Tatsache
zunutze, dass im Falle einer kompakten Gruppe G fiir jedes Skalarfeld y(x) die Darstellung

x(@) = Ulx)x(z),  Ulr) = expli€(z)},  &(x) = ()t° € LG/LH  (4.22)
existiert [Wei96, Roe01], wobei (z) durch die Relation
Xn (@) [t*)nm [x0lm = 0 (4.23)

ausgezeichnet ist. Die Fixierung der unitidren Eichung besteht in der Durchfithrung der Trans-
formation

X(@) = x"(z) = U 2)x(2) = X(z). (4.24)

Dadurch werden die dim(G) — dim(H) Goldstone-Bosonen, die sich (bis auf Normierung)
eindeutig mit den Feldern £¢(x) aus dem Quotienten £G/LH identifizieren lassen, aus der
eichfixierten Theorie eliminiert. Zuriick bleiben die nach Gleichung (4.23) zu den Goldstone-
Bosonen orthogonalen physikalischen Freiheitsgrade. Im Kontext der iiblicherweise nachzu-

YEine Ausnahme stellen Eichtheorien mit einem Gibbs-MaB dar, welches nicht positiv definit ist. Wird diese
implizite Annahme des Beweises aufgegeben, so kann gezeigt werden, dass die Eichinvarianz einer Theorie
alleine nicht mehr ausreicht, um die spontane Brechung von lokalen Symmetrien zu verhindern [Spl03].

HPiir eine ausfiihrliche Diskussion siehe beispielsweise [Wei96], Kapitel 19.6 und 21.1.

2Djeser Punkt erweist sich als wesentlich dafiir, um zu demselben Ergebnis wie bei einer eichinvarianten
Behandlung des Higgs-Phénomens zu gelangen [ST95].
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lesenden perturbativen Diskussion der Massengenerierung'® fiir die vormals als masselos an-
genommenen Eichbosonen, findet sich an dieser Stelle die von Coleman [Col88] geprigte
Formulierung, dass die sogenannten Would-be-Goldstone-modes £°(x) von den mit den ge-
brochenen Generatoren assoziierten Eichfeldern ,aufgegessen“ werden, wodurch diese sowohl
eine Masse erhalten, als auch einen dritten Polarisationsfreiheitsgrad hinzugewinnen.

An dieser Stelle soll nochmals darauf hingewiesen werden, dass eine vollstéindig eichinvari-
ante Diskussion des Higgs-Mechanismus mit all seinen phdnomenologischen Implikationen
moglich ist, ohne auf das Phinomen der spontanen Symmetriebrechung im Kontext einer
Eichtheorie zuriickgreifen zu miissen [FMS81]. Dabei wird klar, dass die Would-be-Goldstone-
modes reine Eichartefakte sind, die folglich in keiner Eichung eine Rolle spielen kénnen.
Die unitdre Eichung ist nun insofern ausgezeichnet, als dass dies hier besonders manifest
wird, da die zugehorigen Felder génzlich aus der Lagrangedichte verschwinden. Tatséchlich
ist es aber ebenfalls moglich, unter der Voraussetzung, dass eine lokale und kovariante Ei-
chung in einer quantisierten Eichfeldtheorie fixiert wurde, eine rigorose Behandlung des ge-
samten Phidnomens durchzufiihren, ohne dabei auf eine konkrete Lagrangedichte oder die
Existenz eines Higgs-Feldes Bezug zu nehmen [Str77]. Die Abstraktion von konkreten feld-
theoretischen Modellen, die sich als invariant unter bestimmten Symmetrietransformationen
erweisen, besteht in der Untersuchung der Konsequenzen der Existenz zugehoriger erhalte-
ner Strome. Tatséchlich lésst sich zeigen, dass das Goldstone-Theorem als ein Sonderfall des
Noether-Theorems [Noel8| bei vorliegender spontaner Symmetriebrechung aufgefasst werden
kann [O’R90]. Die Ausweitung auf den Fall lokaler Symmetrien macht dabei von einer Be-
sonderheit der zugehorigen erhaltenen Strome Gebrauch [Str76] und geschieht im Rahmen
einer Erweiterung der axiomatischen Feldtheorie auf den Fall einer Theorie mit indefiniter
Metrik, was zu einem Verlust der Positivitidt der Theorie fithrt und die iiblichen Fragen nach
der Konstruktion eines Hilbert-Raums der physikalischen Zustinde aufwirft. Eine wesentliche
Voraussetzung bei den Beweisen eines generalisierten Goldstone- und Higgs-Theorems [Str77]
ist dabei in der speziellen Gruppenstruktur zu finden, die einer Eichtheorie zugrunde liegt.
Da dies fiir die anstehenden Untersuchungen auf dem Gitter ebenfalls relevant ist, soll dieser
Punkt hier kurz erldutert werden.

Die Symmetriegruppe einer Eichtheorie sei eine Lie-Gruppe G, deren Wirkung auf die Felder
X(z) in infinitesimaler Form durch

Oxn(x) = 1€*(x) [t nm xm(x) (4.25)

gegeben ist. Aufgrund der Ortsabhéngigkeit der Komponentenfunktionen €*(z) werden die
zugehorigen Gruppenelemente g.(z) € G als lokale Symmetrietransformationen, oder wie
in [Str77] auch als Fichtransformationen zweiter Art bezeichnet. Diejenigen Elemente g. € G
hingegen, die mit € := (¢* = const, e =0,b+# a) assoziiert werden, wobei es mindestens eine
zugehorige Eichtransformation zweiter Art der Form e := (e* # const, e’ = 0,b # a) gibt,
bilden die Untergruppe G C G der Fichtransformationen erster Art. Wird die Eichtheorie
durch Erweiterung einer globalen Symmetrie auf eine lokale Symmetrie durch Hinzunahme
von Eichfeldern erzeugt, so fallen die Eichtransformationen erster Art natiirlich trivialerweise
mit den urspriinglichen globalen Symmetrietransformationen zusammen. Eine Theorie kann
aber durchaus auch noch andere (globale) Symmetrien aufweisen, wie beispielsweise die chi-
rale Symmetrie der QCD, die keine Entsprechung in lokalen Transformationen finden. Aus

13Vergleiche beispielsweise die Darstellung in [PS95].
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diesem Grund — und weil der Begriff ,lokal* in [Str77] fiir Automorphismen auf Ebene der
x—Algebra F der lokalen Felder reserviert ist — erscheint die Unterscheidung von Eichtrans-
formationen erster und zweiter Art, die in der Lagrange’schen Formulierung beide auf die
lokalen Felder der Theorie angewandt werden, also durchaus sinnvoll zu sein.

In einer Quantenfeldtheorie mit indefiniter Metrik existieren nun unter der Voraussetzung
einer fixierten Eichung zwei Signaturen fiir das Phénomen der spontanen Symmetriebre-
chung: Prinzipiell tritt fiir jede gebrochene Symmetrie notwendigerweise eine Singularitit der
Form §(p?) in der Fourier-Zerlegung von Erwartungswerten lokaler Operatoren auf. Dies ist
die Aussage des generalisierten Goldstone-Theorems [Str77]. Falls die zugehorigen lokalen
Generatoren nun mit Eichtransformationen erster Art assoziiert sind, so liefern diese Singu-
laritéten aber keinen Beitrag bei der Berechnung physikalischer Matrixelemente und fithren
insbesondere nicht zum Auftreten spin- und masseloser Anregungen im Hilbert-Raum der
physikalischen Zusténde. In diesem Fall geschieht die spontane Symmetriebrechung durch
den Higgs-Mechanismus. Fiir alle anderen Generatoren, die nicht mit G assoziiert werden
konnen, verlduft die spontane Symmetriebrechung mittels des Goldstone-Mechanismus und
ist durch das Auftreten von masselosen Goldstone-Bosonen im physikalischen Spektrum der
Theorie charakterisiert. Diese finden sich bei der Untersuchung der spektralen Dichte p(z?)
einer Kéllén-Lehmann-Darstellung (siche beispielsweise [Wei95], Kapitel 10.7) der zugehori-
gen Propagatoren als §(u?)—Singularitit wieder. Besitzt die Theorie hingegen ein mass gap,
so verschwindet die Spektraldichte unterhalb des Quadrats der Masse m, der niedrigsten
Anregung und es tritt eine Liicke zwischen p? = m?, und der Schwelle fiir Mehrteilchen-
zustinde p? = 4m12, auf. In diesem Zusammenhang ist es wichtig festzuhalten, dass im Falle
des Higgs-Mechanismus Aussagen iiber das Verhalten derjenigen Eichbosonen, die mit den
ungebrochenen Generatoren von G assoziiert sind, nur unter sehr speziellen Voraussetzungen
moglich sind [Str77]. Wichtig scheint dabei in jedem Fall die abelsche oder nicht-abelsche
Natur der residuellen Symmetriegruppe zu sein. Beispielsweise lassen sich die Gluonen einer
reinen Yang-Mills-Theorie auf Basis einer Eichgruppe G zwar ebenfalls mit den Generato-
ren einer zugehorigen ungebrochenen Symmetrie G erster Art assoziieren, nicht-perturbative
Untersuchungen einer SU(2)—Eichtheorie in Landau-Eichung haben aber gezeigt, dass indivi-
duelle Gluonen nicht im physikalischen Spektrum der Theorie auftreten, was sich am Verlust
der Positivitit der gluonischen Spektraldichte p(u?) ablesen lisst [LRG02] und dem Wirken ei-
nes Confinement-Mechanismus zugeschrieben wird. Im physikalisch noch interessanteren Fall
G = SU(3) hat sich aulerdem gezeigt, dass die niedrigsten eichinvarianten (und somit phy-
sikalischen) Anregungen, die sogenannten glue balls, eine endliche Masse aufweisen [MT89].
Offensichtlich ist also auch bei der Untersuchung des Phinomens der spontanen Symme-
triebrechung im Kontext nicht-abelscher Eichtheorien die Verwendung nicht-perturbativer
Methoden durchaus angezeigt.

Wiéhlen wir zu diesem Zweck die Gittersimulation einer diskretisierten Version der interes-
sierenden Quantenfeldtheorie, so fithren die oben angestellten Uberlegungen auf das folgende
Vorgehen: Um das physikalische Spektrum der Theorie studieren zu kénnen, miissen eichin-
variante Operatoren konstruiert werden, die in der Lage sind, sowohl die verschiedenen inter-
essierenden physikalischen Zustédnds beziiglich ihrer Quantenzahlen, als auch den jeweiligen
Grundzustand von moglichen angeregten Zustdnden zu unterscheiden. Die Konstruktion der-
artiger Operatoren, die in Kapitel 4.7 noch ausfiihrlicher diskutiert werden wird, ist im Prinzip
immer moglich, oft aber mit erheblichem Aufwand verbunden [BB83]. Eine Alternative stellt
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die Fixierung einer vorteilhaft gewihlten Eichung und die anschlieende Untersuchung von
Propagatoren dar, die zu in eben dieser Eichung definierten Feldern gehoéren. Ist dariiber
hinaus auch die Beobachtung des Phidnomens der spontanen Symmetriebrechung selbst von
Interesse, so wird eine Eichfixierung aufgrund des Theorems von Elitzur sogar unumggnglich.
Die Bedeutung der Gruppe G fiir den Higgs-Mechanismus in Eichtheorien wurde bereits dis-
kutiert und gibt einen wichtigen Hinweis fiir die Wahl einer passenden Eichung. Wird diese
némlich so gewihlt, dass der Theorie nach Eichfixierung nur noch eine Invarianz unter den
zugehorigen globalen Transformationen (erster Art) verbleibt, so kann die spontane Sym-
metriebrechung im thermodynamischen Limes direkt anhand des Transformationsverhaltens
des Vakuumszustands yo studiert werden. Zu beachten ist dabei, dass dieses Vorgehen keine
eindeutige Lokalisierung einer Grenze zwischen einer symmetrischen und unsymmetrischen
Phase der Theorie zulédsst [CGO8], sondern je nach Wahl von G und eines zugehorigen Ord-
nungsparameters die spontane Symmetriebrechung an verschiedenen Stellen im Phasendia-
gramm angezeigt wird. Auflerdem wurde bereits erwiahnt, dass bei Untersuchungen auf einem
endlichen Gitter noch besondere Vorkehrungen getroffen werden miissen um zu verhindern,
dass ein mogliches Signal fiir vorliegende spontane Symmetriebrechung bei der Berechnung
von Erwartungswerten wieder verloren geht. Diesen Punkt werden wir bei der Diskussion
der Fixierung einer geeigneten Eichung zur Bestimmung der residuellen Symmetrien einer
SU(3)—Eichtheorie mit einem skalaren Feld in adjungierter Darstellung in Kapitel 4.4 wie-
der aufgreifen.

Bevor wir uns jedoch der numerischen Simulation dieser Theorie in euklidischer Formulierung
auf dem Gitter zuwenden werden, soll zunéchst noch das storungstheoretisch zu erwartende
Verhalten der zugehorigen Theorie im Minkowski-Raum diskutiert werden.

4.3 SU(3)—Yang-Mills-Theorie mit Skalarfeld in adjungierter
Darstellung

Die Dynamik der SU(3)—Eichtheorie mit einem skalaren Feld ®(x) in adjungierter Darstel-
lung wird in der Kontinuumsformulierung auf dem Minkowski-Raum My von der Lagrange-
dichte

L(x) = —%tr [FL (2)F™ (z)] 4+ tr[ D, @ (2) DF® ()] — m? tr [@*(z)] — A (tr [q)(:n)2])2 (4.26)

bestimmt. Der nicht-abelsche Feldstiarketensor und die kovariante Ableitung sind dabei ge-
geben durch

Fu(x) = 0,A,(x) — 0,Au(x) —ig[Au(x), Ay ()] (4.27)
D,®(z) = 0,P(x) —ig[Au(z), P(x)] . (4.28)

Die Masse des skalaren Feldes wird mit m bezeichnet, die Stérke der Kopplung von Eichfeldern
an Skalarfelder wird durch die Kopplungskonstante g parametrisiert und die Selbstkopplungs-
konstante der Skalarfelder bezeichnen wir mit A. Bei all diesen Groflen handelt es sich um
nackte (bare), d.h. nicht renormierte Konstanten. Sowohl die Feldstérke, als auch das ska-
lare Feld, sowie die kovariante Ableitung sind algebrawertige Groflen und koénnen nach den
hermiteschen Generatoren 7% der zugehorigen Lie-Algebra su(3) der Gruppe G entwickelt
werden. Die Konventionen fiir deren Normierung und weitere wichtige Relationen finden sich
im Anhang D.2.
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4.3.1 Storungstheoretische Analyse

Die durch (4.26) beschriebenen Theorie erméglicht fiir A > 0 und negative Werte von m?

das Auftreten des Higgs-Mechanismus, bzw. unter der Annahme einer fixierten Eichung auch
das Phianomen der spontanen Symmetriebrechung. Als Ergebnis einer Analyse auf tree level
zeigt sich, dass das Minimum des Potentials nun fiir

tr [<I>g(:n)} = —m?/2A (4.29)

angenommen wird. Diese Analyse vernachlissigt jedoch génzlich den Einfluss von Quan-
tenfluktuationen, welche zu einer Modifizierung des Potentials fithren'® und im Rahmen
der numerischen Simulation der Theorie beriicksichtigt werden koénnen. Die Bedingung
(4.29) entspricht der bereits diskutierten Voraussetzung der Existenz eines nicht-trivialen
Eichorbits von Minima des Potentials fiir die eichinvariante Formulierung des Higgs-Phéno-
mens [FMS81], wobei die Orientierung des Skalarfeldes ®¢(z) in der Algebra unbestimmt
bleibt. Dies stellt keinen Widerspruch zum Theorem von Elitzur dar, da die Ausfithrung des
Funktionalintegrals im Zuge der Quantisierung der Theorie einer Integration iiber Eichorbits
entspricht und folglich der Erwartungswert des kovariant konstanten Skalarfeldes verschwin-
det [O’R90]. Die spontane Symmetriebrechung geschieht erst durch Festlegung einer bestimm-
ten Orientierung von ®y(x) € LG durch Vorgabe einer Eichbedingung. Dadurch kann das
Skalarfeld einen Vakuumerwartungswert entwickeln und dies ist der Ausgangspunkt einer
storungstheoretischen Diskussion der Massenmatrix fiir die Eichbosonen in einer Realisie-
rungsphase der Theorie mit gebrochener Symmetrie.

Wihlen wir die durch Gleichung (4.23) bestimmte unitire Eichung und nehmen wir ferner
an, dass das Poincaré-invariante Vakuum ®y der Theorie ein nicht-triviales Minimum des
effektiven Potentials darstellt, so ldsst sich das Teilchenspektrum der Theorie durch Untersu-
chung kleiner Fluktuationen um ®( bestimmen. Zu diesem Zweck wird das Skalarfeld ®*(z)
geméf

QY (z) = Do+ (), (™ (z)) =0 (a=1...8) (4.30)

verschoben und eine Entwicklung von (4.26) nach den neuen Feldern ¢%(x) durchgefiihrt.
Bereits in unterster Ordnung der Storungstheorie findet sich ein Beitrag zu einer effektiven
Lagrangedichte der Form

1
AL(z) = Smay Au(@) A (@), miy = = g* [t ][ Po] " [@o] - (4.31)
Dieser kann als effektiver Massenterm fiir die Eichfelder Af(z) interpretiert werden, da die
Generatoren [t*] nach Voraussetzung imaginir und anti-symmetrisch sind, und die Matrix

mfb folglich reell, symmetrisch und positiv ist:
2
m2, cacy = g Z (ca o [@0]™ ) > 0. (4.32)

Fine Diagonalisierung dieser Matrix liefert schliellich die Masseneigenzustéinde als Linear-
kombinationen der urspriinglichen Eichfelder, wobei sich die mit den ungebrochenen Ge-
neratoren verkniipften reellen Linearkombinationen als Eigenzustinde zum Eigenwert Null
ergeben.

"Vergleiche die Diskussion zur Konvexitiit des effektiven Potentials in Kapitel 4.2
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Wie bereits erwéihnt, ldsst sich die Gruppe H der residuellen Symmetrien in einer konkreten
Fichung direkt anhand des Transformationsverhaltens von ®y bestimmen. Fiir ein skalares
Feld in adjungierter Darstellung (D.1) muss dabei nach Gleichung (4.16) die Relation

Py = hdogh™', VheH, (4.33)

erfiillt sein. Wéhlen wir nun als Basis der Lie-Algebra su(3) die in Anhang D.2 angegebene
Gell-Mann-Darstellung, so ldsst sich die Diskussion weiter konkretisieren. Die Massenmatrix
nimmt dabei die Gestalt

m = —2g*tr([T%, ®o][T°, D)) (4.34)
an, wobei ®q in unitirer Eichung maximal diagonal ist und die Darstellung
by = PPT3+ 8T8 (4.35)

besitzt. Je nach Gestalt des Vakuumerwartungswertes @y konnen nun zwei verschiedene Sze-
narien eintreten: Im Allgemeinen wird die Theorie eine residuelle U(1) x U(1)—Symmetrie
aufweisen, da jede der durch die beiden Generatoren 72 und 7% der Cartan-Subalgebra ausge-
zeichneten Richtungen mit einer ungebrochenen U(1)—Symmetrie identifiziert werden kann.
Falls aber zusitzlich noch fiir die Komponente ¢* = 0 gilt, so erweitert sich die residuelle
Symmetriegruppe auf H = SU(2) x U(1), was an Gleichung (4.33) leicht zu erkennnen ist.
Die mit den Generatoren T, T2, T3 sowie T® assoziierten Eichfelder bleiben nach Gleichung
(4.34) daher masselos, die restlichen in dieser Eichung definierten Eichfelder erhalten ver-
mittels des Higgs-Mechanismus eine Masse m? = 3g%tr[®2]/2. Eine analoge Untersuchung
im skalaren Sektor der Theorie zeigt in diesem Fall, dass die Fluktuationen des Skalarfeldes
o(z) := ¢¥(z) um ®( mit einem massiven Boson in Verbindung gebracht werden konnen, fiir
dessen Masse m? = 4Atr[®F] gilt.

Neben der SU(3)—Eichsymmetrie weist die durch (4.26) beschriebene Theorie noch eine
globale Reflexionssymmetrie der Form

O(z) —» —P(x) Ve My (4.36)

auf. In welchen Regionen des Phasendiagramms diese globale diskrete Symmetrie realisiert
oder spontan gebrochen ist, soll ebenfalls im Rahmen der numerischen Untersuchung des
effektiven Potentials der Theorie geklédrt werden. Insbesondere stellt sich die Frage, ob eine
dadurch bestimmte Grenzlinie mit einer Unterteilung des Phasendiagramms in Bereiche mit
gebrochener und ungebrochener G—Symmetrie iibereinstimmt, da in letzterem Falle ja eine
Eichfixierung notwendig wird und die Lage der so bestimmten Phasengrenze wie bereits dis-
kutiert im Allgemeinen von der Wahl der Eichung und dem betrachteten Ordnungsparameter
abhéngt.

Es zeigt sich also bereits im Rahmen des perturbativen Zugangs, dass mehrere Moglichkeiten
der spontanen Brechung der vollen SU(3)—Symmetrie der auf (4.26) basierenden Theorie
bestehen. Wie jedoch bereits ausgefiihrt wurde, ist die Gestalt der residuellen Symmetrie
eine von der Dynamik der Felder abhéngige Frage, welche nicht allein durch den Einsatz
von storungstheoretischen Methoden geklirt werden kann. Unser Zugang der Wahl wird die
numerische Monte-Carlo-Simulation einer diskretisierten Version des euklidischen Analogons
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von (4.26) sein, um zu kléren, ob eine Realisierungsphase der zugehorigen quantisierten Theo-
rie mit einer SU(2) x U(1)—Symmetrie existiert, deren Untersuchung einen wichtigen Beitrag
zum Versténdnis der Grundlagen der von Glashow, Salam und Weinberg formulierten Theorie
der elektroschwachen Wechselwirkung sowie moglicher Alternativen dazu liefern sollte.

4.3.2 Diskretisierte Formulierung der Quantenfeldtheorie

Die Zustandssumme Z der von uns betrachteten euklidischen Quantenfeldtheorie auf dem
toroidalen Gitter T* ist gegeben durch

z = / DUDP exp {— S[U, D]} . (4.37)

Die Erwartungswerte interessierender Observablen werden also beziiglich des normierten
Gibbs-Mafles
du(U, @) = DU DP Z ' exp {— S[U, @]} (4.38)

berechnet, wobei DU das invariante Haarsche Mafl auf der Gruppenmannigfaltigkeit der
SU(3) fiir jeden Link des Gitters bezeichnet, und fiir den Anteil an der Integration der
skalaren Felder gilt

8
Do = [[[[d¢"(z), @) eR. (4.39)

T a=1
Auf einem endlichen Gitter handelt es sich bei (4.38) um ein wohldefiniertes Maf, wobei das
Wirkungsfunktional S[U, ®] in Gleichung (4.38) in drei Anteile zerfillt:

SU.®] = SG[U] + StioplU, @] + Spor[®] (4.40)

Der erste Term stellt die Konkretisierung der von Wilson [Wil74] eingefithrte Wirkung einer
SU(N) Yang-Mills-Theorie auf Basis von Plaquetten-Variablen fiir den Fall N = 3 dar

salt) = 83 (1- g RelulUal}),  B="5 . (4.41)
P

zu deren Konstruktion iiber alle orientierte Plaquetten P des Gitters summiert wird. Der
zweite Term

D
SoplU @] = —26 3>t [@(:L")Uu(a:ﬁb(a: n M)U;(g;)] (4.42)

r p=l1
verkniipft die Freiheitsgrade des Eichsektors mit denen des Skalarfeldsektors der Theorie.
Die Bedeutung dieses in der englischsprachigen Literatur als hopping term bezeichneten Aus-

drucks soll hier kurz erldutert werden. Fiir ein skalares Feld ®(x), das sich unter der adjun-
gierten Darstellung einer Gruppe G transformiert, gilt wie in Anhang D.1 erldutert

d(z) — () = Qz)d(z) QN (x), Qzx) € G, (4.43)

und fiir ein solches Feld definiert man als Verallgemeinerung der iiblicherweise bei der Dis-

kretisierung von kinetischen Termen auftretenden Vorwérts- bzw. Riickwértsableitungen die

folgenden Operatoren:
Did(z) = [Uu(x)QD(x—ku)Ul(w) - @(m)} , (4.44)

D, ®(x) =

QI

| 2(@) — Ufiw = )@z — p)Up(e — 1) | - (4.45)
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Diese verhalten sich per Konstruktion kovariant unter Eichtransformationen:
+ + T - -
Djy®(x) — Q(z) D @(x) Qf(2), D, ®(x) — Q(z) D, ®(z) Qf (z) . (4.46)

Eine Potenzreihenentwicklung der Paralleltransporter U, (x), sowie der skalaren Felder, wel-
che im Abstand einer Gitterkonstanten a zum Gitterpunkt = auftreten, fiihrt im Falle von
(4.44) bis auf Korrekturen von O(a) auf (4.28), so dass dieser Operator eine mogliche Approxi-
mation der kovarianten Ableitung fiir adjungierte skalare Felder einer Kontinuumsfeldtheorie
darstellt und sich im Limes a — 0 auf diese reduziert. Die Behandlung von (4.45) verlduft ana-
log. Mit diesen Definitionen findet man unter Verwendung von periodischen Randbedingun-
gen, die wir bei der Konstruktion der Feldtheorie auf dem hyperkubischen (bzw. toroidalen)
Gitter T* zugrunde legen:

D D
a4ZZ tr [Df®(z) Dfd(x)] = a2{ -2 ZZ tr [(I)(a:)Uu(x)tI)(x + ,u)UjL(x)

z p=1 z p=1

+2D Y tr [8%()] } . (4.47)
Es lasst sich ebenfalls leicht zeigen, dass
Y tr[Did(z) Df(x)] = — > ) tr[®(x) D, D)} d(x)] (4.48)
L) L)

was die Definition des kovarianten d’Alembert-Operators auf dem Gitter motiviert:

Oay 1= — Y D Df 6y (4.49)
N

Der kinetische Term fiir skalare Felder, die sich unter der adjungierten Darstellung transfor-
mieren, besitzt auf dem Gitter daher die Gestalt

a’ ZZ tr [ Dr®(x) Dfd(x)] = a’ Z tr [@(x)0 4, P(y)] - (4.50)
T 0 T,y

Unter Hinzunahme des dritten in Gleichung (4.40) auftretenden Terms

Spocl®) = > tr [02(x)] + A (tr [@2(x)]) | (4.51)

T

der neben der Selbstwechselwirkung des skalaren Feldes auch einen quadratischen Term
enthélt, dessen Koeffizient in der Kontinuumsformulierung mit dem Quadrat der (nackten)
Masse von ®(z) identifiziert wird, kann schliefllich durch eine Reskalierung der Form

O(x) — @' (1) :=Vr®(x) (4.52)

gezeigt werden, dass der Kontinuumslimes der nun durch S[U, ®'] bestimmten Theorie durch
genau diejenige euklidische Feldtheorie gegeben ist, welche aus (4.26) durch Ubergang von
M, in den euklidischen Raum Ej durch inverse Wick-Rotation hervorgeht [Rot97], sofern
dabei die Relationen

k= (2D+m?*)™" sowie A = K?A (4.53)
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gelten. Offenbar ldsst sich also (4.42) mit einem Teil der Wirkung (4.51) zu einer Darstellung
der kinetischen Energie des skalaren Feldes ®(x) kombinieren. Dies ist der Grund dafiir, dass
K iiblicherweise als hopping parameter bezeichnet wird.

Eine fiir die Konvergenz der zu berechnenden Pfadintegrale wichtige Forderung bei der Kon-
struktion einer euklidischen Feldtheorie ist die sogenannte Stabilitétsbedingung, welche be-
sagt, dass der Potentialbeitrag zur euklidischen Wirkung (4.51) von unten durch eine Pa-
rabel mit geeignet gewihlten Koeffizienten beschrinkt sein muss [Roe91]. Als Konsequenz
dieser Bedingung kénnen in der durch Gleichung (4.37) definierten Theorie Terme der Form
tr[®™(z)] zu ungeraden Potenzen m > 2n + 1, (n € N) nicht auftreten. Die Anwesenheit
eines Terms proportional zu tr [<I>3(3:)] wire zwar prinzipiell mit der Stabilitdtsbedingung
vereinbar, wiirde jedoch zur expliziten Brechung der globalen Reflexionssymmetrie (4.36)
fithren. Da ein solcher Term nun aber in der Lagrangedichte (4.26) bzw. der zugehorigen
Wirkung auf dem Gitter (4.40) nicht auftritt, eréffnet sich die Moglichkeit, die Theorie auf
ein (vierdimensionales) Spin-Glas-System abzubilden, welches mithilfe des eichinvarianten
Cluster-Algorithmus (vgl. Kapitel 3.3) simuliert werden kann. Die Vorziige dieser Methode
bei der Reduktion von Autokorrelationen wurden bereits in Kapitel 3 diskutiert. Auflerdem
haben wir mit tr [@3(:5)] zugleich einen Operator gefunden, der als Grundlage fiir die Kon-
struktion eines Ordnungsparameters dienen kann, der in der Lage ist, die spontane Brechung
der Reflexionssymmetrie (4.36) anzuzeigen. In Kapitel 4.5 werden wir die Ergebnisse und
Details unserer numerischen Untersuchungen vorstellen, zuvor soll jedoch noch die Fixierung
einer Eichung besprochen werden, die es uns erméglichen soll, die in Kapitel 4.3.1 diskutierten
perturbativen Erwartungen zu iiberpriifen.

4.4 Fixierung der Eichfreiheit: Landau-Eichung und globale
unitire Eichung

Zu diesem Zweck fixieren wir in einem ersten Schritt die Landau-Eichung durch iterative
Minimierung des eichfixierenden Funktionals

4
Fol] = S5 Re{tr[1 - UR(2)]} % min, (4.54)
r p=1

Fiir eine detaillierte Diskussion des zugehorigen Algorithmus wird dabei auf Kapitel C.1 im
Anhang verwiesen. Offensichtlich erlaubt die Bedingung (4.54) immer noch globale Trans-
formationen €2 € SU(3), so dass durch Fixierung der Landau-Eichung gerade das in Kapitel
4.2.2 diskutierte Ziel der Einschrinkung von G auf G erreicht wird. In der Kontinuums-
formulierung lautet die lokale Eichfixierungsbedingung A% (z) = 0 und es ist offensicht-
lich, dass die Landau-FEichung mit globalen Transformationen kompatibel ist. Bei der Su-
che nach einem Ordnungsparameter fiir die spontane Brechung dieser Restsymmetrie erster
Art lassen wir uns von der zunéchst in [Lan05] angegebenen Konstruktion eines Operators
leiten, der sowohl bei der Untersuchung einer SU(3)—Eichtheorie, als auch im Falle einer
SU(2)—Eichtheorie [CGO8] mit Skalarfeld in fundamentaler Darstellung verwendet wurde.
Dabei handelt es sich um das globale Skalarfeld

P = V%Zcb(a;), ®(z) = ¢*(2) T, (4.55)

xT
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dessen Betrag in der symmetrischen Phase verschwindet, bei vorliegender Symmetriebre-
chung jedoch auch im thermodynamischen Limes V4 — oo einen endlichen Wert annimmt.
Die Vakuummannigfaltigkeit ist dabei die Menge aller Konfigurationen, welche das effektive
Potential minimieren:

Mep, = {® | Veg(®) = min.} . (4.56)

Diese ist nach Gleichung (4.12) in erster Ordnung Storungstheorie durch all jene Konfigura-
tionen gegeben, die der Relation tr[q)g] = —m?/2A geniigen. Offensichtlich bedeutet spontane
Brechung der Symmetrie nun, dass vom Skalarfeld irgendein Punkt auf der durch diese Re-
lation beschriebenen S” mit endlichem Radius gewiihlt wird. Im thermodynamischen Limes
gibt es keine Tunnelamplitude zwischen den verschiedenen Vakua, die durch Rotationen auf
der S” auseinander hervorgehen. Folglich gilt in diesem Fall ®; = (®) # 0. Fiir einen er-
godischen Algorithmus auf einem endlichen Gitter hingegen wird dies bei jeder Messung ein
anderer Punkt sein, so dass folglich stets (®) = 0 zu erwarten ist. Entweder muss daher wie
in [Lan05,CGO08] der Erwartungswert der Norm von ® betrachtet werden, oder eine weitere
Eichfixierungsbedingung gestellt werden.

Da wir nicht nur daran interessiert sind, die residuelle Symmetriegruppe H, sondern auch
ihre Einbettung in G bestimmen zu kénnen, wihlen wir die zweite Variante. Zu diesem Zweck
fithren wir noch eine weitere globale Transformation Q* € SU(3) durch, mithilfe derer das
globale Skalarfeld (4.55) diagonalisiert wird, sowie mogliche Weyl-Reflexionen in der von 73
und T® aufgespannten Ebene fixiert werden, in der das diagonalisierte Skalarfeld (4.35) zu
liegen kommt. Eine Matrix [Q"],,,, die eine solche Transformation vermittelt, wird aus den
Eigenvektoren des hermiteschen globalen Feldes konstruiert und die Drehung desselben in
die fundamentale Doméne § entspricht der Festlegung einer moglichen Permutationen dieser
Eigenvektoren. Eine Illustration der Situation findet sich in Abbildung 4.1.

Im Detail wird dabei folgendes Verfahren angewandt:
e Die drei reellen Eigenwerte A; € R von ®y werden in absteigender Reihenfolge der
Grofle nach angeordnet:

AL > A2 > Az

e Gilt nun Ay < 0, so werden die Eigenwerte A\ und A3 miteinander vertauscht.
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Es ist leicht zu iiberpriifen, dass die so angeordneten und wiederum mit \; bezeichneten
Eigenwerte (i = 1,2, 3) der Relation

A1 =2 < A2 =Xl < A1 — A5 (4.57)

geniigen. Die Eigenwerte sind invariant unter globalen Transformationen, was die Invari-
anz der Norm von ¢ unter derartigen Transformationen widerspiegelt. Wird aber die oben
beschriebene Eichung fixiert, die wir fortan als globale unitire Eichung bezeichnen wollen,
so besteht aufgrund der gewihlten Anordnung der Eigenwerte folgende Verbindung zu den
nicht-verschwindenden Komponenten von (4.55):

¢* = A — o
$* = V3(M+ ). (4.58)

Dabei ist zu beachten, dass die globale Reflexionssymmetrie (4.36) durch diese erweiterte
Eichfixierungsbedingung nicht fixiert wird. Der Sinn der Vorschrift, nach Anordnung der
Eigenwerte im Falle Ay < 0 eine Permutation von A; und A3 durchzufiihren, besteht darin,
dass auf diese Weise gewéihrleistet wird, dass die Position der beiden Eigenwerte auf der
Diagonalen des Skalarfeldes, deren Abstand zueinander vom Betrag her minimal ist, stets
dieselbe bleibt. Im Gegensatz zur der in [GH84] vorgestellten Methode vereinfacht dieses
Vorgehen die Identifizierung der residuellen Symmetriegruppe erheblich. Auf diesen Punkt
wird nochmals ausfiithrlich im Zuge der Konstruktion eines eichinvarianten Testzustands in
Kapitel 4.6 eingegangen.

4.5 Numerische Ergebnisse zur Phasenstruktur

Aufgrund der Relation (4.53) ist zu erwarten, dass das Phénomen der spontanen Symme-
triebrechung fiir k > 1/8 auftreten sollte. Da dieses Ergebnis jedoch durch eine Analyse
des Potentials auf Ebene der klassischen Feldtheorie zustande kam, steht zu erwarten, dass
sich die Lage des kritischen Punktes k. durch Quantenfluktuationen, in Abh#ngigkeit von
der Wahl der Parameter S und A, verschieben wird. Das perturbativ gewonnene Ergebnis
vermag also bestenfalls eine Orientierungshilfe bei der Suche nach dem Ubergangspunkt von
der Wigner-Weyl-Phase in die Phase gebrochener Symmetrie zu bieten. Eine erste nicht-
perturbative Untersuchung der Theorie wurde von Gupta und Heller [GH84| durchgefiihrt.
Deren Ergebnisse lieflen erstmals quantitative Aussagen zur Phasenstruktur der Theorie zu,
wenngleich die Autoren eingestehen mussten, dass eine eindeutige Identifizierung der resi-
duellen Symmetriegruppe ohne Fixierung einer Eichung schwierig sei und sich die Effekte
der in dieser Arbeit verwendeten Gittergroen auf die Lage der Phasengrenzen bei einer von
uns durchgefiihrten Uberpriifung als erheblich herausstellten. Dennoch geben die in [GH84]
berichteten Resultate wertvolle Hinweise auf den fiir unsere Zwecke interessierenden Parame-
terbereich.

Nach Fixierung der beiden Kopplungskonstanten 8 und A auf die Werte 8 = 6.0 und A = 0.01
wurde in einer ersten Simulation auf einem Gitter der Grofe 8* im Intervall & € [0.14,0.24]
nach einem Signal fiir einen Phaseniibergang gesucht. Zu diesem Zweck wurde die verbundene
skalare Korrelationsfunktion

Collz —yl) = (n*(@)n(y).,  n'(x) = |2@)] " ¢"(x) (4.59)



Kapitel 4. Elektroschwache Wechselwirkung und freie Isospinladungen 147

fiir jeden untersuchten Wert des Parameters x in 250 thermalisierten und eichfixierten Kon-
figurationen gemessen. Zur Erzeugung dieser Ensembles wurde der im Anhang B.3 beschrie-
bene Hybrid-Heatbath-Algorithmus in Kombination mit dem Cluster-Update-Algorithmus
(siehe Kapitel 3) verwendet, wobei fiir die Aktualisierung der skalaren Felder der in Ab-
schnitt B.3.2 dargelegte Algorithmus verwendet wurde. Letzterer stellt eine Erweiterung und
Verallgemeinerung des urspriinglich von Bunk [Bun95] vorgeschlagenen Verfahrens zur Si-
mulation der elektroschwachen Eichtheorie auf den Fall von Materie dar, die sich unter der
adjungierten Darstellung einer Eichgruppe transformiert. Zur Thermalisierung wurden da-
bei ausgehend von einer geordneten (cold start) Konfiguration 500 sogenannte supersweeps
durchgefiihrt, wobei ein supersweep definiert wurde als Kombination von drei gewdhnlichen
Heatbath-Aktualisierungsdurchgéngen aller Links und Skalarfelder des Gitters, gefolgt von
jeweils einem Durchgang von mikrokanonischen Reflexionen (B.4) im Eich- und Skalarfeld-
sektor. Neben den geordneten Startkonfigurationen wurden ebenfalls vollig zufillig erzeugte
(hot start) Anfangskonfigurationen verwendet. Durch Uberwachung der Entwicklung von Ob-
servablen wie der mittleren kinetischen Energie des Skalarfeldes oder der mittleren Plaquette
konnte nachgewiesen werden, dass sich das zu simulierende System bei Verwendung dieses
Algorithmus unabhéngig von der Wahl der verwendeten Anfangskonfiguration in ein und
denselben Gleichgewichtszustand entwickelt, und dass dieser fiir alle betrachteten Werte von
k bereits nach einer Thermalisierungsdauer von hochstens 100 supersweeps erreicht wird.
Die Akzeptanzraten fiir die Vorschlige, die mittels des Heatbath- sowie des Overrelaxation-
Algorithmus im Eichfeldsektor generiert wurden, variierten im untersuchten k—Intervall in
beiden Féllen zwischen 0.8 und 0.5, im Skalarfeldsektor hingegen fielen die Akzeptanzraten
in keinem der beiden Fillen unter 0.9. Dieses Ergebnis werten wir als Erfolg unserer Analyse
und der in Anhang B.3.2 vorgestellten Adaption des Algorithmus von Bunk an den vorlie-
genden Fall, die es uns erméglicht hat, im gesamten betrachteten Intervall des Parameters x
stets die optimalen Kandidaten fiir den Update der Skalarfelder zu generieren und somit die
Akzeptanzrate zu maximieren. Die Konfigurationen, welche fiir die Ensembles zu den ver-
schiedenen Werten des hopping parameter k ausgewahlt wurden, waren dabei jeweils durch
zehn supersweeps in der erzeugenden Markov-Kette voneinander getrennt und das Abbruch-
kriterium bei der iterativen Fixierung der Eichung wurde auf 62 < 1076 festgelegt.

Der Erwartungswert der (normierten) integrierten Korrelationsfunktion liefert die (normierte)
Korrelationslénge ¢ des Skalarfeldes:

1
£ =532 2 Calle—yl), N=NIxN. (4.60)
Y

Das Ergebnis der Messungen ist in Abbildung 4.2 zu sehen. In der symmetrischen Phase sind
die Skalarfelder vollig unkorreliert und die Korrelationslédnge (4.60) verschwindet. Wird nun
der Wert des Parameters x weiter vergrofiert, so beobachtet man fiir £ ~ 0.18 ein rapides An-
wachsen von &, was den Ubergang der Theorie in eine Phase zunehmender Ordnung anzeigt.
Die Korrelationen zwischen den Skalarfelder an verschiedenen Orten x des Gitters nehmen
zu und im Grenzfall volliger Kohédrenz der Felder ist ein Divergieren der Korrelationslidnge zu
erwarten. Auf einem endlichen Gitter bedeutet dies, dass der Wert der Korrelationsléinge &
auf die Ausdehnung des gesamten Gitters anwachsen wird. Durch die in (4.60) vorgenomme-
ne Normierung kann £ einen Maximalwert von eins annehmen und diesem Grenzwert ndhert
sich die Korrelationslinge fiir zunehmende Werte von & in der Tat an. Zur Uberpriifung un-
serer Ergebnisse wurde fiir dieselben Parameter eine weitere Simulation mittels eines reinen
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Metropolis-Algorithmus nach Mafigabe der in [GH84] vorgestellten Methode durchgefiihrt.
Unsere in Abbildung 4.2 gezeigten Ergebnisse konnten dabei bestéitigt werden, jedoch waren
bei der Verwendung des Metropolis-Algorithmus in etwa doppelt so viele Iterationen wie bei
Verwendung des Heatbath-Algorithmus notig, um das thermische Gleichgewicht zu erreichen.
Aus diesem Grund wurde in allen weiteren Simulation dem Heatbath-Algorithmus der Vorzug
gegeben. Weitere Simulationen auf einem 8* Gitter, die fiir die Parameterkombination 5 = 6.0
und A = 0.001 durchgefiihrt wurden, haben gezeigt, dass sich der kritische Punkt zu einem
Wert des Hopping Parameters von k. ~ 0.16 verschiebt. Aulerdem scheint die Ordnung des
Phaseniibergangs bei einer Verkleinerung der Selbstkopplung des Skalarfeldes abzunehmen.
Beide Beobachtungen stimmen qualitativ mit den in [GH84] berichteten iiberein. In jedem
Fall scheint fiir den kritische Punkt k. der Quantentheorie k. > k¢ zu gelten, wobei sich der
kritische Punkt der klassischen Theorie nach Gleichung (4.53) unabhéngig von 8 und A zu
kel = 0.125 ergibt.

Zur genaueren Analyse der Phasenstruktur wurde in einem néchsten Schritt durch Simula-
tionen auf einem Gitter der Gréfie 10* ein feinerer Parameterbereich in der Umgebung des
fiir die Werte der Kopplungskonstanten § = 6.0 und A = 0.01 bereits lokalisierten Phaseiiber-
gangspunktes untersucht. Das Abbruchkriterium der Eichfixierungsroutine wurde dabei auf
62 < 10! heruntergesetzt und die fiir jeden untersuchten Wert des Hopping Parameters
erzeugten Ensembles enthielten nun 400 unabhéngige Konfigurationen.

Der erste nicht-triviale Term, welcher als Ordnungsparameter zur Detektierung eines Pha-
seniibergangs und einer damit einhergehenden spontanen Brechung der globale diskrete Re-
flexionssymmetrie (4.36) der in Gleichung (4.37) definierten Theorie herangezogen werden
kann, ist tr[®3(x)]. In Analogie zur mittleren Magnetisierung!® eines D = 2 dimensionalen
Ising-Modells, in dem sich die spontane Symmetriebrechung beim Ubergang in die geordnete
Phase unterhalb einer kritischen Temperatur T, (in Abwesenheit eines dueren Magnetfeldes)
in der Auswahl einer der beiden moglichen Orientierungen (+¢é,) der nicht-verschwindenden

5Die Dimensionalitit des Ordnungsparameters M ist n = 1.
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Abbildung 4.3: (a) Lokale Observablen zur Detektierung des Phaseniibergangs als Funktion
des Parameters . (b) Skalierungsverhalten des Ordnungsparameters { | Tr[®3] |) fiir & > K.
Gitter: 10%, 8 = 6.0, A = 0.01.

Magnetisierung M manifestiert, ist bei der Berechnung des Erwartungswerts von
1
3 3
Tr[®°] = N % tr[®7(x)] (4.61)

auf endlichen Gittern der Betrag zu bilden, da das Auftreten von Konfigurationen zu den
beiden moglichen Orientierungen der ,mittleren Magnetisierung® innerhalb einer Markov-
Kette im Falle eines ergodischen Algorithmus sogar gleich wahrscheinlich ist und es deshalb
zu einer Ausloschung des Signals bei der direkten Berechnung von (Tr[®3]) kommen wiirde.
Dies ist eine weitere der in Kapitel 4.2 angesprochenen Mafinahmen, die es ermdoglichen, das
strenggenommen nur im thermodynamischen Limes mogliche Phénomen der spontanen Sym-
metriebrechung auch im Fall endlicher Systeme zu beobachten.

In Abbildung 4.3a finden sich die Messergebnisse des Betrags von (4.61) als Funktion von k.
Fiir k < 0.179 wird die Realisierung einer symmetrischen Phase der Theorie angezeigt, fiir
K > 0.18 signalisieren unsere Ergebnisse bereits die spontane Brechung der globalen Reflexi-
onssymmetrie (4.36). Tatséchlich zeigt sich die Analogie von Tr[®%] und der mittleren Ma-
gnetisierung eines Ising-Modells in D Dimensionen auch auf quantitativer Ebene. Fiir T' > T,
verschwindet die Magnetisierung M im thermodynamischen Limes (N — o0), unterhalb der
kritischen Temperatur T, kann das Verhalten von M in der Néhe des Phaseniibergangs jedoch

durch das Potenzgesetz
M| x (T.-T), T<T, (4.62)

beschrieben werden, wobei S den zugehorigen kritischen Exponenten bezeichnet. Bei der
Untersuchung der dimensional reduzierten QCD in Kapitel 3.5 konnte in Ubereinstimmung
mit den in [KLR'98] berichteten Ergebnissen bereits ein Skalierungsverhalten der Form

(| Te[@%]]) o (K —ke)?, K > Ke (4.63)
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in D = 3 Dimensionen fiir (4.61) verifiziert werden, und zwar in guter Ubereinstimmung
mit den Werten des kritischen Exponenten, die in Simulationen eines dreidimensionalen
Ising-Modells mittels Monte-Carlo-Methoden gemessen (8 ~ 0.33), oder im Rahmen einer
Hochtemperaturentwicklung (8 = 0.312(3)) bestimmt werden konnten [LB91]. Im Fall D > 4
sagt die Mean-Field-Theorie, welche den einfachsten Grenzfall der Landau-Ginzburg-Theorie
der Phaseniibergéinge darstellt, einen Wert von g = 0.5 fiir den kritischen Exponenten der
Magnetisierung voraus'®, was in Abbildung 4.3b als gestrichelte Kurve angedeutet ist. Die
offenen blauen Symbole in derselben Abbildung geben das Verhalten des Ordnungsparame-
ters (|Tr[®3]]) nach Gleichung (4.63) unter der Annahme r. = 0.17939(2) wieder, was durch
weitere Simulationen im verfeinerten Intervall £ € [0.1791,0.1799] festgestellt werden konnte.
In der Néhe des kritischen Punkts (kx — x[) scheinen die Daten sehr gut mit dem Ergeb-
nis der Molekularfeldanalyse des Ising-Modells iibereinzustimmen. Dieses Resultat zeigt zum
einen, dass der Ordnungsparameter der globalen Reflexionssymmetriebrechung auch in D = 4
Dimensionen die Rolle der Magnetisierung eines vierdimensionalen Ising-Modell {ibernimmt,
und zum anderen, dass es sich bei dem Ubergang, der im von uns untersuchten Bereich des
Phasendiagramms auftritt, um einen Phaseniibergang zweiter Ordnung handelt. Letzteres
steht in Einklang mit den in [GH84] geduflerten Vermutungen iiber die Phasenstruktur des
Modells.

In Abbildung 4.3a ist auch das Verhalten des Erwartungswerts des (nicht renormierten) mitt-
leren skalaren Kondensats

Tr[0?] — %Ztr[{ﬂ(:n)] (4.64)

als Funktion von k zu sehen. Das fiir k < k. nahezu konstante Signal interpretieren wir als
Indikator fiir das Vorliegen der Wigner-Weyl-Phase, fiir groflere Werte von « wird auch hier
eine Anderung der Realisierungsphase der Theorie durch ein rasches Anwachsen des mittleren
Quadrats der Norm des Skalarfeldes angezeigt. Durch die Einfiihrung der Spinfreiheitsgrade
o(x) wie in Kapitel 3.5 bietet sich ferner die Moglichkeit, das Verhalten der Grofie

1
M = Zx:a(:n) (4.65)

in der N#he des Phaseniibergangs untersuchen zu kénnen, die wir als das (normierte) mitt-
lere magnetische Moment M des Systems bezeichnen. In Abbildung 4.4a ist neben dem Er-
wartungswert des Betrages von M auch der Erwartungswert der in Kapitel 3 eingefiihrten
mittleren Defektdichte p zu sehen. Es ist zu beobachten, dass der Ubergang in die Phase
der spontan gebrochenen globalen Reflexionssymmetrie (4.36) von einem Anwachsen (des
Betrags) des mittleren magnetischen Moments M begleitet wird. Schon knapp oberhalb des
Phaseniibergangspunktes sind praktisch alle Spins gleich orientiert und der Maximalwert von
|M| wird fast erreicht. Die Defektdichte p hingegen nimmt beim Vordringen in die Phase
gebrochener Symmetrie relativ langsam ab. Es ist allerdings zu vermuten, dass p fiir groflere
Werte von k und N als die von uns in dieser Untersuchung betrachteten, schliellich auf Null
abfallen wird und somit in der Sprache der Festkorperphysik im thermodynamischen Limes
den Ubergang eines frustrierten Systems, das einen Dotierungsgrad von knapp 50% aufweist,
zu einem rein ferromagnetischen (oder anti-ferromagnetischen) System anzeigt. Sowohl die

5Siehe z.B. [LBI1].
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(a) Die Defektdichte p und der Betrag des mitt-
leren magnetischen Moments M.

(b) Aufspaltung der Eigenwerte von & beim
Ubergang in die Phase gebrochener Symmetrie.

Abbildung 4.4: (a) Lokale Observable p und M als Funktion von . (b) Das globale Skalarfeld
® (4.55) ist in globaler unitirer Eichung (4.57) definiert. Gitter: 10*, 3 = 6.0, A = 0.01.

Dichte p, als auch die in Abbildung 4.3a gezeigten Gréflen sind dabei Messwerte eichinva-
rianter Operatoren. Dies ist insofern bedeutsam, als dass der durch das Studium besagter
Operatoren identifizierte kritische Punkt bei k. = 0.17939(2) mit dem aus der Untersuchung
eichvarianter Signale fiir M bzw. £ in globaler unitirer Eichung bestimmten kritischen Punkt
iibereinzustimmen scheint.

Zuletzt soll gekléirt werden, an welcher Stelle im Phasendiagramm eine spontane Brechung der
Eichsymmetrie erster Art nach Fixierung der Landau-Eichung (4.54) und anschlieflender glo-
baler unitérer Eichung (4.57) auftritt, und welche residuelle Symmetrie der Theorie in dieser
Phase noch verbleibt. Zu diesem Zweck wurde der Erwartungswert des globalen Skalarfeldes
® als Funktion des hopping parameter untersucht. Die Ergebnisse unserer Messungen finden
sich in Abbildung 4.4. Fiir kleine Werte von « sind alle drei Eigenwerte mit Null vertréglich,
gleichbedeutend mit |®o| = 0. Dies ist das erwartete Signal fiir die Realisierungsphase der
vollen SU(3)—Symmetrie des Grundzustands. Erhoht man den Wert des Parameters x, so
ist ab einem kritischen Wert x* eine Aufspaltung der Eigenwerte zu beobachten, die einem
Muster folgt, welches wir aufgrund der Relation (4.58) als ein Signal fiir die Realisierung
einer residuellen SU(2) x U(1)—Symmetrie interpretieren. Im Rahmen unserer Messgenauig-
keit ist dabei zu beobachten, dass die kritischen Werte x* und k.. iibereinzustimmen scheinen.
Daher identifizieren wir im Folgenden beide Punkte miteinander als den kritischen Wert des
Hopping Parameters, an dem ein Ubergang von der symmetrischen Realisierungsphase der
Theorie in eine Phase gebrochener G— und Reflexions-Symmetrie stattfindet. Der Abstand
der Eigenwerte A\; und Ay verringert sich bei weiter zunehmenden Werten von x, und die
Summe aller drei Eigenwerte ergibt stets Null, wie es aufgrund der Spurfreiheit des (globa-
len) Skalarfeldes ® zu erwarten ist. Unmittelbar oberhalb des Phaseniibergangs ist das Signal
noch nicht génzlich eindeutig, moglicherweise zeigen sich hier die Effekte, die durch die Pro-
blematik des Auftretens von Gribov-Kopien beim Versuch der Fixierung unserer speziellen
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kovarianten Landau-Eichung erwartet werden, am deutlichsten. Eine weitere Ursache kénnte
darin begriindet liegen, dass ein echter Phaseniibergang bzw. das Phénomen der spontanen
Symmetriebrechung auf dem Gitter nur im thermodynamischen Limes zu beobachten ist und
sich Abweichungen von dem im Idealfall erwarteten Verhalten aufgrund der Verwendung von
relativ kleinen Gittern am deutlichsten in der Néhe des kritischen Punktes zeigen. Da wir an
der Untersuchung einer Quantenfeldtheorie in einer Realisierungsphase mit residueller Sym-
metriegruppe H = SU(2) x U(1) interessiert sind, werden wir im Folgenden bestrebt sein,
die oben genannten Effekte zu minimieren und fithren deshalb weitere Untersuchungen hin-
reichend weit entfernt vom kritischen Punkt k. = x* in der Phase gebrochener Symmetrie
auf Gittern der GroBe 18* durch.

4.6 Das statische Potential eines Isospin-Doubletts

Die Fixierung der Landau-Eichung, gefolgt von der globalen unitédren Eichung hat uns nicht
nur die einfache Identifizierung der residuellen Symmetriegruppe H = SU(2) x U(1) der
Theorie nach Ubergang in die Phase gebrochener Symmetrie anhand der Eigenwerte des glo-
balen Skalarfeldes ® ermdoglicht, sondern erlaubt es dariiber hinaus auch, die Orientierung der
Finbettung von H in G zu kontrollieren. Dies wollen wir uns im Folgenden bei der Konstruk-
tion eines eichinvarianten Testzustands zu Nutze machen, welcher ein Paar von statischen
Testladungen im Abstand r beschreiben soll, die sich sowohl unter SU(2)—Transformationen
wie ein Isospin-Doublett (7% = +1) verhalten, als auch U(1)y —Ladung tragen.

Die interessierende Einbettung von H in G ist charakterisiert durch Eichtransformationen,
die wir in der Form

5 ¢i0@) [7(z)
Qz) = exp (iZQa(;p)T“) exp (ia(z) T%) = (U()ée_%a(m)) (4.66)

a=1

schreiben konnen, wobei U (x) = exp (z@“(m)%) € SU(2) und o : B4y — R. Dasich das globale
Skalarfeld ® aufgrund von (4.43) nun als invariant unter einer globalen Version der Transfor-
mationen (4.66) — den Eichtransformationen erster Art — erweist, fassen wir die nach sponta-
ner Symmetriebrechung erhaltene Theorie mit residueller globaler SU(2) x U(1)—Symmetrie
als eichfixierte Eichtheorie auf, deren Eichgruppe H ist, welche auf die in (4.66) gezeigte
Weise in eine groflere Eichgruppe, ndmlich G, eingebettet ist.

Diese Uberlegung motiviert die Konstruktion eines Testzustands der Form

|‘I’glg(m,y,0)> = \Ij[(iq)a(mvo) Pda(m70) Uab(mvo;yyo) Pbc(y70) \ijq)ﬁ(yyoﬂ Q> ’ (467)

wobei der Einfachheit halber die Erzeugung dieses Zustands zum Zeitpunkt ¢ = 0 geschehen
soll. Im Allgemeinen bezeichne U(x,t,y,t) = P{explig [ A;(z,t)dz;]} dabei das pfadgeord-
nete Produkt des Eichpotentials langs einer Integrationskontur von « nach y fiir beliebige,
aber feste Zeiten ¢t. Den Abstand der beiden Testladungen bezeichnen wir wie {iblich mit
r = |z — y| und die ersten beiden Komponenten des urspriinglichen SU (3)—Tripletts ¢*(x)
werden zu einem Doublett zusammengefasst, dessen Komponentenfunktionen Felder sind, die
sowohl schwache Isospin-Ladung, als auch Hyperladung tragen kénnen. Wie in der Einleitung
(4.2) beschrieben, kann dies die Kombination eines (linkshéndigen) Neutrinos mit einem zu-
gehorigen Lepton sein, oder auch ein entsprechendes Quark-Doublett. Da im Quark-Sektor



Kapitel 4. Elektroschwache Wechselwirkung und freie Isospinladungen 153

jedoch zum einen die CKM-Mischung der Eigenzusténde der starken Wechselwirkung beriick-
sichtigt werden miisste, zum anderen jedoch die Farbladung der Quarks bei der Untersuchung
der schwachen Wechselwirkung keine Rolle spielt, ist es konzeptionell sinnvoller, sich allein
auf den leptonischen Sektor zu konzentrieren. Wir werden weiter unten sehen, dass die Chira-
litdt der Felder ebenfalls keinen Einfluss auf die Form des zu untersuchenden Potentials hat.
Daher denken wir bei der Kombination der ersten beiden Komponenten des Fermionenfeldes
U(z) in (4.67) im Folgenden an ein Leptonen-Doublett der Form:

L(z) = (”l l((j))> . (4.68)

Die dritte Komponente t3(x) ist ein Isospin-Singulett (7% = 0) und trigt zweifach negative

U(1)y —Ladung. Diese Komponente soll aber im Folgenden nicht betrachtet werden, weswegen
wir den Projektor

1 00

PP=10 10

000

einfithren, der es uns erlaubt, ausschlieSlich den Isospin-Doublett-Anteil des Zustands zu
untersuchen. Unter Eichtransformationen der Form (4.66) gilt Qf(x) P(z) Q(x) = P(z), somit
ist der Testzustand (4.67) invariant unter derartigen Transformationen:

| W9 (x,y,t =0)) = L(x,0)U(x,0;y,0) L(y,0)| Q) . (4.70)

(4.69)

Um einen Ausdruck fiir die Zeitentwicklung des Zustands (4.67) zu gewinnen, soll zunéchst
kurz die Konstruktion des Wilson-Loops rekapituliert werden, aus welchem sich als Folge
der Zeitentwicklung eines unter einer Symmetrietransformation invarianten Zustands zweier
statischer Ladungen im Abstand r das zwischen diesen herrschende Potential extrahieren
lasst. Die folgende Darstellung orientiert sich dabei an der in [Rot97] fiir den Fall eines
string-artigen Testzustands in der QCD angegebenen Konstruktion. Einen derartigen Zustand
aus zwei eichinvariant miteinander verbundenen Farbladungen gewinnen wir im Falle der
Eichgruppe SU(3) aus (4.67) durch Verwendung von P% = §% bzw. durch Entfernen der
Projektoren'”. Dessen Zeitentwicklung wird beschrieben durch die Green’sche Funktion

Gz, g’y t) = (T {Tay, OU (Y 2’ ) Uy (@', ) Ug(a, 0)U(, 0;y,0)Ty(y,0) | Q) .

Dabei wurden sowohl die Indizes, welche die Spinorstruktur angeben, als auch die der inter-
nen Symmetrietransformation der Ubersichtlichkeit halber fiir den Moment unterdriickt, 7~
bezeichnet den Zeitordnungsoperator. Die Green’sche Funktion G(x,y;x’,y’,t) besitzt eine
Pfadintegraldarstellung der Form

Gz y;a' Y1) = Z_l/DAD[%W]D[‘I"I’M{‘I’q(y',t)U(’y',t; ! ) Wy(a' 1)

x Wa(z,0)U(x,0;y,0)W,(y,0)} eStotal | (4.71)

wobei die Wirkung Siotal = Sy m[A] + Sr[A, ¥, ¥] + Syl A, ¥y, ¥g] in drei Anteile zerfillt,
niamlich den kinetischen Term des Eichbosonensektors Sy ps[A], die Wirkung

SplA, ] = /d%: P — ml(x) = /d%: Ay o () Ko (2, 9)05(y)

"Das zugehorige skalierte Potential, welches aus Messwerten dieser gewdhnlichen Wilson-Loops fiir ver-
schiedene Werte der Kopplungskonstanten (3 extrahiert wurde, wird in Abbildung 2.3 gezeigt.
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P(xz,T) P(y,T)
Abbildung 4.5: Zur
Definition des modi-
fizierten Wilson-Loop-
Operators Wi'[A] in
Gleichung (4.76): An
jeder Ecke der Inte-
grationskontur I' ist
ein Projektor P(z,t)
(4.69) einzuschieben.

P(x,0) P(y,0)

welche die Dynamik der leichten Fermionen v(z) beschreibt, sowie das Analogon Sy4[A, ¥, U]
fiir die schweren Quellen W (z) und W;(x) der Masse m,. Fiir die Normierung gilt dabei
Z = [DAD[p)D[¥ V], e?Stotal. Die Wirkung der statischen Quellen ist bilinear in den Fel-
dern W,, ¥z, somit kann die Integration iiber diese Grassmann-wertigen Freiheitsgrade aus-
gefithrt werden. Das Ergebnis sind vier verschiedene Wick-Kontraktionen, die als Green’sche
Funktionen S(z,z')[A] des Dirac-Operators K,(x,y)[A] die Propagation der schweren Fer-
mionen im externen Feld {A,} beschreiben:

[iv" (0, — ig A, (2) — mg)] S(2,2")[Al = 8(z — 2')d(t — 1) . (4.72)

Auflerdem erhélt man bei der Ausfithrung des Gaufl’schen Integrals eine Determinante
det(K,[A]) der Fermionen, welche fiir endliche Massen eine Polarisation des Vakuums hervor-
rufen kénnen. Im Limes m, — oo konvergiert die Determinante jedoch gegen eine Konstante,
die denselben Wert besitzt wie die in Z auftretende Determinante. Daher spielt dies bei der
Berechnung des statischen Potentials keine Rolle. In diesem Grenzfall (quenched approzima-
tion) ergibt sich [Rot97]

lim G g (2.9, 2,4, 1) = 6(z — 2)(y — ¥ Pslas [P_]ga e 2™ (Wil A]) . (473)
mMg—>00

Dabei ist der Erwartungswert des nicht-abelschen Wilson-Loops (1.98) beziiglich des fermio-
nischen und gluonischen Integrationsmafl zu bilden

_ [DAD[GY] [tr Pfeis Az )] i(Syar A+SplA i)
B [DAD[G] Syl A+5e[A5.0])

(Wr[A]) (4.74)

und die Konturintegration iiber einen geschlossenen, rechteckigen Pfad I' der rdumlichen
Ausdehnung r = |z — y| und zeitlichen Ausdehnung ¢ auszufiithren. Die Spinorstruktur der
Korrelationsfunktion ist in den Projektoren Py = %(]l +4%) codiert.

Betrachten wir nun die Zeitentwicklung des Testzustands (4.67). Die Projektoren P(x,t)
héngen nur formal vom Ort ab, und die oben vorgestellte Herleitung verldauft nach Durch-
fiihrung der Ersetzungen

Ui(z) = P(2) Uh(z)  sowie  Tl(z) — Uh(zx) P(x)
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in kompletter Analogie. So ergibt sich fiir die Korrelationsfunktion des projizierten Testzu-
stands nach Fortsetzung zu imagindren Zeiten (¢t — —i7") im Grenzfall statischer Ladungen

lim GF(z,y,@'y.T) = 6(z — 2)o(y — 3 )PP e 2" " (WE[A))

mg—>00 E-

(4.75)

Der modifizierte Wilson-Loop-Operator Wi¥'[A] geht aus Wr[A] durch Einfiigen von Projek-
toren an den Ecken der Integrationskontur I' hervor, die nun ein Rechteck der Ausdehnungen
r und T in der euklidischen Raum-Zeit beschreibt. Eine schematische Darstellung findet sich
in Abbildung 4.5. Ausgedriickt durch die Link-Variablen ergibt sich also fiir den modifizierten
Wilson-Loop-Operator

WEA] = tr[U(x,0;y,0)PU(y,0;y, T)PU (z, T;y, T)PU' (2,0;2,T)P] , (4.76)

dessen Erwartungswert in (4.75) beziiglich der euklidischen Wirkung zu berechnen ist. Die
Kenntnis dieses Erwartungswerts ermoglicht es, die Wechselwirkungsenergie des Doubletts,
welches schwache Isospin- und Hyperladung triagt, geméf

V(r) =— lim % In(W¥[A]), (4.77)

zu bestimmen, da im Limes unendlich schwerer Quellen und grofler euklidischer Zeiten 1" zu
erwarten ist, dass die Korrelationsfunktion G(x,y,’,y’,T) ein Verhalten der Form
lim G(z,y,2',y,T) = §(x — ')d(y — y/)F(a,y)e *0)T (4.78)
Tq—>oo
zeigen wird (vgl. (1.102)), wobei F(z,y) Informationen iiber den Uberlapp des Testzustands
| Ugq(x,y)) mit dem Grundzustand enthélt. Wird die Chiralitiat der Quellen berticksichtigt,
so fithrt dies zu einer Verdnderung von F'(z,y), die Wechselwirkungsenergie E(r) bleibt da-
von jedoch unberiihrt.

Zur Messung des Potentials wurde ein Ensemble von 1450 Konfigurationen der Gittergrofie
18* fiir die Parameterwerte 3 = 6.0, A = 0.01, x = 0.216 erzeugt. Ausgehend von einer ge-
ordneten Anfangskonfiguration wurden zur Thermalisierung des Systems 2500 supersweeps
durchgefiihrt, wobei eine Verdnderung der Definition eines supersweeps im Vergleich zu den
auf Gittern der Grofe 10* fiir © € [0.17,0.19] durchgefiihrten Simulationen vorgenommen
wurde, welche weiter unten erliutert wird. Wahrend die Akzeptanzraten fiir die durch Anwen-
dung des Heatbath- (HB) bzw. Overrelaxation-Algorithmus (OR) erzeugten Vorschlidge im
Skalarfeldsektor der Theorie in beiden Fillen nach wie vor bei etwa 0.9 lagen, machte sich die
Veréinderungen der Gittergrofle, sowie besonders das Vordringen in einen Parameterbereich
weit entfernt von k. in der Akzeptanzrate im Eichfeldsektor bemerkbar. Diese stabilisierte
sich bei etwa 0.3. Um diesen Effekt des Absinkens der Akzeptanzrate auf die Korrelation von
Konfigurationen innerhalb der erzeugenden Markov-Kette zu reduzieren, wurde die folgen-
de Kombination an Aktualisierungsschritten zu einem supersweep (SSW) zusammengefasst,
wobei der Cluster-Algorithmus (CL) nur auf die Spin-Freiheitsgrade wirkt:

SSW{U,®,0} = 7 (HB{®} + HB{U} + CL{c}) + 3 (OR{®} + 30R{U}) .  (4.79)

Nach Abschluss der Thermalisierungsphase wurde nur jede zehnte Konfiguration in das im
Folgenden néher zu untersuchende Ensemble aufgenommen.
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Abbildung 4.6: Das Po-
tential eines Paares von
statischen SU(2) x U(1)- 041 .
Testladungen,  extrahiert L i
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Der Verlauf des Potentials zwischen den statischen Testladungen wurde nach der in Kapitel
1.3.4 beschriebenen Methode aus den Messwerten von Wilson-Loops unterschiedlicher Grofie
und Orientierung extrahiert. Die Hauptachsen des Gitters geben dabei die Standardorien-
tierung der Wilson-Loops vor, welche in den durch é; und é; (i = 1,2,3) aufgespannten
Netzebenen des Gitters gemessenen wurden. Da jedoch keine der Hauptachsen des Gitters
ausgezeichnet ist, lassen sich die statistischen Fehler weiter minimieren. Die uneingeschrink-
te kubische Symmetrie des Problems kann dahingehend ausgenutzt werden, dass jede der
vier Hauptachsen als die Zeitrichtung betrachtet, und folglich insgesamt eine Erhéhung der
Anzahl an Messwerten fiir die Wilson-Loops um einen Faktor vier erreicht werden kann.
Dariiber hinaus wurden auch noch zwei weitere Orientierungen der Wilson-Loops betrachtet,
welche durch die beiden Raumdiagonalen der elementaren dreidimensionalen Wiirfel vorge-
geben sind. Die rdumliche Ausdehnung der Integrationskontur der zugehorigen Wilson-Loops
ist daher ein ganzzahliges Vielfaches von v/2a und v/3a, so dass es moglich ist, auch fiir
nicht-rationale Abstédnde r der Quellen Messdaten zu erheben. Dadurch wird die Moglichkeit
eroffnet, das Ausmafl der durch die Diskretisierung der Raumzeit induzierten Brechung der
O(4)-Symmetrie abzuschétzen.

Nach Gleichung (4.77) ist eine Extraktion des Potentials V' (r) aus den Erwartungswerten des
(modifizierten) Wilson-Loop-Operators erst im Grenzfall einer unendlich langen Zeitentwick-
lung des Testzustands (4.67) moglich. Dieser Fall ist natiirlich in einer konkreten Simulation
nicht realisierbar. Daher muss im Einzelfall tiberpriift werden, ob es gerechtfertigt ist davon
auszugehen, dass dieser Grenzfall bereits fiir endliche, grofie euklidische Zeiten 1" vorliegt und
somit das so gewonnene Ergebnis eine hinreichend gute Naherung fiir das wahre Potential
darstellt. Zu diesem Zweck wurde die Extraktion des Potentials unter der Annahme verschie-
dener Werte fiir t,,;, durchgefiihrt, wobei ausschlieflich Messwerte verwendet wurden, deren
relativer Fehler geringer als 0.1 war. Die Ergebnisse fiir die Félle t,,;, = 5,6, 7 sind in Abbil-
dung 4.6 zusammengefasst, wobei all diejenigen Datenpunkte verworfen wurden, fiir welche
sich im Rahmen des T-Fits ein x?/v > 2.5 oder eine Goodness-of-Fit @ < 0.01 ergeben hat-
te. Erwartungsgeméf hat sich gezeigt, dass die Anzahl der Datenpunkte fiir V' (r), die unsere
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beiden Kriterien fiir die Giite des Fits erfiillen, bei Vergroflerung von tnj, zunimmt, und
dies speziell fiir diejenigen Punkte gilt, die zu groflen rdumlichen Abstinden r der Quellen
gehoren. Da sich der relative Fehler der Wilson-Loops bei Vergrofierung von r erhoht, muss
die Anzahl der Datenpunkte N, die durch eine interpolierende Gerade beschrieben werden
sollen, abnehmen, um das geforderte Qualitéatskriterium erfiillen zu koénnen. Dies ist aber
bei Vergroflerung von ti, der Fall, denn es gilt N = Ny/2 — tyin. Konnten fiir festes r je-
doch aus den verschiedenen Fits zu den unterschiedlichen Werten von t.;, mehrere Werte
fiir V(r) extrahiert werden, so ist zu beobachten, dass diese praktisch iibereinstimmen. Der
Limes grofler Zeiten scheint also bereits ab t,;, = 5 erreicht zu sein, dennoch verwenden wir
sicherheitshalber im Folgenden die fiir t,;, = 7 extrahierten Daten um einen Fit derselben
an einen Potentialansatz der Form

Vir) = V()—%—I—O"’r’ (4.80)

durchzufiihren. Dabei beschrinken wir uns zunéchst auf diejenigen Datenpunkte, fiir welche
r durch ein ganzzahliges Vielfaches der Gitterkonstanten a gegeben ist. Diese wurden aus
Wilson-Loops in Hauptachsenorientierung gewonnen. Das Ergebnis dieses Fits war:

o = 23777-107% £ 2.225-107%, o = 0.12233 + 0.00118, X2 /v =1.41370 . (4.81)

Die graphische Darstellung dieses Resultats wurde ebenfalls ist Abbildung 4.6 als durchge-
zogene Kurve (p.a.) mit aufgenommen. Betrachtet man nun auch diejenigen Datenpunkte,
die zu nicht-rationalen Absténden r der Quellen gehoren, so ist festzustellen, dass sich Ab-
weichungen von dieser Kurve ergeben, die sich mit zunehmendem Abstand der Quellen leicht
vergrofern. Gleichzeitig nimmt aber auch die Grofie der Fehler dieser Messwerte zu. Versucht
man nun, einen Fit aller fiir ¢,,;;, = 7 gewonnen Datenpunkte an den einfachen Potentialan-
satz (4.80) durchzufiihren, findet sich zwar ein Wert fiir o, der etwa halb so grof ist wie das
Ergebnis in (4.81), allerdings gilt hierbei x?/v > 20. Die graphische Darstellung ist die gestri-
chelte Kurve (a.a.) in Abbildung 4.6. Dieses Resultat stellt einen Hinweis auf eine Verletzung
der Rotationssymmetrie aufgrund des endlichen Wertes der Gitterkonstanten a(f) am von
uns betrachteten Punkt im Phasendiagramm dar, allerdings nur, falls die Fehler der aus den
Erwartungswerten der Wilson-Loops in Diagonalorientierung extrahierten Messwerten nicht
stark unterschéitzt wurden. Dass dies tatsédchlich der Fall sein konnte, zeigte eine Inspektion
der Werte fiir x2/v und Q: Tendenziell gilt bei starker Abweichung x?/v < 1 fiir Q ~ 1,
insbesondere fiir grofle Werte von 7. Die Verletzung der Rotationssymmetrie ist also sicherlich
vorhanden und nachweisbar, die Gestalt des Potentials signalisiert jedoch, dass dieser Effekt
nicht iberméfig gravierend zu sein scheint und moglichweise durch eine Unterschitzung der
Fehler der Potentialdaten im Rahmen der verwendeten Methode iiberschétzt wird.

Zur eindeutigen Klarung der Frage, ob der linear anwachsende Confinement-Anteil des Poten-
tials (4.80) an diesem Punkt des Phasendiagramms tatséichlich génzlich vernachlissigt werden
kann, miissten weitere Simulationen auf sehr viel grofleren Gittern durchgefiihrt werden, um
verlédssliche Messwerte fiir den Verlauf des Potentials bei Abstéinden r > 9a gewinnen zu
konnen, die weder von den Auswirkungen der Rotationssymmetriebrechung (Diagonalach-
sen), noch von der Periodizitdt des Gitters (Hauptachsen) beeinflusst sind. An dieser Stelle
ist es wichtig zu betonen, dass eine Unterscheidung zwischen einer Confinement-Phase und
einer Higgs-Phase der hier untersuchten Theorie prinzipiell moglich ist, da die statischen
Testladungen im Falle der Erweiterung einer Yang-Mills-Theorie durch ein Skalarfeld, wel-
ches sich unter der adjungierten Darstellung der Gruppe transformiert, anders als durch
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ein skalares Feld in fundamentaler Darstellung, nicht durch Paarbildungseffekte abgeschirmt
werden konnen'®. Folglich stellt die string tension einen echten Ordnungsparameter fiir einen
moglichen Phaseniibergang dar, und der von uns gemessene Wert unterscheidet sich deutlich
(etwa um einen Faktor 20) von dem in der Literatur angegebenen Wert von o = 0.0517(2) im
Falle einer reinen SU(3)—Yang-Mill-Theorie bei 8 = 6.0 [Lan07]. Das skalierte Potential der
reinen SU (3)—Yang-Mills-Theorie wird in Abbildung 2.3 gezeigt, auch hier werden nochmals
die Unterschiede des Potentialsverlaufs fiir § = 6.0 im Vergleich zu Abbildung 4.6 deutlich.

Das in (4.81) zusammengefasste Ergebnis deutet jedenfalls darauf hin, dass das SU(2) x
U(1)—Potential von einem langreichweitigen Anteil dominiert wird, der vielmehr der Form
eines Coulomb-Potentials als der eines Confinement-Potentials im Sinne Wilsons folgt. Diese
Beobachtung legt die Vermutung nahe, dass zumindest eine masselose Anregung im Spektrum
der Theorie nachweisbar sein sollte, die diese langreichweitige Wechselwirkung vermittelt.
Das Auftreten von massiven Anregungen wiirde sich hauptséchlich in der Modifizierung des
Coulomb-Potentials bei kleinen Abstdnden r der Quellen bemerkbar machen, sofern diese
bei dem durch die Gitterkonstante a(3) vorgegebenen Auflésungsvermogen iiberhaupt de-
tektiert werden konnten. Die beobachtete Form des Potentials lisst jedenfalls diesbeziiglich
keine eindeutigen Schliisse zu. Daher sind zur Klarung dieser Frage weitere Untersuchungen
erforderlich, welche Gegenstand des folgenden Kapitels sind.

4.7 Spektroskopische Untersuchungen

In diesem Kapitel soll die Untersuchung des Massenspektrums der SU(3)—Eichtheorie
mit Skalarfeld in adjungierter Darstellung durchgefithrt werden, und zwar in der Realisie-
rungsphase spontan gebrochener Symmetrie, in welcher die Theorie noch eine residuelle
SU(2) x U(1)—Symmetrie aufweist, deren Einbettung in die urspriingliche Eichgruppe SU(3)
durch die Wahl der in Kapitel 4.4 beschriebenen Eichung kontrolliert werden kann. In einem
ersten Schritt sollen zunéchst die Grundlagen spektroskopischer Untersuchungsmethoden im
Rahmen von Gittereichtheorien dargelegt werden.

4.7.1 Physikalische Zustinde

Die Aufhebung der Gitterdiskretisierung einer Eichtheorie geht im Kontinuumslimes mit der
Wiederherstellung der vollen Rotationssymmetrie einher. In diesem Fall lésst sich der Spin J
eines physikalischen Zustands im zugehorigen Hilbertraum H durch eine unitére irreduzible
Darstellung der Gruppe SU (2) charakterisieren, die wir mit D  bezeichnen wollen, wobei die
Darstellungen mit halbzahligen Spins den fermionischen Anregungen vorbehalten sind und
bosonische Anregungen nach irreduziblen Darstellungen der Drehungsgruppe SO(3) klassi-
fiziert werden koénnen. Derartige Eigenzustdnde des Hamilton-Operators bezeichnen wir mit
| U ). Durch Einfithrung einer Gitterkonstanten a reduziert sich die Rotationssymmetrie der
Theorie auf Symmetrietransformationen, welche der kubischen Gruppe O entstammen, die
eine Untergruppe der SO(3) darstellt. Die durch triviale Einbettung der kubischen Grup-
pe O in die Drehungsgruppe hervorgegangenen Darstellungen bezeichnen wir mit D?. Da

¥Da adjungierte Materie die Symmetrie reiner Yang-Mills-Theorien unter Transformationen aus dem Zen-
trum der Gruppe nicht explizit bricht, kann die Confinement-Phase in Theorien wie (4.26) eindeutig anhand
des Verhaltens von grofflichigen Wilson-Loops als eine Phase nicht spontan gebrochener Zentrumssymmetrie
charakterisiert werden [CGOS8].



Kapitel 4. Elektroschwache Wechselwirkung und freie Isospinladungen 159

die kubische Gruppe O (auch Oktahedron-Gruppe) fiir alle Gitterabstinde a eine exakte
Symmetriegruppe der Theorie auf dem Gitter darstellt, miissen sich alle Kigenzustédnde des
Hamilton-Operators durch unitire irreduzible Darstellungen von O klassifizieren lassen'?,
die wir mit | ¥ ) bezeichen. AuBerdem muss eine Verbindung zwischen den so charakterisier-
ten Zustédnden und den gemé&B der irreduziblen Darstellungen D der SU(2) im Kontinuum

klassifizierten existieren. Durch eine Zerlegung der Form
[UR) =) e Va) (4.82)
«

kann diese Verbindung hergestellt werden, wobei in die Summation {iber o = (J, m) auch die
m = 2J + 1 verschiedenen Unterzustdnde mit ,, magnetischen“ Quantenzahlen m eingeschlos-
sen sind. Im Kontinuumslimes gehért jeder der Zusténde | ¥, ) zu einem Spin J Multiplett,
in diesem Sinne enthélt der Zustand | ¥ ) verschiedene Spins J. Da die abgeleiteten Darstel-
lungen D? i.A. reduzibel sind (z.B. gilt DY =A T @ T5), ist zunéchst zu fordern, dass
RC D?, damit in (4.82) Spin J zur Superposition | g ) beitragen kann.

Der physikalische Hilbertraum 7 einer Gittereichtheorie besteht aus eichinvarianten Zustén-
den |U), die durch Anwendung von eichinvarianten Operatoren O auf den Vakuumzustand
| Q) erzeugt werden. Nehmen wir 0.B.d.A. an, dass dies zum Zeitpunkt ¢ = 0 geschehen soll
— die Zeitentwicklung derartiger Zustédnde wird durch den Zeitentwicklungsoperator T im
Rahmen des Transfermatrixformalismus beschrieben [MM94] — so finden wir nach Subtraktion
der Projektion auf den Vakuumzustand

[ ¥(x)) = [O(x) - (O(x))]|2) . (4.83)

Durch Fourier-Transformation lassen sich daraus Eigenzustinde des Impulsoperators kon-
struieren, die Summation iiber alle Orte innerhalb einer festen Zeitschicht ermoglicht die
Konstruktion von Eigenzustdnden des Paritétsoperators P. Eine weitere diskrete Symme-
trieoperation ist die Ladungskonjugation, die Eigenwerte des zugehorigen Operators C' sind
¢ = + (C-Paritét). Mochte man diese beiden diskreten Symmetriegruppen in die Klassifi-
zierung von moglichen Zustdnden mit einbeziehen, so miissen irreduzible Darstellungen der
Gruppe O X Zs X Zs konstruiert werden. Bezeichnen wir diese mit p = R, so gilt fiir
Zustdnde mit endlichen Impulsen p, die zu einer solchen Darstellung gehoren:

| T,(p)) = PP |Wy(x)) . (4.84)

Unterwerfen wir die auf diese Weise konstruierten Zustdnde nun einer Zeitentwicklung, so
konnen die Massen der zugehorigen Anregungen aus der Ubergangs- bzw. Persistenzamplitude
fiir grofle Zeiten t (large time limit) extrahiert werden:

Colp.t) = (Tp(p) e[ W,y(p)) = |cfPe o)L (4.85)

Alternativ dazu konnen Operatoren der Form

O(p,t) = > eP*O(x,t), (4.86)

YDie fiinf indiquivalenten irreduziblen Darstellungen R der kubischen Gruppe werden iiblicherweise mit
A1, Ag, E, T\, T> bezeichnet und haben jeweils die Dimensionen 1,1,2,3 und 3 [BB83].
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definiert werden, welche Observablen beschreiben sollen, die in einer festen Zeitschicht ¢ des
Gitters definiert sind. Dabei wird der lokale Operator O(x,t) zunéchst so konstruiert, dass
durch Anwendung auf das Vakuum ein Zustand mit den Quantenzahlen R und C' unter
Transformationen aus O und Zo erzeugt wird:

1T po(x,t)) = Ox,1)|Q). (4.87)

Danach wird eine partielle Fourier-Transformation des Operators durchgefithrt und die Be-
rechnung einer verbundenen Korrelationsfunktion der Operatoren O(p, t) in Gleichung (4.86)
liefert ebenfalls die Amplitude von Interesse:

Co(p,t) = (O(=p, 1) O(p,0)). := (O(=p,1) O(p,0)) = (O(=p, 1)) (O(p,0)) . (488

Unsere Konventionen zur Fourier-Transformation finden sich im Anhang A 4.

4.7.2 Masselose Anregungen: Ein Kandidat fiir das Photon

In einem ersten Schritt soll das oben vorgestellte Verfahren zur Konstruktion physikalischer
Zustéinde im Rahmen der Suche nach einem Kandidaten fiir das Photon im Spektrum der
Theorie konkretisiert werden. Wir sind also zunéchst bestrebt, einen Operator zu finden, von
dem zu erwarten ist, dass er an eine masselose Anregung koppeln wird, sofern sich eine solche
im Spektrum der Theorie befindet. Auf diesem Operator soll in einem weiteren Schritt eine
irreduzible Darstellung p der kubischen Gruppe konstruiert werden, welche im Kontinuumsli-
mes der Spin J = 1 Darstellung fiir Vektoren entspricht und die Quantenzahlen des Photons
aufweist.

Bei der Suche nach einem geeigneten Operator lassen wir uns von den Ergebnisse der von
't Hooft [tH74b] und Polyakov [Pol74] durchgefiihrten Untersuchungen zur Frage nach der
Existenz von Monopolen als klassischen Losungen der Feldgleichungen des Georgi-Glashow-
Modells leiten. Unser Vorgehen stellt somit eine natiirliche Verallgemeinerung der fiir den
Falle einer SU(2)—Eichtheorie mit adjungiertem Skalarfeld in D=4 Dimensionen ausfiihrlich
in [Har96] dargelegten Konstruktionen auf den Fall der Eichgruppe SU(3) dar.

Wir beginnen mit der Definition einer verallgemeinerten Feldstérke der Form

)
fule) = 151w ) ~ Sme

Dabei gelten die in Kapitel 4.3 eingefiihrten Konventionen, f,;. bezeichne die total antisym-
metrischen Strukturkonstanten. Unter Verwendung der folgenden Definitionen

au(x) = n*(@)AL(x) ,  n'(z) = ¢"(x)/|¢(x)] (4.90)

Ffabe 8*(2) Do’ (2) Dy ¢ () - (4.89)

lasst sich nach kurzer Rechnung zeigen, dass
1
fu(x) = Opay(x) — Opay(x) — gfabc n“(x)@unb(:n)ﬁync(x) , (4.91)

wobei der letzte Term eine topologische Invariante darstellt. Wie bereits in Kapitel 2 disku-
tiert, reduziert sich dieser im Falle des Georgi-Glashow-Modells auf einen Ausdruck, welcher
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mit der magnetischen Ladung M der von 't Hooft und Polyakov beschriebenen hedgehog so-
lution eines magnetischen Monopols verkniipft ist. Die verallgemeinerte Feldstéirke (4.89) ist
manifest eichinvariant, was an der Formulierung
2 2i
Juw () @ tr[®(z) Flu (z)] + EGIE tr[®(2)[D,®(z), D, ®(2)]] (4.92)
offensichtlich wird. Der fiir uns relevante Aspekt dieser Konstruktion offenbart sich, wenn
wir die Eichfreiheit dahingehend ausnutzen, (4.89) in lokaler unitérer Eichung auszuwer-
ten. In diesem Fall sind die einzigen nichtverschwindenden Komponenten des Skalarfeldes
¢*(z) durch die Wahl der beiden Generatoren aus der Cartan-Algebra festgelegt. Nach
Diagonalisierung bedeutet dies im Fall der von uns verwendeten Gell-Mann-Basis, dass
¢ (x) = x(2)6% + £(x)5%®. Das Skalarfeld ist also im Raum der internen Symmetrietrans-
formationen konstant, kann sich aber rdumlich noch &ndern. Nach Fixierung dieser Eichung
reduziert sich (4.91) auf

f;?u(x) = a,uaI/(x) - aua,u(x) . (493)

In unitérer Eichung liegt also eine abelsche Feldstarke vor, und das zugehorige Photon a,,(x)
wird durch (4.90), berechnet in dieser Eichung, definiert. Die Einbettung der ungebrochenen
abelschen Untergruppe U(1) nach spontaner Symmetriebrechung ist also durch die Richtung
des adjungierten Skalarfeldes festgelegt.

Die Ubertragung dieser Uberlegungen auf die Formulierung der Theorie auf dem Gitter ge-
schieht in zwei Schritten. Zunéchst suchen wir einen Operator, der dem ersten Beitrag in
(4.89) entspricht und die Projektion der nicht-abelschen Feldstirke auf die Richtung des
Einheitsvektors n(x) darstellt. Ein moglicher Kandidat ist dabei gegeben durch

1) = 2
Fur®) = 15]

wovon man sich durch Entwicklung der in der i — 2—Ebene liegenden Plaquette Uy, (x) nach
Potenzen der Gitterkonstanten a leicht iiberzeugen kann:

Im{tr[tI)(x)UW(x)]} , (4.94)

a4

a2
tr[®(x)Up (x)] = 27¢a(3:)F/fV(3:) - gdabc QS“(J:)F/IjV(:E)FﬁV(a:) + 0(d%) . (4.95)

Fiir den zweiten Term in der generalisierten Feldstirke (4.89) verwenden wir

2 X = ﬁ % 4 m I X
1) = (%) pomme e Bl 96)

wobei im vorliegenden Fall N = 3 zu wéhlen ist und der Einfachheit halber
Bu(x) = ®(@)Up(@)®(z + @)U} (2)U(2)0(x + v)Uf () (4.97)
definiert wurde. Die Wahl des Operators Ffw(aj) wird durch die Relation

tr[@ () [DF @ (x), D b(x)]] = % Im {tr[ B (2)] } (4.98)

motiviert, wobei die kovariante Vorwértsableitung eines adjungierten Skalarfeldes auf dem
Gitter durch (4.44) gegeben ist. Eine konsequente Entwicklung aller in der Konstruktion
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von Ffw(aj) auftauchenden Felder nach Potenzen der Gitterkonstanten a zeigt, dass man im
Kontinuumslimes als fithrenden Term der Entwicklung gerade den zweiten Term in (4.89)
gewinnt. Das Analogon der 't Hooft-Polyakov-Feldstérke f,,(x) in der Formulierung der
Theorie auf dem Gitter bezeichnen wir schliellich mit

r2(x) = I, (x) - T (2) . (4.99)

Als néchstes ist auf den drei Operatoren I' fw(aj) in (4.94), (4.96) und (4.99) jeweils die irredu-
zible abgeleitete Darstellung Dlo der kubischen Gruppe O zu konstruieren. Dabei orientieren
wir uns an den Ergebnissen von Berg und Billoire [BB83], die im Rahmen der Spektroskopie
von glue balls auf Wilson-Loops einer Linge von bis zu acht Links alle irreduziblen Darstellun-
gen der vollen kubischen Gruppe konstruiert und dabei 16 verschiedene mégliche Kandidaten
fiir simtliche Zustinde JFC der vier niedrigsten Spinquantenzahlen (J = 0,1,2,3) identi-
fiziert haben. Fiir unsere Zwecke ist die irreduzible dreidimensionale Darstellung 77 von O
entscheidend. Aufgrund der zyklischen Eigenschaft der Spur ist die Verallgemeinerung der
in [BB83] vorgestellten Ergebnisse fiir die Konstruktion eines Zustands mit Quantenzahlen
p = 177 auf elementaren Plaquetten auf den von uns konstruierten Operator (4.94) direkt
moglich, d.h. die zusétzliche Einfiihrung des skalaren Feldes ®(z) am Basispunkt der Plaquet-
te stellt also kein Problem dar. Bezeichnen wir fiir den Moment die euklidische Richtung é4
als Zeitrichtung, so bilden die drei auf den rdumlichen Impuls p = 0 projizierten Operatoren

Im{I',(0,¢)},  Im{D3(0,t)}, Im{T5(0,%)} . (4.100)

nach Anwendung auf das Vakuum in jeder Zeitschicht ¢ die gewiinschte Triplettdarstellung
(zu J = 1) mit negativem Eigenwert des Ladungskonjugationsoperators C' und gerader Pa-
ritét. Die Konstruktion eines Zustands mit negativer Paritédt bei verschwindendem raumli-
chen Impuls p = 0 erfordert die Verwendung nicht-lokaler Operatoren [BB83], es wurde aber
in [BP84] darauf hingewiesen, dass die durch (4.100) gegebene Axialvektordarstellung nach
Transformation auf endliche réumliche Impulse p # 0 einen Uberlapp mit dem physikali-
schen Photon aufweist, welches negative Paritét besitzt. Wir verzichten auf die Verwendung
einer nicht-lokalen Konstruktion und nehmen dafiir in Kauf, dass das Signal, welches im Ka-
nal p = 0 der fiir jeden der drei Operatoren T’ fw(aj) (k = 1,2,3) konstruierten Darstellung
(4.100) gemessen wird, keine Relevanz fiir die Kldrung der Frage nach der Existenz eines
Photons haben wird. Stattdessen muss das fiir endliche Impulse erhaltene Signal, das durch
Verwendung von Operatoren mit den richtigen Quantenzahlen des physikalischen Photons
gemessenen wird, auf den Fall p = 0 extrapoliert werden. Die Konstruktion der irreduziblen
Darstellung T1+ ~ fiir die Operatoren (4.96, 4.99) verlduft in Analogie zum hier vorgestellten
Verfahren.

Die Hauptgrundlage unserer Messungen bildete das Ensemble der fiir eine Gittergrofie von
18* Gitterpunkten erzeugten 1450 Konfigurationen, welches bereits in Abschnitt 4.6 fiir die
Untersuchung des statischen Potentials zwischen zwei Quellen mit SU(2) x U(1)—Ladungen
herangezogen wurde. Bezeichnen wir wie {iblich mit é4 die euklidische Zeitrichtung, so wurden
in jeder dieser Konfigurationen zunéchst fiir jedes k = 1,2, 3 die drei Zeitschichtoperatoren

F];(p,t) = Z Im {Fl;(a:,t)} e'P* ) a = Il(uv), pov € [1,2,3], (4.101)

gemessen, wobei durch o = 1,2, 3 diejenigen Permutationen der Indizes p und v bezeichnet
werden sollen, welche den drei magnetischen Unterzustédnden in (4.100) entsprechen.
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Fiir die partielle Fourier-Transformation wurden dabei nur ganzzahlige Vielfache des mini-
malen Matsubara-Impulses

pM = 27/N; (4.102)

in Richtung der Hauptachsen des Gitters verwendet. Hier bezeichnet N; die Anzahl der Git-
terpunkte in Richtung é;. Zur Erhohung der Statistik wurde die hyperkubische Symmetrie
des Gitters durch zyklische Permutation der Raumzeit-Indizes ausgenutzt, d.h. der Zerfall
der Korrelationen wurde in Richtung aller vier moglichen, dquivalenten Orientierungen des
Gitter gemessen, wobei zu fordern ist, dass die Impulse der zugehorigen Wellenfunktionen
einer Transversalititsbedingung gehorchen. Die Definition eines Gitterimpulses der Form

;= 2 sin(p;/2) (4.103)

ermoglicht nach Wiedereinfithrung der Gitterkonstanten a die Vergleichbarkeit von Kontinu-
umsphysik mit Gitterresultaten, insbesondere iibersetzt sich die relativistische Dispersions-
relation p? = m? eines Teilchens der Masse m im Minkowski-Raum M, beim Ubergang auf
das euklidische Gitter E4 in die Form

3 3
= Z p? +m? = 2[cosh(E) — 1] = 22 [1—cos(p;)] +m?, (4.104)
i=1 =1

da die komplexen Singularitéiten des Propagators im Impulsraum mit der vierten Komponente
des euklidischen Impulses gem#f py = +i £ verkniipft sind [EJJT87, MM94]. Zur weiteren
Minimierung des statistischen Fehlers wurde fiir einen festen Wert des Index k iiber alle
moglichen Orientierungen des Gitters gemittelt, sowie dessen Periodizitéit ausgenutzt. Mit
der entsprechenden Verallgemeinerung der Permutationen « in (4.101) erhélt man schliefilich
die folgenden Erwartungswerte:

= > Z < —p.(t+d)é ) Th(p.té) > : (4.105)

c
o, II(é) t=

Um abschiitzen zu konnen, inwiefern die gemessenen Ergebnisse noch von der Grofle des
verwendeten Gitters abhéngen, wurden ebenfalls Messungen in einem Ensemble von 2500
Konfigurationen der Gittergrofe 16* durchgefiihrt. Dies ermdglicht nach (4.102) auch die
Untersuchung neuer Punkte im Impulsraum und bietet damit die Mdoglichkeit einer stringen-
teren Extrapolation der Dispersionsrelation in einem intermedifdren Impulsbereich auf den
nicht direkt zugénglichen Punkt p = 0, an dem die physikalische Masse definiert ist [MM94]:

Mphys = %%E( D). (4.106)

Die Messergebnisse fiir den 't Hooft-Polyakov-Operator (4.99) fiir die vier niedrigsten ganz-
zahligen Vielfachen n = 0,1, 2,3 des minimalen Impulses (4.102) auf einem Gitter der Grofie
18* finden sich in Abbildung 4.7. Legen wir die Konvention

pi(n) = 2sin (n %) (4.107)
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Abbildung 4.7: Die gemittelte Korrelationsfunktion I'3(d, p) (4.105) des t Hooft-Polyakov-
Operators (4.99) nach Fourier-Transformation. Gitter: 18%, 8 = 6.0, x = 0.216, A = 0.01.

bei der Bezeichnung der Komponenten des Gitterimpulses p;(n) zu den ganzzahligen Vielfa-
chen n € Z des Matsubara-Impulses zugrunde, so lautet die von uns adaptierte Normierung
der Korrelationsfunktionen:

" (1,pi(n)) =1 fir n =123, (k=1,2,3) . (4.108)

Die Messergebnisse der Korrelatoren wurden dabei fiir die Abstdnde d = 0 bzw. d = 18 nicht
beriicksichtigt. Erwartungsgeméf sind die Datenpunkte, welche fiir verschwindenden Impuls
(n = 0) gemessen wurden, statistisch nicht signifikant. Die Datenpunkte fiir n > 0 hingegen
weisen minimale statistische Fehler auf, welche in dieser Abbildung durch Gaufi’sche Feh-
lerfortpflanzung aus den Fehlern der Erwartungswerte der priméren Groflen vor Ausfithrung
der in (4.105) durchgefiihrten Mittelung berechnet wurden. Es ist deutlich zu erkennen, dass
die Korrelationen von Anregungen mit zunehmenden Impulsen und somit héheren Energien
E(p?) schneller zerfallen. Die Extraktion der Energie bzw. Masse der beobachteten Anregun-
gen geschieht durch einen nicht-linearen Fit der Messdaten an eine Funktion der Form

C(d,n) = A cosh <E(ﬁ2(n)) [d— Nt/2)]) , (4.109)

welche den periodischen Randbedingungen, die wir den Simulationen zugrunde gelegt ha-
ben, durch Symmetrisierung des exponentiellen Verhaltens um die Mitte der zeitlichen Aus-
dehnung des Gitters Rechnung triigt. Die dabei extrahierten Werte fiir E(p?) kénnen nach
Gleichung (4.104) iiber die Relation

EZ (p?) = 2[cosh(E(H?)) — 1] (4.110)

mit dem Quadrat der Gesamtenergie Ef, (132) der Anregung in Gitterformulierung in Verbin-
dung gebracht werden. In Abbildung 4.8 sind die Resultate der Messungen von Ef(ﬁ2) flir
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die Operatoren I'! und I'® fiir verschiedene GittergroBen gegen die Quadrate der zugehorigen
Gitterimpulse p? aufgetragen. Der Kurvenverlauf folgt somit der Form (4.104). Aufgrund
der vollen hyperkubischen Symmetrie des Gitters steht zu erwarten, dass Erwartungswerte
einzelner vektorieller und plaquettartiger Operatoren verschwinden werden, so dass die bei
der Berechnung von verbundenen Zweipunktfunktionen der Form (4.88) auftretenden Pro-
dukte von Einpunktfunktionen in diesen Fillen keine Rolle spielen sollten. Dies konnte fiir
alle Korrelatoren der drei verschiedenen Operatoren in Gleichung (4.101) verifiziert werden.
Die Anzahl der durchgefiihrten Messungen war also hinreichend grof, um ein Verschwinden
des zweiten Terms in (4.88) im Rahmen des statistischen Fehlers beobachten zu konnen.

Um die Energie der niedrigsten Anregung zu extrahieren, muss sichergestellt werden, dass die
zeitliche Entwicklung der erzeugten Zustdnde von Interesse hinreichend lang gedauert hat,
damit hohere Anregungen im selben Kanal das Ergebnis nicht mehr wesentlich beeinflussen
konnen. A priori ist nicht klar, wann der large time limit in praktischen Berechnungen erreicht
ist, dies héngt auch stark vom verwendeten Operator ab, der den zu untersuchenden Zustand
aus dem Vakuum erzeugt hat. Es bietet sich daher an, Energieplateaus der Form

C(d+1,n)+C(d—1,n)

TERD) (4.111)

meg(d,n) =

zu studieren. Falls die gemessene Korrelationsfunktion dem Verlauf der Modellannahme
(4.109) folgt, so gilt meg(d, n) = cosh(E(p*(n))). Somit wird das Erreichen des Limes grofier
Zeiten dadurch angezeigt, dass der Graph der Funktion (4.111) vom Parameter d unabhéngig
wird. Im Fall n = 0 erhilt man dadurch eine Abschitzung fiir die effektive Masse der Anre-
gung, wodurch die fiir (4.111) ebenfalls gebriauchliche Bezeichnung , Massenplateau-Funktion*
herriihrt. Eine komplementére Vorgehensweise stellt die Durchfithrung von Fits der Daten an
eine Funktion der Form (4.109) fiir zunehmende Werte des minimalen zeitlichen Abstands
dmin der Schichten dar, wobei der Limes grofler Zeiten dadurch identifiziert wird, dass das
extrahierte Ergebnis fiir die Energie E(p%(n)) unabhingig von d wird.
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Es hat sich gezeigt, dass dieser Limes fiir die Operatoren I'' und I'® bereits ab d = 2 erreicht
ist, fiir den Operator I'? hingegen war das Signal/Rausch-Verhiltnis zu klein, als dass sich
ein statistisch aussagekréftiges Signal extrahieren liefle. Dieses Resultat deckt sich mit der
Beobachtung, dass die Operatoren I'! und I}, welche sich ja nach (4.99) gerade um den Anteil
des Operators I'? von einander unterscheiden, praktisch dasselbe Ergebnis bei der Messung
der Korrelationsfunktion (4.105) geliefert haben, was in Abbildung 4.8 deutlich zu erkennen
ist. An dieser Stelle soll nochmals auf die Eichinvarianz aller drei Operatoren (4.94, 4.96,
4.99) hingewiesen werden. Alle Datenpunkte, die durch nicht-lineare Fits nach der Standard-
methode der kleinsten x? von Levenberg-Marquardt [PTVF07] an die Funktion (4.109) mit
M = 2 Parametern extrahiert wurden, weisen ein x?/v < 1.5 auf, wobei die Anzahl der
Freiheitsgrade durch v = Ny — 2dnin + 1 — M gegeben ist.

Offenbar sind also die Operatoren I'' bzw. I'® fiir endliche Impulse hervorragend dazu ge-
eignet, eine Anregung zu detektieren, welche die Quantenzahlen des Photons besitzt und im
Kontinuumslimes an das physikalische Photon koppelt. Fiir die grofiten von uns betrachteten
Impulse sind die Abweichungen von der als gestrichelten Linie in Abbildung 4.8 angedeute-
ten Dispersionsrelation im Kontinuum minimal, und auch der Vergleich der auf Gittern der
Grofle 16* und 18* gemessenen Datenpunkten zeigt, dass Effekte, die sich auf die endliche
Grofie der diskretisierten Raumzeit zuriickfithren lassen, keine nennenswerten Auswirkungen
auf unser Ergebnis haben. Es wurde in Abschnitt 4.7.1 bereits darauf hingewiesen, dass die
D? fir J > 1 reduzibel sind. Neben dem gewiinschten Beitrag einer Anregung mit Spin
J =1 wird als néchste mogliche Anregung im Kontinuumslimes auch ein Beitrag zu J = 3
erwartet [BB83, MM94]. Der Einfluss dieser Anregung, sowie weiterer hoherer Anregungen
konnte aber in der Dispersionsrelation nicht beobachtet werden, vermutlich, da diese bereits
eine so hohe Energie aufweisen, dass sie aufgrund der exponentiellen Ddmpfung schon nach
einer zeitlichen Entwicklung, die d = 2 Zeitschritten entspricht, nicht mehr nachweisbar sind.
Die Extrapolation der Datenpunkte zum Koordinatenursprung lasst den Schluss zu, dass es
sich bei dieser Anregung tatséichlich um ein masseloses Teilchen mit den Quantenzahlen des
Photons handelt.

4.7.3 Das Boson des adjungierten Skalarfeldes

Neben der bereits nachgewiesenen masselosen Anregung erwarten wir als weiteres Charakteri-
stikum des Higgs-Phénomens (mindestens) eine massive Anregung im Spektrum der Theorie,
nédmlich die zum adjungierten Skalarfeld gehorige. Im Rahmen der perturbativen Analyse des
Modells in Kapitel 4.3.1 konnte bereits gezeigt werden, dass genau ein massives Higgs-Bosons
auftreten sollte, sofern der Vakuumerwartungswert des Skalarfeldes in (globaler) unitérer Ei-
chung von der Gestalt ist, dass ¢> = 0 und folglich H = SU(2) x U(1) gilt. Am von uns
untersuchten Punkt im Phasendiagramm (5 = 6.0, x = 0.216, A = 0.01) ist die Theorie genau
in einer solchen Phase realisiert und der zum Feld ¢(x) gehorige Massenterm ist in diesem
Fall gegeben durch

m?, = 4Atr [®F] . (4.112)

Die Masse des adjungierten Higgs-Bosons wird also sowohl durch den Wert des skalaren Kon-
densats, als auch durch die Selbstkopplungskonstante A in der Phase gebrochener Symmetrie
nach Renormierung kontrolliert. Da es sich bei dem adjungierten Higgs-Feld um ein reelles
Skalarfeld handelt, wird der von diesem Feld erzeugte Zustand unter Paritéits- und Ladungs-
konjugationstransformationen gerade sein.
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I I I I I Abbildung 4.9: Das Verhal-
1+ & | ten der Korrelationsfunktion

\ des adjungierten Skalarfeldes
(4.114) fiir endliche Impulse.
1 - Gezeigt wird ebenfalls das Ver-
halten des Photonkorrelators
I3 (d,p*(n)) (4.105) fiir n =1
— (gestrichelte Kurve), sowie ein
Fit (durchgezogene Kurve) an
Cs (d,p*(n)) fir n = 1. Auf-
grund der periodischen Rand-
4 bedingungen sind die Daten-
punkte symmetrisch beziiglich
der halben zeitlichen Ausdeh-
g nung des Gitters, daher wird
nur das Intervall 1 < d < Ny/2
gezeigt.
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Ein eichinvarianter Operator, der an den durch JP¢ = 01+ charakterisierten physikalischen
Zustand koppelt, ist gegeben durch

S(z) = tr[®*(2)] . (4.113)
Wir untersuchen daher im Folgenden die verbundene Korrelationsfunktion
Cs(d,p) = (S(=p.d)S(p,0)), = (S(=p,d)S(p.0)) — (S(=p.d)) (S(p,0)) , (4.114)

um die niedrigste Anregung im 07T —Kanal, und somit die Masse des skalaren Bosons zu
finden. Die Ergebnisse unserer Untersuchungen fiir endliche Impulse sind in Abbildung 4.9
dargestellt. Wie in Gleichung (4.108) bei der Untersuchung der photonischen Korrelatoren
I'*(d,n) wurde die skalare Korrelationsfunktion geméf

Csd=1,n) =1, n=123 (4.115)

normiert, wobei sich die Messdaten im Falle eines verschwindenden rdumlichen Impulses
(n = 0) wiederum als statistisch nicht relevant erwiesen haben. Letzteres ist darauf zuriick-
zufithren, dass sich die beiden Beitrige zur verbundenen Korrelationsfunktion bei der Be-
rechnung von Cg(d,0) im Rahmen des statistischen Fehlers kompensieren. Unser Ensem-
ble von 1450 Konfigurationen scheint also nicht grof3 genug gewesen zu sein, um diese auf
Ausloschungseffekten basierende statistische Unsicherheit so weit einschrinken zu koénnen,
als dass noch verlissliche Aussagen aus den Messdaten extrahiert werden kénnten. Betrach-
tet man jedoch den Verlauf der Korrelationsfunktionen fiir n > 0, so ist zu erkennen, dass
die Kurven im Rahmen des statistischen Fehlers iibereinstimmen und bereits fiir d > 3 auf
einen mit Null vertréglichen Wert abgefallen sind. Dies ist mit dem Verhalten einer masselo-
sen Anregung zu vergleichen. Zu diesem Zweck wurde die bereits in Abbildung 4.7 gezeigte
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Korrelationsfunktion I'3(d, p(n)?) (4.105) fiir n = 1 (gestrichelte Kurve) in Abbildung 4.9 mit
aufgenommen. Die mit der masselosen Anregung verkniipfte Langreichweitigkeit der Wechsel-
wirkung manifestiert sich in einem von Null verschiedenen asymptotischen Wert, der von der
Korrelationsfunktion fiir den auf einem Gitter mit periodischen Randbedingungen maximal
zugénglichen Abstand d = N4/2 angenommen wird. Aulerdem ist der Einfluss der endlichen
Impulse bei der Préparierung des Testzustands, der ein Photon beschreiben soll, durch das
Auffachern der zu n = 1,2,3 gehorenden Kurven in Abbildung 4.7 evident. Im Gegensatz
dazu muss fiir die Masse der zum adjungierten Skalarfeld gehérenden Anregung geschlossen
werden, dass diese zumindest so grof3 sein muss, dass die auf das Quadrat derselben bezogene
Differenz aller bei der Berechnung der Korrelationsfunktionen verwendeten Impuls-Quadrate
kleiner ist als deren relativer Fehler, und die Korrelation nach d = 3 Entwicklungsschritten fiir
alle endlichen Impulse vollstandig zerfallen ist. Dies macht das Problem bei der Bestimmung
eines numerischen Wertes fiir die Masse des skalaren Bosons deutlich: Der Limes grofler Zeiten
wird voraussichtlich erst erreicht, wenn bereits keine Korrelation der Felder mehr nachweisbar
ist.

Der Versuch einer Abschitzung ist in Abbildung 4.10 zu sehen. Zu diesem Zweck wurden
nicht-lineare least-x2-fits der Messdaten fiir endliche Impulse an einen Kurvenverlauf der
Form (4.109) im Intervall d € [1, dyax] durchgefiihrt. Die Ergebnisse fiir dyax = 4 waren:

E(n) OB (n) x2/DoF
1.91094 | 0.03858 | 1.77068
1.89562 | 0.03953 | 1.86669
1.91790 | 0.04336 | 0.04873

W N 3

Eine graphische Darstellung des Resultats fiir n = 1 ist in Abbildung 4.9 als durchgezogene
Linie zu sehen. Aus den Werten fiir E(n) sowie den zugehorigen Fehlern wurde unter Verwen-
dung der Gleichungen (4.104) und (4.110) die Dispersionsrelation der Anregung berechnet,
um eine Abschitzung des Quadrats der Masse sowie des zugehorigen Fehlers in Einheiten
der (inversen) Gitterkonstanten zu erhalten. Die in Abbildung 4.10 gezeigten Daten deuten
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darauf hin, dass eine Extrapolation zum physikalisch relevanten Punkt einen endlichen Wert
liefert, den wir zu mi = 5 £ 0.25 abschétzen. Dabei sollte angemerkt werden, dass sich die
Ergebnisse zur Abschiitzung dieses Wertes als stabil gegeniiber einer Verdnderung der Ober-
grenze des zum Fit herangezogenen Intervalls auf dy.x = 3 bzw. dpnax = 5 erwiesen haben.
Die Masse des adjungierten Higgs-Bosons scheint also auf einer Skala angesiedelt zu sein, wel-
che fiir das Verhalten der Theorie im Bereich niedriger Energien eine untergeordnete Rolle
spielen sollte.

4.7.4 Das Spektrum der Eichbosonen

In einer Feldtheorie werden die verbundenen Zweipunktfunktionen aller Felder, die fiir die
Konstruktion dieser Theorie eine Rolle spielen, im Allgemeinen als Propagatoren bezeich-
net. Handelt es sich um eine quantisierte Eichtheorie, so muss der Berechnung der Propa-
gatoren stets die Wahl einer bestimmten Eichung zugrunde liegen, da ansonsten — wie in
Kapitel 4.2 erldutert — sémtliche Green’schen Funktionen der Theorie aufgrund ihrer Eich-
varianz verschwinden wiirden. Insbesondere lisst sich den Eichfeldern selbst immer nur in
einer konkreten Fichung ein Sinn verleihen. Im Gegensatz zu den bisherigen Untersuchungen
des Spektrums der Theorie wird daher die Fixierung einer Eichung nétig. Dabei ziehen wir
uns auf die in Kapitel 4.4 beschriebene Landau-Eichung mit anschlieffender globaler unitéren
Fichung zuriick.

Die Definition von Eichfeldern A, (z) auf dem Gitter ist nicht eindeutig, da es sich um abge-
leitete GroBlen handelt, die aus den Link-Variablen U, (x), den fundamentalen Freiheitsgraden
der Gitterformulierung, extrahiert werden miissen [GPP*98]. Wir verwenden im Folgenden
die mit der Landau-Eichung (4.54) kompatible Definition der dimensionslosen Eichfelder

A%(z) = Tm {tr [T“(UH(:E) - Ug(:c))}} (4.116)

auf dem Gitter, in deren Konstruktion nun Link-Variablen aus einer gemafl Kapitel 4.4 eich-
fixierten Konfiguration {U} eingehen. Die Konventionen zur Fourier-Transformation dieser
Eichfelder, welche auf natiirliche Weise mit den Mittelpunkten (x4 ¢é,/2) der entsprechenden
Links assoziiert werden, finden sich im Anhang A.4. Die Definition (4.116) bietet dabei den
Vorteil, dass sich die Korrekturterme bei der Betrachtung der zugehorigen dimensionsbehaf-
teten Eichfelder als von O(a?) herausstellen, lineare Korrekturen heben sich auf. Auierdem
besteht eine direkte Verbindung des Fichfixierungskriteriums auf dem Gitter zur Transver-
salitdtsbedingung, der die zugehorigen Eichfelder in Landau-Eichung der Kontinuumsformu-
lierung geniigen. Daher ist die prinzipielle Vergleichbarkeit von Resultaten gew&hrleistet, die
aus diesen beiden verschiedenen Zugéingen gewonnen werden kénnen. Die Definition des Ab-
bruchkriteriums bei der iterativen Fixierung der Landau-Eichung und weitere Erlduterungen
des verwendeten Algorithmus findet sich im Anhang C.

Fassen wir nun die skalaren Felder ¢“(z) sowie die Eichfelder Aj(z) der Theorie zu einem
gemeinsamen Feld XA(x) zusammen und ordnen in gleicher Weise die Quellen fiir beide Felder
in einer vereinheitlichten Quellenfunktion J4(z) an

xa(z) = (j;((”;))) T (z) = <jg((;”))) : (4.117)
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so erhalten wir unter Verwendung der in Kapitel 4.2 eingefiihrten Konvention gem#fl Glei-
chung (4.20) die Propagatoren

Dagp(z,y) = FWJ] (y)‘j_o _ <D”(33=y)

- 6T A ()6 T B - ’Dab(x7y)> - (4.118)

Die sogenannten ,,gemischten* Propagatoren, also diejenigen Zweipunktfunktion, welche Ska-
larfelder mit Vektorfeldern verkniipfen, verschwinden aufgrund der Lorentz-Invarianz der
Theorie. Beschranken wir uns im Folgenden also auf den Propagator der Eichbosonen

Dy (x,y) = (Au(x) A(y)), . (4.119)

dessen Fourier-Transformierte D;},lj (p) von besonderem Interesse ist. In Landau-Eichung han-
delt es sich dabei um ein transversales Objekt, welches sich wie folgt parametrisieren lésst:

a PpDv a a
D;ul/) (p) = <6/M/ - ;2 > -D b(p2)7 pu D;ul/)(p2) - O . (4120)

Die Kontraktion der Raumzeit-Indizes liefert also lediglich einen Beitrag zur Normierung, wir
betrachten daher im Folgenden die Fourier-Transformierte der Kontraktion von (4.119)

D) = (A(=p) AL(p)), bzw. D®(z,y) = Dii(z,y) . (4.121)

Dabei handelt es sich im Falle endlicher Impulse um hermitesche Farb-Matrizen, welche im
Falle einer reinen SU(N)—Yang-Mills-Theorie (sowie in der hier betrachteten Theorie mit
Kopplung an ein adjungiertes Skalarfeld in der Wigner-Weyl-Phase) in Landau-Eichung Dia-
gonalgestalt besitzen. Die Invarianz der effektiven Wirkung I'[x"] = T'[x] fithrt némlich wie
bereits in Kapitel 4.2 diskutiert auf die Invarianz des erzeugenden Funktionals der verbunde-
nen Zweipunktfunktionen unter globalen Transformationen und infolge dessen auf die Glei-
chung

D%(z,y) = Q) Dzy) [ (h) heHCG. (4.122)

Ist die Symmetrie nun nicht spontan gebrochen, so gilt H = G und Q(h) ist ein Grup-
penelement in der adjungierten Darstellung der Gruppe G. Dabei handelt es sich um eine
endlich-dimensionale, irreduzible Darstellung der Gruppe, so dass als Konsequenz des Lem-
mas von Schur (vgl. [Hei90] III, §1.5) die Diagonalitét des Propagators im Farbraum folgt,
D(z,y) o< 1. Dies ist Ausdruck der Tatsache, dass keiner der Basisvektoren der Lie-Algebra
in dieser Realisierungsphase der Theorie ausgezeichnet ist. Die Proportionalitdtskonstante
berechnet sich durch Integration von Gleichung (4.122) bzgl. des normierten, invarianten
Haarschen Mafles {iber die Mannigfaltigkeit von G unter Ausnutzung der Orthogonalitétsre-
lation fiir Matrixdarstellungen ([Hei90] III, §1.9):

D) = [ dnl) 2 () D (w.9) 2"(g) = < DG )5 (1.123)

Dabei bezeichnet n die Dimension des Darstellungsraumes, im Falle einer SU(N) also
n = N? — 1. Die Fourier-Transformierte dieses Proportionalitiitsfaktors ist gerade der nicht-
triviale skalare Anteil des Gluon-Propagators D(p?), aus dem (formal) eine dynamische Masse
der Gluonen extrahiert werden kann, welche natiirlich fiir alle n Anregungen identisch ist.
Die Ergebnisse einer entsprechenden Untersuchung im Fall der SU (2)—Yang-Mills-Theorie in
Landau-Eichung [LRGO02] weisen auf einen Wert von m, =~ 650 + 20 MeV hin.
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In der von uns untersuchten Realisierungsphase der Theorie ist jedoch die residuelle Eich-
symmetrie erster Art eingeschrinkt, da das adjungierte Skalarfeld, wie in Kapitel 4.5 gezeigt,
einen nicht-trivialen Vakuumerwartungswert der Form ®y = ¢8T® (¢ = 0) entwickelt. Da-
her ist eine Verinderung der Gestalt des Propagators (4.121) der Bosonen zu erwarten. Zur
Kldrung der Struktur desselben betrachten wir Gleichung (4.122) fiir

Qe Ad(H) = {Qe SO®) | QT*Q1=T%} (4.124)

in der von uns gewéhlten Einbettung als Bestimmungsgleichung der Komponenten von
D(z,y) anstelle einer direkten Integration von (4.122) beziiglich eines auf H = SU(2) x U(1)
eingeschrankten Mafles. Die Generatoren in der adjungierten Darstellung der Gruppe werden
dabei konventionsgemifl (Anhang D.2) mit einem Dach bezeichnet, Tb = Tz. Es zeigt sich,
dass durch Ad(H) eine blockdiagonale, vollstindig reduzible Darstellung von H der Form

Q) (z) = exp{iY 0%x)T"}, aeA:={1,23,8} (4.125)
gegeben ist, welche sich geméif

3
Qo(x) = €P QW0 (x) (4.126)
=1

darstellen ldsst und somit in eine direkte Summe von irreduziblen Darstellungen zerfallt.
Dabei bezeichnet Q(M)[0%](z) eine dreidimensionale Darstellung, Q()[0%](x) ist eine vierdi-
mensionale Darstellung und Q)[0%](z) bezeichnet die triviale Darstellung der Gruppe H. Die
Anwendung des Lemmas von Schur im Falle der direkten Zerlegung einer reduziblen Darstel-
lung in irreduzible Untermoduln (vgl. [Hei90] 111, §1.7) bestimmt die Gestalt des Propagators
AVE

D(z,y) = M(z,y)13xz © Aa(z,y) Laxa ® A3(z,y) 1, Ai(z,y) € R. (4.127)

Wir erwarten daher, dass hochstens drei verschiedene Werte fiir die Massen der moglichen
verschiedenen Anregungen im Spektrum der SU(3)—Eichtheorie mit skalarem Feld in adjun-
gierter Darstellung in der hier betrachteten Realisierungsphase der Theorie auftreten kénnen.
Die Form des Propagators (4.127) gibt ferner Anlass zur Annahme, dass aufgrund der Mul-
tiplettstruktur eine dreifache Entartung derjenigen Anregungen vorliegen wird, welche mit
den Generatoren 7', T2 und 7% der in G eingebetteten SU(2)-Untergruppe verkniipft sind.
Obwohl der Coset G/H keine Gruppe darstellt, da H offensichtlich keine invariante bzw.
normale Untergruppe von G ist, erwarten wir dennoch auch im von den Generatoren T°¢
(c € At :={4,5,6,7}) aufgespannten Unterraum eine vierfache Entartung.

Prinzipiell sollte also die Berechnung des im Impulsraum definierten Propagators D ®(p?)
(4.121) mittels der in (4.116) definierten Eichfelder ein farbdiagonales Objekt liefern, des-
sen acht (verschiedene) Komponentenfunktionen D % (p?) mit den bei der Untersuchung des
Gluon-Propagators einer reinen Yang-Mills-Theorie in Landau-Eichung erfolgreich eingesetz-
ten Methoden [LRGO02] analysiert werden konnten. Anstatt jedoch Messungen von Formfak-
toren F%(p?) fiir jede der Anregungen durchzufiihren und insbesondere aus deren Infrarotver-
halten eine zugehérige spektrale Dichte p®(m?) zu extrahieren, soll hier versucht werden, das
Problem der Extraktion von Massen aus Korrelationsfunktionen mit den bereits in Kapitel
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4.7.1 vorgestellten Methoden zu losen. Dabei werden nun die Eichfelder als Erzeuger eines
eichabhéngigen Zustands zu festem Impuls aufgefasst, dessen zeitliche Entwicklung unter-
sucht wird. Dadurch wird es moglich, Riickschliisse auf die Masse der zugehorigen Anregung
zu ziehen. Die Verbindung der beiden Zuginge wird nach partieller Fourier-Transformation
des Propagators (4.121) offenbar:

1 . F“
e > D®(p?) exp(—ipat) = N Z eXp (—ipat) = D(t,p) . (4.128)
b4

Dabei ist die rechte Seite die Konkretisierung der allgemeinen, verbundenen Korrelationsfunk-
tion von Zeitschicht-Operatoren der Form (4.88), ausgewertet fiir Eichfelder als Erzeuger von
Zustinden bei rdumlichem Impuls p und periodisch gemittelt {iber die zeitliche Ausdehnung
des Gitters:

De(t,p) = ZZ —p,x4) AL (p,xs + 1)), (4.129)

Um die Konsistenz der Notation zu gewéhrleisten, verwenden wir wie schon in den Kapiteln
4.7.2 und 4.7.3 im Folgenden weiterhin das Symbol d (distance) statt ¢ fiir den Abstand der
Zeitschichten, in denen die Feldoperatoren endlicher Impulse definiert sind.

Die Grundlage unserer Messungen bildete wiederum das Ensemble der 1450 thermalisierten
Konfigurationen zu jeweils 18* Gitterpunkten. Bei der Berechnung der Korrelationsfunktionen
(4.129) wurde zur Erhohung der Statistik wie schon im Falle der photonischen Korrelations-
funktionen die hyperkubische Symmetrie des Gitters ausgenutzt. Die numerischen Ergebnisse
beinhalten also eine weitere Mittelung iiber alle vier Hauptachsen des Gitters, ldngs derer
der Zerfall der Korrelationen gemessen wurde.

In einem ersten Schritt wurden die aus der gruppentheoretischen Analyse gewonnenen Er-
wartungen zur Gestalt des Propagators iiberpriift. Die Ergebnisse dieser Untersuchung sind
in Abbildung 4.11 in logarithmischer Darstellung zusammengefasst. Bei der Betrachtung der
Diagonalelemente des Propagators?” finden wir tatsichlich die in Gleichung (4.127) antizi-
pierte Form wieder. In Abbildung 4.11a ist das Verhalten dieser Matrixelemente fiir n = 1
sowie die exemplarisch ausgewéhlten Zeitschichtabstdnde d = 1, 5,9 zu sehen. Wir unterschei-
den fiir d = 1 eindeutig drei verschiedene Werte fiir D (1,1) an den erwarteten Positionen,
inklusive des richtigen Entartungsgrads. Fiir die Propagatoren der Eichbosonen, die mit den
Generatoren der Untergruppe H verniipft sind, besteht dieses Verhalten fiir alle betrachte-
ten Zeitschichtabstéinde d, im Falle der mit G/ H assoziierten Eichbosonen gilt dies nur noch
nédherungsweise. Die Korrelationen sind in diesem Fall bereits nach d = 5 Entwicklungsschrit-
ten um etwa zwei Gréflenordnungen abgefallen, und die zugehorigen Werte stimmen nurmehr
im Rahmen der statistischen Fehler iiberein, welche deutlich grofler sind, als es fiir die Korre-
latoren DY (d,p) (b € A) der Fall ist. AuBerdem ist festzustellen, dass sich die Maximalwerte
der mit H und G/H assoziierten Korrelatoren bei gleicher Normierung um zwei Gréfienord-
nungen unterscheiden.

Die Einstein’sche Summenkonvention gilt im Folgenden nicht mehr.
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Abbildung 4.11: Untersuchung der Matrixelemente des Propagators D (d, p) der Eichfelder.

Als néchstes wurden die Matrixelemente des Propagators auflerhalb der Diagonalen unter-
sucht. Zu diesem Zweck wurden die Betriige des symmetrisierten Korrelators D) (d, p) be-
trachtet:

_ D™(d,p) + D" (d,p)

S, p) = |D“Y(d,p)|, D@ (d p) : 5

(4.130)
Da es sich bei D®(p?) um eine hermitesche Matrix handelt, sollte D@ (d, p) = Re(D(d, p))
gelten, bei der Betrachtung von S%(d, p) werden also auch diejenigen Beitriige beriicksichtigt,
die aufgrund der endlichen Anzahl an Messungen zu Abweichungen von der Hermitizitiat des
Propagators fithren. Das Ergebnis unserer Untersuchungen ist in Abbildung 4.11b zu sehen.
Dabei wurden sowohl die fiinfte als auch die achte Zeile des Korrelators zum niedrigsten
nicht-trivialen Impuls (n = 1) untersucht, wobei sich die Wahl von d an der bei der Untersu-
chung der Diagonalelemente getroffenen orientierte, was einen Vergleich mit den Ergebnissen
in der nebenstehenden Abbildung ermoglicht. Es zeigt sich, dass die nicht-diagonalen Ele-
mente gegeniiber den Diagonalelementen stark unterdriickt sind, insbesondere ist der relative
Fehler héufig bereits so grofl, dass diese Elemente als statistisch nicht mehr relevant ange-
sehen werden konnen. Ausnahmen bilden die Elemente D°¢(5,1) und D®7(5,1), wobei sich
diese um mindestens zwei GroSenordnungen vom Diagonalelement D?°(5,1) unterscheiden,
analoges gilt fiir die Elemente D®2(1,1), D®3(1,1) und D3%7(1,1) im Vergleich zu D%8(1,1). Ein
Vergleich mit D®(d, 1) in Abbildung 4.11a zeigt dariiber hinaus, dass diese Elemente immer
noch mindestens eine Groéflenordnung kleiner sind als der Wert, den der diagonale Korrela-
tor fiir die maximale zeitliche Entwicklung bei d = 9 angenommen hat. Vermutlich machen
sich in diesen Elementen die Abweichungen vom zu erwartenden Idealfall eines im Rahmen
der Fehlergenauigkeit hermiteschen Propagators besonders bemerkbar. Wir nehmen daher im
Folgenden an, dass die Diagonalitéit des Korrelators numerisch bereits in sofern hinreichend
akzeptabel ist, als dass zu erwarten steht, dass das Studium der diagonalen Korrelations-
funktionen allein es ermoglichen sollte, die wesentlichen Informationen tiber das Spektrum
der Theorie zu gewinnen und dieses sich durch Hinzufiigen weiterer Konfigurationen zum
betrachteten Ensemble nicht wesentlich verdndern sollte. Diese Annahme wird am Ende der
Untersuchung nochmals kritisch zu reflektieren sein.
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Abbildung 4.12: Zerfall der diagonalen Korrelationen D% (d,n) fiir réumliche Impulse n = 0
(links), sowie n = 1 (rechts). Gitter: 18*, k = 0.216, A = 0.01, periodische Randbedingungen.

Betrachten wir also die zu den acht Eichfeldern Af,(z) gehérenden diagonalen Korrelations-
funktionen D% (d,n), die wie iiblich gem#f

D*d=1,n) =1 fiir n=20123 und a=1...8 (4.131)

normiert wurden. Die Messergebnisse sind beziiglich d = N;/2 symmetrisch und werden in
Abbildung 4.12 fiir die Félle n = 0 und n = 1 im Intervall d € [1,9] dargestellt. Zunéchst
fallt bei der Betrachtung der linken Abbildung auf, dass die Korrelationsfunktionen fiir ver-
schwindende rédumliche Impulse (n = 0) scheinbar in drei verschiedene Klassen zerfallen.
Die leichteste Anregung gehort zum Eichfeld Ai(m), etwas schwerer erscheint das entartete
Triplett zu sein, welches aus den mit Aj(x) (e = 1,2,3) assoziierten Anregungen besteht,
sowie zuletzt die Kollektion der aus den vier Eichfeldern AZ(m) (b € A1) gebildeten Korre-
lationsfunktionen, welche sehr schnell zerfallen und folglich mit sehr massiven Anregungen
verbunden sein miissen. An dieser Stelle soll daran erinnert werden, dass in Kapitel 4.3.1 bei
der perturbativen Diskussion des Higgs-Mechanismus in der vorliegenden Theorie neben einer
Vorhersage fiir die Masse des Higgs-Bosons (4.112) auch eine Vorhersage fiir die Massen der
mit den Generatoren der gebrochenen Symmetrien verkniipften Eichfelder gemacht wurde.
Das Ergebnis war m? = 3¢2tr[®3]/2 m?p. Eine solche Relation scheint sich auch in unserer
nicht-perturbativen Untersuchung zu bestétigen. Betrachten wir n&dmlich das Verhalten der
Korrelationsfunktionen fiir n = 1 in der rechten Abbildung von Figur 4.12, so ist eine weit-
gehende Ubereinstimmung des Verlaufs von D"(d, 1) (b € A+) mit der gestrichelten grauen
Kurve zu konstatieren, die das Ergebnis des bereits in Kapitel 4.7.3 diskutierten Fits an die
Messdaten der Korrelationsfunktion Cg(d, 1) des adjungierten Skalarfeldes darstellt. In Ka-
pitel 4.7.3 wurde auch bereits auf die Schwierigkeiten hingewiesen, die sich bei dem Versuch
einer Abschéitzung der physikalischen Teilchenmasse im Falle sehr schnell zerfallender Kor-
relationsfunktionen der zugehorigen Felder ergeben. Wir sehen daher an dieser Stelle davon
ab, eine derartige Untersuchung auch fiir die Propagatoren D% (d, n) (b € A') durchzufiihren
und belassen es angesichts der in Abbildung 4.12 gezeigten Resultate bei der Vermutung,
dass durchaus die Moglichkeit besteht, dass die Massen der zugehorigen vier Anregungen mit
der Masse m,, des adjungierten Skalarfeldes {ibereinstimmen konnten.
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Abbildung 4.13: (a) Der kinetische Beitrag zur Dispersionsrelation ist gegeben durch p?(n)
(horizontale Linien). (b) Die eingebettete Abbildung zeigt die Ergebnisse des Fits an die
Daten fiir p = 0 im Detail. Gitter: 18%, x = 0.216, A = 0.01.

Des Weiteren fillt beim Vergleich der beiden Teilabbildungen 4.12 auf, dass die im Fall n =0
offensichtliche Aufspaltung der zu A}(z) (a = 1,2,3) und Ai(m) gehorigen Korrelationsfunk-
tionen im Fall n = 1 deutlich reduziert ist. Es liegt also moglicherweise eine weitere Entartung
der Massen des Tripletts sowie des Singuletts vor, die sich aber vielleicht erst bei der Unter-
suchung von Korrelationsfunktionen zu gréofleren Impulsen in voller Deutlichkeit zeigen wird.
Um diese Frage zu kléren, wurden in einem néchsten Schritt die durch Gleichung (4.111)
definierten effektiven Massen meg(d, n) dieser vier Anregungen untersucht.

Das Ergebnis ist in Abbildung 4.13a zu sehen, wobei die Datenpunkte fiir die vier verschiede-
nen Anregungen der Ubersichtlichkeit halber leicht gegeneinander verschoben wurden. Statt
der effektiven Masse wurde auflerdem direkt die Grofle 2(meg(d,n) — 1) gegen den Abstand
der Zeitschichten d aufgetragen, welche nach Gleichung (4.110) dem Quadrat der Energie der
Anregung E%(ﬁz) entspricht. Dabei wurden nur solche Messwerte fiir meg verwendet, deren
relativer Fehler kleiner als 0.1 war. Es ist zu beobachten, dass die erwartete Ausbildung der
Plateaus sehr schnell einsetzt, insbesondere fiir die Félle n = 0,1 ist das FErgebnis praktisch
vollig unabhéngig vom Parameter d. Auch fiir die endlichen Impulse n = 2, 3 scheint der large
time limit praktisch unmittelbar erreicht zu sein, das Signal wird jedoch fiir zunehmende Wer-
te von n und d immer undeutlicher. Dieses Problem riihrt aus dem Verhalten der Korrelatoren
selbst her. Die statistischen Fehler derselben sind bei festem n fiir jeden Wert von d etwa gleich
groB, da es sich jedoch um monoton fallende Funktionen handelt?! nimmt der relative Fehler
daher monoton zu. Die gezeigten Funktionswerte der sich ausbildenden Plateaus enthalten
immer noch die Beitrage der kinetischen Energie, deren Werte in der Abbildung durch die
horizontalen Linien zu n = 0, 1, 2, 3 dargestellt werden. Die Differenz der Datenpunkte zu der
jeweiligen Linie ergibt also eine Abschétzung fiir das Quadrat der Massen. Unsere Messungen
legen folglich nahe, dass es sich in allen vier Fillen um masselose Anregungen handelt. Diese

2Tm Falle periodischer Randbedingungen gilt dies bis zum Symmetrisierungspunkt d = N4/2.
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Aussage kann mittels eines Fits an die Messdaten der zugehorigen Korrelationsfunktionen
quantifiziert werden. Bei der Auswahl der fiir den Fit zu verwendenden Datenpunkte bzw.
bei der Bestimmung von d,;, lassen wir uns von den Resultaten unserer Untersuchungen der
Energie-Plateaus leiten. Die Annahme von dyi, = 3 als Limes grofler Zeiten erscheint ge-
rechtfertigt, Messwerte der Korrelationsfunktionen bei grofieren Zeiten d wurden verwendet,
sofern der relative Fehler bei der Bestimmung zugehoriger effektiver Masse — wie in Abbil-
dung 4.13a gezeigt — kleiner war als 0.1. Das Resultat ist die in Abbildung 4.13b gezeigte
Dispersionsrelation, wobei alle Datenpunkte der zusitzlichen Einschrinkung y2/DoF < 3.5
unterliegen.

Eine Bemerkung zu den Ergebnissen im Fall n = 0 erscheint zum Schluss angebracht. Das
Verhalten der jeweiligen Korrelationsfunktionen in Abbildung 4.12 hatte die Vermutung nahe
gelegt, dass zwar eine Entartung der Masse innerhalb des SU(2)—Multipletts vorliegt, diese
sich aber von der Masse des Singulettzustands unterscheiden sollte. Tatséichlich unterschei-
den sich die extrahierten Werte in diesem Fall, wie aus der in Abbildung 4.13b eingebetteten
Detailansicht hervorgeht. Die Aufspaltung der Triplett- und Singulettmassen ist klar zu er-
kennen, jedoch ist ihr Abstand absolut gesehen sehr gering. Moglicherweise spiegelt sich
an dieser Stelle die erwihnte leichte Verletzung der Hermitizitdt des Propagators aufgrund
der endlichen Anzahl an Konfigurationen des betrachteten Ensembles besonders wider. Es
wére daher interessant zu sehen, ob sich diese Liicke nach Durchfiihrung weiterer Messungen
allméhlich schlieffit. Eine Extrapolation der fiir endliche Impulse erzielten Ergebnisse zum
physikalischen Punkt lisst jedenfalls durchaus den Schluss zu, dass alle mit den Generatoren
der Untergruppe H assoziierten Eichbosonen tatséchlich masselos sein sollten. In diesem Fall
ldge die hochst interessante Situation vor, dass eine effektive Quantenfeldtheorie ohne mass
gap eine ungebrochene SU(2) x U(1)—Symmetrie aufweist, wobei der zugehérige schwache
Isospin sowie die Hyperladung aber dennoch freigesetzt sind.

4.8 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Untersuchung konnte gezeigt werden, dass eine in D = 4 Dimen-
sionen definierte SU (3)—Eichtheorie, welche an ein skalares Feld in adjungierter Darstellung
gekoppelt und durch die Lagrangedichte (4.26) beschrieben wird, nach Fixierung der Eichsym-
metrie durch Wahl der Landau-Eichbedingung, sowie einer globalen unitéren Eichbedingung
einen Phaseniibergang zweiter Ordnung ermdoglicht, der mit der spontanen Brechung der resi-
duellen globalen SU(3)—Symmetrie der eichfixierten Theorie einhergeht. Dies fithrt auf eine
Realisierungsphase der Theorie, die durch eine residuelle SU(2) x U(1)—Symmetrie gekenn-
zeichnet ist. Das Auftreten des Phaseniibergangs, der von der Brechung einer zusétzlichen
globalen Reflexionssymmetrie der Theorie am selben kritischen Punkt begleitet wird, konnte
durch das Studium eichinvarianter, thermodynamischer Observablen beobachtet und im Pha-
sendiagramm lokalisiert werden. Zur eindeutigen Bestimmung insbesondere der Einbettung
der residuellen Symmetriegruppe H in die Symmetriegruppe G der Theorie in der Wigner-
Weyl-Phase hat es sich jedoch als vorteilhaft erwiesen, eine Eichung zu fixieren. Die Wahl
der globalen unitédren Eichung in Kombination mit der Landau-Eichung hat es uns dabei auf
direkte Art und Weise ermdglicht, die nicht-trivialen FEigenwerte des globalen Skalarfeldes ®
nach spontaner Symmetriebrechung — und somit H — zu bestimmen, sowie Eichfelder zu de-
finieren, welche aus den Freiheitsgraden der simulierten Gittereichtheorie extrahiert werden
konnen. Die Bestimmung von H zu SU(2) x U(1) hat uns ferner die Méoglichkeit eroffnet,
das Verhalten eines Paares von statischen Testladungen bei verschiedenen Abstédnden zu un-
tersuchen, die sich nicht-trivial unter eben jener Symmetriegruppe transformieren, welche
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der Konstruktion der heute weitestgehend akzeptierten Theorie der elektroschwachen Wech-
selwirkung zugrunde liegt. Die Messergebnisse deuten darauf hin, dass die Kondensation
der Bosonen des adjungierten Skalarfeldes wihrend des Phaseniibergangs denselben Effekt
hervorruft, wie die Ausbildung eines Kondensats von fundamentalen Higgs-Bosonen bei der
spontanen Symmetriebrechung im Modell von Glashow, Weinberg und Salam: Obwohl es sich
beim schwachen Isospin um eine nicht-abelsche Symmetrie handelt, kann Materie, welche
Isospinladung tragt, im Rahmen der von uns untersuchten effektiven Theorie frei beobachtet
werden. Die fiir das Confinement-Phénomen charakteristische Form des Potentials dndert
sich beim Phaseniibergang von einem linearen Anstieg fiir grofle Abstéinde der Quellen hin
zu einem Coulomb-Potential.

Das Spektrum der Theorie weist dabei sowohl eine masselose Anregung auf, welche die Quan-
tenzahlen des Photons tragt, als auch ein massives Boson, welches zum adjungierten Skalar-
feld gehort, und dessen Masse vom Vakuumerwartungswert des skalaren Kondensats und der
Selbstkopplungskonstante (4.112) bestimmt wird. Beide Anregungen konnten auf eichinvari-
ante Weise identifiziert werden. Die Massenskala der Theorie ist dabei nicht fixiert und kénnte
durch weiteres Vordringen in die Phase gebrochener Symmetrie beliebig vergrofiert werden,
was durch das beobachtete Verhalten von (4.112) als Funktion von x nahe gelegt wird. Die dy-
namische Erzeugung einer weiteren Massenskala durch genuin nicht-perturbative Effekte, wie
sie etwa aus dem Studium des Infrarotverhaltens des Gluon-Propagators in Landau-Eichung
im Falle der SU(2) [LRG02] und SU(3) [BBLWO00] Yang-Mills-Theorien bekannt ist, konnte
im nicht-abelschen Sektor der residuellen Symmetriegruppe H nicht beobachtet werden. Viel-
mehr wurde bei der Untersuchung der Propagatoren der in Landau- und globaler unitérer
Eichung (Abschnitt 4.4) definierten Felder festgestellt, dass diese in zwei Klassen zerfallen.
Die vier mit den Generatoren von H verkniipften Eichfelder gehéren zu masselosen Anre-
gungen, wihrend die mit den Generatoren von G/H assoziierten Eichfelder eine dynamisch
erzeugte Masse erhalten. Diese scheint direkt proportional zu m,,, moglicherweise sogar gleich
der Masse des adjungierten Higgs-Bosons zu sein.

Dies ist insofern sehr interessant, als dass die vorliegenden Ergebnisse dem eingangs kurz re-
kapitulierten, perturbativ zu erwartenden Verhalten in Bezug auf das Spektrum der Theorie
voll und ganz zu entsprechen scheint, obwohl bei dieser {iblicherweise angefiihrten Erklirung
des Higgs-Mechanismus aussschliellich die klassische Feldtheorie als Argumentationsgrundla-
ge bemiiht wird und dabei offensichtlich von Voraussetzungen ausgegangen wird, die im Falle
der quantisierten Theorie nicht mehr unbedingt zutreffend sind. Ein besonders aufschlussrei-
ches Beispiel ist in diesem Zusammenhang das viel diskutierte Confinement-Phinomen in
nicht-abelschen Eichtheorien. Wiirde man der iiblichen Argumentation auch in diesem Fall
folgen, so miisste man unabhéngig von etwaigen nicht-perturbativ Effekten in stark gekoppel-
ten Quantenfeldtheorien zu dem Schluss kommen, dass solche Theorien aufgrund der intakten
(Eich-) Symmetrie ausschliellich masselose Eichbosonen aufweisen sollte. Dies ist aber ver-
mutlich in doppelter Hinsicht nicht der Fall. Zum einen treten Eichbosonen in derartigen
Theorien iiberhaupt nicht als asymptotische Zustdnde im Spektrum auf, versucht man den-
noch ihnen zumindest formal in einer bestimmten Eichung eine Masse zuzuweisen, so findet
sich typischerweise ein von Null verschiedener Wert??. Es ist daher hochst interessant, das
Zusammenspiel der verschiedenen Effekte zu studieren, die in nicht-abelschen Eichtheorien
bei der Ankopplung von skalaren Feldern auftreten kénnen, die das Phdnomen der spontanen

22Wie in Kapitel 4.1 ausgefiihrt wurde, ist dieser Punkt noch Gegenstand aktueller Untersuchungen.
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Symmetriebrechung ermoglichen®?. Ein zentrales Ergebnis der in diesem Kapitel vorgestell-
ten Untersuchung ist dabei, dass die mit der residuellen Symmetriegruppe H assoziierten
Eichbosonen im Zuge der spontanen Symmetriebrechung tatséchlich im Spektrum der Theo-
rie nachweisbar werden und masselos sind. An dem von uns untersuchten Punkt im Pha-
sendiagramm der SU (3)—Eichtheorie mit adjungiertem Skalarfeld scheint somit eine hochst
interessante effektive Quantenfeldtheorie vorzuliegen, die weder das Confinement-Phénomen,
noch das Auftreten eines mass gap zeigt, obwohl die zugrunde liegende Symmetriegruppe H
einen nicht-abelschen Faktor enthélt.

In der Einleitung wurde darauf hingewiesen, dass eine Kopplung der zu untersuchenden Theo-
rie (4.26) an dynamische fermionische Materie bewusst vernachléssigt wurde, um zunéchst
zu kldren, ob die SU(3)—Eichtheorie mit Skalarfeld in adjungierter Darstellung allein in
der Lage ist, die wesentlichen Merkmale einer Theorie der elektroschwachen Wechselwirkung
zu reproduzieren. Zum einen muss die Existenz einer masselosen vektoriellen Anregung im
Spektrum der Theorie gesichert sein, welche als das Photon der elektromagnetischen Wech-
selwirkung interpretiert werden kann. Zum anderen muss die Theorie einen Mechanismus
beinhalten, der sowohl effektive Massenterme fiir Eichfelder erzeugen kann, als auch eine Er-
kldrung dafiir bereithalten, warum eine bestimmte Linearkombination dieser Eichfelder genau
diejenigen Masseneigenzustidnde sein sollen, deren zugehorige Eichbosonen im Folgenden als
W und ZY interpretiert werden kénnen und deren Massen gerade in einem Verhéltnis stehen,
welches im Rahmen des GSW—Modells durch den sogenannten Weinberg-Winkel 0y geméf3
myw /mz = cos(fy ) parametrisiert wird und experimentell hervorragend gesichert ist.

Der eichinvariante 't Hooft-Polyakov-Operator I‘f’w(az), der zur Detektierung des Photons
konstruiert wurde, wird von einem Term (4.94) dominiert, der als Linearkombination der
Feldstiarken aller nicht-abelschen Eichfelder interpretiert werden kann. Das masselose Vek-
torboson, welches an diesen Operator koppelt und im Spektrum der Theorie eindeutig nach-
gewiesen werden konnte, ist daher als eine Linearkombination zu verstehen, die von den vier
masselosen Eichfeldern A} (z) (a € A) dominiert wird, wobei Beitrige der (beliebig) massi-
ven iibrigen Eichfelder fiir das langreichweitige Verhalten des Feldstérke-Korrelators offenbar
keine Rolle spielen. Obwohl es bei der ersten Betrachtung der Propagatoren der Eichbosonen
(4.12) fiir verschwindenden rdumlichen Impuls den Anschein hatte, als wiirde sich im Nied-
rigenergiesektor der Theorie neben einer sehr leichten Anregung auch ein massives, quasi
entartetes Triplett von Eichbosonen als Kandidaten fiir die Vektorbosonen W+, Z° nachwei-
sen lassen, hat sich diese gruppentheoretisch denkbare Moglichkeit (4.127) bei der anschlie-
Benden Untersuchung der Dispersionsrelation aller Anregungen als &uflerst unwahrscheinlich
erwiesen. Viel eher deutet die Extrapolation der Messdaten zum physikalischen Punkt darauf
hin, dass die Massen aller mit H assoziierten Eichbosonen mit Null vertréglich sind, und die
Theorie somit zumindest an dem von uns untersuchten Punkt des Phasendiagramms nicht
direkt zu einer moglichen Alternative zur Beschreibung von elektroschwachen Vorgéngen in
der Natur ausgebaut werden kann. In diesem Zusammenhang wére es allerdings sehr interes-
sant, das Verhalten der Theorie bei einer Annédherung an die bereits beobachtete Grenzlinie
eines Phaseniibergangs zweiter Ordnung zu studieren um die Frage nach der Existenz eines
nicht-trivialen Kontinuumslimes dieser Theorie néher zu untersuchen.

ZBereits in einer der ersten Untersuchungen des GSW-Modells auf dem Gitter hat sich angedeutet, dass
sowohl eine Confinement-Phase mit mass gap und SU(2) x U(1)y —Symmetrie, als auch eine U(1)g—Coulomb-
Phase realisiert sein kann, wobei keine analytische Verbindung zwischen beiden besteht [Shr86, MM94].
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Halt man am Konzept der Beschreibung der elektroschwachen Wechselwirkung durch eine
Eichtheorie in Verbindung mit spontaner Symmetriebrechung fest, so ist es vor allem die
(flavourunabhiingige) Universalitit der Kopplungskonstanten von Quarks und Leptonen in
elektroschwachen Prozessen, die einen starker Hinweis darauf gibt, dass die zugrunde liegende
Symmetriegruppe SU(2) x U(1) sein sollte??. Dass diese Symmetrie jedoch nicht unbedingt
durch ein fundamentales Higgs-Doublett gebrochen werden muss, wurde schon in Abschnitt
4.3.1 diskutiert. Vielmehr geniigt es anzunehmen, dass der skalare Erweiterungssektor eine
ungebrochene globale (custodial) SU(2)—Symmetrie aufweist um zu zeigen, dass ein Symme-
triebrechungsschema moglich ist, das das Spektrum der beobachteten Eichbosonen reprodu-
ziert. Zudem muss es sich bei dem entsprechenden Boson nicht unbedingt um ein elementares
Teilchen handeln. Ebenso gut ist ein Mechanismus vorstellbar, der eine Analogie zur dyna-
mischen Brechung der chiralen Symmetrie in der Theorie der starken Wechselwirkung durch
Ausbildung eines skalaren Quarkkondensats {(g/q/) # 0 auf einer durch Aqcp charakteri-
sierten Skala darstellt?. Allerdings gibt es fiir die Existenz derartiger Bindungszustinde,
die unter dem Namen Techni-Mesonen bekannt sind, genau wie bei der Suche nach dem
fundamentalen Higgs-Boson, bisher keinerlei experimentelle Hinweise [A108]. Dennoch ist es
interessant, iiber die Rolle der von uns untersuchten Quantenfeldtheorie in Verbindung mit
derartigen Theorien zu spekulieren, denn bei allen Anstrengung, die im fermionischen Sektor
unternommen werden miissen, um das Problem der dynamischen Erzeugung von Massenter-
men fiir ungleich zu behandelnde rechts- und linkshéndige Familien von Materiefeldern zu
16sen, reduziert sich das Problem im Sektor der Eichbosonen letztlich immer auf die Brechung
einer SU(2) x U(1)—Symmetrie und der damit verbundenen Massenerzeugung fiir Eichfel-
der, die a priori stets als masselos angenommen werden. Nehmen wir also an, dass sich die
durch (4.26) gegebene Theorie oberhalb einer sehr hohen Energieskala p/ in der symmetri-
schen Realisierungsphase befinde. Wihrend des Phaseniibergangs zweiter Ordnung erhalten
das adjungierte Boson und die zu G/H gehorigen Eichbosonen eine sehr grofie Masse und
entkoppeln somit faktisch von der resultierenden Quantenfeldtheorie bei deutlich niedrigeren
Energien. In diesem Energiebereich liegt somit eine Quantenfeldtheorie vor, welche zum einen
das Auftreten von freien Isospin-Ladungen erlaubt, zum anderen die residuelle Symmetrie-
gruppe H = SU(2) x U(1) besitzt, und die Voraussetzung der Masselosigkeit der zugehorigen
Eichfelder auf Quantenniveau erfiillt. Auf der elektroschwachen Skala, der im GSW-Modell
durch einen Vakuumerwartungswert des fundamentalen Higgs-Kondensats von v ~ 250 GeV
gegeben ist, kann dann eine weitere Symmetriebrechung auf die elektromagnetische Gruppe
U(1)qg erfolgen, ohne dass dabei darauf zu achten wére, dass dieser Mechanismus fiir die
Freisetzung des Isospins sorgen muss. Die Randbedingung ist dabei ,lediglich®, dass zuletzt
das beobachtete Spektrum der elektroschwach wechselwirkenden Teilchen reproduziert wer-
den muss.

Die genaue Form dieses Symmetriebrechungsmechanismus ist nach wie vor eine der offenen
und dréngendsten Fragen der Elementarteilchenphysik und wird vermutlich nur durch Hin-
weise aus weiteren experimentellen Untersuchungen zu kliren sein. Es bleibt also zu hoffen,
dass die anstehenden Experimente am LHC (CERN) Licht ins Dunkel bringen werden.

24Da die beiden Faktoren miteinander kommutieren, kann es zwei unabhiingige Kopplungskonstanten geben,
diese konnen durch die Werte der Fermi-Konstanten G und sin?(0,,) universell festgelegt werden [PS95].

2 Uberlegungen dieser Art haben bereits vor iiber 30 Jahren zum Anstof einer Entwicklung von sogenann-
ten Technicolour-Theorien gefiihrt [CL84]. Die wesentliche Idee ist dabei, Erweiterungen von QCD-artigen
Eichtheorien mit geeigneten RG—(—Funktionen zu finden, die ein besonderes Verhalten der laufenden Kopp-
lung aufweisen und dadurch die natiirliche Einfithrung der Massenskala der elektroschwachen Wechselwirkung,
sowie eine Erkldrung der Massenhierarchie zwischen den verschiedenen Familien der Fermionen erméglichen.
Eine Einfithrung findet sich in den Ubersichtsartikeln von Hill und Simmons [HS03], sowie Sannino [San08].






Anhang A

Diverses

A.1 Einheiten

Wir verwenden das natiirliche Einheitensystem, in welchem h = ¢ = 1 gesetzt wird.
In diesem System gilt

[Linge] = [Zeit] = [Energie] ' = [Masse]
und die Umrechnung in physikalische Einheiten geschieht mittels der Relation

(1 MeV)™! (he) = 197.3 fm.

A.2 Metriken

e Minkowski-Raum My: G = diag[+, —, —, -]

Ein Raumzeit-Ereignis wird nach Wahl eines Koordinatensystems mit
= {20z 22 23} = {20, 2}, " eR
bezeichnet. Die quadratische Form auf My lautet
(z,2) = g ' a” = (2°)% = (2)? = (4?)* = (%) = (a°)* — 22,
was dem Raum My eine pseudo-euklidische Struktur gibt.

e Euklidischer Raum FEjy: Guv = Opw

Ein Vektor xz € E4 wird mit
= {4 2% 23 2t} = {x, 21}, " eR

bezeichnet. Die quadratische Form ist positiv definit, es handelt sich um einen Skalar-
produktraum mit euklidischer Struktur:
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A.3 Notationskonvention

Die Dimension der Raumzeit wird mit D bezeichnet. Es gilt also D = d + 1, wobei d die
Dimension des Raums bezeichnet.

e Griechische Symbole: Im Falle der euklidischen Raumzeit F4 gilt u, v,... € [1, D].
Wird stattdessen der Minkowski-Raum M, betrachtet, so gilt geméafi Konvention A.2
W, v, ... €0, d. Die Symbole «, 3, ... bezeichnen Spinor-Indizes.

e Lateinische Symbole: i,j,k, ... € [1, d] sind den rédumlichen Dimensionen vorbehal-
ten, Farb-Indizes einer SU(N)—Yang-Mills-Theorie werden mit a, b, c,... € [1, N? —1]
bezeichnet. Majuskel A, B, C, ... bezeichnen in diesem Zusammenhang eine Kollektion

verschiedener Indizes, also einen sogenannten Multi-Index.

Falls nicht explizit anders angegeben, gilt stets die Einstein’sche Summenkonvention. Fiir
benachbarte Punkte x und y auf dem Gitter £4 verwenden wir hdufig die Kurzschreibweise

y=x+p = x+aé,,

wobei a die Gitterkonstante der Diskretisierung bezeichnet.

A.4 Fourier-Transformation

Fiir die vierdimensionale euklidische Fourier-Transformation gelten auf dem Gitter allgemein
die Konventionen

= 42]" ) explipz], flz) = a4N4Zf exp[—ipx] .

Dabei bezeichnet zy = Zi:l x,, Yy, nach den in A.2 getroffenen Konventionen das euklidische
Skalarprodukt, a ist wieder die Gitterkonstante.

Die Dirac’sche Delta-Distribution besitzt auf dem Gitter die diskretisierte Darstellung
1 .
oni(z —y) = N ZGXP[—ZP(JU -y)] .
P

Eine Verbindung zwischen Eichfeldern A, (z) und Link-Variablen U, (z), die auf den Links
(z,x + aé,) des Gitters definiert sind, wird tiblicherweise durch die Relation (C.48) herge-
stellt. Dabei werden die Fichfelder auf natiirliche Weise mit den Mittelpunkten der zugehori-
gen Links assoziiert [MM94]. Eine solche Definition ist immer nur nach Wahl einer bestimmten

Eichung sinnvoll [GPP*98]. Die Fourier-Transformation der beispielsweise in Landau-Eichung
definierten Eichfelder (4.116) ist dabei gegeben durch:

Aa a . a . a a . a
Aulp) = G4ZA exp[zp(az—i—ie“) , Au(z) = a4N4ZA eXP[—Zp($+§eu)
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Algorithmen zur numerischen
Simulation von Quantenfeldtheorien

Tacta alea est
SUETON: Divus lulius, 32f

B.1 Markov-Prozesse und Monte-Carlo-Methoden

Im Rahmen der numerischen Simulation von Quantenfeldtheorien auf dem Gitter sollen Er-
wartungswerte verschiedener Funktionale f[p] berechnet werden, wobei im Folgenden {p}
eine Konfiguration von Feldvariablen bezeichnen soll. Dies fiihrt auf die Berechnung eines
Pfadintegrals der Form

() =271 / Do flg] exp{-Slg]} 2 = / Dy exp{—Slel} . (B.1)

wobei S[g| die reellwertige Wirkung der diskretisierten Theorie darstellt. Eine direkte Aus-
wertung des Integrals verbietet sich aufgrund der Vielzahl der auftretenden Konfiguratio-
nen'. Das Ziel eines konomischen Monte-Carlo-Algorithmus muss also ein importance samp-
ling sein, bei dem ein Ensemble, bestehend aus einer groflen Zahl N von Konfigurationen
{¢}n,(n =1...N) erzeugt wird, so dass die Verteilungsdichte dieser samples die gewiinsch-
te Verteilungsdichte des kanonischen Ensembles We[p] o exp{—S][p]} approximiert. Der in
diesem Ensemble berechnete Mittelwert
N

flen] (B.2)
n=1

1
fF=x
stellt eine Approximation des Erwartungswertes (f) dar. In einer numerischen Simulati-
on wird — ausgehend von einer Startkonfiguration {¢}y — eine Folge von Konfigurationen
{{¢}r|k € No} generiert, dabei wird jede bereits erzeugte Konfiguration {¢} durch An-
wendung einer Aktualisierungsvorschrift (update step) mit einer Ubergangswahrscheinlichkeit
P({¢'} + {¢}) in eine neue Konfiguration {¢'} iiberfiihrt.

{eto — {oh — {p}e — {v}s — {o}s — -+ (B.3)

!Bereits fiir das zweidimensionale Ising-Modell auf einem Gitter mit 100? Gitterplitzen z, in dem jede
Variable o(x) € {—1,+1} nur zwei verschiedene Werte annehmen kann, miissten bereits 2'90%° ~ 103010
Konfigurationen beriicksichtigt werden.
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Die Aktualisierung ist also ein stochastischer Prozess. Folgende Bedingungen sind zu erfiillen,
damit es sich bei dem Update-Prozess um einen Markov-Prozess handelt:

Do PULT el =1 ¥ {p) (B.4)

P} —{e}) > 0 V{p} {¢'} :
P{¢'} « {o) Welpl = P({e} < {¢'}) Wel¢'] (B.6)

Neben der Normierungsbedingung (B.4) fiir die Ubergangswahrscheinlichkeiten driickt die
Forderung nach strong ergodicity (B.5) aus, dass durch einen Update jede mogliche Konfi-
guration des Ensembles mit endlicher Wahrscheinlichkeit erreicht werden kénnen muss. Die
letzte Forderung wird i.A. mit detailed balance bezeichnet, deren Erfiillung eine hinreichende
Bedingung fiir die {iblicherweise geforderte Stabilititsbedingung

1o PAPT = Lo Welo] = Wele] (B.7)
darstellt. Die Stabilitéitsbedingung garantiert, dass die Verteilung des kanonischen Ensembles
W, ein (eindeutiger) Fixpunkt der Ubergangswahrscheinlichkeit P ist [Wip07], d.h. vorausge-
setzt, die Anfangsverteilung W hat einen nichtverschwindenden Uberlapp mit der Verteilung
des kanonischen Ensembles?, so konvergiert diese Verteilung im Grenzfall unendlich hiufiger
Anwendung von P gegen die kanonische Verteilung. In der Praxis wird zunéchst, ausgehend
von einer Startkonfiguration {¢}g, eine bestimmte Anzahl Nipe,. von Aktualisierungsschrit-
ten durchgefiihrt. Dies ist die sogenannte Thermalisierungsphase, in der die Entwicklung
Wole] — Welp] stattfindet. Die danach erzeugten Konfigurationen werden zu einem En-
semble {{¢}, |n =1... N} zusammengefasst, welches zum Messung von Erwartungswerten
interessierender Observablen geméfl (B.2) herangezogen wird und die Gleichgewichtsvertei-
lung W,[p] approximiert.

Gleichbedeutend mit den Bedingungen (B.5, B.6) sind die zugehorigen lokalen Versio-
nen, denn falls ein Algorithmus lokal ergodisch ist und detailed balance lokal erfiillt, so
konnen die auf Konfigurationsebene gestellten Forderungen (B.5, B.6) durch Hintereinan-
derausfiihrung von lokalen Aktualisierungsschritten an jedem Gitterpunkt = in der Form
P({¢'} « {¢}) = [L, P.({¢'} < {¢}) erfiillt werden [MM94]. Diese Tatsache spielt eine
entscheidende Rolle bei der Konstruktion und Uberpriifung der Giiltigkeit von Metropolis-
und Heatbath-Algorithmen, die auf der lokalen Aktualisierung von dynamischen Variablen
basieren.

B.1.1 Metropolis-Algorithmus

Die Konstruktion der Ubergangswahrscheinlichkeit

P¢'} «{e}) = Puia({¥'} < {9}) Pace. ({¢'} < {0}) (B.8)

des (verallgemeinerten) Metropolis-Algorithmus geschieht in zwei Schritten:

o Essel Pyia({¢'} + {p}) eine beliebige Wahrscheinlichkeitsverteilung fiir den Vorschlag
{¢'} zur Aktualisierung der Konfiguration {¢}.

Dies ist fiir jede Anfangsverteilung Wo, die nur aus einer einzigen Anfangskonfiguration {p}o besteht,
aufgrund der Bedingung (B.5) immer gewihrleistet [MM94].
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e Die Akzeptanzwahrscheinlichkeit Py ({¢'} + {¢}) fiir diesen Vorschlag ist gegeben

als
Paia({} < {#'}) Wc[so’]]
" Pria({9'} < {@}) Welo]
Der so definierte Algorithmus erfiillt die Bedingungen (B.4 — B.6), im Fall einer Gleich-

verteilung von P, reduziert sich der Algorithmus auf den urspriinglich von Metropolis et
al. IMRR "53] vorgeschlagenen.

Pace.({¢'} < {#}) o min|1 (B.9)

B.1.2 Heatbath-Algorithmus

Der Heatbath-Algorithmus ist ein Spezialfall des verallgemeinerten Metropolis-Algorithmus.
Der Vorschlagswahrscheinlichkeit Piia1({¢’} + {¢}) fiir eine neue Konfiguration {¢'} wird
dabei die kanonische Gleichgewichtsverteilung zugrunde gelegt. Dieser Vorschlag ist vollig
unabhéngig von der alten Konfiguration {¢} und wird nach (B.9) immer akzeptiert. Es gilt
also

P({¢'} + {p}) = Wel¢l = 27" exp{-S[¢']} - (B.10)
Die numerische Implementierung dieser Verteilung ist in den meisten Féllen nicht direkt fiir
die komplette Konfiguration moglich, wie bereits oben diskutiert kann man sich aber auf einen
lokal ergodischen Update-Schritt zuriickziehen, dem eine lokale Version von (B.10) zugrunde
liegt. Diese lokale Wahrscheinlichkeitsverteilung einer Feldvariablen ¢(x) im kanonischen En-
semble bezeichnen wir mit We[p(z), p(x)], wobei ¢(z) alle umliegenden Variablen meint, die
wihrend des Update-Schritts am Punkt x festgehalten werden. Die Ergodizitit des Algorith-
mus wird durch die sukzessive Durchfithrung des lokalen Update-Schritts an allen Punkten
des Gitters wiederhergestellt, ein solcher sweep fiihrt auch zur Realisierung von (B.10) auf
Konfigurationsebene.

Die eigentliche Aufgabe reduziert sich also im Falle des Heatbath-Algorithmus darauf, die
lokale kanonische Verteilung We[p(z), ¢(x)] zu erzeugen. Schreiben wir

so kann der Vorschlag ¢'(x) bei Kenntnis des Integrals ;) (und dessen Inversen I;(lm))

direkt angegeben werden. Falls dies nicht ohne weiteres moglich ist, aber eine Zerlegung der
Verteilung geméf

Welp(z), ¢(z)] = Wolp(x), ¢(2)] Winle(z), 6(2)] (B.12)
in einen integrierbaren Anteil Wy[p(z), $(x)] und einen Rest W, [p(z), p(x)] existiert, kann
folgendes Verfahren angewandt werden:

e Zunichst wird mit Hilfe von Wy[p(z), ¢(x)] ein Vorschlag ¢’ (x) erzeugt.

e In einem nachgelagerten Metropolis-Schritt ist dieser Vorschlag mit der Wahrschein-
lichkeit

Poce (@' (2) < o(x), p(x)) o< min|1, (B.13)

W,

3
5
=

zu akzeptieren.

Im Erfolgsfall ist das dadurch gewonnene Element nach der vollen kanonischen Verteilung
Welp(z), p(x)] verteilt. Anwendungen dieses Verfahrens im Rahmen des Updates von skalaren
Feldern in Eichtheorien finden sich in Kapitel B.3.
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B.2 Heatbath-Algorithmen fiir Yang-Mills-Theorien

Der Heatbath-Algorithmus in Anwendung auf reine Eichtheorien soll zunéchst anhand des
Beispiels der SU(2)—Eichtheorie erldutert werden. Die Darstellung basiert dabei im Wesent-
lichen auf dem Vorschlag von Creutz [Cre80]. Auf die Vereinfachungen, die sich im Falle der
U(1)—Eichtheorie ergeben, sowie auf die Verallgemeinerungen im Falle der Gruppe SU(3)
wird im Anschluss eingegangen werden.

Die Anwendbarkeit eines lokalen Heatbath-Update-Schritts setzt, wie in Abschnitt B.1.2 dis-
kutiert, die Zerlegbarkeit der kanonischen Wahrscheinlichkeitsverteilung voraus. Dies ist ins-
besondere fiir die von Wilson [Wil74] vorgeschlagenen Wirkung (2.39), die wir durchgéingig
verwenden, der Fall. Die lokale Wahrscheinlichkeitsverteilung der zu aktualisierenden Link-
Variablen U, (z) kann demnach geschrieben werden als

WUy (), Uy (2))dU, (x) o exp {g tr[U () By()] } dU,(z) , (B.14)
wobei B, (x) die Summe der 2(D — 1) Biigel bezeichnet, die den Link U, (z) umgeben:
Bu(z) = Y [U;(x + 1= Ul — ) U = v) + U@ + m)Uj(x + V)Uj(a;)] . (B.15)

vER

Die Integration iiber die Gruppenmannigfaltigkeit erfolgt dabei beziiglich des invarianten,
normierten Haarmafles dU

/ FAU) AU = / FUB)dU = / FU)AU , dU = d(AUB) A,BeSU?2), (BA6)

welches bei Verwendung der quaternionischen Parametrisierung (D.33) eines Gruppenelemen-
tes U € SU(2) die Gestalt

1
dU = — d*aé(a® - 1), / dU =1 (B.17)
™ SU(2)
annimmt. Hier wurde zur Vereinfachung der Notation bereits die Raumzeit- und Richtungs-
abhéngigkeit des zu aktualisierenden Links U, (x) unterdriickt. Im Falle der SU(2) ist (B.15)
als Summe von Elementen aus SU(2) offenbar bis auf Normierung wieder ein Gruppenele-

ment: )
B=k"'B, k=|B|=det(B)2, BecSU?2). (B.18)

Nach Einfiihrung der Variablen U = UB finden wir
exp{Zw[vB] }av = exp{ T 0] }ar, (B.19)

wobei die (Rechts-) Invarianz des Haarmafles ausgenutzt wurde, und die Wahrscheinlichkeits-
verteilung (B.14) erhiilt bei Verwendung der Darstellung (D.33) fiir das Gruppenelement U

die Form
dP(ag,d) o< d*ad(a® — 1) exp{Bkay}, a?=a}+ad-a. (B.20)

Die Abhiingigkeit der Verteilung von |@| kann mittels der Delta-Distribution eliminiert wer-
den, so dass sich die Wahrscheinlichkeitsverteilung fiir das Element U € SU(2) ~ 8% auf

dP(ag, Vg, pa) o< dagdQqy/1 — ad exp{Bkao} dQ, = sin(¥,)dd.de, (B.21)
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reduziert. Nach einer Variablentransformation der Form

y=exp{Bklag — 1)}, exp{ 28k} <y <1 (B.22)

zur weiteren Vereinfachung der Integration ergibt sich also schlief$lich

dP(y, 94, 0a) < dydQey/1 —ad(y) . (B.23)

Numerische Durchfiihrung

Es wird eine gleichverteilte Zufallszahl y € [e=2%% 1] gezogen, die mit der Wahrscheinlichkeit

Pacely) = /1= (1+ (Bk) ' In(y))? (B.24)

zu akzeptieren ist. Zu diesem Zweck wird eine weitere, gleichverteilte Zufallszahl £ € [0, 1]
gewiirfelt und mit pace verglichen. Ist & > pacc(y), so wird dieser Vorschlag verworfen und
durch erneute Ziehung von y ein weiterer Vorschlag fiir ag generiert. Diesem wird geméf
(B.24) wieder eine bestimmte Akzeptanzwahrscheinlichkeit zugeordnet, welche mit einer neu-
en Zufallszahl £ verglichen wird. Im Fall { < pacc(y) wird das aktuelle y akzeptiert, durch
Umkehrung der Transformation (B.22) das zugehorige ag berechnet und danach die Richtung
von @ gemif dQ, gleichverteilt auf der Kugeloberfliiche einer S? bestimmt. Das auf diese Weise
erhaltene Element U, () ist dann gem#f (B.21) verteilt, und nach Inversion der Substitution
wird das Element U, (z) zum Abschluss des Update-Schritts durch Uy (z) = Uu(x)Bl(aj) er-
setzt. Alternativ dazu ist es aufgrund der zyklischen Eigenschaft der Spur in (B.19) ebenfalls
legitim, die Ersetzung U,,(7) = BL(:E)UH(JJ) durchzufiihren.

Veranderungen im Falle der U(1)— und SU(3)—Eichtheorien
Abelsche Eichtheorie

Die Zustandssumme der (kompakten) U(1)-Eichtheorie ist nach Wilson gegeben durch

Z = /DUM exp [ﬁ %:ZP:Re Up(a:)] = /DHN exp [5 ZZCOS (9,“,(3:))] ,  (B.25)

xr pu<v

wobei die sogenannten Plaquettenwinkel 6, () in (1.70) definiert wurden. Die Abspaltung
eines zu aktualisierenden Links U, () ist in diesem Fall ebenso wie die Berechnung von (B.15)
direkt moglich, der Heatbath-Algorithmus kann also unter Verwendung eines flachen Mafles
(0 € (—m,w]) angewandt werden.

SU(3)—Yang-Mills-Theorie

Im Falle der Gruppe SU(3) ermoglicht zwar die Form der Wilson’schen Wirkung die Auf-
spaltung der lokalen Wahrscheinlichkeitsverteilung in einen Anteil fiir den zu aktualisieren-
den Link und einen davon unabhéngigen Rest, das Problem stellt jedoch die Berechnung von
(B.15) dar, da im Falle der SU(3) die Summation von Gruppenelementen aus der Gruppe
hinausfiihrt. Die Losung des Problems besteht in unserem Fall in der Anwendung des von
Cabibbo und Marinari [CM82a] vorgeschlagenen Pseudo-Heatbath-Algorithmus, wobei alle
drei Einbettungen von SU(2)-Untergruppen der Reihe nach aktualisiert wurden. Details des
Algorithmus werden im Rahmen der Diskussion von Eichfixierungsalgorithmen in Anhang C
erortert.
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B.3 Algorithmen fiir Eichtheorien mit skalaren Feldern

B.3.1 SU(2)—Yang-Mills-Theorie mit dynamischem Higgs-Feld
Updates der Eichfelder

Die Darstellung der Wirkung in der Form (2.42) ermdglicht aufgrund der Linearitdt in Uy, (x)
eine direkte Ubertragung des fiir die reine SU(2)—Eichtheorie bereits vorgestellten Heatbath-
Algorithmus auf die vorliegende Situation. Die Wahrscheinlichkeitsverteilung fiir die Link-
Variable Uy, (x) ldsst sich schreiben als

Wo(Uy(2), Uy (x)) dU,(2) o exp {g 2 [U, () By ()] } dU,(z) , (B.26)
wobei die Definition des verallgemeinerte Biigels
Bu(z) == Bu(z)+ g [®(z+p) @l (2)], B=b'BeSU®), (B.27)
die in (B.15) definierte Summer der Biigel der reinen Yang-Mills-Theorie mit einschliefit.

Updates des Higgs-Feldes

Zum Update des Higgs-Feldes verwenden wir den von Bunk [Bun95] vorgeschlagenen Hybrid-
Heatbath-Algorithmus. Der kinetische Anteil der Wirkung (2.42) kann in die Form

Skinld] = £ s [¢N(@)Uu(2)(x + p) + c.c. ] (B.28)

gebracht werden. Die vier reellen Komponenten des Higgs-Feldes ¢(z) (2.40) werden mit

¢1(z) = Re[p1(z)], pa2(z) = Im[p1(2)], w3(x) = Relp2(x)], wa(x) = Im[ga(z)] (B.29)

bezeichnet und zu einem Vektor ¢(z) € R* zusammengefasst. Fassen wir nun alle Beitrige in
(B.28), die an das zu aktualisierende Higgs-Feld ¢(z) koppeln, zu einem Vektor R(z) € R*
zusammen, so findet sich fiir die gesamte lokale Wirkung des Higgs-Sektors die Darstellung

2 2
Stiggslp(2)] = (w(a) = R(x))" + A (p(2)? = 1), (B.30)
und ein neues Higgs-Feld ist gemafl der Verteilung
dP(p) = d'ep(p) ~ d'oexp{—Shigs[s]} (B.31)

zu erzeugen. Zur Vereinfachung der Darstellung haben wir hier bereits die Abhéngigkeit
der dynamischen Variablen vom Ort x unterdriickt, da wir im Folgenden den Update eines
Higgs-Feldes an einem festen Ort diskutieren wollen. Obwohl (B.30) bereits in Form einer
Wirkung vorliegt, welche die Anwendung eines Gaufy’schen Heatbath-Algorithmus direkt zu-
lassen wiirde, besteht immer noch die Méglichkeit, die Verteilungsfunktion (B.31) dahinge-
hend zu verédndern, dass eine optimale Akzeptanzrate wihrend des Aktualisierungsprozesses
erzielt wird. Dies kann erreicht werden, indem zunéchst ein Parameter o € R eingefiihrt wird,
mithilfe dessen die Wirkung (B.30) umformuliert wird:

Stiggsle] = a(p—a 'R)*+ A (& —v2)* +v (B.32)
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a—1
2N 7
Die Konstante « ist unabhiingig von ¢(x) und kann daher bei der Aktualisierung des Higgs-

Feldes nach (B.32) vernachléssigt werden. Daraus ergibt sich die modifizierte Verteilungs-
funktion

v =14 (B.33)

p(‘ﬁ) Oé) = ptrial((pv Oé) ’ pacc(‘p’ a) (B'34)

mit den beiden Faktoren

Puial(py @) = N lexp{—a(p—a 'R)*} und  pacc(p, @) = exp {— A\(¥* —v2)?} . (B.35)

Die Normierungskonstante ist dabei durch N = [ d*pexp { —a(p—a~'R)?} gegeben. Zuletzt
wird durch das Parameterintegral

Racc.(a) = /d490p((107 Oé), (B36)

die Akzeptanzrate als Funktion des Parameters a definiert, und die zu fordernde Extremums-
bedingung fiir Rucc.(«) fithrt auf die in [Bun95] angegebene kubische Gleichung

o —(1-2N)a*—4-Aa = 2\R?, (B.37)

deren einzige positive Losung (B.36) maximiert. Das weitere Vorgehen zur Bestimmung des
Vorschlags ¢y,ia1 fiir die neue Higgs-Variable wird im folgenden Abschnitt erldutert, nachdem
eine Verallgemeinerung des bisher vorgestellten Algorithmus présentiert wurde.

B.3.2 Die Verallgemeinerung des Algorithmus von Bunk

Das Ziel ist es, einen allgemein anwendbaren Heatbath-Algorithmus fiir die Aktualisierung
von Higgs-Feldern in Eichtheorien unter der Voraussetzung zu konstruieren, dass sich die
Wirkung des Higgs-Sektors auf eine Gaufi’sche Form transformieren ldsst. Als Folge dessen
ergibt sich eine Verallgemeinerung der kubischen Gleichung (B.37) zur Optimierung solcher
Algorithmen, die nun auf eine etwas andere Weise wie oben abgeleitet werden soll.

Angenommen, die Wirkung der betrachteten Theorie konnte bereits in die Form (B.32) ge-
bracht werden, wobei nun die Vektoren ¢, R € R%. In einem ersten Schritt wird im Wechsel-
wirkungsterm der Wert von ¢? durch den zugehérigen Erwartungswert (¢?) angenihert, und
gefordert, dass

vz = (%), (B.38)

was die Akzeptanzwahrscheinlichkeit paceept (¢, ) in Gleichung (B.35) maximiert. Als néchstes
berechnen wir den Erwartungswert von ¢? beziiglich der Vorschlagsverteilungsfunktion

ptrial(‘p7a)
(¢*) = L(a)/Io(a), (B.39)

ausgedriickt durch die beiden Parameterintegrale

Io(OZ) = /d4(10 ptrial(‘:D’a) und Il(a) = /d4(10 902 ptrial((pv Oé) . (B40)
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Nach quadratischer Ergéinzung durch Einfithrung eines Vektors x := ¢ — a~ ! R reduziert sich
I(a) auf

a) = /d4x [XZ + oz_2R2] exp {— axz} , (B.41)

da der Term linear in ¢ verschwindet. Iy ist ein Standard-Gauf-Integral in d Dimensionen:

Iola) = [(2)3]" = /2042, (B42)
o
Zur Berechnung des ersten Beitrags zu I;(«) verwenden wir den Trick
dly 12 2y __d d? 2 d I, B
XX exp{—ax’} = ——= [ d% exp{—ax’} = ——Io(a) . (B.43)

SchlieBlich identifizieren wir (¢?) mit v2 um eine selbstkonsistente Losung zu erhalten. Auf-
losen der so erhaltenen Gleichung (B.38) fiihrt auf die verallgemeinerte kubische Gleichung

—(1-2)Na?—d-Aa = 2\R% (B.44)

Einen Vorschlag ¢y fiir das zu aktualisierende Higgs-Feld erh#lt man nun, indem zunéchst
vier GauB-verteilte Zufallsvariablen 2’ mit o; = 1 und Z' = 0 erzeugt werden:

de p(at, 2?23, 2t —(@)? (B.45)

Dazu wurde ein Box-Miiller-Generator in Polardarstellung verwendet, eine mogliche Imple-
mentierung findet sich in [PTVF07]. Durch eine Variablentransformation der Form

o = (2@)_% '+ a 'R i=1...d (B.46)
erhélt man den neuen Vorschlag fiir das Higgs-Feld, welcher dann mit der Wahrscheinlichkeit

Pacc (0, ) = exp {— )\(cp2 — 03)2} (B.47)

zu akzeptieren ist.

Anmerkung: Fiir skalare Felder, die an eine SU(N)—Yang-Mills-Theorie koppeln und sich
unter der adjungierten Darstellung transformieren, gilt d = N? — 1.

B.3.3 SU(3)—Eichtheorie mit skalarem Feld in adjungierter Darstellung

In Analogie zur Behandlung der SU(2)—Eichtheorie mit einem skalaren Feld in fundamen-
taler Darstellung wird zunéchst die Wirkung des Higgs-Sektors der SU(3)—Eichtheorie mit
adjungiertem skalaren Feld (4.42, 4.51) in eine Form gebracht, die es gestattet, auf einfache
Weise eine fiir die Anwendung des Heatbath-Algorithmus notwendige quadratische Ergdnzung
durchzufiihren. Mit den von uns gewéhlten Konventionen ergibt sich der fiir den lokalen Up-
date relevante Teil der Wirkung zu

Sugsl6(r)] = 3 (6() ~ B@) "+ 2 (0"(@)e" (@) (B.43)
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Dabei sind die Vektoren ¢, R € R®, und fiir die Komponenten von R gilt:

R%x) =2k Z tr[T°U,.(2)TU} ()] ¢ (z + p)

+tr [TbUM(a: — ,u)T“U):(x — )] O (x — ) (B.49)
= Z O ()" (x + ) + Oz — )" (x — ) - (B.50)

Die letzte Zeile macht dabei bereits von der in Gleichung (C.50) noch einzufiihrenden adjun-
gierten Darstellung der Links, Uyqj(z ) Oab( ), Gebrauch. Die Reskalierung der Wirkung
mit «/2 erfolgt aufgrund der von uns in Kapitel 4 gewiihlten Konventionen im Vergleich zu
(B.30), und die Selbstkopplungskonstante ist nun A/4. Daher folgt (wiederum nach Unter-
driickung der Ortsabhéngigkeit) fiir die nur scheinbar vom Parameter o abhéingige Wirkung

, oo 2 i 2 2 2
St = 5 (0™ R) +3(¢* —wl) +Ta. (B.51)
wobei ( ) ( )2 R
9 a—1 o a—1 R”
ws = 3 und Ty = D +2oz' (B.52)

Die Konstante I', ist irrelevant fiir die lokale Aktualisierung des Skalarfeldes und wird daher
ignoriert, wir finden folglich

_ (07 _
Puial(¢,0) = N exp {— (6 — a7 )} (B.53)
mit passender Normierung N, sowie die veréinderte kubische Gleichung
o —a? -8 a—AR* = 0. (B.54)

Die Transformation der wie in (B.45) generierten Gaufi’schen Zufallsvariablen z¢ auf die
Komponenten des skalaren Feldes in adjungierter Darstellung lautet

$* = a 329+ 'R, a=1...8, (B.55)

und der auf diese Weise generierte Vorschlag fiir ein neues Higgs-Feld wird in einem nachge-
lagerten Metropolis-Schritt mit der Wahrscheinlichkeit

Pacc(P, ) = exp{— %(qbz — wi)z} (B.56)

akzeptiert.
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B.4 Overrelaxation und mikrokanonische Reflexion

Eine spezielle Moglichkeit, im Rahmen eines Metropolis-Update-Algorithmus einen Vorschlag
fiir ein zu aktualisierendes Element ¢(x) zu erzeugen, ist unter dem Namen Overrelazation
bekannt. Das Ziel ist die Bekdmpfung des als critical slowing down bekannten Phidnomens,
welches insbesondere in der Nihe des kritischen Punktes einer Feldtheorie auftritt und eine
mitunter extrem lange Thermalisierungsphase in der Markov-Kette hervorruft, was durch
ein (dynamisches) Skalierungsgesetz fiir die (integrierte) Autokorrelationszeit 7y (A) einer
Observablen A ausgedriickt werden kann:

Ting (A) oc £ . (B.57)

Ein effizienter Algorithmus wird durch eine geringe Autokorrelationszeit charakterisiert. Falls
es sich im einfachsten Fall bei (A) um den exakten (statistischen) Wert einer primdren Obser-
vablen handelt, die nach Gleichung (B.2) als Mittel von N innerhalb einer Markov-Kette {¢},,
aufeinander folgenden Messwerten a,, approximiert wird, so berechnet sich die (diagonale)
Korrelationsfunktion zu

Caalt) = ((an — A)(anie — A)) , (B.58)
und die zugehorige integrierte Autokorrelationszeit ist definiert zu
W = L3 Gu® (B.59)
Tin =5 : :
‘ 2 P Ca4(0)
Fiir den statistischen Fehler 04 des Schétzwertes (B.2) gilt dabei
04 = 27ne(A) - % ; (B.60)

wobei die ,,gewdhnliche* Varianz von (A) mit V4 := C44(0) bezeichnet wird. Sind die Kon-
figurationen der Markov-Kette vollstindig unkorreliert, so gilt C'44(t) o d; und man findet
die bekannte Relation 04 = ((ax — A)?)/N. Im Allgemeinen wird die Berechnung der ver-
allgemeinerten, nicht-diagonalen Kovarianzmatrix Cyp(t) erforderlich, um eine Abschétzung
des Fehlers von sekunddren Observablen f(A, B) zu erhalten. Dieser Fall wird in [Wol04] dis-
kutiert, hier findet sich auch die Implementierung einer Routine zur Abschétzung von (B.59)
durch verschiedene selbstkonsistente und automatisierbare Trunkierungen der Summation,
die in unseren Untersuchungen zur Autokorrelation verschiedener Observablen herangezogen
wurde.

Fiir lokale Update-Algorithmen nimmt der dynamische kritische Exponent z iiblicherweise
Werte von 2z ~ 2 an, so dass bei divergierender Korrelationsliange & am Phaseniibergang die
Unterschiede von einer Konfiguration zur nichsten minimal werden und somit keine Kon-
vergenz mehr eintreten kann. Eine Verringerung der Autokorrelationszeit kann nun dadurch
erzielt werden, dass ein Vorschlag ¢/(z) fiir eine zu aktualisierende Variable ¢(z) so gewihlt
wird, dass sich diese maximal von ¢(x) unterscheidet. Die zugrunde liegende Idee geht auf Ad-
ler [AdI81] zuriick und wurde fiir multi-quadratische Wirkungen entwickelt: Bei der Annéhe-
rung an ein lokales Minimum der Wirkung wahlt man zunéchst eine Transformation, die das
Funktional tatséchlich minimiert, und erlaubt danach durch Wahl einer Potenz w € [1,2]
fiir diesen Schritt, das Minimum wieder zu verlassen, bzw. iiber es hinauszuschieflen (over-
relazation). Der Grenzfall w = 2 entspricht dabei einer Reflektion am Minimum und fiithrt
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auf das ,,Spiegelbild“ von ¢(x). Der Parameter w kann so eingestellt werden, dass die Auto-
korrelationszeit interessierender Observablen minimiert wird.

Betrachten wir das Vorgehen am Beispiel der SU(2)—Eichtheorie anhand von Gleichung
(B.14). BL(m) ist dabei das Element, welches lokal die Wirkung (2.39) minimiert. Dann ist
die Transformation, welche nach Anwendung auf U, (z) zum Minimum der Wirkung fiihrt,
gegeben durch BL(x)U ,I (x). Zweifache Anwendung (w = 2) fithrt auf die Form [Cre87]

UL(x) = [BL(J))U;E(:E)]2 Uu(z) = Bl(x) Uﬂ:(:n) Bl(x) , (B.61)

was eine Involution darstellt: U, (z) = BL(m) U,'j(x) BL(m) Daher kiirzen sich die beiden
Faktoren Pj.q in (B.9) und die Transformation erfiillt detailed balance. Aulerdem #ndert
sich durch Verwendung des neuen Elements die Wirkung nicht (vgl. B.14), so dass dieser
Vorschlag immer akzeptiert wird, es gilt P,y... = 1. Ein solcher Schritt ist nicht ergodisch
und wird als mikrokanonische Reflexion bezeichnet, da hierdurch statt des kanonischen En-
sembles ein mikrokanonisches Ensemble zu fester Wirkung erzeugt wird. Ublicherweise wird
daher eine feste Kombination von Heatbath- bzw. Metropolisschritten und mikrokanonischen
Update-Schritten an allen Gitterpunkten durchgefiihrt, um die Ergodizitéit des Algorithmus
wiederherzustellen. Die Anwendung einer solchen Kombination fiir jedes Element auf dem
Gitter wird als supersweep bezeichnet. Fiir die SU(3)—Eichtheorie wird das in [BW87] be-
schriebene Vorgehen der sukzessiven Anwendung des gerade beschriebenen Verfahrens auf
alle drei Einbettungen von SU(2)—Untergruppen angewandt, was sowohl elegant als auch
numerisch leicht durchfiihrbar ist. Ein auf diese Weise erhaltenes Element U’ wird in einem
nachgelagerten Schritt geméfl einer Wahrscheinlichkeitsverteilung ausgewéhlt, deren Boltz-
mannfaktor den noch relevanten Teil der Wirkung enthélt.

Es sollte darauf hingewiesen werden, dass Vorschlige fiir die Anwendung von Overrelaxation-
Schritten in SU (N )—Eichtheorien existieren, die nicht auf irgendwelche Untergruppeneinbet-
tungen zuriickgreifen, und dennoch zu einem schnelleren Abbau von Korrelationen fithren
konnen [Cre87,dFJ05]. Da sich diese Untersuchungen jedoch nur auf reine SU(N)—Yang-
Mills-Theorien beziehen, und eine merkliche Reduktion von Autokorrelationszeiten in den
untersuchten Observablen auflerdem erst fiir N > 4 beobachtet wurde, haben wir derartige
Algorithmen in unseren Simulationen nicht eingesetzt.

Fiir das SU(2)—Modell mit fundamentalem Skalarfeld ¢(z) ergibt sich die lokale Over-
relaxation-Transformation (w = 2) im Higgs-Sektor zu

¢ (z) = 207 'R(z) — o(z) . (B.62)

Die Vorschlagswahrscheinlichkeit pgiai(¢’, ) erfihrt durch diese Transformation gegeniiber
Purial(p, @) in Gleichung (B.35) keinerlei Anderung, daher muss das gespiegelte Element an-
schliefiend einfach mit Wahrscheinlichkeit pac.(¢’, ) akzeptiert werden.

Die Verallgemeinerung auf den Fall der SU(3)—Eichtheorie mit einem skalaren Feld ¢(z) in
adjungierter Darstellung verlduft nach (B.53) und (B.56) véllig analog.






Anhang C

Eichfixierung auf dem Gitter als
Minimierungsproblem

C.1 Landau-Eichung und Coulomb-Eichung

Auf dem Gitter wird die Aufgabe der Fixierung einer Eichung fiir eine gegebene Konfigura-
tion von Links {U} wie im Kontinuum ebenfalls auf die Minimierung eines eichfixierenden
Funktionals beziiglich einer Eichtransformation {Q} zuriickgefiihrt. Das Problem besitzt die
generischen Form

!
Fol = Y 3 Retr[1 - U%(z)] % min. (C.1)
T p=1

Die Formulierung der Feldtheorie auf dem euklidischen Raum FE, ermdglicht eine vereinheit-
lichte Darstellung des Minimierungsproblems, im Falle der Coulomb-Eichung ist die Summa-
tion iiber die Kanten des Raumzeit-Gitter in (C.1) bis [ = 3 auszufiihren, fiir die Realisierung
der Landau-Eichung gilt [ = 4. Anstatt wie im Rahmen der Kontinuumsformulierung eine
Entwicklung des Funktionals (1.94) nach Potenzen von w(x) durchzufiihren, wollen wir hier
einen anderen Weg beschreiten um einen Ausdruck fiir die Eichfixierungsbedingung, sowie die
zweite Variation auf dem Gitter zu erhalten. Um zu zeigen, dass die Minimierung von (C.1)
beziiglich der die Eichtransformation vermittelnde Funktion Q(z) auf die Eichbedingung der
Coulomb- bzw. Landau-Eichung fiithrt, parameterisieren wir diese Funktion durch

Q(r,z) = explitw(x)}, w(x)=w(z)T*csu(N), TecR. (C.2)
In dieser Formulierung lauten die hinreichenden Bedingungen fiir ein Minimum des Funktio-
nals
dr wrl =0, Lr o wal s0. ve (C.3)
dT Unin %> o - ’ d7_2 Unin %> o = ’ ’ .

wobei Upyiy 1= USnin(U) | Um die Abhéngigkeit der eichtransformierten Links vom Parameter
T zu unterstreichen, schreiben wir

Uj(x) = Qr,2)Uu(2)Q (7,2 + 1) (C.4)
und berechnen daraus
%Ul(m) = (@)U () — iU (@) (e + p) (C5)
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Fiir die Extremalbedingung findet sich also:

1
%}'U Q,7]= — Z Z Retr [zw(x)UZ(m) — iUy (z)w(r + ,u)}

r p=1

=) Imtr [w(a:) P AR ACE M))} . (C.6)

I

Auflosung des Imaginérteils liefert unter Verwendung der Relation (C.48) die explizite Dar-
stellung

difUQ 7] = ——Ztr {Z (UL (x) — U T (x)) —(U[L(x—u)—U;T(x—u))]

:aZtr[ ZAT — Al (r—p)| - (C.7)

Fassen wir wie in Gleichung (1.94) die Summation iiber alle Gitterpunkte und die Bildung

der Spur im Farbraum zusammen, so erhalten wir fiir die (erste) Variation von Fy[, 7]

schlie3lich
d

E]:U[Q,T] = a’Tr(woA), (C.8)
wobei sich wiederum der Fall [ = 3 in der Kontraktion 04" := EL:1 0, A;, auf die Coulomb-
Fichung, der Fall [ = 4 auf die Landau-Eichung bezieht. Es ist anzumerken, dass die Form
des eichfixierenden Funktionals (C.6) in der Gitterformulierung der Eichtheorie entscheidend
von der Definition des Eichfeldes auf dem Gitter abhingt. Da die fundamentalen Gréfien in
der zugrunde liegenden Wilson’schen Formulierung Elemente der Eichgruppe G sind, ist das
Eichpotential eine abgeleitete Grofle, und es existieren verschiedene Definitionen von A, die
sich formal nur um irrelevante Terme der Ordnung O(a) voneinander unterscheiden. Die von
uns verwendete Konvention (C.48) hat sich heute groitenteils als Standard etabliert, es gibt
aber keinen theoretischen Grund, diese Definition anderen Varianten vorzuziehen. Tatséchlich
konnte gezeigt werden, dass Green’sche Funktionen, die unter der Verwendung von zwei ver-
schiedene Definitionen des Eichpotentials konstruiert werden, zueinander proportional sind,
was die Eindeutigkeit des Gluonenfeldes im Kontinuumslimes garantiert [GPPT01].

An einem stationirer Punkt {US*min} des eichfixierenden Funktionals verschwindet die Varia-
tion desselben, daher erfiillt das daraus abgeleitete Gittereichfeld A7=0 die Transversalitéits-

bedingung 8A:mr? = 0. Folglich ist es wiinschenswert, Abweichungen von der Stationaritéts-
bedingung kontrollieren zu kénnen, die wiihrend der iterativen Suche nach {Qy,} auftreten
und anzeigen, dass noch kein Extremum von (C.1) gefunden wurde. Die explizite Darstellung
des Imaginirteils in (C.6) fiihrt wie oben gezeigt zum Auftreten von inversen Links, was die

Definition von l
Z [ )+ Ul(x — p) (C.9)

motiviert, denn unter Verwendung von (C.48) erhilt man mit den in Anhang D.2 angegebenen
Relationen fiir die hermiteschen Generatoren T? fiir die GroBe

A = 2Im&r[TB(z)] = a’0,A%(x) + O(a®) (C.10)
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und somit ein Maf fiir die Giite der Realisierung der Transversalititsbedingung fiir die Eich-
felder. Genau genommen handelt es sich hierbei um ein Kontinuum von Eichbedingungen (fiir
jeden Raumzeitpunkt eine), und um nur eine einzige Bedingung stellen zu miissen, definieren
wir die Grofle

N
52 = %Z [AY]*, N=N,x N3, (C.11)

deren Analogon in der Kontinuumsfeldtheorie mittels eines Lagrangeschen Multiplikators
durch Modifizierung des urspriinglichen Variationsproblems in der zugehorigen klassischen
Wirkung berticksichtigt werden kann [Roe91]. Im Kontinuumslimes reduziert sich (C.11) auf
einen eichfixierenden Term der Form

52 = %/de (04 (@) 2 (C.12)

Im Falle der Coulomb-Eichung wurde die Eichung sukzessiv in jeder Zeitschicht separat fi-
xiert, so dass nach Abschluss dieser Prozedur ein Gluonenfeld auf dem Gitter vorliegt, wel-
ches der dreidimensionalen Transversalitdtbedingung geniigt. Die noch bestehende residu-
elle Eichfreiheit wurde nicht weiter fixiert (vgl. die Diskussion in Kapitel 1.3.3). Im Falle
der Landau-Eichung handelt es sich bei den mit der Eichfixierungsbedingung kompatiblen
Eichtransformationen um ausschliefSlich globale Transformationen Q2 € G.

inlw, 7] ist nach Gleichung (C.8) die Kenntnis von dilTA;(:n) er-
forderlich. Im Kontinuum ist diese Ableitung des eichtransformierten Potentials (fiir 7 = 0)
gegeben durch die kovariante Ableitung beziiglich w(x):

d

AR
dTA/J, (;U? 7-)

2
Zur Berechnung von #]‘—U

= D,[Alw(z) = O,w(zx) — iglAy(z),w(x)] . (C.13)

=0

Auf dem Gitter berechnen wir also unter Verwendung von (C.5) und (C.48) die Ableitung

a dilTA;“(x) - 2Imtr[%U;(x) T“] (C.14)
_ %tr[{w(x—i—u) — (@), TN (U7 () + U (@) (C.15)
+ [w(@ + ) + w(z), T (U (x) - U;T(x))} : (C.16)
Definieren wir den symmetrischen Anteil &, sowie den anti-symmetrischen Anteil 2 zu
SulUT @) = gt [{T4 T} (U (@) + U ()] (c.17)
AU () = %tr (7. 7°) (U (@) - UF )] | (C.18)

so lésst sich die kovariante Ableitung auf dem Gitter in der Form
a[D U] () = SUT)(@) (P (x) — ' (aw + ) + AP (@) (P () + @+ ) (C.19)

darstellen, was sich fiir 7 = 0 in fiihrender Ordnung einer Entwicklung nach der Gitterkon-
stanten a auf

[DuU]6]* () = ~SPU@)el(w) + 3 fP AL (@) (05w + ) + @) (C20)
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reduziert. Fiir die Minimumsbedingung (C.3) finden wir also
— FU,. (W, T] = a®Tr(w [-OD[Unin]]w) >0, (C.21)

folglich ist der Faddeev-Popov-Operator auf dem Gitter fiir ein Minimum von F/[§2] positiv
definit. Die Menge aller Minima {Upin} des Funktionals (C.1) ldngs eines Eichorbits ist €y,
die erste Gribov-Region auf dem Gitter, und die Menge aller absoluten Minima entspricht der
Fundamental Modular Region (FMR). Durch Verwendung von lokalen Update-Algorithmen
alleine ist die systematische Bestimmung des absoluten Minimums von F7[Q] fiir eine vor-
gegeben Konfiguration {U} nicht moglich, da das Problem der eindeutigen Fixierung einer
Fichung dquivalent ist zum Problem der Bestimmung des Grundzustands eines Spin-Glases.
Fiir D > 3 handelt es sich dabei um ein NP-hartes Problem, lediglich in D = 2 Dimensionen
bietet z.B. der von Edmonds [Edm65b, Edm65a] beschriebene Algorithmus die Moglichkeit zur
Losung in polynomialer Zeit (vgl. die Diskussion in Kapitel 3). Eine Verbesserung der Situa-
tion kann jedoch durch den Einsatz eines von uns verwendeten Overrelaxation-Algorithmus
erzielt werden. Eine weiterfithrende Diskussion des Problems der im Rahmen der Eichfixie-
rung auf dem Gitter auftretenden Gribov-Kopien, sowie eine Ubersicht iiber verschiedene
mogliche Algorithmen zur Behandlung desselben findet sich in [GPP101].

C.1.1 Die Eichgruppen U(1), SU(2) & SU(3)

Zur Minimierung des eichfixierenden Funktionals (C.1) wurde ein lteration-Overrelazation-
Algorithmus verwendet. Dabei wird angestrebt, iterativ sowohl das Funktional lokal zu
minimieren, als auch gleichzeitig den als critical slowing down bekannten Effekt der Ver-
ringerung der Konvergenzgeschwindigkeit bei Anndherung an ein Minimum zu minimie-
ren. Zu diesem Zweck wird in einem ersten Schritt die Anderung des lokalen Funktionals
Fu[©(z)] bei Durchfithrung einer Eichtransformation an einem festen Gitterpunkt = un-
tersucht. Hierbei werden Q(z), sowie die zugehorige Inverse QFf(x), als unabhingige Varia-
blen aufgefasst und Q7% (z) = Q%(z) = §% fiir 2 # 2 zugrunde gelegt. Aufgrund von
Retr(M) = Retr(MT), Mj, € C lisst sich das Problem auf die lokale Mazimierung von

Fulz)] = Retr[Q(z)B(z)] (C.22)

mit dem in (C.9) definierten B(z) zuriickfithren. Die Losung Q(z) wird in einem zweiten
Schritt modifiziert, Q(x) — Q7(z), bevor eine Eichtransformation derjenigen Links durch-
gefithrt wird, die eine Verbindung zum Gitterpunkt = aufweisen.

U(1)—Eichtheorie in Coulomb-Eichung

Im Falle der U(1)—Eichtheorie ergibt sich aufgrund der abelschen Natur folgende Veréinderung
fiir das eichfixierende Funktional (C.1):

3
Ful = Y ) Re[1-Uf(x,1)] . (C.23)

x,t i=1

Diese Anderung tritt auch im lokalen Funktional (C.22) auf, die Maximierung wird erreicht
durch die Wahl B B
Qz) = B'(x),  B(z) = |B(2)|™' Blx) €U(1) . (C.24)
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Durch Einfiihrung eines sogenannten Overrelazation-Parameters n kann die Konvergenz-
geschwindigkeit des Eichfixierungsalgorithmus optimiert werden. Dadurch ist es moglich,
Transformationen durchzufiihren, die im Vergleich zu Q(z) eine groBere Schrittweite bei der
Ann#herung an ein Minimum von (C.1) erlauben und es gestatten, iiber selbiges hinaus-
zuschieBen. Dies wird im Falle der U(1)—Eichtheorie durch Ubergang zur Polardarstellung
Q(x) = exp(ie(x)) und anschlieBende Ersetzung ¢ — ¢ := np erreicht. In unseren Simula-
tionen wurde dabei durchgehend ein Wert von 1 = 1.5 verwendet.

Die Abweichung von der Transversalititsbedingung, sowie die fiir die Abbruchbedingung
mafgebliche Grofle erhalten die Gestalt

3
52 = Nl a2 A=Y Wm0 + U@ -], (C.25)
meg i=1

wobei die Summation im Falle der Verwendung von rdaumlich offenen Randbedingungen auf
die Ny, = (N; — 2)® x N; Gitterpunkte im Inneren des Gitters einzuschrénken ist.

SU(2)—Eichtheorie

Verwenden wir die Normierungskonvention (B.18), so wird das lokale eichfixierende Funktio-
nal Fi7[Q(x)], welches im Falle der SU(2)—Eichtheorie die Gestalt (C.22) besitzt, durch Wahl
von

Q(z) = Bi(z) (C.26)

maximiert. Der Ubergang zur Polardarstellung von Elementen der Gruppe SU(2) geméif
B = cos(¥)1+isin(n-&, a%=[b]""6*, a=1...3 (C.27)

ermdglicht die Extraktion des Winkels ¥ und somit auf einfache Weise die Konstruktion einer
Transformation, welche iiber das lokale Maximum hinauszuschieflen vermag. Die Matrix, die
diesen Overrelaxation-Schritt vermittelt, wird als

Q" = cos(¥y) 1 —isin(dy,)n -7, Uy = nd (C.28)

konstruiert. Die Wahl eines Wertes von n = 1.7 fiir die in unseren Simulationen betrachte-
ten Kopplungskonstanten orientierte sich an den Ergebnissen einer in [CM96] vorgestellten
Analyse verschiedener Algorithmen zur Fixierung der Landau-Eichung.

SU (3)—Eichtheorie

Eine direkte Ubertragung des im Rahmen der SU(2)—Eichtheorie erliuterten Vorgehens
zur Maximierung des lokalen Funktionals (C.22) scheitert an der Tatsache, dass die dabei
verwendete Relation Y. ¢" o g fiir g,g° € SU(3) keine Giiltigkeit mehr besitzt. Dies ist
auch der Grund dafiir, dass bei Simulationen von SU (N )—Eichtheorien (N > 3) Heatbath-
Algorithmen nicht in direkter Form zum Einsatz kommen konnen. Ein moglicher Ausweg
wurde von Cabibbo und Marinari [CM82a] aufgezeigt: Dabei werden sukzessive verschie-
dene Einbettungen von SU(2)—Untergruppen in die SU(N) betrachtet, fiir deren Behand-
lung wiederum ein standardisierter Heatbath-Algorithmus verwendet werden kann [Cre80].
Die von uns verwendete Methode zur Fixierung der Coulomb- bzw. Landau-Eichung in der
SU(3)—Eichtheorie greift auf diese Technik zuriick und soll nun kurz erldutert werden.
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Wie definieren zunéchst die folgenden drei verschiedenen Einbettungen eines Gruppen-
elements U = (4142 ) € SU(2) in ein entsprechendes Gruppenelement QW ¢ SU(3):

up uz 0 up 0 wus 1 0 0
QW = w3 w0, Q= 0 1 0 |, Q¥ =10 w u |. (C29
0 0 1 us 0 U4 0 U3  Ug

Die gesamte Transformation Q(x) € SU(3), welche das Funktional (C.22) maximiert, wird
als Hintereinanderausfithrung Q(z) = [[, Q*)(z) konstruiert. Fiir die drei verschiedenen
Einbettungen erhalten wir

Fu[2®(2)] = Retr[QW(2)B(x)] = Retr[U(x)B™(2)],,, + Re(d®(2)), (C.30)

2x2

wobei B®) die mit der in Q*) eingebetteten Matrix U durch Multiplikation zu kontrahierende
Untermatrix mit b;; € C (i,5 = 1...3) und b*) das Element b;; (j = 4 — k) der Matrix B
darstellt:

b1 b bii b b2 b
B _ oYz ) pe) 1nobs ) pE) 22 023 | C.31
( ba1 b2 bs1 b33 bsa b33 (C.31)
Fiir jede Matrix M € M(2,C) existiert nach (D.33) eine Zerlegung der Form

M=R+iS=rR+isS, r=det(R)z, s=det(S)2 e Rt, R, SeSU2). (C.32)

Beginnend mit BM (z) erhalten wir

tr[U(z)BY(2)],,., = rtr[U(@)RY (2)],,, +istr[U(z)SD(2)],,, (C.33)
und somit aufgrund der Reellwertigkeit der Spur im Falle der SU(2):
Ful@W(2)] = rtr[U(z)RY(2)],, , + Re (bss(x)) . (C.34)

Die lokale Maximierung geschieht durch Wahl von U (z) = Rf (M) (). Der Wiedereinbettung in
QW () geht die in (C.28) beschriebene Modifizierung durch Einfithrung eines Overrelaxation-
Parameters n voraus, anschliefend wird die Transformation durchgefiihrt, welche auch Aus-
wirkungen auf die Form von (C.9) hat. Aus diesem modifizierten B(z) wird nun B®)(z)
gewonnen, und daraus Q3 (z) konstruiert, modifiziert und angewandt. Sind alle drei Einbet-
tungen an diesem Punkt des Gitters herangezogen worden, so wird die iterative Maximierung
von Fy[2] an einem benachbarten Gitterpunkt fortgesetzt. Neben (C.11) kann auch die Grofie

3
02 = LS5 9B (C.35)

wihrend des Eichfixierungsprozesses iiberwacht werden, um eine Kontrolle {iber die Giite
der Realisierung der Eichfixierungsbedingung zu erhalten. Am stationéiren Punkt weichen die
Eichtransformationen {Q7} némlich de facto nicht mehr von der Identitéit ab. Tatséchlich
hatte sich #2 bei Erreichen des Abbruchkriteriums von 62 < 1072 in unseren Simulationen
auf #? ~ 5. 101 stabilisiert.
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C.2 Direkte Maximale Zentrums-Eichung (DMCG)

Bei der Implementierung der sogenannten Direkten Maximalen Zentrums-Eichung (DMCGQG)
folgen wir der in [DDFG™T98] vorgeschlagenen Methode, eingebettet in eine Prozedur, die sich
als Kombination eines simulated annealing algorithm, sowie eines Overrelaxation-Algorithmus
ergibt. Die optimale Eichtransformation {2y}, die zu einem Extremum des eichfixierenden
Funktionals fiihrt, wird dabei als Folge von Eichtransformationen Q;(z) konstruiert, welche
jeweils das eichfixierende Funktional

FMCGo( (Z tr[Q 2 4 U, (2 ,u)QT(az)F) (C.36)

lokal maximieren und sofort durchgefiihrt werden, bevor man sich dem néchsten Gitterpunkt
zuwendet. Angenommen, der Algorithmus erfiille nach m derartigen Durchgéngen durch das
gesamte Gitter eine noch zu stellende Abbruchbedingung, so ist die resultierende, iterativ
konstruierte Eichtransformation {Qmin} gegeben durch {[], Qi(z)lm € N,z € [1,N1]}.
Wir verwenden folgende Parametrisierung der Eichtransformationen sowie der Links:

Qz) = wl—id-d (C.37)
Uule) = i)l +id(u) -7 (C.38)
Uz —p) = w(p+4)L—id(p+4)-0. (C.39)

Dies fiihrt auf

4 4
FIC@)] = Z({Zwkuk<u>}2+{ZwkukmM)}z)

" =t (C.40)

= Z(Zwkuk m)" .

=1 k=1

Die Maximierung dieses Ausdrucks unter der Nebenbedingung Q(z) € SU(2) geschieht durch
Einfiihrung eines Lagrange’schen Multiplikators A,

4
AQ@)] = FMCC0@)] +A(Zw,3 - 1) , (C.41)

und die sich daraus ergebenden 441 Bedingungen fiir ein Maximum (zunéchst nur Extremum)
des Funktionals (C.36) lauten:

4 8 4
ZZ ui(Duk(l) wp = Aw; Z wi=1. (C.42)
k=1

k=11=1

Damit ist die Implementierung der DMCG auf die Losung eines vierdimensionalen, reellen
und symmetrischen Eigenwertproblems der Form

8
Mw = Aw, Mg =Y u(lug(l) (C.43)
=1

zuriickgefiithrt. Das Standardverfahren der Wahl war die iterative Losung mittels des Jacobi-
Verfahrens [PTVF07].
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Das Eichfixierungsfunktional (2.22) reagiert auf eine Verdnderung des lokalen Funktionals
unter Nebenbedingung (C.41) gemif

—

FMCG — T Mw — A(wTw — 1), w= ( L:;l ) . (C.44)
Bezeichnen wir die vier Eigenvektoren und zugehorigen Eigenwerte der Matrix M mit ex, \g,
so liefert die Wahl des Eigenvektors w = epax zum grofiten Eigenwert A .y offensichtlich lokal
den maximalen Beitrag zum Eichfixierungsfunktional (2.22). Hier weichen wir von der Stan-
dardprozedur ab, um die in [GPP*01] diskutierten Probleme der in [DDFG™98] vorgestellten
Methode zur Eichfixierung zu {iberwinden: Mit der Wahrscheinlichkeit exp(8¢Ay) lassen wir
auch die Wahl der anderen Eigenvektoren ej zu, wobei 3; die in der Klasse der simulated
annealing algorithms auftretende inverse Temperatur bezeichnet. Eine Abkiihlung des Sy-
stems wird durch schrittweise Vergroflerung von 3, simuliert, fiir niedrige Temperaturen wird
praktisch ausschliefllich der grofite Eigenwert gewéahlt, und im Grenzfall T — 0 stimmt der
Algorithmus wieder mit der Standardmethode iiberein. Zu Beginn des Abkiihlungsvorgangs
kann die Suche nach dem globalen Maximum von (2.22) lokal durchaus in einer Richtung e,
orthogonal zum Gradienten des lokalen Funktionals (C.36) voranschreiten. Es besteht daher
die Moglichkeit der kurzfristigen Verminderung des Wertes von FMCG[Q], so dass es dem Sy-
stem ermoglicht wird, die Anziehung des néchstgelegenen Maximums zu iiberwinden und das
globale, statt nur eines lokalen Maximums zu finden. Die auf diese Weise bestimmten lokalen
Eigenvektoren w(xz) wurden nach (C.37) zur Konstruktion der entsprechenden Eichtrans-
formationen €(z) herangezogen, die jedoch vor ihrer Durchfiihrung noch geméfl Gleichung
(C.28) modifiziert wurden.

Numerische Durchfiihrung:

Um die Giite der iterativen Eichfixierung kontrollieren zu kénnen, wurden folgende Groéflen
definiert und wihrend der Relazation in ein Extremum von FMCG[Q)] iiberwacht:

2 = L f:f: & (2)eb (2) (C.45)
. 3N =1 b=1 ‘
D
&(x) = 2 Z uﬁ(az)uﬁ(:n) - uﬁ(:ﬂ - /L)’LLZ(:E — 1) (C.46)
pn=1

Eine thermalisierte Konfiguration {U} wurde zur Eichfixierung ausgewihlt und die inverse
Temperatur By zu Beginn der Eichfixierungsprozedur auf den Wert 3; = 0.02 gesetzt. Die
Konstruktion der modifizierten SU(2)—Matrizen Q7(x) wurde bereits in Abschnitt C.1.1
beschrieben, fiir den Parameter n wurde dabei ein Wert von 17 = 1.7 gewihlt, was sich als guter
Kompromiss fiir die Optimierung des Algorithmus im gesamten Intervall von 3; herausgestellt
hat. Nach jeweils 25 sweeps durch das Gitter wurde 8y um ABy = 0.1 erhoht. Anstatt
eine fixe Anzahl an Aktualisierungsschritten vorzuschreiben, wurde ein Abbruchkriterium
von 62 < 1072 fiir die iterative Eichfixierung festgelegt. Der Zusammenhang der Direkten
Maximalen Zentrums-Eichung (DMCG) mit einer besonderen, der Kontinuumsformulierung
entlehnten Landau-Eichung wird im néchsten Abschnitt ebenso erkliart wie die Bedeutung
des Abbruchkriteriums (C.45) im Kontinuumslimes der Gittereichtheorie.
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C.2.1 Minimale Adjungierte Landau-Eichung und DMCG

Aufgrund der Relation
tragj [Up(@)] = [tr[Un(2)] P =1, (C.47)
die sich mittels (D.15) leicht beweisen ldsst, ist die DMCG &quivalent zur Minimalen Ad-

Jungierten Landau-FEichung (MALG) [ADd00]. Diese wird beispielsweise in [LSRO05] bei der
Untersuchung des Gluon-Propagators in Landau-Eichung eingesetzt, da sich die Relation

Uu(z) = exp{iad,(z)} , AZ(z) = aAf(x) = 2Im(tr [Uy(x)T]) , (C.48)

die unter der Annahme glatter Eichpotentiale tiblicherweise dazu bemiiht wird, um eine
Verbindung zwischen den Links als fundamentalen Freiheitsgraden einer Gitterformulierung,
sowie den Eichpotentialen als fundamentalen Freiheitsgraden einer Kontinuumsformulierung
herzustellen, als nicht vollstéindig konsistent erweist. Das Problem ist das Verhalten der auf
diese Weise extrahierten Eichpotentiale unter nicht-trivialen Transformationen aus dem Zen-
trum der Gruppe:

Uu(z) = UZ(z) = Zu(2)Uy(x) <= Al(x) > AZ%(2) = Z,(x)A%(x) . (C.49)

Da sich die Eichpotentiale der Kontinuumsformulierung unter der adjungierten Darstellung
transformieren, welche N-alitit Null [Gre03] besitzt, sind diese folglich ,zentrumsblind“— im
Gegensatz zu den in Gleichung (C.48) definierten Eichpotentialen A, (z).

Daher empfiehlt sich die Definition von adjungierten Links der Form
Uadj(x)zb = 2tr[T“UH(:E)TbU;(x)] , (C.50)

die ebenfalls ,,zentrumsblind“ sind. Fiir diese Links wird die MALG fixiert und danach der
Zentrumsgehalt aus den zugehorigen fundamentalen Links gemé&f

U,?(JL") = Zu(m)Uu(m) (C.51)
abgelesen. Durch die Verwendung des Coset-Anteils
Uu(z) = exp {iad,(z)} (C.52)

gelingt es, einen konsistent definierten Kandidaten fiir das Kontinuumseichpotential zu extra-
hieren. Quadrieren von (C.51) liefert unter Verwendung der Darstellung (D.33) und Beriick-
sichtigung von A, (z) = A%(z)T* = A%(z)o®/2 nach Entwicklung und Vergleich bis O(a?)
die alternative Definition

aﬁﬁ(x) = 2a2(x) aﬁ(:n) . (C.53)

Unter Verwendung der Darstellung (C.38) kann schlie8lich noch gezeigt werden, dass
&(x) = azﬁuAZ(w) +0(a%) (C.54)

daher ist (C.45) ein Maf fiir die Verletzung der adjungierten Landau-Eichbedingung, und
somit ebenfalls fiir die Verletzung der Eichbedingung (2.22). Im Kontinuumslimes finden wir
nach Entwicklung von (C.45) beziiglich der Gitterkonstanten a das Ergebnis

1

& = =
3V

d*z (0, A% (x))? . (C.55)






Anhang D

Gruppentheoretischer Anhang

D.1 Darstellungstheoretische Grundlagen

Fiir unsere Zwecke geniigt es, Darstellungen von linearen Gruppen in endlich-dimensionalen
komplexen Vektorrdumen V' zu betrachten. Die linearen Gruppen sind isomorph zu einer ab-
geschlossenen Untergruppe von GL(n,K), insbesondere sind die speziellen unitiren Gruppen
Teil der sogenannten klassischen Gruppen, welche linear sind (vgl. [Hei90]).

Definition 1. Es seien G und H lineare Gruppen. Dann heifit eine Abbildung f: G — H
ein Homomorphismus, wenn

e f(AB)= f(A)f(B) VYA,BeG,

e und die Abbildung
fexp: R — H t — foexpqg(tX)

VX € LG stetig differenzierbar ist.

Dabei stellt exps() die auf G eingeschrénkte Exponentialabbildung dar und £G bezeichnet
die zu G gehorende Lie-Algebra.

Definition 2. Eine Darstellung einer linearen Gruppe G ist ein Homomorphismus
p: G — GL(V)
linearer Gruppen.

Folglich ist p eine Darstellung von G im Sinne von Definition 1. Ein fiir die Konstruktion der
adjungierten Darstellung einer Gruppe relevanter Homomorphismus ist das folgende

Beispiel. Fiir A € G wird mit k4 die Konjugationsabbildung in G mit A bezeichnet:

ka: G - G, Bw ABA™Y, YBeG.

Definition 3. Ein Vektorraum L {iber einem Korper K, ausgeriistet mit einer bilinearen
Abbildung (X,Y) — [X,Y] heiit Lie-Algebra iiber K, wenn V X,Y, Z € L gilt:

o [X,Y]=-[Y,X]

205
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o (X, [V, Z]|+[Y,[Z,X]]+[Z,[X,Y]]=0

Dabei wird die Lie-Klammer [,] auch als Kommutator bezeichnet, die zweite Relation heifit
Jacobi-Identitdt.

Fine abgeleitet Darstellung der Lie-Algebra L einer linearen Gruppe G erhélt man durch
Anwendung der Ableitung £, der Darstellung p von G.

Definition 4. Eine Darstellung der Lie-Algebra L iiber R ist ein Homomorphismus
p: L — gl(V)
der reellen Lie-Algebren.
Dieser Homomorphismus £, : LG — gl(V) ist eine R-lineare Abbildung mit der Eigenschaft

Ly([X,)Y]) = [L(X),L,(Y)], VXY eLG.

Die adjungierte Darstellung

Die adjungierte Darstellung der Gruppe G ergibt sich als Spezialfall der Ableitungskonstruk-
tion fiir den im Beispiel D.1 eingefiihrten Konjugationshomomorphismus & 4.

Die Abbildung ¢t — k4 o exp(t X) ist fiir jedes X € LG stetig differenzierbar und es gilt

Lo (X) = %RA o exp(t X) = AXA! (D.1)
t=

Dabei ist L, € GL(LG) und es gilt L, ,, = Ly jorp = L, 0Ly, V A, B € G und beliebiges
X € LG. Die Abbildung ist also eine Darstellung, ndmlich

Definition 5.
Ad: G — GL(LG), A— L, (A€q),

die sogenannte adjungierte Darstellung von G.

Definition 6. Die adjungierte Darstellung von LG erhélt man durch Setzen von ad := £(Ad)
und nochmaligem Differenzieren:

ad: LG — gl(£G), adx(Y) = [X,Y], X,Y €LG.

Eine niitzliche Relation bei der Untersuchung von Lie-Gruppen und ihren zugehorigen Alge-
bren in adjungierter Darstellung lautet

Adoexp = expoad .

Explizite Darstellungen im Fall der speziellen unitéren Gruppen finden sich im Abschnitt D.2.
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Eichtransformationen

Transformiert sich ein Feld ® (homogen) unter der adjungierten Darstellung einer Gruppe
G, so gilt ® € LG und die umgekehrte Lesart der Definition 5 fithrt auf das Transformati-
onsverhalten

P - P = gdg !, g€eQG (D.2)

unter der Wirkung von g € G. Wéhlen wir eine Basis von LG, bezeichnet mit {7}, so
transformieren sich die Komponenten ¢% von ® = ¢*T* beziiglich dieser Basis gemif

" — ¢ = Q%) b, Q(g) = 20x(TgTg ), (D.3)

wobei die Normierungskonvention D.9 der Basisvektoren zugrunde gelegt wurde. Im Fall von
LG = su(N) ist die Dimension der adjungierten Darstellung gerade N? — 1.

Transformiert sich ein Feld W unter der fundamentalen Darstellung einer Gruppe G, so gilt
U € V fiir die Darstellung p : G — GL(V). Durch die Darstellung p wird nidmlich eine
Operation von G auf V induziert, also eine Abbildung

GxV =V,  (9,9) = p(g)¥ (D.4)
mit den folgenden Eigenschaften

p(gh)¥ = p(g)(p(M)V), p(e)¥ =T, p(g)(a¥)=ap(g)¥, p@)(¥+x)=p(@)¥+p(g)x

fir alle g,h € G,¥,x € V und a € K. Ein Vektorraum, der mit einer solchen Operation
ausgeriistet ist, heifit G-Modul.

Die Komponentenfunktionen U’ eines Feldes ¥ transformieren sich dann unter einer solchen
fundamentalen Darstellung von G geméf

U = W' = p(g)W, i 5 € [1,Dim(V)]. (D.5)

D.2 Niitzliche Relationen fiir SU(N)

Im Folgenden bezeichnen T die hermiteschen Generatoren der Eichgruppe SU(N).

[T, 7% = ifebere (D.6)
tr([T, T T¢) = C(N)ife (D.7)
[T, [T°, T°) + [T°,[T¢, T%)] + [T¢, [T*,T")] = 0 (D.8)

Der Wert von C'(N) wird durch die Normierung der Generatoren festgelegt:

tr(TT%) = C(N)6%,  C(N) = (D.9)

1
2
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Fiir Generatoren in der fundamentalen Darstellung (V) gelten folgende Relationen:

tr(T%) = 0 (D.10)
{T°, 1% = %b 1+ d®eTe (D.11)
tmﬂ#wﬂzéwc (D.12)
mw#r):ium+wm) (D.13)
tr(TOTPTeTY) = ﬁéabécd_’_é(dabe+Z‘fabe)(dcde+ifcde) (D.14)
(T[T = % |:5im5jl - %@'jalm (D.15)

Als Folge der Kommutatorrelation (D.6) sowie der Jacobi-Identitét (D.8) geniigen die Struk-
turkonstanten ¢ der Relation

fadefbcd + fbdefcad + fchfabd —0. (D16)
Dies ermoglicht die Definition der sogenannten adjungierten Darstellung (A). Die Generatoren
sind dabei durch die Strukturkonstanten selbst gegeben und werden héufig auch durch ein
Dach auf dem Symbol des Generators gekennzeichnet:

[Tz]bc = [Ta]bc = _ifabc . (Dl?)

Fiir diese gelten die folgenden Regeln bei der Bildung der Spur:

tr(T9) = 0 (D.18)
tr(T4T%) = No§¥° (D.19)
tr(T4T4TS) = g j fabe (D.20)

tr(T3TETSTY) = 6°06° + 5296%
+g ( dabe gede _ gace gbde  jade dbce) (D.21)

Der (quadratische) Casimir-Operator ist definiert zu 72 := T%T?. Aufgrund der Relation

72,7 =0, be[l,N?—1] (D.22)

ist T2 eine Invariante der Lie-Algebra su(N) und nimmt daher in jeder irreduziblen Darstel-
lung r der Dimension d(r) einen konstanten Wert Cy(r) an:

TTY = Co(r) Lagryxd(r) - (D.23)
Fiir die fundamentale (V) bzw. adjungierte Darstellung (A) gilt:

_N?-1

Co(N) ON

C2(A) =N . (D.24)
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Summenregeln:
4
dabcdabc — (N2 o 1)(N _ N) (D25)
fabCfabC — (N2 _ 1)N (D26)
dabcddbc — 5ad (N _ %) (D27)
fabCfdbC — §YN (D.QS)
fabEfcde — % (5a06bd _ 5ad5bc + daceddbe _ dadedbce) (D29)
N
fadefbeffcfd — 5 fabc (D30)

Fiir die Eichgruppe SU(2) sind die Strukturkonstanten durch die Komponenten des total an-
tisymmetrischen Levi-Civita-Tensors gegeben, die symmetrischen Konstanten verschwinden
identisch:

fabc _ Eabc’ dabc —0. (D31)

Die Generatoren wéhlen wir in fundamentaler Darstellung zu 7% = ¢%/2 mit den Pauli-

Matrizen
0 1 0 —2 1 0
g1 ( 10 > ) g2 ( i 0 > ) 03 ( 0 —1 > ( )

Fiir Gruppenelemente G € SU(2) existiert die spezielle quaternionische Darstellung
G=al+ia-o, (D.33)
und fiir den Vektor (ag, @) € S? gilt:
ad+d-da=1. (D.34)

In der von uns bei der Behandlung von SU (3)—Eichtheorien durchgéngig verwendeten, so-
genannten Gell-Mann-Darstellung, haben die Generatoren T der zugehorigen Lie-Algebra
su(3) die folgende Gestalt:

0 3 0 0 —%i 0 $ 0 0
T'=1 L o0 |, =14 o0 o T°=10 -3 0
00 0 0 0 0 0 0 0
00 3 0 0 —3i 00 0
T =10 0 0 T°=|( 0 0 0 =100 1
1 1, 1
S| 0
00 0 33
TT=10 0 i | T =| 0 55 O
1 L
0 53¢ 0 0 0 7

Eine explizite Darstellung der Strukturkonstanten ¢ und d®¢ der su(3) findet sich in [1Z80].
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