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Zusammenfassung

Die vorliegende Dissertation widmet sich der Untersuchung verschiedener physikalischer Sys-
teme im Grenzbereich zwischen statistischer Physik und Quantenfeldtheorie mithilfe nicht-
störungstheoretischer Methoden.

Im ersten Kapitel wird der von P.A.M. Dirac im Rahmen der Quantenelektrodynamik (QED)
eingeführte Dressingformalismus zur Behandlung eichinvarianter Ladungen auf den Fall nicht-
abelscher Eichtheorien ausgeweitet. Zunächst wird dazu eine Methode entwickelt, die es er-
laubt, verschiedene Ansätze für den unbekannten Grundzustand einer Eichtheorie bei Anwe-
senheit eines Paares von statischen Ladungen miteinander vergleichen zu können. Dabei kon-
zentrieren wir uns auf zwei Klassen von Zuständen, die eng mit der Wahl der axialen Eichung,
sowie der Coulomb-Eichung verknüpft sind. Anhand der funktionalanalytisch zugänglichen
QED wird gezeigt, dass der Vergleich der Persistenzamplituden von Zuständen, die durch
Verwendung unterschiedlicher Dressings der Ladungen konstruierten werden können, auch im
Rahmen der numerischen Behandlung der zugehörigen Gittereichtheorie mittels Monte-Carlo-
Simulationen einen gangbaren Weg zur Untersuchung der Physik des Grundzustands darstellt.
Nach einer Diskussion der Gribov-Ambiguität und der daraus resultierenden Grenzen für
eine störungstheoretische Konstruktion von Dressings im Falle nicht-abelscher Eichtheorien
wird der nicht-perturbative Zugang zunächst in zwei verschiedenen Realisierungsphasen einer
SU(2)−Eichtheorie mit fundamentalem Skalarfeld weiter verfolgt. Überraschenderweise wird
der Coulomb-Zustand dabei beidesmal gegenüber dem axialen Zustand bevorzugt. Zuletzt
steht die reine SU(2)−Yang-Mills-Theorie im Kontinuumslimes auf dem Prüfstand. Es zeigt
sich, dass der Überlapp des wahren Grundzustands im mesonischen Sektor mit dem axialen
Zustand letztlich verschwindet, selbst wenn dessen string-artige Geometrie durch sukzessive
Anwendung von Smearing-Schritten zu einem Flussschlauch endlicher Ausdehnung verändert
wird. Die Kongruenz von Coulomb- und Grundzustand hingegen nimmt im Kontinuumslimes
scheinbar kontinuierlich zu.

Im zweiten Kapitel wird die Rolle von Zentrumsvortices in der Theorie der starken und elek-
troschwachen Wechselwirkung bei endlichen Temperaturen studiert. Zunächst wird gezeigt,
dass sich das in der Theorie der Quarks und Gluonen beobachtete Phänomen des string
breaking im Rahmen des Random-Vortex-Modells auf eine Veränderung der Perkolationsei-
genschaften der Vortices zurückführen lassen sollte. In der anschließend durchgeführten nume-
rischen Simulation einer vierdimensionalen SU(2)−Eichtheorie mit dynamischem Skalarfeld
in fundamentaler Darstellung konnte diese Vermutung bestätigt werden, was einen weiteren
wichtigen Hinweis auf die Relevanz der in Direkter Maximaler Zentrums-Eichung (DMCG)
identifizierten Zentrumsvortices für die Beschreibung des Infrarot-Regimes der Theorie der
starken Wechselwirkung liefert. Bei der Untersuchung des elektroschwachen Standardmodells
bei endlichen Temperaturen hat sich gezeigt, dass eine sinnvolle Definition von Zentrums-
vortices – im Gegensatz zu elementaren Z−Strings und Nambu-Monopole – auch in der
dimensional reduzierten Theorie mit Hilfe von lokalen Operatoren möglich ist, die es er-
laubt, Objekte zu detektieren, deren Dichte sich als invariant unter Renormierungsgruppen-
Transformationen erweist. Die in der Nähe des elektroschwachen crossover durchgeführten
Untersuchungen der Profilfunktionen und des Perkolationsverhaltens der vortex-artigen De-
fekte haben dabei erste Hinweise darauf geliefert, dass die Zentrumsvortices, die sich in der
Hochtemperaturphase als deutlich erkennbare Inhomogenitäten im Eichfeldsektor der Theo-
rie manifestieren, eine wichtige Rolle bei der Beschreibung des elektroschwachen Phasenüber-
gangs spielen könnten.



Das dritte Kapitel widmet sich der Untersuchung frustrierter Systeme. Anhand des proto-
typischen zweidimensionalen Ising-Spin-Glases wird zunächst die Möglichkeit einer eichin-
varianten Charakterisierung der Frustration durch die Dichte von Z2−Vortices erläutert,
was eine Klassifizierung verschiedener Instanzen von Spin-Gläsern unter dem Gesichtspunkt
identischer thermodynamischer Eigenschaften ermöglicht. Die Rolle der Landau-Eichung bei
der Berechnung der Energie des Grundzustands wird diskutiert, bevor diese als Funktion
des neuen Komplexitätsparameters mit Hilfe des minimal matching algorithm von Edmonds
exakt bestimmt wird. In anschließenden Simulationen von Spin-Gläsern bei endlichen Tem-
peraturen wird ein Algorithmus eingesetzt, welcher in der Lage ist, der Eichinvarianz des
jeweiligen Modells bei der Definition der zu aktualisierenden Cluster von Spins umfassend
Rechnung zu tragen und eine effiziente numerische Behandlung dieser frustrierten Systeme in
der Umgebung ihres jeweiligen pseudo-kritischen Punktes erlaubt. Nahe T = 0 erscheint dieser
Cluster-Algorithmus aufgrund von stark anwachsenden Autokorrelationen für Untersuchun-
gen des Grundzustands allerdings weniger gut geeignet zu sein. Die Dimensionsunabhängig-
keit des Algorithmus ermöglicht es jedoch, diesen auch bei der Simulation der dimensional
reduzierten Quantenchromodynamik in der Nähe ihrer kritischen Temperatur einzusetzen,
da diese Theorie durch Einbettung von Ising-Spins auf ein frustriertes Spin-Modell in d = 3
Dimensionen mit dynamisch generierten Kopplungskonstanten abgebildet werden kann. In
einer detaillierten Untersuchung des induzierten Modells hat sich zum einen die Effizienz
des Cluster-Algorithmus in der Nähe des kritischen Punktes bestätigt, zum anderen wurde
deutlich, dass die QCD bei hohen Temperaturen einem stark frustrierten statistischen Sy-
stem entspricht, während sie sich in der Phase gebrochener globaler Reflexionssymmetrie der
adjungierten Skalarfelder bei niedrigeren Temperaturen als praktisch rein ferromagnetisches
System erweist.

Gegenstand des letzten Kapitels ist die Untersuchung der Grundlagen des Standardmodells
der elektroschwachen Wechselwirkung sowie die Frage nach einer Alternative zur Freisetzung
von schwacher Isospinladung durch Kondensation der Bosonen des fundamentalen Higgs-
Feldes. Zu diesem Zweck wird eine vierdimensionale SU(3)−Eichtheorie mit dynamischem
Skalarfeld in adjungierter Darstellung untersucht, welche nach Fixierung der Eichsymmetrie
durch Wahl der Landau-Eichbedingung, sowie einer globalen unitären Eichbedingung einen
Phasenübergang zweiter Ordnung ermöglicht, der mit der spontanen Brechung der residuellen
globalen SU(3)−Symmetrie einhergeht und auf eine Realisierungsphase führt, welche durch
die residuelle Symmetriegruppe H = SU(2) × U(1) charakterisiert ist. Die vorliegenden Er-
gebnisse weisen darauf hin, dass die Kondensation der Bosonen des adjungierten Skalarfeldes
während des Phasenübergangs denselben Effekt hervorruft, wie die Ausbildung eines Konden-
sats von fundamentalen Higgs-Bosonen bei der spontanen Symmetriebrechung im Modell von
Glashow, Weinberg und Salam. Obwohl es sich beim schwachen Isospin um eine nicht-abelsche
Symmetrie handelt, kann Materie, welche schwache Isospinladung trägt, im Rahmen der un-
tersuchten effektiven Theorie dennoch frei beobachtet werden. In Verbindung mit den Un-
tersuchungsergebnissen zum Spektrum dieser Theorie ergibt sich dabei ein sehr interessantes
Bild. Neben vier massiven Anregungen im Eichfeldsektor, die mit den gebrochenen Genera-
toren assoziiert sind, treten scheinbar auch vier mit H assoziierte masselose Anregungen auf.
Eine bestimmte Linearkombination derselben lässt sich dabei als Kandidat für ein physika-
lisches Photon interpretieren, welches auf eichinvariante Weise nachgewiesen werden konnte.
An dem im Rahmen der vorliegenden Studie untersuchten Punkt im Phasendiagramm scheint
somit eine effektive Quantenfeldtheorie vorzuliegen, die weder das Confinement-Phänomen,
noch das Auftreten eines mass gap zeigt, obwohl die zugrunde liegende Symmetriegruppe H
einen nicht-abelschen Faktor enthält.
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Kapitel 1

Der Grundzustand der Yang-Mills-
Theorie

1.1 Einleitung

Eine bis heute offene Frage bei der Beschreibung der starken Wechselwirkung ist die Ursache
für das Confinement-Phänomen, also der Beobachtung, dass Farbladungen nicht frei, sondern
immer nur als Konstituenten insgesamt farbneutraler Systeme aufzutreten scheinen. Im Rah-
men der Quantenchromodynamik als Theorie der starken Wechselwirkung wird dabei davon
ausgegangen, dass der Einschluss von farbgeladenen Quarks in Hadronen bereits allein durch
die Physik der Gluonen zu verstehen ist. Die gängige Vorstellung im Falle eines Mesons
beispielsweise sieht dabei so aus, dass sich nach Einbringen eines Quark-Antiquark-Paares
in das Vakuum der SU(3)−Yang-Mills-Theorie eine Gluonenverteilung einstellt, welche die
Ladungsquellen umgibt und die Gesamtenergie minimiert, wobei das Vakuum mit der Aus-
bildung eines gluonischen Flussschlauchs zwischen den Quellen reagiert, wenn man versucht,
diese durch schrittweise Vergrößerung ihres Abstands voneinander zu trennen. Zwar ist die
genaue Form dieser Reaktion des Vakuums nach wie vor unbekannt, ein reizvoller Aspekt bei
der Annahme eines solchen String-Zustands ist aber zweifelsohne, dass die im Flussschlauch
konzentrierte Energie linear mit der Länge des Schlauchs anwächst. Dadurch wird auf elegante
Weise eine natürliche Erklärung für die Abwesenheit von farbgeladener Materie im Spektrum
der Theorie der starken Wechselwirkung bereitgestellt. Tatsächlich gibt es eine Vielzahl von
Hinweisen, die diese Vorstellung unterstützen. So hat sich bei der numerischen Untersuchun-
gen diverser Yang-Mills-Theorien gezeigt1, dass das Wilson’sche Inter-Quark-Potential V (r)
für große Abstände r zweier statischer Ladungen – bei Abwesenheit von dynamischen Quarks
– tatsächlich linear mit r anwächst. Der Zustand, der dabei in die Konstruktion des soge-
nannten Wilson-Loops einfließt, ist ein insgesamt eichinvariantes und farbneutrales Objekt,
in dem der gluonische Fluss auf einen infinitesimal dünnen Schlauch begrenzt ist. Bemerkens-
wert dabei ist allerdings, dass ein solcher axialer Zustand selbst bei kürzesten Abständen r
weder die Identifizierung von eichinvarianten Konstituentenquarks zulässt, noch irgendwelche
Hinweise auf einen Coulomb-artigen Potentialverlauf zeigt, der aufgrund der asymptotischen
Freiheit der zugrunde liegenden Yang-Mills-Theorie zu erwarten wäre. Tatsächlich kann die-
ser Potentialverlauf jedoch bei kurzen Abständen der Quellen in numerischen Simulationen

1Vergleiche etwa [BSS95] für den Fall der SU(3)−Yang-Mills-Theorie, sowie die weiterführende Diskussion
in der Einleitung zu Kapitel 4.
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2 1.1. Einleitung

beobachtet werden, allerdings nur dann, wenn man mittels overlap enhancement [A+87] das
UV -Verhalten der Gitterkonfigurationen, und damit faktisch die Gestalt des axialen Testzu-
stands, verändert.

Obwohl der axiale Zustand also eichinvariant ist und damit die Grundvoraussetzung eines
physikalischen Zustands erfüllt, können die zugehörigen Wilson-Loops jedoch nicht als Am-
plituden eines Prozesses interpretiert werden, der die zeitliche Entwicklung von individuell
physikalischen Zuständen eines (statischen) Quarks bzw. Antiquarks beschreibt. Um einen
Zustand konstruieren zu können, der eine solche Interpretation erlaubt, müsste es folglich
die Möglichkeit geben, ein einzelnes Quark auf eichinvariante Art und Weise beschreiben zu
können. Tatsächlich existiert ein solcher Zugang zur Konstruktion von Ladungen in Eichtheo-
rien [LM97,BLM00a,BLM00b, ILM07]. Die grundlegende Idee geht dabei auf Dirac [Dir55]
zurück, der das Konzept des sogenannten Dressings bei der Behandlung eines statischen
Elektrons im Rahmen der QED bereits 1955 initiiert hat. Die Details der Konstruktion von
zusammengesetzten Operatoren, die sowohl Materiefelder als auch Eichfelder beinhalten und
zur Erzeugung von physikalischen Zuständen wohldefinierter Ladung geeignet sind, werden
in Kapitel 1.2.2 diskutiert.

Es hat sich gezeigt, dass jede Eichfixierungsbedingung dazu verwendet werden kann, ein
zugehöriges Dressing zu definieren und dadurch einen eichinvarianten Zustand zu konstruie-
ren [LM97]. Im Falle statischer Ladungen erweist sich dabei die Coulomb-Eichung als beson-
ders geeignet, da das Dressing in diesem Fall seine einfachste Form annimmt [BLM00a].
Diese Beobachtung führt nicht nur zu erheblichen Vereinfachungen bei der Konstrukti-
on von Vielteilchenzuständen und der Auswertung interessierender Observablen, sondern
ermöglicht es auch, eine Verbindung zwischen der Untersuchung von manifest eichinvari-
anten Zuständen auf dem Gitter und der Verwendung von analytischen Untersuchungs-
methoden wie etwa dem funktionalen Hamilton-Zugang in Coulomb-Eichung [SS02, LS04,
Szc04,FR04,AKKW06,SLR06,ERS07] oder der Untersuchung des nicht-abelschen Coulomb-
Potentials [CZ02,Zwa03,GO03,LM04,NS06,NNS+06] herzustellen.

Das Ziel der vorliegenden Untersuchung ist es, neue Erkenntnisse zur Gestalt des Grundzu-
stands von Yang-Mills-Theorien bei Anwesenheit eines Paares von statischen Testladungen
unterschiedlichen Vorzeichens zu gewinnen und bereits dazu bestehende, gängige Vorstellun-
gen auf ihre Tragfähigkeit hin zu überprüfen. Zu diesem Zweck soll zunächst eine Methode
entwickelt werden, die es erlaubt, verschiedene Ansätze für den unbekannten Grundzustand
miteinander zu vergleichen, um beurteilen zu können, inwiefern das jeweilige Modell in der
Lage ist, die Physik des Grundzustands verschiedener Eichtheorien adäquat wiederzugeben.
Dabei konzentrieren wir uns auf zwei Klassen von Zuständen, die eng mit der Wahl der
axialen Eichung, sowie der Coulomb-Eichung verknüpft sind. Der axiale Zustand, den wir
mit |χ 〉 bezeichnen wollen, beschreibt dabei ein insgesamt eichinvariantes Objekt, das durch
Verbindung der statischen Ladungen mit einem gluonischen Flussschlauch entsteht und im
Rahmen der QCD üblicherweise als Kandidat für ein sehr schweres Meson interpretiert wird.
Der Coulomb-Zustand |Φ 〉 hingegen beschreibt im perturbativ zugänglichen Regime zwei
individuell eichinvariante Ladungen [BLM00b]. In der Quantenelektrodynamik, die wir in
Kapitel 1.2 behandeln wollen, handelt es sich dabei um den Grundzustand der Theorie. Da
in diesem Fall explizite Rechnungen zum Verhalten von |Φ 〉 und |χ 〉 durchgeführt werden
können, wird sich diese erste Untersuchung als ausgesprochen hilfreich dabei erweisen, um
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eine Intuition für die relevanten Vorgänge zu entwickeln, die für das Verständis der Grundzu-
standsphysik in komplexeren Theorien wichtig werden wird. Insbesondere wird die Definition
von R(r, t) in Kapitel 1.2.5 als das Verhältnis der Persistenzamplituden zweier Zustände ei-
ne wesentliche Rolle spielen, denn diese Größe wird es uns ermöglichen, eine Verbindung
von funktionalanalytischen und numerischen Methoden herzustellen. Durch einen Vergleich
von Resultaten, die bei der Untersuchung der gewöhnlichen QED im Kontinuum, sowie der
Deconfinement-Phase der kompakten QED4 auf dem Gitter gewonnen wurden, werden wir
uns davon überzeugen, dass die Untersuchung von R(r, t) es uns auch in analytisch nicht
mehr exakt zugänglichen Theorien erlauben sollte, unterschiedliche Ansätze für den wahren,
noch unbekannten Grundzustand, miteinander zu vergleichen.

Die Ausweitung des Dressingformalismus auf den Fall nicht-abelscher Eichtheorien ist Gegen-
stand von Kapitel 1.4. Nach einer Diskussion der perturbativen Konstruktion von Dressings
in Yang-Mills-Theorien wird die Rolle von Gribov-Kopien [Gri78, Sin78] erläutert, die bei
der Fixierung unterschiedlicher Eichungen typischerweise auftreten. Aufgrund der bereits
erwähnten Abwesenheit von farbgeladener Materie als asymptotischem Zustand im Spek-
trum der QCD, besitzt das Bild von eichinvarianten Konstituentenquarks innerhalb eines
Hadrons offensichtlich nur einen begrenzten Gültigkeitsbereich. In [LM97, ILM07] wurde ar-
gumentiert, dass das Zusammenbrechen der Interpretation des Inter-Quark-Potentials bei
großen Abständen als Wechselwirkung zwischen individuellen Quarks aufs Engste mit dem
nicht-perturbativen Zusammenbrechen der Eichinvarianz der

”
bekleideten“ Ladungen ver-

knüpft sei, was durch das Auftreten der Gribov-Ambiguität verursacht wird. Da aber ande-
rerseits in [HLLM07] gezeigt werden konnte, dass sich das Potential nach Mittelung über alle
auftretenden Gribov-Kopien hervorragend aus der Persistenzamplitude des nicht-abelschen
Coulomb-Zustands |Φ 〉 für alle Abstände der Quellen gewinnen lässt, stellt sich natürlich die
Frage nach dessen Relevanz für die Physik des Grundzustands im mesonischen Sektor von
Yang-Mills-Theorien.

Dieser Frage gehen wir zunächst in Kapitel 1.5 durch Untersuchung von zwei verschiedenen
Realisierungsphasen einer SU(2)−Eichtheorie mit skalarem Feld in fundamentaler Darstel-
lung nach. Zuletzt steht in Kapitel 1.6 die einfachste Yang-Mills-Theorie SU(2) auf dem
Prüfstand. Dabei liegt der Fokus unserer Untersuchungen auf dem Verhalten der beiden
oben diskutierten Ansätze |Φ 〉 und |χ 〉 für den Grundzustand im Kontinuumslimes.

1.2 Analytische Behandlung der QED

Quantenelektrodynamik ist die Theorie der Wechselwirkung von Licht und Materie. Die
Eichfelder dieser abelschen U(1)–Eichtheorie werden mit den Photonen assoziiert und die
elektrisch geladene Materie wird durch fermionische Felder repräsentiert. In diesem Kapi-
tel soll das Verhalten der Quantenelektrodynamik bei Anwesenheit von statischen externen
Quellen untersucht werden. Dazu soll zunächst die Quantisierung der Theorie in funktiona-
ler Schrödinger-Darstellung unter Vernachlässigung von dynamischen Fermionen besprochen
werden, danach wird eine Einführung in den Dressingformalismus anhand dieser abelschen
Eichtheorie gegeben.
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1.2.1 Quantisierung im Schrödinger-Bild

Die Quantisierung der Elektrodynamik in Schrödinger-Darstellung soll im Folgenden kurz dis-
kutiert werden. Wir verwenden die Weyl-Eichung, A0 = 0 [Wey50], in welcher der Hamilton-
Operator durch

H =
1

2

∫
d3x

[
Ei(x)Ei(x)−Ai(x)(δij∂2 − ∂i∂j)Aj(x)

]
, (1.1)

gegeben ist. Einführung von magnetischen Feldern der Form

Bi(x) = ǫijk∂jAk(x) (1.2)

erlaubt die alternative Darstellung

H =
1

2

∫
d3x

[
E2(x) +B2(x)

]
, (1.3)

welche mit dem bekannten Ergebnis für freie Eichfelder übereinstimmt. Statische externe
Quellen können durch die Einführung eines entsprechenden Kopplungsterms in der zugehöri-
gen Lagrangedichte auf klassischer Ebene berücksichtigt werden. Die entsprechende Konstruk-
tion wird in Kapitel 1.3.1 am Beispiel eines statischen Fermion-Anti-Fermion-Paares erläutert.
In der quantisierten Theorie führt dies zum Auftreten eines Quellterms im Gauß’schen Ge-
setz, was ebenfalls weiter unten diskutiert wird. In Weyl-Eichung lässt sich die kanonische
Quantisierung unmittelbar durchführen [Wey50,Jac80,Jac], da Eichpotentiale und elektrische
Felder kanonisch konjugierte Variablen sind. Wir fordern also für den nicht-verschwindenden
Kommutator von Operatoren, die zur selben Zeit ausgewertet werden

[Âi(x, t), Êj(y, t)] = iδijδ
3(x− y) . (1.4)

In der Schrödinger-Darstellung sind die Zustände |Ψ, t 〉 (im Gegensatz zu den Operatoren)
zeitabhängig und entwickeln sich gemäß der Schrödingergleichung

i
∂

∂t
|Ψ, t 〉 = Ĥ|Ψ, t 〉 =⇒ |Ψ, t 〉 = e−iĤt|Ψ, 0 〉 . (1.5)

Die Zustände |Ψ, t 〉 werden mit Wellenfunktionalen Ψ[A, t] identifiziert, die durch Bildung
des Skalarproduktes der Zustände mit einem zeitunabhängigen Eigenzustand |A 〉 des Eich-
feldoperators Âi(x) gewonnen werden:

|Ψ, t 〉 ↔ Ψ[A, t] := 〈A |Ψ, t〉 , Âi(x, t)|A 〉 = Ai(x)|A 〉 ∀ t . (1.6)

Der Kommutator (1.4) kann auf dem Zustandsraum durch Diagonalisierung des Eichfeld-
operators Âi(x) (zur Zeit t=0) und Forderung der Wirkungsweise von Êi(x) als Ableitung
gemäß

〈A |Âi(x)|Ψ, t 〉 = Ai(x)Ψ[A, t] ,

〈A |Êi(x)|Ψ, t 〉 = −i
δ

δAi(x)
Ψ[A, t] ,

(1.7)

in direkter Analogie zur Ortsdarstellung in der gewöhnlichen Quantenmechanik realisiert
werden. Die Eichfelder lassen sich mittels der Projektoren

Tij(p) = δij −
pipj
||p||2 , Lij(p) =

pipj
||p||2 , (1.8)
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in transversale (T ) und longitudinale (L) Anteile zerlegen, wobei T +L = 1, T 2 = T , L2 = L
und TL = 0. Folglich sind transversale Felder in Orts- und Impulsdarstellung definiert durch

fTi (x) =

∫
d3y Tij(x− y)fj(y) ⇐⇒ fTi (p) = Tij(p)fj(p) , (1.9)

und Analoges gilt für die longitudinalen Teile. Bei der Quantisierung des vollen Eichpoten-
tials muss die Eichvarianz des longitudinalen Anteils berücksichtigt werden. Eichinvarianz
wird durch die Forderung nach Erfüllung des Gauß’schen Gesetzes auf dem Hilbertraum
implementiert,

〈A |∂jÊj(z)|Ψ, t 〉 = −i∂j
δ

δAj(z)
Ψ[A, t] = ρ(z)Ψ[A, t] , (1.10)

wobei ρ(z) die bereits erwähnte Ladungsdichte der externen Quellen bezeichnet. Man verifi-
ziert leicht, dass aufgrund der Zerlegung

δ

δAi(x)
= Tik(x)

δ

δATk (x)
+ Lik(x)

δ

δALk (x)
(1.11)

das Gauß’sche Gesetz tatsächlich nur die longitudinalen Eichfreiheitsgrade betrifft, weswe-
gen bei der Auswertung von (1.10) stets angenommen werden soll, dass sich die Ableitung
auf AL(x) bezieht. Der Hilbertraum wird somit auf den Raum der physikalischen Zustände
eingeschränkt. Mittels der Projektoren (1.8) ist ebenfalls leicht nachzuweisen, dass sich der
Hamilton-Operator in eine Summe aus transversalen und longitudinalen Anteilen zerlegen
lässt, H = HT +HL, wobei

HT := −1

2

∫
d3z

δ

δATi (z)
δ

δATi (z)
+ATi (z)∇2ATi (z) ,

HL := −1

2

∫
d3z

δ

δALi (z)
δ

δALi (z)
.

(1.12)

Die Zerlegung (1.12) impliziert, dass die Eigenfunktionen des Hamilton-Operators in Pro-
dukte von Wellenfunktionalen faktorisieren, Ψ[A, t]→ ΨL[AL, t] ΨT [AT , t], welche entweder
ausschließlich von longitudinalen oder transversalen Feldern abhängen und daher separat un-
tersucht werden können. Für die Konstruktion des Grundzustandswellenfunktionals Ψ0[A]
im Vakuumsektor bedeutet dies, dass die Schrödingergleichung in zwei Teile zerfällt,

HT ΨT
0 [A

T ] = ET ΨT
0 [A

T ], (1.13)

HLΨL
0 [A

L] = ELΨL
0 [A

L] . (1.14)

Die Lösung von (1.13) ist gegeben durch das Gauß’sche Wellenfunktional

ΨT
0 [A

T ] := Det1/4
√
−∇2 exp

[
− 1

2

∫
d3p

(2π)3
Ai(−p) ||p||Tij(p) Aj(p)

]
. (1.15)

Die Determinante ist dabei im transversalen Sektor zu berechnen, und die Vakuumenergie
ist durch

ET := ǫ0 =

∫
d3x

∫
d3p

(2π)3
||p|| (1.16)
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gegeben, welche die Gesamtenergie eines nicht-wechselwirkenden Photonengases darstellt, das
den gesamten Raum ausfüllt. Die Lösung von (1.14) ist gegeben durch

ΨL
0 [A

L] := Const. × exp

[ ∫
d3xJi(x)ALi (x)

]
, (1.17)

wobei Ji(x) ein zunächst beliebiges Vektorfeld bezeichnet. Offensichtlich geht hier nur der
longitudinale Anteil von Ji(x) ein und der zugehörige Energiebeitrag berechnet sich zu

EL = −1

2
Tr(J2) := −1

2

∫
d3x Ji(x)Ji(x) . (1.18)

Für den Grundzustand im Vakuumsektor (ρ(z) = 0) folgt aus dem Gauß’schen Gesetz (1.10),
welches ja Einschränkungen an die longitudinalen Eigenfunktionen stellt, dass J transversal
sein muss, was sofort impliziert, dass die einzige Lösung J = 0 ist, und der Grundzustand
im Vakuumsektor folglich unabhängig von AL sein muss. Bei der Berechnung der Norm
des Grundzustands ergibt das Integral über AL daher als Faktor das (unendliche) Volumen
der Eichgruppe, welches herauszuteilen ist und daher im Folgenden vernachlässigt wird, das
transversale Integral hingegen ist korrekt normiert.

1.2.2 Dressing in der abelschen Theorie

Die Fermionen, die in der Lagrangedichte der QED auftauchen, sind selbst nicht eichinvariant
und können daher auch nicht direkt mit physikalischen Objekten identifiziert werden. Dieses
Problem wird im Rahmen des Dressingformalismus durch Einführung einer Funktion zu lösen
versucht, die von den Eichfeldern abhängt und gewährleistet, dass der aus Fermionen und um-
gebenden Eichfeldern konstruierte Gesamtzustand ein eichinvariantes Objekt darstellt. Die
Fermionen werden also mit speziellen Eichfeldkonfigurationen

”
bekleidet“, wobei die Termi-

nologie wie bereits erwähnt auf Dirac [Dir55] zurückgeht, der die Idee des Dressings bei der
Konstruktion einer statischen, eichinvarianten Ladung begründet hat.

In unserem Fall sind vorrangig jene Zustände von Interesse, die aus zwei schweren Fermionen
aufgebaut sind und in der Form [Zar98b]

eW [A] q(x2)q̄(x1)| 0 〉 , (1.19)

geschrieben werden können, wobei q(x2) und q̄(x1) die Feldoperatoren eines Fermions am
Ort x2 bzw. Anti-Fermions am Ort x1 darstellen und | 0 〉 den Vakuumzustand bezeichnet.
Das Hauptaugenmerk liegt hierbei auf dem Funktional W [A], welches so gewählt wird2, dass
der Zustand unter residuellen Eichtransformationen der Form

Aj(x) → Aλj (x) = Aj(x) + ∂jλ(x) ,

q(x) → q λ(x) = e−ieλ(x)q(x) ,

q̄(x) → q̄ λ(x) = eieλ(x)q̄(x) ,

(1.20)

2Das Dressing besteht typischerweise aus einem
”
minimalen“ Anteil, der die Eichinvarianz gewährleistet,

sowie einem
”
nicht-minimalen“ Anteil, der so gewählt wird, dass die schweren Fermionen statisch bzgl. Zeit-

entwicklung sind. In Weyl-Eichung ist dieser Anteil allerdings trivial. Für eine weiterführende Diskussion siehe
auch [BLM00a,BLM00b].
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welche nach Fixierung der Weyl-Eichung noch erlaubt sind, invariant bleibt. Diese Forderung
impliziert, dass sich W [A] folgendermaßen transformieren muss:

W [Aλ] =W [A] + ie λ(x2)− ie λ(x1) . (1.21)

Das Gauß’sche Gesetz impliziert ferner für Zustände der Form (1.19)

− ∂

∂xi
δ

δAi(x)
W [A] = ie δ3(x− x2)− ie δ3(x− x1) . (1.22)

Als Ansatz zur Lösung dieser Gleichung wählen wir

W [A] =

∞∑

n=1

1

n!

∫
d3y1 . . . d

3yn Γi1...in(y1, . . . ,yn)Ai1(y1) . . .Ain(yn) . (1.23)

Unter der Annahme, dass die Integralkerne Γi1...in symmetrisch bezüglich Permutationen der
Argumente (ij ,yj) sind, beschränkt das Gauß’sche Gesetz die longitudinale Komponente Γi
auf

− ∂

∂xi
Γi(x) := −

∂

∂xi
ΓLi (x) = ie δ3(x− x2)− ie δ3(x− x1) . (1.24)

Außerdem folgt aus dem Gauß’schen Gesetz, dass die Integralkerne Γi1...in für jeden Index
n ≥ 2 transversal sein müssen. Wir beschränken uns für den Moment auf denjenigen Anteil
vonW [A], der linear in A ist. Durch Fourier-Transformation finden wir als Lösung von (1.24)

ΓLj (p) = −
e

||p||2 pj (e
−ip·x2 − e−ip·x1) . (1.25)

Daher ist der longitudinale Beitrag das sogenannte
”
Coulomb-Dressing“

W [AL] =

∫
d3p

(2π)3
ΓLj (−p)Aj(p) = ie

1

∇2
∂jAj(x2)− ie

1

∇2
∂jAj(x1)

= ie
1

∇2
∂jALj (x2)− ie

1

∇2
∂jALj (x1) ,

(1.26)

welches zuerst von Dirac als Konstruktion eines eichinvarianten, statischen Elektrons vor-
geschlagen wurde [Dir55]. Die allgemeine Form eines Dressings, welches (zusammen mit den
fermionischen Erzeugungsoperatoren) einen eichinvarianten Zustand eines Paares von Ladung
und Anti-Ladung beschreibt, ist daher gegeben durch

exp

[
ie

1

∇2
∂jAj(x2)− ie

1

∇2
∂jAj(x1) + J [AT ]

]
, (1.27)

wobei die transversalen Beiträge höherer Ordnung in den Eichfeldern gemäß (1.23) zum Funk-
tional J [AT ] zusammengefasst wurden. Die EichfelderAj können in den ersten beiden Termen
in (1.27) auch durch ihren longitudinalen Anteil ALj ersetzt werden. An dieser Stelle sollte
nochmals betont werden, dass wir unter einem eichinvarianten Zustand mit wohldefinierter
Ladung das Resultat der Wirkung eines nackten (Anti-)Fermion-Operators (oder mehrerer)
auf das Vakuum in Verbindung mit einem Funktional des Eichfeldes verstehen wollen, das
per Gauß’schem Gesetz (1.10) so zu konstruieren ist, dass das Eichfeld den Effekt der nack-
ten Ladung(en) bei der Anwendung von Eichtransformationen (1.20) gerade kompensiert. Im
Folgenden sollen nun verschiedene Formen von J [AT ] untersucht werden.
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1.2.3 Grundzustand und axialer Zustand

Der longitudinale Anteil unserer Wellenfunktionale wird bereits durch das Gauß’sche Ge-
setz festgelegt. Dabei handelt es sich um das

”
Coulomb-Dressing“, welches Eigenzustand

des longitudinalen Hamilton-Operators HL ist. Den niedrigsten Eigenwert des transversa-
len Hamilton-Operators findet man für das Vakuumwellenfunktional (1.13). Der Grund-
zustand im Fermion–Anti-Fermion–Sektor ist daher gegeben ist durch eine Kombination
aus [RT80,Jac,Zar98a]

Φ[A] := exp

[
ie

1

∇2
∂jAj(x2)− ie

1

∇2
∂jAj(x1)

]
ΨT

0 [A
T ] (1.28)

und den fermionischen Feldoperatoren, so dass |Φ 〉 = Φ[A] q(x2)q̄(x1)| 0 〉 einen Zustand
minimaler Energie beschreibt, bestehend aus einer statischen, eichinvarianten Ladung bzw.
Anti-Ladung. Der Erwartungswert des Hamilton-Operators

〈Φ |Ĥ|Φ 〉 := EC = ǫ0 + e2
∫

d3p

(2π)3
1− cosp·(x2 − x1)

||p||2 (1.29)

ist endlich für kleine Impulse, nach Regulierung der UV -Divergenz durch Einführung eines
Cut-Off ||p|| < Λ findet sich für große Wert von Λ

EC = ǫ0 +
e2Λ

2π2
− e2

4π|x2 − x1|

(
1 +O

(
Λ−1

))
. (1.30)

Der erste Term ist die bereits bekannte Vakuumenergie (1.16), und der zweite Term beschreibt
die Selbstenergie der Quellen. Der dritte Term ist unabhängig vom Cut-Off und liefert das
Coulomb-Potential zwischen den statischen Quellen. Der Grundzustand bei Anwesenheit ei-
nes Fermions und eines Anti-Fermions wird daher durch zwei Quellen beschrieben, die jeweils
eichinvariant sind und von einem Coulomb-Feld umgeben werden.

Der Zustand (1.28) wurde als Produkt des Vakuumwellenfunktionals ΨT
0 [A

T ] und des allge-
meinen Dressings (1.27) für die einfachsten Wahl des transversalen Funktionals, J [AT ] = 0,
gewonnen. Ein naheliegendes Konstruktionsprinzip für andere Arten von Dressings besteht
daher in der Verwendung nicht-trivialer Funktionale J [AT ]. In diesem Abschnitt soll ein
Dressing untersucht werden, das durch

J [AT ] = ie

∫

C

dziATi (z) , (1.31)

gegeben ist, wobei die Kurve C die fermionischen Quellen an den Orten x1 und x2 miteinander
verbindet. Wählen wir für den Kurvenverlauf die direkte Verbindung

C =
{
z(s) = x1 + s (x2 − x1) | s ∈ [0, 1]

}
(1.32)

so erhalten wir das sogenannte
”
axiale Dressing“ χ. Den Einheitsvektor in Richtung die-

ser Verbindungsachse x2 − x1 bezeichnen wir mit n. Der Zusammenhang zwischen axialem
Dressing und dem des Grundzustands (1.28) ist also gegeben durch

χ[A] = exp

[
ie

∫

C

dziATi (z)
]
Φ[A] , (1.33)



Kapitel 1. Der Grundzustand der Yang-Mills-Theorie 9

folglich beschreibt |χ 〉 = χ[A] q(x2)q̄(x1)| 0 〉 ebenfalls einen eichinvarianten Zustand. Dies ist
derselbe Zustand, den man im Zuge der üblichen Konstruktion eines string-artigen Zustands

χ[A] = exp

[
ie

∫

C

dziAi(z)
]
ΨT

0 [A
T ] , (1.34)

durch eichinvariante Verbindung der ins Vakuum eingebrachten statischen Quellen erhält3.
Dabei ist zu beachten, dass hier auch die longitudinalen Anteile des Eichfeldes in das Linien-
integral eingehen. Eine Fourier-Transformation desselben führt nämlich bei Wahl der Kontur
(1.32) auf

ie

∫
d3p

(2π)3

[(
eip·x2 − eip·x1

)

i||p||2 pjALj (p) +
(
eip·x2 − eip·x1

)

in · p njATj (p)
]
, (1.35)

wobei der erste Term gerade das bekannte Coulomb-Dressing (1.26) ergibt.

Der axiale Zustand |χ 〉 ist dabei kein Eigenzustand des Hamilton-Operators. Die Berechnung
des Erwartungswertes liefert

〈χ |Ĥ|χ 〉 = ǫ0 −
e2Λ

4π2
+
e2

4π
Λ2|x2 − x1|+ . . . , (1.36)

wobei wiederum der maximale Wert der Norm des Impulses durch Einführung eines Cut-Off
||p|| < Λ beschränkt wurde und im letzten Term diejenigen Beiträge angedeutet sind, die für
Λ → ∞ verschwinden. Wie in Gleichung (1.30) gibt es auch hier wieder die Vakuumenergie
und einen Selbstwechselwirkungsbeitrag zum Gesamtenergie. Der dritte Term liefert ein für
das Confinement-Phänomen charakteristisches Potential, die Fermionen scheinen also auf-
grund des linear mit dem Abstand der Quellen anwachsenden Potentials eingeschlossen zu
sein. Jedoch divergiert der Vorfaktor bei Entfernung des Cut-Off, daher handelt es sich bei
χ[A] q(x2)q̄(x1)| 0 〉 um einen unendlich hoch angeregten Zustand [HJ97]. Der Grund dafür
ist in der Konstruktion des Flussschlauchs zu suchen, der die beiden Fermionen auf eichin-
variante Weise miteinander verbindet. Die infinitesimal kleinen Ausdehnung des strings in
den beiden Richtungen senkrecht zu n führt im Endeffekt bei kleinen Abständen auf eine
Divergenz der Form δ2(0), welche vom (Quadrat des) UV -Cut-Off Λ2 reguliert wird. Aus der
klassischen Theorie ist bekannt, dass ein solcher Zustand instabil ist und durch Abstrahlung
von Energie mit der Zeit in den energetisch bevorzugten Zustand zweier Quellen übergeht,
die von einem Coulomb-Feld umgeben sind [PFS93]. Betrachtet man den Zusammenhang
der beiden Zustände (1.33) unter diesem Gesichtspunkt, so liegt die Vermutung nahe, dass
der zerstrahlende string aus der klassischen Theorie sein quantenmechanisches Analogon im
transversalen, linienartigen Dressing findet.

Zur Untersuchung dieser Behauptung ist es nötig, die Zeitentwicklung der quantenmechani-
schen Zustände zu studieren, welche durch die Schrödingergleichung diktiert wird. Im von
uns gewählten Zugang, bei dem Zustände mit Wellenfunktionalen identifiziert werden, wird
die Zeitentwicklung mittels des Schrödingerfunktionals S realisiert4,

S[A′,A, t] := 〈A′ |e−iĤt|A 〉 , (1.37)

3Diese Beobachtung wird für das Verständnis des Zusammenhangs von Wilson-Loops und der Zeitentwick-
lung von Zuständen mit axialem Dressing – auch in der Formulierung auf dem Gitter – wichtig werden.

4Für die explizite Form des Schrödingerfunktionals siehe beispielsweise [RT80,LNWW92].



10 1.2. Analytische Behandlung der QED

und zwar durch Bildung eines Funktionalintegrals der Wellenfunktionale mit S

Ψ[A′, t] = 〈A′ |e−iĤt|Ψ, 0〉 =
∫
DA 〈A′ |e−iĤt|A 〉〈A |Ψ, 0〉

=

∫
DA S[A′,A, t] Ψ[A, 0] . (1.38)

Für die Zeitentwicklung des axialen Zustands finden wir [HIL+08b]

χ[A, t] = e−iEC t Φ[A] exp

[
1

2
N (t)− 1

2
N (0)

+ e

∫
d3p

(2π)3
e−i||p||t

(
eip·x2 − eip·x1

n·p

)
nkATk (p)

]
(1.39)

mit

N (t) := e2
∫

d3p

(2π)3
1

||p||e
−2i||p||t

(
1− cosp·(x2 − x1)

(n·p)2
)
niTij(p)nj . (1.40)

Der axiale Zustand zur Zeit t beinhaltet also zum einen den Coulomb-artigen Zustand Φ[A],
zum anderen einen zusätzlichen transversalen Beitrag sowie die zeitabhängige Normierung
N (t). Bemerkenswert ist, dass in keinem der Ausdrücke für n ·p = 0 eine Divergenz auftritt,
da die Differenz der Exponentialfunktionen im Zähler die üblicherweise in axialer Eichung vor-
handenen Divergenzen zu regulieren scheint [KC]. Die Diskussion des Verhaltens des axialen
Zustands für große Zeiten t setzt erneut die Regularisierung der auftretenden UV -Divergenzen
durch Abschneiden der Impulsintegration voraus. Bei Anwesenheit eines solchen Cut-Off in
(1.39) und (1.40) finden wir

lim
t→∞

eiECtχ[A, t] = e−N (0)/2 Φ[A] . (1.41)

Dieses Resultat spiegelt also tatsächlich das aus der klassischen Theorie bekannte wider.
Sowohl klassisch als auch quantenmechanisch

”
zerfällt“ der axiale Zustand im Limes t→∞ in

den Coulomb-artigen Zustand. Die neben dem zeitlich oszillierenden Phasenfaktor auftretende
Normierung garantiert die Wahrscheinlichkeitserhaltung, was im Rahmen der Diskussion der
Überlappmatrixelemente von axialen und Coulomb-artigen Zuständen weiter unten nochmals
aufgegriffen werden soll.

1.2.4 Ladungen in der QED: Confinement versus Deconfinement

Es wurde im vorigen Kapitel gezeigt, dass der Grundzustand der U(1)–Eichtheorie bei An-
wesenheit eines Paares von gegensätzlich geladenen Fermionen durch den mittels Coulomb-
Dressing konstruierten Zustand (1.28) gegeben ist. Der niedrigste Energiebeitrag aufgrund der
Wechselwirkung zwischen den elektrischen Ladungen ist dabei durch das bekannte Coulomb-
Potential gegeben, was unsere Erwartungen für den Fall statischer Quellen bestätigt. Im Falle
des mittels axialem Dressing konstruierten Zustands (1.34) hingegen generiert der (unendlich)
dünne Flussschlauch, mit dem die fermionischen Quellen verbunden sind, ein linear mit dem
Abstand zwischen den Ladungen anwachsendes Potential. |χ 〉 stellt dabei einen unendlich
hoch angeregten und physikalisch wenig sinnvollen Zustand dar, der im Laufe der Zeit in
den energetisch bevorzugten Grundzustand |Φ 〉 übergeht. Es läge daher nahe, den axialen
Zustand einfach als unbrauchbar zu verwerfen, insbesondere da wir ja den Grundzustand in
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dieser einfachen Theorie bereits exakt bestimmen konnten. Im Folgenden soll aber gezeigt
werden, dass sich eine weitere Untersuchung der Unterschiede zwischen beiden Zuständen
als fruchtbar für das Verständnis der Grundzustandsphysik in Theorien erweisen wird, von
denen bekannt ist, dass sie das Confinement-Phänomen zeigen.

Der Zustand Φ[A]q(x2)q̄(x1)| 0 〉 beschreibt zwei separat eichinvariante Fermionen, denn das
Coulomb-Dressing (1.28) lässt sich in zwei Bestandteile faktorisieren,

Φ[A] = exp

[
ie

1

∇2
∂jAj(x2)

]
exp

[
− ie 1

∇2
∂jAj(x1)

]
ΨT

0 [A
T ] . (1.42)

Dabei stellt der erste Faktor das Dressing für q(x2) dar, so daß wir ein insgesamt eichinva-
riantes Fermion erhalten, der zweite Faktor leistet dasselbe für q̄(x1). In einer Theorie ohne
Confinement ist dies genau die Situation, die wir erwarten würden, nämlich die Existenz
und Beobachtbarkeit einzelner Ladungen, welche sich daher durch individuell eichinvariante,
asymptotische Zustände beschreiben lassen sollten. Im Gegensatz dazu existiert diese Fakto-
risierungseigenschaft für den axialen Zustand nicht. Jeder Versuch einer Faktorisierung des
transversalen Anteils in (1.35), der aufgrund des linienartigen Beitrags (1.31) zum Dressing
auftritt, führt auf Polstellen der Form, wie sie bei der Behandlung von Eichtheorien in axialer
Eichung typischerweise auftreten [HIL+08b]. Ohne die Einführung von weiteren Regularisie-
rungsvorschriften ist es folglich nicht möglich, den transversalen Anteil auf eindeutige Weise
zu faktorisieren, und somit individuelle axiale Dressings zu konstruieren, die es uns ermögli-
chen würden, einer einzelnen Ladung (bzw. Anti-Ladung) einen Sinn zu verleihen.

Die physikalische Relevanz dieses Resultats ist folgende: Wir haben bereits gesehen, dass das
axiale Dressing scheinbar auf einen Potentialverlauf führt, der für das Phänomen des Confine-
ments typisch ist. Die sich anbietende physikalische Interpretation besteht nun darin, dass die
Abwesenheit von individuell eichinvarianten Elektronen und Positronen in der Unmöglichkeit
der Faktorisierung des Dressings zum Ausdruck kommt. Anstelle von individuellen Ladungen
beschreibt der Testzustand |χ 〉 ja nur ein einziges elektrisch neutrales Objekt, zu dem die
Konstituenten durch einen (unendlich) dünnen Flussschlauch zusammengebunden sind. Es
ist daher interessant zu spekulieren, ob nicht der axiale Zustand in einer Theorie, die das
Confinement-Phänomen zeigt, eine bessere Beschreibung des Grundzustands bietet als der
Coulomb-artige Zustand.

Zur Überprüfung dieser Hypothese bietet sich die Untersuchung der kompakten QED
an, welche als einfaches Modell einer Theorie mit Confinement zunächst von Polyakov
[Pol75] eingeführt wurde. Hier wurde argumentiert, dass das zugehörige Gittermodell in
vierdimensionaler Raumzeit einen Phasenübergang von einer Confinement-Phase zu einer
Deconfinement-Phase aufweisen sollte, was später auch analytisch5 bewiesen werden konnte
[BMK77,Pes78,Gut80]. Wir erwarten, dass sich das elektrische Feld in der Confinement-Phase
in einem Flussschlauch bisher nicht näher zu spezifizierender Gestalt konzentrieren wird, der
die beiden Quellen miteinander verbindet, was qualitativ vom Verlauf eines Coulomb-Feldes
deutlich abweicht. Es besteht daher durchaus die Möglichkeit, dass der Grundzustand in die-
ser Phase signifikant von dem in Gleichung (1.28) angegebenen abweicht.

5Vgl. hierzu ebenfalls [Sei82] und [Kog83].
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Wir stellen nun eine Methode vor, mit der es uns gelingen wird, die verschiedenen Ansätze
für den Grundzustand miteinander zu vergleichen und somit Informationen über den wah-
ren Grundzustand zu erhalten. Diese Methode soll im Folgenden bei der analytischen und
numerischen Untersuchung der (kompakten) QED angewandt werden.

1.2.5 Eine Methode zur Untersuchung des Grundzustands

Unser Ziel ist es, einen Zustand |Ψ 〉, der als Kandidat für den Grundzustand in Frage
kommt, mit dem unbekannten, wahren Grundzustand |Ω 〉 vergleichen zu können. Als Maß
für die Übereinstimmung kommt das Betragsquadrat der Überlappungsamplitude |〈Ω |Ψ〉|2
in Frage. Dieser Überlapp kann für große Zeiten t aus der sogenannten Persistenzamplitude

〈Ψ |e−iĤt|Ψ 〉 extrahiert werden, denn nach Einfügen der Identität als Summe von Projekto-
ren auf ein vollständiges Funktionensystem und Übergang zur euklidischen Raumzeit mittels
Wick-Rotation (vgl. dazu etwa [Rot97,MM94,PS95]) erhalten wir

〈Ψ |e−Ĥt|Ψ 〉 =
∑

n

〈Ψ |e−Ĥt|n 〉〈n |Ψ〉

=
∑

n

|〈n |Ψ〉|2 e−Ent ,
(1.43)

wobei wie üblich En den Eigenwert von Ĥ zum Eigenzustand |n 〉 bezeichnet. Nach hinrei-
chend großer Zeitentwicklung sind alle Beiträge, die von angeregten Zuständen herrühren,
exponentiell unterdrückt, der Grenzwert t → ∞ entspricht also einem Grundzustandspro-
jektor [HI07]. Im Folgenden wollen wir zunächst das Verhältnis zweier Persistenzamplituden
betrachten, da der von der Grundzustandsenergie bestimmte exponentielle Faktor für unsere
Untersuchung des Überlapps der Testzustände mit dem Grundzustand nicht von Interesse
ist. Betrachten wir also

R(r, t) :=
〈χ |e−Ĥt|χ 〉
〈Φ |e−Ĥt|Φ 〉

, (1.44)

wobei r := |x2 − x1| den Abstand der beiden Quellen bezeichnet, die Teil der mittels (1.28)
und (1.34) präparierten Zustände |Φ 〉 und |χ 〉 sind. Falls dieses Verhältnis für große Zeiten
t kleiner als eins ist, so hat |Φ 〉 einen besseren Überlapp mit dem wahren Grundzustand,
wohingegen |χ 〉 dem Grundzustand ähnlicher ist, falls das Verhältnis größer als eins ist.

In der gewöhnlichen, nicht-kompakten U(1)–Theorie, die wir bisher studiert haben, kann
(1.44) exakt berechnet werden und ist gegeben durch

R(r, t) = eEC t〈χ |e−Ĥt|χ 〉

= exp

[
− e2

Λ∫
d3p

(2π)3
1

||p||(1− e−||p||t)
(
1− cos(rn·p)

(n·p)2
)
niTij(p)nj

]
,

→ exp [−N (0)] für t→∞ .

(1.45)

Dabei wurde in der ersten Zeile ausgenutzt, dass |Φ 〉 ein Eigenzustand des Hamilton-
Operators ist. Die Abhängigkeit des zeitlichen Limes vom Abstand r der Quellen steckt
in der UV -divergenten Konstante N (0), vgl. (1.40) im Limes Λ → ∞, so dass der Über-
lapp formal verschwindet. Führen wir einen UV -Regulator ein, so ist N (0) positiv definit
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Abbildung 1.1: Das in
Gleichung (1.44) definier-
te Verhältnis R(r, t) in
der nicht-kompakten QED
im Kontinuum. Die Ein-
heiten werden unterhalb
von Gleichung (1.46) er-
läutert. Bei Zunahme des
Abstands zwischen den La-
dungen zeigt sich, daß der
axiale Zustand eine zuneh-
mend schlechtere Beschrei-
bung des Grundzustands
zu bieten vermag.

und somit gilt notwendigerweise R(r, t) < 1, was zu erwarten war, da es sich bei |χ 〉 um
einen unrealistischen Testzustand, bei |Φ 〉 hingegen um den Grundzustand handelt. Schließ-
lich ist festzuhalten, dass (1.45) bei Anwesenheit eines Regulators korrekterweise gegen das
Betragsquadrat des Überlapps zwischen dem axialem und dem Coulomb-artigem Zustand
konvergiert, dieser berechnet sich im Limes t→∞ zu

〈χ |Φ〉 = exp [−N (0)/2 ] . (1.46)

In Abbildung 1.1 finden sich die Ergebnisse unserer Berechnungen des Verhältnisses (1.44).
Um mit den Daten vergleichen zu können, die durch Gittersimulationen gewonnen wurden
und im nächsten Abschnitt präsentiert werden, wurde e−2 = 1.05 gewählt. Längen werden in
Einheiten von π/Λ gemessen. Die Wahl dieser dimensionslosen Einheiten bietet den Vorteil,
dass 1/Λ mit der Gitterkonstanten in Verbindung gebracht werden kann; die Impulsintegrati-
on wird dabei auf ||p|| < π beschränkt. Zunächst ist festzustellen, dass R(r, t) für alle gezeigten
Werte von r und t kleiner ist als eins. Für feste Werte von r strebt R(r, t) mit zunehmendem
t rasch gegen den jeweiligen asymptotischen Wert exp[−N (0)]. Außerdem ist zu beobachten,
dass sich das Verhältnis bei zunehmendem Abstand der Quellen r zu kleineren Werten hin
verschiebt, und zwar für alle Zeiten t, insbesondere auch für den Grenzfall t → ∞, der ja
die Grundzustandsphysik sondiert. Eine Vergrößerung des Abstands r führt zur Ausbildung
eines immer längeren Flussschlauchs, in dem immer mehr Energie konzentriert wird, was eine
zunehmend schlechtere Beschreibung des wahren Grundzustands darstellt, dessen Coulomb-
Felder radialsymmetrisch proportional zu 1/r abfallen.

Zuletzt wurde überprüft, wie sensibel diese Ergebnisse auf eine Änderung des zur Berechnung
von R(r, t) verwendeten Wertes des Cut-Off reagieren. Es konnte dabei festgestellt werden,
dass sich bei einer weiteren Vergrößerung von Λ qualitativ nichts an dem in Abbildung 1.1 ge-
zeigten Verhalten ändert. Die prinzipielle Frage nach der Abhängigkeit dieser Ergebnisse von
der Wahl des Regularisierungsschemas wird in Kapitel 1.3.4 diskutiert werden. Dort werden
wir die vorliegenden Ergebnisse mit Resultaten vergleichen können, die in einer diskretisierten
Raum-Zeit nach Einführung eines Gitterregulators gewonnen werden konnten.



14 1.3. Der Dressingformalismus auf dem Gitter

1.3 Der Dressingformalismus auf dem Gitter

Eine exakte analytische Behandlung der kompakten QED in D = 3+1 Dimensionen ist nicht
möglich, obwohl die in unserem bisherigen Zugang gewählte Methode der Wellenfunktionale
erfolgreich im Falle einerD = 2+1 dimensionalen Raumzeit angewandt werden konnte [KK95,
Nol04]. Wir verändern daher unseren Zugang und erweitern unsere Untersuchungsmethoden
um die Technik der Gittersimulation von Eichtheorien.

1.3.1 Eichfixierung und Dressingformalismus

Die für einen erfolgreichen Übergang von der funktionalen Kontinuumsformulierung zur Git-
terformulierung entscheidende Frage ist, ob – und wenn ja, wie – es gelingen kann, den
Dressingformalismus auf dem Gitter einzuführen. Es empfiehlt sich daher vor dem Übergang
auf das Gitter noch einmal einen systematischen Blick auf die Konstruktion von Dressings
im Rahmen der Kontinuumsformulierung zu werfen.

Die Lagrangedichte der Quantenelektrodynamik ist gegeben durch [CL84]

LQED(x) = −
1

4
Fµν(x)F

µν(x) + ψ̄(x)(iγµDµ −m)ψ(x) , (1.47)

wobei der abelsche Feldstärketensor des Vektorpotentials Fµν(x) und die kovariante Ableitung
durch

Fµν(x) = (ie)−1 [Dµ,Dν ] = ∂µAν(x)− ∂νAµ(x) (1.48)

Dµψ(x) = [∂µ + ieAµ(x) ]ψ(x) (1.49)

gegeben sind. Vektorpotential und Materiefelder transformieren sich unter lokalen Eichtrans-
formationen Ω(x) = exp[−ieλ(x)] ∈ U(1) gemäß

Aµ(x) → AΩ
µ (x) = Ω(x)Aµ(x)Ω−1(x)− ie−1Ω(x)∂µΩ

−1(x) (1.50)

ψ(x) → ψΩ(x) = Ω(x)ψ(x) (1.51)

ψ̄(x) → ψ̄Ω(x) = ψ̄(x)Ω−1(x) . (1.52)

Die Motivation für die Einführung von Dressings wurde bereits im vorigen Kapitel gegeben:
Zwar ist die Lagrangedichte (1.47) per Konstruktion eichinvariant, die Materiefelder aber
können per se aufgrund von (1.51) weder direkt mit eichinvarianten, physikalischen Observa-
blen assoziiert werden, noch können sie allein als Erzeuger für Zustände mit wohldefinierter
Ladung dienen. Dies gilt sowohl für dynamische, als auch für statische Fermionen, die uns im
Folgenden bei der Untersuchung externer Quellen besonders interessieren werden.

Die Idee ist nun, stattdessen einen zusammengesetzten Operator der Form

Ψ[A, ψ](x) := h[A, x]ψ(x) (1.53)

zu verwenden, wobei sich das Dressing h[A, x], welches auch als feldabhängige Eichtransfor-
mation begriffen werden kann, unter Eichtransformationen wie folgt transformieren soll:

h[A, x]→ h[AΩ, x] = h[A, x] Ω−1(x) . (1.54)
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Dadurch wird die Änderung des Materiefeldes unter Eichtransformationen (1.51) gerade kom-
pensiert und das resultierende Objekt Ψ[A, ψ](x) ist eichinvariant. Dies ist die minimale
Forderung, die ein zu konstruierendes Dressing erfüllen muss. Die Ausnutzung des engen Zu-
sammenhangs, der zwischen Dressings und denjenigen Eichtransformationen besteht, die zur
Realisierung einer Eichfixierungsbedingung notwendig sind, erlaubt dabei eine systematische
Konstruktion von Dressings, die (1.54) erfüllen. Um dies zu verstehen ist es hilfreich, die Si-
tuation unter geometrischen Gesichtspunkten zu betrachten. Eine schematische Darstellung
findet sich in Abbildung 1.2.

Es bezeichne χ(A) = 0 eine Eichfixie-

χ(Ah) = 0

A

A
Ω

Abbildung 1.2: Die Schnittbedingung ermöglicht
lokal die Auswahl eines eindeutigen Repräsentan-
ten auf OA. Der Einfluss von Gribov-Kopien wird
in Kapitel 1.4.2 diskutiert.

rungsbedingung. Die Fixierung einer Ei-
chung hat den Sinn, auf einem Orbit von
Eichfeldkonfigurationen OA genau einen
Repräsentanten auszuwählen, um zu ei-
ner Einschränkung des vollen Konfigura-
tionsraum J auf den Faktorraum J0 =
J /G bezüglich der Wirkung der Eich-
gruppe G zu gelangen, der den eigentli-
chen Phasenraum der Theorie darstellt.
Für jede Konfiguration A ∈ OA soll-
te demnach eine eindeutige Eichtrans-
formation h := h[A] existieren, welche
diese Konfiguration an diejenige Stel-
le auf dem Orbit transformiert, an der
die Eichfixierungsbedingung χ(Ah) = 0

erfüllt ist. Dadurch gelangt man zu einer konkreten Beschreibung des Faktorraums, den man
mit der Menge aller Eichfeldkonfigurationen, die diese sogenannte Schnittbedingung erfüllen,
identifiziert.

Sei nun AΩ ein anderer Repräsentant auf dem Orbit, so überführt nun eine andere Eichtrans-
formation hΩ := h[AΩ] diese Konfiguration in diejenige, welche die Eichfixierungsbedingung

erfüllt, χ((AΩ)h
Ω
) = 0. Die Eichtransformation hΩ kann auch als Hintereinanderausführung

zweier Eichtransformationen betrachtet werden, und unter der Annahme der Eindeutigkeit
der Eichfixierungsbedingung folgt somit

(AΩ)h[A
Ω] := Ah[AΩ]Ω = Ah[A] , (1.55)

für jedes Ω, und folglich

h[AΩ] Ω = h[A] =⇒ h[AΩ] = h[A] Ω−1 . (1.56)

Daher besitzt h[A] offenbar genau das gewünschte Transformationsverhalten eines Dressings.

Wählen wir nun im Falle der QED als eine mit der bereits fixierten Weyl-Eichung A0 = 0
kompatiblen Bedingung beispielsweise die Coulomb-Eichung (für den longitudinalen Anteil
der Eichfelder)

χC(Ah(x)) := ∂jAhj (x) = 0 , (1.57)
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so führt dies nach (1.50) auf die das Funktional h[A, x] bestimmende Gleichung

∂j

(
h(x)Aj(x)h−1(x)− i

e
h(x)∂jh

−1(x)

)
= 0 , (1.58)

die in der Schrödingerdarstellung auszuwerten ist, in welcher der zum Vektorpotential ge-
hörende Operator Diagonalgestalt besitzt. Es ist leicht nachzurechnen, dass ein Ansatz der
Form h[A](x) = exp(iv[A,x]) auf die bereits von Dirac [Dir55] angegebene Lösung

v[A,x] = e
1

∇2
∂jAj(x) (1.59)

zur Beschreibung eines einzelnen, statischen Elektrons führt. Durch Verwendung von h−1

kann das physikalische Positron konstruiert werden, für einen Elektron-Positron-Zustand fin-
det sich daher die bereits auf anderem Wege gewonnene Lösung (vgl. 1.28) wieder.

Durch Wahl unterschiedlicher Eichbedingungen können also systematisch unterschiedliche
Dressings konstruiert werden, deren physikalische Bedeutung für die daraus konstruierten
Zustände zu untersuchen bleibt. Für die beiden bisher betrachteten Dressings handelt es sich
bei den zugehörigen Eichbedingungen um die Coulomb-Eichung (1.57) und um die axiale
Eichung

χA(Ah(x)) := nj Ahj (x) = 0 . (1.60)

Erfüllen die Eichfelder bereits die jeweilige Eichfixierungsbedingung, so erweist sich das zu-
gehörige Dressing als trivial:

h[A,x]
∣∣
χ(Ah(x)=0) = 1 . (1.61)

Zur Vorbereitung des Übergangs von der Kontinuumsformulierung auf das Gitter wollen wir
zuletzt die Behandlung von externen Ladungen im Rahmen des Pfadintegralformalismus kurz
rekapitulieren. Dazu betrachten wir zunächst die Zustandssumme

Z[j] =
∫
DA exp

[
−
∫

d4x
{
L(x) + jµ(x)Aµ(x)

}]
, (1.62)

wobei jµ(x) die Stromdichte der äußeren Quellen bezeichnet. Außerdem soll implizit ange-
nommen werden, dass sowohl das Integrationsmaß, als auch die Lagrangedichte in (1.62) eich-
fixierende Terme enthalten, die es uns ermöglichen, Z[j] in einer Eichung unserer Wahl aus-
zuwerten. Zunächst soll die Quelle aus einem statischen Fermion, sowie einem Anti-Fermion
im Abstand r voneinander bestehen. Wählen wir die Coulomb-Eichung (1.57), so reduziert
sich das Dressing des Zustands (1.28) auf die Identität

|Φ 〉
∣∣
∂iAi(x)=0

= | q(x2)q̄(x1) 〉 := q(x2)q̄(x1)|ΨT
0 [A

T ] 〉 , (1.63)

und die Erzeugung eines statischen Fermions am Ort x2 sowie eines Anti-Fermions am Ort
x1 kann durch die Quellenfunktion

ρ(z) := j0(z) = e [δ(z − x2)− δ(z − x1)] (1.64)

beschrieben werden. Nehmen wir ferner an, dass dieser Zustand für einen Zeitraum T exi-
stieren soll, bevor die Ladungen schließlich wieder annihiliert werden, so berechnet sich die
zugehörige Amplitude zu

〈Φ |e−ĤT |Φ 〉 = Z[0]−1

∫

∂iAi=0

DA exp

[
−
∫

d4x
{
L(x) + ρ(x)A0(x, t)

}]
. (1.65)
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Führen wir schließlich noch sogenannte kurze Polyakov-Linien

P (x, T ) := T exp

[
ie

∫ T

0
dt A0(t,x)

]
(1.66)

ein, so lässt sich die interessierende Persistenzamplitude als Zweipunkt-Funktion in der Form
[HLLM07]

〈Φ |e−ĤT |Φ 〉 = 〈PC(x2, T )P
C(x1, T )

† 〉 (1.67)

schreiben, wobei die kurzen Polyakov-Linien in Coulomb-Eichung auszuwerten sind. Die-
se Konstruktion wurde ursprünglich von Marinari et al. [MPPT93] zur Untersuchung des
asymptotischen Anteils des Inter-Quark-Potentials der SU(3)−Eichtheorie auf dem Gitter
eingeführt und im Folgenden auch bei der Untersuchung des (Farb-) Coulomb-Potentials
zwischen statischen Quellen in diversen Theorien [GO03,GOZ04] erfolgreich eingesetzt. Un-
ser Interesse hingegen richtet sich primär auf den Überlapp des Coulomb-artigen Zustands
|Φ 〉, sowie des axialen Zustands |χ 〉 mit dem wahren Grundzustand |Ω 〉. Die Extraktion
des statischen Inter-Quark-Potentials aus den Amplituden (1.43) wird daher nur zu Illustra-
tionszwecken durchgeführt.

1.3.2 Gitterformulierung der kompakten QED

Auf dem Gitter sind die mit den Eichfeldern assoziierten Freiheitsgrade die Felder

Uµ(x) = exp(iθµ(x)) , −π < θµ(x) ≤ π , (1.68)

welche auf den Verbindungen (links) zwischen den Gitterpunkten x des vierdimensionalen
euklidischen Raum-Zeit-Gitters leben, und daher oft selbst als Links oder Link-Variablen
bezeichnet werden. Die Zustandssumme der Theorie ist gegeben durch

Z =

∫
Dθµ exp

[
β
∑

x

∑

µ<ν

cos (θµν(x))
]
, (1.69)

wobei der Simulationsparameter β mit e, der nackten elektrischen Kopplungskonstanten,
über β = e−2 verknüpft ist und die auf Wilson zurückgehende Form der Wirkung verwendet
wurde. Die sogenannten Plaquetten-Winkel sind dabei definiert durch

θµν(x) := θµ(x) + θν(x+ µ)− θµ(x+ ν)− θν(x) . (1.70)

In der Kontinuumsformulierung der QED kann der abelsche Wilson-Loop exakt berechnet
werden [BBJ81,ZJ96] und das daraus gewonnene Potential stimmt in D = 3 + 1 Dimensio-
nen mit dem erwarteten Coulomb-Potential überein. In der durch Einführung eines Gitters
regularisierten Theorie besteht in zwei Grenzfällen die Möglichkeit, interessierende Observa-
blen in Störungstheorie zu berechnen. Dabei handelt es sich um die Limites starker (β → 0)
und schwacher Kopplung (β → ∞). Es zeigt sich, dass der Wilson-Loop in D = 3 + 1 Di-
mensionen für jede betrachtete Ordnung einer Entwicklung im Limes schwacher Kopplung
ein Umfangsgesetz aufweist6, was einem asymptotisch konstanten Wert des Potentials ent-
spricht, hingegen im Limes starker Kopplung einem Flächengesetz folgt, was einem linearen

6Der Beweis der Existenz einer Coulomb-Phase der Theorie in diesem Grenzfall wurde dabei unter Ver-
wendung der Villain’schen Form der Wirkung geführt [Gut80].
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Ansteigen des Potentials entspricht [Rot97,ZJ96]. Die perturbative Untersuchung weist also
darauf hin, dass die Theorie in den beiden Grenzfällen in unterschiedlichen Phasen realisiert
sein sollte.

Aufgrund der Kompaktheit des Definitionsintervalls der Freiheitsgrade (1.68) ermöglicht die
U(1)–Theorie auf dem Gitter das Auftreten magnetischer Monopole. Durch hochgenaue Mes-
sungen konnte gezeigt werden, dass für einen kritischen Wert von βcrit = 1.0111331(15) in der
D = 3+1 dimensionalen Theorie [VdF04] tatsächlich ein Phasenübergang auftritt. Unterhalb
des Phasenübergangs (β < βcrit) führt das Auftreten der magnetischen Monopole mittels des
dualen Meissner-Effekts [Pol75] zum Einschluss der elektrischen Ladungen, was durch Git-
tersimulation eindrucksvoll bestätigt werden konnte [DT80,SW92]. Am Phasenübergang fällt
die Monopoldichte rapide ab und für β ≥ βcrit ist die Monopolbildung so stark unterdrückt,
dass die Theorie in der gewöhnlichen Coulomb-Phase realisiert ist. In diesem Zusammenhang
sollte darauf hingewiesen werden, dass die gewöhnliche QED am kritischen Punkt β →∞ der
kompakten QED realisiert ist und der Phasenübergang erster Ordnung bei βcrit die Coulomb-
Phase strikt von der Confinement-Phase trennt, welche daher keinen Kontinuumslimes besitzt
und somit letztlich als Artefakt der diskretisierten Formulierung anzusehen ist.

Unsere Simulationen wurden für die Parameterwerte β = 1.0 (Confinement-Phase), sowie
β = 1.05 (Coulomb-Phase) auf Gittern der Größe 124 durchgeführt. Ein wichtiges Detail ist,
dass offene Randbedingung für die räumlichen Richtungen, sowie periodische Randbedingun-
gen in zeitlicher Richtung verwendet wurden. Dies erweist sich als notwendig, um die axiale
Eichung auf dem Gitter richtig implementieren zu können, was weiter unten noch diskutiert
wird. Um Randeffekte zu minimieren wurde daher bei allen Messungen immer ein Abstand
von zwei Gitterkonstanten zum Rand eingehalten. Den Messergebnissen der untersuchten
Observablen liegt in jeder der beiden Phasen ein Ensemble von je 20.000 Konfigurationen
zugrunde. Diese wurden mittels des in Anhang B beschriebenen Heatbath-Algorithmus in
Verbindung mit mikrokanonischen Reflexionen erzeugt, wobei ein sogenannter supersweep als
Zusammenfassung eines Heatbath-Updates des gesamten Gitters, gefolgt von einer dreimali-
gen Anwendung des Algorithmus zur mikrokanonischen Reflexion der Link-Variablen definiert
wurde. Zum Start der Simulationen wurden sowohl völlig geordnete (cold), als auch völlig
ungeordnete (hot) Konfigurationen herangezogen und im Folgenden die Entwicklung des Sy-
stems ins thermische Gleichgewicht überwacht. Dabei konnte nachgewiesen werden, dass die
Wahl der Ausgangskonfiguration nach einer Thermalisierungsphase von 1000 supersweeps in
keiner der beiden Phasen einen nachweisbaren Einfluss auf die Messergebnisse hatte.

1.3.3 Coulomb-Eichung und axiale Eichung

Wie bereits diskutiert, erweisen sich die Korrelationsfunktionen von kurzen Polyakov-Linien
der zeitlichen Ausdehnung T und räumlichem Abstand r als besonders relevant bei der Be-
schreibung der Zeitentwicklung eines Zustands, bestehend aus einem statischen Quark und
Antiquark. Auf dem Gitter wird dabei die Propagation eines statischen Fermions am Ort x
über einen Zeitraum T hinweg durch die Polyakov-Linie

P h(x, T ) :=
T−1∏

t=0

U
h[U ]
4 (x, t) (1.71)
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in Analogie zu (1.66) beschrieben, wobei {Uh[U ]
µ (x)} die Links nach Fixierung der Coulomb-

Eichung bezeichnet. Im Falle eines Anti-Fermions ist die hermitesch konjugierte Polyakov-
Linie zu verwenden, so dass sich für die Persistenzamplitude CΦΦ(r, T ) des eichinvarianten
Zustands |Φ 〉, bestehend aus einem statischen Fermion am Ort x2 sowie einem Anti-Fermion
am Ort x1 im Abstand r der Ausdruck

CΦΦ(r, T ) := 〈Φ |e−ĤT |Φ 〉 = 〈P h(x2, T )P
h(x1, T )

† 〉 (1.72)

ergibt. Es ist dabei interessant zu beobachten, dass sich der Effekt von Eichtransformationen
Ω(x) = exp[iα(x)], welche an den Link-Variablen gemäß

Uµ(x) → UΩ
µ (x) = exp

[
− iα(x + µ) + iα(x)

]
Uµ(x) , −π < α(x) ≤ π (1.73)

durchgeführt werden, nur an den Enden der Polyakov-Linien bemerkbar macht. In Coulomb-
Eichung ist das Dressing des eichinvarianten Coulomb-Zustands |Φ 〉 trivial und die gesamte
Information über die ursprüngliche Konstruktion des Zustands steckt nun in den Enden der
Polyakov-Linien. Genau dasselben geschieht, wenn wir die Persistenzamplitude des axialen
Zustands |χ 〉 untersuchen wollen. Wählen wir die axiale Eichung, so überträgt sich der Effekt
des axialen Dressings von den Ladungen wieder auf die (Enden der) kurzen Polyakov-Linien.
Im allgemeinen Fall betrachten wir also Korrelatoren von Polyakov-Linien, die in der Zeit-
schicht x4 = 0 beginnen und bei x4 = T enden, wobei diese Zeitschichten in eine spezielle
Eichung gebracht werden, was der Wahl des Dressings h[U ] für die Testladungen entspricht.
In unserem Fall müssen daher sowohl die Coulomb-Eichung, als auch die axiale Eichung auf
dem Gitter realisiert werden.

Die Fixierung der Coulomb-Eichung wurde dabei durch iterative Maximierung des eichfixie-
renden Funktionals

F [UΩ] =
∑

x,t

3∑

i=1

Re UΩ
i (x, t) (1.74)

für jede Zeitschicht separat bezüglich α(x) implementiert. Die Details der numerischen Reali-
sierung finden sich in Anhang C. Unseren Simulationen liegt ein Wert von δ2 < 10−12 für das
Abbruchkriterium der Eichfixierungsprozedur zugrunde, dabei ist zu beachten, dass die in die
Definition von δ2 eingehende Anzahl an Gitterpunkten aufgrund der Verwendung von offe-
nen Randbedingung auf die Anzahl innerer Gitterpunkte Nin = (Ni − 2)3 ×Nt, (i = 1, 2, 3),
reduziert ist. Nach Abschluss der Eichfixierung existiert noch immer die Möglichkeit, rein
zeitabhängige Eichtransformationen der Form

Ui(x, t) → UΩ
i (x, t) = Ω(t)Ui(x, t)Ω

†(t), (i = 1, 2, 3) (1.75)

U4(x, t) → UΩ
4 (x, t) = Ω(t)U4(x, t)Ω

†(t+ 1) (1.76)

durchzuführen, welche mit der Eichbedingung verträglich sind. Dabei handelt es sich in jeder
festen Zeitschicht um eine globale Symmetrietransformation. Da die Durchführung derartiger
Eichtransformationen aber keinen Einfluss auf die von uns zu untersuchenden Größen (1.72)
hat, war es nicht nötig, diese residuelle Eichfreiheit noch vollständig zu fixieren.

Während die Fixierung der Coulomb-Eichung ein nicht-lineares Optimierungsproblem dar-
stellt, kann die Fixierung der axialen Eichung ohne Probleme direkt implementiert werden.
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Die Eichfixierungsbedingung lautet

A3(x) = 0 , gleichbedeutend mit UΩ
3 (x) = 1 , (1.77)

wobei der im Rahmen der analytischen Behandlung eingeführte Einheitsvektor n nun in die
3–Richtung zeigen soll. Nehmen wir an, es gäbe N3 Gitterpunkte in der 3–Richtung, und dass
die Eichtransformationen gemäß

Ωk := Ω(xk) mit xk := (x1, x2, ka, x4) , k = 1 . . . N3 (1.78)

nummeriert seien. Die entscheidende Beobachtung ist nun, dass die Eichtransformationen Ω1

und ΩN3 aufgrund der offenen Randbedingungen unabhängig voneinander sind, und es daher
immer möglich ist, die Eichtransformation Ωk+1 so zu wählen, dass

UΩ
3 (xk) = Ωk U3(xk)Ω

†
k+1 = 1 (1.79)

erfüllt ist7. Bis auf eine residuelle Eichfreiheit in der Wahl des unbestimmten Ω1 ist die axiale
Eichung in Richtung n damit vollständig fixiert.

1.3.4 Sondierung des Grundzustands

Nachdem nun geklärt ist, wie der Dressingformalismus auf dem Gitter implementiert werden
kann, soll nun die Relevanz verschiedener, im Rahmen des Dressingformalismus zu konstru-
ierenden Testzustände für die Grundzustandsphysik geklärt werden, indem ihr Überlapp mit
dem wahren Grundzustand durch Berechnung der in (1.44) definierten Größe R(r, t) unter-
sucht wird.

Zu diesem Zweck ist es sinnvoll, zunächst die folgende Matrix von Übergangsamplituden

Cψ′ψ := 〈ψ′ |e−Ĥt|ψ 〉 einzuführen:

M(r, t) =

(
CΦΦ(r, t) CχΦ(r, t)

CΦχ(r, t) Cχχ(r, t)

)
. (1.80)

Dadurch wird es uns ermöglicht, für feste Werte von r den minimalen Wert von t zu be-
stimmen, für welchen die Beiträge von angeregten Zuständen zu den Amplituden Cψ′ψ(r, t)
bereits hinreichend unterdrückt sind, so dass wir tatsächlich den Überlapp mit dem Grund-
zustand extrahieren können (vgl. die Diskussion um 1.43). Die Berechnung der Determinante
der Matrix M liefert im Limes großer Zeiten

e2E0t det[M(r, t)]→
∣∣∣∣∣
|〈Ω |Φ〉|2 〈χ |Ω〉〈Ω |Φ〉
〈Φ |Ω〉〈Ω |χ〉 |〈Ω |χ〉|2

∣∣∣∣∣ = 0 . (1.81)

Weicht also der Wert der Determinanten von M (im Rahmen des statistischen Fehlers) noch
wesentlich von Null ab, so ist dieser Grenzwert offensichtlich noch nicht erreicht, und es muss
daher noch eine längere Zeitentwicklung der zu untersuchenden Zustände zugelassen werden.

Die Berechnung von CΦΦ(r, t), dem Korrelator der Polyakov-Linien mit Coulomb-Dressing,
stellt keine Schwierigkeit dar. Eine schematische Darstellung dieses Objekts findet sich in

7Universelle Lösbarkeit: N3 − 1 Bedingungen für N3 zu bestimmende Eichtransformationen.
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(a) Coulomb-Dressing (b) Axial-Dressing

Abbildung 1.3: Darstellung der Persistenzamplituden auf dem Gitter. Zeitentwicklung im Fal-
le (a) des Zustands |Φ 〉 in Coulomb-Eichung, sowie (b) des Zustands |χ 〉 in axialer Eichung.

Abbildung 1.3 (a). Die graue Schattierung der Ladungen soll dabei andeuten, dass sich das
Dressing der Ladungen an den Enden der Polyakov-Linien bemerkbar macht, und zwar durch
eben diejenigen Eichtransformationen, die insgesamt nötig waren, um Anfangs- und Endzeit-
schicht in Coulomb-Eichung zu bringen.

Die Berechnung von Cχχ(r, t) läuft auf die Berechnung eines eichinvarianten Wilson-Loops
hinaus. Dies wird folgendermaßen ersichtlich: Es bezeichne P (x1,x2) den Korrelator zwei-
er Polyakov-Linien von zeitlicher Ausdehnung t, welche in der von der Zeitrichtung und n

aufgespannten Ebene im räumlichen Abstand r parallel zueinander verlaufen,

P (x1,x2)[U
Ω
µ ] , x2 = x1 + rn , (1.82)

und mittels eichfixierter Link-Variablen {UΩ
µ (x)} konstruiert werden. Da es sich in axialer

Eichung (1.77) bei den Links UΩ
3 (x) (aufgrund unserer Wahl n = ê3) um die Eins-Elemente

der Gruppe handelt, kann dieser Korrelator auch zu einem r × t Wilson-Loop in der ê3−t
Ebene ergänzt werden. Da aber der Wilson-Loop offensichtlich eichinvariant ist, finden wir

P (x1,x2)[U
Ω
µ ] =W [UΩ

µ ] =W [Uµ] . (1.83)

Mit anderen Worten bedeutet dies, dass zum einen zur Berechnung der Persistenzamplitu-
de des axialen Zustands die losen Enden der Polyakov-Linien zur Anfangs- und Endzeit auf
direktem Wege in den jeweiligen Zeitschichten des Gitters durch Paralleltransporter Uµ(x)
miteinander verbunden werden müssten, zum anderen, dass die Eichtransformation, welche al-
le Zeitschichten in axiale Eichung bringen soll, effektiv überhaupt nicht durchgeführt werden
muss. Zur Herleitung des Wilson-Loop-Erwartungswertes als Ergebnis der Zeitentwicklung
eines axialen Zustands im Rahmen der Kontinuumsformulierung wird auf Kapitel 4.6 verwie-
sen, eine schematische Darstellung der Situation findet sich in Abbildung 1.3 (b).

Das Vorgehen zur Berechnung der Nebendiagonalelemente der Matrix M ist nun ebenfalls
unmittelbar offensichtlich. Im Falle des Korrelators CΦχ(r, t), der den Zerfall des axialen
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Abbildung 1.4: Die Deter-
minante det[M(r, t)] der in
(1.80) definierten Matrix
M [r, t]. Die Ergebnisse der
Simulationen für β < βcrit
sind durch Einzelsymbole
dargestellt, für β > βcrit
wurden die verwendeten
Symbole zur besseren Un-
terscheidbarkeit durch Li-
nien miteinander verbun-
denen.
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in den mittels Coulomb-Dressing zu konstruierenden Zustand beschreibt, bedeutet dies, die
beiden Polyakov-Linien in der Anfangszeitschicht durch Paralleltransporter miteinander zu
verbinden, nicht aber in der Endzeitschicht, so dass die Gestalt des dabei entstehenden Ob-
jekts schematisch durch einen Bügel der Form ⊔ wiedergegeben werden kann. Analog dazu
entspricht das durch ⊓ veranschaulichte Objekt dem Korrelator CχΦ(r, t), wobei sich die An-
fangszeitschicht in Coulomb-Eichung, die Endzeitschicht hingegen in axialer Eichung befindet.

In Abbildung 1.4 ist das Verhalten der Determinante det[M(r, t)] für verschiedene Werte von
r als Funktion der Zeit t aufgetragen. Es ist zu beobachten, dass der Wert der Determinante
für alle betrachteten Werte von r mit zunehmende Zeit sehr schnell sinkt und bereits um
tmin = 3a sowohl unterhalb (β = 1.0), als auch oberhalb (β = 1.05) des Phasenübergangs
effektiv auf Null abgefallen ist. Daher wird der bereits diskutierte

”
Limes großer Zeiten“ (vgl.

1.43) schon sehr früh erreicht, es sollte daher möglich sein, bereits nach einer relativ kurzen
Zeitentwicklungsphase aus den Korrelatoren einen guten Überlapp mit dem Grundzustand
extrahieren zu können. Für Zeiten T > tmin erwarten wir daher für die Persistenzamplituden
des Coulomb- bzw. Axial-Zustands die Form

CΦΦ(r, T ) = |〈Ω |Φ〉|2 e−E0 T bzw. Cχχ(r, T ) = |〈Ω |χ〉|2 e−E0 T , (1.84)

wobei die Grundzustandsenergie E0 im Falle sehr schwerer Quellen gerade durch das Poten-
tial V (r), welches zwischen den statischen Testladungen herrscht, bestimmt wird.

Die Werte des Potentials V (r), sowie die des Betragsquadrats der Überlappmatrixelemente,
können aus den (fehlerbehafteten) Messwerten für die Persistenzamplituden (1.84) extrahiert
werden. Zu diesem Zweck wurde für einen festen Wert des Abstands r der Quellen der negative
Logarithmus des Erwartungswertes von CΦΦ(r, T ) bzw. Cχχ(r, T ) gebildet, und mittels der
Methode der gewichteten kleinsten Quadrate (siehe z.B. [PTVF07], Kapitel 15) eine Gerade
an die auf diese Weise für verschiedene Werte von T erhaltenen Datenpunkte angepasst.
Die Qualität eines solchen Fits kann durch die Überprüfung zweier Parameter kontrolliert
werden: Q, die Güte des Fits (Goodness-of-Fit), sowie der Wert des reduzierte χ2, welcher
üblicherweise mit χ2/ν bezeichnet wird, wobei ν = N−2 die Anzahl der Freiheitsgrade (DoF)
für einen linearen Fit an N Datenpunkte bezeichnet.



Kapitel 1. Der Grundzustand der Yang-Mills-Theorie 23

Abbildung 1.5: Das statische Potential in
kompakter QED unterhalb (β = 1.0) und
oberhalb (β = 1.05) des Phasenübergangs.

Abbildung 1.6: R(r, t) in der Coulomb-Phase
der kompakten QED. Analytische Erg. aus
Abb. 1.1 sind zum Vergleich unterlegt.

Durch Messung des statischen Potentials konnte sowohl für den Fall der von axialen, als auch
von Coulomb-artigen Dressings umgebenen Ladungen verifiziert werden, dass wir in unseren
Simulationen, die bei den zwei verschiedenen Werten der (inversen) Kopplungskonstanten
β = 1.0 und β = 1.05 durchgeführt wurden, tatsächlich die zwei verschiedene Realisie-
rungsphasen der Theorie untersuchen, die für uns von Interesse sind. Diese Ergebnisse sind in
Abbildung 1.5 zu sehen. Oberhalb des Phasenübergangs finden wir das für die Deconfinement-
Phase erwartete Coulomb-Potential, unterhalb hingegen scheint das Potential linear mit dem
Abstand der Quellen anzuwachsen (vgl. auch [Pan05] für weitere numerische Untersuchungen
der Confinement-Phase der kompakten QED). Zur Illustration wurde jeweils noch ein Fit der
beiden Sätze von Datenpunkten (ohne Berücksichtigung der statistischen Fehler) an einen
Potentialverlauf der Form

V (r) = V0 −
α

r
+ σ · r (1.85)

durchgeführt. Zu diesem Zweck wurden dabei sowohl für die Deconfinement-Phase (blau),
als auch für die Confinement-Phase (schwarz) alle verfügbaren Datenpunkte herangezo-
gen, unabhängig davon, aus welcher der beiden Persistenzamplituden (1.84) sie ursprüng-
lich extrahiert worden sind. Die weitgehende Übereinstimmung der Datenpunkte aus den
beiden Zugängen scheint die Untersuchungsergebnisse, die im Fall der SU(2)−Yang-Mills-
Theorie [HLLM07] gewonnen wurden, auch für die kompakte QED zu bestätigen. Danach
erweist sich der Korrelator (1.72) in Coulomb-Eichung als ein mit der Qualität des Wilson-
Loops durchaus vergleichbares Werkzeug zur Untersuchung des vorherrschenden Potentials
zwischen zwei statischen, gegensätzlich geladenen Quellen.

Die numerischen Ergebnisse für das Verhältnis des Überlapps R(r, t) in der Coulomb-Phase
(β = 1.05) sind in Abbildung 1.6 zu sehen – zum Vergleich wurden die analytischen Er-
gebnisse aus Abbildung 1.1 in die Graphik integriert. Bemerkenswert ist zunächst die gute
Übereinstimmung zwischen der analytischen Lösung und den Gitterresultaten, obwohl die
UV -Divergenzen auf ganz unterschiedliche Weise reguliert wurden. Die Isotropie des Raumes
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Abbildung 1.7: Das Überlappverhältnis R(r, t) in der Confinement-Phase (β = 1.00) der
kompakten QED. Gitter: 124, Randbedingungen: räumlich offen, zeitlich periodisch.

in der Kontinuumsformulierung reduziert sich beim Übergang zur Gitterformulierung auf eine
Invarianz des Raumes unter diskreten Symmetrietransformationen, die Elemente der kubi-
schen Gruppe sind [MM94]. Dementsprechend fungiert die endliche Gitterkonstante a(β), wel-
che den Abstand benachbarter Netzebenen des Gitters charakterisiert, durch Beschränkung
der Brioullin-Zone B4 = [−π

a ,
π
a ]

4 in jeder Dimension des zugehörigen Impulsraums als Cut-
Off, wohingegen bei den Rechnungen im Kontinuum eine O(3)–symmetrische Einschränkung
||p|| < Λ verwendet wurde. In Übereinstimmung mit dem Verhalten der Determinanten von
M(r, t) (siehe Abbildung 1.4) beobachten wir, dass sich das Überlappverhältnis R(r, t) in der
Nähe von t = 3a zu stabilisieren beginnt. Jenseits dieses Punktes bildet sich ein Plateau aus,
und das Verhältnis nähert sich seinem asymptotischen Wert, und zwar um so schneller, je klei-
ner der Abstand r der Testladungen ist. Vergrößern wir diesen räumlichen Abstand, so kann
dadurch das physikalisch interessantere Regime der langreichweitigen Wechselwirkungen zwi-
schen dem Ladungspaar studiert werden. In der Coulomb-Phase nimmt das Verhälnis R(r, t),
wie bereits anhand der analytischen Rechnungen gesehen, mit zunehmendem räumlichen Ab-
stand r ab. Die Energie des axialen Zustands nimmt (nach Regulierung der UV -Divergenzen
auf dem Gitter oder im Kontinuum) linear mit r zu, so dass dieser einen zunehmend schlech-
teren Überlapp mit dem Grundzustand – welcher ja der Coulomb-Zustand ist – aufweist.

Die gute Übereinstimmung von analytischen und numerischen Ergebnissen bei der Untersu-
chung der in der Coulomb-Phase realisierten kompakten QED ist ein Indiz dafür, dass der
oben vorgestellte Zugang zum Dressingformalismus auf dem Gitter funktioniert und es die
von uns betrachtete Größe R(r, t) tatsächlich ermöglicht, zwei Ansätze für den Grundzustand
miteinander zu vergleichen. Als nächstes wenden wir uns der Confinement-Phase zu, was auf
dem Gitter ohne Probleme möglich ist.
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Die Ergebnisse unserer Simulationen finden sich in Abbildung 1.7. Zunächst ist festzustel-
len, dass das Verhältnis nun stets größer als eins ist. Dies zeigt an, dass nun der axiale
Zustand einen besseren Überlapp mit dem unbekannten Grundzustand hat. Zwar ist das in
der Confinement-Phase gemessene Signal im Vergleich zu dem in der Deconfinement-Phase
gemessenen um einiges weniger deutlich, jedoch kann man immer noch beobachten, wie sich
im Überlappverhältnis R(r, t) ein Plateau ausbildet, zumindest bis zu einem Abstand r = 3a
der Quellen. Für noch größere Abstände geht das Signal zunehmend im statistischen Rau-
schen verloren, unser Akzeptanzkriterium für die aus den Messungen extrahierten und in der
Abbildung gezeigten Datenpunkte war ein relativer Fehler von weniger als 10%. Ein Trend ist
jedoch klar erkennbar: Bei Vergrößerung von r nimmt auch das Überlappverhältnis weiter zu.

Offenbar unterscheiden sich also die beiden Realisierungsphasen der Theorie in Bezug auf den
Grundzustand grundlegend voneinander. Intuitiv würde man vermuten, dass in einer Theo-
rie ohne Confinement zwei einzelne, eichinvariante Ladungen den Grundzustand angemessen
beschreiben sollten, wohingegen in einer Theorie mit Confinement der Grundzustand einem
einzigen, insgesamt ungeladenen und eichinvarianten Objekt entsprechen sollte. Tatsächlich
unterstützen unsere Ergebnisse diese Vorstellung. Oberhalb des Phasenübergangs ist die
vierdimensionale kompakte QED in einer Deconfinement-Phase realisiert und der mittels
Coulomb-Dressing konstruierte Testzustand wird klar bevorzugt. Unterhalb des Phasenüber-
gangs hingegen bietet dieser Zustand aus individuellen, physikalischen Ladungen keine gute
Beschreibung des Grundzustands mehr. Stattdessen scheint der insgesamt ungeladene, axiale
Zustand, bei dessen Konstruktion zwei Ladungen durch einen dünnen Flussschlauch mitein-
ander verbunden wurden (und dessen Divergenzen durch den endlichen Wert der Gitterkon-
stanten reguliert werden), dem wahren Grundzustand mehr zu ähneln.

1.4 Nicht-abelsches Dressing

1.4.1 Perturbative Konstruktion

Die Verallgemeinerung der U(1)−Eichtheorie auf den Fall nicht-abelscher Eichtheorien ge-
schieht zunächst durch die Identifizierung des Vektorpotentials Ai(x) mit Aai (x)T a. Dabei
bezeichnet T a die hermiteschen Generatoren der zur Eichgruppe G gehörenden Lie-Algebra.
Die elektrische Kopplungskonstante e (e < 0) wird gemäß e → −g durch die zur Gruppe G
gehörige ersetzt. Dadurch verändern sich die kovariante Ableitung (1.49), der Feldstärketensor
(1.48) sowie die Transformation des Vektorpotentials (1.50) unter lokalen Eichtransformatio-
nen, für die nun eine Darstellung der Form Ω(x) = exp[igλa(x)T a] gilt.

Unser Ziel ist die Untersuchung des Grundzustands in nicht-abelschen Eichtheorien bei Anwe-
senheit von statischen Ladungen. Dieser Zustand wird üblicherweise mit einem sehr schweren
Meson identifiziert: Nach Einbringen eines sehr schweren Quarks bzw. Antiquarks in das
Vakuum der reinen Yang-Mills-Theorie reagiert dieses durch Veränderung der gluonischen
Feldverteilung, so dass sich ein insgesamt farbneutraler, eichinvarianter Zustand ausbildet.
Die genaue Form der resultierenden gluonischen Hülle der Farbladungen ist noch immer un-
bekannt, zumindest für große Abstände dominiert aber die Vorstellung einer zigarrenförmigen
Feldkonfiguration [BSS95]. Die einfachste Möglichkeit, einen solchen Zustand zu konstruie-
ren, besteht in der (direkten) Verbindung der Quellen durch einen linienartigen gluonischen
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Flussschlauch. Im Rahmen des Operatorformalismus ist dieser Zustand gegeben durch

|χ 〉 = q(x2) P

{
exp

[
ig

x1∫

x2

dzjAj(z)
]}

q(x1)| 0 〉 , (1.86)

wobei q(x) den Feldoperator eines schweren Fermions bezeichnet und die pfadgeordnete Ex-
ponentialfunktion des gluonischen Linienintegrals die Eichinvarianz des Zustands als Ganzes
garantiert. Wie schon im Falle der bereits behandelten QED wollen wir annehmen, dass der
Flussschlauch die beiden statischen Ladungen am Ort x1 und x2 auf direktem Wege mit-
einander verbinden möge, und bezeichnen den Zustand (1.86) daher als den nicht-abelschen
axialen Zustand.

Eine Alternative zu dieser Konstruktion bietet die Verallgemeinerung von Diracs statischem
Elektron [Dir55] auf ein statisches Quark in nicht-abelschen Eichtheorien [LM97]. Im Rahmen
des Dressingformalismus kann dadurch ein Mesonenzustand konstruiert werden, welcher eine
Identifizierung von individuellen, eichinvarianten Farbladungen zulässt und somit das im Rah-
men der QCD zumindest für kleine Abstände erwartete Wechselwirkungsverhalten [LM97]
angemessen wiederzugeben vermag. Die Konstruktion eines eichinvarianten Quarkzustands
verläuft in kompletter Analogie zum abelschen Fall8, wobei das Eichpotential A sowie die
Eichtransformationen Ω(x) durch ihre nicht-abelschen Gegenstücke zu ersetzen sind. Aus der
Coulomb-Eichbedingung (1.57) folgt die nicht-abelsche Version der Gleichung (1.58), welche
durch Entwicklung in Potenzen der Kopplungskonstanten g eine störungstheoretische Kon-
struktion des Coulomb-Dressings h(x), und somit einer statischen, eichinvarianten Ladung
mit wohldefinierter Farbe ermöglicht [LM97, ILM07]. Die Beiträge niedrigster Ordnung zum
nicht-abelschen Dressing

h[A,x] = exp
[
i
∑

n

gn vn[A](x)
]

(1.87)

berechnen sich zu

v1 =
∂iAi
∇2

, v2 =
∂j
∇2

([v1,Aj ] +
1

2
[∂jv1, v1]) . (1.88)

Arbeiten wir in Coulomb-Eichung, so reduziert sich das Dressing auf die Identität im Farb-
raum (vgl. 1.61) und das Farbsingulett, welches aus zwei eichinvarianten, nicht-abelschen
Ladungen im Abstand r voneinander besteht, wird durch den Zustand

|Φ 〉 = q a(x2)q
a(x1) | 0 〉 (1.89)

beschrieben. Eine störungstheoretische Behandlung liefert bezüglich dieses Zustands für den
Erwartungswert des Hamilton-Operators das Resultat

〈Φ |H|Φ 〉 = ǫ0 − αs
C2(N)

r
+O(g4), αs =

g2

4π
. (1.90)

Dies ist der Beitrag niedrigster Ordnung zum bekannten statischen Inter-Quark-Potential,
wobei die Selbstenergiebeiträge zu ǫ0 zusammengefasst wurden und C2(N) den quadrati-
schen Casimir-Operator (D.24) der fundamentalen Darstellung der SU(N) bezeichnet.

8Die in Kapitel 1.3.1 gewählte Konvention unterscheidet sich von der in [LM97,ILM07,BLM00a,BLM00b]
verwendeten durch die Ersetzung Ω(x) → Ω−1(x) und entsprechenden Konsequenzen für das Transformati-
onsverhalten des zu konstruierenden Dressings h → h−1.
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In Störungstheorie höherer Ordnung treten neben den aus der Behandlung des abelschen
Falles bekannten abschirmenden Strukturen auch die für die nicht-abelsche Natur der zu-
grundeliegenden Symmetriegruppe charakteristischen Anti-Screening-Effekte auf [BLM06].
Es ist bekannt, dass die Gluonen dabei sowohl in der Lage sind, die statischen Ladungen
abzuschirmen, als auch den gegenteiligen Effekt hervorzurufen [Dre]. Es konnte von Lavelle
und McMullen gezeigt werden [LM98], dass das Dressing (1.87) dabei für das Auftreten der-
jenigen Terme verantwortlich ist, die eine maßgebliche Erhöhung der Wechselwirkungsenergie
verursachen. Es scheint folglich so zu sein, dass diejenige Gluonenkonfiguration, welche dazu
beiträgt, die Quarkzustände eichinvariant werden zu lassen, auch die dominanten Beiträge
zu den Anti-Screening-Effekten liefert, welche bei der perturbativen Untersuchung des Po-
tentials auftreten. Die Screening-Effekte hingegen, welche ebenfalls in zweiter Ordnung einer
störungstheoretischen Behandlung auftreten, können auf die eichinvarianten Beiträge der
Gluonen zum

”
nicht-minimalen“ Dressing zurückgeführt werden, welches bereits in Kapitel

1.2.2 kurz erwähnt wurde9.

Die störungstheoretische Konstruktion des Coulomb-Dressings ermöglicht also scheinbar die
Beschreibung individuell eichinvarianter Farbladungen. Die Verteilung der zugehörigen Gluo-
nenfelder erstreckt sich dabei über den ganzen Raum. Da aber keine farbgeladenen Objekte
in der Natur als asymptotische Zustände beobachtet werden, ist klar, dass jede Beschreibung
einer individuellen, physikalischen Farbladung im nicht-perturbativen Regime zusammenbre-
chen muss. Im folgenden Abschnitt soll zunächst das zuerst von Gribov [Gri78] diskutier-
te Problem skizziert werden, mit dem man sich beim Versuch der Fixierung einer Eichung
in nicht-abelschen Theorien konfrontiert sieht, anschließend sollen die daraus resultierenden
Konsequenzen für die Konstruierbarkeit von Zuständen mit eindeutiger Farbladung erläutert
werden.

1.4.2 Gribov-Kopien im Rahmen des Dressingformalismus

Der Ausgangspunkt der Untersuchungen von Gribov war die Frage nach der Eindeutigkeit
eines Eichpotentials A, für das eine die Eichung fixierende Bedingung χ(A) = 0 gestellt wird.
Im Folgenden wollen wir uns auf den Fall der Coulomb-Eichung beschränken. Falls diese
Bedingung eine eindeutige Fixierung der Eichung zulässt, so sollte es längs eines Eichorbits
OA keine weitere Konfiguration geben, die der Transversalitätsbedingung genügt. Nehmen
wir also an, es gäbe ein Eichpotential A, das der Bedingung ∇·A = 0 genügt, so sollte die
einzige Lösung Ω der Gleichung ∇·AΩ = 0 für ein gemäß (1.50) eichtransformiertes Po-
tential AΩ (unter der Annahme geeigneter räumlicher Randbedingungen) die Identität sein.
Dass dem nicht so ist, wurde von bereits 1978 von Gribov erkannt [Gri78], der zeigte, dass
die Quantisierung von Yang-Mills-Theorien aufgrund der Uneindeutigkeit der Definition des
Eichpotentials nicht ohne weiteres möglich ist, und einen Weg vorschlug, wie man dem heute
allgemein als Gribov-Problem bekannten Phänomen des Auftretens von Eichkopien begegnen
können sollte. Betrachten wir zu diesem Zweck die infinitesimale Form einer Eichtransforma-
tion Ω = exp(igω) des Potentials A, dann führt eine linearisierende Entwicklung auf

AΩ = A+D ω , (1.91)

9Vgl. hierzu auch [HLLM07] sowie die Resultate im abelschen Fall [BLMT02].
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die infinitesimale Änderung von A ist also durch die kovariante Ableitung von ω ∈ su(N)
gegeben. Aus der Coulomb-Eichbedingung folgt

∇·Dabωb(x) = 0 , (1.92)

was als Eigenwertgleichung des (negativen) Faddeev-Popov-Operators M := −∇·D für den
Eigenwert 0 aufgefasst werden kann. Der Definitionsbereich des Faddeev-Popov-Operators
hängt vom Eichpotential A ab, und es kann gezeigt werden, dass M in einer hinreichend
kleinen Umgebung Kǫ(A = 0) des perturbativen Vakuums ||A|| = 0 positiv ist und nur die
triviale Lösung ω = 0 des Problems (1.92) zulässt.

Es ist in diesem Zusammenhang interessant festzuhalten, dass sich der Faddeev-Popov-
Operator im Falle der U(1)–Eichtheorie auf den positiven Laplace-Operator M = −∆ redu-
ziert, unabhängig vom Eichpotential. Mit der in (1.2.2) gewählten Notation erhält Gleichung
(1.92) die Form

∆λ(x) = 0 . (1.93)

Fordern wir das Verschwinden von λ(x) auf dem Rand des dreidimensionalen räumlichen
Unterraums, so ist unter der Annahme offener Randbedingungen die einzige Lösung der
Laplace-Gleichung gegeben durch die triviale Lösung, λ(x) = 0 ∀x. Somit ist die identische
Eichtransformation die einzige Lösung von χ(AΩ) = 0, und folglich ist die U(1)-Theorie in
Coulomb-Eichung bei geeigneter Wahl der Randbedingungen frei von Gribov-Kopien.

Im Falle einer nicht-abelschen Eichtheorie besteht jedoch bei Vergrößerung der Norm von A
auch die Möglichkeit, dass M negative Eigenwerte entwickelt. Das Auftreten von Nullstellen
der Determinante des Operators M signalisieren dabei das Überschreiten der Ränder von
Gebieten Ωm, in die der Phasenraum des Eichpotentials anhand der Anzahl m von negativen
Eigenwerten des Faddeev-Popov-Operators unterteilt werden kann. Der Vorschlag von Gribov
zur Vermeidung der auf die Mehrdeutigkeit des Eichpotentials zurückzuführenden Probleme
bei der Auswertung von Funktionalintegralen bestand darin, die Integration im Raum der
Eichfeldkonfigurationen auf das Gebiet Ω0 zu beschränken. Dieses heute als Gribov-Region
bekannte Gebiet ist die maximale Umgebung der Lösung A=0, in welcher M > 0 gilt. Das
Auftreten der erste Nullstelle der Determinante des Faddeev-Popov-Operators wird durch
das Verschwinden des kleinsten Eigenwertes von M hervorgerufen und signalisiert das Errei-
chen des sogenannten ersten Gribov-Horizonts. Es stellt sich jedoch heraus, dass diese Art der
Einschränkung des Integrationsgebietes noch immer nicht ausreichend ist, um eine eindeutige
Fixierung der Eichung zu gewährleisten.

Um dies zu verstehen, betrachten wir die L2-Norm FA[Ω] = ||AΩ||2 des Potentials A auf
E4 bezüglich derjenigen Transformationen Ω, die eichäquivalente Konfigurationen auf OA
ineinander überführen:

FA[Ω] = Tr(AΩAΩ) :=

∫
d4x

3∑

µ=1

tr[AΩ
µ (x)AΩ

µ (x)], Ω(x) = exp(igω(x)) (1.94)

Die Behauptung ist nun, dass durch Minimierung der L2-Norm, ausgehend von einer gege-
benen Konfiguration A, eine Konfiguration AΩ gewonnen werden kann, welche in der ersten
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Gribov-Region Ω0 zu liegen kommt. Zum Beweis entwickeln wir das eichtransformierte Po-
tential bis zur zweiten Ordnung in ω(x)

AΩ
µ (x) = Aµ(x) + ∂µω(x)− ig[Aµ(x), ω(x)] +

ig

2
[ω(x), ∂µω(x)]

− g2

2
{ω2(x),Aµ(x)}+ g2 ω(x)Aµ(x)ω(x) +O(ω3) ,

woraus sich für (1.94) die Form

FA[Ω] = FA[1]− 2Tr(ω ∂A) + Tr(ω [−∂D]ω) +O(ω3) (1.95)

ergibt. Wird nun {Ω} so gewählt, dass FA[Ω] ein Minimum annimmt, so verschwindet
zum einen die ersten Variation, was auf die Eichbedingung ∇ ·A = 0 führt, zum ande-
ren ist die Hesse-Matrix positiv definit, was der Positivität des Faddeev-Popov-Operators
M = −∇·D[AΩ] in Coulomb-Eichung entspricht. Die Definition der Gribov-Region Ω0 über-
setzt sich also in die Menge aller Minima von FA[Ω]. Da nun aber die Möglichkeit besteht,
dass FA[Ω] mehrere lokale Minima längs eines Eichorbits OA besitzen kann, ist unmittelbar
einsichtig, dass auch Ω0 nicht frei von Kopien sein kann. Eine eindeutige Fixierung der Ei-
chung gelingt durch die weitere Einschränkung des Integrationsgebietes auf die sogenannte
Fundamental Modular Region (FMR), definiert als die Menge aller absoluten Minima von
(1.94), die im Zuge der Minimierung längst der Eichorbits angenommen werden können. Die
FMR ist eine konvexe Teilmenge von Ω0, welche die Konfiguration A= 0 enthält. Auf das
Problem der numerischen Implementierung einer solchen Eichfixierungsbedingung wird im
Anhang C eingegangen. Es zeigt sich, dass eine systematische Wahl von Konfigurationen aus
der FMR nicht möglich ist und daher im Vorfeld unklar ist, ob der ermittelte Repräsentant
aus Ω0 tatsächlich dem absoluten Minimum von FA[Ω] entspricht.

Das Auftreten von Ambiguitäten beim Versuch der Fixierung einer Eichung beschränkt sich
nicht nur auf die von Gribov [Gri78] studierte Situation der Coulomb-Eichung im Rahmen
einer SU(2)−Eichtheorie, sondern ist ein intrinsisches Problem linearer Eichungen in nicht-
abelschen Theorien in einer Realisierungsphase ungebrochener Symmetrie [Sin78]. Die nun
im Rahmen des Dressingformalismus zu diskutierenden Auswirkungen des Auftretens von
Eichkopien besitzen daher allgemeinere Gültigkeit, die Coulomb-Eichung wurde in der vorlie-
genden Untersuchung ja aus dem einfachen Grund gewählt, dass statische Quellen beschrieben
und ihre Wechselwirkung untersucht werden sollten.

Nehmen wir also für einen Moment an, dass die Eichfixierungsbedingung es erlauben würde,
eine eindeutige Stelle auf dem Eichorbit OA auszuwählen (vgl. Abbildung 1.2), und nehmen
wir ferner an, dass wir uns bereits an dieser Stelle befänden. In diesem Fall ist das Dressing
trivial (1.61) und die Farbe des eichinvarianten Zustands Ψ(x) ist durch diejenige des nackten
Feldes ψ(x) gegeben. Das Dressing wird also in diesem Sinne transparent, wenn die Eichfi-
xierungsbedingung erfüllt ist. Die durch ψ(x) vorgegebene Farbe bleibt auch dann erhalten,
wenn man Eichtransformationen Ω(x) durchführt, die aus der durch χ(Ah) = 0 beschriebe-
nen Untermannigfaltigkeit des Konfigurationsraums herausführen [ILM07]. Dabei wird sich
zwar das Dressing verändern, die Gesamtfarbe von Ψ(x) bleibt aber erhalten, denn h[A] kom-
pensiert ja per Konstruktion den Effekt der Farbänderung der nackten Materiefelder, welche
durch die Eichtransformationen Ω(x) hervorgerufen werden:

Ψ[AΩ, ψΩ](x) = h[AΩ](x)ψΩ(x) = h[A](x)Ω−1(x)Ω(x)ψ(x) = Ψ[A, ψ](x) . (1.96)
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Abbildung 1.8: Die Eichfixierungsbedingung
ist an mehreren Stellen längs des Eichorbits
OA erfüllt. Gribov-Kopien treten auf, falls OA
von der durch χ(Ah) = 0 beschriebenen Un-
termannigfaltigkeit des Konfigurationsraums
mehr als einmal geschnitten (Punkte 1,2,3)
oder tangiert wird (Punkt 4).

χ(Ah) = 0
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Dies gilt allerdings nur, solange h[A] auf die angewandten Eichtransformationen richtig zu
reagieren vermag. Das unvermeidliche Auftreten von Eichkopien führt nun aber gerade zu
einer Situation, in der dies nicht mehr länger gewährleistet ist. Die Situation ist in Abbildung
1.8 skizziert. Wird eine Eichtransformation Ω′(x) durchgeführt, die zwei Kopien ineinander
überführt, die beide der Eichfixierungsbedingung genügen, so verändert sich dadurch auf jeden
Fall das Materiefeld ψ(x). Eine Änderung von h[A](x) tritt bei einer solchen Transformation
aber nicht mehr unbedingt auf, da an beiden Stellen auf dem Eichorbit die Eichfixierungsbe-
dingung erfüllt ist und beide Punkte gleichermaßen dazu herangezogen worden sein könnten,
um ein Dressing zu konstruieren, das in der Schnittebene trivial wird. In diesem Fall finden
wir für den Zustand Ψ[A, ψ] das Verhalten

Ψ[AΩ′

, ψΩ′

](x) = h[AΩ′

](x)ψΩ′

(x) = h[A](x)Ω′(x)ψ(x) 6= Ψ[A, ψ](x) . (1.97)

Falls sich das Dressing beim Übergang von einer Kopie zur anderen doch ändern sollte, so
ist ebenfalls unklar, ob dies zu einer Abschwächung, einer vollständigen Kompensation oder
möglicherweise sogar zu einer Verstärkung des Effekts führen wird, der durch die Verände-
rung des Materiefeldes hervorgerufen wird. Das Verhalten des Dressings wird folglich unbe-
stimmt. Die Voraussetzung dafür, einem Zustand eine wohldefinierte Farbladung zuordnen
zu können, war die Eichinvarianz desselben, was die Konstruktion des Dressings und des zu-
sammengesetzten Operators Ψ(x) überhaupt motiviert hat. Die Eichinvarianz wurde durch
die Transformationseigenschaften des Dressings garantiert, und diese wurden im hier vorge-
stellten Zugang zum Dressingformalismus aus der Annahme der Eindeutigkeit einer Eichfi-
xierungsbedingung hergeleitet (vgl. die Diskussion in Abschnitt 1.3.1). Da in [LM97] gezeigt
wurde, dass das Auftreten von Gribov-Kopien ab einer gewissen Skala eine Eichabhängigkeit
des Dressings einer einzelnen Ladung induziert und somit die Konstruktion eines physikali-
schen Zustands wohldefinierter Farbe unmöglich macht, stellt sich natürlich die Frage nach
der Relevanz des mittels (1.87) konstruierten Zustands für den nicht-perturbativen Bereich
der Grundzustandsphysik.

1.4.3 Nicht-perturbativer Zugang zum Dressingformalismus

Zur Untersuchung dieser Fragestellung wollen wir wiederum die Methoden der numerischen
Simulation von Gittereichtheorien verwenden, wobei wir uns auf die einfachste Yang-Mills-
Theorie (zunächst erweitert um ein komplexes skalares Feld) beschränken werden. Nicht-
abelsche Dressings sollen dabei auf dem Gitter in kompletter Analogie zum abelschen Fall
durch Fixierung von entsprechenden Eichungen realisiert werden. Die fundamentalen Objekte
sind dabei Korrelatoren von nicht-abelschen Polyakov-Linien endlicher zeitlicher Ausdehnung.
Für den Korrelator der Polyakov-Linien in axialer Eichung gilt die bereits im Rahmen der Be-
handlung des abelschen Falls (Abschnitt 1.3.4) angegebene Argumentation. Der Unterschied
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bei der Berechnung von nicht-abelschen Wilson-Loops, die durch eichinvariante Verknüpfung
der Enden der kurzen Polyakov-Linien entstehen, besteht in der Relevanz der Pfadordnung
aufgrund der Nicht-Kommutativität der Link-Variablen. Die Entwicklung des axialen Zu-
stands (1.86) über einen Zeitraum T wird im Wesentlichen durch den Erwartungswert des
nicht-abelschen Wilson-Loop-Operators

WΓ[A] = tr P

{
exp

[
ig

∮

Γ
dzjAj(z)

]}
(1.98)

beschrieben, sofern man für die Kontur Γ ein Rechteck von räumlicher Ausdehnung r und
zeitlicher Ausdehnung T wählt. Im Falle des Coulomb-Dressings der statischen Testladungen
ergibt sich

CΦΦ(r, T ) := 〈Φ |e−ĤT |Φ 〉 = 〈 tr
[
P h(x2, T )P

h(x1, T )
† ] 〉 , (1.99)

wobei die Bildung der Spur ihren Ursprung in der Singulettstruktur des Zustands (1.89) in
Coulomb-Eichung hat.

Eine erste Untersuchung der bereits angesprochene Fragestellung, welche Relevanz einem
Zustand aus individuell eichinvarianten Ladungen für den nicht-perturbativen Bereich der
Grundzustandsphysik beizumessen ist, wurde in [HLLM07] durchgeführt. Dabei wurde insbe-
sondere untersucht, welchen Einfluss die im Rahmen der numerischen Fixierung der Coulomb-
Eichung auftretenden Gribov-Kopien auf den Erwartungswert des Polyakov-Linienkorrelators
(1.99) haben. Es hat sich gezeigt, dass das zwischen statischen Farbladungen herrschende Po-
tential, welches aus dem untersuchten Erwartungswert extrahiert werden konnte, nicht nur
im perturbativ zugänglichen Bereich, sondern auch darüber hinaus hervorragend mit dem
aus der üblicherweise durchgeführten Analyse von eichinvarianten Wilson-Loops gewonnenen
Verlauf übereinstimmt. Dies ist insofern bemerkenswert, als dass man aufgrund der oben aus-
geführten Überlegungen erwarten würde, dass das Bild von der Wechselwirkung der durch
Dressings wohldefinierten, individuellen Ladungen bei großen Abständen zusammenbrechen
und mit dem Verlust eines verwertbaren Signals für den Potentialverlauf einhergehen soll-
te. Ferner wurde beobachtet, dass eine Mittelung über Gribov-Kopien keine nennenswerten
Auswirkungen auf den Verlauf des Potentials hatte, wohl aber den Überlapp mit dem Grund-
zustand maßgeblich beeinflusst.

Eine mögliche Interpretation dieser Resultate besteht darin anzunehmen, dass die beiden
Dressings h−1[A,x1] für q(x1) und h[A,x2] für q(x2) im nicht-perturbativen Regime gleich-
sam zu einem einzigen mesonischen Dressing für beide Ladungen

”
verschmelzen“, wobei der

zugrunde liegende Mechanismus möglicherweise auf dem Auftreten von Gribov-Kopien bei
der Konstruktion der individuellen Dressings beruhen könnte. Dadurch wäre der Coulomb-
artige Zustand (1.89) in der Lage, jenseits einer Längenskala, unterhalb derer die störungs-
theoretische Behandlung und Beschreibung des Problems als Wechselwirkung individueller
Ladungen gerechtfertigt erscheint, den Einschluss der Farbladungen zu beschreiben. Unter
dieser Annahme stellt der Zustand (1.89) also einen aussichtsreichen Kandidaten für den
Grundzustand im q-q̄−Sektor der Yang-Mills-Theorie dar. Tatsächlich existieren numerische
Untersuchungen, die zeigen, dass das in Coulomb-Eichung berechnete nicht-abelsche Potenti-
al, welches eine obere Schranke für das volle Potential darstellt, im Gegensatz zur abelschen
Theorie einen linearen Anstieg mit zunehmendem Abstand der Quellen voneinander auf-
weist [Zwa03,GOZ04].
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1.5 Der Grundzustand im SU(2)−Higgs-Modell

Bisher wurde der Überlapp der beiden untersuchten Zustände mit dem Grundzustand der
kompakten QED oberhalb und unterhalb eines Phasenübergangs untersucht, der die zwei
Realisierungsphasen dieser Theorie voneinander trennt. Idealerweise würden wir daher nun
dieselbe Untersuchung im Falle einer nicht-abelschen Eichtheorie durchführen wollen, die
sowohl eine Confinement-Phase, als auch eine Deconfinement-Phase aufweist. Im Falle der
SU(N)−Yang-Mills-Theorie zeigt jedoch die Berechnung der β(g)-Funktion, dass es als Folge
der asymptotischen Freiheit in D = 4 Dimensionen im Raum der Kopplungskonstanten g nur
einen einzigen Fixpunkt, nämlich den (trivialen) UV -Fixpunkt g → 0, gibt [ZJ96]. Daher exi-
stiert für die reine SU(N)−Eichtheorie bei Abwesenheit von Materiefeldern für alle Werte von
g nur eine einzige Realisierungsphase, und dies ist im Falle verschwindender Temperatur die
Confinement-Phase. Für hohe Temperaturen T wird jedoch die Realisierung der Yang-Mills-
Theorie in der Deconfinement-Phase erwartet, daher sollten Simulationen bei Temperaturen
oberhalb und unterhalb einer kritischen Temperatur Tc die Möglichkeit eröffnen, Untersu-
chungen zum Verhalten der Überlappverhältnisse des axialen und Coulomb-artigen Zustands
mit dem Grundzustand in zwei grundlegend verschiedenen Realisierungsphasen durchführen
zu können. Es zeigt sich aber, dass dieses Vorgehen für die einfachste Yang-Mills-Theorie auf
dem Gitter nicht praktikabel ist, da im Falle der SU(2)−Eichtheorie die kritische Temperatur
näherungsweise Tc ≃ 300 MeV beträgt und die zeitliche Ausdehnung des Gitter zur Reali-
sierung von Temperaturen oberhalb des Phasenübergangs soweit verkleinert werden müsste,
dass dadurch eine ausreichende Unterdrückung von angeregten Zuständen bei der Berech-
nung von Amplituden der Form (1.43) nicht mehr gewährleistet werden kann [HIL+08b].

Als Alternative dazu verfolgen wir die Strategie, der SU(2)−Yang-Mills-Theorie ein skalares
Feld hinzuzufügen, welches sich unter der fundamentalen Darstellung der Eichgruppe trans-
formiert10. Der Vorteil dieser Theorie besteht darin, dass keinerlei physikalisch motivierte
Einschränkungen bezüglich der zeitlichen Ausdehnung des Gitters gemacht werden müssen,
da die um ein skalares Feld erweiterte Theorie sowohl die Realisierung einer Confinement-
Phase, als auch die Realisierung einer Phase ohne Farbeinschluss für verschwindende Tem-
peraturen ermöglicht.

In Kapitel 2.4.1 werden wir die Diskretisierung einer SU(2)−Eichtheorie mit Higgs-Feld φ(x)
in fundamentaler Darstellung vornehmen. Neben der Erläuterung der von mir verwendeten
Notationskonvention findet sich an dieser Stelle auch eine Diskussion des Phasendiagramms
der Theorie. Für die folgende Untersuchung genügt es dabei zu wissen, dass durch Vergröße-
rung des Parameters κ ein Phasenübergang der Theorie von einer Quasi-Confinement-Phase
in eine Higgs-Phase hervorgerufen werden kann, und dass die Stärke des Phasenübergangs
mit zunehmendem Wert der (nackten) Selbstkopplungskonstanten λ abnimmt. Der Grenz-
fall λ → ∞ im Potentialterm der Wirkung (2.44) geht mit der Einschränkung des radialen
Freiheitsgrades des Higgs-Feldes auf ρ(x) = 1 ∀x einher. Folglich reicht es bei der Untersu-
chung dieser Grenzfläche des dreidimensionalen Phasendiagramms am Temperaturnullpunkt
aus, allein die Winkelvariablen (2.41) zu betrachten. Dies führt dazu, dass sich die bei der
Simulation zu verwendende Wirkung auf die beiden Terme (2.39) und (2.42) reduziert, und
diesen numerischen Vorteil wollen wir im Folgenden ausnutzen.

10Vergleiche Anhang D.
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Abbildung 1.9: Die Suszeptibilität der
Wirkung des Higgs-Felds χHiggs (1.100) als
Funktion von κ. β = 2.2, Gitter: n4.

Abbildung 1.10: Das nicht-abelsche Über-
lappverhältniss R(r, t) (1.44) im Limes
großer Zeiten, tmin = 4a(β). Gitter: 164.

1.5.1 Numerische Ergebnisse für das SU(2)−Higgs-Modell

Die Simulationen wurden auf Gittern unterschiedlicher Größe durchgeführt, wobei der Wert
der (inversen) Kopplungskonstanten auf β = 2.2 fixiert wurde11. Um den Phasenübergangs-
punkt zu detektieren, wurden in einem ersten Schritt die Erwartungswerte der mittleren
Plaquette und des Hopping-Terms (2.42) als Funktion von κ untersucht. Nach der groben
Bestimmung des kritischen Wertes κc wurde in einem nächsten Schritt die Suszeptibilität
χHiggs der mittleren Wirkung des Higgs-Feldes (2.42) in der Umgebung des vermuteten Pha-
senübergangs gemessen:

χHiggs =
1

N4

[〈
S 2
Higgs

〉
− 〈SHiggs〉2

]
. (1.100)

Die Ergebnisse dieser Messungen, welche auf Gittern der Größe n4 (n = 8, 12, 16, 20) durch-
geführt wurden, finden sich in Abbildung 1.9. Die Suszeptibilität scheint praktisch unabhängig
von der verwendeten Gittergröße zu sein und weist ein ausgeprägtes Maximum bei einen Wert
des Hopping-Parameters κ auf, der zu κc ≈ 0.839(2) bestimmt wurde. Dieses Skalierungs-
verhalten von χHiggs mit der Größe des Gitters ist ein Indikator für das Vorliegen eines
sogenannten crossover des Modells von der Quasi-Confinement-Phase in die Higgs-Phase bei
κc und deckt sich mit unseren Erwartungen für die Ordnung des Phasenübergangs im Grenz-
fall λ→∞.

Um sicherzustellen, dass unterhalb und oberhalb des so bestimmten κc tatsächlich zwei ver-
schiedene Realisierungsphasen der Theorie vorliegen, wurde das statische Potential aus dem
sowohl für κ = 0.825, als auch für κ = 0.88 gemessenen Erwartungswert des Wilson-Loops
extrahiert. Wie in Kapitel 2 erläutert wird, stellt die string tension σ aufgrund der analy-
tischen Verbindung der beiden Phasen keinen echten Ordnungsparameter mehr dar, kann

11Kleinere Werte von β wurden nicht betrachtet um die Effekte von Gitterartefakten möglichst klein zu
halten, die im (nicht-universellen) strong coupling – Regime auftreten.
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jedoch zumindest noch als Indikator für das Vorliegen der Quasi-Confinement-Phase (σ 6= 0),
bzw. der Higgs-Phase (σ ≃ 0) dienen. Für κ = 0.825 konnten wir ein lineares Anwachsen des
Potentials für große Abstände zwischen dem Quark-Antiquark-Paar beobachten [HIL+08b],
wobei eine im Vergleich zur reinen SU(2)−Yang-Mills-Theorie leicht reduzierte string tension
aus den Daten extrahiert wurde. Das Phänomen des Stringbreakings wurde nicht beobachtet.
Die für κ = 0.88 gemessenen Daten konnten hingegen sehr gut durch einen Fit beschrieben
werden, der auf der Annahme eines reinen Coulomb-Potentials basiert. Für diesen Wert des
Parameters κ ist also bereits die Higgs-Phase der Theorie realisiert. Beide Simulationen wur-
den auf Gittern der Größe 164 durchgeführt.

Als nächstes wurde für diese beiden Punkte im Phasendiagramm der Theorie das nicht-
abelsche Analogon des in (1.44) definierten Verhälnisses R(r, t) untersucht. Im Fall der Higgs-
Phase (κ = 0.88) zeigte das Ergebnis deutliche Parallelen zum Verhalten von R(r, t), welches
in der Coulomb-Phase der U(1)–Theorie gefunden wurde und in Abbildung 1.6 gezeigt wird:
Der mittels Coulomb-Dressing konstruierte Zustand (1.89) weist also wiederum einen bes-
seren Überlapp mit dem Grundzustand in dieser Phase auf, als es für den mittels axialem
Dressing konstruierten Zustand (1.86) der Fall ist. Der asymptotische Wert von R(r, t) wurde
für alle untersuchten Abstände r der Quellen in dieser Phase bereits ab etwa tmin = 4a(β)
erreicht [HIL+08b], anhand der in Abbildung 1.10 gezeigten Darstellung des Verhaltens von
R(r, tmin) (rote Quadrate, κ = 0.88) ist deutlich zu erkennen, dass der Überlapp des axia-
len Zustands mit dem wahren Grundzustand für große Abstände der Ladungen rasch gegen
Null tendiert. Überraschend ist das Resultat unserer Untersuchungen zum Grundzustand
in der Quasi-Confinement-Phase. Für r = a(β) finden wir zwar einen (zeitlich) praktisch
konstanten Wert für R(r, t), der etwas größer als eins ist, mit zunehmendem Abstand der
Quellen fällt das Überlappverhältnis jedoch wiederum auf Werte kleiner als eins ab. Obwohl
das Signal wie im Falle der Untersuchung der Confinement-Phase der kompakten QED un-
terhalb von κc weniger deutlich ist, lassen unsere in Abbildung (1.10) zusammengefassten
Ergebnisse (schwarze Kreise, κ = 0.825) den Schluss zu, dass der aus einem Quark bzw. An-
tiquark mit nicht-abelschem Coulomb-Dressing konstruierte Zustand (1.89) scheinbar auch
in der Quasi-Confinement-Phase der Theorie in der Lage ist, die wesentlichen Merkmale des
Grundzustands besser wiederzugeben als der axiale Zustand.

Eine mögliche Erklärung für dieses Verhalten wäre, dass der wahre Grundzustand durch
einen Flussschlauch charakterisiert ist, dessen Profil sich in der Ebene orthogonal zur Ver-
bindungsachse der Ladungen über mehrere Gitterkonstanten a(β) erstreckt und daher durch
den axialen Zustand (1.86), welcher ja eine Feldverteilung beschreibt, die eher als linienartig
zu bezeichnen ist, nur ungenügend angenährt wird. Unsere Ergebnisse scheinen daher das
traditionell vorherrschende Bild [Lus81] eines dicken Flussschlauchs zu bestätigen. Allerdings
muss dabei berücksichtigt werden, dass bei den bisherigen Untersuchungen nur ein fester
Wert der Gitterkonstanten a(β) betrachtet wurde. Im nächsten Kapitel soll daher eine de-
taillierte Untersuchung zum Überlappverhalten der beiden Zustände (1.89) und (1.86) mit
dem Grundzustand in der Confinement-Phase einer reinen Yang-Mills-Theorie durchgeführt
werden, wobei insbesondere das Verhalten bei der Annäherung an den Kontinuumslimes der
Theorie untersucht werden wird, um auszuschließen, dass Diskretisierungsartefakte bei der
Interpretation unserer Ergebnisse eine Rolle spielen könnten.
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1.6 Der Grundzustand der SU(2)−Yang-Mills-Theorie

Bevor wir die Details der Simulationen darlegen und unsere numerischen Ergebnisse sowie
die daraus gewonnenen Erkenntnisse präsentieren werden, ist es hilfreich, sich nochmals kurz
das Verhalten des analogen Zustands in der QED mit statischen Quellen in Erinnerung zu
rufen.

In der analytisch zugänglichen Deconfinement-Phase der kompakten QED fällt der exakt
bekannte Grundzustand mit dem mittels Coulomb-Dressing aus den zwei statischen Ladun-
gen konstruierten Zustand zusammen. Berechnet man den Überlapp von Grundzustand und
axialem Zustand (1.46), so findet man, dass dieser verschwindet. Wie bereits diskutiert ist
der Grund hierfür in der infinitesimalen Ausdehnung des Flussschlauchs orthogonal zur Ver-
bindungsachse der Ladungen zu suchen, in welchem das Eichfeld konzentriert ist. Reguliert
man dieses divergente Verhalten bei kurzen Abständen durch Einschränkung der Impulsin-
tegration auf ||p|| < Λ, so findet sich für den Überlapp

|〈Ω |χ〉|2 = (rΛ)4α/π exp
[
− α rΛ+ . . .

]
, (1.101)

wobei α = e2/(4π), und im Exponenten noch Terme angedeutet sind, die für Λ→∞ endlich
bleiben. Der Überlapp ist also eine Funktion von rΛ. Für große Werte von Λ dominiert
das exponentiell abfallende Verhalten, so dass der Überlapp mit dem Grundzustand beim
Entfernen des Cut-Off (Λ→∞) letztlich verschwindet.

1.6.1 Der axiale Zustand

Wenden wir uns nun der Berechnung von Wilson-Loops in der reinen SU(2)−Eichtheorie zu.
Zur Messung der Persistenzamplituden wurde ein Ensemble von 1000 Konfigurationen heran-
gezogen, welches mittels eines Algorithmus erzeugt wurde, der in seiner ursprünglichen Form
auf Creutz [Cre80] zurückgeht und in Anhang B.2 beschrieben wird. Zusätzlich zu den lokalen
Update-Schritten wurden mikrokanonische Reflexionen zur Erhöhung der Ergodizität des Al-
gorithmus eingebaut, was inzwischen ebenfalls als Standard bei Monte-Carlo-Simulation der
SU(2)−Eichtheorie angesehen werden kann. Die Beschreibung des Verfahrens wurde eben-
falls in den Anhang verschoben und findet sich im Abschnitt B.4.

Im Rahmen der von uns durchgeführten Simulationen haben wir eine Kombination von
drei Heatbath sweeps durch das gesamte Gitter, gefolgt von sieben mikrokanonischen Re-
flexionen zu einem sogenannten supersweep zusammengefasst. Es hat sich gezeigt, dass die
Durchführung von 250 derartigen supersweeps auf Gittern der Größe 204 bei allen von uns
untersuchten Gitterkonstanten a(β) für das Erreichen des thermischen Gleichgewichts ausrei-
chend war. Die nach dieser Thermalisierungsphase gemessenen Ergebnisse zeigten keinerlei
Abhängigkeit mehr von der verwendeten Anfangskonfiguration. Alle Messungen wurden auf
Gittern mit zeitlich periodischen und räumlich offenen Randbedingungen durchgeführt, wo-
bei die einzelnen Konfigurationen eines Ensembles bei festem Wert des Parameters β Glieder
einer Markov-Kette waren, die durch zehn supersweeps voneinander entfernt sind. Bei der
Datenanalyse wurden alle Messwerte für die Persistenzamplitude, die mit einem relativen
Fehler von mehr als 0.5 behaftet waren, verworfen. Wie im Falle der kompakten QED wurde
versucht, die Daten mit einer Funktion der Form

〈Ψ |e−HT |Ψ 〉 = |〈Ω |Ψ〉|2 e−V (r)T (1.102)



36 1.6. Der Grundzustand der SU(2)−Yang-Mills-Theorie

Abbildung 1.11: Der Überlapp
des axialen Zustands mit dem
Grundzustand für verschiedene
Werte der Gitterkonstanten a(β)
als Funktion von n = r/a, der
Anzahl an Gitterpunkten zwi-
schen den Ladungen. Der Über-
lapp ist unabhängig vom Para-
meter β.

Gitter: 204, Randbedingungen:
räumlich offen, zeitlich peri-
odisch.

in Einklang zu bringen. Dieser Ansatz ist sicherlich gerechtfertigt, sofern die bei der Entwick-
lung des Zustands |Ψ 〉 verstrichene Zeit T bereits so groß ist, dass angeregte Zustände die
Möglichkeit hatten, zu entkoppeln, und somit von diesen kein Beitrag mehr zur Persistenz-
amplitude zu erwarten ist (vergleiche auch die Diskussion um 1.43). Die Ergebnisse für den
Überlapp des axialen Zustands |χ 〉 mit dem Grundzustand der Yang-Mills Theorie, die in
den Abbildungen 1.11 und 1.12 zu sehen sind, wurden aus Messungen der Erwartungswerte
von Wilson-Loops mit einer zeitlichen Ausdehnung von T ≥ 5a extrahiert, für die keine signi-
fikante Abweichung von (1.102) mehr zu beobachten war. Das Vorgehen bei der numerischen
Extrahierung der Betragsquadrate der Überlappmatrixelemente war dasselbe wie im Falle
der abelschen Theorie (vgl. die Diskussion in Kapitel 1.3.4), die Akzeptanzkriterien für die
durchgeführten linearen Fits waren χ2/ν < 3 sowie Q > 10−3.

Zunächst wollen wir den Überlapp des axialen Zustands mit dem Grundzustand als Funk-
tion der dimensionslosen Größe n betrachten, die den Abstand der auf das Gitter gesetzten
statischen Ladungen als Vielfaches der Gitterkonstanten a(β) angibt. Unsere Ergebnisse fin-
den sich in Abbildung 1.11 wieder, in der nur Datenpunkte gezeigt werden, deren relativer
Fehler kleiner als 0.35 ist. Zunächst ist festzustellen, dass alle Datenpunkte in dieser Dar-
stellung praktisch übereinander liegen. Der Überlapp scheint daher nur eine Funktion von
n, und somit unabhängig von der verwendeten Gitterkonstanten zu sein. Nimmt man eine
Anleihe beim Überlappverhalten des axialen Zustands in der U(1)–Theorie (1.101), welches
durch eine Funktion von rΛ beschrieben wird, so ist denkbar, dass das Überlappverhalten
im Falle der SU(2) durch eine Funktion von r/a richtig wiedergegeben wird, da a−1 ja mit
dem UV -Cut-Off auf dem Gitter in Verbindung gebracht werden kann. Das Ergebnis eines
Fits der für die Parameterwerte β = 2.625 und β = 2.675 gemessenen Datenpunkte an eine
Funktion der Form

|〈Ω |χ〉|2 = C exp

(
− λ r

a

)
(1.103)

ist als durchgezogene Linie in Abbildung 1.11 zu sehen. Zu beobachten ist eine sehr gute
Übereinstimmung der Messdaten mit der für die Parameterwerte C = 1.307 und λ = 0.359
erhaltene Kurve, wobei die auftretenden Abweichungen (besonders deutlich für n = 4) mit
zunehmendem Wert von β immer kleiner werden.
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Abbildung 1.12:
Der Überlapp des
axialen Zustands
mit dem Grundzu-
stand als Funktion
des Abstands der
Ladungen r in phy-
sikalischen Einhei-
ten. Zur Erhöhung
der Übersichtlich-
keit wurden einige
Datensätze durch
Linien miteinander
verbunden.

Der Kontinuumslimes a→ 0 entspricht für einen festen Abstand r der Ladungen dem Grenz-
wert n→∞. Unsere Simulationen zeigen eindeutig, dass der Überlapp des axialen Zustands
mit dem Grundzustand mit zunehmendem n exponentiell abfällt. Es ist interessant festzuhal-
ten, dass dieses Verhalten, genau wie auch die funktionale Abhängigkeit des Überlapps vom
dimensionslosen Verhältnis r/a uns bereits bei der Untersuchung des analogen Zustands in der
Deconfinement-Phase der U(1)–Theorie in ähnlicher Weise begegnet ist (1.101). Obwohl die
hier untersuchte SU(2)−Eichtheorie (für alle Werte des Parameters β) in der Confinement-
Phase realisiert ist, scheint der Überlapp des string-artigen Zustands mit dem Grundzustand
bei der Annäherung an den Kontinuumslimes a → 0 (β → ∞) auch hier aufgrund dessel-
ben Effekts zu verschwinden, der schon im Rahmen der Diskussion des unendlich angeregten
axialen Zustands der QED mit statischen Ladungen beschrieben wurde. Die Ausdehnung des
Raumbereichs, auf den der gluonische Fluss im Rahmen der Gitterformulierung beschränkt
ist, ist in der Richtung transversal zu x2 − x1 von der Größenordnung einer Gitterkonstan-
ten. Wird diese bei der Annäherung an den Kontinuumslimes nun kontinuierlich verkleinert,
bis im Grenzfall ein Flussschlauch infinitesimaler Dicke vorliegt, so gewinnen die dabei auf-
tretenden UV -Artefakte zunehmend an Bedeutung, die den Überlapp stetig verkleinern und
schließlich gänzlich verschwinden lassen.

Der Überlapp kann auch als Funktion des physikalischen Abstands der Quellen voneinan-
der ausgedrückt werden. Dies setzt die Kenntnis einer dimensionsbehafteten Skala in der
Theorie voraus. Im Falle der SU(2) wird dabei üblicherweise die aus Experimenten zum Me-
sonenspektrum gewonnene string tension σ ≃ 440 MeV2 verwendet. Die Umrechnung der in
Gittereinheiten gemessenen Abstände in physikalische wurde durch Interpolation zwischen
verschiedenen Werten der (dimensionslosen) string tension σa2(β) durchgeführt, welche für
eine Reihe von Werten der Kopplungskonstanten β bekannt sind. Diese Werte für σa2(β), so-
wie die störungstheoretisch berechnete Ein-Loop-Interpolationsformel finden sich in [Lan07].
Das Ergebnis dieser Umrechnung ist in Abbildung 1.12 zu sehen, der Überlapp ist nun als
Funktion von r für verschiedene Werte von β aufgetragen. Bei Vergrößerung von β nimmt der
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Überlapp für alle Abstände r zwischen den Quellen ab. Falls sich dieser Trend auch für noch
kleinere Gitterkonstanten als die hier von uns betrachteten weiter fortsetzen sollte, so hätte
dies im Kontinuumslimes β →∞ das Verschwinden des Überlapps für jeden festen Wert von
r zur Folge.

Interessanterweise widerspricht dieses Resultat einer von zwei Thesen, die in kürzlich ver-
öffentlichten Arbeiten zur Gestalt des Flussschlauchs in der SU(2)−Eichtheorie aufgestellt
wurden. Zum einen wurde in [BGM07a,BGM07b] behauptet, dass der Flussschlauch sich mit
zunehmender Entfernung der Quellen – für feste Gitterkonstante – vergrößert, zum anderen,
dass die Zunahme der Dicke des Flussschlauchs für kleinere Gitterkonstanten ein untergeord-
neter Effekt sei, da die Breite des Schlauchs proportional zur Gitterkonstanten ist. Die Inter-
pretation unserer Resultate steht in Einklang mit der ersten These, denn wir haben ja beob-
achten, dass ein sehr dünner Flussschlauch eine eher unzureichende Beschreibung des Grund-
zustands zu bieten vermag, deren Qualität mit zunehmender Entfernungen der Quellen noch
weiter abnimmt. Die zweite Behauptung würde jedoch implizieren, dass der Flussschlauch
der SU(2)−Eichtheorie im Kontinuumslimes tatsächlich unendlich dünn sein müsste, da jed-
wede Zunahme an Profildurchmesser unterdrückt sein sollte. In [BGM07a, BGM07b] wur-
de berichtet, dass bei sukzessiver Verkleinerung der Gitterkonstanten ab einem Wert von
a ≃ 0.06 fm (β ≃ 2.600) ein linearer Zusammenhang zwischen Gitterkonstanten und Dicke
des Flussschlauchs beobachtet werden konnte. Die größten beiden in unseren Simulationen
verwendeten Werte für β ermöglichen eine Untersuchung des besagten Bereichs sehr feiner
Gitterkonstanten, dennoch zeigte sich beim Übergang zu Werten von β ≥ 2.600 keinerlei
Abweichung von dem für alle Diskretisierungen gefundenen exponentiell abfallenden Verhal-
ten des Überlapps. Es gibt daher keinen Grund anzunehmen, dass der Überlapp des axialen
Zustands mit dem wahren Grundzustand im Kontinuumslimes nicht verschwinden sollte,
was wiederum bedeutet, dass ein Zustand, der durch Verbindung zweier Ladungen mittels
eines dünnen Flussschlauchs konstruiert wurde, nicht geeignet ist, den Grundzustand der
SU(2)−Eichtheorie angemessen zu beschreiben.

1.6.2 Alternative Formen des Flussschlauchs: Die Smearing-Prozedur

Da ein dünner Flussschlauch scheinbar nicht dazu geeignet ist, die Gestalt des gluonischen
Grundzustand bei Anwesenheit eines schweren q q−Paares angemessen zu beschreiben, stellt
sich die Frage nach möglichen Alternativen, die eine weniger singuläre räumliche Verteilung
des Gluonfeldes aufweisen. Wir haben bereits in der U(1)–Theorie gesehen, dass die Ursache
für das Verschwinden des Überlapps des axialen Zustands mit dem wahren Grundzustand
in der infinitesimalen transversalen Ausdehnung des Flussschlauchs zu finden ist, und die
numerischen Ergebnisse unserer Untersuchungen im Falle der SU(2)−Eichtheorie legen ei-
ne ähnliche Interpretation nahe. Ein dickerer Flussschlauch sollte daher zu einem weniger
dramatischen UV -Verhalten führen und es ist folglich zu erwarten, dass sich das Überlapp-
verhalten dieser Zustände mit dem Grundzustand bei Zunahme der Dicke des Flussschlauchs
verbessern wird.

Auf dem Gitter kann ein solcher Zustand durch
”
Verschmieren“ (smearing) eines infinite-

simal dünnen Flusschlauchs präpariert werden [Tep87, BS92, A+87]. Dabei werden räumli-
che Links durch die Summe der umliegenden Bügel ersetzt, welche zuvor wieder auf ein
SU(2)–Gruppenelement projiziert wurde (vgl. B.15, B.18). Da während dieses Prozesses In-
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Abbildung 1.13: Überlapp der ausgeschmierten Zustände |χS 〉 mit der Grundzustand |Ω 〉 für
verschiedene Werte der Gitterkonstanten a(β). Für eine fixe Anzahl an Smearing-Schritten
S sind die Daten unabhängig von der Kopplungskonstanten β.

formationen aus der Umgebung eines bestimmten Links gleichsam auf diesen übertragen
werden, spricht man dabei auch von der Erzeugung von fat links. Der verschmierte axiale
Zustand entsteht durch Ausschmieren derjenigen Links, welche die beiden Ladungen mitein-
ander verbinden, was zur Folge hat, dass sich der gluonische Flussschlauch vergrößert bzw. an
Durchmesser zunimmt. Es ist bekannt, dass die Genauigkeit von Messungen bei Verwendung
von Operatoren, die zuvor einer Verschmierungsprozedur unterzogen wurden, im Vergleich
zur Verwendung von nicht verschmierten Operatoren, deutlich zunimmt. Beispiele sind das
Glueballspektrum [MP99], sowie das bereits mehrfach erwähnte statische Potential [JKM03],
welches üblicherweise aus verschmierten Wilson-Loops extrahiert wird. Der Grund für die
eintretende Verbesserung bei Verwendung von verschmierten Operatoren ist, dass die zu-
grundeliegenden Eichfeldkonfigurationen geglättet werden, bzw. die Operatoren die höheren
Anregungen der Theorie zugunsten einer verbesserten Projektion auf den Grundzustand weni-
ger gut detektieren können. Dadurch erklärt sich auch der in der englischsprachigen Literatur
für die Verschmierungsprozedur synonym verwendete Terminus overlap enhancement – Ver-
größerung des Überlapps mit dem Grundzustand. Wir erwarten daher, dass die Entfernung
von UV -Moden durch Verschmierung des Flussschlauchs einen Zustand generiert, der eine
bessere Beschreibung des Grundzustands bietet, als der bisher von uns betrachtete generische
axiale Zustand |χ 〉.

Es ist ferner zu erwarten, dass eine wiederholte Durchführung der Verschmierungsprozedur
schrittweise immer glattere Konfigurationen erzeugen wird, die einem immer weiter ausge-
dehnten Flussschlauch entsprechen. Die Anzahl dieser Verschmierungsschritte bezeichnen wir
mit S und die zugehörigen Zustände mit |χS 〉. Für jeden Wert des Parameters β wurden
500 Konfigurationen erzeugt und in jeder dieser Konfigurationen wurden Zustände |χS 〉 für
S ∈ [1, 10] präpariert. Eine Zeitentwicklung von T ≥ 4a war ausreichend, um auf den Grund-
zustand projizieren und aus den verschmierten Wilson-Loops den Überlapp mit demselben
extrahieren zu können. Zur Auswertung wurden keine Korrelatoren herangezogen, deren rela-
tiver Fehler größer als 0.5 war. Die Kriterien für den lineare Fit waren χ2/ν < 3 undQ > 10−2.
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Abbildung 1.14: Der Über-
lapp der ausgeschmierten
Zustände |χS 〉 mit dem
Grundzustand |Ω 〉 als
Funktion des Abstands
der Quellen r in physi-
kalischen Einheiten. Die
Legende ist dieselbe wie
die bereits in Abbildung
1.13 verwendete.

Gitter: 204, Randbedin-
gungen: räumlich offen,
zeitlich periodisch.

Unsere Ergebnisse werden in Abbildung 1.13 als Funktion von r/a, und in Abbildung 1.14 als
Funktion des physikalischen Abstands r gezeigt. Zum Vergleich wurden ebenfalls Ergebnisse
der Untersuchung des axialen Zustands |χ 〉 (S=0) aus den Abbildungen 1.11 und 1.12 mit
aufgenommen. Es ist zu erkennen, dass sich der Überlapp mit dem Grundzustand durch die
schrittweise Durchführung der Verschmierungprozedur für festen Abstand der Quellen sukzes-
sive erhöht. Wir erinnern uns, dass der Überlapp des axialen Zustands mit dem Grundzustand
als Funktion von r/a unabhängig vom Wert des Parameters β war. Die Verallgemeinerung
dieses für S = 0 gefundenen Resultats wird exemplarisch anhand der Kurven für die beiden
Werte β = 2.475 und β = 2.675 für S = 2 und S = 4 in Abbildung 1.13 gezeigt. Für eine feste
Anzahl an Verschmierungsschritten S weist der Überlapp keinerlei Abhängigkeit vom Wert
des Parameters β auf und ist daher nach wie vor eine Funktion des dimensionslosen Verhält-
nisses n = r/a. Folgt man nun einer der Kurven in Abbildung 1.13 zu größeren Werten von
n, so kann dies für festes r als Annäherung an den Kontinuumslimes verstanden werden. Jede
der gezeigten Kurven fällt monoton bei Verkleinerung der Gitterkonstanten a(β), wenn auch
immer langsamer, je häufiger die Konfigurationen der Verschmierungsprozedur unterworfen
wurden. Dies legt die Vermutung nahe, dass letztlich der Überlapp eines jeden Zustands |χS 〉
mit dem Grundzustand – unabhängig von S – für einen festen Wert des Abstands r der Quel-
len im Kontinuumslimes verschwinden wird.

Eine alternative Darstellung der Situation findet sich in Abbildung 1.14. Hier können die
Auswirkungen der Verschmierungsprozedur für S = 0, 2 und 4 auf den Überlapp der entspre-
chenden Zustände mit dem Grundzustand im Kontinuumslimes (β →∞) für feste physikali-
sche Abstände der Ladungen direkt abgelesen werden. Betrachtet man ein festes Level S, so
liegen die auf einem feineren Gitter gemessenen Daten (β = 2.675, unverbundene Symbole)
unterhalb der Kurve, welche zur Messung derselben Größe auf einem Gitter mit größerer Git-
terkonstanten a(β) gehören (β = 2.475, verbundene Symbole). In jedem der drei betrachteten
Fälle zeigt ein vertikaler Schnitt bei festem r, dass eine Erhöhung der Anzahl an Verschmie-
rungsschritten zwar den Überlapp der so präparierten Zustände bei fester Gitterkonstante
a(β) erhöhen kann, dieser sich jedoch bei der Annäherung an die Kontinuumformulierung
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stets wieder verkleinert. Anders ausgedrückt, um einen festen Wert des Überlapps im Kon-
tinuumslimes für ein bestimmtes r garantieren zu können, müsste die Anzahl an Verschmie-
rungsschritten immer weiter erhöht werden.

Die räumliche Verteilung der gluonischen Felder verändert sich bei Erhöhung von S vom
Extremfall eines infinitesimal dünnen Flussschlauchs hin zu einer räumlich immer weniger klar
lokalisierten, die statischen Quellen umgebenden Verteilung. Da dies (für festes β) mit einer
Erhöhung des Überlapps mit dem Grundzustand einhergeht, soll im nächsten Abschnitt ein
Modell des Grundzustands betrachtet werden, von dem zu erwarten ist, dass die zugehörige
Gluonenfeldverteilung den gesamten Raumbereich durchdringt, ohne dabei auf einer wie auch
immer gearteten Smearing-Prozedur zu beruhen.

1.6.3 Nicht-abelsches Coulomb-Dressing

Die Berechnung der Persistenzamplitude eines Coulomb-artigen Zustands erfordert die Fixie-
rung der Coulomb-Eichung und die Auswertung von Korrelatoren nicht-abelscher Polyakov-
Linien, was in Kapitel 1.4.3 beschrieben wurde. Die Grundlage unserer Untersuchungen bil-
den dabei diejenigen Konfigurationen, die bereits bei der Untersuchung des axialen Zustands
in der SU(2)−Eichtheorie (Kapitel 1.6.1) verwendet wurden. Die verschiedenen Ensembles
wurden anschließend durch iterative Minimierung des eichfixierenden Funktionals

FU [Ω] =
1

6N

N∑

x=1

3∑

i=1

Re tr
[1− UΩ

i (x)
]

(1.104)

in Coulomb-Eichung gebracht. Die allgemeine Darstellung der eingesetzten numerischen Me-
thoden zur Fixierung diverser Eichungen findet sich im Anhang C, die Konkretisierung
auf den im Fall der SU(2)−Yang-Mills-Theorie in Coulomb-Eichung verwendeten Iteration-
Overrelaxation-Algorithmus geschieht in Abschnitt C.1.1. Während des Eichfixierungsprozes-
ses wurde die in Gleichung (C.11) definierte Größe δ2 protokolliert, sobald diese einen Wert
von δ2 < 10−10 erreicht hatte, wurde die Iteration beendet.

Die Ergebnisse zum Verhalten des Überlapps von Coulomb- und Grundzustand als Funktion
des Abstands n = r/a der Quellen sind in Abbildung 1.15 zu sehen. Diese unterscheiden
sich deutlich vom Überlappverhalten des Grundzustands mit dem axialen Zustand einerseits,
wie auch mit den verschmierten Zuständen |χS 〉 andererseits. In den Abbildungen 1.11 und
1.13 ist zu sehen, dass alle Datenpunkte für einen festen Wert von S auf ein und derselben
Kurve zu liegen kommen und durch eine von β unabhängige Funktion beschrieben werden
können, die nurmehr vom Verhältnis r/a abhängt. Dies ist hier nicht mehr der Fall. Vielmehr
erhöht sich der Überlapp des Coulomb-Zustands mit dem Grundzustand für jeden Wert von
r/a, wenn wir den Wert von β erhöhen. Zu Beginn dieses Kapitels wurde darauf hingewie-
sen, dass die Ursache für die Parametrisierbarkeit des axialen Überlapps |〈χ |Ω〉|2 durch das
dimensionslose Verhältnis r/a in der Geometrie des string-artigen Zustands und dessen UV -
Verhalten zu finden ist. Da der Coulomb-Zustand keine derartige Struktur aufweist, ist es
plausibel, dass UV -Artefakte keine dominierende Rolle spielen sollten und |〈Φ |Ω〉|2 separat
von r und a abhängen kann.

Die in Abbildung 1.16 gezeigte Skalierung der Messdaten auf physikalische Abstände r der
Quellen macht die Unterschiede zum Verhalten des axialen Zustands (sowie der durch Anwen-
dung der Smearing-Prozedur aus diesem hervorgegangenen) nochmals auf besondere Weise
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Abbildung 1.15: Der
Überlapp des Coulomb-
Zustands mit dem
Grundzustand als Funk-
tion der Gitterpunkte
n = r/a zwischen den
statischen Quellen. Die
Simulationen wurden
unter Verwendung der
Wilson’schen Wirkung
durchgeführt, Messdaten
wurden für T ≥ 3a erho-
ben. Bei der Annäherung
an den Kontinuumsfall
(β → ∞) nimmt der
Überlapp zu.

deutlich. Unsere Simulationen umfassen dabei eine Untersuchung des Überlappverhaltens
bei Quellenabständen von etwa r ≃ 1.6 fm bis hinunter zu r ≃ 0.05 fm. Bei sehr kleinen
Abständen ist der Überlapp des Coulomb-Zustands mit dem Grundzustand praktisch per-
fekt. Vergrößert man nun den Abstand der Quellen, so verringert sich der Überlapp zunächst,
jedoch bei weitem nicht in dem Maße, wie es für den axialen Zustand (Abbildung 1.12) der
Fall ist, dessen Überlapp mit dem Grundzustand exponentiell schnell abfällt. Darüber hinaus
verschärft sich dieses Verhalten für zunehmende Werte von β noch, während die Skalierung
im Falle des Coulomb-Überlapps dazu führt, dass praktisch alle Datenpunkte auf ein und
derselben Kurve zu liegen kommen, was die Unabhängigkeit dieses Resultats von der jewei-
ligen Gitterkonstanten a(β) anzeigt. Der Kurvenverlauf befindet sich bis hierher in Einklang
mit den gängigen Erwartungen zur Gestalt des Grundzustands der Yang-Mills-Theorie bei
Anwesenheit eines Paares von statischen Testladungen. Nimmt man nämlich an, dass sich
ein mehr oder weniger schlanker, gluonischer Flussschlauch zwischen dem Quark-Antiquark-
Paar ausbildet und dieses zu einem Meson verbindet, wenn man versucht, das Ladungspaar
zu trennen, so dürfte die Beschreibung der Situation durch einen mittels Coulomb-Dressing
konstruierten Zustand eher unangemessen sein. Schließlich entspricht dieser in störungstheo-
retischer Behandlung einem Zustand, der für kleine Abstände in führender Ordnung aus zwei
individuellen, eichinvarianten Ladungen besteht12.

Tatsächlich nimmt aber der Überlapp des nicht-perturbativen Analogons des Coulomb-
Zustands (1.89) bei weiterer Vergrößerung von r nicht beliebig weit ab, sondern es tritt
ein überraschendes Phänomen auf. Ab einem bestimmten physikalischen Abstand r0, dessen
Wert von der verwendeten Gitterkonstanten a(β) abhängt, stellt sich für r > r0 ein nahezu
konstanter Wert für |〈Φ |Ω〉|2 ein. Dieses Phänomen tritt für zunehmende Werte von β bei
immer kleineren Werten von r0 auf, wobei sich der zugehörige Grenzwert auf einem immer
höheren Niveau stabilisiert. Bei den kleinsten von uns verwendeten Gitterkonstanten wird
bereits eine Übereinstimmung mit dem Grundzustand von über 75% erreicht.

12Vgl. die Diskussion in Abschnitt 1.4.1.
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Abbildung 1.16: Der Überlapp des Coulomb-Zustands mit dem Grundzustand als Funktion
des physikalischen Abstands der statischen Quellen. Wilson’sche Wirkung, Gitter: 204.

Zur Überprüfung dieses Resultats wurden weitere Simulation unter Verwendung einer soge-
nannten improved action [Lan07] für physikalische Abstände der statischen Ladungen von
etwa 0.1 fm ≤ r ≤ 0.9 fm durchgeführt. Die dabei realisierten Verbesserungen beziehen sich
im Vergleich zur Wilson’schen Gitterwirkung (2.39) auf das Skalierungsverhalten bei der
Annäherung an den Kontinuumslimes sowie die Minimierung von Diskretisierungsartefakten,
welche zur Brechung der Rotationssymmetrie der Theorie beitragen. Die Ergebnisse dieser
detaillierten Untersuchung finden sich in [HIL+08a] und bestätigen unsere Resultate auf Basis
der Wilson’schen Wirkung.

1.7 Zusammenfassung und Ausblick

Das Ziel des vorliegenden Projektes war es, neue Erkenntnisse zur Gestalt des Grundzu-
stands von Yang-Mills-Theorien bei Anwesenheit eines sehr schweren Paares von Testladun-
gen unterschiedlichen Vorzeichens zu gewinnen und bereits bestehende Vorstellungen auf ihre
Tragfähigkeit hin zu überprüfen. Zu diesem Zweck sollte eine Methode entwickelt werden, die
es erlaubt, verschiedene Ansätze für den unbekannten Grundzustand miteinander vergleichen
zu können, um zu beurteilen, inwiefern das jeweilige Modell in der Lage ist, die Grundzu-
standsphysik adäquat wiederzugeben.

Zu diesem Zweck wurde in einem ersten Schritt eine Untersuchung der Quantenelektrody-
namik als einfachster Eichtheorie mit kontinuierlichen Symmetrietransformationen durch-
geführt, da in diesem Fall der Grundzustand bei Anwesenheit von statischen Ladungen be-
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kannt ist und die Theorie analytisch gelöst werden kann. Die beiden Ladungen werden dabei
jeweils von einer Coulomb-artige Konfiguration des Eichfeldes umgeben, was zu einem lokal
eichinvarianten, und somit physikalisch sinnvollen Zustand führt. Inspiriert durch die weit
verbreitete Vorstellung zur Gestalt des Grundzustands im mesonischen Sektor der QCD wur-
de als nächstes ein Zustand betrachtet, der die lokale Eichinvarianz dadurch herstellt, dass
Elektron und Positron durch einen (infinitesimal) dünnen Flussschlauch miteinander verbun-
den werden, in welchem das Eichfeld konzentriert ist. Es konnte gezeigt werden, dass dieser
Zustand einem hoch angeregten Zustand in der QED entspricht, der im Laufe der zeitlichen
Entwicklung zerstrahlt und in den Coulomb-artigen Grundzustand übergeht. Dieses Ergebnis
befindet sich im Einklang mit der Vorstellung von zwei individuellen elektrischen Ladungen,
die als Grundzustand der Quantenelektrostatik von einem Coulomb-artigen elektrischen Feld
umgeben sind.

Eine systematische Konstruktion von Lösungen, die der Forderung nach lokaler Eichinvari-
anz genügen, geschieht mittels des Dressingformalismus, welcher auf Dirac zurückgeht und
zunächst anhand der QED erläutert wurde. Anschließen wurde zum einen auf die Verbin-
dung hingewiesen, die zwischen der Fixierung einer Eichung und der Konstruktion von ver-
schiedenen Testzuständen im Rahmen des Dressingformalismus besteht, zum anderen wurde
daraus eine konkrete Vorschrift zur Berechnung der Persistenzamplituden dieser Zustände
im Rahmen eines numerischen Zugangs abgeleitet. Der Einführung des in Gleichung (1.44)
definierten Verhältnisses R(r, t) kommt dabei eine zentrale Bedeutung zu, denn beim Ver-
gleich des axialen Zustands mit dem Coulomb-Zustand hat sich gezeigt, dass die Ergebnisse
der analytischen Untersuchung der QED mit denjenigen aus einer Simulation der kompakten
QED in der Deconfinement-Phase sehr gut übereinstimmen und daher davon auszugehen ist,
dass wir mit R(r, t) tatsächlich ein Werkzeug gefunden haben, das es uns ermöglicht, ver-
gleichende Untersuchungen zur Gestalt des Grundzustands in Eichtheorien bei Anwesenheit
von statischen Ladungen durchzuführen. Dies gilt insbesondere für den Fall nicht-abelscher
Eichtheorien, die sich einem vollständig analytischen Zugang bislang entziehen.

Zunächst wurde jedoch eine weitere Simulation der kompakten U(1)−Theorie durchgeführt,
diesmal in der Confinement-Phase der Theorie. Unsere Resultate weisen darauf hin, dass
der axiale Zustand gegenüber dem Coulomb-Zustand klar bevorzugt wird. Beim Überschrei-
ten der Phasengrenze scheint also eine Umkehrung der Situation im Vergleich zur analy-
tisch zugänglichen Deconfinement-Phase einzutreten. Dieses Resultat ist nicht allzu überra-
schend, beschreibt das axiale Dressing doch einen insgesamt elektrisch neutralen Zustand,
für den die Frage nach einer einzelnen, eichinvarianten Ladung als Konstituent des Zustands
ihren Sinn verliert und folglich nicht beantwortet werden kann, was üblicherweise als In-
diz für das Confinement-Phänomen gewertet wird. Als nächstes wurde das Verhalten einer
SU(2)−Eichtheorie untersucht, die an ein fundamentales Skalarfeld gekoppelt wurde. Dieses
Modell wurde ausgewählt, da es die Sondierung des Grundzustands einer nicht-abelschen
Eichtheorie ermöglicht, die in zwei verschiedenen Realisierungsphasen vorliegen kann. Diese
unterscheiden sich grundlegend voneinander, wie durch die Berechnung des statischen Poten-
tials unterhalb und oberhalb des detektierten crossover gezeigt werden konnte. Unsere Resul-
tate lassen den überraschenden Schluss zu, dass der Coulomb-artige Zustand |Φ 〉 gegenüber
dem axialen Zustand |χ 〉 sowohl in der Deconfinement-Phase, als auch in der Confinement-
Phase vom wahren Grundzustand bevorzugt wird.
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Zur Klärung der Frage, ob die Geometrie des string-artigen Zustands alleinige Ursache dafür
ist, dass der axiale Zustand keine gute Beschreibung des Grundzustands einer Yang-Mills-
Theorie in der Confinement-Phase zu bieten scheint, oder ob es sich dabei möglicherwei-
se um den Einfluss des Higgs-Feldes handelt, wurden weitere Simulationen einer reinen
SU(2)−Eichtheorie durchgeführt, wobei besonderes Augenmerk auf das Verhalten der Über-
lappmatrixelemente von |Φ 〉 und |χ 〉 mit dem Grundzustand bei Veränderung der Gitter-
konstanten a(β) während der Annäherung an den Kontinuumslimes gelegt wurde. Im Falle
des axialen Zustands konnte dabei beobachtet werden, dass der Überlapp mit dem Grund-
zustand für alle betrachteten Abstände der Fermionen exponentiell mit dem UV -Cut-Off
abnahm, der durch den Wert der inversen Gitterkonstante a(β)−1 gegeben ist. Interessan-
terweise hatten wir dieses Verhalten schon bei der analytischen Untersuchung des axialen
Zustands in der QED beobachtet. Tatsächlich entspricht dies genau dem im Kontinuums-
limes der U(1)−Eichtheorie in der Deconfinement-Realisierungsphase erwarteten Verhalten,
denn die infinitesimale Ausdehnung des Strings orthogonal zur Verbindungsachse der Ladun-
gen führt schließlich dazu, dass der Überlapp des axialen Zustands mit dem Grundzustand
verschwindet. Eine Gluonenverteilung in Form eines dünnen Flussschlauchs, der sich nach
Einbringen eines Paares von sehr schweren fermionischen Quellen in das Vakuum einer Yang-
Mills-Theorie ausbildet, kann folglich als Modell des Grundzustands verworfen werden. Es
ist in diesem Zusammenhang interessant, den Blick nochmals auf die Confinement-Phase der
kompakten QED zu richten: Hier hat sich der axiale Zustand als eine gute Beschreibung des
Grundzustands präsentiert, wobei eingeräumt werden muss, dass unsere Untersuchungen nur
für eine einzige, feste Gitterkonstante durchgeführt wurden. Sollte sich das Ergebnis jedoch
im Kontinuumslimes erhärten, so könnte dies einen wertvollen Beitrag zur Klärung der Frage
nach den Unterschieden zwischen abelschem und nicht-abelschem Confinement leisten (siehe
auch [Shi08]).

Auf dem Gitter besteht auf einfache Art und Weise die Möglichkeit, Testzustände zu präpa-
rieren, die einer

”
zigarrenförmigen“ Gluonenfeldkonfiguration entsprechen. Dazu wurden im

Rahmen der Smearing-Prozedur gewöhnliche Links durch sogenannte fat links ersetzt, was
dazu geführt hat, dass der Einfluss von UV -Moden zurückgedrängt wurde und das Profil
des Flussschlauchs sich über mehrere Plaquetten erstrecken konnte. Unsere Untersuchungen
haben gezeigt, dass der Einfluss des sogenannten overlap enhancement für eine feste Anzahl
S von Verschmierungsschritten unabhängig von β ist, was zur Folge hat, dass der Über-
lapp eines Zustands |χS 〉 mit dem Grundzustand für einen festen Abstand der Quellen im
Kontinuumslimes noch immer verschwindet, wenngleich durch eine Erhöhung von S dafür
gesorgt werden kann, dass dieses Verhalten im Vergleich zum rein axialen Zustand |χ 〉 in
abgemilderter Form auftritt. Die vorliegenden Ergebnisse geben Anlass zu der Vermutung,
dass sowohl bei der Annäherung an der Kontinuumslimes, als auch bei der Verwendung von
größeren Gittern, eine immer größere Anzahl an Verschmierungsschritten benötigt wird, um
den Überlapp mit dem Grundzustand zu verbessern bzw. auf einem festen Niveau zu halten.
An dieser Beliebigkeit zeichnet sich bereits ab, dass keiner der Zustände |χS 〉 als Kandidat für
den wahren Grundzustand der Yang-Mills-Theorie im Kontinuum in Frage kommen kann. Es
ist außerdem aufschlussreich, sich klarzumachen, dass die vorliegenden Ergebnisse ebenfalls
als eine systematische Untersuchung zur Auswirkung des overlap enhancement von Wilson-
Loop-Operatoren mittels Smearing interpretiert werden können. Ist man nämlich lediglich
am Verlauf des statischen Potentials V (r) interessiert, so genügt es nach Gleichung (1.102)
theoretisch, einen Testzustand |Ψ 〉 zu verwenden, der einen nicht-verschwindenden Überlapp
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mit dem wahren Grundzustand hat. Die einfachste Annahme ist dabei der axiale Zustand
(1.86), dies führt auf den gewöhnlichen Wilson-Loop13. Da aber das Signal-/Rauschverhältnis
mit zunehmender Größe der Wilson-Loops immer schlechter wird, ist man darauf angewie-
sen, diesen Überlapp auf irgendeine Weise zu maximieren, damit der Wert des Potentials für
große Abstände r der Quellen überhaupt noch aus den Erwartungswerten der Wilson-Loop-
Operatoren extrahiert werden kann. Die Smearing-Prozedur ist dabei ein probates Mittel,
welches zunächst vor allem bei der Untersuchung des Glueball-Spektrums eingesetzt wurde
(vgl. [Rot97] §17.4), jedoch ist auch hier bekannt, dass sich der Überlapp mit dem Grund-
zustand im Kontinuumslimes stetig verringert, und daher eine immer größere Anzahl an
Blocking-Schritten zur Erzeugung von Fuzzy Links eingesetzt werden muss, um den Vorfak-
tor der Exponentialfunktion in Gleichung (1.102) nicht zu klein werden zu lassen.

Zuletzt wurde der Coulomb-Zustand (1.89) untersucht, der in störungstheoretischer Be-
handlung zwei individuell eichinvariante Farbladungen beschreibt, die von nicht-abelschen
Coulomb-Feldern umgeben sind. Da die Dressing-Konstruktion jedoch aufs Engste mit dem
Auftreten von Gribov-Kopien im Rahmen der Coulomb-Eichfixierung verknüpft ist, steht
zu erwarten, dass dieser Ansatz wesentliche nicht-perturbative Effekte aufweisen wird. Es
konnte beobachtet werden, dass der Coulomb-Zustand |Φ 〉 für jeden Wert der verwendeten
Gitterkonstanten a(β) einen wesentlich besseren Überlapp mit dem Grundzustand aufweist,
als dies für den axialen Zustand der Fall war. Dieses Ergebnis erwies sich als unabhängig von
der Wahl der Wirkung, die zur Simulation der diskretisierten SU(2)−Yang-Mills-Theorie
verwendet wurde. Da der Überlapp bei einer Verkleinerung der Gitterkonstanten sogar noch
zunimmt, kann nicht ausgeschlossen werden, dass es sich bei dem nicht-abelschen Coulomb-
Zustand möglicherweise tatsächlich um den wahren Grundzustand des qq–Sektors im Kon-
tinuumslimes der Yang-Mills-Theorie handelt. Ob sich der von uns beobachtete Trend bei
der Annährung an den Kontinuumsfall tatsächlich fortsetzt, müsste durch weitere Simula-
tionen auf größeren Gittern bei feinerer Diskretisierung geklärt werden. Außerdem wäre es
interessant, den Einfluss der Gribov-Kopien auf unsere Ergebnisse als Funktion der Gitter-
konstanten systematisch zu untersuchen, um eine Antwort auf die Frage zu finden, welcher
Mechanismus hinter der plötzlich einsetzenden Veränderung des Überlappverhaltens bei ei-
ner bestimmten Längenskala steckt, deren Wert von der verwendeten Gitterkonstanten ab-
zuhängen scheint. Eine naheliegende Fortsetzung der vorgestellten Untersuchungen besteht
sicherlich auch in der Anwendung des Dressingformalismus auf die Untersuchung von Ladun-
gen in der SU(3)−Yang-Mills-Theorie. Aufgrund ihrer besonderen Bedeutung für die Theorie
der starken Wechselwirkung wäre es schließlich wünschenswert zu überprüfen, ob sich unsere
Ergebnisse zur Gestalt des Grundzustands auch bei der Beschreibung von Mesonen in der
QCD bestätigen lassen. Da man erwartet, dass SU(Nc)-Yang-Mills-Theorien für große Nc eine
duale Beschreibung als String-Theorie besitzen [tH74a], ist es interessant, nochmals über die
Rolle des axialen Zustands in derartigen Theorien nachzudenken. Es wäre durchaus möglich,
dass sich der axiale Zustand in diesem Grenzfall wieder als die bessere Alternative bei der Be-
schreibung des Grundzustands erweist. Ebenfalls vorstellbar ist, dass das optimale Dressing
auf einer Art interpolierenden Eichung [tH71,tH81,CH86,LS89,LvN94] beruht, welche in der
Lage ist – möglicherweise als Kompromiss zwischen axialer Eichung und Coulomb-Eichung –
den idealen Kandidaten für den Grundzustand der jeweilige SU(Nc)-Yang-Mills-Theorie zu
erzeugen.

13Die zugehörige Konstruktion wird im Detail in Kapitel 4.6 besprochen.
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Zusammenfassend lässt sich konstatieren, dass unsere Untersuchungen zur Gestalt des Grund-
zustands im mesonischen Sektor der Yang-Mills-Theorie ein unerwartetes und sehr überra-
schendes Ergebnis geliefert haben. Die genaue Geometrie des wahren Grundzustands bleibt
zwar nach wie vor unbekannt, das vorherrschende Bild eines dünnen gluonischen Fluss-
schlauchs, der sich zwischen dem Fermionen-Paar ausbilden und auf diese Weise verhindern
soll, dass die Ladungen voneinander getrennt werden können, hat sich jedoch nicht als un-
eingeschränkt tragfähig erwiesen und muss daher möglicherweise revidiert werden.





Kapitel 2

Topologische Anregungen in der
Theorie der starken und elektro-
schwachen Wechselwirkung

2.1 Einleitung

In Kapitel 1.3.2 wurde im Rahmen der Diskussion des Phasendiagramms der kompakten
U(1)–Eichtheorie darauf hingewiesen, dass die Kondensation magnetischer Monopole für
das Auftreten des Confinement-Phänomens in dieser Theorie verantwortlich gemacht werden
kann [Pol75], und dass dies in numerischen Simulationen auf eindrucksvolle Weise bestätigt
werden konnte [DT80,SW92]. Der Übergang in die gewöhnliche Coulomb-Phase wird dabei
durch eine rapide Änderung der Monopoldichte angezeigt, das Kondensat

”
schmilzt“ und die

Theorie verliert ihre Confinement-Eigenschaften. Untersuchungen von nicht-abelschen Feld-
theorien haben gezeigt, dass auch in diesem Fall unter Umständen Monopolkonfigurationen
als Lösungen der zugehörigen Feldgleichungen gefunden werden können. Es zeigt sich, dass
die Existenz derartiger Lösungen eng mit der Topologie der Gruppenmannigfaltigkeit und
der Gestalt der Raumzeit verknüpft ist, welche die Grundlage der betrachteten Eichtheorien
bilden. Es ist daher nicht verwunderlich, dass eine Klassifizierung der verschiedenen Lösungen
auf einer topologischen Unterscheidung von Abbildungen aus der Gruppenmannigfaltigkeit
auf den Rand der Raumzeit-Mannigfaltigkeit beruht, die mittels der sogenannten Homoto-
piegruppe πn(G) charakterisiert werden können.

Neben magnetischen Monopolen, die wir kurz anhand des sogenannten dualen Supraleiters
als Modell des Vakuums der QCD und im Rahmen der Einbettung von topologischen Defek-
ten in Yang-Mills-Theorien diskutieren werden, spielen auch sogenannte Vortex-Lösungen als
topologische Anregungen in der Theorie der starken und elektroschwachen Wechselwirkung
eine wichtige Rolle. In Kapitel 2.3 werden wir zunächst die Rolle von Zentrumsvortices in
einem populären Mechanismus zur Erklärung des Confinement-Phänomens diskutieren. Da-
von ausgehend werden wir uns der Untersuchung des sogenannten Stringbreaking-Phänomens
im Zentrumsvortexbild des Confinements in einem Modell der Theorie der starken Wechsel-
wirkung mit dynamischen Materiefeldern widmen. Danach wenden wir uns in Kapitel 2.5
dem Standardmodell der elektroschwachen Wechselwirkung bei endlichen Temperaturen zu.
Dabei soll das Perkolationsverhalten der Zentrumsvortices in der Nähe des elektroschwachen

49



50 2.2. Dualität und Confinement durch Monopole

crossover mit dem der sogenannten elektroschwachen Z-Strings verglichen werden, die sich
als topologisch instabile Vortex-Lösungen in die elektroschwache Theorie einbetten lassen und
eine phänomenologisch höchst interessante Rolle im Rahmen von alternativen Bayogenese-
Szenarien bei der Abkühlung des frühen Universums spielen könnten. Eine Untersuchung zum
Verhalten der Dichte sowie einer Profilfunktion der Zentrumsvortices im Kontinuumslimes der
Theorie in der symmetrischen Phase schließen diese Untersuchung ab.

2.2 Dualität und Confinement durch Monopole

2.2.1 Der duale Supraleiter

Die Idee des dualen Supraleiters als Modell des Vakuums der Quantenchromodynamik wur-
de im Wesentlichen durch die experimentelle Beobachtung eines Phänomens inspiriert, das
bei der Untersuchung von Typ-II-Supraleitern in externen Magnetfeldern festgestellt werden
kann. Während Supraleiter vom Typ I unterhalb einer kritischen Temperatur Tc in einem
perfekten diamagnetischen Zustand realisiert sind und aufgrund des Meissner-Ochsenfeld-
Effektes ein äußeres Magnetfeld komplett aus ihrem Inneren verdrängen, besteht für Supra-
leiter vom Typ II die Möglichkeit zum Übergang in die sogenannte Shubnikov-Phase, die durch
die Ausbildung von räumlich recht klar begrenzten normalleitenden Bereichen innerhalb der
Probe charakterisiert ist, in die das externe Magnetfeld eindringen kann. Diese sogenannten
Abrikosov-Vortices bilden eine regelmäßige, gitterartige Struktur und ermöglichen es einem
quantisierten magnetischen Fluss in ein ansonsten feldfreies Vakuum einzudringen1. Da ma-
gnetische Feldlinien in einem Typ-II-Supraleiter in der Shubnikov-Phase also auf einen mehr
oder weniger klar begrenzten räumlichen Bereich komprimiert werden, sollte dies auch für ein
Magnetfeld gelten, das sich zwischen zwei magnetischen Elementarladungen unterschiedlichen
Vorzeichens ausbildet. Stellt man sich also vor, dass magnetische Monopole in ein Shubnikov-
Vakuum eingebracht werden, so wird das ursprünglich zu erwartende radiale Coulomb-Feld
eines Monopols deformiert und schließlich aufgrund des Meissner-Ochsenfeld-Effekts in Kom-
bination mit anderen Monopolfeldern die Gestalt von Flussschläuchen annehmen, die sich
zwischen den magnetischen Ladungen ausbilden.

Im Rahmen der Untersuchung des Grundzustands der Yang-Mills-Theorie in Kapitel 1 haben
wir bereits gesehen, dass sich ein solches Bild als durchaus tragfähig für die Beschreibung des
Confinement-Mechanismus erweisen kann, wobei hier die Rollen von (chromo-) magnetischen
und elektrischen Ladungen und Feldern vertauscht werden müssen. Dies ist der Grund dafür,
dass sich die Bezeichnung des nun noch genauer zu erläuternden Modells des Vakuums der
QCD als dualer Supraleiter [tH75,Pol75,Man76] etabliert hat. Die Ursache für die Ausbildung
eines supraleitenden Zustands in einem Festkörper liegt in der Kondensation von sogenannten
Cooper-Paaren begründet. Jeweils zwei Elektronen bilden dabei durch phononische Wechsel-
wirkung des Gitters ein Quasi-Boson, und dieser Bindungszustand sorgt dafür, dass sich eine
Energielücke (energy gap) im Anregungsspektrum der Ladungsträger unterhalb des normal-
leitenden Zustands ausbilden kann. Dieser Phasenübergang wird also durch die Kondensation
elektrischer Monopole, nämlich der Elektronen, angezeigt, und da sich diese in der supralei-
tenden Phase in einem quasi-bosonischen Zustand befinden, ist es nicht verwunderlich, dass
die einfachste Beschreibung dieses Phänomens durch eine abelsche Eichtheorie geschieht, die

1Eine elementare Diskussion der Abrikosov-Vortices im Rahmen der Landau-Ginzburg-Theorie der Supra-
leitung findet sich in [Fel98].
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an ein komplexes Skalarfeld gekoppelt wird, das die elektrische Ladung q = −2e trägt und
das Auftreten des Phänomens der spontanen Symmetriebrechung ermöglicht.

Für die Realisierung eines dualen Supraleiters als Modell des Vakuums der QCD, in wel-
chem nun farb-elektrische Ladungen durch farb-elektrische Flussschläuche zu mesonischen
Zuständen gebunden werden können, müssen konsequenterweise farb-magnetische Ladungen
existieren, welche die Rolle der Elektronen in einem gewöhnlichen Supraleiter bei der Aus-
bildung eines Cooper-Paar-Kondensats übernehmen. Daher ist es wichtig zu klären, unter
welchen Umstände magnetische Monopole in Yang-Mills-Theorien auftreten können.

2.2.2 Dualität und magnetische Monopole

Beginnen wir zunächst mit einer Untersuchung der in Kapitel 1.3 definierten abelschen U(1)−
Eichtheorie. Bei Anwesenheit von elektrisch geladener Materie nehmen die Maxwell-Gleich-
ungen in kovarianter Form die Gestalt

∂µF
µν(x) = jν(x) , ∂µ∗Fµν(x) = 0 , jν(x) = e ψ̄(x)γνψ(x) (2.1)

an, wobei der duale Feldstärketensor als ∗Fµν(x) = 1
2ǫ
µνλκFλκ(x) definiert ist. Im Fall ver-

schwindender elektrischer Ströme jν(x) besitzt die Theorie neben Lorentz- und Eichsymme-
trie eine weitere Symmetrie unter der Dualitätstransformation2

D : Fµν(x) → ∗Fµν(x) ⇐⇒ D : E(x)→ B(x) , B(x)→ −E(x) . (2.2)

Fordern wir nun, dass auch bei Anwesenheit von elektrischen Quelltermen diese Symmetrie
erhalten sein soll, so müssen die Gleichungen (2.1) durch Hinzufügen eines magnetischen
Stroms kν(x) modifiziert werden. Ein solcher Term ist aber aufgrund der Bianchi-Identität
für glatte Eichpotentiale Aµ(x) nicht zulässig, daher ist es notwendig, den Lösungsraum auf
nicht-differenzierbare Eichfelder zu erweitern. Dabei stellt sich die Frage nach der Konsi-
stenz einer solchen symmetrisierten Elektrodynamik angesichts der Kopplung an quanten-
mechanisch zu behandelnde Materiefelder. Eine erste Untersuchung dieser Art wurde von
Dirac [Dir31] durchgeführt, die hier kurz erläutert werden soll. Ein magnetischer Monopol,
lokalisiert im Ursprung des R3, ruft das Feld

B(r) =
g

4πr2
êr (2.3)

hervor, wobei g die magnetische Elementarladung bezeichnet. Ein solches Feld besitzt in
Kugelkoordinaten eine Darstellung als Rotation des Eichpotentials

AN =
g

4π r

1− cos(ϑ)

sin(ϑ)
êϕ (2.4)

auf R3, welches eine Singularität im Ursprung besitzt, die sich linienartig für ϑ = π ins Un-
endliche fortsetzt. Dieser sogenannte Dirac-String ist allerdings unphysikalisch, da sich seine
Position als eichabhängig erweist und nur die Singularität im Ursprung physikalisch relevant
ist. Die Konsistenz der resultierenden Quantentheorie eines geladenen Teilchens im Feld des
magnetischen Monopols (2.3) wird durch das Dirac’sche Veto gewährleistet, nach dem die
Trajektorie den Dirac-String nicht kreuzen darf.

2Im Minkowski-Raum M4 gilt ∗∗ = −1, die Theorie ist somit anti-selbstdual.
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In der Einleitung wurde bereits darauf hingewiesen, dass die Existenz und Charakterisierung
von nicht-perturbativen Lösungen der Bewegungsgleichungen von Eichtheorien maßgeblich
von der Topologie der Eichgruppe sowie (dem Rand) der Raumzeit-Mannigfaltigkeit abhängt,
auf der die Eichtheorie definiert ist. Es lohnt sich daher, die Monopollösung von Dirac noch-
mals unter topologischen Gesichtspunkten zu betrachten. Diese alternative Formulierung geht
auf Wu und Yang [WY75] zurück und macht von glatten Eichpotentialen Gebrauch, die in
zwei verschiedenen offenen Umgebungen definiert sind, die den topologisch nicht-trivialen
Raum R3\{0} ≃ S2 überdecken. Die Position des Monopols ist also aus der Mannigfaltigkeit
ausgenommen. Die beiden Karten, welche die S2 überdecken, werden als Nord- und Südhälfte
des Atlas bezeichnet, da die Region, in der die beiden Karten überlappen, üblicherweise als
der Äquator der Kugel gewählt wird. Dies ist zweckmäßig aber nicht zwingend, denn der
geometrische Ort, an dem der Dirac-String die Kugeloberfläche durchstößt, ist ja nur in einer
speziellen Eichung der Nord- bzw. Südpol der S2. Wählen wir also auf der Nordhälfte das
Eichpotential (2.4) und auf der Südhälfte

AS = − g

4π r

1 + cos(ϑ)

sin(ϑ)
êϕ , (2.5)

so sind die Eichpotentiale in ihrer jeweiligen Karte wohldefiniert und ergeben eine stetige
Feldstärke auf S2. Die Konstruktion nutzt die Invarianz der Feldstärke unter Eichtransfor-
mationen (1.50), die am Eichfeld durchgeführt werden können. Solange sich nämlich die
Eichpotentiale in der Überlappregion der verschiedenen Karten nur um eine Eichtransforma-
tion unterscheiden, erhalten wir im abelschen Fall eine glatte Feldstärke auf ganz R3\{0}. Im
vorliegenden Fall besteht die Überlappregion aus dem Äquator S1 ≃ R2\{0} bei ϑ0 = π/2
und die Differenz der Eichpotentiale ist gegeben durch

AN (ϑ0)−AS(ϑ0) = ∇λ(ϕ) , λ(ϕ) =
g

2π
ϕ . (2.6)

Folglich ist durch ΩNS(ϕ) = exp(−ieλ(ϕ)) ∈ U(1) eine Übergangsfunktion definiert, die die
magnetische Ladung des Monopols im Ursprung charakterisiert:

g =

∮

S2

B · dσ =

∫

S2
N

BN · dσ +

∫

S2
S

BS · dσ =

∮

S1

(AN −AS) · ds = λ(ϕ)
∣∣∣
2π

0
(2.7)

Die Forderung nach Stetigkeit der Eichtransformationen führt auf die berühmte Quantisie-
rungsbedingung [Dir31] für magnetische Ladungen:

ΩNS(0) = ΩNS(2π) ⇐⇒ g =
2π

e
n , n ∈ Z . (2.8)

Der entscheidende Punkt ist, dass die auf einem kompakten Intervall definierte Funktion
λ : [0, 2π] 7→ R nicht stetig sein muss, sondern i.A. Sprünge um 2πm,m ∈ Z aufweisen kann.
Die nach Gleichung (2.6) zu berechnenden Transformationen der Eichpotentiale können da-
her singulär werden. Zu beachten ist ferner, dass es sich bei λ(ϕ) um eine Abbildung einer
(räumlichen) S1 auf die Gruppenmannigfaltigkeit der U(1) ≃ S1 handelt. Daher kann die
magnetische Ladung g auch als ein Element der ersten Homotopiegruppe π1(U(1)) = Z in-
terpretiert werden, die diese Abbildung charakterisiert.

Die erste numerische Untersuchung zur Detektierung von magnetischen Monopolen innerhalb
der Konfigurationen einer kompakten abelschen Eichtheorie wurde von deGrand und Tous-
saint [DT80] durchgeführt. Dabei wurde eine Vorschrift angegeben, welche es erlaubt, den
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mit den Dirac-Strings verküpften magnetischen Fluss durch die Oberfläche eines elementa-
ren Würfels zu bestimmen. Dabei wird angenommen, dass sich der gemäß Gleichung (1.70)
berechnete Fluss durch eine elementare Plaquette aus zwei Teilen zusammensetzt, nämlich
physikalischen Fluktuationen aus dem Intervall [−π, π], sowie ganzzahligen Vielfachen von
2π, die dem Fluss eines Dirac-Strings entsprechen. Definiert man also

θ̄(x)µν :=
[
θ(x)µν − 2π nµν(x)

]
∈ [−π, π] , nµν(x) ∈ Z , (2.9)

wobei nµν(x) die Anzahl der Dirac-Strings bezeichnet, die die elementare Plaquette Pµν(x)
durchstößt, so lässt sich die magnetische Ladung M innerhalb eines ausgedehnten Würfels C
berechnen als

M =
1

2π

∑

∂C
θ̄µν =

1

2π

∑

c∈C
∇µǫµνκθ̄νκ =

∑

c∈C
ǫµνκ∇µnνκ . (2.10)

In der zweiten Gleichung, die das Analogon zu M =
∫
VC
∇ · B auf dem Gitter darstellt,

wird über alle elementaren Kuben c summiert, deren magnetische Ladungen sich zu der in C
enthaltenen Ladung addieren. Eine Alternative zu dieser sogenannten Typ-II-Konstruktion
besteht dabei in der Verwendung von ausgedehnten Plaquetten θ̄(k)(x)µν , deren Verwendung
in Kapitel 2.5 im Kontext einer möglichen Definition von elektroschwachen Z-Strings disku-
tiert werden wird. Zuletzt ist festzuhalten, dass eine Eichtransformation der Link-Variablen
den Wert einer einzelnen Plaquette zu verändern vermag, nicht jedoch die Summe über eine
geschlossene Oberfläche. In dieser Beobachtung manifestiert sich die Erkenntnis, dass dem
Verlauf der Dirac-Strings keine physikalische Bedeutung beizumessen ist, die eingeschlossene
magnetische Ladung jedoch eine eichinvariante Größe darstellt, die mithilfe von unphysikali-
schen Objekten bestimmt werden kann.

2.2.3 Yang-Mills-Theorie und abelsche Eichungen

Die Kompaktheit der U(1) Eichgruppe ist notwendig und hinreichend für die Existenz von
magnetischen Monopolen in der oben diskutierten abelschen Eichtheorie. Dabei wurde deut-
lich, dass die Topologie eine wesentliche Rolle für die Klassifizierung der nicht-perturbativen
Lösungen spielt, die für das Confinement-Phänomen verantwortlich sein sollen. Eine Auswei-
tung der hier vorgestellten Techniken in Anwendung auf Yang-Mills-Theorien mit Eichgruppe
G = SU(N) ist nicht direkt möglich, da π1(SU(N)) = {0}. Die Idee ist nun, sich auf eine
abelsche Untergruppe zu konzentrieren, deren Kompaktheit aus der Einbettung in eine kom-
pakte Eichgruppe G resultiert. Im Fall der SU(N) handelt es sich um die Cartan-Untergruppe
H = U(1)N−1 ⊂ G, deren N − 1 Generatoren die größte abelsche Unteralgebra der su(N)
bilden. Diese können immer diagonal gewählt werden. Im Hinblick auf eine in Kapitel 4
zu besprechende Verallgemeinerung der hier diskutierten Ergebnisse auf Eichtheorien, de-
ren volle Symmetriegruppe G durch das Phänomen der spontanen Symmetriebrechung auf
eine residuelle Symmetriegruppe H eingeschränkt wird, empfiehlt es sich, bereits an dieser
Stelle den Coset G/H einzuführen, der all die Elemente aus G enthält, die nicht durch einen
Eichtransformation h ∈ H miteinander verknüpft sind. Schematisch lässt sich diese Zerlegung
als

G = H ⊕HM1 ⊕HM2 · · · (2.11)

darstellen, wobei die Mengen Mi Elemente enthalten, die zwar zu G, nicht aber zu H gehören
und dabei untereinander verschieden sind. Die Existenz von magnetischen Monopolen ist gesi-
chert, sofern die mit π2(G/H) bezeichnete zweite Homotopiegruppe von G/H nicht trivial ist,
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und im Fall G = SU(2) ist dies aufgrund von π2(SU(2)/U(1)) = π1(U(1)) gerade der Fall3.
Das Interesse an den (maximal) abelschen Eichungen [tH81] resultiert nun aus der Annahme,
dass sich durch Fixierung der vollen Symmetrie G der Theorie auf eine durch H beschrie-
bene residuelle abelsche Symmetrie die wesentlichen Informationen über den Confinement-
Mechanismus, die in den Eichfeldern enthalten sind, in den abelschen Freiheitsgraden konzen-
trieren lassen, auf die anschließend projiziert werden kann. Das Ergebnis dieser sogenannten
abelschen Projektion auf die Cartan-Untergruppe ist eine effektive abelsche Eichtheorie, die
aufgrund von π1(H) 6= {0} das Auftreten von magnetischen Monopolen erlaubt.

Konkretisieren wir diese Überlegungen zunächst für den Fall einer SU(2)−Yang-Mills-
Theorie. Die maximale abelsche Eichung (MAG) wird in der Gitterformulierung dieser Theo-
rie durch Maximierung des eichfixierenden Funktionals

FMAG
U [Ω] =

1

ND

N∑

x=1

D∑

µ=1

tr
[
UΩ
µ (x)σ

3 UΩ †
µ (x)σ3

]
Ω−→ max. (2.12)

realisiert4. Dabei bezeichnet konventionsgemäß σ3 die diagonale Pauli-Matrix innerhalb der
su(2) (siehe Anhang D.32). Das Funktional (2.12) ist invariant unter abelschen Eichtransfor-
mationen der Form ΩA(x) = exp[iα(x)σ3] mit α(x) ∈ [0, 2π[ , daher wird die SU(2) Eich-
symmetrie der Theorie bis auf eine U(1) Untergruppe fixiert, deren Einbettung durch die
Wahl der z-Richtung in su(2) gegeben ist. Nach Abschluss der Eichfixierung sind die Links
UΩ
µ (x) ”

so diagonal wie möglich“, d.h. die dominierenden Komponentenfunktionen in der
Parametrisierung (D.33) sind a0µ(x) und a3µ(x). Die abelsche Projektion besteht nun in der
Extraktion der Felder θµ(x) aus den eichfixierten Links nach der Vorschrift

θµ(x) := arg
[[
UΩA
µ (x)

]11]
= arg

[
a0µ(x) + i a3µ(x)

]
, θµ(x) ∈ [−π, π[ . (2.13)

Diese verhalten sich unter den residuellen abelschen Transformationen wie ein (kompaktes)
abelsches Eichfeld:

θµ(x) → θΩA
µ (x) = ΩA(x) θµ(x)Ω

†
A(x+ µ) = [ θµ(x) + α(x) − α(x+ µ) ] mod 2π . (2.14)

Diese Konstruktion eröffnet die Möglichkeit, das Konzept der sogenannten abelschen Domi-
nanz in numerischen Simulationen der SU(2)−Yang-Mills-Theorie direkt testen zu können.
Zur Extraktion des Potentials, das zwischen zwei statischen farbelektrischen Ladungen vor-
herrscht, wird dabei der eichinvariante Wilson-Loop-Operator herangezogen. Da der Erwar-
tungswert dieses Operators unabhängig von der gewählten Eichung ist, kann dieser insbeson-
dere durch Verwendung von Konfigurationen berechnet werden, die sich in maximal abelscher
Eichung befinden. Das Ergebnis wird mit dem Resultat einer zweiten Berechnung des Erwar-
tungswertes des Wilson-Loop-Operators verglichen, wobei diesmal ausschließlich die durch
abelsche Projektion (2.13) gewonnenen Felder θµ(x) in die Berechnung einfließen. Dabei hat
sich gezeigt [BBMPS96], dass der lineare Anstieg des Confinement-Potentials, der in der vol-
len SU(2)−Eichtheorie gemessen wurde, zu 92% durch die Verwendung der Link-Variablen
in abelscher Projektion reproduziert werden kann. Außerdem ließ sich ein Phänomen beob-
achten, dass als Monopol-Dominanz Eingang in die Literatur gefunden hat: Die gemessene

3Eine Diskussion des allgemeineren Theorems, das die Isomorphie von π2(G/H) zum Kern des natürlichen
Homomorphismus von π1(H) nach π1(G) beweist, findet sich beispielsweise in [Ryd85].

4Vgl. [CGI98,DDFG+98] und die darin enthaltenen Referenzen.
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abelsche string tension σA resultiert zu etwa 95% aus Konfigurationen, in denen magnetische
Monopole nachgewiesen werden konnten. Weitere Hinweise auf die Relevanz der in abelschen
Eichungen definierten Monopole für das Confinement-Phänomen sind das Skalierungsverhal-
ten der Monopoldichte ρm(β) ∼ a3(β), sowie die beobachteten Änderungen im Verhalten der
Dichte beim Übergang der Theorie in die Deconfinementphase5. Zusammenfassend kann ge-
sagt werden, dass die Kondensation von magnetischen Monopolen in der Confinement-Phase
der SU(2)−Yang-Mills-Theorie durch numerische Untersuchungen, durchgeführt in maximal
abelschen Eichungen, bestätigt werden konnte. Diese Resultate scheinen somit das Bild des
dualen Supraleiters als Modell des Vakuums der Quantenchromodynamik zu unterstützen.

2.2.4 Einbettung topologischer Defekte

Werden zusätzliche skalare Felder an reine Yang-Mills-Theorien angekoppelt, so eröffnen sich
neue Möglichkeiten, abelsche Eichungen für derartige Theorien zu definieren. Insbesondere
erlaubt das Phänomen der spontanen Symmetriebrechung, welches in Kapitel 4.2 ausführlich
diskutiert wird, die Konstruktion von statischen Lösungen der Bewegungsgleichungen, die ei-
ner Monopolkonfiguration endlicher Energie entsprechen, ohne den Kunstgriff der abelschen
Projektion bemühen zu müssen. Umgekehrt ermöglichen solche Theorien die Einbettung ei-
ner abelschen Theorie. In diesem Kapitel soll eine kurze Diskussion der Situation anhand des
Georgi-Glashow-Modells [GG72] erfolgen.

Dabei handelt es sich um eine Yang-Mills-Theorie mit G = SO(3) Eichsymmetrie, an die
ein skalares Isovektorfeld φa(x) (a = 1, 2, 3) gekoppelt ist. Die Eichgruppe ist lokal isomorph
zu SU(2) und das Higgs-Feld transformiert sich somit unter der adjungierten Darstellung
der Gruppe. In Kapitel 4.3 werden wir eine Erweiterung dieser Theorie durch Verwendung
der Eichgruppe SU(3) vornehmen. Die dort getroffenen Konventionen für die Parameter der
Lagrangedichte (4.26) sollen auch hier beibehalten werden: Als Basis der Lie-Algebra LG
wählen wir im vorliegenden Fall die Generatoren T a=σa/2 (a = 1, 2, 3) und ersetzen in Ko-
ordinatendarstellung die Strukturkonstanten fabc durch ǫabc. Für m2 < 0 kann eine spontane
Brechung der G−Symmetrie auftreten. Dabei entwickelt das adjungierte Skalarfeld Φ = φaT a

einen Vakuumerwartungswert ||Φ0||2 = −m2/Λ, der das Potential minimiert. Die Vakuum-
mannigfaltigkeit ist durch S2 ≃ G/H gegeben, wobei H die Gruppe der residuellen abelschen
U(1)–Symmetrie der Theorie bezeichnet. Diese ist realisiert durch Drehungen (U(1) ≃ SO(2))
in einer Ebene, welche den Vakuumerwartungswert Φ0 des Isospinvektors invariant lassen.
Da die Orientierung von Φ0 ∈ LG durch die Bedingung Vtree(Φ0) = 0 nicht festgelegt ist,
kann diese Beliebigkeit ausgenutzt werden, um für den Einheitsvektor

n(x) = na(x)T a , na(x) :=
φa(x)

||Φ(x)|| , na(x)na(x) = 1 (2.15)

eine spezielle Wahl zu treffen, welche die Einbettung von H in G charakterisiert und somit
eine spezielle Eichung definiert. Im Folgenden wollen wir die Lösung (2.4) in die elektro-
magnetische Untergruppe H einbetten. Dazu wählen wir die sogenannte unitäre Eichung
na(x) = δa3 (∀x), in der das Vektorpotential des magnetischen Monopols mit Dirac-String
längs der negativen z-Achse als dritte Komponente im Isospinraum fungiert. Der Vakuumer-
wartungswert des Skalarfeldes ist ebenfalls in diese Richtung orientiert. Insgesamt betrachten

5Eine Diskussion der wegbereitenden Arbeiten findet sich in [Sch01].
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wir also die Konfiguration

A0 = Ar = Aϑ = 0 , Aϕ = − g

4π r

1− cos(ϑ)

sin(ϑ)
T 3 , Φ = ||Φ0||T 3 . (2.16)

Eine allgemeine Eichtransformation Ω(x) ∈ SU(2) kann durch die drei Euler’schen Winkel
(α, β, γ) parametrisiert werden und besitzt die Darstellung

Ω(x) = exp
{
iα(x)T 3

}
exp

{
iβ(x)T 2

}
exp

{
iγ(x)T 3

}
. (2.17)

Wird nun eine Eichtransformation des Potentials und des adjungierten Skalarfeldes gemäß
der Gleichungen (1.50) und (4.43) für die spezielle Wahl γ = −α = ϕ, β = −ϑ durchgeführt,
so erhält man die von ’t Hooft und Polyakov [tH74b,Pol74] angegebene asymptotische Lösung

Aa0 = 0 , Aai = −ǫiab
xb

er2
, φa = ||Φ0||

xa

r
(r →∞) (2.18)

der Feldgleichungen des Georgi-Glashow-Modells. Diese sogenannte Hedgehog-Lösung be-
schreibt einen magnetischen Monopol im Ursprung des Koordinatensystems, wie sich durch
die Berechnung der in Gleichung (4.91) definierten verallgemeinerten Feldstärke leicht zeigen
lässt. Die Eichtransformation hat dafür gesorgt, dass der unphysikalische Dirac-String ver-
schwunden ist und das kovariant konstante Skalarfeld am Rand des räumlichen Universums
S2∞ seinen Vakuumerwartungswert bei nicht-trivialen Randbedingungen annimmt. Dabei ist
zu beachten, dass keinerlei abelsche Projektion vorgenommen werden musste. Die magnetische
Ladung ist rein topologischer Natur, denn obwohl die Felder Aµ(x) und Φ(x) ausschließlich
elektrische Ladung tragen, findet sich bei der Berechnung des magnetischen Stroms kµ(x)
mittels des zu (4.91) dualen Feldstärketensors nach (2.1) eine quantisierte erhaltene Ladung
M = 2g, welche der zweifachen Ladung des Dirac’schen Monopols entspricht. Dies ist ei-
ne Folge der Charakterisierung der Vakuummannigfaltigkeit von Φ durch π2(G/H) als den
geraden ganzen Zahlen [Har96]. Die Existenz der magnetischen Monopole in diesem Modell
ist also eine Folge der Nichttrivialität der zweiten Homotopiegruppe von SO(3)/U(1) und
hängt nicht von der gewählten Eichung ab. Die unitäre Eichung hat sich dabei lediglich als
besonders geeignet erwiesen, um magnetische Monopolkonfigurationen detektieren zu können.

In Kapitel 2.5.1 werden wir auf diesen Punkt nochmals zurückkommen. Dort wollen wir
uns der Untersuchung von Zentrumsvortices und der Einbettung von sogenannten Nambu-
Monopolen und elektroschwachen Z-Strings in das Standardmodell der elektroschwachen
Wechselwirkung bei endlichen Temperaturen zuwenden, die als topologische Defekte auf eich-
invariante Weise charakterisiert und detektiert werden können. Zunächst soll jedoch noch ein
weiteres Confinement-Szenario für die Theorie der starken Wechselwirkung diskutiert werden,
welches auf der Annahme perkolierender Zentrumsvortices beruht. Insbesondere soll unter-
sucht werden, ob diese kollektiven Freiheitsgrade in der Lage sind, neben dem Einschluss von
Farbladungen auch das Phänomen des Stringbreakings zu erklären, welches sich in Streuex-
perimenten stark wechselwirkender Teilchen durch den Einfluss von dynamischer Materie in
der Hadronisierung von angeregten farbneutralen Zuständen manifestiert.
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2.3 Confinement und Zentrumsvortices

Ein alternativer Mechanismus zur Erklärung des Confinement-Phänomens basiert auf der
bereits Ende der siebziger Jahre des vorigen Jahrhunderts entstandenen Vorstellung von
kondensierenden Zentrumsvortices als den relevanten Freiheitsgraden in einer gluonischen
Feldkonfiguration, welche das Vakuum einer Yang-Mills-Theorie durchziehen [tH78, Cor79,
tH79,NO79]. Ein Vortex stellt in drei Dimensionen eine zylinderförmige Feldkonfiguration dar,
welche quantisierten magnetischen Fluss trägt6. Handelt es sich um eine auf einer Eichgruppe
G basierenden Theorie, so sind die möglichen Werte für das Flussquantum Φ im Falle eines
Zentrumsvortex aufs Engste mit denjenigen Eichfeldern verknüpft, die aus dem Zentrum der
Gruppe G stammen.

2.3.1 Zentrums-Eichung und Zentrumsvortices

Das Zentrum einer GruppeG ist die Menge aller Elemente Z, die mit allen anderen Elementen
der Gruppe kommutieren. Im Fall G = SU(N) handelt es sich dabei um die zyklische GruppeZN = {exp(2πi n/N) |n = 0, . . . , N − 1} . (2.19)

Wie schon bei der Diskussion des dualen Supraleiters spielt offensichtlich auch hier wieder eine
abelsche Untergruppe der SU(N) eine entscheidende Rolle. Im Gegensatz zu den unphysika-
lischen Dirac-Strings ist es im Falle der Zentrumsvortices jedoch möglich, diese mithilfe des
Wilson-Loop-Operators zu detektieren. Betrachten wir nämlich eine Kontur Γ, die den Rand
des (räumlichen) Universums beschreibt, so wird ein Vortex, welcher die durch Γ berandete
Ebene durchdringt, dadurch gänzlich umschlossen und es gilt

WΓ[A] = tr P

{
exp
[
i

∮

Γ
dzµAµ(z)

]}
=: exp

[
iΦ(Γ)

]
. (2.20)

Die Pfadordnung spielt für Eichfelder aus der Cartan-Algebra C(G) keine Rolle und die
Anwendung des Satzes von Stokes liefert im Exponenten gerade den magnetischen Fluss
Φ(Γ) ∈ C(G) durch die von Γ berandete Fläche A. Fasst man den Wilson-Loop als eine
ortsabhängige Eichtransformation fermionischer Felder auf, so beschreibt WΓ[A] die Pha-
senänderung der Wellenfunktion Ψ[A], die sich beim Transport eines Fermions um den Vortex
herum ergibt. Aufgrund der Quantisierungsbedingung (2.8) ist ein Dirac-String für Fermio-
nen unsichtbar7, ein Zentrumsvortex kann jedoch nicht-trivialen Zentrumsfluss tragen und
ist daher für den Wilson-Loop-Operator sichtbar. Dies bedeutet, dass das Eichpotential als
reine Eichung Aµ(z) = Ω(z)∂µΩ

−1(z) auf dem Rand Γ des Universums nicht global definiert
sein kann, da sich ansonsten stets Φ(Γ) = 0 ergeben müsste. Anstelle der kanonischen Kon-
struktion verschiedener Karten und der Verknüpfung der lokal definierten Potentiale durch
Übergangsfunktionen, besteht eine äquivalente Möglichkeit darin, eine globale Abbildung der
Form Ω : Γ → G/Z zu definieren, welche auf G/Z eingeschränkt ist und somit das Auftre-
ten von Sprüngen um ein Zentrumselement bei der Berechnung der sogenannten Holonomie

6Das klassische Beispiel ist die Nielsen-Olesen-Lösung im abelschen Higgs-Modell in D = 2 + 1. Diese
stellt eine spezielle Verknüpfung des elektrisch geladenen Skalarfeldes mit dem Eichfeld dar, welche aufgrund
der Randbedingungen zu einer statischen Konfiguration endlicher Energie pro Länge des Vortex führt, der
innerhalb einer endlichen Querschnittsfläche ein Magnetfeld führt, und somit magnetischen Fluss Φ = 2π

e
n

trägt [Ryd85,Fel98].
7Vgl. dazu auch die Diskussion des Aharonov-Bohm-Effektes in [Fel98].
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Γ

T

R

Abbildung 2.1: Links: Der Fluss Φ(Γ) eines (ausgedehnten) Zentrumsvortex wird von der
Holonomie WΓ[A] detektiert. Rechts: Eine rechteckige Kontur ΓR×T wird auf triviale (unten)
und nicht-triviale Weise (oben) von geschlossenen (dünnen) P−Vortices

”
gelinkt“.

(2.20) ermöglicht. Nimmt man bei der Betrachtung der Situation einen topologischen Stand-
punkt ein, so wird im vorliegenden Fall in Analogie zur Behandlung des Wu-Yang-Monopols
die Position des unendlich dünnen Vortex, an dem eine Singularität auftreten könnte, aus der
Mannigfaltigkeit ausgenommen, und die Charakterisierung der Zentrumsvortices auf dieser
nicht-trivialen Mannigfaltigkeit geschieht durch π1(G/Z). Im Fall G = SU(N) ist dies gerade
π1(G/Z) = ZN .
Konkretisiert auf G = SU(2) bedeutet dies, dass das Zentrum (2.19) durch Z2 = {−1,+1}
gegeben ist, was einem Fluss von Φ(Γ) = 2πnT 3 (n ∈ N) entspricht, wobei n lediglich als
n mod 2 definiert ist:

WΓ[A] = (−)n1 . (2.21)

Da Zentrumsvortices als Ränder von (D−1)-dimensionalen Volumen geschlossene Flächen ∂Σ
der Dimension (D− 2) bilden, schneiden diese kohomologisch trivialen Flächen eine Wilson-
Loop-Fläche sowohl in D=4, als auch in D=3 Dimensionen in einem Punkt. In letzterem Fall
bilden Zentrumsvortices also geschlossene Linien. Folglich muss ein nicht-trivialer Beitrag,
der von einem einzelnen Zentrumsvortex zum Fluss Φ(Γ) geliefert wird, von einer nicht-
triviale Verknüpfung (Linking) von Vortex und Wilson-Loop herrühren. Die Situation ist in
Abbildung 2.1 skizziert.

Zur Detektierung der Zentrumsvortices auf dem Gitter fixieren wir zunächst die sogenannte
Direkte Maximale Zentrums-Eichung (DMCG) durch iterative Maximierung des eichfixieren-
den Funktionals

FDMCG
U [Ω] =

1

ND

N∑

x=1

D∑

µ=1

(
tr
[
UΩ
µ (x)

] )2 Ω−→ max. (2.22)

Es ist dabei wichtig, festzuhalten, dass die Extremumsbedingung (2.22) auch nach Abschluss
der Eichfixierung immer noch mit der Durchführung von Eichtransformationen verträglich ist,
die aus dem Zentrum von G stammen. In Anhang C.2 wird neben der detaillierten Erläute-
rung des von mir verwendeten Algorithmus zur Fixierung der Direkten Maximalen Zentrums-
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Eichung auch die Äquivalez der DMCG zur sogenannten Minimalen Adjungierten Landau-
Eichung (MALG) diskutiert, welche von

”
zentrumsblinden“ Eichpotentialen Gebrauch macht.

Angesichts dieser Verbindung der beiden Eichbedingungen wird klar, dass durch (2.22) ei-
ne Theorie mit residueller Z2–Symmetrie definiert werden kann. Dies ist mit der Definition
der maximal abelschen Eichung und dem zugehörigen Funktional (2.12) zu vergleichen. Die
Eichfreiheit wurde dort bis auf eine abelsche Untergruppe fixiert, auf welche anschließend
projiziert wurde.

Nach Abschluss der Eichfixierung befindet sich jede der Link-Variablen UΩ
µ (x) ∈ SU(2)

”
so

nahe wie möglich“ an einem der beiden Zentrumselemente der SU(2). Zerlegen wir die Links
in fundamentaler Darstellung gemäß

UΩ
µ (x) = Zµ(x) Ūµ(x) , (2.23)

wobei Ūµ(x) ein Element aus dem Coset SU(2)/Z2 ≃ SO(3) bezeichnet8 und das sogenannte
Zentrumsfelder Zµ(x) gemäß

Zµ(x) := sign
{
tr
[
UΩ
µ (x)

]}
, Zµ(x) ∈ {−1,+1} (2.24)

definiert wird, so besteht im Falle der DMCG die sogenannte Zentrumsprojektion darin, die
eichfixierte Theorie auf eine effektive Z2-Theorie zu reduzieren:

UΩ
µ (x) → Zµ(x) ∈ {−1,+1} (2.25)

Berechnet man nun mithilfe dieser projizierten Freiheitsgrade die Plaquettenvariablen, die
im nicht-abelschen Fall als

Pµν [U ](x) := Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν (x) (2.26)

definiert sind, so ermöglicht dies die Detektierung von dünnen Vortices auf dem Gitter. Eine
Plaquette

Pµν [Z](x) = Zµ(x)Zν(x+ µ)Zµ(x+ ν)Zν(x) (2.27)

gilt im Fall einer auf der Gruppe SU(2) basierenden Z2-Theorie als von einem sogenannten
P -Zentrumsvortex durchstoßen, wenn sie den Wert −1 annimmt, was dem (einzigen) nicht-
trivialen Fall n = 1 in (2.19) entspricht. Zentrumsvortices leben also auf dem dualen Gitter.
Betrachtet man dreidimensionale Unterräume des Gitters, die sich als Schnitte durch die
Raumzeit (sogenannte Raum- oder Zeitschichten) ergeben, so handelt es sich bei den Zen-
trumsvortices um verbundene Netzwerke negativer Links des dualen Gitters. In D=4 bilden
die Vortices zusammenhängende Flächen, die durch negative Plaquetten des dualen Gitters
beschrieben werden. Dabei handelt es sich stets um geschlossene Flächen. Dies ist eine Folge
der Bianchi-Identität in Gitterfomulierung. Betrachten wir zur Illustration einen elementaren
Würfel c innerhalb eines dreidimensionalen Schnittes. Da bei der Berechnung der Plaquet-
ten, die die Oberfläche des Würfels bedecken, negative Links an den Kanten stets zu zwei
Plaquetten beitragen, erhält man

∏

Pµν∈∂c
Pµν [Z] = 1 . (2.28)

8Diese Elemente können durch
”
zentrumsblinde“ adjungierte Links (C.50) repräsentiert werden. Dadurch

ist gewährleistet, dass der Zentrumsgehalt vollständig auf die Felder Zµ(x) transferiert wird.
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T

R

(a) Zentrumsvortices durchdringen drei ele-
mentare Plaquetten eines Wilson-Loops.

R

(b) Zur Definition der Wahrscheinlichkeit podd(R) vgl.
Kapitel 2.4.2, R = r/a.

Abbildung 2.2: (a) Nicht-trivialer Zentrumsfluss entsteht durch eine ungerade Anzahl von
P -Vortices (Kreise), die einen Wilson-Loop durchdringen. (b) Durchstoßpunkte zweier ver-
schiedener Vortices (Kreise und Quadrate) in einer Ebene. Zweidimensionaler Schnitt durch
eine typische Konfiguration. Gitter: 124, β = 2.3, κ = 0.533, λ = 0.5.

Somit wird die Oberfläche eines Würfels stets von einer geraden Anzahl an Vortices durch-
stoßen. Dies ermöglicht das Auftreten von Netzwerken, die aus verzweigten Vortices beste-
hen können, immer aber sind diese geschlossen. Tatsächlich konnte eine Unterbrechung der
Zentrumsvortextrajektorien in keiner unserer Untersuchungen bei der Lokalisierung dersel-
ben beobachtet werden. Die Invarianz der Plaquetten Pµν [Z](x) unter Eichtransformationen
Ω(x) ∈ Z2 ermöglicht im Falle offener Randbedingungen eine vollständige Klassifizierung ei-
ner Z2-Konfiguration, da es sich bei Z2-Vortices in derartigen Systemen um die einzigen nicht-
trivialen kollektiven Anregungen handelt. Dieser Punkt wird in Kapitel 3 bei der Konstruktion
eines eichinvarianten Cluster-Algorithmus für Ising-Spingläser (in D = 2) eine wichtige Rol-
le spielen und wir werden dort auf die Frage nach der Eindeutigkeit nochmals zurückkommen.

Die Bezeichnung P -Vortex für die mittels der oben beschriebenen Methode detektierten Ob-
jekte rührt daher, dass nur die projizierten Zentrumsfelder in die Berechnung der Plaquetten
eingehen. Es konnte jedoch gezeigt werden, dass diese dünnen Vortices bei der Identifizierung
von ausgedehnten Vortices, welche als die eigentlich physikalisch relevanten Freiheitsgrade
angesehen werden und deren Querschnittsfläche sich über eine Vielzahl von Plaquetten er-
stecken kann, eine wichtige Rolle spielen [DDFG+98]9. Wenden wir uns nun der Berechnung
eines Wilson-Loops auf dem Gitter zu. In der zentrumsprojizierten Z2-Theorie spielen dabei
gerade die elementaren Plaquetten, welche die minimale Fläche A des durch die Kontur Γ
charakterisierten Wilson-Loops überdecken, die entscheidende Rolle.

9Insbesondere ist es notwendig, ausgedehnte Vortices zu betrachten, um das sogenannte Casimir-Scaling

der string tension [FGO98,Bal00] erklären zu können.
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Da Γ = ∂A, gilt nach dem Satz von Stokes:

WΓ[Z] =
∏

l∈Γ
Zl =

∏

P∈A
P . (2.29)

Folglich erhält der Wilson-Loop WΓ[Z] von jedem Vortex, der die minimale Fläche A durch-
stößt, einen Faktor −1 als Beitrag. Eine Illustration der Situation findet sich in Abbildung
2.2a. Angesichts der Tatsache, dass die möglichen Messwerte des Wilson-Loop-Operators auf
die Menge {−1,+1} beschränkt sind, ist es höchst überraschend, dass die Fluktuationen in der
Anzahl an Durchstoßpunkten n gerade in einer solchen Art und Weise auftreten sollten, dass
bei der Berechnung des Erwartungswertes von WΓ[Z] ein Flächengesetz (area law) resultiert,
was dem Confinement-Kriterium von Wilson entspricht. Tasächlich konnte aber nachgewiesen
werden [DDFG+98], dass im Grenzfall großer Flächen eine weitestgehende Auslöschung der
Beiträge von Wilson-Loops mit gerader und ungerader Anzahl von durchstoßenden Vortices
auf eine solch subtile Weise geschieht, dass sich aus dem Erwartungswert 〈WΓ[Z] 〉 tatsächlich
ein Confinement-Potential mit asymptotischer string tension extrahieren lässt, die mit der im
Falle der SU(2)−Yang-Mills-Theorie gemessenen ausgezeichnet übereinstimmt [DDFG+98].
Außerdem konnte gezeigt werden, dass sich die Flächendichte ρ der Zentrumsvortices, die
unter Zuhilfenahme der DMCG innerhalb der Vakuumeichfeldkonfigurationen identifiziert
wurden, als eine physikalische Größe erweist, deren Skalierungsverhalten dem der string ten-
sion folgt und die im Kontinuumslimes einen wohldefinierten Wert annimmt [LRT98].

2.3.2 Das Random-Vortex-Modell: Perkolation und Confinement

Ein sehr attraktives Modell, welches eine einfache Erklärung für das Auftreten des Con-
finement-Phänomens im Zentrumsvortexbild zu geben vermag, ist das sogenannte Random-
Vortex -Modell, in dem die zufällige Verteilung von Durchstoßpunkten der Vortices durch eine
Ebene innerhalb der Raumzeit die entscheidende Rolle spielt.

Zur Erläuterung des Modells betrachten wir also einen Schnitt durch das Gitter, wobei die
Fläche innerhalb der dadurch definierten Ebene den Flächeninhalt L2 besitzen soll. Nehmen
wir ferner an, dass N Durchstoßpunkte zufällig auf dieser Fläche verteilt seien, so ergibt
sich für die Flächendichte ρ = N/L2. Betrachten wir als nächstes einen von der Kontur Γ
berandeten Wilson-Loop mit Fläche A, der in dieser Ebene zu liegen kommt, so ist die Wahr-
scheinlichkeit p, dass ein bestimmter Durchstoßpunkt innerhalb des Wilson-Loops zu finden
ist, gegeben als das Verhältnis der Flächen: p = A/L2. Die Wahrscheinlichkeit dafür, dass
genau n Durchstoßpunkte innerhalb des Wilson-Loops auftreten, ist durch die Binomialver-
teilung

PN (n) =

(
N

n

)
pn (1− p)N−n (2.30)

gegeben. Wie bereits diskutiert, liefert eine ungerade Anzahl an Durchstoßpunkten einen
negativen Beitrag zum Erwartungswert des Wilson-Loop-Operators, wohingegen eine gerade
Anzahl einen positiven Beitrag liefert. Daher finden wir

〈WΓ[Z] 〉 = lim
N→∞

N∑

n=0

(−1)nPN (n) = lim
N→∞

(
1− 2ρA

N

)N
= e−2ρA . (2.31)
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Die Flächendichte ρ wurde bei der Bildung des Grenzwertes konstant gehalten. Unter der
Annahme völlig zufällig verteilter Durchstoßpunkte der Vortices findet sich also für den Er-
wartungswert (2.31) ein Flächengesetz, aus dem sich ein Confinement-Potential mit asym-
ptotischer string tension

σ = 2 ρ (2.32)

extrahierten lässt. Ein Vergleich dieses Wertes mit dem in [LTER99] berichteten Ergebnis

σ = (1.4 ± 0.1) ρ (2.33)

in DMCG, weist darauf hin, dass die Durchstoßpunkte nicht völlig unkorreliert sein können.
Tatsächlich konnte eine kurzreichweitige attraktive Korrelation der Vortices nachgewiesen
werden [ELRT98], die für diese Abweichung verantwortlich ist. Die Annahme der völligen
Unabhängigkeit der Vortices sowie deren Durchstoßpunkte in einer Ebene stellt also den Ide-
alfall in Bezug auf die Möglichkeit dar, ein Confinement-Potential zu generieren. Nimmt deren
Korrelation zu, so sinkt der Wert der string tension. Es ist daher nicht verwunderlich, dass
sich durch Modifizierung des Random-Vortex-Modells ebenfalls die Situation eines Umfangs-
gesetzes für den Erwartungswert des Wilson-Loop-Operators herbeiführen lässt, sofern man
annimmt, dass die Durchstoßpunkte immer in Paaren auftreten, welche einen maximalen Ab-
stand d besitzen sollen, der sehr viel kleiner als das Minimum der räumlichen bzw. zeitlichen
Ausdehnung der Kontur Γ ist. Dadurch können von den zufällig auf der Ebene verteilten
Paaren nur diejenigen einen nicht-trivialen Beitrag zum Erwartungswert (2.31) liefern, die in
einem schmalen Streifen um Γ zu liegen kommen, wobei einer der Durchstoßpunkte innerhalb,
der andere außerhalb des Wilson-Loops lokalisiert sein muss. Die Fläche dieses Streifens ist in
erster Näherung proportional zum Umfang des Wilson-Loops und eine Rechnung analog zu
(2.31) zeigt, dass sich für den Erwartungswert 〈WΓ[Z] 〉 ein Umfangsgesetz (perimeter law),
und somit ein asymptotisch konstantes Potential ergibt [ELRT00].

Die Confinement-Phase einer effektiven Z2-Theorie sollte also durch Vortices bzw. Netz-
werke von Vortices charakterisiert werden können, die das gesamte Universum durchzie-
hen. Dieses Verhalten wird als Perkolation bezeichnet. Tatsächlich wurde bei der Unter-
suchung des Phasenübergangs der SU(2)−Yang-Mills-Theorie von der Confinement-Phase in
die Deconfinement-Phase bei endlicher Temperatur festgestellt, dass sich das Verhalten der
Zentrumsvortices signifikant ändert. Der Phasenübergangspunkt kann allein durch die Un-
tersuchung der Zentrumsfelder {Zµ(x)} bzw. der zugehörigen Vortexkonfigurationen bereits
richtig reproduziert werden, und während die Verteilung der Vortexmaterie unterhalb von Tc
tatsächlich auf einige wenige perkolierende Vortices beschränkt ist, tritt oberhalb der kriti-
schen Temperatur eine Umverteilung hin zu vielen kleinen Vortices auf, die in sogenannten
Containern endlicher Größe eingeschlossen werden können [ELRT00]. Der Deconfinement-
Phasenübergang kann somit als Deperkolations-Phasenübergang im Zentrumsvortexbild ver-
standen werden, wenn man sich auf dreidimensionale räumliche Schnitte des Gitters kon-
zentriert. Es ist interessant festzuhalten, dass diese Sichtweise eine intuitive Erklärung für
das unterschiedliche Verhalten der (gewöhnlichen) string tension σ, sowie der in Analogie
dazu definierten räumlichen10 string tension σs unter- und oberhalb des Phasenübergangs

10Diese wird aus dem Erwartungswert rein räumlicher Wilson-Loops extrahiert und ist als solche nicht mit
der Zeitentwicklung eines Testzustands zweier Ladungen und dem zwischen diesen herrschenden Potential in
Verbindung zu bringen.
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ermöglicht [BFH+93]. Da eine Erhöhung der Temperatur auf dem Gitter durch eine Redu-
zierung der zeitlichen Ausdehnung Nta(β) des Gitters bei periodischen Randbedingungen für
bosonische Felder realisiert wird, ist diese Richtung nun ausgezeichnet. Bei hohen Temperatu-
ren findet eine Polarisierung der Zentrumsvortices statt. In [ELRT00] konnte gezeigt werden,
dass sich die Deconfinement-Phase bei der Betrachtung eines räumlichen Schnittes durch das
Gitteruniversum hauptsächlich durch kurze Vortices charakterisieren lässt, die sich um die

”
zeitliche“ Richtung des Gitters wickeln und residuelle transversale Fluktuationen aufweisen.
Dadurch wird eine starke Korrelation der Durchstoßpunkte von Vortices in Wilson-Loops
erzeugt, deren Kontur Γr×t in einer raum-zeitlichen Ebene liegt. Dies führt zum Verschwin-
den der

”
reguläre“ string tension σ oberhalb von Tc, die räumlichen Wilson-Loops hingegen

bleiben von dieser anisotropen Verteilung weitgehend unbeeinflusst [ELRT00]. Zuletzt soll
erwähnt werden, dass sich auf einfache Art und Weise eine Modifizierung der thermalisier-
ten und eichfixierten Konfigurationen {UΩ

µ (x)} durchführen lässt, welche es gestattet, die
Zentrumsvortexstruktur aus den Vakuumkonfigurationen zu eliminieren [dFD99]:

{UΩ
µ (x)} → {U ′

µ(x)} := {Zµ(x)UΩ
µ (x)} = {Ūµ(x)} , (2.34)

Z ′
µ(x) = sign

{
tr
[
U ′
µ(x)

]}
= +1 . (2.35)

Dieses Verfahren ermöglicht eine zu (2.25) komplementäre Sichtweise und somit eine indi-
rekte Untersuchung der Rolle der Zentrumsvortices. Dabei hat sich zum einen gezeigt, dass
eine Präparierung von Konfigurationen in der oben beschriebenen Weise zur Wiederherstel-
lung der chiralen Symmetrie führt und alle Konfigurationen nach Entfernen der Vortices ver-
schwindende topologische Ladung besitzen [dFD99]. Zum anderen konnte festgestellt werden,
dass die Zentrumsvortexstruktur des gluonischen Vakuums für den linear ansteigenden An-
teil des Interquark-Potentials verantwortlich sein muss, da die Konfigurationen {U ′

µ(x)} nicht
mehr länger in der Lage sind, ein Confinement-Potential zwischen statischen Farbladungen
aufrechtzuerhalten [DDFG+98]. Der Ursprung der topologischen Ladungen im Zentrumsvor-
texbild wird in [Rei02,RSTZ02] diskutiert. Dort wird auch eine Verbindung zur Dichte der
Nullmoden des Dirac-Operators aufgezeigt, welche die entscheidende Rolle bei der Berech-
nung des chiralen Kondensats als Ordnungsparameter der spontanen chiralen Symmetrieb-
rechung spielt [LMP+03,G+05]. Des Weiteren konnte gezeigt werden, dass die Nullmoden,
bzw. die Dichte ρ(λ) der Eigenmoden des Faddeev-Popov-Operators in Coulomb-Eichung zu
sehr kleinen Eigenwerten λ, entscheidend von der Vortexstruktur des Vakuums beeinflusst
werden [GOZ05b]11. Dadurch wurde es möglich, eine Verbindung zwischen dem Confinement-
Szenario von Gribov und Zwanziger einerseits, sowie dem Zentrumsvortexbild anderseits, auf-
zuzeigen [GOZ05a].

Eine vollständige Diskussion der Ergebnisse, die bei der Untersuchung des Zentrumsvortex-
Modells bisher gewonnen werden konnten, kann und soll im Rahmen dieser Arbeit nicht
stattfinden. Stattdessen haben wir uns auf die für die folgenden Untersuchungen wesentlichen
Punkte beschränkt und verweisen zur Vervollständigung des Bildes auf den umfangreichen
Übersichtsartikel von Greensite [Gre03].

11Vergleiche hierzu auch die Diskussion der Rolle von Gribov-Kopien im Rahmen des Dressingformalismus
in Kapitel 1.4.2.
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2.4 Das Phänomen des Stringbreaking im Zentrumsvortex-

Szenario

Die Bezeichnung Stringbreaking für das im Rahmen von Kollisionsexperimenten beobachtete
Phänomen der Hadronisierung bringt z.B. im Falle eines Mesons die Vorstellung zum Aus-
druck, dass der gluonische Flussschlauch, der die beiden farbgeladenen Konstituentenquarks
miteinander verbindet, zerreissen wird, sofern die Anregungsenergie des Zustands hoch genug
ist, um durch Paarerzeugung die Abschirmung der Farbladungen zu ermöglichen. Dabei ver-
binden sich die spontan erzeugten Quarks und Anti-Quarks gleichsam mit den losen Enden
des gerissenen Flussschlauchs und sorgen auf diese Weise dafür, dass wiederum nur insgesamt
farbneutrale asymptotische Zustände beobachtet werden können. Es ist daher zu erwarten,
dass der Grundzustand in diesem Bereich eher durch zwei Mesonen beschrieben werden sollte,
die sich jeweils als Kombination eines statischen Quarks mit einem leichten Anti-Quark (und
umgekehrt) ergeben und über ein Yukawa-Potential miteinander in Wechselwirkung treten.
Dieses Phänomen sollte jenseits einer Anregungsenergieschwelle von etwa 2mf beobachtet
werden können, wobei mf die Masse des leichtesten Fermions bezeichnet.

Ob es sich bei dem Grundzustand im mesonischen Sektor der QCD tatsächlich um eine
string-ähnliche Konfiguration handelt, muss angesichts der Ergebnisse unserer in Kapitel 1
vorgestellten Untersuchungen zwar bezweifelt werden, der Verlauf des statischen Potentials
legt jedoch nach wie vor nahe, dass man der Gluonenkonfiguration, die sich um die Quellen
herum ausbildet, für große Abstände r der Quellen eine konstante Energie pro Länge zuord-
nen kann. Auf jeden Fall ist das Phänomen ein Resultat des dynamischen Verhaltens von
Quarks und Gluonen, so dass es nicht länger hinreichend ist, eine reine Yang-Mills-Theorie
zu untersuchen. Vielmehr müssen dynamische Fermionen berücksichtigt werden, welche sich
unter der fundamentalen Darstellung der SU(Nc) transformieren und daher in der Lage sind,
die statischen Farbladungen, die als Konstituenten eines Mesons in das Vakuum eingebracht
werden, abzuschirmen. Eine schematische Darstellung der Situation findet sich im rechten
Teil der Abbildung 2.3.

Die numerische Simulation der Quantenchromodynamik ist sehr aufwendig, da bei der Berück-
sichtigung von dynamischen Fermionen die Berechnung der Fermionen-Determinante un-
umgänglich wird12. Da es sich dabei um ein höchst nicht-lokales Objekt handelt, ist die-
ser Schritt mit dem größten Aufwand innerhalb einer Monte-Carlo-Simulation verknüpft
[MM94, Rot97], der nicht wie bei der sonst üblichen Beschränkung auf Rechnungen mit
konstanter Fermionen-Determinante (Quenching) umgangen werden kann, weil es für das
Auftreten des Stringbreaking-Phänomens gerade auf die Effekte der dynamischen Materie
ankommt.

Eine Alternative zur brute-force-Untersuchung des vollen Problems besteht darin, sich einem
vereinfachten Modell zuzuwenden, von dem zu erwarten ist, dass es die für das Verständnis
des Stringbreaking-Phänomens wesentlichen Eigenschaften mit der Quantenchromodynamik
teilt. Dabei handelt es sich um die SU(2)−Yang-Mills-Theorie in D = 4 Dimensionen, an
die ein skalares Feld in fundamentaler Darstellung angekoppelt wird. Die Komplexität des
ursprünglichen Problems wird also durch die Verwendung eines dynamischen Skalarfeldes
anstelle dynamischer Fermionen, sowie der Wahl von Nc = 2 statt Nc = 3 maßgeblich re-

12Vgl. auch die Diskussion in Kapitel 4.6.
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r0

m f2

Abbildung 2.3: Links: Das skalierte statische Interquark-Potential im Fall der reinen
SU(3)−Yang-Mills-Theorie. Gitter: 164, per. b.c. Rechts: Schematische Darstellung des Po-
tentials, an dem sich das Phänomen des Stringbreaking erkennen lässt.

duziert. Tatsächlich konnte bei der Untersuchung dieses Modells das Stringbreaking-Phäno-
men beobachtet werden [KS98, PW98]. In einem strikten Sinne besitzt diese Theorie zwar
weder eine Confinement-Phase noch eine Higgs-Phase, da aufgrund der analytischen Ver-
bundenheit des Phasendiagramms kein thermodynamischer Phasenübergang existieren kann,
der eine klare Trennung ermöglichen würde. Dies ist die Aussage eines Theorems, das von
Osterwalder und Seiler [OS78], bzw. Fradkin und Shenker [FS79] formuliert wurde. Dennoch
kann eine Unterscheidung zweier verschiedener Realisierungsphasen der Theorie vorgenom-
men werden, denn es existiert – als Fortsetzung der thermodynamischen Phasengrenzlinie,
welche im strong coupling Regime (β → 0) des Phasendiagramms einen Endpunkt besitzt
– eine sogenannte

”
Kertész-Linie“ [Lan02], bei deren Überschreitung sich das Perkolations-

verhalten der P -Vortices dramatisch ändert [BFGO04]13. Da perkolierende Vortices in ei-
ner reinen Yang-Mills-Theorie am Temperaturnullpunkt das Vorliegen eines Vakuums mit
Confinement-Eigenschaften anzeigen, wird im Falle der vorliegenden Eichtheorie mit Higgs-
Feld die dadurch charakterisierte Phase entsprechend als Quasi-Confinement-Phase bezeich-
net. Jenseits der

”
Kertész-Linie“ weisen die Vortexcluster nur noch eine endliche Ausdehnung

auf, was nach Kapitel 2.3.2 mit dem Verlust der Fähigkeit, ein Confinement-Potential zu ge-
nerieren, einhergeht. Wir vermuten daher, dass genau diese endliche Ausdehnung der Cluster
mit dem charakteristischen Abstand r0 der statischen Quellen verknüpft sein sollte, an dem
das asymptotisch linear anwachsende Confinement-Potential sich plötzlich ändert und einen
konstanten Verlauf annimmt, wie es für Erwartungswerte von Wilson-Loops charakteristisch
ist, die einem perimeter law folgen (vgl. Abbildung 2.3). Sollten die Zentrumsvortices also
tatsächlich die für alle Aspekte des Confinement-Phänomens verantwortlichen Freiheitsgrade
sein, so muss es möglich sein, diesen Potentialverlauf auch aus den Erwartungswerten von
Wilson-Loops WΓ[Z] zu extrahieren, welche bezüglich reiner, durch Projektion gewonnener
Zentrumsfeld-Konfigurationen {Zµ(x)} berechnet werden.

Bevor wir uns der Untersuchung dieser Fragestellungen mit den Methoden der Gittersimula-
tion zuwenden werden, soll zunächst die Diskretisierung der SU(2)−Yang-Mills-Theorie mit
Higgs-Feld in fundamentaler Darstellung erläutert werden.

13Hier findet sich auch eine Skizze des Phasendiagramms der Theorie.
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2.4.1 SU(2)−Yang-Mills-Theorie mit fundamentalem Higgs-Feld

Die Zustandssumme Z der euklidischen Quantenfeldtheorie auf einem hyperkubischen vier-
dimensionalen Gitter ist gegeben durch

Z =

∫
DU DΦ exp

{
− S[U,Φ]

}
. (2.36)

In die Konstruktion des Gibbs’schen Maßes

dµ(U,Φ) = DU DΦZ−1 exp
{
− S[U,Φ]

}
, (2.37)

geht dabei die Wirkung14

S[U,Φ] = SG[U ] + SHiggs[U,Φ] + SPot[Φ] (2.38)

ein, welche in drei Anteile zerfällt. Der erste Term stellt die von Wilson [Wil74] eingeführte
Wirkung der Eichfelder im Fall der SU(2)−Yang-Mills-Theorie dar,

SG[U ] = β
∑

P

(
1− 1

2
Re
{
tr
[
P [U ]

] })
, β =

4

g2
, (2.39)

wobei über alle Plaquetten (2.26) des Gitters zu summieren ist. Das komplexe Higgs-Doublett

φ(x) =

(
φ1(x)

φ2(x)

)
, φk : T4 7→ C , (k = 1, 2) , (2.40)

welches an die reine Eichtheorie gekoppelt werden soll, besitzt eine zweidimensionale Ma-
trixdarstellung, die wir mit Φ(x) bezeichnen. Dies ermöglicht es, die vier reellen Freiheitsgrade
des Higgs-Feldes auf einen radialen Anteil ρ(x), sowie eine winkelabhängige Parametrisierung
α(x) ∈ SU(2) abzubilden:

Φ(x) =

(
φ1(x) −φ∗2(x)
φ2(x) φ∗1(x)

)
= ρ(x)α(x) , ρ : T 4 7→ R+ . (2.41)

Für den Kopplungsterm existieren daher die beiden Darstellungen

SHiggs[U,Φ] = − κ
2

∑

x,µ

tr
[
Φ†(x)Uµ(x)Φ(x+ µ)

]
, (2.42)

SHiggs[U, φ] = − κ
2

∑

x,µ

φ†(x)Uµ(x)φ(x + µ) + c.c. . (2.43)

Ähnliches gilt im Fall des Potentialterms, der sich auch als reines Funktional der Radialkom-
ponente des Higgs-Feldes ausdrücken lässt:

SPot[Φ] =
∑

x

1

2
tr
[
Φ†(x)Φ(x)

]
+ λ

(
1

2
tr
[
Φ†(x) Φ(x)

]
− 1

)2

, (2.44)

SPot[ρ] =
∑

x

ρ(x)2 + λ
(
ρ(x)2 − 1

)2
. (2.45)

14Bis auf ein globales Vorzeichen für die Wirkung folgen wir der in [CGIS98a] gewählten Konvention.
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Die Wirkung (2.38) ist invariant unter Eichtransformationen Ω(x) ∈ SU(2) der Form

UΩ
µ (x) = Ω(x)Uµ(x)Ω

†(x+ µ) ,

ΦΩ(x) = Ω(x)Φ(x) .
(2.46)

Um zu garantieren, dass sich das Gibbs-Maß (2.37) und somit auch die Zustandssumme Z
insgesamt invariant unter den Transformationen (2.46) zeigen, wird mit DU das invariante
Haar’sche Maß auf der Gruppenmannigfaltigkeit der SU(2) für die Integration eines jeden
Links Uµ(x) des Gitters verwendet. Auch das Integrationsmaß für die skalaren Felder DΦ
erweist sich als invariant, was an der zweiten der beiden komplementären Darstellungen

DΦ =
∏

x

4∏

a=1

dφa(x) =
∏

x

dρ(x) ρ3(x)Dα(x) , (2.47)

offensichtlich wird. Dα bezeichnet dabei wiederum das (linksinvariante) Haar’sche Maß (sie-
he Anhang B.2). Die Existenz dieser beiden Darstellungen in Verbindung mit der Zerlegung
(2.41) ist insofern besonders für den numerischen Zugang interessant, als dass es dadurch
möglich wird, eine Verbindung zwischen Eichfeldern und Higgs-Feldern herzustellen, die sich
dazu nutzen lässt, bei der Simulation der Quantenfeldtheorie in beiden Sektoren zur Ak-
tualisierung der Felder einen Hybrid-Algorithmus zu verwenden, der durch einfache Modifi-
zierung des von Creutz [Cre80] angegebenen Heatbath-Algorithmus gewonnen werden kann.
Die ausführliche Beschreibung des von uns eingesetzten Verfahrens findet sich in Anhang B.3,
welches die Vorschläge von Bunk [Bun95] aufgreift.

2.4.2 Numerische Ergebnisse

Um den Effekt der Zentrumsvortices auf den Verlauf des Potentials V (r) in der Nähe der Pha-
sengrenzlinie studieren zu können, musste diese zunächst im Phasendiagramm der Theorie
lokalisiert werden. Zu diesem Zweck wurden die Werte β = 2.3 und λ = 0.5 für die Kopplungs-
konstanten im Sektor der Eich- bzw. Higgs-Felder fixiert und der Parameter κ variiert. Der
Übergang von der Quasi-Confinement-Phase in die Quasi-Higgs-Phase wird dabei durch ei-
ne rasche Änderung des Erwartungswerts von thermodynamischen (lokalen), eichinvarianten
Observablen wie beispielsweise der Energie der Eichfelder (∼ P [U ]), der kinetischen Ener-
gie des Higgs-Feldes (EH ∼

∑
k tr

[
Φ†(x)Uk(x)Φ(x+ k)

]
) oder des Quadrats der zugehörigen

Radialkomponente angezeigt. Die von uns verwendete Observable war

ρ2 =
1

N

N∑

x=1

1

2
tr[Φ2(x)] , N = Nt ×N3

s , (2.48)

welche sowohl für κ ∈ [0.5, 0.6] auf einem Gitter der Größe 84, als auch auf einem Gitter der
Größe 124 im Intervall κ ∈ [0.48, 0.6] gemessen wurde, wobei für jeden Wert des Hopping-
Parameters in beiden Fällen ein Ensemble von 250 thermalisierten Konfigurationen verwendet
wurde. Das Ergebnis wird im linken Teil der Abbildung 2.4 gezeigt. Der Phasenübergang
scheint in der Nähe des Wertes κ = 0.53 aufzutreten, wobei sich bei der Betrachtung von
〈ρ2〉 allein keine wesentliche Abhängigkeit dieses Punktes von der verwendeten Gittergröße
feststellen lässt. Als nächstes wurden die thermalisierten Konfigurationen in DMCG (erläutert
im Anhang C.2) gebracht und die eichfixierten Feldkonfigurationen nach (2.25) anschließend
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Abbildung 2.4: Lokalisierung des Phasenübergangs bzw. crossover auf Gittern unterschiedli-
cher Größe. Links: Das mittlere Quadrat der Radialkomponente ρ2 des Higgs-Feldes. Rechts:
Die Flächendichte ρZ2 der Zentrumsvortices. Periodische Randbedingungen, β = 2.3, λ = 0.5.

auf ihren Zentrumsgehalt projiziert. Dadurch lässt sich die planare Dichte ρZ2 der P -Vortices
als das Verhältnis der Anzahl nicht-trivialer Plaquetten (Pµν [Z](x) = −1) zur Gesamtzahl
aller Plaquetten des Gitters definieren:

ρZ2 =
1

N ·D(D − 1)/2

∑

P

δ(P [Z],−1) . (2.49)

Im Fall einer reinen SU(2)−Yang-Mills-Theorie in D = 4 konnte gezeigt werden [LRT98],
dass es sich dabei um eine physikalische Größe handelt, welche sich als invariant unter
Renormierungsgruppen-Transformationen erweist und einen wohldefinierte Kontinuumslimes
besitzt. Die Messergebnisse dieser Observable sind im rechten Teil der Abbildung 2.4 zu
sehen. Der Übergang von der symmetrischen Quasi-Confinement-Phase in die Quasi-Higgs-
Phase wird dabei von einem raschen Abfallen der Zentrumsvortexdichte von ρa2(β) ∼ 0.08,
was in etwa dem Wert der reinen Yang-Mills-Theorie (κ = 0) bei β = 2.3 entspricht, beglei-
tet. Bei einer weiteren Vergrößerung des Hopping-Parameters nimmt die Dichte allmählich
weiter ab und es ist zu erwarten, dass ρZ2 tief in der Quasi-Higgs-Phase letztlich vollständig
verschwinden wird. Im Rahmen der von uns in dieser ersten Phase der Untersuchung ange-
strebten Genauigkeit ist festzustellen, dass das Auftreten einer Phasenänderung durch beide
Observablen für den selben Wert von κ angezeigt wird, und dieses Ergebnis auch im Falle
der Zentrumsvortexdichte nur minimal von der Größe des verwendeten Gitters abzuhängen
scheint.

In einem nächsten Schritt sollen die Perkolationseigenschaften der Vortices untersucht wer-
den. Dazu ist es zunächst notwendig, den Verlauf der Vortices innerhalb einer Konfiguration
verfolgen zu können. Dabei stellen wir uns auf den Standpunkt, dass es hinreichend ist,
zu diesem Zweck die P -Vortices heranzuziehen, da wir annehmen, dass deren Trajektorie
in etwa mit dem Verlauf des Kerns eines Vortexprofils zusammenfällt, das die ausgedehn-
ten, physikalischen Vortices charakterisiert. Es wurde bereits darauf hingewiesen, dass sich
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Vortices in dreidimensionalen Schnitten durch eine vierdimensionale Raumzeit als linienar-
tige Objekte charakterisieren lassen. Dementsprechend definieren wir einen Vortex-Cluster
in einem solchen Schnitt als die Menge aller miteinander verbundenen negativen Links des
zugehörigen dualen Gitters. Da es für die Trajektorien der Vortex-Cluster die Möglichkeit zur
Verzweigung bzw. Selbstdurchdringung gibt, wurde zur Identifizierung derartiger Netzwerke
von Clustern ein rekursiv operierender Algorithmus implementiert, wie er bei der Simula-
tion von Spin-Systemen häufig eingesetzt wird. Die Details der Konstruktion eines solchen
Cluster-Algorithmus werden wir in Kapitel 3 besprechen, dort wird ein sogenannter Bond-
Percolation-Algorithmus im Rahmen der numerischen Behandlung eines zweidimensionalen
Spin-Glas eingesetzt werden. Das Auftreten von Kreuzungs- und Verzweigungspunkten auf
dem dualen Gitter kann durch die Untersuchung der zugehörigen elementaren Würfel des
dreidimensionalen Schnittes durch das Originalgitter leicht detektiert werden. Dabei charak-
terisiert die sogenannte Multiplizität M die Anzahl der durchstoßenen Plaquetten, welche
die geschlossene Oberfläche der besagten Würfel bilden. Da die Trajektorien der Vortices für
G = SU(2) stets geschlossen sind, gilt folglich M ∈ {0, 2, 4, 6}. In Abbildung 2.5 finden sich
unsere Ergebnisse zur Messung der Wahrscheinlichkeitsverteilung p(M) der Multiplizität als
Funktion des Hopping-Parameters. In der symmetrischen Phase sind etwa 80% aller elemen-
taren Würfel in dreidimensionalen Schnitten durch das Gitter frei von Vortices (M=0). Falls
Würfel jedoch von Vortices durchdrungen werden, so geschieht dies zu einem Großteil als
einfaches Passieren (M = 2), Verzweigungen erster Art (M=4) treten mit einer Wahrschein-
lichkeit p(4)<1% auf. Noch seltener war der Fall, dass die Oberfläche von elementaren Kuben
komplett von sich verzweigenden Vortex-Clustern perforiert wurde. Berücksichtigt man die
Dimension des verwendeten Gitters, so lässt sich vermuten, dass diese Verzweigungen zwei-
ter Art (M = 6) für O(1) elementare Würfel des Gitters zu beobachten sein sollte. Unsere
Ergebnisse für p(M) beim Übergang in die Pseudo-Higgs-Phase bestätigen nochmals das in
Abbildung 2.4 gezeigte Bild, wonach die Dichte der Vortexmaterie für κ > 0.53 rasch ab-
nimmt. Besonders deutlich nimmt die Wahrscheinlichkeit dafür ab, überhaupt einen elemen-
taren Würfel der Multiplizität M=6 zu finden. Wie schon die Dichte ρZ2(κ) signalisiert auch
der Verlauf von p(0)(κ), dass die Zentrumsvortices tief in der Pseudo-Higgs-Phase vollständig
verschwinden werden.

Während die einzelnen Vortex-Cluster identifiziert wurden, wurde für jeden Cluster ein soge-
nannter minimaler Container des Volumens V =

∏
i li (in Einheiten der Gitterkonstanten)

konstruiert. Ausgehend von einem negativen dualen Link als Startpunkt auf einem Vortex
wurde dabei die Ausdehnung des zugehörigen Containers (li = 0 ∀ i zu Beginn) in jeder der
drei möglichen Richtungen êi immer dann um eins erhöht, wenn dies beim rekursiven Besu-
chen der Elemente des Clusters notwendig wurde, um diesen noch vollständig einschließen zu
können. Perkolation der Cluster bedeutet also, dass sich als Erwartungswert der Container-
größe gerade die maximal mögliche Größe ergeben muss. Legen wir periodische Randbedin-
gungen für das Gitter zugrunde, so wird die maximale Kantenlänge eines Containers lmax in
einem (z.B. zeitlichen) dreidimensionalen Schnitt (N1 ×N2 ×N3) durch

l 2max =

3∑

i=1

(
Ni

2

)2

(2.50)

bestimmt. Dabei ist aus Isotropiegründen zu erwarten, dass der Erwartungswert der Kan-
tenlänge von minimalen Containern für alle drei Dimensionen gleich sein sollte.
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Abbildung 2.5: Die Wahrscheinlichkeitsverteilung p(M) der Vortex-Intersection-Multiplicity
M für elementare Würfel als Funktion des Parameters κ. Gitter: 124, β = 2.3, λ = 0.5.

In Kapitel 2.3.1 wurde zum einen bereits darauf hingewiesen, dass nicht-trivialer Zentrums-
fluss, der einen Wilson-Loop durchsetzt, nur durch eine ungerade Anzahl an Durchstoßpunk-
ten innerhalb einer von der Kontur Γ berandeten Fläche entstehen kann, zum anderen wurde
bei der Diskussion des Random-Vortex-Modells in Kapitel 2.3.2 deutlich, dass gerade das
subtile Ausbalancieren der beiden möglichen Messwerte, die für einen Wilson-Loop-Operator
WΓ[Z] innerhalb der zentrumsprojizierten Theorie anfallen können, die zentrale Rolle für das
Auftreten des Confinement-Phänomens im Zentrumsvortexbild spielt. Daher sollte die Un-
tersuchung der Wahrscheinlichkeit podd(R), in einer von einem Vortex durchstoßenen Ebene
innerhalb einer Fläche A = πR2 mit Zentrum in diesem Durchstoßpunkt eine insgesamt un-
gerade Anzahl von Durchstoßpunkten (auch anderer Vortices) zu finden, Aufschluss darüber
geben können, ob in einer bestimmten Realisierungsphase der Theorie eine maximale Größe
für (kreisförmige) Wilson-Loops existiert, innerhalb derer die Voraussetzungen des Random-
Vortex-Modells für das Auftreten von Confinement noch erfüllt sind. Konkret wurde dazu
für jedes Segment, das bei der rekursiven Identifizierung der Trajektorie eines Vortex besucht
wurde, in der lokal dazu orthogonalen Ebene die Anzahl weiterer Vortexsegmente inner-
halb von konzentrischen Kreisflächen mit (euklidischem) Radius R = r/a bestimmt. Das
Verhältnis aller auf diese Weise konstruierter Kreisflächen, die eine ungeraden Anzahl an
Durchstoßpunkten aufwiesen, zur Anzahl aller derartigen Flächen stellt ein Maß für die oben
beschriebene Wahrscheinlichkeit podd(R) dar. Abbildung 2.2b illustriert die Situation anhand
eines zweidimensionalen Schnittes durch eine exemplarisch ausgewählte Konfiguration.

Das Ergebnis unserer auf einem Gitter der Größe 164 durchgeführten Untersuchung der Wahr-
scheinlichkeit podd(R) findet sich in Abbildung 2.6a. Für κ = 0.6 fällt podd(R) rapide mit
zunehmendem Abstand ab und nimmt bereits für R ≥ 2 einen konstanten Wert an. Dies
legt den Schluss nahe, dass es an diesem Punkt im Phasendiagramm der Theorie zwar noch
eine endliche Anzahl von Zentrumsvortices gibt (vgl. Abbildung 2.4), deren Trajektorien sich
aber nicht mehr über das gesamte Gitter erstrecken können. Vielmehr muss die Verteilung
der Zentrumsvortices von einigen sehr kleine Loops dominiert werden, deren Durchstoßpunk-
te in einer bestimmten Ebene im Mittel einen Abstand von weniger als zwei Gitterkonstanten
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(a) Untersuchung der Wahrscheinlichkeit podd(R)
in der Nähe des Phasenübergangs.

(b) Extraktion des statischen Inter-Quark-Potentials
V (R) aus 〈WR×T [Z]〉, gemessen für κ = 0.5323.

Abbildung 2.6: Gitter: 164, β = 2.3, λ = 0.5, periodische Randbedinungen.

voneinander aufweisen. Nähert man sich dem kritischen Wert κc aus der Pseudo-Higgs-Phase
kommend (κ → κ+c ), so verändert sich dieses Verhalten dahingehend, dass die Wahrschein-
lichkeit, eine ungerade Anzahl an Durchstoßpunkten im Abstand R um einen Vortex herum
zu finden, langsamer mit zunehmendem Radius der umgebenden Kreisfläche A abfällt. Be-
trachten wir also einen festen Wert von R = r/a, so kann daraus geschlossen werden, dass sich
für κ→ κ+c das Verhältnis der geraden Anzahl zur ungeraden Anzahl an Durchstoßpunkten
dahingehend verändert, dass die für das Auftreten eines Flächengesetzes für den Erwartungs-
wert eines Wilson-Loop-Operators mit Radius R notwendigen Fluktuationen in der Anzahl
von positiven zu negativen Messwerten zunehmen sollten. Für κ < 0.532 ändert sich der Ver-
lauf von podd(R) praktisch nicht mehr, dieser scheint also charakteristisch für die Verteilung
der Durchstoßpunkte der P -Vortices in der Quasi-Confinement-Phase zu sein. Die Ergebnisse
unsere Untersuchung dieser Wahrscheinlichkeitsverteilung legen daher die Vermutung nahe,
dass sich für 0.532 < κ < 0.533 eine signifikante Änderung im Perkolationsverhalten der
Zentrumsvortices ergeben sollte.

Da es das Ziel der vorliegenden Untersuchung ist, herauszufinden, ob sich ein Zusammen-
hang zwischen der Verteilung der Zentrumsvortices bzw. der Änderung ihre Perkolationsei-
genschaften und dem Auftreten des Stringbreaking-Phänomens in einer Yang-Mills-Theorie
mit dynamischer Materie nachweisen lässt, wurde zu diesem Zweck als nächstes eine detail-
lierte Untersuchung des Grundzustandspotentials der vollen Theorie, sowie der durch Zen-
trumsprojektion (2.25) gewonnenen, effektiven Z2-Theorie in dem nochmals verfeinerten In-
tervall κ ∈ [0.5321, 0.5329] durchgeführt. Die Berechnung des Potentials V (r) erweist sich
dabei für Abstände r > r0 der Quellen als schwierig [KS98], da der wahre Grundzustand in
diesem Fall durch zwei kaum miteinander wechselwirkende Mesonen gegeben ist, und der übli-
cherweise verwendete Wilson-Loop-Operator – wie bereits in Kapitel 1 erläutert wurde – die
zeitliche Entwicklung eines string-artigen axialen Zustands |χ 〉 beschreibt, dessen Überlapp
mit dem wahren Grundzustand sich daher als gering herausstellt. Tatsächlich konnte gezeigt
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werden [PW98], dass für r∼r0 das Phänomen des level crossing auftritt, wobei ein Übergang
vom

”
String-Zustand“ zum

”
Zwei-Mesonen-Zustand“ als Kandidat für den Grundzustand

stattfindet und sich der axiale Zustand für r > r0 als erster angeregter Zustand erweist15.
Die dabei verwendete coupled channel Methode erweist sich als sehr effizient bei der Suche
nach dem wahren Grundzustand |Ω 〉, der durch Anwendung des Variationsprinzips zur Mini-
mierung der Energie eines Ansatzes bestimmt wird, welcher als Superposition verschiedener
Testzustände konstruiert wird. Dabei werden neben dem bereits erwähnten axialen Zustand,
sowie dem zwei eichinvariante Mesonen repräsentierenden Zustand auch weitere Kandidaten,
welche durch Anwendung verschiedener Smearing-Vorschriften aus diesen erzeugt wurden,
in die Superposition mit einbezogen. Durch diese Vergrößerung der Basis des Raums der
Testzustände wird es möglich, leichter zwischen Grundzustand und angeregten Zuständen
unterscheiden zu können [LW90], insbesondere genügt eine immer kürzere Zeitentwicklung
der Zustände, um deren Energie aus dem Studium von Matrix-Korrelationsfunktionen zu-
verlässig extrahieren zu können.

Obwohl sich dieses Verfahren inzwischen als Standard bei der spektroskopischen Untersu-
chung insbesondere angeregter Zustände etabliert hat, haben wir bei unseren Untersuchun-
gen des Grundzustandspotentials bewusst auf den Einsatz dieser Methode verzichtet. Um
zu verhindern, dass ein möglicherweise vorhandener Effekt der Zentrumsvortices auf das be-
obachtete Phänomen des Stringbreakings durch die Vermischung von Freiheitsgraden aus
dem Eich- und Skalarfeldsektor verschleiert wird – was bei der Anwendung der verschiede-
nen Smearing- und Blocking-Prozeduren [A+87] zur Konstruktion der erweiterten Basis von
Testzuständen [KS98] de facto geschieht – versuchen wir, den Effekt des erwartungsgemäß
geringen Überlapps des axialen Zustands mit dem Grundzustand oberhalb der durch r0 ge-
setzten Skala durch eine entsprechend höhere Anzahl an Messungen zu kompensieren und
nehmen dabei ebenfalls in Kauf, dass ein Verzicht auf das üblicherweise eingesetzte overlap
enhancement eine vergleichsweise lange Zeitentwicklung des Zustands erforderlich machen
wird, bevor die minimale Energie verlässlich ermittelt werden kann. Zur Reduzierung des
statistischen Fehlers nutzen wir bei der Berechnung von Erwartungswerten wie üblich die
kubische Symmetrie des Gitters, sowie die aufgrund der periodischen Randbedingungen vor-
liegende Translationsinvarianz aus.

In Abbildung 2.6b ist der Verlauf des Potentials zwischen zwei statischen Quellen in der effek-
tiven Z2-Theorie zu sehen, der aus Erwartungswerten von Wilson-Loops WR×T [Z] unter der
Annahme verschiedener Werte Tmin für das Erreichen des large time limit extrahiert wurde.
Die Erwartungswerte wurden dabei durch Messungen in einem Ensemble von 5000 Gitter-
konfigurationen der Dimension 164 für den Wert κ = 0.5323 gewonnen und die Fit-Parameter
für die Extraktion der Werte des Potentials V (r) waren Q > 10−3, sowie χ2/ν < 3. Während
der Verlauf für kleine Abstände r/a der Quellen in allen drei gezeigten Fällen übereinstimmt,
ergibt sich für große Abstände eine Abweichung vom linearen Anstieg des Potentials. Er-
wartungsgemäß sinkt die Energie im Limes großer Zeiten, und es scheint, als würde dieser
erst für Tmin ≥ 6a erreicht. Für den im Rahmen unserer Simulationen maximal zugänglichen
Grenzfall Tmin = 6a deuten unsere Resultate jedenfalls darauf hin, dass das Potential V (r)
ab r0 ∼ 7a gegen einen asymptotisch konstanten Wert strebt, was sich grundlegend von dem
Verlauf des Confinement-Potentials unterscheidet, welches man unter ausschließlicher Berück-
sichtigung der Zentrumsfreiheitsgrade einer reinen Yang-Mills-Theorie findet. Um zu klären,

15Vergleiche dazu auch die Diskussion der Rolle des axialen Zustands im Rahmen der QED in Kapitel 1.2.3.



Kapitel 2. Topologie der Theorie starker und elektroschwacher Wechselwirkungen 73

(a) Gitter: 164, β = 2.3, κ = 0.5323, λ = 0.5. (b) Gitter: 124, β = 2.3, λ = 0.5.

Abbildung 2.7: (a) Das Phänomen des Stringbreaking manifestiert sich im Potentialverlauf
des Grundzustands sowohl in der Yang-Mills-Theorie mit dynamischem Skalarfeld, als auch in
der Theorie der Zentrumsvortices. (b) Der Deperkolationsübergang wird durch ein Einbrechen
der mittleren Containergröße angezeigt.

ob es sich bei diesem Ergebnis tatsächlich um ein Anzeichen des Stringbreaking-Phänomens
im Zentrumsvortexbild des Confinement handelt, wurde unter Verwendung derselben Para-
meter das Potential VU (r) aus Erwartungswerten von Wilson-Loops WΓ[U ] extrahiert, die
diesmal in unprojizierten Konfigurationen {Uµ(x)} gemessen wurden. Das Ergebnis dieser
Analyse wird in Abbildung 2.7a mit dem Verlauf des Potentials VZ2(r) verglichen, das für die
effektive Z2-Theorie gemessen wurde. In beiden Fällen wurde dabei die Annahme Tmin = 6a
zugrunde gelegt. Zusätzlich wurde zur besseren Orientierung ein Fit an die Datenpunkte eines
statischen Confinement-Potentials (gestrichelte blaue Linie) in die Abbildung mit aufgenom-
men, das für β = 2.3 in einer reinen SU(2)−Eichtheorie gemessen wurde.

Zunächst ist zu beobachten, dass das Potential VU (r) für r < 7a praktisch genau dem Ver-
lauf des Confinement-Potentials folgt. Für größere Abstände der Quellen hingegen stellen wir
eine Abweichung fest: Während das Confinement-Potential weiterhin linear anwächst, folgt
VU (r) eher dem Verlauf von VZ2(r), wobei sich die statistischen Unsicherheiten mit zuneh-
mendem Wert von r ebenfalls zu vergrößern scheinen. Dies war zu erwarten und ist, wie
oben bereits diskutiert, Ausdruck der Tatsache, dass der wahre Grundzustand oberhalb der
Stringbreaking-Skala r0 eine zunehmend geringere Ähnlichkeit mit dem axialen Testzustand
aufweist. Offensichtlich müsste also die Anzahl der von uns durchgeführten Messungen noch
weiter erhöht werden, um größere Sicherheit über das Verhalten des Potentials VU (r) in die-
sem Bereich zu gewinnen. Dies ist mit dem Ergebnis der in Abbildung 2.3 gezeigten Messung
des Potentials der reinen SU(3)−Yang-Mills-Theorie zu vergleichen. Durch die Verwendung
einer overlap enhancement Prozedur, der die räumlichen Links unterworfen wurden, konnte
das dort gezeigte Potential aus jeweils 100 Messungen für jeden Wert der Kopplungskonstan-
ten β bei einem durchaus akzeptablen statistischen Fehler extrahiert werden. Vergleicht man
in diesem Licht die Messergebnisse für VU (r) und VZ2(r) inclusive ihrer statistischen Fehler
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im Bereich r ≥ 8a miteinander, so ist zu konstatieren, dass es vorteilhaft erscheint, sich bei
der Beschreibung der Infrarotphysik auf die Zentrumsvortices als den relevanten Freiheits-
graden innerhalb der vollen Theorie zu stützen. Weiterhin ist festzustellen, dass sowohl die
sogenannte intermediäre string tension, die aus VU (r) im Bereich des linearen Anstiegs (ca.
3a ≤ r ≤ 7a) extrahiert werden könnte, mit der des Zentrumsvortex-Potentials in diesem
Bereich übereinzustimmen scheint, als auch die Skala r0, an der sich VU (r) entscheidend
verändert, richtig von den Vortices reproduziert werden kann. In diesem Zusammenhang ist
es ebenfalls sehr interessant, sich das Verhalten der Vortex-Cluster in der Nähe des Pha-
senübergangs nochmals aus anderer Perspektive anzusehen.

Treten in einer Gitterkonfiguration sowohl perkolierende Vortices als auch Vortex-Cluster
endlicher Ausdehnung auf, so sollten die (wenigen) perkolierenden Vortices noch immer in
der Lage sein, ein Flächengesetz für den Erwartungswert des Wilson-Loop-Operators hervor-
zurufen. Bei der direkten Berechnung einer mittleren Containergröße würde dabei allerdings
der entscheidende Effekt dieser wenigen perkolierenden Vortex-Clusters im Gegensatz zu den
vielen Containern endlicher Ausdehnung nicht angemessen berücksichtigt werden. Diesem
Faktum versuchen wir durch die Definition einer gewichteten mittleren Ausdehnung Ew(j)
der Vortex-Cluster (bezüglich der Richtung êj) Rechnung zu tragen, indem die Länge L(i)
der NV verschiedenen, innerhalb einer Konfiguration detektierten, disjunkten Vortex-Cluster
V (i), berücksichtigt wird:

Ew(j) :=

∑NV

i=1 lj(i)L(i)∑NV

i=1 L(i)
. (2.51)

In Abbildung 2.7b ist der Erwartungswert der Kantenlänge der minimalen Container (2.51),
exemplarisch für die êz-Richtung, als Funktion des Parameters κ aufgetragen. Die Messun-
gen wurden auf einem Gitter der Größe 124 durchgeführt, wodurch sich bei der Betrachtung
von dreidimensionalen Schnitten durch das Gitter nach Gleichung (2.50) eine maximale Kan-
tenlänge von lmax ≃ 10.4 ergibt. Dieser Wert stimmt sehr gut mit dem von uns für κ = 0
gemessenen Wert überein. Da die Vortices in dieser Realisierungsphase der Theorie bekann-
termaßen das gesamte Gitteruniversum durchziehen, darf angenommen werden, dass die De-
finition der gewichteten Cluster-Ausdehnung in Gleichung (2.51) eine sinnvolle Möglichkeit
zur Charakterisierung der Perkolationseigenschaften von Zentrumsvortices darstellt. Beim
Übergang in die Quasi-Higgs-Phase nimmt die mittlere Ausdehnung Ew(κ) rapide ab und
für κ ≥ 0.54 können die verbliebenen Vortices bereits in Containern mit einer Kantenlänge
von weniger als zwei Gitterkonstanten untergebracht werden. Vergleicht man die Messwerte
für die maximale Ausdehnung der Container unmittelbar unter- und oberhalb des Punktes
κ = 0.5323, an dem die Untersuchung der Potentiale durchgeführt wurden, so ist es interessant
darüber zu spekulieren, ob die Skala r0, bei der das Auftreten des Stringbreaking-Phänomens
verortet wurde, möglicherweise in direktem Zusammenhang mit der maximalen Größe der
Vortex-Cluster steht, die an diesem Punkt des Phasendiagramms der Theorie vorliegen. Die
Vorhersagen des Random-Vortex-Modells geben jedenfalls Grund zur Vermutung, dass dies
tatsächlich der Fall sein müsste. Zuletzt wurde verifiziert, dass ein Entfernen der P -Vortices
aus den thermalisierten Konfiguration gemäß (2.34) das Verschwinden des linearen Anteils
des Potentials VU (r) (auch in einem intermediären Bereich des Quellenabstands) zur Folge
hatte.
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2.5 Die Natur des elektroschwachen Phasenübergangs

2.5.1 Z−Strings, Nambu-Monopole und Zentrumsvortices

Obwohl keine topologisch stabilen monopol- oder vortexartigen Defekte im Standardmo-
dell der elektroschwachen Wechselwirkung auftreten können [Ryd85], lassen sich dennoch
eingebettete Defekte identifizieren, nämlich die sogenannten Nambu-Monopole [Nam77] und
elektroschwache Z-Strings [Man83]. Letztere entsprechen den bereits in Kapitel 2.3 erwähn-
ten Vortex-Lösungen von Abrikosov und Nielsen-Olesen, die mit der abelschen Untergruppe
der SU(2) verknüpft sind und dadurch in die Eichfelder der elektroschwachen Theorie einge-
bettet werden können16. Die grundlegenden Ideen zum Thema Einbettung und Detektierung
dieser Objekte werden in Kapitel 2.5.3 erläutert, für eine ausführlichere Diskussion wird auf
den umfangreichen Übersichtsartikel von Achucarro und Vachaspati [AV00] verwiesen.

Nachdem einerseits gezeigt werden konnte [GIS97], dass sich der elektroschwache Phasenüber-
gang erster Ordnung im Rahmen des Glashow-Salam-Weinberg-Modells in einen fließenden
Übergang in der Umgebung einer kritischen Temperatur Tc verwandelt, sofern die Masse des
(hypothetischen) Higgs-Bosons größer als MH ≃ 73 GeV ist, andererseits eine derart niedrige
Masse aber experimentell ausgeschlossen werden kann [A+08], hat das Interesse an eingebet-
teten topologischen Defekten eine Renaissance erfahren. Diese spielen nämlich eine entschei-
dende Rolle in verschiedenen alternativen Szenarien zur Bayogenese im frühen Universum,
die im Gegensatz zu den lange Zeit favorisierten Ideen17 (u.a. der sogenannte bubble nucleati-
on mechanism) auf die Annahme eines hinreichend starken Phasenübergangs erster Ordnung
verzichten können. Eines dieser alternativen kosmologischen Modelle geht dabei von perko-
lierenden elektroschwachen Z-Strings18 in der symmetrischen Hochtemperaturphase aus, die
bei Unterschreitung einer kritischen Temperatur in stabile kleinere, nicht-trivial (twisted) ge-
schlossene und miteinander verknüpfte Loops übergehen, welche eine von Null verschiedene
Baryonenzahl tragen können und dadurch das Auftreten der Baryonenzahl-Asymmetrie im
Universum erklären könnten [VF94]. Ob sich diese nicht-trivialen Feldkonfigurationen jedoch
als stabil erweisen oder nicht, ist eine Frage der Dynamik bosonischer und fermionischer Quan-
tenfelder, die an die klassischen Z-Strings koppeln können. Eine Untersuchung in D = 2 + 1
hat dabei gezeigt, dass eine energetische Stabilisierung der topologisch nicht geschützten
Z-Strings (π1(SU(2)) = 0) allein durch den fermionischen Sektor des GSW-Modells für reali-
stische Werte der physikalisch relevanten Parameter Nc sowie mt nicht möglich ist [GQW09].
Falls sich dieses Ergebnis auch in D = 3 + 1 Dimensionen unter Hinzunahme aller bosoni-
schen Fluktuationen der Theorie bestätigen sollte, so erscheint es zumindest fraglich, ob die
elektroschwachen Z-Strings tatsächlich einen wesentlichen Einfluss auf die Entwicklung des
elektroschwachen Vakuums gehabt haben können, oder ob man nicht nach anderen Anregun-
gen in der Theorie der elektroschwachen Wechselwirkung Ausschau halten muss, welche die
Rolle der Z-Strings übernehmen könnten.

Wie die elektroschwachen Z-Strings, so müssen auch alternative Kandidaten, die magneti-
schen Fluss führen sollen, entweder geschlossen sein oder aber einen Bindungszustand mit
einem Paar von Nambu-Monopolen unterschiedlichen Vorzeichens eingehen. Derartige abge-
schlossene Strings, die auch alsMonopolium bezeichnet werden, könnten den Kern einer insta-

16Vergleiche auch die Diskussion in Kapitel 2.2.4.
17Eine Übersicht findet sich in dem Artikel von Rubakov und Shaposhnikov [RS96].
18In der Literatur findet sich auch die Bezeichnung kosmische Strings.
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bilen Sphaleron-Konfiguration [Man83] darstellen, welche unterhalb des crossover als einzige
Konfiguration Übergänge zwischen Vakua mit verschiedenen Chern-Simons-Zahlen vermitteln
kann. Tatsächlich wurden bei der Untersuchung von klassischen Sphaleron-Konfigurationen
auf dem Gitter Anzeichen für das Vorliegen solcher Monopol-Antimonopol-Bindungszustände
gefunden [CGI98]. Die dort eingeführten Operatoren zur Detektierung der (elementaren) Z-
Strings und Nambu-Monopol-Ströme konnten später [CGIS98a] auch dazu verwendet werden,
die Dynamik dieser Defekte in einem Modell der Glashow-Salam-Weinberg-Theorie im ther-
mischen Gleichgewicht nahe Tc zu untersuchen. Dabei handelt es sich um das in D=3 Dimen-
sionen definierte SU(2)−Higgs-Modell, wobei das skalare Feld sich unter der fundamentalen
Darstellung der Gruppe transformiert. Die Berücksichtigung der U(1)Y durch Verwendung
eines nicht-trivialen Wertes für den Weinberg-Winkel θW würde dabei zu einer Kopplung
zwischen der Hyperladungsgruppe und der abelschen Untergruppe der SU(2) führen, was
wiederum zur Folge hätte, dass neben den Z-Strings auch W -Strings als Lösungen der Theo-
rie möglich würden. Der Einfluss der mit der Hyperladung Y assoziierten U(1)−Eichgruppe
auf die Natur des elektroschwachen Phasenübergangs bzw. crossover wurde in [KLRS97b] stu-
diert, wobei sich gezeigt hat, dass dieser als eher gering einzuschätzen ist. Wie in [GQW09]
wollen wir uns daher auch zunächst nur auf den Fall θW =0 beschränken, für den sich dieW−
und Z−Lösungen nur um eine globale Eichtransformation voneinander unterscheiden. Da der
Einfluss von Fermionen auf die physikalisch relevanten Parameter der effektiven dreidimensio-
nalen SU(2)−Higgs-Theorie im Zuge der dimensionalen Reduktion ebenfalls berücksichtigt
werden kann [KLRS96a, KLRS96b], gehen wir davon aus, dass dieses Modell bereits eine
hinreichend gute Approximation für das elektroschwache Standardmodell bei endlichen Tem-
peraturen und realistischen Higgs-Massen darstellt, so dass aus dem Studium dieser Theorie
wichtige Erkenntnisse zum Verhalten der eingebetteten Defekte nahe des crossover gewonnen
werden können.

Bevor wir uns der Untersuchung der Dynamik von Zentrumsvortices in der elektroschwachen
Theorie während eines Abkühlungsvorgangs des Universums zuwenden wollen, soll zunächst
noch das bereits erwähnte Konzept der dimensionalen Reduktion einer Quantenfeldtheorie
erläutert werden.

2.5.2 Dimensionale Reduktion und endliche Temperaturen

Das Konzept der dimensionalen Reduktion beinhaltet die Annahme, dass sich die wesentli-
chen Eigenschaften einer 4D Theorie bei hohen Temperaturen im thermischen Gleichgewicht
aus der Untersuchung einer einfacheren, effektiven 3D Theorie verstehen lassen sollten. Die
Verbindung der beiden wird dabei durch das Studium der statischen bosonischen Green’schen
Funktionen der vierdimensionalen Theorie, ausgewertet in einem sinnvoll gewählten Regime
niedriger Energie, und einer Anpassung der Parameter der entsprechenden Green’schen Funk-
tionen der aussschließlich bosonischen, effektiven Theorie hergestellt19. Auf die enge Ver-
bindung von euklidischer Quantenfeldtheorie und klassischer statistischer Feldtheorie wurde
bereits bei der Diskussion der Wick-Rotation in Kapitel 1 hingewiesen, es ist daher nicht ver-
wunderlich, dass der Formalismus der imaginären Zeit auch im Rahmen der dimensionalen
Reduktion eine entscheidende Rolle spielt.

19Die Unterscheidung der verschiedenen relevanten Energie- und Impulsregime, sowie die Einteilung der
zugehörigen Anregungen in unterschiedliche

”
Gewichtsklassen“ bei hohen Temperaturen wird in der Arbeit

von Kajantie et al. [KLRS96a] vorgenommen.
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Um eine D=d+1 dimensionale Quantenfeldtheorien bei endlichen Temperaturen T zu studie-
ren, wird die zeitliche Dimension der zugrunde liegenden Mannigfaltigkeit kompaktifiziert, so
dass diese topologisch äquivalent zu Rd×S1 ist. Die Zustandssumme Z eines solchen Systems
berechnet sich bekanntermaßen als

Z = Tr
[
exp {−βH}

]
, β := T−1 , (2.52)

wobei H den Hamilton-Operator der Quantenfeldtheorie bezeichnet und ein Einheitensystem
gewählt wurde, in dem für die Boltzmannkonstante kB = 1 gilt. Bezeichnen wir die fermio-
nischen Felder mit ψ(x, t) und alle bosonischen Felder der Theorie mit χ(x, t), so kann die
Zustandssumme der Theorie als Funktionalintegral der Form

Z =

∫
DψDχ exp{−S[χ,ψ]} (2.53)

ausgedrückt werden, wobei die bosonischen Felder periodische, die fermionischen Felder hin-
gegen anti-periodische Randbedingungen bezüglich der imaginären Zeitrichtung êτ erfüllen:

χ(x, τ =0) = χ(x, τ =1/T ) , ψ(x, τ =0) = −ψ(x, τ =1/T ) . (2.54)

Die quantenmechanische Zustandssumme (2.53) kann also als Zustandssumme einer klassi-
schen statistischen Feldtheorie in d + 1 Dimensionen gedeutet werden, wobei die endliche
Temperatur, bei der die Quantenfeldtheorie betrachtet wird, gerade durch die endliche Aus-
dehnung Lt = 1/T der

”
zeitlichen“ Dimension realisiert wird:

T =
1

Lt
=

1

Nt a(β)
. (2.55)

Eine euklidische Quantenfeldtheorie am Temperaturnullpunkt entspricht folglich einer klas-
sischen statistischen Feldtheorie im thermodynamischen Grenzfall. Führt man nun bei end-
lichen Temperaturen eine partielle Fourier-Zerlegung der Quantenfelder durch

χ(x, τ) =

∞∑

n=−∞
χn(x) exp{iwbnτ} , ψ(x, τ) =

∞∑

n=−∞
ψn(x) exp{iwfnτ} , (2.56)

so ergeben sich aufgrund von (2.54) für die Matsubara-Frequenzen der bosonischen bzw.

fermionischen Felder in zeitlicher Richtung die Moden ωbn = 2nπT und ωfn = (2n + 1)πT
(n ∈ Z0). Diese werden auf tree level mit den Massen der Felder χn(x) und ψn(x) der d-
dimensionalen Theorie identifiziert [KLRS96a]. Die sogenannten nicht-statischen Moden (n 6=
0 für Bosonen und alle fermionischen Moden) sind im Grenzfall hoher Temperaturen T stark
unterdrückt, daher wurde zunächst angenommen [AP81], dass sich diese sogenannten

”
super-

schweren“ Beiträge vollständig ausintegrieren lassen müssten. Dadurch lässt sich gemäß

exp{−Seff [ϕ(x)]} :=

∫
DψDχn 6=0 exp{−S[χ,ψ]} (2.57)

eine effektive d-dimensionale Theorie allein für die statische Mode ϕ(x) (n = 0) definieren,
die sich durch eine Entwicklung von Seff [ϕ(x)] störungstheoretisch behandeln lassen sollte20.

20In führender Ordnung findet sich Seff [ϕ] = L
∫
d d

xL (ϕ(x)).
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Es wurde allerdings schon früh erkannt [Lan89], dass sich als Folge der Integration neue
Wechselwirkungen für die statische Mode ergeben, was zu Problemen bei einer systemati-
schen Entwicklung bereits auf 2-Loop-Ebene führt, da die Massen der verschiedenen Felder,
die Bestandteil der ursprünglichen vierdimensionalen Theorie waren, unterschiedliche tempe-
raturabhängige Korrekturen erfahren können. Im Rahmen des bereits erwähnten matching
approach [KLRS96a] zur dimensionalen Reduktion wird dieses Problem insofern umgangen,
als dass bei der Berechnung der Diagramme, die zum Erreichen einer vorgegebenen Genau-
igkeit beim Abgleich der D = 4 und D = 3 Parameter betrachtet werden müssen, interne
Linien zu allen auftretenden Massenskalen (leicht, schwer und super-schwer) berücksichtigt
werden.

Die Verallgemeinerung dieser Überlegungen auf den Fall nicht-abelscher Eichtheorien bei
endlichen Temperaturen ist mit einigen Schwierigkeiten behaftet. Diese resultieren vor allem
daraus, dass die Anzahl der Feldkomponenten von der Dimension der Raumzeit abhängig
ist und die Isolierung der statischen Mode dadurch erschwert wird, dass die Zerlegung der
Felder in ihre Fourier-Komponenten eichabhängig ist [ZJ00]. Im Fall einer vierdimensionalen
reinen Yang-Mills-Theorie bei asymptotisch hohen Temperaturen findet man als Ergebnis
der dimensionalen Reduktion eine effektive dreidimensionale Yang-Mills-Theorie, die an ein
zusätzliches Skalarfeld gekoppelt ist, welches sich unter der adjungierten Darstellung der
Gruppe transformiert [LMR92,KLM+94]. Die zugehörige effektive Wirkung liest sich als

Seff [A, A0] = S 3d
YM[A] + Sadj[A, A0] + Sint[A0] , (2.58)

wobei die räumlichen Komponenten des Eichfeldes zu A zusammengefasst wurden und das
adjungierte Higgs-Feld konventionsgemäß mit A0(x) = Aa0(x)T

a bezeichnet wird, um anzu-
deuten, dass dies ein Relikt aus der Integration der nicht-statischen Moden ist und aus der
temporalen Komponente des Eichfeldes stammt. Die Wirkung der dreidimensionalen Yang-
Mills-Theorie ist durch

S3d
YM[A] =

1

2g23

∫
d3x tr

[
Fij(x)Fij(x)

]
, g23 = g2(T )T (2.59)

gegeben, wobei die zugehörige Kopplungskonstante g3(T ) – im Gegensatz zur temperatur-
bzw. energieabhängigen Kopplungskonstanten g(T ) der ursprünglichen vierdimensionalen
Theorie – nicht mehr länger dimensionslos ist. Der kinetische Term des adjungierten Higgs-
Feldes A0(x) ist gegeben durch

Sadj[A, A0] =

∫
d3x tr

[
[Di(A), A0(x)][Di(A), A0(x)]

]
, (2.60)

und der letzte Beitrag, welcher die quadratische und quartische (Selbst-)Wechselwirkung des
Higgs-Feldes beschreibt, ist das Result einer Integration der nicht-statischen Moden in 1-
Loop-Näherung [Lan89]:

Sint[A0] =

∫
d3x m2

D tr
[
A2

0(x)
]
+ λ3 tr

[
A2

0(x)
]2

(2.61)

Werden weitere Diagramme höherer Ordnung berücksichtigt, so erfahren die Parameter
g3, λ3, sowie die Debye-Masse mD Korrekturen, die sich im Falle einer 2-Loop-Näherung
in [KLRS97a] finden. Für die Kopplungskonstante g3 etwa ergibt sich eine Änderung der
Form

g23 = g2(T )T
(
1 +O(g2)

)
. (2.62)
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2.5.3 Die elektroschwache Theorie bei endlichen Temperaturen

Da wir daran interessiert sind, Ergebnisse zur Untersuchung der Dynamik von Zentrumsvor-
tices in der elektroschwachen Theorie bei endlichen Temperaturen mit bereits vorliegenden
Ergebnisse zur Entstehung und Dynamik von Z-Strings und Nambu-Monopolen vergleichen
zu können, studieren wir wie in [CGIS98a] als eine erste Approximation der Theorie das
dreidimensionale SU(2)−Higgs-Modell mit der Wirkung

S[U,Φ] = β
∑

P

(
1− 1

2
Re
{
tr
[
P [U ]

] })

− κ

2

∑

x,k

tr
[
Φ†(x)Uk(x)Φ(x+ k)

]
+
∑

x

ρ(x)2 + λ
(
ρ(x)2 − 1

)2
. (2.63)

Dabei verwenden wir die in Kapitel 2.4.1 eingeführten Konventionen für das Higgs-Feld Φ(x).
Die Parameter β, κ, λ können mit den (dimensionsbehafteten) Parametern g3,m3(g

2
3) und λ3

der super-renormierbaren SU(2)−Kontinuumstheorie mit fundamentalem Higgs-Feld inD=3
Dimensionen in Verbindung gebracht werden [KLRS96a]. Die Kopplungskonstante g3 sowie
die Selbstkopplung λ3 sind Renormierungsgruppeninvariante, die renormierte Masse m3(g

2
3)

der Kontinuumstheorie wird an der Skala µ3 = g23 ausgewertet. Die Temperaturabhängigkeit
von g3 (siehe Gleichung 2.62) führt zu einer Temperaturabhängigkeit von m3, was dazu
führt, dass über eine Veränderung des Parameters κ die Temperatur geregelt werden kann.
Wir verwenden die in [GIS97] eingeführten Konventionen und betrachten die dimensionslosen
Verhältnisse

β =
4

a g23
, λ =

λ3
g23

κ2

β
=

1

8

(
M∗
H

80GeV

)2 κ2

β
, (2.64)

wobei die Selbstkopplungskonstante des Higgs-Feldes durch die Masse M∗
H des zugehörigen

Bosons21 ausgedrückt werden kann. Der Kontinuumslimes der diskretisierten Theorie wird
entlang der

”
Linien konstanter Physik“ der Kontinuumstheorie durch Vergrößerung von β

erreicht, wobei sowohl das dimensionslose Verhältnis λ3/g
2
3 (M∗

H), als auch m3(g
2
3)/g

2
3 (κ)

konstant gehalten werden müssen.

Wie bereits in Kapitel 2.2.4 angedeutet, können Nambu-Monopole und Z-Strings im Falle
des elektroschwachen Standardmodells bei endlichen Temperaturen auf eichinvariante Weise
detektiert [CGIS98a] bzw. in dieses eingebettet werden [Nam77]. Dazu wird zunächst das
zusammengesetzte adjungierte Einheitsvektorfeld

n(x) = na(x)σa , na(x) := −φ
†(x)σaφ(x)
φ†(x)φ(x)

(2.65)

definiert, das die Rolle des adjungierten Skalarfeldes bei der Definition des ’t Hooft-Polyakov-
Monopols im Georgi-Glashow-Modell übernimmt und die Orientierung der ungebrochenen
abelschen Untergruppe innerhalb von G anzeigt. Unter Verwendung der neuen, projizierten
Linkfelder

Vµ[U, n](x) := Uµ(x) + n(x)Uµ(x)n(x+ µ) (2.66)

lässt sich der eichinvariante Fluss

θ̄µν [U, n](x) := arg
(
tr
[
(1+ n(x) )Pµν [V ](x)

])
∈ [−π, π[ (2.67)

21Näherungsweise gleich der physikalischen Masse des Higgs-Bosons MH für T = 0.
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berechnen (vgl. dazu auch Gleichung 2.9), wobei die nicht-abelsche Plaquette Pµν [V ](x) aus
den Links (2.66) gemäß Gleichung (2.26) zu berechnen ist und auf n(x) projiziert wird.

Der Sinn dieser Konstruktion erschließt sich, wenn die Theorie in unitärer Eichung betrachtet
wird, welche durch

na(x) = δa3 , φu(x) =

(
0

φ(x)

)
(2.68)

bestimmt ist. In dieser Eichung sind die Felder (2.66) diagonal

V u
µ [U, σ

3](x) =

(
eiθ

u
µ(x) 0

0 e−iθ
u
µ(x)

)
, θuµ(x) = arg

(
U11
µ (x)

)
, (2.69)

und die Phasen θuµ(x) stellen ein kompaktes abelsches Eichfeld bezüglich der residuellen abel-
schen Eichtransformationen

ΩA(x) = e−iα(x)σ
3
, α(x) ∈ [0, 2π[ (2.70)

dar. Die Nambu-Monopole sind also die topologischen Defekte des kompakten abelschen
Feldes und die Auswertung von (2.67) in unitärer Eichung führt auf die abelsche Plaquette,
die üblicherweise direkt unter Verwendung der Felder θuµ(x) in maximal abelscher Eichung
nach Projektion konstruiert wird [CGI98]. In unitärer Eichung kann die Ladung der Nambu-
Monopole innerhalb eines elementaren Würfels C dann durch die in Kapitel 2.2.2 besprochene
Standardprozedur von deGrand und Toussaint [DT80] definiert werden:

jC = − 1

2π

∑

p∈∂C
θ̄p , θ̄p = θp − 2πmp . (2.71)

In dieser Eichung lassen sich die Z-Strings als die topologischen Vortexdefekte in den abel-
schen Matriefeldern φu(x) (den unteren Komponenten des Higgs-Doubletts 2.40) auffassen.
Unter der residuellen Transformation (2.70) gilt φ(x) → eiα(x)φ(x), folglich trägt das Feld
φ(x) elektrische Ladung eins bezüglich des abelschen Eichfeldes θuµ(x). Auf dem Gitter lassen
sich die Z-Strings durch nicht-triviale Messwerte für den sogenannten Z-Vortizitäts-Operator

σµν(x) :=
1

2π

(
χµν(x)− θ̄µν(x)

)
(2.72)

detektieren, wobei die eichinvariante Definition der Felder

χµ(x) = − arg
(
φ†(x)Vµ(x)φ(x+ µ)

)
(2.73)

zur Berechnung der zugehörigen Plaquette χµν(x) verwendet wird. Die Auswertung der Kon-
struktion in unitärer Eichung verdeutlicht nochmals die Quantisierung des Flusses, der von
den Z-Strings getragen wird [CGI98]. Ein Z-String ist dabei definiert als die Kollektion aller
verbundenen nicht-trivialen Links auf dem dualen Gitter, denen Plaquetten des Original-
gitters mit einer von Null verschiedener Vortizität (2.72) entsprechen. Die Trajektorien der
Z-Strings sind dabei entweder geschlossen, oder beginnen und enden an Positionen, an denen
Nambu-Monopole bzw. Anti-Monopole lokalisiert sind.

An dieser Stelle soll nochmals die Eichinvarianz der gesamten Konstruktion zur Detektierung
der Nambu-Monopole (2.71) sowie der Z-Strings (2.72) auf dem Gitter betont werden. Die
unitäre Eichung (2.68) wurde dabei nur zu Illustrationszwecken gewählt und muss bei der
konkreten Untersuchung der Feldkonfigurationen des Gitters nicht fixiert werden.
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2.5.4 Zentrumsvortices bei endlichen Temperaturen

Die eichinvarianten Definitionen der Operatoren zur Detektierung von elementaren Nambu-
Monopolen (2.67) und Z-Strings (2.72) eröffnen folglich die Möglichkeit, sowohl das Verhalten
dieser eingebetteten Defekte, als auch die Rolle und Dynamik von Zentrumsvortices anhand
derselben Konfigurationen einer Gittersimulation des elektroschwachen Standardmodells bei
endlichen Temperaturen zu studieren. Dazu muss jedoch zunächst geklärt werden, auf welche
Weise Zentrumsvortices in derartigen Konfigurationen zu detektieren sind.

Eine Zerlegung des eichfixierenden Funktionals (2.22) in einen Anteil, welcher ausschließlich
Eichfelder räumlicher Natur beinhaltet, sowie einen Anteil für rein zeitartige Links, legt die
Konstruktion eines analogen Funktionals zur Definition einer DMCG bei endlichen Tempe-
raturen nahe:

FDMCG
U [Ω] =

1

4N

N∑

x=1

[
3∑

i=1

(
tr
[
UΩ
i (x)

] )2
+
(
tr
[
UΩ
0 (x)

] )2
]
. (2.74)

Da die Spur der zeitartigen Link-Variablen im letzten Term invariant unter zeitunabhängigen
Eichtransformationen ist, kann die DMCG in D=3+1 Dimensionen für eine feste Zeitschicht
als Eichbedingung für die dimensional reduzierte Theorie herangezogen werden:

FDMCG 3d
U [Ω(x)] =

1

3N

∑

x

3∑

i=1

(
tr
[
UΩ
i (x)

] )2 Ω−→ max. (2.75)

Offensichtlich besteht eine Verbindung zwischen den flächenhaften Vortices einer vierdimen-
sionalen Theorie bei endlichen Temperaturen, sowie den geschlossenen Vortexfilamenten der
zugehörigen dreidimensionalen Theorie: Letztere ergeben sich als Schnitte durch die geschlos-
senen Vortexflächen in einer festen Zeitschicht der vierdimensionalen Theorie. Bei der iterati-
ven Maximierung des Funktionals (2.75) werden neben den Eichfeldern auch alle an die drei-
dimensionale Yang-Mills-Theorie gekoppelten Skalarfelder einer entsprechenden Eichtransfor-
mation unterworfen.

2.5.5 Numerische Ergebnisse

Zunächst waren wir daran interessiert, das Verhalten der Dichte von Z-Strings, Nambu-
Monopolen und Zentrumsvortices im Bereich des crossover der Theorie zu untersuchen. Da-
bei wurde eine Higgsmasse von M∗

H = 100 GeV angenommen und Simulationen auf Gittern
der Größe 203 für die Parameterwerte β = 8 und κ ∈ [0.34, 0.36] durchgeführt, wobei die
Selbstkopplungskonstante λ nach Gleichung (2.64) berechnet wurde. Für jeden Wert des
Parameters κ wurde ein Ensemble von 1000 Konfigurationen mit demselben Algorithmus
erzeugt, der schon bei der Untersuchung der vierdimensionalen Theorie in Kapitel 2.4.1 ein-
gesetzt wurde. Autokorrelationen stellten dabei kein Problem dar. Der iterativen Fixierung
der modifizierten DMCG (2.5.4) wurde ein Abbruchkriterium von δ2 < 10−10 zugrunde gelegt.

In Abbildung 2.8 sind die Erwartungswerte der drei Operatoren

ρm =
1

L3

∑

C
|jC | , ρZ−String =

1

3L3

∑

p

|σp| , ρZ2 =
1

3L3

∑

p

δ(P [Z],−1) (2.76)
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Abbildung 2.8: Die Dichte der Nambu-Monopole, Z-Strings und Zentrumsvortices in der Nähe
des elektroschwachen crossover. Gitter: 203, β = 8, M∗

H = 100 GeV.

zu sehen, wobei die Ladung der Nambu-Monopole jC und die Vortizität der Z-Strings σp in
jeder Konfiguration nach (2.71) und (2.72) berechnet wurden. Zur Untersuchung der Dichte
der Z2-Vortices wurde der in Gleichung 2.49 definierte Operator für D = 3 herangezogen.

Die Dichten der Nambu-Monopole und Z-Strings in Abbildung 2.8a zeigen als Funktion des
Parameters κ ein ähnliches Verhalten. In der symmetrischen Phase scheinen in etwa ein Vier-
tel aller Plaquetten bzw. elementaren Würfel von elektroschwachen Z-Strings durchstoßen
bzw. von Nambu-Monopolen besetzt zu sein. Beide Dichten nehmen bei der Annäherung an
den crossover -Bereich kontinuierlich ab, wobei sich ein Wendepunkt des Funktionsverlaufs
ausmachen lässt, an dem die Dichten ρm und ρZ−String etwa auf die Hälfte ihres asymptoti-
schen Werts in der symmetrischen Phase abgefallen sind. Dieser Punkt liegt bei κc≃ 0.353.
Dringt man weiter in die geordnete Phase vor, so nehmen sowohl ρm als auch ρZ−String ex-
ponentiell ab, was am Verhalten der Z-String-Dichte in Abbildung 2.8b illustriert wird. Ein
Vergleich mit dem Verhalten von ρZ2 zeigt, dass sich die Dichte der Zentrumsvortices in der
symmetrischen Phase über einen weiten Bereich des Parameters κ annähernd konstant verhält
und mindestens eineinhalb Größenordungen kleiner zu sein scheint als die Dichte der (elemen-
taren) Z-Strings. Dabei ist zum einen bemerkenswert, dass der Übergang in die geordnete
Phase scheinbar bei derselben Temperatur durch eine Änderung von ρZ2 angezeigt wird, wie
sie bei der Untersuchung der eichunabhängig definierten Z-Strings (und Nambu-Monopole)
gefunden wurde, zum anderen sinkt die Dichte der Zentrumsvortices bei abnehmenden Tem-
peraturen nicht so schnell, wie dies für die Z-Strings der Fall ist.

Als nächstes wurde das Perkolationsverhalten der Zentrumsvortices untersucht. Da sich ge-
zeigt hat, dass der Übergang der Theorie von der symmetrischen Hochtemperatur-Phase in
eine kältere, geordnete Phase von einem Deperkolationsübergang der Z-Strings begleitet wird,
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und zwar sowohl im Falle eines echten thermodynamischen Phasenübergangs (für unrealistisch
kleine Higgs-Massen bzw. Selbstkopplungen) [CGIS98a], als auch im Fall des realistischeren
crossover [CGIS98b], ist es interessant zu untersuchen, ob sich dieser Umstrukturierungspro-
zess auch in der Topologie der Zentrumsvortices beobachten lässt. Dazu betrachten wir die
bereits in Kapitel 2.4.2 definierte gewichtete Cluster-Ausdehnung Ew(j) (2.51) und verglei-
chen unsere Resultate mit den Ergebnissen zur Messung der z.B. in [CGIS98a] definierten
Perkolationswahrscheinlichkeit C. In Abbildung 2.9 werden die Erwartungswerte der mittle-
ren Cluster-Ausdehnung für die Zentrumsvortices und Z-Strings – normiert auf die maximal
mögliche Containergröße (2.50) nach Mittelung über alle möglichen räumlichen Orientierun-
gen – miteinander verglichen. Im Fall der Zentrumsvortices erweist sich diese Observable als
hervorragend dazu geeignet, den Übergang von der symmetrischen Phase der Theorie, in der
tatsächlich perkolierende Vortices vorliegen, in die unsymmetrische Phase zu detektieren. Der
Deperkolationsübergangspunkt wird von einem Abfallen der normierten Cluster-Ausdehnung
vom Wert eins bei κp ≃ 0.353 angezeigt und scheint mit dem kritischen Wert κc, an dem
sich die Dichte der Zentrumsvortices ändert, übereinzustimmen. Während sich das System
weiter abkühlt, tritt eine signifikante Änderung in der Verteilung der Zentrumsvortices auf,
die wir folgendermaßen interpretieren: Die Anzahl der detektierten Vortices nimmt ab und
diese organisieren sich statt in einem Netzwerk von perkolierenden Filamenten (mit einer
Verzweigungshäufigkeit von ca. 2%) in kleineren Clustern, die praktisch keinerlei Verzwei-
gungspunkte mehr aufweisen und deren mittlere Ausdehnung sich bei etwa 70% des be-
trachteten Gittervolumens zu stabilisieren scheint. Die Ausdehnung der Z-String-Container
hingegen ist für κ > 0.355 bereits auf einen Wert kleiner 0.1 abgefallen, was einer Länge
von ca. zwei Gitterkonstanten entspricht. Dies steht in Einklang mit den in [CGIS98b] be-
richteten Beobachtungen, wonach zu erwarten ist, dass sich ein Großteil der Z-Strings in
einem hinreichend weit von κp entfernten Bereich im Phasendiagramm der Theorie mit ei-
nem Paar von Nambu-Monopolen gegensätzlichen Vorzeichens verbunden hat, und dass dieser
Monopolium-Bindungszustand, der als Kern einer Sphaleronkonfiguration interpretiert wer-
den kann [CGI98], eine maximale Ausdehnung von etwa zwei Gitterkonstanten aufweist.
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In diesem Zusammenhang ist es interessant festzuhalten, dass eine genaue Bestimmung von κp

die Verwendung von nicht-lokalen Defekt-Operatoren σ
(k)
P und j

(k)
c für ausgedehnte Z-Strings

und Nambu-Monopole mit einer zunehmenden Anzahl an sogenannten Blocking-Schritten
k ∈ N [CGIS98a] erforderlich macht, um eine Stabilisierung des Grenzwertes im Kontinu-
umslimes der Theorie zu erreichen. Unser Ergebnis zur Untersuchung der Perkolationseigen-
schaften der Z-Strings in Abbildung 2.9 liefert ebenfalls einen Hinweis auf dieses Phänomen:
Während für die Zentrumsvortices bereits eine recht klare Trennlinie zwischen den Phasen
perkolierender und nicht mehr perkolierender Vortices angezeigt wird, ist der Übergang im
Falle der elementaren Z-Strings für β = 8, also weit entfernt vom Kontinuumslimes, noch sehr
fließend. Die mittlere Cluster-Ausdehnung verhält sich dabei gewissermaßen komplementär
zur Perkolationswahrscheinlichkeit C. Während letztere als echter Ordnungsparameter (im
thermodynamischen Limes) den Deperkolationsübergang bei κp durch ein Abfallen auf den
Wert Null signalisiert [CGIS98a], zeigt der (normierte) Erwartungswert von Ew im Fall der
Zentrumsvortices das Vorliegen einer Phase perkolierender Vortices durch einen maximalen
Wert von eins für κ ≤ κp an.

Sollte es sich bei den Z-Strings und Zentrumsvortices tatsächlich um physikalisch relevan-
te Freiheitsgrade handeln, so müsste sich ihr Auftreten in der elektroschwachen Theorie bei
endlichen Temperaturen zumindest dahingehend bemerkbar machen, dass es in unmittelba-
rer Nähe ihrer Trajektorien zu Inhomogenitäten in der Energiedichte des Eichfeldes kommt.
Darüber hinaus steht im Fall der Z-Strings zu erwarten, dass diese auch einen Einfluß auf das
Higgs-Feld haben dürften, da die klassischen Vortex-Lösungen im Kontinuum in ihrem Zen-
trum durch ||φ(0)|| = 0, sowie asymptotisch durch limr→∞||φ(r)|| = φ0 charakterisiert sind22.
Diese Vermutung konnte im Fall der Z-Strings bereits in entsprechenden Gittersimulationen
der Theorie bestätigt werden [CGIS99,CIS00]. Um die Situation auch im Fall der Zentrums-
vortices zu klären, haben wir Messungen der Energiedichte Eg(x̃) der Eichfelder, sowie des
mittleren Betragsquadrats ρ2(x̃) des Higgs-Feldes

Eg(x̃) = 1− 1

2
tr
[
P [U ](x̃)

]
, ρ2(x̃) =

1

4

∑

x∈ ∂P
ρ2(x) (2.77)

durchgeführt. Dabei bezeichnet x̃ den Ort einer Plaquette auf dem dualen Gitter. Die Vor-
schrift zur Berechnung der Feldenergiedichte entlang der Trajektorie eines Vortex (Core) ist
offensichtlich, da dessen Kern ja gerade durch Plaquetten mit nicht-trivialer Vortizität de-
finiert ist. Im Fall des Higgs-Feldes wird das arithmetische Mittel aller vier ρ2(x) gebildet,
die an den Ecken einer von einem Vortex durchstoßenen Plaquette P ausgewertet werden. In
die Berechnung des Mittelwertes außerhalb der Vortices (Bulk) gehen definitionsgemäß alle
Plaquetten der equilibrierten Gitterkonfigurationen mit trivialer Vortizität (σP = 0, σZ2

P = 1)
ein.

Die Ergebnisse dieser Untersuchung sind in Abbildung 2.10 zusammengefasst. Zunächst ist
festzustellen, dass sich das Betragsquadrat des Higgs-Feldes (Abb. 2.10a) im Innen- und Au-
ßenbereich nur im Falle der Z-Strings maßgeblich voneinander unterscheidet. Dabei finden
wir im Inneren einen kleineren Wert für 〈ρ2〉 als außerhalb, wobei sich dieser Effekt beim
Übergang in die Higgs-Phase der Theorie noch weiter verstärkt. Eine mögliche Erklärung

22Vergleiche dazu auch die Untersuchungen in D = 2 + 1 zur Stabilität von elektroschwachen Strings,
charakterisiert durch verschiedene Profilfunktionen fH(ρ) und fG(ρ) im Fall T = 0 [GQW09].
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Abbildung 2.10: Das Verhalten des Higgs-Feldes und der Energiedichte des Eichfeldes in un-
mittelbarer Nähe (Core) und außerhalb (Bulk) des Zentrums der Z-Strings und Z2-Vortices.
Gitter: 203, β = 8, M∗

H = 100 GeV.

dafür wurde in [CGIS98b] gegeben: Wie in Abbildung 2.8 zu sehen, nimmt die Dichte der De-
fekte oberhalb des crossover ab, was dazu führt, dass sich die Zentren der Z-Strings in dieser
Phase weniger stark überlappen können und somit eine Unterscheidung zwischen Innen- und
Außenbereich besser möglich wird. Außerdem wurde darauf hingewiesen, dass dem Absolut-
wert des Erwartungswertes von ρ2 aufgrund von additiven Renormierungskorrekturen keine
Bedeutung beigemessen werden kann, lediglich die Differenz zwischen den quantenmechani-
schen Mittelwerten des Betragsquadrates von φ(x) im Inneren und Äußeren der Z-Strings
spielt für den Kontinuumslimes eine Rolle. Dass das Higgs-Feld von der Anwesenheit der
Zentrumsvortices in den thermalisierten Konfigurationen praktisch keinerlei Notiz nimmt,
ist nicht weiter verwunderlich, da sich das zur Fixierung der DMCG herangezogene Funk-
tional (2.75) einzig und allein auf den Eichfeldsektor der Theorie bezieht. Folgerichtig zeigt
sich der Einfluss der Zentrumsvortices auf die Verteilung der Energiedichte aber in diesem
Sektor umso deutlicher. Aus Abbildung 2.10b geht hervor, dass in den Zentrumsvortices im
Vergleich zur Umgebung eine deutliche Konzentration der Energie des Eichfeldes stattfin-
det. Vergleich man jeweils die Differenz der Energiedichte im Innen- und Außenbereich von
Zentrumsvortices und Z-Strings miteinander, so ist festzustellen, dass die in den Zentrums-
vortices konzentrierte Energie des Eichfeldes in der symmetrischen Phase um mehr als eine
Größenordnung höher liegt als im Fall der Z-Strings. Außerdem ist dabei zu beachten, dass
in dieser Phase zusätzlich ρZ2/ρZ−String < 10−1 (vgl. Abb. 2.8) gilt. Die Zentrumsvortices
scheinen also gewissermaßen deutlich

”
kontrastreicher“ zu sein als die Z-Strings. Unterhalb

der kritischen Temperatur tritt eine interessante Veränderung der Situation auf: Die Differenz
der Energiedichte zwischen Core und Bulk nimmt im Falle der Zentrumsvortices ab, für die
Z-Strings hingegen beobachten wir eine Zunahme derselben. Dies ist insofern erstaunlich, als
dass die Abkühlung des (Gitter-) Universums wie in Abbildung 2.8 gezeigt in beiden Fällen
von einer Abnahme der jeweiligen Dichte ρZ2 bzw. ρZ begleitet wird. Möglicherweise spielt



86 2.5. Die Natur des elektroschwachen Phasenübergangs

daher das Profil der beiden Arten von Strings eine wichtige Rolle bei der Erklärung dieses
Verhaltens, da bei der Berechnung von ρZ2 bzw. ρZ ja nur der Kern der jeweiligen Vortices
herangezogen wurde, diese aber vielleicht eine viel größere (radiale) Ausdehnung besitzen als
angenommen und somit auch das Ergebnis der Berechnung der zugehörigen Bulk-Energie
korrigiert werden muss. Des Weiteren ist durchaus vorstellbar, dass für κ > 0.36 noch ei-
ne Stabilisierung des (sinnvoll definierten) Energiegehalts der Defekte eintreten könnte, so
dass sowohl Z-Strings als auch Zentrumsvortices eine Rolle bei der Beschreibung des Kosmos
nach dem elektroschwachen Übergang in eine kältere Phase spielten könnten. Um zu einer
Entscheidung über die physikalische Relevanz der mit den hier vorgestellten Methoden detek-
tierten Defekte zu gelangen, muss letztlich überprüft werden, ob eine solche Energiedifferenz
einen wohldefinierten Kontinuumslimes besitzt.

Zur Überprüfung dieser Thesen soll in einem ersten Schritt eine detaillierte Untersuchung
der Profilfunktionen der (elementaren) Z-Strings und Zentrumsvortices durchgeführt werden.
In [CIS00] wurden dazu Korrelationsfunktionen der Form

Cρ(R) =
〈
σ2(x̃) ρ2(ỹ)

〉
, CE(R) =

〈
σ2(x̃)Eg(ỹ)

〉
, R = ||x̃− ỹ|| (2.78)

vorgeschlagen, die es gestatten, sogenannte
”
Quanten-Vortex-Profile“ der Z-Strings in der

Nähe des elektroschwachen crossover zu messen. Dabei ist zu beachten, dass zum einen die
Messwerte der in (2.77) definierten Operatoren Eg(ỹ) und ρ(ỹ) unabhängig von der Wahl
einer bestimmten Eichung sind, zum anderen der von dem in Gleichung (2.72) definierte
Defekt-Operator σ(x̃) längs einer jeden Trajektorie der linienartigen elementaren Defekte
angenommene Wert eine Konstante ist. Zur Untersuchung der Profilfunktion der Zentrums-
vortices greifen wir bei der Berechnung der Korrelatoren in Gleichung (2.78) für σ(x̃) auf
den in Gleichung (2.27) definierten Operator zurück, dessen einziger nicht-trivialer Messwert
(−1) sogar für jede mögliche Trajektorie identisch ist. Die dualen Plaquetten x̃ und ỹ sind
Elemente derselben Ebene, die stets lokal orthogonal zur Richtung des untersuchten Seg-
ments eines String bzw. Vortex orientiert ist. Die Korrelationsfunktionen (2.78) messen also
auf eichinvariante Weise die radiale Verteilung der Energie und des Modulus der Eich- und
Higgs-Felder bezüglich eines Ursprungs, der im Fall der Zentrumsvortices durch Wahl der
DMCG und anschließender Projektion auf die Zentrumsfelder lokalisiert wird, im Fall der
Z-Strings sogar ohne Fixierung einer Eichung bestimmt werden kann. Die Profilfunktionen
erhalten dabei sowohl Beiträge von Quantenfluktuationen, als auch von thermischen Fluk-
tuationen, die sich besonders unterhalb der kritischen Temperatur bemerkbar machen.

Unsere Messergebnisse der Vortex-Profilfunktionen (2.78) für Z-Strings und Z2-Vortices wer-
den in Abbildung 2.11 miteinander verglichen. Im Fall von Cρ(R) (Abb. 2.11a) finden wir zum
einen eine Bestätigung unserer Beobachtung, dass sich das Higgs-Feld als

”
blind“ gegenüber

Zentrumsvortices erweist, und zwar unabhängig von der Realisierungsphase der Theorie. Zum
anderen deutet der Verlauf von CZρ (R) im Falle der Z-Strings darauf hin, dass deren Profil sich
über einen Radius von mehreren Gitterkonstanten R0 hin verändert, bevor der asymptotische
Wert angenommen wird, der mit dem der Bulk -Messungen (vgl. Abb. 2.10a) übereinstimmt.
Das Profil erfährt eine deutliche Veränderung beim Überqueren des crossover -Bereichs in
Richtung abgekühlte Phase, so nimmt zum einen der mittlere Profilradius von R0 ≃ 3a
(κ=0.348) auf R0 ≃ 5a (κ=0.355) zu, zum anderen vergrößert sich der Unterschied zwischen
den Werten des Korrelators im Zentrum und weit davon entfernt. Es scheint jedenfalls so zu
sein, als ob sich das Profil der (elementaren) Z-Strings über eine so große Fläche um den
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Abbildung 2.11: Die Vortex-Profile Cρ(R) und CE(R) oberhalb (κ = 0.348) und unterhalb
(κ = 0.355) der crossover -Temperatur Tc. Gitter: 203, β = 8, M∗

H = 100 GeV.

auf eichinvariante Weise (2.72) detektierten Kern herum erstreckt, als dass dies auch un-
ter der Annahme der hier verwendeten relativ grobkörnigen Diskretisierung der dimensional
reduzierten Theorie noch nachweisbar ist. Im Gegensatz dazu finden wir für das Profil der
durch Zentrumsprojektion in DMCG (2.75) definierten Vortices, dass CZ2

E (R) in Abbildung
2.11b bereits im Abstand R0 = a auf den asymptotisch konstanten Bulk -Wert abgefallen ist.
Falls für CZ2

E (R) ein ähnliches Verhalten wie für CZρ (R) beim Übergang in die Higgs-Phase
gelten sollte, so scheint die hier verwendete Gitterkonstante jedenfalls noch zu groß zu sein,
als dass es möglich wäre, ein etwaiges stetiges Abfallen von CZ2

E (R) über einen größeren
Radius (in physikalischen Einheiten) als in der symmetrischen Phase feststellen zu können.
Möglicherweise offenbart sich ein solches Verhalten also erst durch Simulationen bei kleine-
ren Gitterkonstanten. Für die Z-Strings zeigt die Funktion CZE (R), eingebettet in Abbildung
2.11b, hingegen einen Verlauf, der zusammen mit CZρ (R) an das Profil einer klassischen
Vortex-Lösung erinnert: Die Energie des Eichfeldes nimmt im Zentrum ihr Maximum an –
wobei gleichzeitig der Betrag des Higgs-Feldes ein Minimum aufweist – und fällt über eine
charakteristische Länge R0 mit zunehmendem Abstand vom Kern auf einen asymptotisch
konstanten Wert ab, wobei gleichzeitig der Betrag des Higgs-Feldes über eine vergleichbare
Skala hin anwächst.

Bevor wir uns mit der Frage beschäftigen können, ob sich für die Zentrumsvortices möglicher-
weise ein ähnlicher Profilverlauf wie für die Z-Strings bei einer sehr viel höheren Auflösung
nachweisen lässt, muss zunächst geklärt werden, ob sich den hier untersuchten P -Vortices im
Rahmen des elektroschwachen Standardmodells bei endlichen Temperaturen überhaupt eine
physikalisch sinnvolle Bedeutung im Kontinuumslimes geben lässt. Bei der Untersuchung des
Perkolationsverhaltens der Z-Strings im Kontinuumslimes des diskretisierten SU(2)-Higgs-
Modells hat sich nämlich gezeigt, dass es erforderlich ist, die Konstruktion von den elemen-
taren Defekt-Operatoren der Form (2.72) und (2.71) auf sogenannte ausgedehnte Operato-
ren [CGIS98a] zu verallgemeinern, um zu einer Perkolationstemperatur zu gelangen, die sich
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Abbildung 2.12: Das Skalierungsverhalten der Dichten von Zentrumsvortices, Z-Strings und
Nambu-Monopolen im Kontinuumslimes der Theorie in der symmetrischen Phase. κ = 0.335,
M∗
H = 130 GeV.

als annähernd stabil gegenüber einer Erhöhung des Auflösungsvermögens des Gitter (β →∞)
erweist [CGIS98b].

Um zu entscheiden, ob sich die Definition der P -Vortices in ihrer elementaren Form im Kon-
tinuumslimes als sinnvoll erweist, soll eine Untersuchung der Skalierungseigenschaften der
zugehörigen Dichte ρZ2 längs der Linien konstanter Physik, wie in Kapitel 2.5.3 beschrieben,
durchgeführt werden. Ausgehend von einem durch κ = 0.335 charakterisierten Punkt in der
symmetrischen Phase der Theorie bei fester Temperatur (konstantem g23) wurde für die Si-
mulationsreihe eine Higgs-Masse von M∗

H = 130 GeV gewählt und die Kopplungskonstante
β im Intervall [5, 18] variiert. Die Selbstkopplungskonstante λ des Higgs-Feldes wurde dabei
jeweils gemäß (2.64) berechnet. Da zu erwarten ist, dass sich die endliche Größe des Gitters
aufgrund der relative hohen Higgs-Masse sehr viel deutlicher bemerkbar machen wird als im
Fall einer Higgs-Masse, die das Auftreten eines Phasenübergangs erster Ordnung erlaubt,
wurde die Gittergröße bei der Annäherung an den Kontinuumslimes schrittweise erhöht, um
das physikalische Volumen annähernd konstant zu halten. Nach (2.64) gilt β ∝ a−1, folglich
sollte die Anzahl der Gitterpunkte bei einer Verdopplung von β ebenfalls verdoppelt werden,
um das zugrunde liegende physikalische Volumen fix zu halten23. Die Simulationen wurden
auf Gittern der Größe 203, 243 und 323 durchgeführt und umfassten jeweils 1000 Messungen.

Im Hauptteil der Abbildung 2.12a zeigen wir die Ergebnisse zur Messung der dimensionslosen
Dichte ρZ2 der Zentrumsvortices im Kontinuumslimes. Da es sich dabei nach (2.76) um die
mittlere Anzahl der Zentrumsvortices pro Einheitsfläche in Einheiten der Gitterkonstanten

23Die Konstruktion der k-fach ausgedehnten Operatoren σ
(k)
P und j

(k)
c in [CGIS98a] basiert auf dieser Ska-

lierungsvorschrift.



Kapitel 2. Topologie der Theorie starker und elektroschwacher Wechselwirkungen 89

a handelt, sollte die in physikalischen Einheiten gemessene Dichte ρ̂Z2 die Dimension einer
inversen Fläche ([a−2]) besitzen, und folglich

ρZ2(β) = ρ̂Z2 a
2(β) (2.79)

gelten. Das Verhalten der Gitterkonstanten a(β) als Funktion des Simulationsparameters β
findet sich in Gleichung (2.64). Die gestrichelte Kurve stellt dabei einen least-χ2-fit der für
β ∈ [8, 18] gemessenen Datenpunkte an eine Funktion der Form

f(β) = A0 β
−2 , A0 = 0.44292 , χ2 = 3.31 · 10−6 (2.80)

dar. Offensichtlich folgt die Dichte im Wesentlichen dem erwarteten Verlauf einer flächen-
haften Größe längs der Linie konstanter Physik. Für die kleinsten Werte der untersuchten
Gitterkonstanten (β ≥ 14) kann das Auftreten von finite-size-Effekten in unseren Simulatio-
nen beobachtet werden: Wird die Anzahl N der Punkte des Gitters erhöht, so geht damit
auch eine systematische Vergrößerung des Wertes von ρZ2(β) einher. Obwohl dieser Effekt
nicht allzu gravierend zu sein scheint, muss dennoch vermutet werden, dass zumindest die für
β < 14 auf Gittern der Größe 203 erzielten Ergebnisse im thermodynamischen Limes noch
merkliche Korrekturen erfahren werden. Umso erstaunlicher ist es, dass sich die Messdaten
dabei so gut durch eine Funktion eines einzigen freien Parameters über das gesamte Intervall
der inversen Kopplungskonstante beschreiben lassen. Eine komplementäre Sichtweise bietet
die Messung der Dichte in natürlichen Einheiten ag23 . Die Einbettung in Abbildung 2.12a
zeigt dabei den mit β2 multiplizierte Verlauf der Messdaten, was den Vorteil einer besseren
Auflösung bietet und nach (2.79) einer Größe entspricht, die direkt proportional zur Dichte
der Zentrumsvortices in physikalischen Einheiten ρ̂Z2 ist. Der Verlauf der Kurve gibt zum
einen Grund zu der Annahme, dass die Zentrumsvortexdichte tatsächlich einen wohldefinier-
ten Kontinuumslimes besitzen sollte, zum anderen wird hier auch nochmals deutlich, dass
sich der tatsächliche Grenzwert vermutlich erst für Gitter N > 32 und β > 18 stabilisieren
wird.

Neben ρZ2 wurden auch die beiden anderen in (2.76) definierten Dichten der elementaren
Z-Strings und Monopole gemessen. In Abbildung 2.12b werden die auf physikalische Einhei-
ten skalierten Größen ρZ−String β

2 ∝ ρ̂Z−String und ρNM β3 ∝ ρ̂NM mit dem Verhalten der
physikalischen Zentrumsvortexdichte ρ̂Z2 aus Abbildung 2.12a verglichen. Dabei zeigt sich
ein gravierender Unterschied: Während sich ρZ2β

2 wie bereits gesehen annähernd konstant
verhält, skalieren die Dichten der elementaren Z-Strings und Nambu-Monopole nicht mit
der erwarteten Potenz zwei bzw. drei der Gitterkonstanten, wie es für physikalisch relevante
Flächen- bzw. Volumendichten der Fall sein sollte, sondern scheinen im Kontinuumslimes zu
divergieren.

Während sich also die elementaren Defekt-Operatoren im Fall der Z-Strings und Nambu-
Monopole als ungeeignet für die Untersuchung der Gittertheorie im Kontinuumslimes er-
wiesen haben und durch zunehmend nicht-lokale Konstruktionen ersetzt werden müssen
[CGIS98a], deuten unsere Ergebnisse zum Skalierungsverhalten von ρZ2 darauf hin, dass
sich die Definition der elementaren P -Vortices als robust gegenüber einer Verfeinerung der
Diskretisierung des Gittermodells erweist und die so detektierten Objekte durchaus eine phy-
sikalische Relevanz haben könnten. Daher scheint es sinnvoll zu sein, unter Verwendung der
P -Vortex-Operatoren die bereits angesprochene Frage zu untersuchen, ob sich bei genauerer
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Abbildung 2.13: Der Betrag der
Differenz der Korrelationsfunktion
CE(R) (2.78), berechnet im ma-
ximalem Abstand Rmax, sowie im
Zentrum der Z2-Vortices in der
Hochtemperaturphase als Funkti-
on der inversen Gitterkonstanten
β ∼ a−1 für veschiedene Gitter-
größen.
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Betrachtung auch eine Profilfunktion für die Zentrumsvortices messen lässt. Dazu wurde die
Funktion CE(R) (2.78) längs der oben beschriebenen Linie konstanter Physik in der Hochtem-
peraturphase gemessen. Ein überraschendes Resultat war dabei, dass der Wert der Korrela-
tionsfunktion CE(R) von einem Maximum am Ort des Kern in allen untersuchten Fällen
bereits für R = 1 auf den asymptotischen Randwert abgefallen war. Dies legt die Interpre-
tation nahe, dass sich die Gestalt der Zentrumsvortices in der Theorie der elektroschwachen
Wechselwirkung bei endlichen Temperaturen signifikant von der Gestalt der Zentrumsvortices
unterscheidet, die in der Theorie der starken Wechselwirkung für verschwindende Tempera-
turen eine Rolle spielen. Während in letzterer davon auszugehen ist, dass die P -Vortices nur
als Indikator für den Ort des Kerns der räumlich weit ausgedehnten, dicken Vortices die-
nen, scheint es im Fall der elektroschwachen Theorie zumindest bei hohen Temperaturen in
der symmetrischen Realisierungsphase so zu sein, als ob die Zentrumsvortices auf einen sehr
klar begrenzten faser- oder schlauchförmigen Raumbereich beschränkt werden können, dessen
Querschnittsfläche kleiner oder gleich der Fläche sein muss, die einer elementaren Plaquette
der feinsten von uns untersuchten Rasterung des Gitters (β = 18) entspricht. Bis zu dieser
maximal erreichbaren Auflösung konnte keine Abweichung von einem stufenförmigen Vortex-
Profil nachgewiesen werden. Es bleibt die Frage zu klären, wie es sich mit dem

”
Kontrast“

der Zentrumsvortices im Kontinuumslimes verhält. Dazu wurde die Differenz

∆CE(Rmax) = ‖CE(0) − CE(Rmax) ‖ (2.81)

der Profilfunktionswerte am Ort des Vortex-Kerns und in maximaler Entfernung Rmax da-
von untersucht. Das Ergebnis ist in Abbildung 2.13 zu sehen. Dabei ist zu beobachten, dass
die Differenz ∆CE(Rmax) über das gesamte untersuchte Intervall kontinuierlich abzunehmen
scheint. Ob sich diese letztlich bei einem von Null verschiedenen asymptotischen Wert stabi-
lisieren wird, oder ob im Kontinuumslimes anhand der Profilfunktion keine Unterscheidung
mehr zwischen den Zentrumsvortices und der umgebenden Eichfeldkonfiguration möglich sein
wird, lässt sich nicht mit Sicherheit sagen, zumal unsere Untersuchungsergebnisse zum Ver-
halten der Zentrumsvortexdichte im Kontinuumslimes gezeigt haben, dass der Einfluss der
endlichen Größe des Gitters auf die Messergebnisse sicherlich noch nicht vernachlässigt wer-
den kann und weitere Messungen im Bereich β > 18 durchgeführt werden müssen.
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2.6 Zusammenfassung und Ausblick

Im vorliegenden Kapitel wurde die Rolle von Zentrumsvortices in der Theorie der starken
und elektroschwachen Wechselwirkung bei endlichen Temperaturen studiert. Dabei konnte in
einer Untersuchung der vierdimensionalen euklidischen SU(2)−Eichtheorie mit dynamischem
Skalarfeld in fundamentaler Darstellung nachgewiesen werden, dass sich das beobachtete
Stringbreaking-Phänomen allein durch die Betrachtung von Zentrumsvortices als den rele-
vanten Freiheitsgraden verstehen und beschreiben lässt. Die Beschreibung des Confinement-
Phänomens als Resultat einer hinreichend zufällig flukutierenden Anzahl an Durchstoßpunk-
ten von Zentrumsvortices durch eine von einer Wilson-Loop-Kontur berandeten Fläche im
Rahmen des Random-Vortex-Modells hat die Konstruktion einer Observable motiviert, die
es ermöglicht hat, die für das Auftreten eines Flächengesetzes für den Wilson-Loop-Operator
notwendige Unkorreliertheit der Durchstoßpunkte in einer Ebene räumlich aufgelöst zu er-
fassen. Dadurch wurde es möglich, einen Punkt im Phasendiagramm zu bestimmen, an dem
sich die Theorie gleichsam an der Schwelle zwischen zwei Realisierungsphasen, charakterisiert
durch das Perkolationsverhalten der Zentrumsvortices, befindet. Das Studium des Potentials
zwischen zwei externen statischen Farbladungen an diesem Punkt hat dabei einen starken
Hinweis darauf geliefert, dass das Auftreten des Stringbreaking-Phänomens aufs Engste mit
den Perkolationseigenschaften der Zentrumsvortices verknüpft sein sollte. Nach einem inter-
mediären linearen Anstieg des Potentials mit zunehmendem Abstand der Quellen voneinan-
der wurde eine plötzliche Veränderung zu einem asymptotisch konstanten Verlauf beobachtet,
die bei einer Skala aufgetreten ist, die wir mit der mittleren gewichteten Größe der Cluster-
Container identifizieren konnten. Innerhalb der Container liegt also gewissermaßen noch eine
Realisierungsphase von perkolierenden Clustern vor, so dass eine Messung des statischen
Potentials zwischen Farbladungen innerhalb der Wände eines solchen Containers den typi-
schen Verlauf eines Confinement-Potentials zeigt. Außerhalb machen sich die zunehmenden
Korrelationen zwischen den Durchstoßpunkten der Vortices in einer fest gewählten Ebene
bemerkbar und man erhält ein Umfangsgesetz für den Erwartungswert eines in dieser Ebene
positionierten Wilson-Loop-Operators, was zu dem beobachteten, praktisch konstanten Po-
tentialverlauf im Außenbereich führt. Dieses Verhalten konnte im Infrarotbereich der Theorie
allein durch die Untersuchung des Zentrumsanteils der Eichfelder in Direkter Maximaler
Zentrums-Eichung (DMCG) reproduziert werden. Da anzunehmen ist, dass die von uns un-
tersuchte Theorie wesentliche Eigenschaften der Quantenchromodynamik aufweist, können
diese Ergebnisse als ein weiteres wichtiges Indiz für die Relevanz der Zentrumsvortices im
Infrarotregime der Theorie der starken Wechselwirkung gedeutet werden.

Eine natürliche Fortsetzung der hier vorgestellten Untersuchungen bestünde zunächst darin,
den Zusammenhang zwischen der Ausdehnung der perkolierenden Cluster und der String-
breaking-Skala im Potential genauer zu untersuchen. Des weiteren sind zumindest zweierlei
Erweiterungsrichtungen des Projektes denkbar. Zum einen wäre es interessant, als nächstes
Simulationen der SU(2)−Yang-Mills-Theorie mit dynamischen Fermionen statt eines Higgs-
Feldes in fundamentaler Darstellung durchzuführen und die daraus resultierenden Unter-
schiede systematisch zu untersuchen. Zum anderen könnte zunächst der Materiefeld-Sektor
unverändert bleiben, dafür aber die Eichgruppe auf den realistischeren Fall der SU(3) für
drei statt zwei verschiedener Farben der Quarks bzw. der skalaren Substitute verändert wer-
den. Dies wäre insofern interessant, als die Untersuchung von Zentrumsvortices in der rei-
nen SU(3)−Yang-Mills-Theorie bisher zumindest in Bezug auf die Reproduzierbarkeit der
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string tension der vollen Theorie im Vergleich zum Fall der SU(2) noch keine vollständig
überzeugenden Ergebnisse geliefert hat und es daher interessant wäre, den prinzipiellen Ein-
fluss der skalaren Materie näher zu studieren. Zuletzt muss es natürlich das Ziel sein, das
Stringbreaking-Phänomen im Vortex-Bild in der vollen vierdimensionalen SU(3)−Eichtheorie
mit realistischen dynamischen Fermionen zu studieren, um eine abschließende Aussage zur
Relevanz der bisher sehr erfolgversprechenden Zentrumsvortices als kollektiven Freiheitsgra-
den machen zu können.

Im Rahmen der Untersuchungen zum elektroschwachen Standardmodell bei endlichen Tem-
peraturen konnte festgestellt werden, dass eine sinnvolle Definition von Zentrumsvortices
in der dimensional reduzierten Theorie mit Hilfe von lokalen Operatoren möglich ist, die es
erlaubt, Objekte zu detektieren, deren Dichte sich als invariant unter Renormierungsgruppen-
Transformationen erweist und daher einen wohldefinierten Kontinuumslimes besitzen sollte.
Im Gegensatz zur Theorie der starken Wechselwirkung bei verschwindenden Temperaturen
ist die in den Vortex-Freiheitsgraden lokalisierte Energie der Eichfeldkonfigurationen dabei
auf einen räumlich sehr eng begrenzten Bereich eingeschränkt. Die in der Literatur berichtete
topologische Signatur eines Deperkolationsübergangs der eingebetteten Z-Strings am elek-
troschwachen crossover konnte bestätigt werden und findet sich ebenfalls für die Zentrums-
vortices wieder. Die Auflösung und Umstrukturierung eines weit verzweigten Netzwerkes von
perkolierenden Zentrumsvortices, das noch bei hohen Temperaturen vorliegt, wird von ei-
nem Abfallen der Dichte in der kühleren Phase begleitet. Dieser Vorgang scheint langsamer
abzulaufen, als es für die exponentiell geringer werdende Dichte der Z-Strings der Fall ist.
Auch in Bezug auf die mittlere Größe der Cluster von Z-Strings und Zentrumsvortices in
der Higgs-Phase konnte ein Unterschied festgestellt werden. Während unsere Daten mit den
in der Literatur berichteten Beobachtungen zur Formierung von sehr kleinen Z-String-Loops
und Nambu-Monopolium-Zuständen in hinreichend großer Entfernung vom Deperkolations-
punkt in Einklang stehen, weisen unsere Ergebnisse im Fall der Zentrumsvortices darauf hin,
dass sich die wenigen verbliebenen Vortices in Strukturen organisieren, die immer noch eine
mittlere Ausdehnung von fast drei Vierteln des betrachteten (Gitter-) Universums besitzen
und sich dieser Wert, wie auch die Dichte selbst, bei einer weiteren Abkühlung zu stabilisie-
ren scheint. In derselben Untersuchung hat sich gezeigt, dass sich beim Studium von Profil-
funktionen für die Z-Strings nach einer Mittelung über quantenmechanische und thermische
Fluktuationen Anzeichen für die semi-klassische Natur dieser Objekte finden lassen. Im Ver-
gleich dazu scheint das Auftreten von Zentrumsvortices in der Theorie der elektroschwachen
Wechselwirkung das Higgs-Feld weder unter- noch oberhalb des crossover merklich zu beein-
flussen, wohl aber sind die Zentrumsvortices in der Hochtemperaturphase anhand ihrer im
Vergleich zu den Z-Strings deutlich höheren Energie als Inhomogenität im Eichfeldsektor sehr
gut zu erkennen. Eine Untersuchung des Kontrastes im Kontinuumslimes hat dabei bisher
kein eindeutiges Ergebnis geliefert. Die Durchführung einer solchen Untersuchung im Falle
der Z-Strings würde die Verwendung von geblockten Vortizitäts-Defekt-Operatoren zwingend
erforderlich machen, da gezeigt werden konnte, dass die Dichte der mittels elementarer Ope-
ratoren detektierten Z-Strings (und Nambu-Monopole) keinen Kontinuumslimes besitzt.

In diesem Zusammenhang wäre es interessant zu untersuchen, ob sich für den kritischen
Wert κp des Deperkolationsübergangs im Kontinuumslimes derselbe Grenzwert bei der Ver-
wendung von eichinvariant definierten, aber beliebig nicht-lokalen Operatoren als Ergebnis
eine Blocking-Prozedur im Vergleich zur Verwendung der eichabhängigen, dafür aber lokalen
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Zentrumsvortex-Operatoren ergibt. Im Rahmen der in dieser ersten Untersuchung erreichten
Genauigkeit scheint der Übergang jedenfalls in beiden Sektoren am selben Punkt im Phasen-
diagramm stattzufinden. Dies ist insofern interessant, als dass sich dadurch die Möglichkeit
eröffnen könnte, ein neues Szenario zur Erklärung der Bayonenzahl-Asymmetrie auf Basis
eines Deperkolationsübergangs entwerfen zu können, wobei die Rolle der Z-Strings nun von
Zentrumsvortices eingenommen würde. Obwohl der Einfluss der U(1)Y auf die Stärke des
elektroschwachen Phasenübergangs nur eine geringe Auswirkung hat, erscheint es dennoch
lohnenswert, diese abelsche Gruppe in zukünftigen Untersuchungen der dimensional redu-
zierten SU(2)-Higgs-Theorie mit zu berücksichtigen, um ein noch realistischeres Bild von der
Natur des elektroschwachen crossover gewinnen zu können. Insbesondere wäre es interessant
zu untersuchen, welchen Effekt die zusätzlich durch Mischung der beiden abelschen Anteile
der elektroschwachen Eichgruppe auftretenden W -Strings auf die Zentrumsvortexstruktur in
dieser Theorie haben.





Kapitel 3

Ising-Spin-Gläser versus QCD bei
endlichen Temperaturen

3.1 Einleitung

Spingläser sind magnetische Materialien, die sich als statistische Systeme mit einer ausge-
prägten magnetischen Frustration charakterisieren lassen, welche entweder geometrischer
Natur sein kann, oder auf ein konkurrierendes Verhalten von ferromagnetischen und anti-
ferromagnetischen Wechselwirkungen der magnetischen Momente innerhalb eines Festkörpers
zurückzuführen ist [BY86]. Während im ersten Fall die Struktur des Kristallgitters die ent-
scheidende Rolle spielt1, handelt es sich im zweiten Fall hauptsächlich um die Auswirkungen
stochastischer Unordnung, wie sie in Form von zufälligen Dotierungen in Legierungen auf-
treten können. Die Frustration eines solchen Systems äußert sich also darin, dass es i.A.
unmöglich ist, die Grundzustandskonfiguration der Spins in einem solchen Kristallgitter zu
bestimmen, indem man sich ausschließlich auf die Auswirkungen lokaler Änderungen einzel-
ner Spins konzentriert. Die Fluktuationen eines einzelnen Spins können mit anderen Worten
die Umordnung eines Großteils der Spins des Gitters hervorrufen, während sich das System
einem neuen energetischen Minimum annähert [AR98]. Die Folge ist, dass dieser Vorgang auf
vielen verschiedenen Zeitskalen abläuft und insbesondere bei niedrigen Temperaturen davon
auszugehen ist, dass sich der Weg ins thermische Gleichgewicht als extrem lang erweisen und
über eine Reihe von metastabilen Zuständen führen wird. Bei hohen Temperaturen verhalten
sich diese Systeme ähnlich wie paramagnetische Materialien. Wird die Temperatur abgesenkt,
so tritt irgendwann ein Übergang in die sogenannte Spin-Glas-Phase auf, in der sich Domänen
gleich orientierter Spins ausbilden, die den geordneten Zustand repräsentieren.

Seit der Einführung des zweidimensionalen Prototyps durch Edwards und Anderson [EA75]
im Jahr 1975 wurden diverse Modifizierungen dieses Modells hinsichtlich ihrer Grund-
zustandseigenschaften mittels Monte-Carlo-Simulationen untersucht [MB79, MB80, MY82,
OM85, HM85, RSB+96, MSKS97]. Neben der Erweiterung auf eine realistischere kubische
Geometrie des Gitters wurde auch die Dimensionalität der Spin-Variablen erhöht und außer
den Ising-Spins (n=1) auch XY−Modelle (n=2) und Heisenberg-Magnete (n=3) mit den
unterschiedlichsten Arten und Verteilungen von Bindungen zwischen den Spins untersucht.

1Ein klassisches Beispiel ist das von Wannier studierte planare Ising-Modell mit ausschließlich anti-
ferromagnetischen Bindungen auf einem triangulären Gitter [Wan50].
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Für alle drei Modelle konnte dabei gezeigt werden, dass sie einen Übergang in die Spin-
Glas-Phase bei einer endlichen kritischen Temperatur Tc>0 aufweisen, sofern die Bindungen
zwischen den magnetischen Momenten an benachbarten Gitterplätzen einer Normalvertei-
lung entstammen [BCF+00, LY03]. Auf einem d=2 dimensionalen Gitter hingegen kann es
unter der Annahme einer solche Verteilung keinen Phasenübergang oberhalb von Tc=0 ge-
ben, die untere kritische Dimension wurde zu dc>2 bestimmt [RSB+96]. Der Grundzustand
am Temperaturnullpunkt erweist sich dabei als eindeutig. Anders sieht die Situation im Fal-
le einer bimodalen Verteilung der Bindungen aus. In diesem generischen Modell nimmt die
Wechselwirkung zwischen benachbarten magnetischen Momenten mit gleicher Wahrschein-
lichkeit einen der diskreten Werte ±J an und der Grundzustand ist entartet [LGM+04]. Es
war lange Zeit unklar, ob der Übergang in die Spin-Glas-Phase bei einer endlichen kritischen
Temperatur stattfindet oder nicht [SM97,Hou01], bevor Hartmann und Young [HY01] letzt-
lich zeigen konnten, dass eine geordnete Phase ebenfalls nur am Temperaturnullpunkt stabil
ist. Die Theorie zeigt jedoch marginales Verhalten (dc=2) und eine sorgfältige Messung der
kritischen Exponenten hat ergeben, dass die beiden Modelle für Tc = 0 in unterschiedliche
Universalitätsklassen fallen. Eine entsprechende Untersuchung bei niedrigen, aber von Null
verschiedenen Temperaturen hat erste Hinweise darauf geliefert [JLMM06], dass beide Mo-
delle für endliche Temperaturen zu derselben Universalitätsklasse gehören könnten, wobei in
einer nachfolgenden Untersuchung [KLC07] jedoch festgestellt wurde, dass zur Bestätigung
dieser Hypothese weitere Simulationen auf deutlich größeren Gittern durchgeführt werden
müssten.

Eine nahe liegende Verallgemeinerung dieses generischen bimodalen ±J−Modells besteht dar-
in, die Wahrscheinlichkeit κ, mit der eine anti-ferromagnetische Wechselwirkung (−J) für eine
bestimmte Bindung innerhalb des Gitters auftritt, zu verändern. Dies beschreibt beispielswei-
se eine Änderung des Mischungsverhältnisses zweier Komponenten einer Legierung. Folglich
ist es aus experimenteller Sicht nahe liegend und durchaus sinnvoll, ein bestimmtes Spin-Glas
durch das Verhältnis κ von anti-ferromagnetischen zur Gesamtzahl aller Bindungen innerhalb
einer solchen Probe zu charakterisieren. Tatsächlich wird κ üblicherweise auch in numerischen
Simulationen als der geeignete Parameter zur Messung der Frustration innerhalb einer be-
stimmten Realisierung oder Instanz des Modells herangezogen. Die Bindungen werden dabei
als quenched variables aufgefasst, d.h. jede Instanz ist durch eine feste (räumliche) Verteilung
der Bindungen gegeben und bezüglich dieses Hintergrunds, der durch einen bestimmten Wert
von κ charakterisiert werden kann, wird dann die Thermodynamik der Spin-Variablen unter-
sucht. Die Berechnung von statistischen Mittelwerten interessierender Observablen geschieht
dabei in zwei Schritten. Zum einen wird ein thermisches Mittel 〈 · · · 〉 bezüglich einer festen
Instanz berechnet, zum anderen ist über die verschiedensten Realisierungen der Unordnung
im Gitter [· · · ]av zu mitteln. Dies entspricht der Untersuchung verschiedener Proben eines
Materials, das durch ein festes Verhältnis von ferromagnetischen zu anti-ferromagnetischen
Bindungen charakterisiert ist, deren räumliche Anordnung innerhalb des Festkörpers sich
aber von Instanz zu Instanz stark unterscheiden kann. Die Grenzfälle κ = 0 sowie κ = 1 ent-
sprechen dabei einem rein ferromagnetischen bzw. anti-ferromagnetischen Ising-Modell. In
beiden Fällen kann der Grundzustand exakt berechnet werden und weder der Ferromagnet,
dessen Grundzustand einer Konfiguration von parallelen Spins entspricht, noch der Anti-
Ferromagnet mit einer schachbrettartigen Grundzustandskonfiguration zeigen Anzeichen für
das typische Verhalten eines Spin-Glases. Aus diesem Grund gelten Instanzen mit κ ≈ 0.5
üblicherweise als besonders schwierig zu handhaben, da man bei der Untersuchung dieser
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”
echten“ Spin-Gläser besonders häufig mit dem bereits diskutierten nicht-lokalen Verhalten
des Modells konfrontiert wird.

Neben der üblichen Charakterisierung durch den Parameter κ gibt es noch eine alternati-
ve Möglichkeit, die verschiedenen Instanzen eines frustrierten Ising-Modells zu klassifizieren.
Diese beruht auf einer Entdeckung, die zuerst von Bieche et al. [LBR80] berichtet wur-
de und anschließend von Nishimori et al. [Nis81, NS83] in erweiterter Form dazu genutzt
werden konnte, exakte Resultate bei der Untersuchung des Modells für spezielle Werte der
Temperatur und Dotierung zu gewinnen: Da das bimodale Ising-Modell eine (

”
versteckte“)Z2−Eichsymmetrie besitzt, kann sich bei einer entsprechenden Transformation der Spin-

und Bindungsvariablen eine dramatische Änderung sowohl in der Anordnung, als auch insbe-
sondere in der Anzahl der anti-ferromagnetischen Bindungen innerhalb des Gitters ergeben,
ohne dass sich bestimmte Observablen wie beispielsweise die thermische Energie oder die
spezifische Wärme des Systems ändern würden, da diese Größen eichinvariant sind. Folglich
können verschiedene Instanzen zu ganz unterschiedlichen Werten von κ genau dieselben phy-
sikalischen Eigenschaften aufweisen, weshalb eine alternative Klassifizierung wünschenswert
erscheint, welche diese thermodynamischen Gemeinsamkeiten betont.

Das Ziel der vorliegenden Untersuchung ist es, die Konsequenzen dieser Z2−Eichsymmetrie
des Modells zunächst in d = 2 Dimensionen näher zu untersuchen. Zur Quantifizierung der
Frustration des bimodalen Ising-Modells wird dazu eine eichinvariante Kenngröße vorgeschla-
gen. Dabei handelt es sich um die Vortex-Dichte ρ, d.h. den Bruchteil nicht-trivialer Plaquet-
ten innerhalb einer festen Instanz, die uns bereits im vorigen Kapitel bei der Behandlung einer
zentrumsprojizierten Eichtheorie begegnet ist. Zunächst bestimmen wir die exakte Energie des
Grundzustands im Rahmen des alternativen Klassifizierungsschemas als Funktion des Para-
meters ρ, wobei ein sogenannter minimum-weight perfect matching Algorithmus zum Einsatz
kommt. Anschließend wenden wir uns der Untersuchung des frustrierten Ising-Modells bei
endlichen Temperaturen in der Nähe des (pseudo-) kritischen Punktes βc mit den Methoden
der Monte-Carlo-Simulation zu. Es wird gezeigt, dass der von Kessler und Bretz [KB90] vorge-
schlagene Algorithmus tatsächlich in der Lage ist, Cluster von Spins auf eichinvariante Weise
zu konstruieren und zur Aktualisierung vorzuschlagen. Dies stellt eine der Grundvorausset-
zungen für die erfolgreiche Anwendbarkeit derartiger Algorithmen auf Spin-Glas-Probleme
dar, da die physikalisch relevanten Observablen eichinvariant und folglich Funktionen von ρ
sind. Als erste Anwendung untersuchen wir das Verhalten der spezifischen Wärme bei einer
Veränderung der Frustration des Systems und verifizieren die Unabhängigkeit der Ergebnisse
von einer speziellen Wahl der Eichung.

Als weitere Anwendung untersuchen wir das Verhalten der Quantenchromodynamik in ih-
rer dimensional reduzierten Form in der Nähe der kritischen Temperatur Tc. Das Modell
besitzt eine globale Z2−Symmetrie, was die Einführung zusätzlicher Freiheitsgrade im Ska-
larfeldsektor der Theorie motiviert und eine Abbildung derselben auf ein dreidimensionales
Ising-Spin-Glas mit dynamisch generierten Bindungen ermöglicht, das mittels einer Erweite-
rung des bereits diskutierten Cluster-Algorithmus auf den Fall d = 3 in der Nähe des Pha-
senübergangs simuliert werden kann. Eine Analyse der Autokorrelationszeiten verschiedener
Observablen runden die Untersuchungen zur Effizienz des Cluster-Algorithmus im Kontext
nicht-abelscher Eichtheorien mit Skalarfeldern in adjungierter Darstellung ab.
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3.2 Die eichinvariante Klassifizierung von Ising-Spin-Gläsern

durch Vortices

Die Zustandssumme des zu untersuchenden frustrierten Ising-Modells in d Dimensionen ist
durch

Z =
∑

{σ}
exp (−βH[U, σ] ) =

∑

{σx}
exp
(
β
∑

ℓ=〈xy〉
Uℓ σx σy

)
(3.1)

gegeben, wobei die Spins σx ∈ {−1,+1} in einem d−dimensionalen Gitter angeordnet sind
und nur in Wechselwirkung mit ihren nächsten Nachbarn stehen sollen. Im Exponenten wird
dabei über alle diese mit ℓ = 〈xy〉 bezeichneten Verbindungen zwischen benachbarten Git-
terplätzen x und y summiert. Die Frustration des Modells, die sich für verschwindende Tem-
peraturen (β → ∞) bemerkbar macht, rührt daher, dass sowohl ferromagnetische (Uℓ > 0)
als auch anti-ferromagnetische (Uℓ < 0) Wechselwirkungen zwischen den Spins des Gitters
auftreten können. Im Folgenden untersuchen wir ein Modell mit bimodaler Verteilung der
sogenannten Bonds Uℓ ∈ {−1,+1}, welche üblicherweise durch den Parameter κ ∈ [0, 1]
charakterisiert wird, der den Bruchteil der anti-ferromagnetischen Bonds des Gitters angibt.
Dabei legen wir den Fall offener Randbedingungen zugrunde und beschränken uns zunächst
auf ein planares Gitter.

In der Einleitung wurde bereits erwähnt, dass schon früh die Möglichkeit erkannt wurde,
dass Bond-Verteilungen zu ganz unterschiedlichen Werten von κ dennoch dieselben thermo-
dynamischen Eigenschaften aufweisen sollten [LBR80, Nis81, NS83]. Der Grund dafür liegt
in der besagten Z2−Eichsymmetrie des Modells, denn sowohl die Zustandssumme (3.1), als
auch Observablen wie beispielsweise die innere Energie oder die Wärmekapazität, die sich als
(logarithmische) Ableitungen von Z ergeben,

〈E(β) 〉 = − ∂

∂β
lnZ = −

〈 ∑

ℓ=〈xy〉
σx Uℓ σy

〉
, (3.2)

CV (β) =
1

N

∂2

∂β2
lnZ =

1

N

[
〈E2(β) 〉 − 〈E(β) 〉2

]
, (3.3)

sind invariant unter den folgenden Eichtransformationen Ωx ∈ Z2 der Spin- und Bond-
Variablen:

σΩx = Ωx σx (3.4)

UΩ
〈xy〉 = Ωx U〈xy〉 Ω

−1
y . (3.5)

Betrachten wir eine bestimmte Konfiguration von Spins {σx} auf einer bestimmten Instanz
eines Spin-Glases, die durch die Verteilung der Bonds {Uℓ} bestimmt wird. Führt man nun
eine Eichtransformation durch, so resultiert daraus eine neue Konfiguration von Spins {σ′x},
die auf einer anderen Instanz {U ′

ℓ} des Spin-Glases definiert ist, wobei die alten und neu-
en Spin- und Bondverteilungen gerade in einer solchen Weise aufeinander abgebildet werden,
dass sich die beiden Zustände in thermodynamischer Hinsicht nicht unterscheiden. Wohl aber
unterscheiden sich die Verteilungen der ferro- und anti-ferromagnetischen Bindungen inner-
halb der beiden Instanzen, so dass sich der Wert von κ durch Eichtransformationen also
drastisch ändern kann, obwohl die thermodynamischen Observablen und somit die Physik
unbeeinflusst bleiben.
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Eine Möglichkeit zur eichinvarianten Klassifizierung der Frustration einer Instanz eines
Ising-Spin-Glases besteht darin, eine Anleihe bei der Identifizierung von Zentrumsvortices
in einer Z2−projizierten SU(2)−Eichtheorie (Kapitel 2.3) zu nehmen. Dazu definieren wir
Plaquetten-Variablen auf dem dualen Gitter

P [U ](x̃) =
∏

ℓ∈x̃
Uℓ , (3.6)

die für die vorgegebene Verteilung der Bonds einer bestimmten Instanz berechnet werden.
Die Plaquette P (x̃) entspricht dabei der in Gleichung (2.26) definierten Plaquette. Ein nicht-
trivialer Wert P (x̃) = −1 signalisiert eine nicht-triviale duale Feldstärke, diese Plaquette wird
bekanntermaßen als von einem Z2−Vortex durchstoßen bezeichnet. Da wir offene Randbedin-
gungen verwenden, ist eine vorgegebene Verteilung der Bonds {Uℓ} durch die Kenntnis aller
dualen Plaquetten – bis auf Z2−Eichtransformationen – vollständig rekonstruierbar2. Folglich
ist eine Kategorisierung aller Instanzen eines Ising-Spin-Glases in Äquivalenzklassen möglich,
die durch die Verteilung der Vortices eindeutig bestimmt sind. Die einfachste Möglichkeit
besteht dabei darin, alle Instanzen zu einer festen Anzahl an Vortices, unabhängig von ihrer
Position auf dem dualen Gitter, zu einer Äquivalenzklasse zusammenzufassen, da jede der
so definierten Äquivalenzklassen durch einen einzigen, eichinvarianten Parameter charakte-
risiert wird. Um darüber hinaus die Komplexität des Problems charakterisieren zu können,
ohne jeweils auf die Größe des zugrunde liegenden Gitters Bezug nehmen zu müssen, führen
wir die Vortex-Dichte

ρ =
NV

(L1 − 1) · (L2 − 1)
(3.7)

ein, wobei NV die Anzahl der Vortices bezeichnet und (L1 − 1) (L2 − 1) die Gesamtzahl aller
Plaquetten eines zweidimensionalen Gitters der Dimension L1 × L2 mit offenen Randbedin-
gungen ist. Dadurch wird es möglich, eine Vielzahl von auf den ersten Blick gänzlich voneinan-
der verschiedenen Instanzen mit höchst unterschiedlicher Anzahl von anti-ferromagnetischen
Bonds einheitlich zu behandeln. Eine Illustration findet sich in Abbildung 3.1. Alle drei In-
stanzen sind durch ρ = 0 charakterisiert und eichäquivalent zu einem reinen Ferromagneten.

Wie bereits in der Einleitung diskutiert, erfordert die Berechnung des Erwartungswerts einer
Observable O auch die Mittelung über die herrschende Unordnung des Systems, die primär
durch die Verteilung der Bonds charakterisiert ist:

[ 〈O 〉 ]av = N−1
∑

{U}
Z−1

∑

{σ}
O[U, σ] exp

(
−βH[U, σ]

)
. (3.8)

Dies bedeutet in unserem Fall, eine Mittelung über ein Ensemble von Instanzen zu einem
festen Wert von ρ vorzunehmen. Zu beachten ist dabei, dass die beiden Instanzen (a) und
(b) in Abbildung 3.1 im Rahmen des konventionellen Klassifizierungsschemas bei der Un-
tersuchung des generischen ±J−Modells als unterschiedliche Realisierungen von Unordnung
gewertet und bei der Berechnung von (3.8) berücksichtigt werden müssten. Umgekehrt besteht

2Für periodische Randbedingungen ist dies nicht der Fall, da auch eichinvariante Wilson-Loops mit einer
von Null verschiedenen Windungszahl die Verteilung der negativen Bonds charakterisieren. Wird eine Quan-
tenfeldtheorie betrachtet, so bezeichnet man üblicherweise einen über die zeitliche Richtung der zugehörigen
Mannigfaltigkeit geschlossenen Wilson-Loop als Polyakov-Loop, für das hier vorliegende statistische System
enfällt die Unterscheidung von zeitlicher und räumlicher Dimension, weshalb wir jeden über periodische Gren-
zen hinweg geschlossenen Loop als Polyakov-Loop bezeichnen wollen.
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(a) κ = 0.5, ρ = 0 (b) κ = 0.5, ρ = 0 (c) κ = 0, ρ = 0

Abbildung 3.1: Drei verschiedene Instanzen eines planaren 30 × 30−Spin-Glases zu ρ = 0.
Die Verteilung der Bindungen in (a) und (b) ergeben sich als unterschiedliche Eichtransfor-
mationen (3.5) eines reinen Ferromagneten (c).

das Ensemble zu κ = 0.5 auch aus einer Vielzahl von eichinäquivalenten Konfigurationen zu
gänzlich verschiedenen Werten von ρ. Die Verwendung von κ oder ρ zur Charakterisierung der
Frustration bringt daher gewissermaßen komplementäre Sichtweisen auf das Ising-Spin-Glas
zum Ausdruck.

3.2.1 Der Grundzustand in Landau-Eichung

Der Entartungsgrad des Grundzustands hängt wesentlich von der Art der Wechselwirkung ab,
die zwischen den Spins eines frustrierten Ising-Modells herrscht. Während der Grundzustand
eines Spin-Glases mit Gaussischer Verteilung der Bonds (Mittelwert 0, Breite 1) eindeutig ist,
erweist sich dieser im Falle einer bimodalen Verteilung i.A. als hochgradig entartet [AP07].
Aufgrund der Eichinvarianz lässt sich jedoch zeigen, dass sich unter all diesen möglichen
Grundzuständen eines ±J−Modells3 immer die durch eine parallele Ausrichtung aller Spins
des Gitters charakterisierte Konfiguration finden lässt, sofern unter allen eichäquivalenten
Instanzen diejenige mit der minimalen Anzahl an anti-ferromagnetischen Bonds ausgewählt
wird. Dies entspricht der Bedingung

F [UΩ] =
∑

ℓ=〈xy〉
UΩ
ℓ

Ω−→ max . (3.9)

Bei F [UΩ] handelt es sich dabei gerade um das eichfixierende Funktional der Landau-Eichung
in einer Z2−Eichtheorie4.

Zum Beweis der Behauptung nehmen wir an, eine vorgegebene Bond-Verteilung {Uℓ} sei
gemäß (3.5) in eine Verteilung {UΩ

ℓ } transformiert worden, welche der Bedingung (3.9)
genüge. Dann stellt die Energie der Spin-Verteilung {σ0}, in der alle Spins parallel zuein-
ander ausgerichtet sind (σ0x · σ0y = 1, ∀x, y), eine untere Schranke für die Energie einer

3Eine Reskalierung der Temperatur führt auf den hier betrachteten Fall J ∈ {−1,+1}.
4Vergleiche dazu die Diskussion der iterativen Fixierung der Landau-Eichung in Anhang C.
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beliebigen Spin-Konfiguration {σx} in der Instanz {UΩ
ℓ } dar:

E[σ] = −
∑

ℓ=〈xy〉
σx U

ΩL

ℓ σy = −
∑

ℓ=〈xy〉
Uσ·ΩL

ℓ

≥ −
∑

ℓ=〈xy〉
UΩL

ℓ = −
∑

ℓ=〈xy〉
σ0x U

ΩL

ℓ σ0y = E[σ0] . (3.10)

Dabei wurde benutzt, dass im Fall einer Z2−Eichtheorie Ω−1
x = Ωx gilt. Folglich handelt es

sich wegen E[σ] ≥ E[σ0] bei dem uniformen Zustand {σ0} tatsächlich um einen Grundzu-
stand des frustrierten (bimodalen) Ising-Modells in zwei Dimensionen. Aufgrund der residu-
ellen, ungebrochenen globalen Z2-Symmetrie, welche die Theorie in Landau-Eichung (3.9)
noch aufweist, ist der Grundzustand zumindest zweifach entartet. Falls mehrere Eichtrans-
formationen {Ωx} existieren, die alle das eichfixierende Funktional maximieren und nicht
durch eine triviale globale Transformation (Ωx 7→ −Ωx, ∀x) auseinander hervorgehen, führt
dies auf einen Entartungsgrad des Grundzustands, der sich als zweimal der Anzahl dieser
unterschiedlichen Transformationen berechnet.

3.2.2 Die Energie des Grundzustands

Die exakte Bestimmung des Grundzustands eines Spin-Glases in d > 2 Dimensionen gehört
zur Klasse der NP-schweren Probleme [Bar82,PS82,Dev02]. Sofern externe Magnetfelder eine
Rolle spielen, gilt dies sogar für planare Systeme, was die Untersuchung von großen Gittern
selbst für d = 2 extrem aufwendig macht, da für Probleme aus dieser Klasse keine Algo-
rithmen bekannt sind, deren Laufzeiten te wie te ∝ Ln skalieren. Erstaunlicherweise kann
aber ein zweidimensionales Spin-Glas-Problem ohne externe Felder auf ein sogenanntes least-
weight minimal matching problem abgebildet werden, das eine graphentheoretische Lösung
in polynomialer Zeit erlaubt. Werden offene Randbedingungen in beiden Richtungen des Git-
ters zugrunde gelegt, bietet sich dazu der von Edmonds [Edm65a, Edm65b] vorgeschlagene
Algorithmus an. Problemstellungen mit gemischten Randbedingungen können ebenfalls in
polynomialer Zeit gelöst werden [LBR80], was sich als wichtig erweist, wenn zu klären ist,
ob eine bestimmte Art von Wechselwirkung zwischen den Spins das Auftreten einer sta-
bilen Spin-Glas-Phase bei endlichen Temperaturen erlaubt5. Der Grundgedanke all dieser
Algorithmen besteht darin, nicht-triviale Plaquette des Gitters paarweise auf eine solche Art
miteinander zu verbinden, dass die Summe der zugehörigen (gewichteten) Verbindungswege
minimiert wird und keine der Vortices bei diesem Abgleich unberücksichtigt bleiben. Genau
diese Idee, welche nochmals den Aspekt der Eichinvarianz des Problems in den Vordergrund
rückt, wird es uns auch erlauben, unsere numerischen Ergebnisse zur Energie des Grundzu-
stands als Funktion des neuen Komplexitätsparameters ρ auf natürliche Weise zu deuten.

Im vorigen Kapitel wurde gezeigt, dass die Eichinvarianz des Systems dazu genutzt werden
kann, eine vorgegebene Instanz {Uℓ} des frustrierten Ising-Modell gemäß Gleichung (3.5) in
eine Instanz {UΩL

ℓ } zu transformieren, für welche die Anzahl an anti-ferromagnetischen Bin-
dungen NA minimal ist. Die Abschätzung (3.10) hat weiterhin gezeigt, dass der Zustand {σ0}
(ebenso wie auch {−σ0}) ein Grundzustand des Spin-Glas-Gitters in Landau-Eichung (3.9)
ist. Folglich lässt sich die Energie des Grundzustands in dieser Eichung direkt als Differenz

5Siehe beispielsweise [HY01] und Referenzen darin.
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von NA und der Anzahl ferromagnetischer Bindungen NF berechnen:

E0 = −
∑

〈xy〉
σ0x U

ΩL

〈xy〉σ
0
y = −

∑

ℓ=〈xy〉
UΩL

ℓ

= −
[
NA · (−1) +NF · (+1)

]
= NA −NF . (3.11)

Da die Energie eine eichinvariante Größe ist, handelt es sich bei E0 natürlich auch um
die Grundzustandsenergie des ursprünglichen Spin-Glases {Uℓ}, die Berechnung der Ener-
gie gemäß Gleichung (3.11) kann aber nur in Landau-Eichung erfolgen.

Zur Berechnung der Energie des Grundzustands wird daher folgender Algorithmus verwendet:

1. Für eine vorgegebene Instanz {Uℓ} des Spin-Glases werden die zugehörigen Vortices auf
dem dualen Gitter berechnet.

2. Die minimale Anzahl NA der anti-ferromagnetischen Bindungen, die mit der im ersten
Schritt berechneten Verteilung der Vortices kompatibel ist, muss bestimmt werden.

3. Die Energie des Grundzustands pro Bindung berechnet sich dann zu

ǫ =
E0

Nℓ
=
NA −NF

Nℓ
= −1 + 2

NA

Nℓ
, (3.12)

wobei Nℓ die Gesamtzahl aller Bindungen des Spin-Glas-Gitters bezeichnet.

Die Spin-Konfiguration {σ̄}, die einen Grundzustand bezüglich der ursprünglichen Instanz
{Uℓ} darstellt, kann durch Invertierung der Eichtransformation ΩL rekonstruiert werden.
Dazu müssen im zweiten Schritt des Algorithmus neben der Anzahl auch die Positionen der
anti-ferromagnetischen Bindungen bestimmt werden. Unter Verwendung von σ0x ·σ0y = 1 ∀x, y
führt dies auf die Gleichungen

UΩL

〈xy〉 = σ̄x U〈xy〉 σ̄y , (3.13)

welche sukzessiv für ganz {σ̄} gelöst werden können. Insgesamt ist der zweite Schritt des
Algorithmus dabei mit dem größten numerischen Aufwand verbunden, denn die Konstrukti-
on der minimalen Instanz ist nach (3.9) äquivalent zur Fixierung der Landau-Eichung, und
dieses Problem gehört bekanntlich in d ≥ 3 Dimensionen selbst für eine so einfache Gruppe
wie Z2 zur Klasse der NP-schwierigen Probleme. In d = 2 Dimensionen kann jedoch unter der
Voraussetzung offener Randbedingungen der Algorithmus von Edmonds [Edm65a,Edm65b]
herangezogen werden, dessen Wirkungsweise in Abbildung 3.2 illustriert wird: Werden zwei
benachbarte dualen Plaquetten (•) durch einen anti-ferromagnetischen dualen Bond (gestri-
cheltes Segment) miteinander verbunden, so entspricht dies auf dem Originalgitter einem
anti-ferromagnetischen Bond (schwarzes Segment) an der gemeinsamen Kante der beiden
Plaquetten. Endet ein solcher anti-ferromagnetischer dualer Bond an einem Punkt x̃, so
gilt P (x̃) = −1, daher muss notwendigerweise eine zusammenhängende Kollektion von anti-
ferromagnetischen dualen Bonds (gestrichelte Linie) konstruiert werden, welche die vorgege-
benen Vortices (rote Quadrate) auf dem dualen Gitter miteinander verbindet. Da aber jeder
anti-ferromagnetische Bond auf dem dualen Gitter einem anti-ferromagnetischem Bond auf
dem Originalgitter entspricht, führt die Minimierung der Gesamtlänge aller Verbindungswege
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Abbildung 3.2: Vortices (rote Qua-
drate) sind Punkte des dualen
Gitters und werden durch Pfa-
de aus dualen Bonds (gestrichel-
te Linien) minimaler Länge mit-
einander verbunden. Den dualen
Bonds entsprechen die NA anti-
ferromagnetische Bonds (schwarze
Segmente) im Originalgitter.

zwischen Paaren von Vortices auf dem dualen Gitter zur Minimierung der Anzahl NA anti-
ferromagnetischer Bonds auf dem Originalgitter.

Im linken Teil der Abbildung 3.3 wird das Ergebnis der Anwendung des Algorithmus von
Edmonds im realistischen Fall eines Gitters der Dimension 30 × 30 mit offenen Randbedin-
gungen gezeigt. Zunächst wurden NV = 150 Vortices zufällig auf dem Gitter verteilt, danach
wurde die zugehörige minimale Instanz {UΩL

ℓ } in polynomialer Zeit [LBR80] berechnet. Die
verwendeten Symbole sind dieselben wie in Abbildung 3.2.

Als nächstes wurde die auf die Anzahl der Bindungen normierte Energie des Grundzustands
als Funktion der Vortexdichte ρ untersucht. Das Ergebnis ist im rechten Teil der Abbildung 3.3
zu sehen. Die Messungen wurden auf Gittern der Dimension L × L für L = 60, 90, 120 Git-
terpunkte durchgeführt, wobei offene Randbedingungen zugrunde gelegt wurden. Die exakte
Berechnung der Grundzustandsenergie ersetzt die Berechnung eines thermischen Mittelwertes
am Temperaturnullpunkt und für die nach Gleichung (3.8) durchzuführende Mittelung [· · · ]av
über die Unordnung des Systems, die durch den Wert des Parameters ρ = NV /(L− 1)2 cha-
rakterisiert wird, wurde für jeden der betrachteten Werte von ρ ∈ [0, 1[ ein Ensemble von 100
Instanzen herangezogen, die durch zufällige Verteilung der jeweiligen NV Vortices generiert
wurden. Unabhängig von der Ausdehnung L des Gitters scheinen alle Datenpunkte für ǫ(ρ)
auf derselben Kurve zu liegen. Dies deutet darauf hin, dass Korrekturterme, die aufgrund der
endlichen Größe der verwendeten Gitter zu erwarten sind, für L ≥ 60 bereits sehr klein oder
schon vernachlässigbar sind. Fassen wir alle verfügbaren Messwerte für ρ ≤ 0.3 zusammen,
so kann die Energie des Grundzustands pro Bindung für kleine Werte der Dichte ρ sehr gut
durch eine Funktion der Form

ǫ(ρ) ≈ −1 + 0.39(7) ρ 0.49(2) (3.14)

approximiert werden. Dies deutet auf ein Verhalten der Form ǫ(ρ) + 1 ∝ √ρ hin. Tatsächlich
ist es möglich, unter der Annahme eines Wertes von 1/2 für den Exponenten einen ausge-
zeichneten Ein-Parameter-Fit an dieselben Datenpunkte mit einem vergleichbaren χ2 durch-
zuführen [LLQR09]:

ǫ(ρ) ≈ −1 + 0.403(5) · √ρ . (3.15)

Eine störungstheoretische Behandlung des Systems für kleine Werte der Vortexdichte ρ er-
scheint aufgrund der singulären Ableitung dǫ/dρ am Nullpunkt wenig sinnvoll. Möglicherweise
lässt sich aber das Verhalten von ǫ(ρ) in diesem Regime im Rahmen einer Beschreibung des
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Abbildung 3.3: Links: NV = 150 zufällig auf einem (dualen) 30× 30 Gitter verteilte Vortices
(rote Quadrate) mit zugehörigem minimal matching durch anti-ferromagnetische (schwarze)
Bindungen: ǫ = E0/Nℓ = −0.82759(1). Rechts: Die Energie des Grundzustands pro Bindung
als Funktion der Vortexdichte ǫ(ρ), berechnet für offene Randbedingungen.

Systems als (stark verdünntes) semi-klassisches Gas von Vortices auf dem dualen Gitter ver-
stehen.

In einem ersten Schritt in diese Richtung konnte jedenfalls eine einfache Erklärung für die
Gesetzmäßigkeit, die in Gleichung (3.15) zum Ausdruck kommt, gefunden werden [LLQR09]:
Bei einer zufälligen Verteilung der Vortices auf dem Gitter nimmt jeder Vortex im Mittel

die Fläche ℓ
2
= ρ−1 ein, wobei ihr mittlerer Abstand (die mittlere freie Weglänge) mit ℓ

bezeichnet werde. Da der minimal matching Algorithmus darauf basiert, die Gesamtlänge der
Verbindungen zwischen den Vortices zu minimieren, ist davon auszugehen, dass die mittlere
Länge der Verbindungen zwischen Paaren von Vortices 〈ℓ 〉 := NA/(NV /2) etwas kleiner sein
wird als ihr mittlerer Abstand. Zumindest für hinreichend kleine Werte der Dichte sollte
daher die Relation 〈ℓ 〉 ≈ α ℓ für α . 1 unabhängig von der Größe des Gitters gelten. Für die
minimale Anzahl an anti-ferromagnetischen Bindungen NA finden wir daher die Abschätzung

NA =
1

2
NV 〈ℓ 〉 ≈

1

2
(L− 1)2 α

√
ρ , (3.16)

und dies führt nach Gleichung (3.12) mit Nℓ = 2L(L− 1) unter der Annahme offener Rand-
bedingungen auf

ǫ(ρ) ≈ −1 + α

2

√
ρ

[
1− 1

L

]
. (3.17)

Die Formel erklärt also zum einen das experimentell beobachtete Anwachsen der Grundzu-
standsenergie des Spin-Glases pro Bindung mit der Wurzel der Vortexdichte, zum anderen
liefert sie eine Voraussage für den Koeffizienten α/2 . 0.5, die bereits ziemlich gut mit dem
numerisch gefundenen Wert in Gleichung (3.15) übereinstimmt. Außerdem kann der ebenfalls
beobachtete Einfluss von Korrekturtermen abgeschätzt werden, der auf die Verwendung von
Gittern endlicher Ausdehnung L zurückzuführen ist.

Für die beiden Grenzfälle ρ = 0 und ρ = 1 ist eine exakte Bestimmung der Grundzustands-
energie möglich. Ersterer entspricht dem bereits anhand von Abbildung 3.1 diskutierten Fall
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eines reinen Ferromagneten (κ = 0), bzw. einer durch Eichtransformation daraus hervorge-
gangenen Instanz. Für alle Elemente dieser durch ρ = 0 charakterisierten Äquivalenzklasse
gilt ǫ(0) = −1, insbesondere auch für den reinen Anti-Ferromagneten (κ = 1). Der andere
Extremfall entspricht einem Vortex-Gas größtmöglicher Dichte, jede der Plaquetten des Git-
ters wird dabei von einem Vortex durchstoßen. Das zugehörige minimal matching ergibt sich
durch Verbindung von jeweils zwei benachbarten Vortices auf dem dualen Gitter, entspre-
chend einer anti-ferromagnetischen Bindung auf dem räumlichem Gitter. Für ungerade L ist
NA = (L− 1)2/2 und aus Gleichung (3.12) ergibt sich

ǫ(1) = −1

2

[
1 +

1

L

]
. (3.18)

Im thermodynamischen Limes erwarten wir daher den Wert ǫ(1) = −1
2 , vgl. dazu nochmals

den rechten Teil von Abbildung 3.3.

3.3 Ein eichinvarianter Cluster-Algorithmus

Die generische Schwierigkeit bei der Simulation von Spin-Systemen besteht darin, Autokor-
relationen der Konfigurationen innerhalb einer Markov-Kette gering zu halten. Dies ist ins-
besondere dann von höchster Bedeutung, wenn die physikalische Korrelationslänge ξ auf
einen Wert von der Größenordnung des gesamten betrachteten Systems anwächst, da sich
die (integrierte) Autokorrelationszeit τ üblicherweise wie τ ∝ ξz verhält, wobei z den dyna-
mischen kritischen Exponenten bezeichnet6. Dieses Phänomen ist bereits an dem einfachsten
zweidimensionalen Spin-System, dem ferromagnetischen Ising-Modell, zu beobachten, dessen
exakte Lösung 1944 von Onsager gefunden wurde. Das Modell zeigt einen ferromagnetischen
Phasenübergang bei Tc = 2.27J/kB (vgl. [LB91]), was bei Verwendung unserer Konventio-
nen βc ≃ 0.44053 bedeutet. Während das System in der symmetrischen Phase (β < βc) das
thermische Gleichgewicht unabhängig von der Wahl der Ausgangskonfiguration einer Markov-
Kette in wenigen Schritten auch auf großen Gittern erreicht, ist eine Simulation unterhalb
der kritischen Temperatur bereits auf Gittern mit einer linearen Ausdehnung von L ≥ 100
Punkten unter Verwendung eines lokalen Update-Algorithmus praktisch unmöglich. Derar-
tige Algorithmen weisen einen dynamischen kritischen Exponenten von z ≃ 2 auf. Einen
Ausweg bieten die sogenannten Cluster-Algorithmen [SW87,Wol89], die in der Lage sind,
ganze Domänen von gleich orientierten Spins zu identifizieren und auf einmal zu aktuali-
sieren, wodurch sich Autokorrelationen drastisch verringern lassen. Die niedrigen Werte der
zugehörigen dynamischen kritischen Exponenten – für translationsinvariante planare Ising-
Ferromagnete gilt beispielsweise 0 ≤ z ≤ 0.3 [CEPS93] – ermöglichen dabei zum einen die
Simulation von Spin-Systemen einer realistischeren Größe, zum anderen wird dadurch auch
signalisiert, dass die Cluster-Algorithmen offensichtlich über weite Bereiche der Tempera-
turskala in der Lage sind, die Physik des jeweiligen Grundzustands angemessen zu erfassen.
Tatsächlich wird ja die Ausbildung von Domänen in Ferromagneten unterhalb von Tc ex-
perimentell beobachtet und im Grenzfall verschwindender Temperatur wird der Betrag der
(spontanen) Magnetisierung maximal, da der Grundzustand einem einzigen Cluster von par-
allel orientierten Spins entspricht.

6Vgl. auch die Diskussion im Anhang B.4.
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Bei der Konstruktion von effizienten Cluster-Algorithmen zur Simulation von reinen ferro-
bzw. anti-ferromagnetische Spin-Systeme spielt die Kenntnis des Grundzustand am Tempe-
raturnullpunkt eine wichtige Rolle. Da der Grundzustand von Spin-Gläsern i.A. aber gerade
nicht exakt bestimmbar ist, erweist sich eine derartige Konstruktion als extrem schwierig.
Vielmehr wird häufig auf eine Mischung verschiedener Algorithmen zurückgegriffen. Prinzi-
piell sollte aber ein Cluster-Algorithmus zur Simulation von Ising-Spin-Gläsern ferro- und
anti-ferromagnetische Bindungen gleichermaßen behandeln können und muss somit eine Ver-
allgemeinerung des ursprünglich von Swendsen und Wang [SW87] vorgeschlagenen Prototyps
darstellen. Es soll dabei nochmals betont werden, dass die Identifizierung von Clustern auf
eichinvariante Weise geschehen muss, um der (versteckten) Eichinvarianz des Modells Rech-
nung tragen zu können. Dies wird sich insbesondere im Hinblick auf die in Kapitel 3.5 zu
besprechende Anwendung eines solchen Algorithmus auf den Fall eines Modells der QCD bei
endlichen Temperaturen als unabdingbar erweisen. Wäre es nämlich erforderlich, zunächst
eine Eichung zu fixieren, um zu einer Definition von Clustern zu gelangen, so würde dies einen
jeden so gearteten Algorithmus aufgrund des erhöhten numerischen Aufwands von vornher-
ein als wenig praktikabel erscheinen lassen. Das eigentliche Problem wäre dabei nur verlagert
worden, da die meisten Algorithmen zur (iterativen) Fixierung einer Eichung bekanntermaßen
gerade unter dem Problem des critical slowing down leiden. Legen wir das im vorherigen Ka-
pitel anhand des elektroschwachen Standardmodells bei endlichen Temperaturen diskutierte
Konzept der dimensionalen Reduktion auch bei der Behandlung der Quantenchromodyna-
mik bei endlichen Temperaturen zugrunde, so muss ein aussichtsreicher Kandidat für einen
Cluster-Algorithmus zur Simulation dieses Modells zumindest in der Lage sein, auf Gittern
der Dimension d = 3 zu operieren.

Obwohl für die Simulation von planaren Spin-Gläsern zuletzt sehr effiziente Algorithmen
vorgeschlagen wurden (siehe z.B. [Hou01,LGM+04]), untersuchen wir im Folgenden den we-
niger spezialisierten Algorithmus von Kessler und Bretz [KB90] näher, da dieser sich völlig
unabhängig von der Dimension des Gitters formulieren lässt. In der Tat stellt sich die da-
bei verwendete Update-Vorschrift auch als eichinvariant heraus, so dass der Algorithmus das
Potential zur Verallgemeinerung im oben beschriebenen Sinne besitzt. Um dies zu verstehen,
folgen wir der Konstruktion des Swendsen-Wang-Algorithmus [SW87] und berücksichtigen
bei der Umformulierung der Zustandssumme (3.1) das Auftreten von anti-ferromagnetischen
Bindungen durch eine Symmetrisierung der Zerlegung. Die grundlegende Idee bei der Kon-
struktion eines solchen Cluster-Algorithmus stellt die Verknüpfung des Spin-Modells mit ei-
nem Perkolations-Modell dar [MM94], das Resultat ist eine (umfassendere) Zustandssumme,
die sich in die Form

Z = eβNℓ

∑

{σx}

∑

{nℓ}
P (σ, n) (3.19)

bringen lässt, wobei mit nℓ ∈ {0, 1} zusätzliche (Bond-)Variablen eingeführt wurden, die
Auskunft darüber geben, ob zwei benachbarte Spins Teil eines noch genauer zu definierenden
Clusters von Spins sind. In die Definition der Wahrscheinlichkeit

P (σ, n) =
∏

ℓ=〈xy〉

[
(1− q) δnℓ0 + q δnℓ1 δ(σxUℓσy)

]
(3.20)

gehen dabei neben den Cluster-Bonds nℓ, die aktiviert (nℓ = 1) und deaktiviert (nℓ = 0)
sein können, auch ein verallgemeinertes Kronecker-Delta δ(x) sowie die inverse Temperatur β
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gemäß

q = 1− e−2β , δ(x) =

{
1 für x = +1

0 für x = −1

}
(3.21)

ein. Es ist leicht zu sehen, dass das Ergebnis einer Integration bezüglich der Bonds das ur-
sprüngliche, durch die Zustandssumme (3.1) beschriebene frustrierte Ising-Modell darstellt,
umgekehrt erhält man nach Ausführung einer Integration bezüglich der Spins das Analogon
des Perkolationsmodells im rein ferromagnetischen Fall [MM94]. Wir greifen nun die Idee
von Swendsen und Wang auf, eine alternierende Aktualisierung der Spins {σ} und Bonds
{nℓ} zur Simulation von (3.19) durchzuführen. Der Erfolg des Algorithmus bei der Behand-
lung von ferromagnetischen Systemen bei tiefen Temperaturen beruht hauptsächlich darauf,
dass die dominierenden langreichweitigen Moden, die sogenannten

”
langsamen“ Spin-Wellen,

als die relevanten kollektiven Anregungen richtig identifiziert und kohärent in einem Schritt
aktualisiert werden können. Ein Cluster von Spins lässt sich dabei charakterisieren als ei-
ne Kollektion von verbundenen, aktivierten Bonds. Zur Konstruktion eines solchen Clusters
wählen wir in einer vorgegebenen Konfiguration von Spins {σ} eine bestimmt Variable σx als
Startpunkt und gehen dann wie folgt vor:

1. Überprüfe alle (2d) Nachbarn σy des vorgegebenen Spins σx sowie die zugehörigen
Bindungen Uℓ = U〈xy〉 zwischen ihnen: Falls Uℓ anti-ferromagnetisch ist und σx und σy
parallel zueinander stehen, oder falls Uℓ ferromagnetisch ist und σx und σy anti-parallel
orientiert sind, so wird die zugehörige Bondvariable stets deaktiviert (nℓ = 0). In allen
anderen Fällen findet eine Aktivierung (nℓ = 1) mit der Wahrscheinlichkeit q = 1−e−2β

statt, wodurch neue Spins an der Peripherie des Clusters hinzukommen können.

2. Ausgehend von den neu hinzugekommenen Spins wird der vorherige Schritt erneut
durchgeführt. Die Rekursion endet, wenn alle Nachbarn überprüft wurden und der
Cluster nicht mehr weiter anwachsen kann.

Ein Schritt innerhalb einer Markov-Kette zur Aktualisierung des Gitters besteht nach Swend-
sen und Wang darin, diese Prozedur solange durchzuführen, bis jeder Spin des Gitters Teil
eines Clusters ist und dann alle Cluster mit einer Wahrscheinlichkeit von 50% zu aktuali-
sieren. Stattdessen verwenden wir eine Variante, die auf einen Vorschlag von Wolff [Wol89]
zurückgeht, und die sich als besonders vorteilhaft erwiesen hat, wenn wenige große Cluster
innerhalb der Verteilung der Spins dominieren: Nachdem per Zufall ein Ausgangspunkt x
gewählt wurde, wird der zugehörige Cluster konstruiert und immer aktualisiert. Dies wird
solange wiederholt, bis insgesamt mindestens Nℓ Bonds aktualisiert wurden, wobei diese nicht
notwendigerweise alle verschieden sein müssen.

Die Eichinvarianz des Algorithmus beruht auf der Invarianz des relevanten Terms σxU〈xy〉σy
in Gleichung (3.20) unter Eichtransformationen. Dabei enthalten die durch diese Vorschrift
definierten Cluster sowohl parallele, durch ferromagnetische Bindungen verknüpfte Spins,
als auch anti-parallele Spins an benachbarten Gitterpunkten, die über anti-ferromagnetische
Bindungen gekoppelt sind. Wird nun eine Eichtransformation durchgeführt, so kehren sich die
Verhältnisse innerhalb eines Clusters (möglicherweise) um7, die Identifizierung aller zu einem
bestimmten Cluster gehörigen Spins bleibt davon aber unberührt, da das Produkt σxU〈xy〉σy
stets invariant bleibt.

7Parallele Spins mit ferromagnetischer Wechselwirkung werden zu anti-parallelen Spins mit anti-
ferromagnetischer Wechselwirkung.
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Abbildung 3.4: Links: Die thermische Energie pro Bindung, berechnet für die in Abbildung 3.3
gezeigte Instanz zu NV = 150 als Funktion der inversen Temperatur β. Rechts: Die zugehörige
integrierte Autokorrelationszeit der thermischen Energie. Beidesmal offene Randbedingungen.

3.4 Anwendung I: Thermische Energie und spezifischeWärme

In einem ersten Schritt wurde die thermische Energie (3.2) pro Bindung für die in Abbil-
dung 3.3 gezeigte Instanz eines Spin-Glases mit NV = 150 Vortices als Funktion von β
berechnet. Die minimale Anzahl anti-ferromagnetischer Bindungen in Landau-Eichung be-
trägt in diesem Fall NA = 150, gleichbedeutend mit κmin = 150/1740 ≈ 0.086. Zum Nachweis
der Eichinvarianz des Algorithmus wurde eine weitere Berechnung der thermischen Ener-
gie in einer zweiten Instanz mit NA = 834 bzw. κ ≈ 0.48 durchgeführt, die durch An-
wendung einer zufälligen Eichtransformation auf die erste, in Landau-Eichung befindliche
Instanz, erzeugt wurde. Obwohl sich die beiden Instanzen also bezüglich ihres Anteils an
anti-ferromagnetischen Bindungen stark unterscheiden, sollte dies für die mittlere thermische
Energie irrelevant sein, sofern der Algorithmus in der Lage ist, eichäquivalente Modell gleich
zu behandeln. Der Nachweis dieser Behauptung findet sich im linken Teil von Abbildung 3.4.
Es ist zu erkennen, dass die Monte-Carlo-Simulationen im gesamten von uns betrachteten
Temperaturintervall für beide Instanzen übereinstimmende Ergebnisse liefern, und zwar un-
abhängig von der Wahl der Ausgangskonfiguration innerhalb der jeweiligen Markov-Kette.
Die gestrichelte Linie in der Abbildung markiert die Energie des Grundzustands pro Bindung
ǫ = E0/Nℓ, die sich im Grenzfall β → ∞ ergibt und bereits in Kapitel 3.2.2 mit Hilfe des
Algorithmus von Edmonds für diese Instanz exakt berechnet wurde (vgl. Abbildung 3.3).

In der rechten Hälfte der Abbildung 3.4 finden sich unsere Ergebnisse zur Untersuchung der
integrierten Autokorrelationszeit τint(ǫ) der thermischen Energie pro Bindung als Funkti-
on der inversen Temperatur. Die Messwerte ergeben sich als Mittelung über ein Ensemble
von 1000 verschiedenen Instanzen zu ρ = 0.178, die durch zufällige Verteilung von jeweils
NV = 150 Vortices auf Gittern mit 30 × 30 Punkten erzeugt wurden. Für hohe Tempera-
turen (β ≤ 0.6) verhält sich der Algorithmus optimal, aufeinander folgende Konfigurationen
sind praktisch unkorreliert (τint(ǫ) ≤ 1). Wird die Temperatur weiter abgesenkt (β > 0.6), so
nimmt die Autokorrelationszeit der thermischen Energie kontinuierlich zu. Da zu erwarten ist,
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Abbildung 3.5: Links: Die spezifische Wärme CV (β) für planare Systeme (L = 30) mit unter-
schiedlicher Frustration ρ. Rechts: Einfluss der Gittergröße auf die spezifische Wärme eines
Ferromagneten (ρ = 0). In beiden Fällen wurden offene Randbedingungen zugrunde gelegt.

dass sich das beobachtete Verhalten im Limes β →∞ nicht wesentlich ändern wird, bedeutet
dies, dass der Algorithmus zur Simulation des Systems in der Nähe des kritischen Punktes
Tc = 0 letztlich nicht geeignet ist. Es zeigt sich aber, dass die Durchführung von höchstens 50
Sweeps zur Aktualisierung der Gitterkonfigurationen für β ≤ 0.9 ausreichend erscheint, um
minimal korrelierte Messwerte zu erhalten. Das bedeutet aber, dass das Spin-Glas-System in
der Umgebung des pseudo-kritischen Punktes, der durch Messung der spezifischen Wärme
CV (β) bestimmt werden kann (vgl. Abbildung 3.5), durchaus einer numerischen Untersu-
chung zugänglich ist.

Als nächstes wurde eine Untersuchung der Autokorrelationszeiten der normierten thermischen
Energie in einem Ensemble von eichäquivalenten Instanzen durchgeführt. Die Resultate waren
in allen Fällen identisch, was wir als eine weitere Bestätigung für die eichinvariante Opera-
tionsweise des Cluster-Algorithmus werten. Eine Erläuterung der eingesetzten Methode zur
Bestimmung der Autokorrelationszeiten findet sich in Anhang B.4.

Zuletzt haben wir das Verhalten der spezifischen Wärme (3.3) verschiedener Spin-Gläser bei
zunehmender Vortexdichte ρ untersucht. Alle Simulationen wurden für eine einzelne Instanz
der jeweiligen Vortexdichte durchgeführt, der Extremfall ρ = 0.178 entspricht dabei einer
zufälligen Dotierung eines Ferromagneten mit NV = 150 Vortices. Unsere Ergebnisse wer-
den in Abbildung 3.5 gezeigt. Der (pseudo-) kritische Punkt β∗ ergibt sich als Position des
Maximums von CV (β), das sich bei Vergrößerung des Systems immer deutlicher ausprägt.
Im rechten Teil von Abbildung 3.5 wird dies anhand des ferromagnetischen Ising-Modells
(ρ = 0) bei Annahme offener Randbedingungen illustriert. Die gestrichelte vertikale Linie
markiert den kritischen Punkt βc, an dem der Übergang des Systems von der nicht magneti-
sierten in die ferromagnetische Phase im thermodynamischen Limes auftritt [LB91]. Während
für Gitter mit einer linearen Ausdehnung von L = 100 Gitterpunkten bereits eine ziemlich
gute Übereinstimmung mit der von Onsager berechneten Lösung beobachtet werden kann,
macht sich der Einfluss der endlichen Größe des Gitters im Fall L = 30 aufgrund der offenen
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Randbedingungen noch recht deutlich bemerkbar. Bei Verwendung von periodischen Rand-
bedingungen für ein ansonsten gleichartiges Gitter kommt die Position des Maximums der
spezifischen Wärme nämlich bereits deutlich näher an βc zu liegen, wobei die Breite des peaks
von dieser Veränderung nur unwesentlich beeinflusst wird. Eine präzise Bestimmung von β∗

der untersuchten Spin-Glas-Instanzen ist folglich im Rahmen der auf Gittern der Ausdehnung
L = 30 durchgeführten Simulationen sicherlich noch nicht möglich, nichts desto trotz lässt
sich das interessierende Verhalten der spezifischen Wärme als Funktion der Dotierung ρ aber
dennoch bereits für moderate Gittergrößen illustrieren.

Im linken Teil der Abbildung 3.5 ist zu erkennen, dass sich der pseudo-kritische Punkt bei
einer Zunahme der Dichte ρ von nicht-triviale Plaquetten zu niedrigeren Temperaturen hin
verschiebt. Gleichzeitig nimmt auch die Ausprägung des jeweiligen Maximums immer mehr
ab, was darauf hindeutet, dass der Phasenübergang zweiter Ordnung des reinen Ferroma-
gneten bei βc zu einem crossover abgeschwächt wird und der Übergang für größere Werte
von ρ zunehmend fließend wird. Auch dieses Resultat hat sich wie erwartet als eichinvari-
ant erwiesen. Scheinbar führt also die zunehmende Unordnung bzw. Frustration des Spin-
Modells zu einer Art

”
Gefrierpunktserniedrigung“. Zur Klärung der Frage nach der Natur

dieser Übergänge sind jedoch sicherlich noch weitere Untersuchungen auf Gittern größerer
Ausdehnung erforderlich.

3.5 Anwendung II: QCD bei endlichen Temperaturen

Cluster-Algorithmen spielen nicht nur eine wichtige Rolle bei der Simulation von reinen Ising-
Spin-Systemen mit verschiedenartigen Wechselwirkungen, sondern auch bei der numerischen
Untersuchung von komplexeren Systemen der statistischen Physik, für die eine geeignete Ein-
bettung von Ising-Spins gefunden werden kann. In einigen Fällen hat sich diese Idee [CEPS93]
als äußerst fruchtbar erwiesen und zu sehr beeindruckenden Resultaten geführt. Im Fall des
O(N)-symmetrischen σ−Modells konnte beispielsweise gezeigt werden [Wol89], dass der Wert
des dynamischen kritischen Exponenten z sogar unterhalb desjenigen eines entsprechenden
Ising-Modells liegt. Die grundlegende Idee besteht darin, das urspünglich zu untersuchende
System auf ein resultierendes Spin-System abzubilden, welches dann (hoffentlich) effizienter
simuliert werden kann, als es ohne den Kunstgriff der Einbettung möglich wäre. Dabei ist
zu beachten, dass die Effizienz eines solchen Algorithmus in Bezug auf die Bekämpfung des
critical slowing down durch zwei völlig verschiedene Aspekte bestimmt wird. Zum einen muss
die gewählte Einbettung der Ising-Spins in der Lage sein, die Dynamik der langreichweitigen
Moden des ursprünglichen Modells überhaupt richtig zu erfassen. Dadurch ist zumindest im
Prinzip gewährleistet, dass eine Aktualisierung der Spins sich sinnvoll in die Aktualisierung
kollektiver Anregungen im ursprünglichen Modell übersetzen kann. Zum anderen muss der
verwendete Monte-Carlo-Algorithmus zumindest in einem Parameterbereich zur Aktualisie-
rung des effektiven Spin-Modells geeignet sein, der für das ursprüngliche Modell von Inter-
esse ist. Diese beiden Aspekte können letztlich nur durch eine Vielzahl sehr zeitaufwendiger
Simulationen getrennt voneinander untersucht werden, da es leicht passieren kann, dass der
positive Effekt einer im Prinzip sinnvollen Einbettung durch einen ungeeigneten Monte-Carlo-
Algorithmus zunichte gemacht und die entsprechende Einbettung daher fälschlicherweise als
ungünstig verworfen wird. Umgekehrt zeigt sich beispielsweise im Fall des bereits erwähn-
ten σ−Modells mit globaler O(N)−Symmetrie, dass sich gleich mehrere Cluster-Algorithmen
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als gleichermaßen geeignet bzw. ungeeignet erweisen, je nachdem, ob für die Einbettung des
Ising-Spins die Untergruppe der Reflexionen bzgl. einer zufälligen Richtung r̂ ∈ SN−1 oder
aber alle Rotationen herangezogen werden [Nie96].

Der Erfolg dieser Methode beruht im Fall der O(N)−Modelle wesentlich darauf, dass sich
das resultierende Modell bei einer geschickten Wahl der Einbettung als ein Ising-Modell mit
ortsabhängigen, aber ferromagnetischen effektiven Bindungen β<xy> erweist8, für welches
eine direkte Verknüpfung der Korrelationslänge mit der Größe der Cluster besteht, was die
Einführung sogenannter improved estimators erlaubt [Nie96]. Das generische Problem bei der
Suche nach wirksamen Cluster-Algorithmen für reine Eichtheorien besteht nun darin, dass die
lokale Symmetrie der Wirkung i.A. dazu führt, dass es sich bei dem resultierenden Spin-Modell
um ein frustriertes System handelt, in dem zusätzliche Wechselwirkungen, beispielsweise zwi-
schen nicht benachbarten Spins oder einem effektiven externen Magnetfeld, auftauchen. Bei
der Konstruktion von Cluster-Algorithmen wird daher häufig versucht, zunächst eine globale
Symmetrie des Systems – wie beispielsweise die globale Reflexionssymmetrie {σ} → {−σ} des
(frustrierten) Ising-Modells (3.1) – zu identifizieren, um dann eine entsprechende Transfor-
mation auf inhomogene Art und Weise – im Falle des von Wolff vorgeschlagenen Algorithmus
beispielsweise beschränkt auf einzelne Cluster – durchzuführen [CEPS93]. Dieses Konstrukti-
onsprinzip ist nicht allein auf Ising-Spins beschränkt, beispielsweise führt die Einbettung von
U(1)−Spins in Theorien mit SU(N)−Symmetrie zu interessanten effektiven XY−Modellen.
Es hat allerdings bisher eher den Anschein, als ob sich das Einbettungsprinzip letztlich als
ungeeignet zur Überwindung der Probleme erweisen wird, mit denen man sich bei der Simu-
lation von Eichtheorien mit kontinuierlicher Symmetrie konfrontiert sieht [CEPS93].

Im vorigen Kapitel wurde gezeigt, dass sich ein planares Ising-Spin-Glas als eine Z2–Eich-
theorie auffassen lässt, wobei sich die Wechselwirkung zwischen benachbarten Ising-Spins als
ortsabhängig erweist und sowohl ferromagnetischer wie auch anti-ferromagnetischer Natur
sein kann. Bei der anschließenden numerischen Untersuchung hat sich der eingesetzte ei-
chinvariante Cluster-Algorithmus als sehr gut dazu geeignet erwiesen, verschiedene derartige
Modelle, deren Frustration durch den Komplexitätsparameter ρ charakterisiert werden kann,
in der Nähe ihres jeweiligen pseudo-kritischen Punktes zu simulieren. Es besteht daher die
Hoffnung, dass das Prinzip der Einbettung von Spins also durchaus zum Erfolg führen könnte,
sofern es sich bei dem resultierenden Modell um eine Eichtheorien mit diskreter Symmetrie-
gruppe handelt. Zur Überprüfung dieser Hypothese wollen wir als nächstes eine Erweiterung
auf den dreidimensionalen Fall vornehmen und eine Z2–Eichtheorie untersuchen, die sich als
Abbildung der QCD bei endlichen Temperaturen auf ein Ising-Spin-System mit dynamisch
generierten, effektiven Kopplungen ergibt.

3.5.1 Diskretisierung und Einführung von Spin-Variablen

Die Zustandssumme dieser euklidischen, dimensional reduzierten Theorie (vgl. Kapitel 2.5.2)
ist durch

Z =

∫
DU DA0 exp

{
− S[U,A0]

}
(3.22)

8Ähnliches gilt auch für die klassischen Gittermodelle mit perfekter Wirkung [Nie96].
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gegeben und wird in diskretisierter Form von der Wirkung [KLR+98]

S[U,A0] = β
∑

P

(
1− 1

3
Re {tr[UP ]}

)
− 12

β

∑

x,k

tr
[
A0(x)Uk(x)A0(x+ k)U †

k(x)
]

(3.23)

+
∑

x

β2(x, y, β) tr
[
A2

0(x)
]
+

216x

β3
tr
[
A2

0(x)
]2

bestimmt. Die auftretenden Summationen beziehen sich dabei auf räumliche Punkte, Richtun-
gen und Plaquetten eines dreidimensionalen kubischen Gitters. Die dimensionslosen Größen
x, y ermöglichen es, unter Verwendung der Relationen

x =
λ3
g23

, y =
m2(g23)

g43
, β =

6

ag23
, (3.24)

sowie der einzigen dimensionsbehafteten Größe g23 , eine Verbindung zur Kontinuumsformu-
lierung der Theorie herzustellen9. Wie bereits in Kapitel 2.5 erläutert, tritt als Ergebnis der
dimensionalen Reduktion der reinen Yang-Mills-Theorie neben den räumlichen Komponen-
ten des Eichfeldes Ak(x) (bzw. Uk(x)) in der effektiven Wirkung (3.23) auch ein skalares
Feld A0(x) auf, welches sich unter der adjungierten Darstellung der Gruppe transformiert.
Die Selbstkopplung dieses Feldes wird mittels des Parameters x reguliert, und die Tempe-
ratur in der vollen D= 4 dimensionalen Eichtheorie entspricht dem Parameter y. Wird die
Temperatur abgesenkt, so lässt sich bei einer kritischen Temperatur yc ein Übergang von
der (symmetrischen) Coulomb-Phase (y ≫ yc) in die (gebrochene) Higgs-Phase (y ≪ yc)
der Theorie beobachten. Die kritische Temperatur ist dabei eine monoton fallende Funktion
der Selbstkopplungskonstanten, yc(x). Gleichzeitig nimmt bei einer Vergrößerung von x die
Ordnung des Phasenübergangs zu. Bevorzugt man die bei der Formulierung von Eichtheorien
mit skalaren Feldern auf dem Gitter beinahe universell gebräuchliche Parametrisierung der
Wirkung durch den Hopping-Parameter κ und eine Selbstkopplungskonstante λ (vgl. dazu
Kapitel 2.4.1 und 4.3.2), so können die jeweiligen Ergebnisse durch eine Reskalierung der
Form

Φ(x) =
√
β2A0(x) , λ = 216xβ −2

2 β−3 , κ = 6 (β2β)
−1 (3.25)

miteinander verglichen werden, sofern κ und λ dabei als Parameter einer effektiven, dimen-
sional reduzierten Theorie mit der entsprechenden Veränderung der Kopplung β im Sektor
der Eichfelder aufgefasst werden.

Neben der Eichsymmetrie weist die Theorie noch eine diskrete Symmetrie (R-Parity) unter
globalen Reflexionen des adjungierten Skalarfeldes

A0(x) → −A0(x) ∀x , A0(x) = Aa0(x)T
a (3.26)

auf. Dies motiviert die Einführung eines zusätzlichen Freiheitsgrades σ(x) ∈ {−1, 1}, der
durch eine Koordinatentransformation

Sx :

(
Ā0(x)

σ(x)

)
7→

(
A0(x)

σ(x)

)
=

(
σ(x) Ā0(x)

σ(x)

)
(3.27)

9Die Definition der Funktion β2(x, y, β) findet sich in [KLR+98]: Gl. (7).
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Eingang in die Zustandssumme der Theorie findet:

Z =

∫
Dσ
∫
DU DA0 exp

{
− S[U,A0]

}
=

∫
DU DσDĀ0 J [Ā0, σ] exp

{
− S[U, Ā0, σ]

}
.

(3.28)
Das normierte Z2–Maß ist dabei gegeben durch

Dσ =
1

2N3
s

∏

x

dσ(x) (3.29)

und die Jacobische Determinante der Transformation (3.27) ergibt sich zu

J [Ā0, σ] = |Det(S′ [Ā0, σ]) | = |
∏

x

σ(x)| = 1 . (3.30)

Es erscheint wichtig zu betonen, dass es sich dabei nicht um eine Zerlegung der
”
Spin-

Variablen“ {Aa0} im üblichen Sinne handelt [CEPS93], da dies – im Gegensatz zu den Vektor-
Modellen mit einer globalen Symmetrie – aufgrund der Eichsymmetrie des kinetischen Terms
des Skalarfeldes zu nicht-diagonalen Wechselwirkungen führen würde, die als zusätzliche
Kopplung der Ising-Variablen {σ} an ein effektives externes Magnetfeld interpretiert wer-
den können. Stattdessen erhält der kinetische Term des Skalarfeldes in Gleichung (3.23) die
Form eines im Allgemeinen frustrierten Ising-Modells

SHiggs[U, Ā0, σ] = −
∑

<xy>

β<xy>σ(x)σ(y) , (3.31)

wobei die effektiven Kopplungen

β<xy> :=
12

β
tr
[
Ā0(x)Uk(x) Ā0(y)U

†
k(x)

]
, y = x+ aêk (3.32)

zwischen den Spins an benachbarten Orten des Gitters x und y von der Dynamik der zu-
grunde liegenden SU(3)−Eichtheorie diktiert werden. Für den quadratischen und quarti-
schen Anteil in der Selbstwechselwirkung des Skalarfeldes spielt die Einführung der neuen
Variablen ebenso wenig eine Rolle wie für die Yang-Mills-Wirkung. Folglich ist zu erwar-
ten, dass sich besonders Änderung im kinetischen Term des Skalarfeldes in der Verteilung
der

”
Kopplungskonstanten“ (3.32) widerspiegeln werden und somit ein Phasenübergang der

QCD bei endlichen Temperaturen auch von einer Veränderung der Frustration des zugehöri-
gen Spin-Glas-Modells begleitet sein wird. Fassen wir die Kopplungen (3.32) als reellwertige
Link-Variablen {Uℓ} (1-Formen) auf,

Uk(x) := β<xy> , y = x+ aêk (k = 1, 2, 3) (3.33)

so lässt sich zusammen mit den Ising-Spins {σ} wie in Gleichung (3.4) und (3.5) eine dreidi-
mensionale Z2−Eichtheorie definieren. Die Link-Variablen können dabei wie schon in Kapitel
3.2 zur Charakterisierung der induzierten Spin-Glas-Instanzen herangezogen werden, durch
eine Berechnung von P [U ](x̃) (2.26) kann nämlich die Frustration des Systems wieder auf
eichinvariante Weise als Dichte ρ der negativen Plaquetten des Gitters quantifiziert werden.
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3.5.2 Numerische Ergebnisse

Das Ziel der vorliegenden Untersuchung ist es zu klären, ob der in Kapitel 3.3 vorgestellten
Cluster-Algorithmus prinzipiell zur Simulation der QCD bei endlichen Temperaturen geeignet
sein könnte. Da sich die Stärke eines solchen Algorithmus besonders in der Nähe eines kri-
tischen Punktes im Phasendiagramm der Theorie zeigen sollte, wollen wir als

”
Testgelände“

ein Gebiet heranziehen, innerhalb dessen ein Phasenübergang zweiter Ordnung auftritt und
die Korrelationslänge des Systems folglich divergiert. Wir orientieren uns an den in [KLR+98]
berichteten Ergebnisse und untersuchen im Folgenden das Intervall y ∈ [−1,+1] für x = 0.3
und β = 12.0.

Zur Aktualisierung der Eichfelder {Uk} und Skalarfelder {Ā0} wurde in den meisten Fällen
ein einfacher Metropolis-Algorithmus herangezogen, damit die Auswirkungen des Cluster-
Algorithmus möglichst direkt zu Tage treten können und nicht aus einer Vielzahl von Ef-
fekten extrahiert werden müssen, die der Einsatz der üblicherweise verwendeten, elaborier-
ten Simulationsmethoden (vgl. Anhang B sowie [KLR+98]) nach sich zieht. Die Aktualisie-
rungstabellen wurden dabei mit jeweils 5000 Elementen (und ihren Inversen) befüllt, die im
Eichfeldsektor durch Wahl von drei verschiedene Einbettung von zufällig generierten SU(2)-
Elementen (ϑc = 0.15) konstruiert wurden (siehe Anhang C.1.1). Im Skalarfeldsektor wurden
die Aktualisierungsvorschläge für die Komponenten {δĀa0} zufällig aus einer Normalverteilung
mit Breite δc = 0.15 gewählt [GH84]. Dadurch ergaben sich im Intervall y ∈ [−1,+1] mittlere
Akzeptanzraten von etwa [0.55, 0.61] im Eichfeldsektor, sowie [0.82, 0.83] im Skalarfeldsek-
tor für alle untersuchten Gitter (Ns = 8, 12, 16, 20), wobei während eines schachbrettartigen
Sweeps durch das Gitter immer Nm = 5 Multihits für jede Variable durchgeführt wurden.
Die einzige Modifizierung des Cluster-Algorithmus zur Aktualisierung der Ising-Spins {σ}
bestand in der Veränderung der Aktivierungswahrscheinlichkeit der Bonds

q<xy> = 1− e−2 |β<xy> | (3.34)

in Gleichung (3.20). Vor jeder Messung wurden die ursprünglichen Freiheitsgrade {A0} mit
Hilfe von (3.27) wieder restauriert.

In einem ersten Schritt haben wir uns von der korrekten Implementierung des Cluster-
Algorithmus überzeugt. Dazu wurden Messungen des dimensionslosen Ordnungsparameters
〈Tr(A3

0)/g
3
3 〉 für die spontane Brechung der globalen Reflexionssymmetrie10, sowie des ska-

laren Kondensats 〈Tr(A2
0)/g

2
3 〉 in der Nähe des kritischen Punktes yc durchgeführt, und

zwar sowohl unter Verwendung eines Heatbath-Overrelaxation-Algorithmus (Anhang B.3)
ohne Einführung der Spin-Variablen, als auch unter Verwendung des oben beschriebenen
Metropolis-Cluster-Algorithmus. Bei der Aktualisierung der Spins wurde die von Wolff vor-
geschlagene Variante adaptiert: Es wird ein Ausgangspunkt x gewählt, der zugehörige Cluster
wird konstruiert und unbedingt aktualisiert. Ist die Anzahl der Spins in diesem Cluster klei-
ner als die Gesamtzahl aller Spins des Gitters, so wird nochmals per Zufall ein (anderer)
Ausgangspunkt für die Routine gewählt. Ein Sweep ist beendet, wenn die Summe der auf
diese Weise aktualisierten Spins die Anzahl aller Spins des Gitters übersteigt. Dies beinhaltet
auch die Möglichkeit, dass manche Cluster mehrfach, andere dafür nicht aktualisiert werden.

10Aufgrund der Spurfreiheit der Generatoren T a (D.2) handelt es sich bei Tr(A3
0) um den ersten nicht-

trivialen Operator, der in der Lage ist, den Effekt von (3.26) zu detektieren.
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Abbildung 3.6: Skalare Kondensate und Dichte der frustrierten Plaquetten. Der kritische
Punkt liegt bei yc ≃ 0.0. Periodische Randbedingungen, β = 12.0, x = 0.3.

Die symmetrische Phase ist durch einen verschwindenden Wert des Ordnungsparameters cha-
rakterisiert, da betragsgleiche positive und negative Messwerte für Tr(A3

0)/g
3
3 mit derselben

Wahrscheinlichkeit anfallen. Im Idealfall des thermodynamischen Limes wird die spontane
Brechung der globalen Symmetrie (3.26) dadurch angezeigt, dass 〈Tr(A3

0)/g
3
3 〉 einen (posi-

tiven oder negativen) endlichen Wert annimmt. Da in praktischen Simulationen aber immer
nur Gitter endlicher Größe untersucht werden, kann das Phänomen der spontanen Symme-
triebrechung bzw. eines Phasenübergangs im strengen Sinne also überhaupt nicht auftre-
ten11. Stattdessen werden beide mögliche Realisierungsphasen zu positivem und negativem
Vorzeichen von Tr(A3

0) innerhalb der erzeugten Markov-Kette simuliert, und zwar mit einer
Gewichtung, die von der Güte des Algorithmus abhängt. Idealerweise sollte der Algorithmus
dabei nicht nur Konfigurationen erzeugen, die zu ein und demselben Vorzeichen von Tr(A3

0)
führen, sondern immer zwischen den beiden Extrema hin- und herspringen. Paradoxerweise
würde aber bei der Verwendung von 〈Tr(A3

0) 〉 als Ordnungsparameter auf dem Gitter gerade
im Falle eines solchen idealen Algorithmus ein möglicher Phasenübergang unentdeckt bleiben.
Ein üblicher Ausweg besteht nun darin, eine Projektion auf den Betrag des jeweils gemesse-
nen Wertes durchzuführen, und somit 〈 |Tr(A3

0)/g
3
3 | 〉 als Ordnungsparameter heranzuziehen.

Die Ergebnisse unserer Messungen sind in Abbildung 3.6a zu sehen und wurden so skaliert,
dass sie mit den in [KLR+98] berichteten Werten verglichen werden können. Die Übereinstim-
mung beider Ergebnisse hat sich als quasi perfekt erwiesen. Wir schließen daraus, dass der
Cluster-Algorithmus richtig implementiert wurde und funktioniert, zumal ein Vergleich mit
den Resultaten der Heatbath-Overrelaxation-Simulationen gezeigt hat, dass sich auch hier
keine nennenswerten Unterschiede ergeben. Als nächstes wurde die Dichte ρ der frustrierten

11Vergleiche dazu auch die Diskussion des Phänomens der spontanen Symmetriebrechung in Kapitel 4.2
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Abbildung 3.7: Das Verhalten der effektiven Kopplungskonstanten β<xy> in der Nähe des
Phasenübergangs. Gitter: 163, β = 12, x = 0.3.

Plaquetten bei feinerer Rasterung des Intervalls y ∈ [−1,+1] untersucht. Dazu wurde ein
Ensemble von 2000 thermalisierten Konfigurationen pro y–Wert erzeugt. Das Ergebnis findet
sich in Abbildung 3.6b. Deutlich ist zu erkennen, dass es sich bei dem induzierten Ising-Spin-
Glas in der symmetrischen Hochtemperaturphase (y ≫ yc) um ein stark frustriertes System
handelt, welches durch einen Wert von ρ ≃ 0.37 charakterisiert werden kann. Mehr als ein
Drittel aller Plaquetten wird in dieser Phase von einem Vortex durchstoßen. Auf der anderen
Seite, tief in der Higgs-Phase (y ≪ yc), erweist sich das Spin-System hingegen praktisch als
ferromagnetisch (ρ ≃ 0). In der Umgebung des vom Ordnungsparameter Tr(A3

0)/g
3
3 ange-

zeigten Phasenübergangs bei yc ≃ 0 ändert sich die Dichte der frustrierten Plaquetten rasch.
Direkt bei y = 0 finden wir eine moderate Frustration von ρ ≃ 0.11, wobei sich hier auch
am deutlichsten zeigt, welche Auswirkungen die Verwendung von relativ kleinen Gittern hat.
Ansonsten scheinen die Ergebnisse auch auf den größeren Gittern unabhängig davon zu sein,
welche Anfangsbedingungen (Cold/Hot) für die Simulationen verwendet wurden.

Es ist in diesem Zusammenhang auch sehr aufschlussreich, sich die Verteilung der dynamisch
generierten effektiven Kopplungen β<xy> in der Umgebung des Phasenübergangs anzusehen.
In Abbildung 3.7 finden sich die entsprechenden Histogramme, die unter Verwendung eines
Zehntels aller Konfigurationen für die Werte y = −0.5, y = 0 und y = 0.5 erstellt wurden. In
der symmetrischen Phase (y = 0.5) liegt eine glockenförmige Verteilung der Kopplungen mit
einem Mittelwert nahe Null vor, deren Gestalt an die in der Einleitung erwähnte Normal-
verteilung der Gauß’schen Spin-Gläser erinnert. Wird das System abgekühlt, so verändert
sich die Verteilung langsam, wobei die Breite zunimmt und das Maximum immer weniger
ausgeprägt wird. Direkt am Phasenübergang (y = 0) tritt eine signifikante Änderung auf, die
in Abbildung 3.7a illustriert wird. Es bildet sich eine Verteilung mit zwei Maxima aus, die
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Abbildung 3.8: (a) Unbridled growth der Ising-Spin-Cluster. (b) Skalierung der Clustergröße
in der Phase gebrochener R-Parity. Periodische Randbedingungen, β = 12.0, x = 0.3.

annähernd symmetrisch zum Nullpunkt bei etwa ±2 zu liegen kommen. Dringt man weiter
in die Phase gebrochener Symmetrie vor, so setzt sich dieser Trend fort. In Abbildung 3.7b
findet sich für y = −0.5 (NCl=1) eine Verteilung mit zwei sehr ausgeprägten Maxima und
einem Minimum in der Mitte bei einem leicht negativen Wert. Auch diese Verteilung weist
die Reflexionssymmetrie (3.26) der Theorie auf, ihre Gestalt erinnert allerdings eher an eine
verwaschene bimodale Verteilung der Wechselwirkungen wie im Falle eines ±J–Spin-Glases.
Würde man also versuchen, allein anhand dieser Verteilung die Frustration des induzierten
Spin-Glases durch den Anteil an anti-ferromagnetischen Bindungen innerhalb des Gitters zu
charakterisieren, so entspräche dies einem Wert von κ ∼ 0.5. Ähnliches müsste man dann
aber konsequenterweise auch in den beiden in Abbildung 3.7a gezeigten Fällen für y = 0 und
y = 0.5 feststellen. Angesichts unserer in Abbildung 3.6b gezeigten Ergebnisse zum Verlauf
der Dichte ρ(y) zeigt sich also wie schon bei der Diskussion der planaren Spin-Gläser in Kapitel
3.2, dass nicht nur das Verhältnis von ferromagnetischen zu anti-ferromagnetischen Bindun-
gen bei der systematischen Klassifizierung von Spin-Gläsern eine Rolle spielt, sondern vor
allem deren räumliche Verteilung, welche (für offene Randbedingungen) bis auf Eichtrans-
formationen vollständig durch die Verteilung der Vortices festgelegt ist. Zuletzt wurde die
Verteilung der Kopplungen im Rahmen einer Simulation bei y = −0.5 unter Verwendung
eines Heatbath-Overrelaxation-Algorithmus ohne Einführung der Spins untersucht. Das Er-
gebnis wird in Abbildung 3.7b (NCl=0) gezeigt und entspricht nach Gleichung (3.31) der
Verteilung der lokalen Beiträge zum kinetischen Term des Higgs-Feldes. Die Verteilung weist
dabei im Gegensatz zu dem bereits besprochenen Fall (NCl=1) keine Reflexionssymmetrie
auf, es ist aber zu beachten, dass die Berechnung des Mittelwertes von SHiggs nach Gleichung
(3.31) dasselbe Ergebnis liefert, da der Einfluss der Spin-Variablen bei der Invertierung der
Transformation (3.27) berücksichtigt wird.
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Während es für die Charakterisierung der Frustration innerhalb der induzierten Spin-Gläser
hauptsächlich von Bedeutung ist, die räumliche Verteilung der Vorzeichen von {Ul} zu ken-
nen, spielt der Betrag der effektiven Kopplungen (3.32) nach Gleichung (3.34) die entschei-
dende Rolle bei der Definition der Cluster und daher vermutlich auch für die Effizienz des
Algorithmus. Betrachtet man unter diesem Aspekt nochmals die Kopplungsverteilungen in
Abbildung 3.7, so steht zu erwarten, dass für die Akzeptanzwahrscheinlichkeit (3.34) bereits in
der Nähe des Phasenübergangs limy→y+c

q<xy> = 1 gelten dürfte, und somit typische Cluster
praktisch alle Spins des Gitters umfassen werden. Für dieses erstmals anhand des bimodalen
±J−Ising-Glases in d = 3 Dimensionen beobachtete Problem [KB90] hat sich in der Lite-
ratur inzwischen der Begriff unbridled growth etabliert. Tatsächlich konnte dieses Phänomen
in ähnlicher Weise auch bei unseren Simulationen des in ein Ising-Spin-System überführten
Modells der QCD in der Nähe des thermischen Phasenübergangs beobachtet werden. In Ab-
bildung 3.8a ist zu erkennen, dass für y = −1 praktisch alle Spins Teil ein und desselben
Clusters sind. An diesem Punkt des Phasendiagramms bestand ein Sweep zur Aktualisierung
von {σ} im Mittel aus zwei Schritten. Nähert man sich dem kritischen Punkt (y → y−c ), so
sinkt zwar die mittlere Clustergröße, allerdings gehören in der Nähe des Phasenübergangs
immer noch etwa 90% aller Spins des Gitters zu einem Cluster. Beim weiteren Vordringen
in die symmetrische Phase sinkt dieser Wert innerhalb des von uns untersuchten Intervalls
nur noch um weitere 2%, wobei im Mittel nun zumindest vier Cluster-Aktualisierungen pro
Sweep durchgeführt wurden. Aus Abbildung 3.8b geht zusätzlich hervor, dass das Auftreten
des Phänomens zumindest in der Phase gebrochener Reflexionssymmetrie (y = −0.5) nicht
von der Größe des verwendeten Gitters abhängt.

Im Fall eines reinen Spin-Systems ist von einem Algorithmus, der ein solches Verhalten in
der Umgebung eines kritischen Punktes zeigt, keine Verbesserung bei der Bekämpfung des
Problems divergierender Autokorrelationszeiten zu erwarten. Andererseits wurde aber auch
darauf hingewiesen [CEPS93], dass eine Beschränkung der Clustergröße durch die Möglich-
keit zur kompletten Entkopplung von benachbarten Spins12 kein grundlegendes Kriterium
dafür darstellen könne, um die Effizienz eines entsprechenden, auf der Einbettung von Ising-
Variablen beruhenden Algorithmus a priori einschätzen zu können. Außerdem sollte betont
werden, dass der Algorithmus nach wie vor korrekt funktioniert, selbst wenn alle Spins simul-
tan aktualisiert werden. Dabei handelt es sich um eine mikrokanonische Reflexion (vgl. B.4),
die bereits allein zu einer Reduzierung des dynamischen kritischen Exponenten führen könnte.
Durch die Kombination mit den Update-Schritten im Sektor der Eich- und Skalarfelder bleibt
außerdem die Ergodizität gewährleistet, daher erscheint es durchaus sinnvoll, die Güte des
Cluster-Algorithmus in Bezug auf die Dekorrelierung aufeinander folgender Konfigurationen
einer Markov-Kette noch etwas detaillierter zu untersuchen.

Zu diesem Zweck wurden zum einen Simulationen des Systems unter Verwendung eines ein-
fachen Metropolis-Algorithmus durchgeführt, wobei auf die Einführung von Spin-Variablen
komplett verzichtet wurde. Zum anderen wurde eine Variante herangezogen, bei der die
Aktualisierung der Ising-Spins {σ} mittels eines gewöhnlichen Metropolis-Algorithmus mit
Nm = 5 Multihits pro Spin und einer variablen Anzahl (N-Metro) von Updates des komplet-
ten Gitters pro Sweep durchgeführt wurde. Die Vorschriften zur Aktualisierung der Eichfelder
{Uℓ} und Skalarfelder {Ā0} blieben dabei in allen Fällen unverändert.

12Beispielsweise wird im Fall eines rein ferromagnetischen Ising-Modells das Wachstum per Konstruktion
durch das Auftreten von q = 0 für anti-parallele Spins begrenzt.



Kapitel 3. Ising-Spin-Gläser versus QCD bei endlichen Temperaturen 119

Abbildung 3.9: Thermalisierungsverlauf am Phasenübergang. Links: Verwendung eines rei-
nen Metropolis-Algorithmus (N-Metro: 1) zum Update der Spins. Rechts: Verwendung eines
Multi-Hit-Metropolis-Algorithmus (N-Metro: 50). Gitter: 163, x = 0.3, y = 0.0.

In Abbildung 3.9 wird die Entwicklung der Messwerte für den Ordnungsparameter Tr(A3
0)/g

3
3

am Phasenübergang als Funktion der Thermalisierungsschritte TMC unter Verzicht auf den
Einsatz des Cluster-Algorithmus gezeigt. Im Fall des einfachsten Metropolis-Algorithmus zur
Aktualisierung der Spins beobachten wir in der linken Teilabbildung (N-Metro=1) eine sehr
langsame Entwicklung des Systems im Verlauf der aufgezeichneten 105 Iterationen. Die an-
fallenden Werte oszillieren dabei innerhalb des gesamten durch |Tr(A3

0)/g
3
3 | ∼ 0.3 begrenzten

Intervalls, und zwar unabhängig von der Wahl des Ausgangszustands. Für TMC > 80.000 spal-
ten sich die Entwicklungsgeschichten der Systeme mit geordneter (Cold) und völlig zufälliger
(Hot) Startkonfiguration erstmals merklich auf, wobei erstere dem negativen, letztere dem
positiven Extremum zustrebt. Ob sich der Thermalisierungsverlauf dann in der Nähe der
Intervallränder stabilisieren wird, oder ob danach allmählich wieder eine Entwicklung des
Systems mit Nulldurchgang auftreten wird, wie sie schon im Bereich 50.000 ≤ TMC ≤ 80.000
beobachtet werden konnte, lässt sich jedoch nicht vorhersagen. In jedem Fall kann aller-
dings festgestellt werden, dass die Übergangsphasen zwischen den Randbereichen recht groß
sind. Da eine Berechnung des Erwartungswerts von |Tr(A3

0)/g
3
3 | für y = 0 auf Basis die-

ser Daten einen deutlich kleineren Wert als den in der Literatur berichteten und in Ab-
bildung 3.6a gezeigten Wert liefert, weist dieser Algorithmus also offensichtlich erhebliche
Schwächen bei der Simulation des Systems nahe des Phasenübergangs auf. Hinzu kommt
eine signifikant höhere statistische Unsicherheit bei der Berechnung des Erwartungswerts aus
den Daten, die mittels dieses Metropolis-Algorithmus im Vergleich zu dem bereits erwähnten
Heatbath-Overrelaxation-Algorithmus erzeugt wurden. Ein ähnlich unbefriedigendes Verhal-
ten wurde auch bei der Untersuchung des reinen Standard-Metropolis-Algorithmus (ohne
Spin-Variablen) festgestellt.

Erhöht man die Anzahl der Updates im Spin-Sektor auf N-Metro=50, so ergibt sich ein deut-
lich anderes Bild, welches im rechten Teil der Abbildung 3.9 zu sehen ist. Nach etwa 20.000
Monte-Carlo-Schritten hat sich die Entwicklung des Systems in einer Phase stabilisiert, die
durch einen mittleren Wert des Ordnungsparameters von Tr(A3

0)/g
3
3 ∼ 0.2 charakterisiert

ist. Für TMC > 90.000 findet ein Übergang in die zweite mögliche Gleichgewichtsphase des
Systems statt, und zwar innerhalb von etwa 10.000 Iterationen. Damit erweist sich diese Va-
riante zumindest als deutlich besser dazu geeignet, die Physik des effektiven Spin-Systems
für y = 0 zu erfassen, als die beiden zuvor untersuchten Metropolis-Algorithmen. Daher
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Abbildung 3.10: Thermalisierungsverlauf am Phasenübergang bei Verwendung des Cluster-
Algorithmus (N-Cluster: 1). Gitter: 163, x = 0.3, y = 0.0.

werden wir im Folgenden hauptsächlich diese Variante als Referenz heranziehen, wenn Au-
tokorrelationszeiten von Observablen verglichen werden sollen, die mit und ohne Einsatz des
Cluster-Algorithmus gewonnen wurden.

Betrachten wir zunächst aber noch den Thermalisierungsverlauf von Tr(A3
0)/g

3
3 in Abbildung

3.10, der sich bei Verwendung des Cluster-Algorithmus (N-Cluster: 1) ergibt. Der größte
Unterschied zu den Metropolis-Algorithmen besteht augenscheinlich darin, dass beide Rea-
lisierungsphasen gebrochener R−Symmetrie durch den Cluster-Algorithmus gleichermaßen
sondiert werden können, wobei der Übergang von der einen in die andere Phase innerhalb
weniger Aktualisierungsschritte vollzogen wird. Der alternierende Cluster-Algorithmus er-
reicht dabei ebenfalls nach etwa 20.000 Monte-Carlo-Schritten das thermische Gleichgewicht
(unabhängig von der gewählten Ausgangskonfiguration), wobei zu berücksichtigen ist, dass in
diesem Fall insgesamt höchstens zweimal die Anzahl aller Spins des Gitters pro Entwicklungs-
schritt aktualisiert werden muss, im Fall des effizienteren der beiden Metropolis-Algorithmen
(N-Metro: 50) aber bereits 250 Aktualisierungsversuche jedes einzelnen Spins pro Monte-
Carlo-Schritt durchzuführen sind.

Als nächstes wurde die integrierte Autokorrelationszeit τint der Energie der Eichfelder EG,
des Hopping-Terms EH, sowie des Betrags von Tr(A3

0) in der Umgebung des Phasenübergangs
analysiert:

EG =
1

3N3

∑

P

(
1− 1

3
Re {tr[UP ]}

)
, EH =

1

3N3

∑

x,k

tr
[
Ā0(x)Uk(x) Ā0(x+ k)U †

k(x)
]
.

Für jeden der untersuchten Werte y ∈ [−1,+1] wurde dabei zunächst der Thermalisierungs-
verlauf der interessierenden Observablen wie in Abbildung 3.9 und 3.10 überprüft. Dabei
hat sich gezeigt, dass die Durchführung von 30.000 Iterationen in allen untersuchten Fällen
genügen sollte, um das jeweilige System ins thermische Gleichgewicht zu bringen, da sich
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Abbildung 3.11: Vergleich der integrierten Autokorrelationszeiten von EG, EH und |Tr(A3
0)|

bei Verwendung des Referenz-Metropolis-Algorithmus (schraffierte Symbole) sowie des
Cluster-Algorithmus (verbundene Symbole). Reiner Metropolis-Algorithmus (gerasterte Sym-
bole) zum Vergleich. Gitter: 163, β = 12.0, x = 0.3.

die Equilibrierungsdauer des Ordnungsparameters bei y = 0 als Obergrenze für alle anderen
Observablen und Punkte des Phasendiagramms erwiesen hat. Die entsprechenden Konfigu-
rationen wurden daher verworfen und die Analyse der Autokorrelationszeiten unter Berück-
sichtigung der nachfolgenden 70.000 Konfigurationen durchgeführt.

Eine graphische Darstellung unsere Ergebnisse findet sich in Abbildung 3.11, wobei die vol-
len Symbole den Resultaten entsprechen, die wir bei Verwendung des Cluster-Algorithmus
erhalten haben. Zur Erhöhung der Übersichtlichkeit wurden diese durch Linien miteinander
verbunden und die schraffierten Symbole, welche die Resultate bei Verwendung des Referenz-
Algorithmus (N-Metro: 50) repräsentieren, gegenüber den vollen Symbolen leicht verschoben.
Außerdem haben wir die Resultate einer Analyse der Autokorrelationen von EG und EH bei
Verwendung des gewöhnlichen Metropolis-Algorithmus am Phasenübergang zum Vergleich
mit in die Abbildung aufgenommen. Dabei handelt es sich um die (ebenfalls leicht verschobe-
nen) gerasterten Symbole. Eine Autokorrelationszeit für den Betrag des Ordnungsparameters
konnte in diesem Fall – wie bereits diskutiert – nicht bestimmt werden.

Zunächst ist festzustellen, dass die Autokorrelationszeiten aller Observablen wie erwartet bei
der Annäherung an den kritischen Punkt aus der symmetrischen Phase zunehmen. In die-
ser Phase dominieren starke räumliche Fluktuationen des Skalarfeldes, die sich sowohl im
Verschwinden des (Betrags des) Ordnungsparameters als auch in einer geringen Autokor-
relationszeit desselben bemerkbar machen. Diese liegt in derselben Größenordnung wie die
der Energie der Eichfelder. Wird das System nun abgekühlt, so setzt ein Ordnungsvorgang
ein, der sich besonders bei der Betrachtung des induzierten Spin-Systems bemerkbar macht.
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Würde es sich dabei um ein rein ferromagnetisches Spin-System handeln, so wäre zu erwarten,
dass sich die einsetzende Ordnung durch eine zunehmend parallele Ausrichtung aller Spins
bemerkbar machen sollte und sich die Autokorrelationszeit der zugehörigen (spontanen) Ma-
gnetisierung nach einem dramatischen Anwachsen am Phasenübergang bei weiterem Vordrin-
gen in die Higgs-Phase allmählich auf einem ähnlich hohen Niveau wie am kritischen Punkt
stabilisieren sollte. Tatsächlich beobachten wir ein ähnliches Verhalten für den Betrag des
Ordnungsparameters, der sich in der Nähe des kritischen Punktes wie eine Magnetisierung
verhält [KLR+98]. Der Einfluss der vorhandenen Frustration des induzierten Spin-Modells
zeigt sich jedoch daran, dass die Autokorrelationszeit nach einem dramatischen Anstieg über
etwa zwei Größenordnungen ihr Maximum am Phasenübergang erreicht und beim weiteren
Vordringen in die Higgs-Phase wieder sinkt, und zwar in dem Maße, wie auch die Frustration
ρ allmählich auf Null fällt. Dabei ist eine einsetzende Stabilisierung von τint(Tr(A

3
0)) auf einem

Niveau zu beobachten, das demjenigen des Ferromagneten entspricht und etwa eine Größen-
ordnung unterhalb des Werts direkt am kritischen Punkt zu liegen kommt. Die Fluktuationen
der Eichfelder können sich dabei über den Hopping-Term in den ansonsten bereits ziemlich
geordneten Higgs-Sektor ausbreiten. Auch für EG ist nämlich zu beobachten, wie die Au-
tokorrelationszeit am Phasenübergang zunächst zunimmt, allerdings weniger dramatisch als
im Fall des Ordnungsparameters. Hat man aber den kritischen Punkt überschritten, so sinkt
τint(EG) allmählich wieder auf praktisch denselben Wert wie am anderen Ende des betrachte-
ten Intervalls y ∈ [−1, 1], tief in der symmetrischen Phase. Der Hopping-Term nimmt durch
die direkte Vermischung der Freiheitsgrade aus dem Eich- und Higgs-Sektor als Observable
eine Zwischenstellung ein, die sich auch im Verhalten der zugehörigen Autokorrelationszeit
widerspiegelt. Diese zeigt einen praktisch symmetrischen Verlauf bezüglich yc = 0, wobei be-
merkenswert ist, dass die Autokorrelationszeit von EH auch in der symmetrischen Phase etwa
um einen Faktor zehn größer ist als die von EG und des Ordnungsparameters, der zwischen
den beiden Extremen zu interpolieren scheint.

Wie bereits festgestellt wurde, macht sich der Einsatz des Cluster-Algorithmus am Rand des
untersuchten Intervalls praktisch nicht bemerkbar. Tief in der Higgs-Phase besteht dessen
Effekt nur noch in einer mikrokanonischen Reflexion aller Spins (und somit auch der Skalar-
felder) und die Akzeptanzrate des Spin-Updates durch den Metropolis-Algorithmus ist auf
8.2(4) · 10−7 gesunken. Am anderen Ende scheinen die Auswirkungen des Cluster-Updates
(Clustergröße etwa 88% aller Spins) und des Metropolis-Updates (Akzeptanzrate: 0.03195(6))
in etwa gleich effektiv zu sein. Die Überlegenheit des Cluster-Algorithmus deutet sich erst bei
der Annäherung an den kritischen Punkt an, an dem die Korrelation aufeinander folgender
Konfigurationen einer Markov-Kette erwartungsgemäß am stärksten ist. Aus Abbildung 3.11
geht dabei hervor, dass sich der Einsatz des Cluster-Algorithmus interessanterweise besonders
bei der Verringerung von τint(EG) bemerkbar macht, obwohl sich die kollektive Aktualisie-
rung von langreichweitigen Spin-Moden ja nur indirekt, nämlich über den kinetischen Term
der Skalarfelder (3.31) auf die Eichfelder auswirken kann. Auch für den Hopping-Term er-
gibt sich eine Verbesserung in etwa derselben Größenordnung. Bezeichnen wir das Verhältnis
der integrierten Autokorrelationszeiten einer Observablen O bei Verwendung des Metropolis-
bzw. Cluster-Algorithmus mit R(O) = τMint(O)/τCint(O), so finden wir für die drei untersuchten
Observablen:

R(EG) = 3.33 ± 1.25 , R(EH) = 3.31± 1.74 , R(|Tr(A3
0)|) = 2.67± 1.48 . (3.35)
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Die vergleichsweise großen Fehler sind dabei eine Folge der beachtlichen Unsicherheiten
bei der Bestimmung der Autokorrelationszeiten unter Verwendung des Referenz-Metropolis-
Algorithmus, dessen Akzeptanzrate bei der Aktualisierung der Spins am Phasenübergang
zu 1.2(1) · 10−3 bestimmt wurde. Insbesondere im Fall von EH und |Tr(A3

0)|, für die sich
integrierte Autokorrelationszeiten τMint > 2000 ergeben haben, erscheint es daher im Nachhin-
ein als unbedingt notwendig, längere Zeitreihen als die hier verwendeten zu analysieren, um
den Fehler weiter eingrenzen zu können. Noch gravierender erweisen sich die Unsicherheiten
beim Vergleich dieser Ergebnisse mit den Autokorrelationszeiten, die für EG und EH aus Si-
mulationsergebnissen extrahiert wurden, die ohne die Einbettung von Ising-Spins mit einem
reinen Metropolis-Algorithmus gewonnen wurden. Für die Energie der Eichfelder finden wir
ungefähr eine Reduktion der integrierten Autokorrelationszeit um einen Faktor sieben, für
den Hopping-Term um etwa einen Faktor fünf bei Verwendung des Cluster-Algorithmus.

Obwohl diese Werte sicherlich nur einer groben Orientierung dienen können, lassen sich dar-
aus bereits mehrere Einsichten gewinnen: Zum einen erscheint es klar zu sein, dass der
Einsatz des Cluster-Algorithmus bei der Simulation einer dreidimensionalen euklidischen
SU(3)−Eichtheorie mit Skalarfeld in der adjungierten Darstellung tatsächlich einen messba-
ren Effekt bei der Bekämpfung von Autokorrelationen am kritischen Punkt der Theorie hat.
Dies bestätigt die in [CEPS93] geäußerte Vermutung, dass das in unserem Fall tatsächlich
beobachtete ungezügelte Anwachsen der Cluster in einer vergleichsweise großen Umgebung
des kritischen Punktes nicht notwendigerweise die völlige Nutzlosigkeit eines solchen Algo-
rithmus zur Folge haben muss, sofern dieser auf der Einbettung von Ising-Spins basiert. Zum
anderen scheint sich die gewählte Einbettung der Spins als durchaus sinnvoll zu erweisen,
denn unabhängig von der Wahl des Algorithmus zur Aktualisierung dieser zusätzlichen Va-
riablen gelingt es durch deren Einführung überhaupt erst, das System am kritischen Punkt
in akzeptabler Zeit ins thermische Gleichgewicht zu bringen, so dass es möglich wird, eine
Autokorrelationszeit auch für den Ordnungsparameter Tr(A3

0), die sensibelste der untersuch-
ten Observablen, bestimmen zu können. Vergleicht man zuletzt die Effizienz des Cluster-
Algorithmus mit der des Referenz-Metropolis-Algorithmus in Bezug auf die Verminderung
von Korrelationen im Verhältnis zum numerischen Aufwand, so kann festgestellt werden,
dass ersterer auch in diesem Punkt überlegen ist und darüber hinaus vermutlich noch größeres
Entwicklungspotential besitzt. Beispielsweise hat sich bei der Untersuchung des zweidimen-
sionalen σ−Modells mit O(4)−Symmetrie gezeigt, dass die mehrfache Durchführung eines
Wolff-artigen Updates je nach Einbettung der Ising-Spins eine weitere Reduzierung der Au-
tokorrelationszeiten um einen Faktor 2− 10 bei einer moderaten Erhöhung des numerischen
Aufwands ermöglicht [CEPS93].

Eine wirklich rigorose Aussage zur Güte einer gewählten Einbettung lässt sich dabei, wie
eingangs bereits erwähnt, im Prinzip nur durch das Studium von idealisierten Algorithmen
machen. Diese werden durch schrittweise Erhöhung der Anzahl an Aktualisierungsschritten
pro Sweep approximiert, wobei die Hoffnung besteht, dass sich die Ergebnisse der Untersu-
chung von integrierten Autokorrelationszeiten irgendwann stabilisieren und so die wirkliche
Leistungsfähigkeit zu Tage tritt und mit der anderer Algorithmen verglichen werden kann.
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3.6 Zusammenfassung und Ausblick

Im vorliegenden Kapitel wurde die Physik frustrierter Systeme untersucht, und zwar zum
einen anhand des prototypischen zweidimensionalen Ising-Spin-Glases, zum anderen im Zu-
sammenhang einer dimensional reduzierten nicht-abelschen Eichtheorie, welche in einem ge-
wissen Parameterbereich die Quantenchromodynamik in der Nähe ihres thermischen Pha-
senübergangs modelliert.

Dabei wurde zunächst die Notwendigkeit einer eichinvarianten Klassifizierung der Frustration
erläutert, falls man daran interessiert ist, verschiedene Instanzen von Ising-Spin-Gläsern un-
ter dem Gesichtspunkt identischer thermodynamischer Eigenschaften zu klassifizieren. Unter
Ausnutzung der Z2−Eichinvarianz der Theorie konnte gezeigt werden, dass sich die Energie
des Grundzustands in Landau-Eichung auf einfache Weise berechnen lässt, wobei die Anzahl
der anti-ferromagnetischen Bindungen in dieser Eichung minimal wird und die zugehörige
Konfiguration der Spins größtmögliche Homogenität aufweist. Mit Hilfe des minimal mat-
ching Algorithmus von Edmonds wurde die exakte Energie des Grundzustands als Funktion
des neuen Komplexitätsparameters ρ bestimmt, wobei eine einfache Erklärung des beob-
achteten Verhaltens für kleine Werte von ρ gegeben werden konnte, welche nochmals die
Wichtigkeit der Rolle von Z2-Vortices bei der Klassifizierung der Frustration betont. Bei
der anschließenden Simulation von Ising-Spin-Gläsern bei endlichen Temperaturen wurde ein
Algorithmus eingesetzt, dessen theoretische und praktische Untersuchung gezeigt hat, dass
dieser in der Lage ist, der Eichinvarianz des Modells bei der Definition der zu aktualisierenden
Cluster von Spins umfassend Rechnung zu tragen. Des weiteren konnte festgestellt werden,
dass dieser eichinvariante Cluster-Algorithmus zwar eine effiziente numerische Behandlung
der untersuchten frustrierten Systeme in der Umgebung ihres jeweiligen pseudo-kritischen
Punktes erlaubt, für Untersuchungen des Grundzustands nahe T = 0 allerdings aufgrund von
stark anwachsenden Autokorrelationen ungeeignet erscheint.

Das zweite Anwendungsgebiet für den dimensionsunabhängig operierenden Cluster-Algorith-
mus war die Simulation der Quantenchromodynamik in dimensional reduzierter Form in der
Nähe der kritischen Temperatur. Durch eine Einbettung von Ising-Spins in den Sektor der
adjungierten Skalarfelder der Theorie konnte diese als ein frustriertes Spin-Modell in d = 3 Di-
mensionen aufgefasst werden, dessen Kopplungskonstanten dynamisch generiert werden. Eine
detaillierte Untersuchung des induzierten Modells hat dabei gezeigt, dass die QCD in der sym-
metrischen Realisierungsphase bei hohen Temperaturen einem stark frustrierten statistischen
System entspricht, während sie sich in der Phase gebrochener globaler Reflexionssymmetrie
der adjungierten Skalarfelder bei niedrigeren Temperaturen als praktisch rein ferromagneti-
sches System erweist. Wie schon bei der Untersuchung der planaren Ising-Spin-Gläser hat sich
dabei auch in diesem Fall gezeigt, dass die Verteilung der Kopplungskonstanten alleine keine
sinnvolle Möglichkeit zur Klassifizierung der Frustration bietet. Die beobachtete Veränderung
in Bezug auf den mittleren Betrag der Kopplungen in der Nähe des Phasenübergangs führt da-
bei jedoch nochmals zu einem Anwachsen der ohnehin schon verhältnismäßig großen Cluster.
Eine abschließende Untersuchung der Autokorrelationszeiten diverser Observablen hat aber
gezeigt, dass sich dies nicht unbedingt nachteilig auf die Effizienz des Cluster-Algorithmus
im Vergleich zu verschiedenen anderer Algorithmen zur Simulation des Gesamtsystems am
Phasenübergang auswirken muss.
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Da sich bei der Untersuchung der planaren Ising-Spin-Gläser angedeutet hat, dass eine
Erhöhung der Vortexdichte ρ eine Abschwächung des ferromagnetischen Phasenübergangs
zweiter Ordnung in einen crossover zur Folge hat, wäre es interessant zu untersuchen, wie sich
eine Veränderung der Ordnung des Phasenübergangs der QCD bei endlicher Temperatur auf
die induzierte Dichte der Vortices und damit auch auf die Effizienz des Cluster-Algorithmus in
der Nähe dieses Punktes auswirkt. Die Ergebnisse unserer bisherigen Untersuchungen weisen
bei der Frage nach der Bekämpfung des critical slowing down ja bereits darauf hin, dass durch
den Einsatz des Cluster-Algorithmus eine merkliche Reduzierung von Autokorrelationen in
der Nähe des kritischen Punktes möglich ist. Um diese ersten Ergebnisse quantitativ noch
erhärten zu können, sollten sich aber weitere Untersuchungen anschließen, die zunächst in die
bereits angedeutete Richtung der Analyse von idealisierten Algorithmen gehen müssten. Erst
wenn die Autokorrelationszeiten dieser Algorithmen bestimmt wurden, lässt sich auch über
eine Alternative zur hier untersuchten Einbettung von Ising-Spins nachdenken, die vielleicht
zu einer weiteren Verbesserung führen könnte. Es erscheint dabei sehr gut möglich, dass die
in unseren bisherigen Simulationen gefundene Reduzierung der Autokorrelationen um einen
Faktor der Ordnung drei nurmehr eine untere Schranke für die wahre Leistungsfähigkeit des
Cluster-Algorithmus darstellt. Außerdem wäre es interessant zu überprüfen, wie der Cluster-
Algorithmus in Kombination mit anderen Algorithmen zur Aktualisierung der Eichfelder
und Skalarfelder, wie beispielsweise dem in Anhang B.3.3 diskutierten Heatbath-Algorith-
mus, funktioniert. Zuletzt muss es natürlich, wie auch im Fall der planaren Ising-Spin-Gläser,
das Ziel sein, die Größe der untersuchten Systeme schrittweise zu erhöhen, um durch die
Messung der jeweiligen Autokorrelationszeiten und Korrelationslängen letztlich den Wert des
kritischen dynamischen Exponenten des eingesetzten Algorithmus bestimmen zu können. Die
Durchführung der dazu nötigen Simulationen erscheint in jedem Fall interessant und lohnens-
wert.





Kapitel 4

Elektroschwache Wechselwirkung
und freie Isospinladungen

4.1 Einleitung

Das Konzept des schwachen Isospins spielt eine wichtige Rolle bei der Beschreibung von Pro-
zessen, die durch die schwache Wechselwirkung hervorgerufen werden. Das historisch gesehen
erste Beispiel ist dabei der durch Enrico Fermi 1934 beschriebene β-Zerfall des Neutrons
n → p + e− + ν̄e, der im Rahmen der Quantenfeldtheorie, die sich als heute allgemein
akzeptiertes Standardmodell der elektroschwachen Wechselwirkung durchgesetzt hat1, als ei-
ne Reaktion aus der Klasse der semi-leptonischen Zerfälle über geladene schwache Ströme
verstanden werden kann:

d ′ → u+W− → u+ e− + ν̄e . (4.1)

Im GSW–Modell werden die sechs mittlerweile bekannten Quarks (up, down, charm, stran-
ge, top, bottom) und Leptonen (e, µ, τ, νe, νµ, ντ ) zu drei Generationen zusammengefasst,
innerhalb derer jeweils zwei linkshändige Leptonen sowie zwei linkshändige Quarks in einem
SU(2)W -Doublett mit schwacher Isospinladung T 3 = ±1/2 angeordnet werden:
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νe
e
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L

(
νµ
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L
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ντ
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L

Quarks :
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d ′
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s ′
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L
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t

b ′

)

L

(4.2)

Eine Umwandlung zwischen den Fermionen eines Doubletts geschieht dabei durch Emission
bzw. Absorption der W±−Bosonen (T 3[W±] = ±1), und die elektrische Ladung Q ergibt
sich in dieser Theorie als Q = T 3 + Y , wobei die sogenannte Hyperladung Y mit einer
zusätzlichen abelschen U(1)Y−Symmetrie verknüpft ist. Dadurch ist die Gruppenstruktur
SU(2)W × U(1)Y des GSW–Modells festgelegt. Die Eigenzustände (d ′, s ′, b ′) der schwachen
Wechselwirkung stimmen jedoch nicht mit den Eigenzuständen der starken Wechselwirkung
überein, sondern ergeben sich als Linearkombinationen der Quark-Felder (d, s, b) der QCD.
Diese Mischung wird durch die sogenannte CKM-Matrix (Cabibbo 1963, Kobayashi, Maskawa

1Ausführliche Darstellungen des von Glashow und Weinberg (1967), sowie unabhängig davon von Salam
(1968) vorgeschlagenen GSW-Modells finden sich beispielsweise in [Wei96,PS95].
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1973) parametrisiert [CL84]. Durch Wahl eines geeigneten Potentialterms für ein fundamen-
tales Higgs-Feld, welches neben schwacher Isospinladung auch Hyperladung Y = 1/2 trägt
und auf diese Weise an die SU(2) × U(1) Eichtheorie angekoppelt wird, kann – nach Wahl
einer Eichung – das Phänomen der spontanen Symmetriebrechung bzw. die Ausbildung eines
skalaren Kondensats beobachtet werden. Das Ergebnis im Spektrum der resultierenden Theo-
rie ist das Auftreten einer masselosen vektoriellen Anregung, die mit dem Photon identifiziert
wird, sowie die Generierung von Massentermen für die intermediären geladenen Vektorbo-
sonen W± und dem neutralen Vektorboson Z0, welche die schwache Wechselwirkung über
geladene bzw. neutrale Ströme vermitteln2. Diese vier verschiedenen Eigenzustände ergeben
sich dabei als unterschiedliche Linearkombinationen der vier Eichfelder, die in der symme-
trischen Realisierungsphase der Theorie als masselos angenommen werden und mit den drei
Generatoren der Symmetriegruppe des schwachen Isospins SU(2)W , sowie dem Generator
der Hyperladungssymmetrie U(1)Y verknüpft sind. Die Massen der Fermionen ergeben sich
ebenfalls im Rahmen des Higgs-Mechanismus durch Ausbildung eines Kondensats für das
fundamentale Skalarfeld, das die links- und rechtshändigen Fermionen in der Lagrangedichte
der Theorie durch eine Yukawa-Kopplung auf eichinvariante Weise miteinander verknüpft.

Offensichtlich kommt dem Higgs-Feld in dieser Konstruktion eine entscheidende Bedeutung
zu. Allerdings ist zunächst nicht klar, ob davon ausgegangen werden kann, dass die Annahmen
über das Verhalten der Theorie beim Übergang von der Ebene der klassischen Feldtheorie,
auf der die Konstruktion des GSW–Modells erfolgt, zur zugehörigen quantisierten Feldtheo-
rie ihre Gültigkeit in vollem Umfang behalten. Numerische Untersuchungen weisen nämlich
darauf hin, dass sich die Hypothese eines mass gap in quantisierten Yang-Mills-Theorien
(ohne Materiefelder) zu bestätigen scheint, und zwar in dem Sinne, dass sowohl die soge-
nannten glue balls als (eichinvariante) Anregungen niedrigster Energie im Spektrum massiv
sind [BB83,MT89], als auch den Gluonen selbst formal eine dynamisch erzeugte Masse zuge-
ordnet werden kann3, obwohl in der Lagrangedichte der reinen Yang-Mills-Theorie keinerlei
Massenterme auftreten. Ferner liegt überwältigende numerische Evidenz dafür vor, dass das
Auftreten des Confinement-Phänomens in reinen Eichtheorien auf der nicht-abelschen Natur
der Symmetriegruppe beruht, denn ein lineares Anwachsen des Potentials zwischen statischen
Materiefeldquellen bei zunehmendem Abstand derselben konnte nicht nur im Fall der für
die QCD relevanten SU(3)−Yang-Mills-Theorie nachgewiesen werden [Sta84,BS92], sondern
ebenfalls bei der Untersuchung der speziellen unitären Gruppen SU(2) [Cre80,LR82,Sta83],
SU(4) [WO01], SU(5) [Cre81], SU(6) [CM82b], sowie den exzeptionellen Lie-Gruppen Sp2
undG2 [HMPW03,HPW04]. Dies ist insofern von Bedeutung, als dass der schwache Isospin im
Standardmodell der elektroschwachen Wechselwirkung ebenfalls eine nicht-abelsche Eichsym-
metrie ist, gleichwohl jedoch die (linkshändige) Leptonen (4.2) frei beobachtet werden können.
Außerdem hat der experimentelle Nachweis der massiven Vektorbosonen W± [PRSZ01] auf
direktemWege gezeigt, dass die Eichbosonen des GSW–Modells trotz ihrer schwachen Isospin-
ladung ebenfalls frei beobachtet werden können, wohingegen die Eichbosonen reiner Yang-
Mills-Theorien, wie beispielsweise die Gluonen im Fall der QCD, nicht als asymptotische
Zustände auftreten.

2Die direkte Einführung eines Massenterms der Form m2Aa
µ(x)A

µa(x) in der Lagrangedichte L(x) einer
Theorie verbietet sich bereits aufgrund der Forderung nach Eichinvarianz von L(x).

3Die Analyse des Gluon-Propagators in Landau-Eichung weist auf dem Gitter typischerweise auf ein solches
decoupling behaviour hin [LRG02], jedoch wird momentan auch die Relevanz einer weiteren Lösung diskutiert,
die unter der Annahme einer global definierbaren und erhaltenen BRST-Ladung ein sogenanntes IR scaling

behaviour zeigt. Einen Überblick vermitteln beispielsweise [BQR09], sowie die darin enthaltenen Referenzen.
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Das Higgs-Feld muss folglich in der Lage sein, zweierlei Aufgaben zugleich zu erfüllen: Zum
einen sollen Massenterme für die Eichbosonen generiert werden, die mit dem beobachteten
Spektrum übereinstimmen, zum anderen müssen schwache Isospinladungen freigesetzt werden
(isospin liberation). Letzteres wirft insbesondere die Frage nach dem Begriff des Confinement
und einem zugehörigen Ordnungsparameter in einer Theorie mit dynamischer Materie auf,
die sich unter der fundamentalen Darstellung der Eichgruppe transformiert. Die im Fall einer
Eichtheorie mit nicht-trivialer Zentrumssymmetrie geeigneten Wilson-Loops oder Polyakov-
Linien zur eichinvarianten Charakterisierung eines Confinement-Deconfinement-Übergangs
scheiden dabei aus, da die Zentrumssymmetrie durch die fundamentalen Materiefelder ex-
plizit gebrochen wird. Mögliche Alternativen wurden von Caudy und Greensite [CG08] bei
der Untersuchung eines SU(2)−Higgs-Modells aufgezeigt. Dabei wurde eine Verbindung zwi-
schen der Verletzung des Kriteriums von Kugo-Ojima bzw. des Coulomb-Confinements und
der spontanen Brechung einer globalen (remanenten) Symmetrie, welche der Theorie nach
Fixierung der Landau- bzw. Coulomb-Eichung noch verbleibt, hergestellt. Die Auswirkungen
der Fixierung verschiedener Eichungen auf das Phänomen der spontanen Symmetriebrechung
sowie den Higgs-Mechanismus werden wir in Kapitel 4.2 ausführlich diskutieren. Ein wesent-
liches Ergebnis wird die Trennung des Higgs-Mechanismus zur Erzeugung von Massentermen
für Eichbosonen vom Phänomen der spontanen Symmetriebrechung sein. Dies ist insofern für
das elektroschwache Standardmodell relevant, als dass die Ergebnisse von Caudy und Green-
site [CG08] darauf hinweisen, dass sich eine eindeutige Unterteilung des Phasendiagramms
nur vornehmen lässt, wenn Confinement als Phase magnetischer Unordnung aufgefasst wird,
charakterisiert durch hinreichend starke Vakuumfluktuationen, die für beliebige Längenska-
len ein Flächengesetz des Wilson-Loops hervorrufen. Die SU(2)−Higgs-Theorie befindet sich
demnach (in Einklang mit der in Kapitel 2 diskutierten analytischen Verbundenheit des
Phasendiagramms) immer in einer Higgs-artigen Deconfinement-Phase (im Sinne der magne-
tischen Unordnung), sobald eine Kopplung (κ > 0) des Higgs-Feldes an die Eichfelder vor-
liegt. Unter Vernachlässigung der Hyperladungsgruppe U(1)Y sollte folglich die Freisetzung
von schwacher Isospinladung allein durch die Anwesenheit des fundamentalen Higgs-Feldes
ermöglicht werden, unabhängig vom Phänomen der spontanen Symmetriebrechung4 oder der
Ausbildung eines skalaren Kondensats, obwohl alle reinen nicht-abelschen Eichtheorien ihre
Farbladungen (Isospin) permanent einschließen.

Die Postulierung des Higgs-Feldes hat zweifelsohne einen großen Beitrag zum Erfolg des elek-
troschwachen Teils des Standardmodells der Elementarteilchenphysik in heutiger Form gelie-
fert, dennoch wurde das Higgs-Boson in Experimenten an Teilchenbeschleunigern bis heute
noch immer nicht gefunden. Darüber hinaus befinden sich einige Voraussagen des Standard-
modells, wie beispielsweise die Baryonenzahlasymmetrie5, nicht in Einklang mit den Beob-
achtungen in der Natur. Es besteht daher durchaus die Möglichkeit, dass durch Experimente,
welche in naher Zukunft am Beschleuniger LHC (CERN) durchgeführt werden sollen, die
Existenz eines schwach wechselwirkenden fundamentalen Higgs-Bosons ausgeschlossen wer-
den kann.

4Dies lässt in Abwesenheit eines thermodynamischen Phasenübergangs keine eindeutige Unterteilung des
Phasendiagramms zu, da das Kugo-Ojima-Kriterium und das Coulomb-Confinement-Kriterium an unterschied-
lichen Stellen des Phasendiagramms einen Verlust der Confinement-Eigenschaft der Theorie anzeigen [CG08].

5Vergleiche dazu auch die Diskussion des Einflusses der Higgs-Masse auf die Ordnung des elektroschwachen
Phasenübergangs in Kapitel 2
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Angesichts dieser Tatsachen stellt sich die Frage, ob die Ursache für das deconfinement des
schwachen Isospins einzig und allein im bisher postulierten Higgs-Mechanismus zu finden ist,
oder ob es mögliche Alternativen gibt, welche ebenfalls zu isospin liberation führen könnten.
Im Rahmen der vorliegenden Untersuchung soll zu diesem Zweck eine auf der Symmetrie-
gruppe SU(3) basierende Eichtheorie betrachtet werden, die um ein skalares Feld in der
adjungierten Darstellung erweitert wurde. Für diese Theorie bestehen verschiedene Reali-
sierungsmöglichkeiten einer residuellen Symmetrie nach spontaner Brechung der Ausgangs-
symmetrie. Insbesondere ist der Übergang in eine Phase möglich, in welcher die residuelle
Symmetriegruppe mit der Eichgruppe des elektroschwachen Standardmodells übereinstimmt.
Das Ziel ist es – zunächst unter Vernachlässigung aller möglichen weiteren Kopplungen an
stark wechselwirkende oder leptonische Materie – zu untersuchen, ob die resultierende effekti-
ve Theorie mit residueller Symmetriegruppe SU(2)×U(1) dazu geeignet ist, als Wegbereiter
einer alternativen Theorie der elektroschwachen Wechselwirkung zu fungieren, die sich nicht
auf die Annahme der Existenz eines fundamentalen Higgs-Bosons stützen muss. Insbesondere
sollte die Farbe (Isospin) der resultierenden SU(2) × U(1) Theorie nicht permanent einge-
schlossen sein6, sondern die aus der GSW-Theorie bekannten Felder (W±, Z0 massiv, γ mas-
selos) sollten als Isospin tragende Zustände im asymptotischen Teilchenspektrum auftauchen.

Bevor wir uns der Untersuchung des konkreten Modells zuwenden werden, wird zunächst
noch das Phänomen der spontanen Symmetriebrechung samt zugehöriger phänomenologischer
Konsequenzen diskutiert, wobei insbesondere auf die Feinheiten bei der Formulierung einer
Quantenfeldtheorie auf dem Gitter hingewiesen werden soll.

4.2 Das Phänomen der spontanen Symmetriebrechung

Ausgangspunkt der Diskussion des Phänomens der spontanen Symmetriebrechung im feld-
theoretischen Kontext ist üblicherweise die Untersuchung des Verhaltens einer Lagrangedich-
te, sowie des Vakuumzustands Ω der zugehörigen Quantentheorie unter Transformationen,
denen die Felder χ(x), welche in die Konstruktion der Lagrangedichte eingehen, unterworfen
werden. Erweist sich die Lagrangedichte L(x) der klassischen Feldtheorie als invariant un-
ter einer bestimmten Klasse von Transformationen, so spricht man von einer Symmetrie der
Theorie unter diesen Transformationen, da sich die Invarianz von L(x) in die Invarianz der
zugehörigen Wirkung S[χ]=

∫
d4xL(x) übersetzt, und dies wiederum die Invarianz der Euler-

Lagrange-Gleichungen nach sich zieht, welche auf der Grundlage des Prinzips der stationären
Wirkung als klassische Bewegungsgleichungen der Theorie bestimmt werden:

δS[χ] = 0 ⇐⇒ ∂µ

(
δL(x)
δ ∂µχ(x)

)
=

δL(x)
δχ(x)

. (4.3)

Erweist sich nun der Grundzustand der zugehörigen Quantenfeldtheorie als nicht invariant
unter derselbe Klasse von Symmetrietransformationen, so spricht man von einer spontanen
Brechung dieser Symmetrie. Die Symmetrie der Lagrangedichte spiegelt sich also in diesem
Fall nicht im Verhalten des Vakuums wieder.

6Bei einer Erweiterung des Modells um dynamische Materiefelder sollten diese ebenfalls, anders als die
Quarks der QCD, als asymptotische Zustände des physikalischen Spektrums möglich sein. In dieser Arbeit
haben wir uns jedoch als vorbereitende Studie für die volle Theorie auf eine Untersuchung der Yang-Mills-
Theorie mit adjungiertem Skalarfeld und rein statischen Materiefeldern beschränkt.
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Die Bestimmung von Ω, des Zustands minimaler Energie einer konkreten Quantenfeldtheo-
rie, sowie die Klärung der Frage, unter welchen Bedingungen das Phänomen der spontanen
Symmetriebrechung auftreten kann, machen daher die Berücksichtigung von Quantenfluktua-
tionen unumgänglich. Die häufig anzutreffende semi-klassische Näherung, bei der die (kon-
stante) Vakuumkonfiguration als das Minimum des Potentialterms der Lagrangedichte L(x)
bestimmt wird, greift daher zu kurz. Allenfalls kann eine solche Näherung zur Orientierung
bei der Untersuchung des Phasendiagramms einer Theorie von Interesse dienen. Im Folgenden
soll daher der Formalismus der effektiven Wirkung einer Quantenfeldtheorie in Anwesenheit
von externen Quellen als eine elegante Methode vorgestellt werden, die eine angemessene
Diskussion des Phänomens unter Berücksichtigung von Quantenkorrekturen erlaubt und sich
auch im Hinblick auf die später durchzuführende Analyse von Propagatoren verschiedener
Felder in der Realisierungsphase einer Theorie mit spontan gebrochener Symmetrie als nütz-
lich erweisen wird.

Der Einfachheit halber wollen wir zunächst den Fall einer Theorie von skalaren Feldern χA(x)
betrachten, die an klassische externe Quellen J A(x) gekoppelt werden. Die zugehörige La-
grangedichte L(x) sei dabei wie üblich ein Funktional der Felder sowie der zugehörigen Ab-
leitungen. Zunächst wird durch die Relation

Z[J ] = exp
{
iW [J ]

}
(4.4)

das Funktional W [J ] als Analogon der Helmholtz’schen freien Energie eines thermodynami-
schen Systems der statistischen Mechanik nach Wick-Rotation definiert, wobei die Zustands-
summe Z[J ] der Theorie in Anwesenheit von externen Quellen bzw. Strömen J gegeben ist
durch

Z[J ] =

∫
Dχ exp

{
i

∫
d4x L(x) + χA(x)J A(x)

}
. (4.5)

W [J ] ist das erzeugende Funktional der verbundenen (connected) n−Punkt-Funktionen, wel-
che sich gemäß

δnW [J ]
δJ A(x1) · · · δJ N (xn)

∣∣∣
J=0

= (i)n−1 〈χA(x1) · · ·χN (xn) 〉c (4.6)

berechnen. Der Erwartungswert bezieht sich dabei allein auf die durch L(x) bzw. Z[0] de-
finierte Theorie, ohne Berücksichtigung des Einflusses der externen Quellen. Eine wichtige
Änderung ergibt sich, wenn die Quellen auch nach Ausführung der Differentiation wirksam
bleiben und nicht

”
abgeschaltet“ werden. Betrachten wir dazu speziell die erste Funktional-

ableitung von W [J ] bezüglich J (x):

δW [J ]
δJ A(x) = 〈χA(x) 〉J =: χcl

A(x) . (4.7)

Der Erwartungswert des Feldes χA(x), den wir mit χcl
A(x) bezeichnet haben, hängt nun von

der externen Quelle ab und wird häufig auch als das klassische Feld bezeichnet. Dieses spielt
dieselbe Rolle wie die Magnetisierung M in einem Spinsystem mit lokalen Spinvariablen σ(x)
in Gegenwart eines externen Feldes H, nämlich das gewichtete Mittel über alle möglichen
Fluktuationen. Bezeichnen wir mit Jχ(x) diejenige Quellenfunktion J (x), für welche die
Berechnung von (4.7) aus (4.5) gerade das klassische Feld liefert, so ist χcl(x) also die zu
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Jχ(x) konjugierte Variable. Die effektive Wirkung der Quantenfeldtheorie wird dann durch
eine Legendre-Transformation der Form

Γ[χcl] := W [Jχ]−
∫

d4x χcl
A(x)J Aχ (x) (4.8)

als Funktional des klassischen Feldes definiert. Diese stellt nach Wick-Rotation das Analogon
der Gibbs’schen freien Energie eines entsprechenden thermodynamischen Systems dar. Die
effektive Wirkung Γ[χcl] ist ebenfalls ein erzeugendes Funktional, und zwar das der sogenann-
ten Ein-Teilchen-Irreduziblen (1PI) Korrelationsfunktionen (proper vertices). Betrachten wir
auch hier zunächst wieder nur die erste Funktionalableitung bezüglich des klassischen Feldes:

δ Γ[χcl]

δχcl
B(y)

= −J Bχ (y) . (4.9)

Insbesondere bedeutet dies, dass also die klassischen Felder χ0(x), welche bei Abwesenheit
von äußeren Quellen berechnet werden, die

”
stationären Punkte“ der effektiven Wirkung (4.8)

sind:

χ0(x) =
〈
χ(x)

〉
J=0

⇐⇒ δ Γ[χcl]

δχcl(x)

∣∣∣∣
χ0(x)

= 0 . (4.10)

Da sich nach Gleichung (4.3) aus der Stationarität der Wirkung S[χ] die klassischen Bewe-
gungsgleichungen für die Felder ergeben, kann Gleichung (4.10) folglich auch als die Bewe-
gungsgleichung der Felder χ0(x) aufgefasst werden, in der sämtliche durch Quantenfluktuatio-
nen hervorgerufene Korrekturen berücksichtigt wurden. Die Konfigurationen χ0(x) beschrei-
ben also die stabilen Vakuumzustände der Quantentheorie [Wei96]. Eine besondere Rolle neh-
men dabei die Poincaré-invarianten Lösungen χ0 := χ0(0) ein, wobei x = 0 einen beliebigen
Ursprung in der Raum-Zeit bezeichnet7. Für diese Klasse von konstanten Vakuumzuständen
berechnet sich die effektive Wirkung zu [Wei96]

Γ[χ0] = −V4 Veff(χ0) , V4 :=

∫
d4x . (4.11)

Das sogenannte effektive Potential Veff(χ0) ist dabei eine gewöhnliche Funktion von χ0, welche
auf Grund der Konvexität der effektiven Wirkung (4.8) ebenfalls konvex ist [Roe91]. Die
Bestimmung des Vakuumzustands der Quantenfeldtheorie geschieht in diesem Fall durch
Aufsuchen des absoluten Minimums von Veff(χ0):

∂Veff(χ)

∂χ

∣∣∣∣
χ0

= 0 . (4.12)

Das Phänomen der spontanen Symmetriebrechung ist im feldtheoretischen Kontext untrenn-
bar mit einer Entartung des Vakuums verknüpft. Um dies zu verstehen, betrachten wir die
wichtige Klasse der linearen Transformationen L

L : χ → χ′ , χn(x) 7→ χ′
n(x) = Lnmχm(x) , (4.13)

die eine infinitesimale Transformation der Felder in der Form

δχn(x) = i ǫa [ta]nm χm(x) (4.14)

7Eine Diskussion der Konstruktion räumlich lokalisierter, interpolierender Lösungen χ(x) von Gleichung
(4.10) findet sich beispielsweise in [PS95].
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hervorrufen, wobei die ta endlichdimensionale, darstellungsabhängige Generatoren der in-
finitesimalen Transformation darstellen8. Lineare Transformationen spielen deshalb eine so
wichtige Rolle, da für sie aus der Invarianz von Lagrangedichte und Maß in (4.5) auch die
Invarianz der effektiven Wirkung (4.8) unter derartigen Transformationen folgt [Wei96]:

Γ[Lχcl] = Γ[χcl] ⇐⇒
∫

d4x
δΓ[χcl]

δχcl
n (x)

[ta]nm χ
cl
m(x) = 0 . (4.15)

Durch Anwendung der Kettenregel in Gleichung (4.9) lässt sich leicht zeigen, dass dies aber
auch die Invarianz des erzeugenden Funktionals W [Jχ] zur Folge hat. Spontane Symmetrieb-
rechung liegt nun vor, wenn sich mindestens eine der verbundenen n−Punkt-Funktionen (4.6)
(bzw. Wightman-Funktionen im Kontext der konstruktiven Feldtheorie [Str77]) als nicht in-
variant unter der Wirkung der (nicht-trivialen) Transformationen L (4.13) erweist:

〈
χ′
A(x1) · · ·χ′

N (xn)
〉
c
6=
〈
χA(x1) · · ·χN (xn)

〉
c
. (4.16)

Insbesondere ist dies erfüllt, wenn χ0(x) gemäß Gleichung (4.10) eine nicht-triviale Lösung
der Minimumsbedingung der effektiven Wirkung (bzw. χ0 im Fall der Poincaré-invarianten
Lösungen von (4.12) für das effektive Potential) darstellt. Da zu jeder solchen Lösung aber
nun auch eine transformierte Lösung Lχ0(x) existiert, welche derselben Minimumsbedingung
genügt, liegt eine Entartung des Vakuums vor. Weist die Theorie beispielsweise eine globale
Reflexionssymmetrie der Form

χ(x) 7→ −χ(x) ∀x ∈ M4 (4.17)

auf, so handelt es sich um eine zweifache Entartung des Vakuums.

An dieser Stelle soll darauf hingewiesen werden, dass eine rein störungstheoretische Behand-
lung des Phänomens der spontanen Symmetriebrechung mit einigen Schwierigkeiten verbun-
den ist, und zwar bereits selbst dann, wenn es sich nur um die Brechung einer diskreten
globalen Symmetrie handelt. Um dies zu verstehen, soll für das Potential, welches in die
Konstruktion der Lagrangedichte der Theorie eingeht, wie üblich die typische, unter Spie-
gelungen symmetrische Form des Querschnitts eines Sombreros (mexican hat) angenommen
werden. Die klassischen Minima dieses Potentials seien die beiden (konstanten) Lösungen χ0

und −χ0, was die Reflexionssymmetrie der Theorie widerspiegelt. Die spontane Brechung der
Symmetrie geschieht nun durch die Wahl von einem der beiden Zustände als Ausgangspunkt
einer störungstheoretischen Behandlung, welche auf der Betrachtung kleiner Fluktuationen
um eben dieses Minimum beruht. Allerdings zeigt eine Analyse des Potentialterms V (χ0)
auf Ebene der Lagrangedichte, dass zwischen den beiden Lösungen χ0 und −χ0 ein Intervall
existiert, in dem die zweite Ableitung des Potentials negativ wird, also ein lokales Maximum
vorliegen muss. Dies stellt aber einen Widerspruch zu der Annahme eines stabilen Minimums
dar, auf der die störungstheoretische Entwicklung basiert, welche folglich nur in einem ein-
geschränkten Bereich Gültigkeit besitzen kann. Ausschlaggebend für die Klärung der Frage,
ob sich das System in einer bezüglich (4.17) symmetrischen oder unsymmetrischen Phase
befindet, ist wie bereits erläutert vielmehr die Form des effektiven Potentials. Da das effek-
tive Potential ebenfalls die Reflexionssymmetrie von V (χ0) besitzt, folgt zusammen mit der

8Für hermitesche Skalarfelder beispielsweise handelt es sich bei [ta]nm um die Generatoren [tA]nm in ad-
jungierter Darstellung (D.17), folglich ist i[t]nm eine reelle, anti-symmetrische Matrix.
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Konvexität von Veff(χ0), dass ein solches Potential notwendigerweise genau ein Minimum
(bei χ0 = 0) besitzen muss, sofern es sich bei Veff(χ0) um eine analytische Funktion handelt.
Das Phänomen der spontanen Symmetriebrechung lässt sich daher (wie auch das Phänomen
eines Phasenübergangs) durch den Verlust der Analytizität einer bestimmten Funktion cha-
rakterisieren9. Da Veff(χ0) auf einem endlichen Gitter immer analytisch ist, ergibt sich als
wichtige Konsequenz, dass das Phänomen der spontanen Symmetriebrechung strenggenom-
men nur im thermodynamischen Limes einer diskretisierten Quantenfeldtheorie beobachtet
werden kann, falls die Analytizität des effektiven Potentials dabei möglicherweise verloren
geht. In quantenmechanischen Systemen hingegen erweist sich der Grundzustand immer als
eindeutig [GJ87]. Bei der Untersuchung von Quantenfeldtheorien auf endlichen Gittern sind
daher besondere Maßnahmen zu treffen, die es erlauben, die spontane Brechung einer Sym-
metrie dennoch beobachten zu können. Diese Maßnahmen werden im konkreten Fall weiter
unten noch zu diskutieren sein.

4.2.1 Globale Symmetrie und das Theorem von Goldstone

Als nächstes soll die spontane Brechung einer globalen kontinuierlichen Symmetrie betrach-
tet werden. Dieser Vorgang ist mit dem Auftreten von masse- und spinlosen Anregungen im
Spektrum der Theorie verknüpft, den sogenannten Goldstone-Bosonen [Gol61]. Ein besonders
einfacher Beweis des Theorems von Goldstone kann im Rahmen des Formalismus der effek-
tiven Wirkung gegeben werden und soll hier kurz rekapituliert werden. Dies dient vor allem
dem Zweck, die bei der Diskussion der spontanen Brechung einer kontinuierlichen Symmetrie
üblicherweise verwendete Terminologie einzuführen, was uns in die Lage versetzen wird, die
im Folgenden jeweils zu diskutierenden Unterschiede bei der Betrachtung von globalen und
lokalen Symmetriegruppen besser zu verstehen.

Die globale kontinuierliche Transformation der Felder sei in infinitesimaler Form durch Glei-
chung (4.14) gegeben, und die Invarianz der effektiven Wirkung unter dieser Transformation
findet ihren Ausdruck in Gleichung (4.15). Beschränken wir uns wiederum nur auf Poin-
caré-invariante Konfigurationen, deren Spektralzerlegung folglich nur eine Komponente zum
(Vierer-) Impuls p = 0 besitzt, so folgt nach nochmaliger Differentiation von (4.15) bezüglich
der l−Komponente eines solchen Feldes χl und anschließender Auswertung des gewonne-
nen Ausdrucks für eine Konfiguration χ0, welche zu einem stationären Punkt des effektiven
Potentials (4.12) gehört:

∂2Veff(χ)

∂χl ∂χn

∣∣∣∣∣
χ=χ0

[ta]nm [χ0]m = 0 . (4.18)

Unter Verwendung von Gleichung (4.7) und (4.9) lassen sich leicht die folgenden Ausdrücke
für die verbundenen Zwei-Punkt-Funktionen und ihre zugehörigen 1PI-Anteile berechnen:

∆AB(x, y) :=
δ2W [J ]

δJ A(x) δJ B(y) =
δχcl

B(y)

δJ A(x) ,

ΠAB(x, y) :=
δ2Γ[χcl]

δχcl
A(x) δχ

cl
B(y)

= −δJ
B(y)

δχcl
A(x)

.

(4.19)

9Das effektive Potential erweist sich dabei als eine symmetrische, aber nunmehr stückweis konstante Funk-
tion, welche die konvexe Hülle des Potentials V (χ0) bildet. Die Menge aller Minima des effektiven Potentials
Veff(χ0) besteht daher aus der Vereinigung aller Linearkombinationen χ = αχ0 +(α− 1)χ0, α ∈ ]0, 1[ mit den
Werten χ0 und −χ0, welche sich als Erwartungswerte sogenannter

”
extremaler Zustände“ ergeben [Roe91].
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Definieren wir nun wie üblich den allgemeinen Propagator DAB(x, y) eines Feldes χ(x) gemäß

DAB(x, y) := 〈χA(x)χB(y) 〉c = − i δ2W [J ]
δJ A(x)δJ B(y)

∣∣∣∣
J=0

, (4.20)

so erweist sich −iΠAB(x, y) aufgrund von Gleichung (4.19) als dessen Inverse. Da die zweite
Ableitung des effektiven Potentials in Gleichung (4.18), ausgewertet für eine zu J = 0 gehöri-
ge konstante Konfiguration χ0, gerade die Summe aller 1PI-Diagramme darstellt, deren mit
l und n bezeichnete externe Linien (Vierer-)Impuls Null tragen, lässt sich Gleichung (4.18)
ebenfalls umformulieren zu:

D−1
ln (p = 0) [ta]nm[χ0]m = 0 . (4.21)

Falls nun das Vakuum einer Theorie mit globaler kontinuierlicher Symmetrie eine nicht-
triviale Konfiguration χ0 ist, die das effektive Potential minimiert, so ist aufgrund von Glei-
chung (4.16) die spontane Brechung dieser Symmetrie gleichbedeutend mit der Feststellung,
dass χ0 nicht von allen Generatoren [ta] der Symmetriegruppe G annihiliert werden kann.
All diese Vektoren sind aber nach Gleichung (4.21) die nicht-trivialen Eigenvektoren von
D−1
ln (0) zum Eigenwert Null, folglich besitzt der zugehörige Propagator Dnm(p) für jeden

dieser Vektoren eine Polstelle bei p2 = 0. Anders ausgedrückt bedeutet dies, dass der Rang
des Residuums dieses Pols gleich der Dimension des durch die taχ0 (mit a = 1 . . . dim(LG))
aufgespannten Vektorraums ist [Wei96]. Dies ist die Aussage des Theorems von Goldstone:

Für jede unabhängige, spontan gebrochene kontinuierliche globale Symmetrie tritt
ein masseloses Boson im Spektrum der Theorie auf.

Eine vollständige Symmetriebrechung tritt auf, wenn keiner der Generatoren der ursprüng-
lichen Lie-Gruppe G der Theorie das Vakuum annihiliert. In diesem Fall transformiert die
gesamte Symmetriegruppe G, die gebrochen erscheint, alle Vakuumzustände Ω ineinander
und die Entartung des Grundzustands ist maximal. Transformationen, die das Vakuum in-
variant lassen, werden hingegen von denjenigen Generatoren erzeugt, die χ0 annihilieren.
Diese Transformationen bilden die sogenannten residuellen Symmetrien der Theorie, und die
zugehörige Untergruppe wird üblicherweise mit H bezeichnet. Handelt es sich dabei um ei-
ne invariante Untergruppe von G, so ist der Coset G/H ebenfalls eine Gruppe, welche alle
spontan gebrochenen Symmetrien umfasst. Im Gegensatz zu den mit G/H assoziierten bo-
sonischen Anregungen macht das Theorem von Goldstone keine Aussage über Anregungen,
die mit der residuellen Symmetriegruppe H verknüpft sind, da diese trivialerweise im Kern
der durch D−1(0) vermittelten linearen Abbildung (4.21) liegen.

Zuletzt soll angemerkt werden, dass die Renormierung einer Quantenfeldtheorie in der
Nambu-Goldstone-Phase durch Verwendung derselben G−invarianten Konterterme wie in
der Wigner-Weyl-Phase möglich ist [Col84], die Frage nach der Renormierbarkeit einer Theo-
rie bleibt daher vom Phänomen der spontanen Symmetriebrechung unberührt [Col88].

4.2.2 Eichsymmetrie und das Higgs-Phänomen

Weitet man die globale kontinuierliche Symmetrie durch Hinzunahme von Eichfeldern auf
eine lokale Symmetrie der Theorie aus, so ergeben sich einige wesentliche Änderungen, die vor
allem die phänomenologischen Konsequenzen betreffen und im Folgenden zusammen mit den
eher subtilen Punkten der üblicherweise vorzufindenden Erklärungen des Higgs-Mechanismus
zur Generierung von Eichbosonenmassen diskutiert werden sollen.
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Zunächst ist es wichtig sich zu vergegenwärtigen, dass physikalische Observablen in einer
Eichtheorie gerade durch die Invarianz der anfallenden Messwerte unter Eichtransformatio-
nen ausgezeichnet sind. Folglich besteht bei der Untersuchung einer auf eichinvariante Weise
formulierten Quantenfeldtheorie im Prinzip auch keine Notwendigkeit, eine Eichung zu fixie-
ren, um physikalisch relevante Größen, wie etwa das Massenspektrum der Theorie, berechnen
zu können. Die Wahl einer bestimmten Eichung wird jedoch erforderlich, wenn eine Verbin-
dung zu einer Kontinuumsformulierung der Theorie hergestellt werden soll, deren Behandlung
im Rahmen einer störungstheoretischen Entwicklung die Fixierung einer Eichung unumgäng-
lich macht.

Obwohl die störungstheoretisch gewonnenen Resultate im Falle des Modells von Glashow,
Salam und Weinberg sicherlich zur Akzeptanz des Higgs-Mechanismus als Option bei der
Beschreibung von elektroschwachen Wechselwirkungen beigetragen haben, hat der pertur-
bative Zugang rückblickend betrachtet allerdings ebenso maßgeblich zur Etablierung einer
irreführenden Terminologie, sowie einer unnötigen Verknüpfung des Higgs-Phänomens mit
dem Phänomen der spontanen Symmetriebrechung beigetragen. Eine spontane Brechung der
Eichsymmetrie kann nämlich unter keinen Umständen10 auftreten, wie von Elitzur [Eli75] be-
wiesen wurde. Dies hat zur Folge, dass alle Green’schen Funktionen der Theorie aufgrund ihrer
Eichvarianz verschwinden. Insbesondere gilt dies für den Vakuumerwartungswert des Skalar-
feldes, der nun nicht mehr länger als Ordnungsparameter fungieren kann, wodurch auch eine
direkte Übertragung der im Falle einer kontinuierlichen globalen Symmetrie durchgeführten
Analyse unmöglich wird. Üblicherweise wird das Problem durch die Wahl der sogenannten
unitären Eichung11 gelöst. Dass sich dies als besonders geschickt erweist, wird folgenderma-
ßen klar: Zum einen wird durch die Fixierung einer Eichung die lokale Symmetrie der Theorie
en passant explizit gebrochen und somit dem Theorem von Elitzur die Grundlage entzogen,
so dass das Skalarfeld nun wieder einen Vakuumerwartungswert entwickeln kann. Dieser wird
ebenfalls mit χ0 bezeichnet und stimmt in unitärer Eichung mit der Vakuumkonfiguration
der zugehörigen ungeeichten Theorie überein12. Zum anderen macht man sich die Tatsache
zunutze, dass im Falle einer kompakten Gruppe G für jedes Skalarfeld χ(x) die Darstellung

χ(x) = U(x) χ̃(x) , U(x) := exp{iξ(x)} , ξ(x) = ξc(x) tc ∈ LG/LH (4.22)

existiert [Wei96,Roe01], wobei χ̃(x) durch die Relation

χ̃n(x) [t
a]nm[χ0]m = 0 (4.23)

ausgezeichnet ist. Die Fixierung der unitären Eichung besteht in der Durchführung der Trans-
formation

χ(x) → χu(x) = U−1(x)χ(x) = χ̃(x) . (4.24)

Dadurch werden die dim(G) − dim(H) Goldstone-Bosonen, die sich (bis auf Normierung)
eindeutig mit den Feldern ξc(x) aus dem Quotienten LG/LH identifizieren lassen, aus der
eichfixierten Theorie eliminiert. Zurück bleiben die nach Gleichung (4.23) zu den Goldstone-
Bosonen orthogonalen physikalischen Freiheitsgrade. Im Kontext der üblicherweise nachzu-

10Eine Ausnahme stellen Eichtheorien mit einem Gibbs-Maß dar, welches nicht positiv definit ist. Wird diese
implizite Annahme des Beweises aufgegeben, so kann gezeigt werden, dass die Eichinvarianz einer Theorie
alleine nicht mehr ausreicht, um die spontane Brechung von lokalen Symmetrien zu verhindern [Spl03].

11Für eine ausführliche Diskussion siehe beispielsweise [Wei96], Kapitel 19.6 und 21.1.
12Dieser Punkt erweist sich als wesentlich dafür, um zu demselben Ergebnis wie bei einer eichinvarianten

Behandlung des Higgs-Phänomens zu gelangen [ST95].
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lesenden perturbativen Diskussion der Massengenerierung13 für die vormals als masselos an-
genommenen Eichbosonen, findet sich an dieser Stelle die von Coleman [Col88] geprägte
Formulierung, dass die sogenannten Would-be-Goldstone-modes ξc(x) von den mit den ge-
brochenen Generatoren assoziierten Eichfeldern

”
aufgegessen“ werden, wodurch diese sowohl

eine Masse erhalten, als auch einen dritten Polarisationsfreiheitsgrad hinzugewinnen.

An dieser Stelle soll nochmals darauf hingewiesen werden, dass eine vollständig eichinvari-
ante Diskussion des Higgs-Mechanismus mit all seinen phänomenologischen Implikationen
möglich ist, ohne auf das Phänomen der spontanen Symmetriebrechung im Kontext einer
Eichtheorie zurückgreifen zu müssen [FMS81]. Dabei wird klar, dass die Would-be-Goldstone-
modes reine Eichartefakte sind, die folglich in keiner Eichung eine Rolle spielen können.
Die unitäre Eichung ist nun insofern ausgezeichnet, als dass dies hier besonders manifest
wird, da die zugehörigen Felder gänzlich aus der Lagrangedichte verschwinden. Tatsächlich
ist es aber ebenfalls möglich, unter der Voraussetzung, dass eine lokale und kovariante Ei-
chung in einer quantisierten Eichfeldtheorie fixiert wurde, eine rigorose Behandlung des ge-
samten Phänomens durchzuführen, ohne dabei auf eine konkrete Lagrangedichte oder die
Existenz eines Higgs-Feldes Bezug zu nehmen [Str77]. Die Abstraktion von konkreten feld-
theoretischen Modellen, die sich als invariant unter bestimmten Symmetrietransformationen
erweisen, besteht in der Untersuchung der Konsequenzen der Existenz zugehöriger erhalte-
ner Ströme. Tatsächlich lässt sich zeigen, dass das Goldstone-Theorem als ein Sonderfall des
Noether-Theorems [Noe18] bei vorliegender spontaner Symmetriebrechung aufgefasst werden
kann [O’R90]. Die Ausweitung auf den Fall lokaler Symmetrien macht dabei von einer Be-
sonderheit der zugehörigen erhaltenen Ströme Gebrauch [Str76] und geschieht im Rahmen
einer Erweiterung der axiomatischen Feldtheorie auf den Fall einer Theorie mit indefiniter
Metrik, was zu einem Verlust der Positivität der Theorie führt und die üblichen Fragen nach
der Konstruktion eines Hilbert-Raums der physikalischen Zustände aufwirft. Eine wesentliche
Voraussetzung bei den Beweisen eines generalisierten Goldstone- und Higgs-Theorems [Str77]
ist dabei in der speziellen Gruppenstruktur zu finden, die einer Eichtheorie zugrunde liegt.
Da dies für die anstehenden Untersuchungen auf dem Gitter ebenfalls relevant ist, soll dieser
Punkt hier kurz erläutert werden.

Die Symmetriegruppe einer Eichtheorie sei eine Lie-Gruppe G, deren Wirkung auf die Felder
χ(x) in infinitesimaler Form durch

δχn(x) = i ǫa(x) [ta]nm χm(x) (4.25)

gegeben ist. Aufgrund der Ortsabhängigkeit der Komponentenfunktionen ǫa(x) werden die
zugehörigen Gruppenelemente gǫ(x) ∈ G als lokale Symmetrietransformationen, oder wie
in [Str77] auch als Eichtransformationen zweiter Art bezeichnet. Diejenigen Elemente gǫ ∈ G
hingegen, die mit ǫ := (ǫa = const, ǫb = 0, b 6= a) assoziiert werden, wobei es mindestens eine
zugehörige Eichtransformation zweiter Art der Form ǫ := (ǫa 6= const, ǫb = 0, b 6= a) gibt,
bilden die Untergruppe G ⊂ G der Eichtransformationen erster Art. Wird die Eichtheorie
durch Erweiterung einer globalen Symmetrie auf eine lokale Symmetrie durch Hinzunahme
von Eichfeldern erzeugt, so fallen die Eichtransformationen erster Art natürlich trivialerweise
mit den ursprünglichen globalen Symmetrietransformationen zusammen. Eine Theorie kann
aber durchaus auch noch andere (globale) Symmetrien aufweisen, wie beispielsweise die chi-
rale Symmetrie der QCD, die keine Entsprechung in lokalen Transformationen finden. Aus

13Vergleiche beispielsweise die Darstellung in [PS95].
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diesem Grund – und weil der Begriff
”
lokal“ in [Str77] für Automorphismen auf Ebene der

∗−Algebra F der lokalen Felder reserviert ist – erscheint die Unterscheidung von Eichtrans-
formationen erster und zweiter Art, die in der Lagrange’schen Formulierung beide auf die
lokalen Felder der Theorie angewandt werden, also durchaus sinnvoll zu sein.

In einer Quantenfeldtheorie mit indefiniter Metrik existieren nun unter der Voraussetzung
einer fixierten Eichung zwei Signaturen für das Phänomen der spontanen Symmetriebre-
chung: Prinzipiell tritt für jede gebrochene Symmetrie notwendigerweise eine Singularität der
Form δ(p2) in der Fourier-Zerlegung von Erwartungswerten lokaler Operatoren auf. Dies ist
die Aussage des generalisierten Goldstone-Theorems [Str77]. Falls die zugehörigen lokalen
Generatoren nun mit Eichtransformationen erster Art assoziiert sind, so liefern diese Singu-
laritäten aber keinen Beitrag bei der Berechnung physikalischer Matrixelemente und führen
insbesondere nicht zum Auftreten spin- und masseloser Anregungen im Hilbert-Raum der
physikalischen Zustände. In diesem Fall geschieht die spontane Symmetriebrechung durch
den Higgs-Mechanismus. Für alle anderen Generatoren, die nicht mit G assoziiert werden
können, verläuft die spontane Symmetriebrechung mittels des Goldstone-Mechanismus und
ist durch das Auftreten von masselosen Goldstone-Bosonen im physikalischen Spektrum der
Theorie charakterisiert. Diese finden sich bei der Untersuchung der spektralen Dichte ρ(µ2)
einer Källén-Lehmann-Darstellung (siehe beispielsweise [Wei95], Kapitel 10.7) der zugehöri-
gen Propagatoren als δ(µ2)−Singularität wieder. Besitzt die Theorie hingegen ein mass gap,
so verschwindet die Spektraldichte unterhalb des Quadrats der Masse mp der niedrigsten
Anregung und es tritt eine Lücke zwischen µ2 = m2

p und der Schwelle für Mehrteilchen-
zustände µ2 = 4m2

p auf. In diesem Zusammenhang ist es wichtig festzuhalten, dass im Falle
des Higgs-Mechanismus Aussagen über das Verhalten derjenigen Eichbosonen, die mit den
ungebrochenen Generatoren von G assoziiert sind, nur unter sehr speziellen Voraussetzungen
möglich sind [Str77]. Wichtig scheint dabei in jedem Fall die abelsche oder nicht-abelsche
Natur der residuellen Symmetriegruppe zu sein. Beispielsweise lassen sich die Gluonen einer
reinen Yang-Mills-Theorie auf Basis einer Eichgruppe G zwar ebenfalls mit den Generato-
ren einer zugehörigen ungebrochenen Symmetrie G erster Art assoziieren, nicht-perturbative
Untersuchungen einer SU(2)−Eichtheorie in Landau-Eichung haben aber gezeigt, dass indivi-
duelle Gluonen nicht im physikalischen Spektrum der Theorie auftreten, was sich am Verlust
der Positivität der gluonischen Spektraldichte ρ(µ2) ablesen lässt [LRG02] und demWirken ei-
nes Confinement-Mechanismus zugeschrieben wird. Im physikalisch noch interessanteren Fall
G = SU(3) hat sich außerdem gezeigt, dass die niedrigsten eichinvarianten (und somit phy-
sikalischen) Anregungen, die sogenannten glue balls, eine endliche Masse aufweisen [MT89].
Offensichtlich ist also auch bei der Untersuchung des Phänomens der spontanen Symme-
triebrechung im Kontext nicht-abelscher Eichtheorien die Verwendung nicht-perturbativer
Methoden durchaus angezeigt.

Wählen wir zu diesem Zweck die Gittersimulation einer diskretisierten Version der interes-
sierenden Quantenfeldtheorie, so führen die oben angestellten Überlegungen auf das folgende
Vorgehen: Um das physikalische Spektrum der Theorie studieren zu können, müssen eichin-
variante Operatoren konstruiert werden, die in der Lage sind, sowohl die verschiedenen inter-
essierenden physikalischen Zuständs bezüglich ihrer Quantenzahlen, als auch den jeweiligen
Grundzustand von möglichen angeregten Zuständen zu unterscheiden. Die Konstruktion der-
artiger Operatoren, die in Kapitel 4.7 noch ausführlicher diskutiert werden wird, ist im Prinzip
immer möglich, oft aber mit erheblichem Aufwand verbunden [BB83]. Eine Alternative stellt
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die Fixierung einer vorteilhaft gewählten Eichung und die anschließende Untersuchung von
Propagatoren dar, die zu in eben dieser Eichung definierten Feldern gehören. Ist darüber
hinaus auch die Beobachtung des Phänomens der spontanen Symmetriebrechung selbst von
Interesse, so wird eine Eichfixierung aufgrund des Theorems von Elitzur sogar unumgänglich.
Die Bedeutung der Gruppe G für den Higgs-Mechanismus in Eichtheorien wurde bereits dis-
kutiert und gibt einen wichtigen Hinweis für die Wahl einer passenden Eichung. Wird diese
nämlich so gewählt, dass der Theorie nach Eichfixierung nur noch eine Invarianz unter den
zugehörigen globalen Transformationen (erster Art) verbleibt, so kann die spontane Sym-
metriebrechung im thermodynamischen Limes direkt anhand des Transformationsverhaltens
des Vakuumzustands χ0 studiert werden. Zu beachten ist dabei, dass dieses Vorgehen keine
eindeutige Lokalisierung einer Grenze zwischen einer symmetrischen und unsymmetrischen
Phase der Theorie zulässt [CG08], sondern je nach Wahl von G und eines zugehörigen Ord-
nungsparameters die spontane Symmetriebrechung an verschiedenen Stellen im Phasendia-
gramm angezeigt wird. Außerdem wurde bereits erwähnt, dass bei Untersuchungen auf einem
endlichen Gitter noch besondere Vorkehrungen getroffen werden müssen um zu verhindern,
dass ein mögliches Signal für vorliegende spontane Symmetriebrechung bei der Berechnung
von Erwartungswerten wieder verloren geht. Diesen Punkt werden wir bei der Diskussion
der Fixierung einer geeigneten Eichung zur Bestimmung der residuellen Symmetrien einer
SU(3)−Eichtheorie mit einem skalaren Feld in adjungierter Darstellung in Kapitel 4.4 wie-
der aufgreifen.

Bevor wir uns jedoch der numerischen Simulation dieser Theorie in euklidischer Formulierung
auf dem Gitter zuwenden werden, soll zunächst noch das störungstheoretisch zu erwartende
Verhalten der zugehörigen Theorie im Minkowski-Raum diskutiert werden.

4.3 SU(3)−Yang-Mills-Theorie mit Skalarfeld in adjungierter
Darstellung

Die Dynamik der SU(3)−Eichtheorie mit einem skalaren Feld Φ(x) in adjungierter Darstel-
lung wird in der Kontinuumsformulierung auf dem Minkowski-RaumM4 von der Lagrange-
dichte

L(x) = −1

2
tr
[
Fµν(x)F

µν(x)
]
+tr

[
DµΦ(x)D

µΦ(x)
]
−m2 tr

[
Φ2(x)

]
−Λ

(
tr
[
Φ(x)2

])2
(4.26)

bestimmt. Der nicht-abelsche Feldstärketensor und die kovariante Ableitung sind dabei ge-
geben durch

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− ig [Aµ(x), Aν(x)] (4.27)

DµΦ(x) = ∂µΦ(x)− ig [Aµ(x),Φ(x)] . (4.28)

Die Masse des skalaren Feldes wird mitm bezeichnet, die Stärke der Kopplung von Eichfeldern
an Skalarfelder wird durch die Kopplungskonstante g parametrisiert und die Selbstkopplungs-
konstante der Skalarfelder bezeichnen wir mit Λ. Bei all diesen Größen handelt es sich um
nackte (bare), d.h. nicht renormierte Konstanten. Sowohl die Feldstärke, als auch das ska-
lare Feld, sowie die kovariante Ableitung sind algebrawertige Größen und können nach den
hermiteschen Generatoren T a der zugehörigen Lie-Algebra su(3) der Gruppe G entwickelt
werden. Die Konventionen für deren Normierung und weitere wichtige Relationen finden sich
im Anhang D.2.
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4.3.1 Störungstheoretische Analyse

Die durch (4.26) beschriebenen Theorie ermöglicht für Λ > 0 und negative Werte von m2

das Auftreten des Higgs-Mechanismus, bzw. unter der Annahme einer fixierten Eichung auch
das Phänomen der spontanen Symmetriebrechung. Als Ergebnis einer Analyse auf tree level
zeigt sich, dass das Minimum des Potentials nun für

tr
[
Φ2
0(x)

]
= −m2/2Λ (4.29)

angenommen wird. Diese Analyse vernachlässigt jedoch gänzlich den Einfluss von Quan-
tenfluktuationen, welche zu einer Modifizierung des Potentials führen14 und im Rahmen
der numerischen Simulation der Theorie berücksichtigt werden können. Die Bedingung
(4.29) entspricht der bereits diskutierten Voraussetzung der Existenz eines nicht-trivialen
Eichorbits von Minima des Potentials für die eichinvariante Formulierung des Higgs-Phäno-
mens [FMS81], wobei die Orientierung des Skalarfeldes Φ0(x) in der Algebra unbestimmt
bleibt. Dies stellt keinen Widerspruch zum Theorem von Elitzur dar, da die Ausführung des
Funktionalintegrals im Zuge der Quantisierung der Theorie einer Integration über Eichorbits
entspricht und folglich der Erwartungswert des kovariant konstanten Skalarfeldes verschwin-
det [O’R90]. Die spontane Symmetriebrechung geschieht erst durch Festlegung einer bestimm-
ten Orientierung von Φ0(x) ∈ LG durch Vorgabe einer Eichbedingung. Dadurch kann das
Skalarfeld einen Vakuumerwartungswert entwickeln und dies ist der Ausgangspunkt einer
störungstheoretischen Diskussion der Massenmatrix für die Eichbosonen in einer Realisie-
rungsphase der Theorie mit gebrochener Symmetrie.

Wählen wir die durch Gleichung (4.23) bestimmte unitäre Eichung und nehmen wir ferner
an, dass das Poincaré-invariante Vakuum Φ0 der Theorie ein nicht-triviales Minimum des
effektiven Potentials darstellt, so lässt sich das Teilchenspektrum der Theorie durch Untersu-
chung kleiner Fluktuationen um Φ0 bestimmen. Zu diesem Zweck wird das Skalarfeld Φu(x)
gemäß

Φu(x) = Φ0 + ϕ(x) , 〈ϕa(x) 〉 = 0 (a = 1 . . . 8) (4.30)

verschoben und eine Entwicklung von (4.26) nach den neuen Feldern ϕa(x) durchgeführt.
Bereits in unterster Ordnung der Störungstheorie findet sich ein Beitrag zu einer effektiven
Lagrangedichte der Form

∆L(x) =
1

2
m 2
abA

a
µ(x)A

µ b(x) , m 2
ab := − g2 [ta]nm[tb]nl[Φ0]

m[Φ0]
l . (4.31)

Dieser kann als effektiver Massenterm für die Eichfelder Aaµ(x) interpretiert werden, da die
Generatoren [ta] nach Voraussetzung imaginär und anti-symmetrisch sind, und die Matrix
m 2
ab folglich reell, symmetrisch und positiv ist:

m2
ab ca cb = g2

∑

n

(
ca i[t

a]nm[Φ0]
m
)2
≥ 0 . (4.32)

Eine Diagonalisierung dieser Matrix liefert schließlich die Masseneigenzustände als Linear-
kombinationen der ursprünglichen Eichfelder, wobei sich die mit den ungebrochenen Ge-
neratoren verknüpften reellen Linearkombinationen als Eigenzustände zum Eigenwert Null
ergeben.

14Vergleiche die Diskussion zur Konvexität des effektiven Potentials in Kapitel 4.2
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Wie bereits erwähnt, lässt sich die Gruppe H der residuellen Symmetrien in einer konkreten
Eichung direkt anhand des Transformationsverhaltens von Φ0 bestimmen. Für ein skalares
Feld in adjungierter Darstellung (D.1) muss dabei nach Gleichung (4.16) die Relation

Φ0 = hΦ0 h
−1, ∀h ∈ H , (4.33)

erfüllt sein. Wählen wir nun als Basis der Lie-Algebra su(3) die in Anhang D.2 angegebene
Gell-Mann-Darstellung, so lässt sich die Diskussion weiter konkretisieren. Die Massenmatrix
nimmt dabei die Gestalt

m 2
ab := − 2 g2 tr

(
[T a,Φ0][T

b,Φ0]
)

(4.34)

an, wobei Φ0 in unitärer Eichung maximal diagonal ist und die Darstellung

Φ0 = φ3 T 3 + φ8 T 8 (4.35)

besitzt. Je nach Gestalt des Vakuumerwartungswertes Φ0 können nun zwei verschiedene Sze-
narien eintreten: Im Allgemeinen wird die Theorie eine residuelle U(1) × U(1)−Symmetrie
aufweisen, da jede der durch die beiden Generatoren T 3 und T 8 der Cartan-Subalgebra ausge-
zeichneten Richtungen mit einer ungebrochenen U(1)−Symmetrie identifiziert werden kann.
Falls aber zusätzlich noch für die Komponente φ3 = 0 gilt, so erweitert sich die residuelle
Symmetriegruppe auf H = SU(2) × U(1), was an Gleichung (4.33) leicht zu erkennnen ist.
Die mit den Generatoren T 1, T 2, T 3 sowie T 8 assoziierten Eichfelder bleiben nach Gleichung
(4.34) daher masselos, die restlichen in dieser Eichung definierten Eichfelder erhalten ver-
mittels des Higgs-Mechanismus eine Masse m2 = 3g2tr[Φ2

0]/2. Eine analoge Untersuchung
im skalaren Sektor der Theorie zeigt in diesem Fall, dass die Fluktuationen des Skalarfeldes
ϕ(x) := ϕ8(x) um Φ0 mit einem massiven Boson in Verbindung gebracht werden können, für
dessen Masse m2

ϕ = 4Λtr[Φ2
0] gilt.

Neben der SU(3)−Eichsymmetrie weist die durch (4.26) beschriebene Theorie noch eine
globale Reflexionssymmetrie der Form

Φ(x) 7→ −Φ(x) ∀x ∈ M4 (4.36)

auf. In welchen Regionen des Phasendiagramms diese globale diskrete Symmetrie realisiert
oder spontan gebrochen ist, soll ebenfalls im Rahmen der numerischen Untersuchung des
effektiven Potentials der Theorie geklärt werden. Insbesondere stellt sich die Frage, ob eine
dadurch bestimmte Grenzlinie mit einer Unterteilung des Phasendiagramms in Bereiche mit
gebrochener und ungebrochener G−Symmetrie übereinstimmt, da in letzterem Falle ja eine
Eichfixierung notwendig wird und die Lage der so bestimmten Phasengrenze wie bereits dis-
kutiert im Allgemeinen von der Wahl der Eichung und dem betrachteten Ordnungsparameter
abhängt.

Es zeigt sich also bereits im Rahmen des perturbativen Zugangs, dass mehrere Möglichkeiten
der spontanen Brechung der vollen SU(3)−Symmetrie der auf (4.26) basierenden Theorie
bestehen. Wie jedoch bereits ausgeführt wurde, ist die Gestalt der residuellen Symmetrie
eine von der Dynamik der Felder abhängige Frage, welche nicht allein durch den Einsatz
von störungstheoretischen Methoden geklärt werden kann. Unser Zugang der Wahl wird die
numerische Monte-Carlo-Simulation einer diskretisierten Version des euklidischen Analogons
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von (4.26) sein, um zu klären, ob eine Realisierungsphase der zugehörigen quantisierten Theo-
rie mit einer SU(2)×U(1)−Symmetrie existiert, deren Untersuchung einen wichtigen Beitrag
zum Verständnis der Grundlagen der von Glashow, Salam undWeinberg formulierten Theorie
der elektroschwachen Wechselwirkung sowie möglicher Alternativen dazu liefern sollte.

4.3.2 Diskretisierte Formulierung der Quantenfeldtheorie

Die Zustandssumme Z der von uns betrachteten euklidischen Quantenfeldtheorie auf dem
toroidalen Gitter T 4 ist gegeben durch

Z =

∫
DU DΦ exp

{
− S[U,Φ]

}
. (4.37)

Die Erwartungswerte interessierender Observablen werden also bezüglich des normierten
Gibbs-Maßes

dµ(U,Φ) = DU DΦ Z−1 exp
{
− S[U,Φ]

}
(4.38)

berechnet, wobei DU das invariante Haarsche Maß auf der Gruppenmannigfaltigkeit der
SU(3) für jeden Link des Gitters bezeichnet, und für den Anteil an der Integration der
skalaren Felder gilt

DΦ =
∏

x

8∏

a=1

dφa(x), φa(x) ∈ R . (4.39)

Auf einem endlichen Gitter handelt es sich bei (4.38) um ein wohldefiniertes Maß, wobei das
Wirkungsfunktional S[U,Φ] in Gleichung (4.38) in drei Anteile zerfällt:

S[U,Φ] = SG[U ] + SHop[U,Φ] + SPot[Φ] . (4.40)

Der erste Term stellt die Konkretisierung der von Wilson [Wil74] eingeführte Wirkung einer
SU(N) Yang-Mills-Theorie auf Basis von Plaquetten-Variablen für den Fall N = 3 dar

SG[U ] = β
∑

P

(
1− 1

N
Re
{
tr[UP ]

})
, β =

2N

g2
, (4.41)

zu deren Konstruktion über alle orientierte Plaquetten P des Gitters summiert wird. Der
zweite Term

SHop[U,Φ] = −2κ
∑

x

D∑

µ=1

tr
[
Φ(x)Uµ(x)Φ(x+ µ)U †

µ(x)
]

(4.42)

verknüpft die Freiheitsgrade des Eichsektors mit denen des Skalarfeldsektors der Theorie.
Die Bedeutung dieses in der englischsprachigen Literatur als hopping term bezeichneten Aus-
drucks soll hier kurz erläutert werden. Für ein skalares Feld Φ(x), das sich unter der adjun-
gierten Darstellung einer Gruppe G transformiert, gilt wie in Anhang D.1 erläutert

Φ(x) → Φ′(x) = Ω(x)Φ(x)Ω†(x), Ω(x) ∈ G , (4.43)

und für ein solches Feld definiert man als Verallgemeinerung der üblicherweise bei der Dis-
kretisierung von kinetischen Termen auftretenden Vorwärts- bzw. Rückwärtsableitungen die
folgenden Operatoren:

D+
µΦ(x) :=

1

a

[
Uµ(x)Φ(x+ µ)U †

µ(x)− Φ(x)
]
, (4.44)

D−
µΦ(x) :=

1

a

[
Φ(x)− U †

µ(x− µ)Φ(x− µ)Uµ(x− µ)
]
. (4.45)
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Diese verhalten sich per Konstruktion kovariant unter Eichtransformationen:

D+
µΦ(x) → Ω(x) D+

µΦ(x) Ω
†(x), D−

µΦ(x) → Ω(x) D−
µΦ(x) Ω

†(x) . (4.46)

Eine Potenzreihenentwicklung der Paralleltransporter Uµ(x), sowie der skalaren Felder, wel-
che im Abstand einer Gitterkonstanten a zum Gitterpunkt x auftreten, führt im Falle von
(4.44) bis auf Korrekturen von O(a) auf (4.28), so dass dieser Operator eine mögliche Approxi-
mation der kovarianten Ableitung für adjungierte skalare Felder einer Kontinuumsfeldtheorie
darstellt und sich im Limes a→ 0 auf diese reduziert. Die Behandlung von (4.45) verläuft ana-
log. Mit diesen Definitionen findet man unter Verwendung von periodischen Randbedingun-
gen, die wir bei der Konstruktion der Feldtheorie auf dem hyperkubischen (bzw. toroidalen)
Gitter T 4 zugrunde legen:

a4
∑

x

D∑

µ=1

tr
[
D+
µΦ(x)D

+
µ Φ(x)

]
= a2

{
− 2

∑

x

D∑

µ=1

tr
[
Φ(x)Uµ(x)Φ(x+ µ)U †

µ(x)
]

+ 2D
∑

x

tr
[
Φ2(x)

] }
. (4.47)

Es lässt sich ebenfalls leicht zeigen, dass

∑

x

∑

µ

tr
[
D+
µΦ(x)D

+
µΦ(x)

]
= −

∑

x

∑

µ

tr
[
Φ(x)D−

µD
+
µ Φ(x)

]
, (4.48)

was die Definition des kovarianten d’Alembert-Operators auf dem Gitter motiviert:

2 xy := −
∑

µ

D−
µD

+
µ δxy . (4.49)

Der kinetische Term für skalare Felder, die sich unter der adjungierten Darstellung transfor-
mieren, besitzt auf dem Gitter daher die Gestalt

a4
∑

x

∑

µ

tr
[
D+
µΦ(x)D

+
µΦ(x)

]
= a4

∑

x,y

tr [ Φ(x)2 xyΦ(y) ] . (4.50)

Unter Hinzunahme des dritten in Gleichung (4.40) auftretenden Terms

SPot[Φ] =
∑

x

tr
[
Φ2(x)

]
+ λ

(
tr
[
Φ2(x)

])2
, (4.51)

der neben der Selbstwechselwirkung des skalaren Feldes auch einen quadratischen Term
enthält, dessen Koeffizient in der Kontinuumsformulierung mit dem Quadrat der (nackten)
Masse von Φ(x) identifiziert wird, kann schließlich durch eine Reskalierung der Form

Φ(x) → Φ′(x) :=
√
κΦ(x) (4.52)

gezeigt werden, dass der Kontinuumslimes der nun durch S[U,Φ′] bestimmten Theorie durch
genau diejenige euklidische Feldtheorie gegeben ist, welche aus (4.26) durch Übergang von
M4 in den euklidischen Raum E4 durch inverse Wick-Rotation hervorgeht [Rot97], sofern
dabei die Relationen

κ = (2D +m2)−1 sowie λ = κ2 Λ (4.53)



144 4.4. Fixierung der Eichfreiheit: Landau-Eichung und globale unitäre Eichung

gelten. Offenbar lässt sich also (4.42) mit einem Teil der Wirkung (4.51) zu einer Darstellung
der kinetischen Energie des skalaren Feldes Φ(x) kombinieren. Dies ist der Grund dafür, dass
κ üblicherweise als hopping parameter bezeichnet wird.

Eine für die Konvergenz der zu berechnenden Pfadintegrale wichtige Forderung bei der Kon-
struktion einer euklidischen Feldtheorie ist die sogenannte Stabilitätsbedingung, welche be-
sagt, dass der Potentialbeitrag zur euklidischen Wirkung (4.51) von unten durch eine Pa-
rabel mit geeignet gewählten Koeffizienten beschränkt sein muss [Roe91]. Als Konsequenz
dieser Bedingung können in der durch Gleichung (4.37) definierten Theorie Terme der Form
tr[Φm(x)] zu ungeraden Potenzen m > 2n + 1, (n ∈ N) nicht auftreten. Die Anwesenheit
eines Terms proportional zu tr

[
Φ3(x)

]
wäre zwar prinzipiell mit der Stabilitätsbedingung

vereinbar, würde jedoch zur expliziten Brechung der globalen Reflexionssymmetrie (4.36)
führen. Da ein solcher Term nun aber in der Lagrangedichte (4.26) bzw. der zugehörigen
Wirkung auf dem Gitter (4.40) nicht auftritt, eröffnet sich die Möglichkeit, die Theorie auf
ein (vierdimensionales) Spin-Glas-System abzubilden, welches mithilfe des eichinvarianten
Cluster-Algorithmus (vgl. Kapitel 3.3) simuliert werden kann. Die Vorzüge dieser Methode
bei der Reduktion von Autokorrelationen wurden bereits in Kapitel 3 diskutiert. Außerdem
haben wir mit tr

[
Φ3(x)

]
zugleich einen Operator gefunden, der als Grundlage für die Kon-

struktion eines Ordnungsparameters dienen kann, der in der Lage ist, die spontane Brechung
der Reflexionssymmetrie (4.36) anzuzeigen. In Kapitel 4.5 werden wir die Ergebnisse und
Details unserer numerischen Untersuchungen vorstellen, zuvor soll jedoch noch die Fixierung
einer Eichung besprochen werden, die es uns ermöglichen soll, die in Kapitel 4.3.1 diskutierten
perturbativen Erwartungen zu überprüfen.

4.4 Fixierung der Eichfreiheit: Landau-Eichung und globale
unitäre Eichung

Zu diesem Zweck fixieren wir in einem ersten Schritt die Landau-Eichung durch iterative
Minimierung des eichfixierenden Funktionals

FU [Ω] =
∑

x

4∑

µ=1

Re
{
tr
[1− UΩ

µ (x)
]} Ω−→ min. (4.54)

Für eine detaillierte Diskussion des zugehörigen Algorithmus wird dabei auf Kapitel C.1 im
Anhang verwiesen. Offensichtlich erlaubt die Bedingung (4.54) immer noch globale Trans-
formationen Ω ∈ SU(3), so dass durch Fixierung der Landau-Eichung gerade das in Kapitel
4.2.2 diskutierte Ziel der Einschränkung von G auf G erreicht wird. In der Kontinuums-
formulierung lautet die lokale Eichfixierungsbedingung ∂AΩ(x) = 0 und es ist offensicht-
lich, dass die Landau-Eichung mit globalen Transformationen kompatibel ist. Bei der Su-
che nach einem Ordnungsparameter für die spontane Brechung dieser Restsymmetrie erster
Art lassen wir uns von der zunächst in [Lan05] angegebenen Konstruktion eines Operators
leiten, der sowohl bei der Untersuchung einer SU(3)−Eichtheorie, als auch im Falle einer
SU(2)−Eichtheorie [CG08] mit Skalarfeld in fundamentaler Darstellung verwendet wurde.
Dabei handelt es sich um das globale Skalarfeld

Φ :=
1

V4
∑

x

Φ(x), Φ(x) = φa(x)T a , (4.55)
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Abbildung 4.1: Die Weyl-
Reflexionen W (3) und W (8)

sowie Rotationen um Viel-
fache von α = π

3 überführen
das adjungierte Skalar-
feld in die fundamentale
Domäne F.

dessen Betrag in der symmetrischen Phase verschwindet, bei vorliegender Symmetriebre-
chung jedoch auch im thermodynamischen Limes V4 → ∞ einen endlichen Wert annimmt.
Die Vakuummannigfaltigkeit ist dabei die Menge aller Konfigurationen, welche das effektive
Potential minimieren:

MΦ0 = {Φ | Veff(Φ) = min.} . (4.56)

Diese ist nach Gleichung (4.12) in erster Ordnung Störungstheorie durch all jene Konfigura-
tionen gegeben, die der Relation tr[Φ2

0] = −m2/2Λ genügen. Offensichtlich bedeutet spontane
Brechung der Symmetrie nun, dass vom Skalarfeld irgendein Punkt auf der durch diese Re-
lation beschriebenen S7 mit endlichem Radius gewählt wird. Im thermodynamischen Limes
gibt es keine Tunnelamplitude zwischen den verschiedenen Vakua, die durch Rotationen auf
der S7 auseinander hervorgehen. Folglich gilt in diesem Fall Φ0 = 〈Φ〉 6= 0. Für einen er-
godischen Algorithmus auf einem endlichen Gitter hingegen wird dies bei jeder Messung ein
anderer Punkt sein, so dass folglich stets 〈Φ〉 ≡ 0 zu erwarten ist. Entweder muss daher wie
in [Lan05,CG08] der Erwartungswert der Norm von Φ betrachtet werden, oder eine weitere
Eichfixierungsbedingung gestellt werden.

Da wir nicht nur daran interessiert sind, die residuelle Symmetriegruppe H, sondern auch
ihre Einbettung in G bestimmen zu können, wählen wir die zweite Variante. Zu diesem Zweck
führen wir noch eine weitere globale Transformation Ωu ∈ SU(3) durch, mithilfe derer das
globale Skalarfeld (4.55) diagonalisiert wird, sowie mögliche Weyl-Reflexionen in der von T 3

und T 8 aufgespannten Ebene fixiert werden, in der das diagonalisierte Skalarfeld (4.35) zu
liegen kommt. Eine Matrix [Ωu]nm, die eine solche Transformation vermittelt, wird aus den
Eigenvektoren des hermiteschen globalen Feldes konstruiert und die Drehung desselben in
die fundamentale Domäne F entspricht der Festlegung einer möglichen Permutationen dieser
Eigenvektoren. Eine Illustration der Situation findet sich in Abbildung 4.1.

Im Detail wird dabei folgendes Verfahren angewandt:

• Die drei reellen Eigenwerte λi ∈ R von Φ0 werden in absteigender Reihenfolge der
Größe nach angeordnet:

λ1 ≥ λ2 ≥ λ3 .

• Gilt nun λ2 < 0, so werden die Eigenwerte λ1 und λ3 miteinander vertauscht.
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Es ist leicht zu überprüfen, dass die so angeordneten und wiederum mit λi bezeichneten
Eigenwerte (i = 1, 2, 3) der Relation

|λ1 − λ2| ≤ |λ2 − λ3| ≤ |λ1 − λ3| (4.57)

genügen. Die Eigenwerte sind invariant unter globalen Transformationen, was die Invari-
anz der Norm von Φ unter derartigen Transformationen widerspiegelt. Wird aber die oben
beschriebene Eichung fixiert, die wir fortan als globale unitäre Eichung bezeichnen wollen,
so besteht aufgrund der gewählten Anordnung der Eigenwerte folgende Verbindung zu den
nicht-verschwindenden Komponenten von (4.55):

φ3 = λ1 − λ2
φ8 =

√
3 (λ1 + λ2) . (4.58)

Dabei ist zu beachten, dass die globale Reflexionssymmetrie (4.36) durch diese erweiterte
Eichfixierungsbedingung nicht fixiert wird. Der Sinn der Vorschrift, nach Anordnung der
Eigenwerte im Falle λ2 < 0 eine Permutation von λ1 und λ3 durchzuführen, besteht darin,
dass auf diese Weise gewährleistet wird, dass die Position der beiden Eigenwerte auf der
Diagonalen des Skalarfeldes, deren Abstand zueinander vom Betrag her minimal ist, stets
dieselbe bleibt. Im Gegensatz zur der in [GH84] vorgestellten Methode vereinfacht dieses
Vorgehen die Identifizierung der residuellen Symmetriegruppe erheblich. Auf diesen Punkt
wird nochmals ausführlich im Zuge der Konstruktion eines eichinvarianten Testzustands in
Kapitel 4.6 eingegangen.

4.5 Numerische Ergebnisse zur Phasenstruktur

Aufgrund der Relation (4.53) ist zu erwarten, dass das Phänomen der spontanen Symme-
triebrechung für κ ≥ 1/8 auftreten sollte. Da dieses Ergebnis jedoch durch eine Analyse
des Potentials auf Ebene der klassischen Feldtheorie zustande kam, steht zu erwarten, dass
sich die Lage des kritischen Punktes κc durch Quantenfluktuationen, in Abhängigkeit von
der Wahl der Parameter β und λ, verschieben wird. Das perturbativ gewonnene Ergebnis
vermag also bestenfalls eine Orientierungshilfe bei der Suche nach dem Übergangspunkt von
der Wigner-Weyl-Phase in die Phase gebrochener Symmetrie zu bieten. Eine erste nicht-
perturbative Untersuchung der Theorie wurde von Gupta und Heller [GH84] durchgeführt.
Deren Ergebnisse ließen erstmals quantitative Aussagen zur Phasenstruktur der Theorie zu,
wenngleich die Autoren eingestehen mussten, dass eine eindeutige Identifizierung der resi-
duellen Symmetriegruppe ohne Fixierung einer Eichung schwierig sei und sich die Effekte
der in dieser Arbeit verwendeten Gittergrößen auf die Lage der Phasengrenzen bei einer von
uns durchgeführten Überprüfung als erheblich herausstellten. Dennoch geben die in [GH84]
berichteten Resultate wertvolle Hinweise auf den für unsere Zwecke interessierenden Parame-
terbereich.

Nach Fixierung der beiden Kopplungskonstanten β und λ auf die Werte β = 6.0 und λ = 0.01
wurde in einer ersten Simulation auf einem Gitter der Größe 84 im Intervall κ ∈ [0.14, 0.24]
nach einem Signal für einen Phasenübergang gesucht. Zu diesem Zweck wurde die verbundene
skalare Korrelationsfunktion

CΦ(|x− y|) = 〈na(x)na(y) 〉c , nb(x) = ||Φ(x)||−1 φb(x) (4.59)
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für jeden untersuchten Wert des Parameters κ in 250 thermalisierten und eichfixierten Kon-
figurationen gemessen. Zur Erzeugung dieser Ensembles wurde der im Anhang B.3 beschrie-
bene Hybrid-Heatbath-Algorithmus in Kombination mit dem Cluster-Update-Algorithmus
(siehe Kapitel 3) verwendet, wobei für die Aktualisierung der skalaren Felder der in Ab-
schnitt B.3.2 dargelegte Algorithmus verwendet wurde. Letzterer stellt eine Erweiterung und
Verallgemeinerung des ursprünglich von Bunk [Bun95] vorgeschlagenen Verfahrens zur Si-
mulation der elektroschwachen Eichtheorie auf den Fall von Materie dar, die sich unter der
adjungierten Darstellung einer Eichgruppe transformiert. Zur Thermalisierung wurden da-
bei ausgehend von einer geordneten (cold start) Konfiguration 500 sogenannte supersweeps
durchgeführt, wobei ein supersweep definiert wurde als Kombination von drei gewöhnlichen
Heatbath-Aktualisierungsdurchgängen aller Links und Skalarfelder des Gitters, gefolgt von
jeweils einem Durchgang von mikrokanonischen Reflexionen (B.4) im Eich- und Skalarfeld-
sektor. Neben den geordneten Startkonfigurationen wurden ebenfalls völlig zufällig erzeugte
(hot start) Anfangskonfigurationen verwendet. Durch Überwachung der Entwicklung von Ob-
servablen wie der mittleren kinetischen Energie des Skalarfeldes oder der mittleren Plaquette
konnte nachgewiesen werden, dass sich das zu simulierende System bei Verwendung dieses
Algorithmus unabhängig von der Wahl der verwendeten Anfangskonfiguration in ein und
denselben Gleichgewichtszustand entwickelt, und dass dieser für alle betrachteten Werte von
κ bereits nach einer Thermalisierungsdauer von höchstens 100 supersweeps erreicht wird.
Die Akzeptanzraten für die Vorschläge, die mittels des Heatbath- sowie des Overrelaxation-
Algorithmus im Eichfeldsektor generiert wurden, variierten im untersuchten κ−Intervall in
beiden Fällen zwischen 0.8 und 0.5, im Skalarfeldsektor hingegen fielen die Akzeptanzraten
in keinem der beiden Fällen unter 0.9. Dieses Ergebnis werten wir als Erfolg unserer Analyse
und der in Anhang B.3.2 vorgestellten Adaption des Algorithmus von Bunk an den vorlie-
genden Fall, die es uns ermöglicht hat, im gesamten betrachteten Intervall des Parameters κ
stets die optimalen Kandidaten für den Update der Skalarfelder zu generieren und somit die
Akzeptanzrate zu maximieren. Die Konfigurationen, welche für die Ensembles zu den ver-
schiedenen Werten des hopping parameter κ ausgewählt wurden, waren dabei jeweils durch
zehn supersweeps in der erzeugenden Markov-Kette voneinander getrennt und das Abbruch-
kriterium bei der iterativen Fixierung der Eichung wurde auf δ2 < 10−6 festgelegt.

Der Erwartungswert der (normierten) integrierten Korrelationsfunktion liefert die (normierte)
Korrelationslänge ξ des Skalarfeldes:

ξ =
1

N2

∑

x,y

CΦ(|x− y|) , N := N3
s ×Nt . (4.60)

Das Ergebnis der Messungen ist in Abbildung 4.2 zu sehen. In der symmetrischen Phase sind
die Skalarfelder völlig unkorreliert und die Korrelationslänge (4.60) verschwindet. Wird nun
der Wert des Parameters κ weiter vergrößert, so beobachtet man für κ ≃ 0.18 ein rapides An-
wachsen von ξ, was den Übergang der Theorie in eine Phase zunehmender Ordnung anzeigt.
Die Korrelationen zwischen den Skalarfelder an verschiedenen Orten x des Gitters nehmen
zu und im Grenzfall völliger Kohärenz der Felder ist ein Divergieren der Korrelationslänge zu
erwarten. Auf einem endlichen Gitter bedeutet dies, dass der Wert der Korrelationslänge ξ
auf die Ausdehnung des gesamten Gitters anwachsen wird. Durch die in (4.60) vorgenomme-
ne Normierung kann ξ einen Maximalwert von eins annehmen und diesem Grenzwert nähert
sich die Korrelationslänge für zunehmende Werte von κ in der Tat an. Zur Überprüfung un-
serer Ergebnisse wurde für dieselben Parameter eine weitere Simulation mittels eines reinen
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Abbildung 4.2: Das Verhal-
ten der integrierten Korre-
lationsfunktion des Skalarfel-
des (4.60) als Funktion des
Parameters κ. Die zugehöri-
gen Ensembles wurden in die
globale unitäre Eichung ge-
bracht, welche in Kapitel 4.4
beschrieben wird.

Gitter: 84, β = 6.0, λ = 0.01.

Metropolis-Algorithmus nach Maßgabe der in [GH84] vorgestellten Methode durchgeführt.
Unsere in Abbildung 4.2 gezeigten Ergebnisse konnten dabei bestätigt werden, jedoch waren
bei der Verwendung des Metropolis-Algorithmus in etwa doppelt so viele Iterationen wie bei
Verwendung des Heatbath-Algorithmus nötig, um das thermische Gleichgewicht zu erreichen.
Aus diesem Grund wurde in allen weiteren Simulation dem Heatbath-Algorithmus der Vorzug
gegeben. Weitere Simulationen auf einem 84 Gitter, die für die Parameterkombination β = 6.0
und λ = 0.001 durchgeführt wurden, haben gezeigt, dass sich der kritische Punkt zu einem
Wert des Hopping Parameters von κc ≃ 0.16 verschiebt. Außerdem scheint die Ordnung des
Phasenübergangs bei einer Verkleinerung der Selbstkopplung des Skalarfeldes abzunehmen.
Beide Beobachtungen stimmen qualitativ mit den in [GH84] berichteten überein. In jedem
Fall scheint für den kritische Punkt κc der Quantentheorie κc > κcl zu gelten, wobei sich der
kritische Punkt der klassischen Theorie nach Gleichung (4.53) unabhängig von β und λ zu
κcl = 0.125 ergibt.

Zur genaueren Analyse der Phasenstruktur wurde in einem nächsten Schritt durch Simula-
tionen auf einem Gitter der Größe 104 ein feinerer Parameterbereich in der Umgebung des
für die Werte der Kopplungskonstanten β = 6.0 und λ = 0.01 bereits lokalisierten Phaseüber-
gangspunktes untersucht. Das Abbruchkriterium der Eichfixierungsroutine wurde dabei auf
δ2 < 10−12 heruntergesetzt und die für jeden untersuchten Wert des Hopping Parameters
erzeugten Ensembles enthielten nun 400 unabhängige Konfigurationen.

Der erste nicht-triviale Term, welcher als Ordnungsparameter zur Detektierung eines Pha-
senübergangs und einer damit einhergehenden spontanen Brechung der globale diskrete Re-
flexionssymmetrie (4.36) der in Gleichung (4.37) definierten Theorie herangezogen werden
kann, ist tr[Φ3(x)]. In Analogie zur mittleren Magnetisierung15 eines D = 2 dimensionalen
Ising-Modells, in dem sich die spontane Symmetriebrechung beim Übergang in die geordnete
Phase unterhalb einer kritischen Temperatur Tc (in Abwesenheit eines äußeren Magnetfeldes)
in der Auswahl einer der beiden möglichen Orientierungen (±êz) der nicht-verschwindenden

15Die Dimensionalität des Ordnungsparameters M ist n = 1.
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(a) Skalares Kondensat und Ordnungsparame-
ter der Reflexionssymmetriebrechung.
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(b) Bestimmung des kritischen Exponenten β
des Phasenübergangs.

Abbildung 4.3: (a) Lokale Observablen zur Detektierung des Phasenübergangs als Funktion
des Parameters κ. (b) Skalierungsverhalten des Ordnungsparameters 〈 |Tr[Φ3] | 〉 für κ > κc.
Gitter: 104, β = 6.0, λ = 0.01.

MagnetisierungM manifestiert, ist bei der Berechnung des Erwartungswerts von

Tr[Φ3] =
1

N

∑

x

tr[Φ3(x)] (4.61)

auf endlichen Gittern der Betrag zu bilden, da das Auftreten von Konfigurationen zu den
beiden möglichen Orientierungen der

”
mittleren Magnetisierung“ innerhalb einer Markov-

Kette im Falle eines ergodischen Algorithmus sogar gleich wahrscheinlich ist und es deshalb
zu einer Auslöschung des Signals bei der direkten Berechnung von 〈Tr[Φ3]〉 kommen würde.
Dies ist eine weitere der in Kapitel 4.2 angesprochenen Maßnahmen, die es ermöglichen, das
strenggenommen nur im thermodynamischen Limes mögliche Phänomen der spontanen Sym-
metriebrechung auch im Fall endlicher Systeme zu beobachten.

In Abbildung 4.3a finden sich die Messergebnisse des Betrags von (4.61) als Funktion von κ.
Für κ ≤ 0.179 wird die Realisierung einer symmetrischen Phase der Theorie angezeigt, für
κ ≥ 0.18 signalisieren unsere Ergebnisse bereits die spontane Brechung der globalen Reflexi-
onssymmetrie (4.36). Tatsächlich zeigt sich die Analogie von Tr[Φ3] und der mittleren Ma-
gnetisierung eines Ising-Modells in D Dimensionen auch auf quantitativer Ebene. Für T > Tc
verschwindet die MagnetisierungM im thermodynamischen Limes (N →∞), unterhalb der
kritischen Temperatur Tc kann das Verhalten vonM in der Nähe des Phasenübergangs jedoch
durch das Potenzgesetz

|M | ∝ (Tc − T )β , T < Tc (4.62)

beschrieben werden, wobei β den zugehörigen kritischen Exponenten bezeichnet. Bei der
Untersuchung der dimensional reduzierten QCD in Kapitel 3.5 konnte in Übereinstimmung
mit den in [KLR+98] berichteten Ergebnissen bereits ein Skalierungsverhalten der Form

〈 |Tr[Φ3] | 〉 ∝ (κ− κc )β , κ > κc (4.63)
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in D = 3 Dimensionen für (4.61) verifiziert werden, und zwar in guter Übereinstimmung
mit den Werten des kritischen Exponenten, die in Simulationen eines dreidimensionalen
Ising-Modells mittels Monte-Carlo-Methoden gemessen (β ≃ 0.33), oder im Rahmen einer
Hochtemperaturentwicklung (β = 0.312(3)) bestimmt werden konnten [LB91]. Im Fall D ≥ 4
sagt die Mean-Field-Theorie, welche den einfachsten Grenzfall der Landau-Ginzburg-Theorie
der Phasenübergänge darstellt, einen Wert von β = 0.5 für den kritischen Exponenten der
Magnetisierung voraus16, was in Abbildung 4.3b als gestrichelte Kurve angedeutet ist. Die
offenen blauen Symbole in derselben Abbildung geben das Verhalten des Ordnungsparame-
ters 〈|Tr[Φ3]|〉 nach Gleichung (4.63) unter der Annahme κc = 0.17939(2) wieder, was durch
weitere Simulationen im verfeinerten Intervall κ ∈ [0.1791, 0.1799] festgestellt werden konnte.
In der Nähe des kritischen Punkts (κ → κ+c ) scheinen die Daten sehr gut mit dem Ergeb-
nis der Molekularfeldanalyse des Ising-Modells übereinzustimmen. Dieses Resultat zeigt zum
einen, dass der Ordnungsparameter der globalen Reflexionssymmetriebrechung auch in D = 4
Dimensionen die Rolle der Magnetisierung eines vierdimensionalen Ising-Modell übernimmt,
und zum anderen, dass es sich bei dem Übergang, der im von uns untersuchten Bereich des
Phasendiagramms auftritt, um einen Phasenübergang zweiter Ordnung handelt. Letzteres
steht in Einklang mit den in [GH84] geäußerten Vermutungen über die Phasenstruktur des
Modells.

In Abbildung 4.3a ist auch das Verhalten des Erwartungswerts des (nicht renormierten) mitt-
leren skalaren Kondensats

Tr[Φ2] =
1

N

∑

x

tr[Φ2(x)] (4.64)

als Funktion von κ zu sehen. Das für κ ≤ κc nahezu konstante Signal interpretieren wir als
Indikator für das Vorliegen der Wigner-Weyl-Phase, für größere Werte von κ wird auch hier
eine Änderung der Realisierungsphase der Theorie durch ein rasches Anwachsen des mittleren
Quadrats der Norm des Skalarfeldes angezeigt. Durch die Einführung der Spinfreiheitsgrade
σ(x) wie in Kapitel 3.5 bietet sich ferner die Möglichkeit, das Verhalten der Größe

M =
1

N

∑

x

σ(x) (4.65)

in der Nähe des Phasenübergangs untersuchen zu können, die wir als das (normierte) mitt-
lere magnetische Moment M des Systems bezeichnen. In Abbildung 4.4a ist neben dem Er-
wartungswert des Betrages von M auch der Erwartungswert der in Kapitel 3 eingeführten
mittleren Defektdichte ρ zu sehen. Es ist zu beobachten, dass der Übergang in die Phase
der spontan gebrochenen globalen Reflexionssymmetrie (4.36) von einem Anwachsen (des
Betrags) des mittleren magnetischen Moments M begleitet wird. Schon knapp oberhalb des
Phasenübergangspunktes sind praktisch alle Spins gleich orientiert und der Maximalwert von
|M | wird fast erreicht. Die Defektdichte ρ hingegen nimmt beim Vordringen in die Phase
gebrochener Symmetrie relativ langsam ab. Es ist allerdings zu vermuten, dass ρ für größere
Werte von κ und N als die von uns in dieser Untersuchung betrachteten, schließlich auf Null
abfallen wird und somit in der Sprache der Festkörperphysik im thermodynamischen Limes
den Übergang eines frustrierten Systems, das einen Dotierungsgrad von knapp 50% aufweist,
zu einem rein ferromagnetischen (oder anti-ferromagnetischen) System anzeigt. Sowohl die

16Siehe z.B. [LB91].
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(a) Die Defektdichte ρ und der Betrag des mitt-
leren magnetischen Moments M .

λ1

λ2

λ3

(b) Aufspaltung der Eigenwerte von Φ beim
Übergang in die Phase gebrochener Symmetrie.

Abbildung 4.4: (a) Lokale Observable ρ undM als Funktion von κ. (b) Das globale Skalarfeld
Φ (4.55) ist in globaler unitärer Eichung (4.57) definiert. Gitter: 104, β = 6.0, λ = 0.01.

Dichte ρ, als auch die in Abbildung 4.3a gezeigten Größen sind dabei Messwerte eichinva-
rianter Operatoren. Dies ist insofern bedeutsam, als dass der durch das Studium besagter
Operatoren identifizierte kritische Punkt bei κc = 0.17939(2) mit dem aus der Untersuchung
eichvarianter Signale fürM bzw. ξ in globaler unitärer Eichung bestimmten kritischen Punkt
übereinzustimmen scheint.

Zuletzt soll geklärt werden, an welcher Stelle im Phasendiagramm eine spontane Brechung der
Eichsymmetrie erster Art nach Fixierung der Landau-Eichung (4.54) und anschließender glo-
baler unitärer Eichung (4.57) auftritt, und welche residuelle Symmetrie der Theorie in dieser
Phase noch verbleibt. Zu diesem Zweck wurde der Erwartungswert des globalen Skalarfeldes
Φ als Funktion des hopping parameter untersucht. Die Ergebnisse unserer Messungen finden
sich in Abbildung 4.4. Für kleine Werte von κ sind alle drei Eigenwerte mit Null verträglich,
gleichbedeutend mit ||Φ0|| = 0. Dies ist das erwartete Signal für die Realisierungsphase der
vollen SU(3)−Symmetrie des Grundzustands. Erhöht man den Wert des Parameters κ, so
ist ab einem kritischen Wert κ∗ eine Aufspaltung der Eigenwerte zu beobachten, die einem
Muster folgt, welches wir aufgrund der Relation (4.58) als ein Signal für die Realisierung
einer residuellen SU(2)×U(1)−Symmetrie interpretieren. Im Rahmen unserer Messgenauig-
keit ist dabei zu beobachten, dass die kritischen Werte κ∗ und κc übereinzustimmen scheinen.
Daher identifizieren wir im Folgenden beide Punkte miteinander als den kritischen Wert des
Hopping Parameters, an dem ein Übergang von der symmetrischen Realisierungsphase der
Theorie in eine Phase gebrochener G− und Reflexions-Symmetrie stattfindet. Der Abstand
der Eigenwerte λ1 und λ2 verringert sich bei weiter zunehmenden Werten von κ, und die
Summe aller drei Eigenwerte ergibt stets Null, wie es aufgrund der Spurfreiheit des (globa-
len) Skalarfeldes Φ zu erwarten ist. Unmittelbar oberhalb des Phasenübergangs ist das Signal
noch nicht gänzlich eindeutig, möglicherweise zeigen sich hier die Effekte, die durch die Pro-
blematik des Auftretens von Gribov-Kopien beim Versuch der Fixierung unserer speziellen
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kovarianten Landau-Eichung erwartet werden, am deutlichsten. Eine weitere Ursache könnte
darin begründet liegen, dass ein echter Phasenübergang bzw. das Phänomen der spontanen
Symmetriebrechung auf dem Gitter nur im thermodynamischen Limes zu beobachten ist und
sich Abweichungen von dem im Idealfall erwarteten Verhalten aufgrund der Verwendung von
relativ kleinen Gittern am deutlichsten in der Nähe des kritischen Punktes zeigen. Da wir an
der Untersuchung einer Quantenfeldtheorie in einer Realisierungsphase mit residueller Sym-
metriegruppe H = SU(2) × U(1) interessiert sind, werden wir im Folgenden bestrebt sein,
die oben genannten Effekte zu minimieren und führen deshalb weitere Untersuchungen hin-
reichend weit entfernt vom kritischen Punkt κc ≡ κ∗ in der Phase gebrochener Symmetrie
auf Gittern der Größe 184 durch.

4.6 Das statische Potential eines Isospin-Doubletts

Die Fixierung der Landau-Eichung, gefolgt von der globalen unitären Eichung hat uns nicht
nur die einfache Identifizierung der residuellen Symmetriegruppe H = SU(2) × U(1) der
Theorie nach Übergang in die Phase gebrochener Symmetrie anhand der Eigenwerte des glo-
balen Skalarfeldes Φ ermöglicht, sondern erlaubt es darüber hinaus auch, die Orientierung der
Einbettung von H in G zu kontrollieren. Dies wollen wir uns im Folgenden bei der Konstruk-
tion eines eichinvarianten Testzustands zu Nutze machen, welcher ein Paar von statischen
Testladungen im Abstand r beschreiben soll, die sich sowohl unter SU(2)−Transformationen
wie ein Isospin-Doublett (T 3 = ±1

2) verhalten, als auch U(1)Y−Ladung tragen.

Die interessierende Einbettung von H in G ist charakterisiert durch Eichtransformationen,
die wir in der Form

Ω(x) = exp
(
i

3∑

a=1

θa(x)T a
)
exp

(
iα(x)T 8

)
=

(
eiα(x) U(x)

e−2iα(x)

)
(4.66)

schreiben können, wobei U(x) = exp
(
iθa(x)σ

a

2

)
∈ SU(2) und α : E4 → R. Da sich das globale

Skalarfeld Φ aufgrund von (4.43) nun als invariant unter einer globalen Version der Transfor-
mationen (4.66) – den Eichtransformationen erster Art – erweist, fassen wir die nach sponta-
ner Symmetriebrechung erhaltene Theorie mit residueller globaler SU(2)×U(1)−Symmetrie
als eichfixierte Eichtheorie auf, deren Eichgruppe H ist, welche auf die in (4.66) gezeigte
Weise in eine größere Eichgruppe, nämlich G, eingebettet ist.

Diese Überlegung motiviert die Konstruktion eines Testzustands der Form

|Ψq̄q
αβ(x,y, 0) 〉 = Ψ̄d

(q̄)α(x, 0) P
da(x, 0) Uab(x, 0;y, 0) P bc(y, 0) Ψc

(q) β(y, 0)|Ω 〉 , (4.67)

wobei der Einfachheit halber die Erzeugung dieses Zustands zum Zeitpunkt t = 0 geschehen
soll. Im Allgemeinen bezeichne U(x, t,y, t) = P{exp[ig

∫ y

x
Aj(z, t)dzj]} dabei das pfadgeord-

nete Produkt des Eichpotentials längs einer Integrationskontur von x nach y für beliebige,
aber feste Zeiten t. Den Abstand der beiden Testladungen bezeichnen wir wie üblich mit
r = |x − y| und die ersten beiden Komponenten des ursprünglichen SU(3)−Tripletts ψa(x)
werden zu einem Doublett zusammengefasst, dessen Komponentenfunktionen Felder sind, die
sowohl schwache Isospin-Ladung, als auch Hyperladung tragen können. Wie in der Einleitung
(4.2) beschrieben, kann dies die Kombination eines (linkshändigen) Neutrinos mit einem zu-
gehörigen Lepton sein, oder auch ein entsprechendes Quark-Doublett. Da im Quark-Sektor
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jedoch zum einen die CKM-Mischung der Eigenzustände der starken Wechselwirkung berück-
sichtigt werden müsste, zum anderen jedoch die Farbladung der Quarks bei der Untersuchung
der schwachen Wechselwirkung keine Rolle spielt, ist es konzeptionell sinnvoller, sich allein
auf den leptonischen Sektor zu konzentrieren. Wir werden weiter unten sehen, dass die Chira-
lität der Felder ebenfalls keinen Einfluss auf die Form des zu untersuchenden Potentials hat.
Daher denken wir bei der Kombination der ersten beiden Komponenten des Fermionenfeldes
Ψ(x) in (4.67) im Folgenden an ein Leptonen-Doublett der Form:

L(x) =

(
νl(x)

l(x)

)
. (4.68)

Die dritte Komponente ψ3(x) ist ein Isospin-Singulett (T 3 = 0) und trägt zweifach negative
U(1)Y−Ladung. Diese Komponente soll aber im Folgenden nicht betrachtet werden, weswegen
wir den Projektor

P ab =



1 0 0

0 1 0

0 0 0


 (4.69)

einführen, der es uns erlaubt, ausschließlich den Isospin-Doublett-Anteil des Zustands zu
untersuchen. Unter Eichtransformationen der Form (4.66) gilt Ω†(x)P (x)Ω(x) = P (x), somit
ist der Testzustand (4.67) invariant unter derartigen Transformationen:

|Ψq̄q(x,y, t = 0) 〉 = L̄(x, 0)U(x, 0;y, 0)L(y, 0)|Ω 〉 . (4.70)

Um einen Ausdruck für die Zeitentwicklung des Zustands (4.67) zu gewinnen, soll zunächst
kurz die Konstruktion des Wilson-Loops rekapituliert werden, aus welchem sich als Folge
der Zeitentwicklung eines unter einer Symmetrietransformation invarianten Zustands zweier
statischer Ladungen im Abstand r das zwischen diesen herrschende Potential extrahieren
lässt. Die folgende Darstellung orientiert sich dabei an der in [Rot97] für den Fall eines
string-artigen Testzustands in der QCD angegebenen Konstruktion. Einen derartigen Zustand
aus zwei eichinvariant miteinander verbundenen Farbladungen gewinnen wir im Falle der
Eichgruppe SU(3) aus (4.67) durch Verwendung von P ab = δab, bzw. durch Entfernen der
Projektoren17. Dessen Zeitentwicklung wird beschrieben durch die Green’sche Funktion

G(x,y;x′,y′, t) = 〈Ω |T
{
Ψ̄q̄(y

′, t)U(y′, t;x′, t)Ψq(x
′, t)Ψ̄q̄(x, 0)U(x, 0;y, 0)Ψq(y, 0)

}
|Ω 〉 .

Dabei wurden sowohl die Indizes, welche die Spinorstruktur angeben, als auch die der inter-
nen Symmetrietransformation der Übersichtlichkeit halber für den Moment unterdrückt, T
bezeichnet den Zeitordnungsoperator. Die Green’sche Funktion G(x,y;x′,y′, t) besitzt eine
Pfadintegraldarstellung der Form

G(x,y;x′,y′, t) = Z−1

∫
DAD[ψ̄ψ]D[Ψ̄Ψ]q

{
Ψ̄q̄(y

′, t)U(y′, t;x′, t)Ψq(x
′, t)

× Ψ̄q̄(x, 0)U(x, 0;y, 0)Ψq(y, 0)
}
eiStotal , (4.71)

wobei die Wirkung Stotal = SYM [A] + SF [A, ψ, ψ̄] + Sqq̄[A,Ψq, Ψ̄q̄] in drei Anteile zerfällt,
nämlich den kinetischen Term des Eichbosonensektors SYM [A], die Wirkung

SF [A, ψ, ψ̄] =
∫
d4x ψ̄(x)[iD/ −m]ψ(x) :=

∫
d4xd4y ψ̄α(x)Kαβ(x, y)ψβ(y) ,

17Das zugehörige skalierte Potential, welches aus Messwerten dieser gewöhnlichen Wilson-Loops für ver-
schiedene Werte der Kopplungskonstanten β extrahiert wurde, wird in Abbildung 2.3 gezeigt.
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Abbildung 4.5: Zur
Definition des modi-
fizierten Wilson-Loop-
Operators WP

Γ [A] in
Gleichung (4.76): An
jeder Ecke der Inte-
grationskontur Γ ist
ein Projektor P (z, t)
(4.69) einzuschieben.

P (x, 0) P (y, 0)

P (y, T )P (x, T )

welche die Dynamik der leichten Fermionen ψ(x) beschreibt, sowie das Analogon Sqq̄[A,Ψq, Ψ̄q̄]
für die schweren Quellen Ψq(x) und Ψ̄q̄(x) der Masse mq. Für die Normierung gilt dabei
Z =

∫
DAD[ψ̄ψ]D[Ψ̄Ψ]q e

iStotal . Die Wirkung der statischen Quellen ist bilinear in den Fel-
dern Ψq, Ψ̄q̄, somit kann die Integration über diese Grassmann-wertigen Freiheitsgrade aus-
geführt werden. Das Ergebnis sind vier verschiedene Wick-Kontraktionen, die als Green’sche
Funktionen S(z, z′)[A] des Dirac-Operators Kq(x, y)[A] die Propagation der schweren Fer-
mionen im externen Feld {Aµ} beschreiben:

[iγµ(∂µ − igAµ(z)−mq)]S(z, z
′)[A] = δ(z − z′) δ(t − t′) . (4.72)

Außerdem erhält man bei der Ausführung des Gauß’schen Integrals eine Determinante
det(Kq[A]) der Fermionen, welche für endliche Massen eine Polarisation des Vakuums hervor-
rufen können. Im Limes mq →∞ konvergiert die Determinante jedoch gegen eine Konstante,
die denselben Wert besitzt wie die in Z auftretende Determinante. Daher spielt dies bei der
Berechnung des statischen Potentials keine Rolle. In diesem Grenzfall (quenched approxima-
tion) ergibt sich [Rot97]

lim
mq→∞

Gαα′,ββ′(x,y,x′,y′, t) = δ(x− x′)δ(y − y′)[P+]αα′ [P−]ββ′ e−2imqt
〈
WΓ[A]

〉
. (4.73)

Dabei ist der Erwartungswert des nicht-abelschen Wilson-Loops (1.98) bezüglich des fermio-
nischen und gluonischen Integrationsmaß zu bilden

〈
WΓ[A]

〉
=

∫
DAD[ψ̄ψ]

[
tr P{eig

∮
ΓAµ(z)dzµ}

]
ei(SY M [A]+SF [A,ψ,ψ̄])

∫
DAD[ψ̄ψ]ei(SY M [A]+SF [A,ψ,ψ̄]) (4.74)

und die Konturintegration über einen geschlossenen, rechteckigen Pfad Γ der räumlichen
Ausdehnung r = |x − y| und zeitlichen Ausdehnung t auszuführen. Die Spinorstruktur der
Korrelationsfunktion ist in den Projektoren P± = 1

2(1± γ0) codiert.
Betrachten wir nun die Zeitentwicklung des Testzustands (4.67). Die Projektoren P (x, t)
hängen nur formal vom Ort ab, und die oben vorgestellte Herleitung verläuft nach Durch-
führung der Ersetzungen

Ψa
q(x)→ P ab(x)Ψb

q(x) sowie Ψ̄a
q̄(x)→ Ψ̄b

q̄(x)P
ba(x)
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in kompletter Analogie. So ergibt sich für die Korrelationsfunktion des projizierten Testzu-
stands nach Fortsetzung zu imaginären Zeiten (t→ −iT ) im Grenzfall statischer Ladungen

lim
mq→∞

GP (x,y,x′,y′, T ) = δ(x− x′)δ(y − y′)P+P− e
−2mqT

〈
WP

Γ [A]
〉
E
. (4.75)

Der modifizierte Wilson-Loop-Operator WP
Γ [A] geht aus WΓ[A] durch Einfügen von Projek-

toren an den Ecken der Integrationskontur Γ hervor, die nun ein Rechteck der Ausdehnungen
r und T in der euklidischen Raum-Zeit beschreibt. Eine schematische Darstellung findet sich
in Abbildung 4.5. Ausgedrückt durch die Link-Variablen ergibt sich also für den modifizierten
Wilson-Loop-Operator

WP
Γ [A] = tr

[
U(x, 0;y, 0)PU(y, 0;y, T )PU †(x, T ;y, T )PU †(x, 0;x, T )P

]
, (4.76)

dessen Erwartungswert in (4.75) bezüglich der euklidischen Wirkung zu berechnen ist. Die
Kenntnis dieses Erwartungswerts ermöglicht es, die Wechselwirkungsenergie des Doubletts,
welches schwache Isospin- und Hyperladung trägt, gemäß

V (r) = − lim
T→∞

1

T
ln
〈
WP

Γ [A]
〉
E

(4.77)

zu bestimmen, da im Limes unendlich schwerer Quellen und großer euklidischer Zeiten T zu
erwarten ist, dass die Korrelationsfunktion G(x,y,x′,y′, T ) ein Verhalten der Form

lim
mq→∞

T→∞
G(x,y,x′,y′, T ) = δ(x− x′)δ(y − y′)F (x,y)e−E(r)T (4.78)

zeigen wird (vgl. (1.102)), wobei F (x,y) Informationen über den Überlapp des Testzustands
|Ψq̄q(x,y) 〉 mit dem Grundzustand enthält. Wird die Chiralität der Quellen berücksichtigt,
so führt dies zu einer Veränderung von F (x,y), die Wechselwirkungsenergie E(r) bleibt da-
von jedoch unberührt.

Zur Messung des Potentials wurde ein Ensemble von 1450 Konfigurationen der Gittergröße
184 für die Parameterwerte β = 6.0, λ = 0.01, κ = 0.216 erzeugt. Ausgehend von einer ge-
ordneten Anfangskonfiguration wurden zur Thermalisierung des Systems 2500 supersweeps
durchgeführt, wobei eine Veränderung der Definition eines supersweeps im Vergleich zu den
auf Gittern der Größe 104 für κ ∈ [0.17, 0.19] durchgeführten Simulationen vorgenommen
wurde, welche weiter unten erläutert wird. Während die Akzeptanzraten für die durch Anwen-
dung des Heatbath- (HB) bzw. Overrelaxation-Algorithmus (OR) erzeugten Vorschläge im
Skalarfeldsektor der Theorie in beiden Fällen nach wie vor bei etwa 0.9 lagen, machte sich die
Veränderungen der Gittergröße, sowie besonders das Vordringen in einen Parameterbereich
weit entfernt von κc in der Akzeptanzrate im Eichfeldsektor bemerkbar. Diese stabilisierte
sich bei etwa 0.3. Um diesen Effekt des Absinkens der Akzeptanzrate auf die Korrelation von
Konfigurationen innerhalb der erzeugenden Markov-Kette zu reduzieren, wurde die folgen-
de Kombination an Aktualisierungsschritten zu einem supersweep (SSW) zusammengefasst,
wobei der Cluster-Algorithmus (CL) nur auf die Spin-Freiheitsgrade wirkt:

SSW{U,Φ, σ} = 7 (HB{Φ}+HB{U}+CL{σ}) + 3 (OR{Φ}+ 3OR{U}) . (4.79)

Nach Abschluss der Thermalisierungsphase wurde nur jede zehnte Konfiguration in das im
Folgenden näher zu untersuchende Ensemble aufgenommen.
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Abbildung 4.6: Das Po-
tential eines Paares von
statischen SU(2) × U(1)–
Testladungen, extrahiert
aus Wilson-Loops, die
einer Zeitentwicklung des
Zustands (4.67) von minde-
stens tmin = 5, 6, 7 Schritten
entsprechen. Fits für die
Hauptachsendaten (p.a.),
sowie unter Verwendung al-
ler für tmin = 7 verfügbaren
Datenpunkte (a.a.) werden
ebenfalls gezeigt. Gitter:
184, β = 6.0, λ = 0.01,
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Der Verlauf des Potentials zwischen den statischen Testladungen wurde nach der in Kapitel
1.3.4 beschriebenen Methode aus den Messwerten von Wilson-Loops unterschiedlicher Größe
und Orientierung extrahiert. Die Hauptachsen des Gitters geben dabei die Standardorien-
tierung der Wilson-Loops vor, welche in den durch êt und êi (i = 1, 2, 3) aufgespannten
Netzebenen des Gitters gemessenen wurden. Da jedoch keine der Hauptachsen des Gitters
ausgezeichnet ist, lassen sich die statistischen Fehler weiter minimieren. Die uneingeschränk-
te kubische Symmetrie des Problems kann dahingehend ausgenutzt werden, dass jede der
vier Hauptachsen als die Zeitrichtung betrachtet, und folglich insgesamt eine Erhöhung der
Anzahl an Messwerten für die Wilson-Loops um einen Faktor vier erreicht werden kann.
Darüber hinaus wurden auch noch zwei weitere Orientierungen der Wilson-Loops betrachtet,
welche durch die beiden Raumdiagonalen der elementaren dreidimensionalen Würfel vorge-
geben sind. Die räumliche Ausdehnung der Integrationskontur der zugehörigen Wilson-Loops
ist daher ein ganzzahliges Vielfaches von

√
2a und

√
3a, so dass es möglich ist, auch für

nicht-rationale Abstände r der Quellen Messdaten zu erheben. Dadurch wird die Möglichkeit
eröffnet, das Ausmaß der durch die Diskretisierung der Raumzeit induzierten Brechung der
O(4)–Symmetrie abzuschätzen.

Nach Gleichung (4.77) ist eine Extraktion des Potentials V (r) aus den Erwartungswerten des
(modifizierten) Wilson-Loop-Operators erst im Grenzfall einer unendlich langen Zeitentwick-
lung des Testzustands (4.67) möglich. Dieser Fall ist natürlich in einer konkreten Simulation
nicht realisierbar. Daher muss im Einzelfall überprüft werden, ob es gerechtfertigt ist davon
auszugehen, dass dieser Grenzfall bereits für endliche, große euklidische Zeiten T vorliegt und
somit das so gewonnene Ergebnis eine hinreichend gute Näherung für das wahre Potential
darstellt. Zu diesem Zweck wurde die Extraktion des Potentials unter der Annahme verschie-
dener Werte für tmin durchgeführt, wobei ausschließlich Messwerte verwendet wurden, deren
relativer Fehler geringer als 0.1 war. Die Ergebnisse für die Fälle tmin = 5, 6, 7 sind in Abbil-
dung 4.6 zusammengefasst, wobei all diejenigen Datenpunkte verworfen wurden, für welche
sich im Rahmen des T -Fits ein χ2/ν > 2.5 oder eine Goodness-of-Fit Q < 0.01 ergeben hat-
te. Erwartungsgemäß hat sich gezeigt, dass die Anzahl der Datenpunkte für V (r), die unsere



Kapitel 4. Elektroschwache Wechselwirkung und freie Isospinladungen 157

beiden Kriterien für die Güte des Fits erfüllen, bei Vergrößerung von tmin zunimmt, und
dies speziell für diejenigen Punkte gilt, die zu großen räumlichen Abständen r der Quellen
gehören. Da sich der relative Fehler der Wilson-Loops bei Vergrößerung von r erhöht, muss
die Anzahl der Datenpunkte N , die durch eine interpolierende Gerade beschrieben werden
sollen, abnehmen, um das geforderte Qualitätskriterium erfüllen zu können. Dies ist aber
bei Vergrößerung von tmin der Fall, denn es gilt N = N4/2 − tmin. Konnten für festes r je-
doch aus den verschiedenen Fits zu den unterschiedlichen Werten von tmin mehrere Werte
für V (r) extrahiert werden, so ist zu beobachten, dass diese praktisch übereinstimmen. Der
Limes großer Zeiten scheint also bereits ab tmin = 5 erreicht zu sein, dennoch verwenden wir
sicherheitshalber im Folgenden die für tmin = 7 extrahierten Daten um einen Fit derselben
an einen Potentialansatz der Form

V (r) = V0 −
α

r
+ σ · r (4.80)

durchzuführen. Dabei beschränken wir uns zunächst auf diejenigen Datenpunkte, für welche
r durch ein ganzzahliges Vielfaches der Gitterkonstanten a gegeben ist. Diese wurden aus
Wilson-Loops in Hauptachsenorientierung gewonnen. Das Ergebnis dieses Fits war:

σ = 2.3777 · 10−3 ± 2.225 · 10−4 , α = 0.12233 ± 0.00118, χ2/ν = 1.41370 . (4.81)

Die graphische Darstellung dieses Resultats wurde ebenfalls ist Abbildung 4.6 als durchge-
zogene Kurve (p.a.) mit aufgenommen. Betrachtet man nun auch diejenigen Datenpunkte,
die zu nicht-rationalen Abständen r der Quellen gehören, so ist festzustellen, dass sich Ab-
weichungen von dieser Kurve ergeben, die sich mit zunehmendem Abstand der Quellen leicht
vergrößern. Gleichzeitig nimmt aber auch die Größe der Fehler dieser Messwerte zu. Versucht
man nun, einen Fit aller für tmin = 7 gewonnen Datenpunkte an den einfachen Potentialan-
satz (4.80) durchzuführen, findet sich zwar ein Wert für σ, der etwa halb so groß ist wie das
Ergebnis in (4.81), allerdings gilt hierbei χ2/ν > 20. Die graphische Darstellung ist die gestri-
chelte Kurve (a.a.) in Abbildung 4.6. Dieses Resultat stellt einen Hinweis auf eine Verletzung
der Rotationssymmetrie aufgrund des endlichen Wertes der Gitterkonstanten a(β) am von
uns betrachteten Punkt im Phasendiagramm dar, allerdings nur, falls die Fehler der aus den
Erwartungswerten der Wilson-Loops in Diagonalorientierung extrahierten Messwerten nicht
stark unterschätzt wurden. Dass dies tatsächlich der Fall sein könnte, zeigte eine Inspektion
der Werte für χ2/ν und Q: Tendenziell gilt bei starker Abweichung χ2/ν ≪ 1 für Q ≃ 1,
insbesondere für große Werte von r. Die Verletzung der Rotationssymmetrie ist also sicherlich
vorhanden und nachweisbar, die Gestalt des Potentials signalisiert jedoch, dass dieser Effekt
nicht übermäßig gravierend zu sein scheint und möglichweise durch eine Unterschätzung der
Fehler der Potentialdaten im Rahmen der verwendeten Methode überschätzt wird.

Zur eindeutigen Klärung der Frage, ob der linear anwachsende Confinement-Anteil des Poten-
tials (4.80) an diesem Punkt des Phasendiagramms tatsächlich gänzlich vernachlässigt werden
kann, müssten weitere Simulationen auf sehr viel größeren Gittern durchgeführt werden, um
verlässliche Messwerte für den Verlauf des Potentials bei Abständen r > 9a gewinnen zu
können, die weder von den Auswirkungen der Rotationssymmetriebrechung (Diagonalach-
sen), noch von der Periodizität des Gitters (Hauptachsen) beeinflusst sind. An dieser Stelle
ist es wichtig zu betonen, dass eine Unterscheidung zwischen einer Confinement-Phase und
einer Higgs-Phase der hier untersuchten Theorie prinzipiell möglich ist, da die statischen
Testladungen im Falle der Erweiterung einer Yang-Mills-Theorie durch ein Skalarfeld, wel-
ches sich unter der adjungierten Darstellung der Gruppe transformiert, anders als durch
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ein skalares Feld in fundamentaler Darstellung, nicht durch Paarbildungseffekte abgeschirmt
werden können18. Folglich stellt die string tension einen echten Ordnungsparameter für einen
möglichen Phasenübergang dar, und der von uns gemessene Wert unterscheidet sich deutlich
(etwa um einen Faktor 20) von dem in der Literatur angegebenen Wert von σ = 0.0517(2) im
Falle einer reinen SU(3)−Yang-Mill-Theorie bei β = 6.0 [Lan07]. Das skalierte Potential der
reinen SU(3)−Yang-Mills-Theorie wird in Abbildung 2.3 gezeigt, auch hier werden nochmals
die Unterschiede des Potentialsverlaufs für β = 6.0 im Vergleich zu Abbildung 4.6 deutlich.

Das in (4.81) zusammengefasste Ergebnis deutet jedenfalls darauf hin, dass das SU(2) ×
U(1)−Potential von einem langreichweitigen Anteil dominiert wird, der vielmehr der Form
eines Coulomb-Potentials als der eines Confinement-Potentials im Sinne Wilsons folgt. Diese
Beobachtung legt die Vermutung nahe, dass zumindest eine masselose Anregung im Spektrum
der Theorie nachweisbar sein sollte, die diese langreichweitige Wechselwirkung vermittelt.
Das Auftreten von massiven Anregungen würde sich hauptsächlich in der Modifizierung des
Coulomb-Potentials bei kleinen Abständen r der Quellen bemerkbar machen, sofern diese
bei dem durch die Gitterkonstante a(β) vorgegebenen Auflösungsvermögen überhaupt de-
tektiert werden konnten. Die beobachtete Form des Potentials lässt jedenfalls diesbezüglich
keine eindeutigen Schlüsse zu. Daher sind zur Klärung dieser Frage weitere Untersuchungen
erforderlich, welche Gegenstand des folgenden Kapitels sind.

4.7 Spektroskopische Untersuchungen

In diesem Kapitel soll die Untersuchung des Massenspektrums der SU(3)−Eichtheorie
mit Skalarfeld in adjungierter Darstellung durchgeführt werden, und zwar in der Realisie-
rungsphase spontan gebrochener Symmetrie, in welcher die Theorie noch eine residuelle
SU(2)×U(1)−Symmetrie aufweist, deren Einbettung in die ursprüngliche Eichgruppe SU(3)
durch die Wahl der in Kapitel 4.4 beschriebenen Eichung kontrolliert werden kann. In einem
ersten Schritt sollen zunächst die Grundlagen spektroskopischer Untersuchungsmethoden im
Rahmen von Gittereichtheorien dargelegt werden.

4.7.1 Physikalische Zustände

Die Aufhebung der Gitterdiskretisierung einer Eichtheorie geht im Kontinuumslimes mit der
Wiederherstellung der vollen Rotationssymmetrie einher. In diesem Fall lässt sich der Spin J
eines physikalischen Zustands im zugehörigen Hilbertraum H durch eine unitäre irreduzible
Darstellung der Gruppe SU(2) charakterisieren, die wir mit DJ bezeichnen wollen, wobei die
Darstellungen mit halbzahligen Spins den fermionischen Anregungen vorbehalten sind und
bosonische Anregungen nach irreduziblen Darstellungen der Drehungsgruppe SO(3) klassi-
fiziert werden können. Derartige Eigenzustände des Hamilton-Operators bezeichnen wir mit
|ΨJ 〉. Durch Einführung einer Gitterkonstanten a reduziert sich die Rotationssymmetrie der
Theorie auf Symmetrietransformationen, welche der kubischen Gruppe O entstammen, die
eine Untergruppe der SO(3) darstellt. Die durch triviale Einbettung der kubischen Grup-
pe O in die Drehungsgruppe hervorgegangenen Darstellungen bezeichnen wir mit DO

J . Da

18Da adjungierte Materie die Symmetrie reiner Yang-Mills-Theorien unter Transformationen aus dem Zen-
trum der Gruppe nicht explizit bricht, kann die Confinement-Phase in Theorien wie (4.26) eindeutig anhand
des Verhaltens von großflächigen Wilson-Loops als eine Phase nicht spontan gebrochener Zentrumssymmetrie
charakterisiert werden [CG08].
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die kubische Gruppe O (auch Oktahedron-Gruppe) für alle Gitterabstände a eine exakte
Symmetriegruppe der Theorie auf dem Gitter darstellt, müssen sich alle Eigenzustände des
Hamilton-Operators durch unitäre irreduzible Darstellungen von O klassifizieren lassen19,
die wir mit |ΨR 〉 bezeichen. Außerdem muss eine Verbindung zwischen den so charakterisier-
ten Zuständen und den gemäß der irreduziblen Darstellungen DJ der SU(2) im Kontinuum
klassifizierten existieren. Durch eine Zerlegung der Form

|ΨR 〉 =
∑

α

cRα |Ψα 〉 (4.82)

kann diese Verbindung hergestellt werden, wobei in die Summation über α = (J,m) auch die
m = 2J +1 verschiedenen Unterzustände mit

”
magnetischen“ Quantenzahlen m eingeschlos-

sen sind. Im Kontinuumslimes gehört jeder der Zustände |Ψα 〉 zu einem Spin J Multiplett,
in diesem Sinne enthält der Zustand |ΨR 〉 verschiedene Spins J. Da die abgeleiteten Darstel-
lungen DO

J i.A. reduzibel sind (z.B. gilt DO
3 = A2 ⊕ T1 ⊕ T2), ist zunächst zu fordern, dass

R ⊂ DO
J , damit in (4.82) Spin J zur Superposition |ΨR 〉 beitragen kann.

Der physikalische Hilbertraum H einer Gittereichtheorie besteht aus eichinvarianten Zustän-
den |Ψ 〉, die durch Anwendung von eichinvarianten Operatoren O auf den Vakuumzustand
|Ω 〉 erzeugt werden. Nehmen wir o.B.d.A. an, dass dies zum Zeitpunkt t = 0 geschehen soll
– die Zeitentwicklung derartiger Zustände wird durch den Zeitentwicklungsoperator T im
Rahmen des Transfermatrixformalismus beschrieben [MM94] – so finden wir nach Subtraktion
der Projektion auf den Vakuumzustand

|Ψ(x) 〉 =
[
O(x)−

〈
O(x)

〉]
|Ω 〉 . (4.83)

Durch Fourier-Transformation lassen sich daraus Eigenzustände des Impulsoperators kon-
struieren, die Summation über alle Orte innerhalb einer festen Zeitschicht ermöglicht die
Konstruktion von Eigenzuständen des Paritätsoperators P . Eine weitere diskrete Symme-
trieoperation ist die Ladungskonjugation, die Eigenwerte des zugehörigen Operators C sind
c = ± (C-Parität). Möchte man diese beiden diskreten Symmetriegruppen in die Klassifi-
zierung von möglichen Zuständen mit einbeziehen, so müssen irreduzible Darstellungen der
Gruppe O × Z2 × Z2 konstruiert werden. Bezeichnen wir diese mit ρ = RPC , so gilt für
Zustände mit endlichen Impulsen p, die zu einer solchen Darstellung gehören:

|Ψρ(p) 〉 =
∑

x

eipx |Ψρ(x) 〉 . (4.84)

Unterwerfen wir die auf diese Weise konstruierten Zustände nun einer Zeitentwicklung, so
können die Massen der zugehörigen Anregungen aus der Übergangs- bzw. Persistenzamplitude
für große Zeiten t (large time limit) extrahiert werden:

Cρ(p, t) := 〈Ψρ(p) |e−H t|Ψρ(p) 〉 =
∑

α

|c ρα|2 e−E
ρ
α(p) t . (4.85)

Alternativ dazu können Operatoren der Form

O(p, t) :=
∑

x

eipxO(x, t) , (4.86)

19Die fünf inäquivalenten irreduziblen Darstellungen R der kubischen Gruppe werden üblicherweise mit
A1, A2, E, T1, T2 bezeichnet und haben jeweils die Dimensionen 1,1,2,3 und 3 [BB83].
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definiert werden, welche Observablen beschreiben sollen, die in einer festen Zeitschicht t des
Gitters definiert sind. Dabei wird der lokale Operator O(x, t) zunächst so konstruiert, dass
durch Anwendung auf das Vakuum ein Zustand mit den Quantenzahlen R und C unter
Transformationen aus O und Z2 erzeugt wird:

|ΨRC (x, t) 〉 = O(x, t)|Ω 〉 . (4.87)

Danach wird eine partielle Fourier-Transformation des Operators durchgeführt und die Be-
rechnung einer verbundenen Korrelationsfunktion der Operatoren O(p, t) in Gleichung (4.86)
liefert ebenfalls die Amplitude von Interesse:

Cρ(p, t) = 〈O(−p, t)O(p, 0) 〉c := 〈O(−p, t)O(p, 0) 〉 − 〈O(−p, t) 〉 〈O(p, 0) 〉 . (4.88)

Unsere Konventionen zur Fourier-Transformation finden sich im Anhang A.4.

4.7.2 Masselose Anregungen: Ein Kandidat für das Photon

In einem ersten Schritt soll das oben vorgestellte Verfahren zur Konstruktion physikalischer
Zustände im Rahmen der Suche nach einem Kandidaten für das Photon im Spektrum der
Theorie konkretisiert werden. Wir sind also zunächst bestrebt, einen Operator zu finden, von
dem zu erwarten ist, dass er an eine masselose Anregung koppeln wird, sofern sich eine solche
im Spektrum der Theorie befindet. Auf diesem Operator soll in einem weiteren Schritt eine
irreduzible Darstellung ρ der kubischen Gruppe konstruiert werden, welche im Kontinuumsli-
mes der Spin J = 1 Darstellung für Vektoren entspricht und die Quantenzahlen des Photons
aufweist.

Bei der Suche nach einem geeigneten Operator lassen wir uns von den Ergebnisse der von
’t Hooft [tH74b] und Polyakov [Pol74] durchgeführten Untersuchungen zur Frage nach der
Existenz von Monopolen als klassischen Lösungen der Feldgleichungen des Georgi-Glashow-
Modells leiten. Unser Vorgehen stellt somit eine natürliche Verallgemeinerung der für den
Falle einer SU(2)−Eichtheorie mit adjungiertem Skalarfeld in D=4 Dimensionen ausführlich
in [Har96] dargelegten Konstruktionen auf den Fall der Eichgruppe SU(3) dar.

Wir beginnen mit der Definition einer verallgemeinerten Feldstärke der Form

fµν(x) :=
φa(x)

||φ(x)||F
a
µν(x)−

1

g||φ(x)||3 fabc φ
a(x)Dµφ

b(x)Dνφ
c(x) . (4.89)

Dabei gelten die in Kapitel 4.3 eingeführten Konventionen, fabc bezeichne die total antisym-
metrischen Strukturkonstanten. Unter Verwendung der folgenden Definitionen

aµ(x) := na(x)Aaµ(x) , na(x) := φa(x)/||φ(x)|| (4.90)

lässt sich nach kurzer Rechnung zeigen, dass

fµν(x) = ∂µaν(x)− ∂νaµ(x)−
1

g
fabc n

a(x)∂µn
b(x)∂νn

c(x) , (4.91)

wobei der letzte Term eine topologische Invariante darstellt. Wie bereits in Kapitel 2 disku-
tiert, reduziert sich dieser im Falle des Georgi-Glashow-Modells auf einen Ausdruck, welcher
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mit der magnetischen Ladung M der von ’t Hooft und Polyakov beschriebenen hedgehog so-
lution eines magnetischen Monopols verknüpft ist. Die verallgemeinerte Feldstärke (4.89) ist
manifest eichinvariant, was an der Formulierung

fµν(x) =
2

||φ(x)|| tr
[
Φ(x)Fµν(x)

]
+

2i

g||φ(x)||3 tr
[
Φ(x)[DµΦ(x),DνΦ(x)]

]
(4.92)

offensichtlich wird. Der für uns relevante Aspekt dieser Konstruktion offenbart sich, wenn
wir die Eichfreiheit dahingehend ausnutzen, (4.89) in lokaler unitärer Eichung auszuwer-
ten. In diesem Fall sind die einzigen nichtverschwindenden Komponenten des Skalarfeldes
φa(x) durch die Wahl der beiden Generatoren aus der Cartan-Algebra festgelegt. Nach
Diagonalisierung bedeutet dies im Fall der von uns verwendeten Gell-Mann-Basis, dass
φa(x) = χ(x)δa3 + ξ(x)δa8. Das Skalarfeld ist also im Raum der internen Symmetrietrans-
formationen konstant, kann sich aber räumlich noch ändern. Nach Fixierung dieser Eichung
reduziert sich (4.91) auf

fΩµν(x) = ∂µaν(x)− ∂νaµ(x) . (4.93)

In unitärer Eichung liegt also eine abelsche Feldstärke vor, und das zugehörige Photon aµ(x)
wird durch (4.90), berechnet in dieser Eichung, definiert. Die Einbettung der ungebrochenen
abelschen Untergruppe U(1) nach spontaner Symmetriebrechung ist also durch die Richtung
des adjungierten Skalarfeldes festgelegt.

Die Übertragung dieser Überlegungen auf die Formulierung der Theorie auf dem Gitter ge-
schieht in zwei Schritten. Zunächst suchen wir einen Operator, der dem ersten Beitrag in
(4.89) entspricht und die Projektion der nicht-abelschen Feldstärke auf die Richtung des
Einheitsvektors n̂(x) darstellt. Ein möglicher Kandidat ist dabei gegeben durch

Γ1
µν(x) :=

2

||φ(x)|| Im
{
tr[Φ(x)Uµν(x)]

}
, (4.94)

wovon man sich durch Entwicklung der in der µ̂− ν̂−Ebene liegenden Plaquette Uµν(x) nach
Potenzen der Gitterkonstanten a leicht überzeugen kann:

tr[Φ(x)Uµν(x)] = i
a2

2
φa(x)F aµν(x)−

a4

8
dabc φ

a(x)F bµν(x)F
c
µν(x) +O(a6) . (4.95)

Für den zweiten Term in der generalisierten Feldstärke (4.89) verwenden wir

Γ2
µν(x) :=

(
β

2N

) 1
2 4

||φ(x)||||φ(x + µ)||||φ(x + ν)|| Im
{
tr[Bµν(x)]

}
, (4.96)

wobei im vorliegenden Fall N = 3 zu wählen ist und der Einfachheit halber

Bµν(x) := Φ(x)Uµ(x)Φ(x+ µ)U †
µ(x)Uν(x)Φ(x+ ν)U †

ν(x) (4.97)

definiert wurde. Die Wahl des Operators Γ2
µν(x) wird durch die Relation

tr
[
Φ(x)[D+

µΦ(x),D
+
ν Φ(x)]

]
=

2i

a2
Im
{
tr
[
Bµν(x)

]}
(4.98)

motiviert, wobei die kovariante Vorwärtsableitung eines adjungierten Skalarfeldes auf dem
Gitter durch (4.44) gegeben ist. Eine konsequente Entwicklung aller in der Konstruktion
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von Γ2
µν(x) auftauchenden Felder nach Potenzen der Gitterkonstanten a zeigt, dass man im

Kontinuumslimes als führenden Term der Entwicklung gerade den zweiten Term in (4.89)
gewinnt. Das Analogon der ’t Hooft-Polyakov-Feldstärke fµν(x) in der Formulierung der
Theorie auf dem Gitter bezeichnen wir schließlich mit

Γ3
µν(x) := Γ1

µν(x)− Γ2
µν(x) . (4.99)

Als nächstes ist auf den drei Operatoren Γkµν(x) in (4.94), (4.96) und (4.99) jeweils die irredu-

zible abgeleitete Darstellung DO
1 der kubischen Gruppe O zu konstruieren. Dabei orientieren

wir uns an den Ergebnissen von Berg und Billoire [BB83], die im Rahmen der Spektroskopie
von glue balls auf Wilson-Loops einer Länge von bis zu acht Links alle irreduziblen Darstellun-
gen der vollen kubischen Gruppe konstruiert und dabei 16 verschiedene mögliche Kandidaten
für sämtliche Zustände JPC der vier niedrigsten Spinquantenzahlen (J = 0, 1, 2, 3) identi-
fiziert haben. Für unsere Zwecke ist die irreduzible dreidimensionale Darstellung T1 von O

entscheidend. Aufgrund der zyklischen Eigenschaft der Spur ist die Verallgemeinerung der
in [BB83] vorgestellten Ergebnisse für die Konstruktion eines Zustands mit Quantenzahlen
ρ = 1+− auf elementaren Plaquetten auf den von uns konstruierten Operator (4.94) direkt
möglich, d.h. die zusätzliche Einführung des skalaren Feldes Φ(x) am Basispunkt der Plaquet-
te stellt also kein Problem dar. Bezeichnen wir für den Moment die euklidische Richtung ê4
als Zeitrichtung, so bilden die drei auf den räumlichen Impuls p = 0 projizierten Operatoren

Im
{
Γ1
12(0, t)

}
, Im

{
Γ1
23(0, t)

}
, Im

{
Γ1
31(0, t)

}
, (4.100)

nach Anwendung auf das Vakuum in jeder Zeitschicht t die gewünschte Triplettdarstellung
(zu J = 1) mit negativem Eigenwert des Ladungskonjugationsoperators C und gerader Pa-
rität. Die Konstruktion eines Zustands mit negativer Parität bei verschwindendem räumli-
chen Impuls p = 0 erfordert die Verwendung nicht-lokaler Operatoren [BB83], es wurde aber
in [BP84] darauf hingewiesen, dass die durch (4.100) gegebene Axialvektordarstellung nach
Transformation auf endliche räumliche Impulse p 6= 0 einen Überlapp mit dem physikali-
schen Photon aufweist, welches negative Parität besitzt. Wir verzichten auf die Verwendung
einer nicht-lokalen Konstruktion und nehmen dafür in Kauf, dass das Signal, welches im Ka-
nal p = 0 der für jeden der drei Operatoren Γkµν(x) (k = 1, 2, 3) konstruierten Darstellung
(4.100) gemessen wird, keine Relevanz für die Klärung der Frage nach der Existenz eines
Photons haben wird. Stattdessen muss das für endliche Impulse erhaltene Signal, das durch
Verwendung von Operatoren mit den richtigen Quantenzahlen des physikalischen Photons
gemessenen wird, auf den Fall p = 0 extrapoliert werden. Die Konstruktion der irreduziblen
Darstellung T+−

1 für die Operatoren (4.96, 4.99) verläuft in Analogie zum hier vorgestellten
Verfahren.

Die Hauptgrundlage unserer Messungen bildete das Ensemble der für eine Gittergröße von
184 Gitterpunkten erzeugten 1450 Konfigurationen, welches bereits in Abschnitt 4.6 für die
Untersuchung des statischen Potentials zwischen zwei Quellen mit SU(2)× U(1)−Ladungen
herangezogen wurde. Bezeichnen wir wie üblich mit ê4 die euklidische Zeitrichtung, so wurden
in jeder dieser Konfigurationen zunächst für jedes k = 1, 2, 3 die drei Zeitschichtoperatoren

Γkα(p, t) :=
∑

x

Im
{
Γkα(x, t)

}
eipx , α := Π(µν), µ, ν ∈ [1, 2, 3] , (4.101)

gemessen, wobei durch α = 1, 2, 3 diejenigen Permutationen der Indizes µ und ν bezeichnet
werden sollen, welche den drei magnetischen Unterzuständen in (4.100) entsprechen.
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Für die partielle Fourier-Transformation wurden dabei nur ganzzahlige Vielfache des mini-
malen Matsubara-Impulses

pM
i = 2π/Ni (4.102)

in Richtung der Hauptachsen des Gitters verwendet. Hier bezeichnet Ni die Anzahl der Git-
terpunkte in Richtung êi. Zur Erhöhung der Statistik wurde die hyperkubische Symmetrie
des Gitters durch zyklische Permutation der Raumzeit-Indizes ausgenutzt, d.h. der Zerfall
der Korrelationen wurde in Richtung aller vier möglichen, äquivalenten Orientierungen des
Gitter gemessen, wobei zu fordern ist, dass die Impulse der zugehörigen Wellenfunktionen
einer Transversalitätsbedingung gehorchen. Die Definition eines Gitterimpulses der Form

p̂i := 2 sin(pi/2) (4.103)

ermöglicht nach Wiedereinführung der Gitterkonstanten a die Vergleichbarkeit von Kontinu-
umsphysik mit Gitterresultaten, insbesondere übersetzt sich die relativistische Dispersions-
relation p2 = m2 eines Teilchens der Masse m im Minkowski-Raum M4 beim Übergang auf
das euklidische Gitter E4 in die Form

− p̂ 2
4 =

3∑

i=1

p̂2i +m 2 ⇐⇒ 2
[
cosh(E) − 1

]
= 2

3∑

i=1

[
1− cos (pi)

]
+m 2 , (4.104)

da die komplexen Singularitäten des Propagators im Impulsraummit der vierten Komponente
des euklidischen Impulses gemäß p4 = ±iE verknüpft sind [EJJ+87,MM94]. Zur weiteren
Minimierung des statistischen Fehlers wurde für einen festen Wert des Index k über alle
möglichen Orientierungen des Gitters gemittelt, sowie dessen Periodizität ausgenutzt. Mit
der entsprechenden Verallgemeinerung der Permutationen α in (4.101) erhält man schließlich
die folgenden Erwartungswerte:

Γk(d,p) =
∑

α,Π(êt)

Nt∑

t=1

〈
Γkα
(
− p, (t+ d) êt

)
Γkα
(
p, t êt

) 〉
c
. (4.105)

Um abschätzen zu können, inwiefern die gemessenen Ergebnisse noch von der Größe des
verwendeten Gitters abhängen, wurden ebenfalls Messungen in einem Ensemble von 2500
Konfigurationen der Gittergröße 164 durchgeführt. Dies ermöglicht nach (4.102) auch die
Untersuchung neuer Punkte im Impulsraum und bietet damit die Möglichkeit einer stringen-
teren Extrapolation der Dispersionsrelation in einem intermediären Impulsbereich auf den
nicht direkt zugänglichen Punkt p = 0, an dem die physikalische Masse definiert ist [MM94]:

mphys := lim
p→0

E(p). (4.106)

Die Messergebnisse für den ’t Hooft-Polyakov-Operator (4.99) für die vier niedrigsten ganz-
zahligen Vielfachen n = 0, 1, 2, 3 des minimalen Impulses (4.102) auf einem Gitter der Größe
184 finden sich in Abbildung 4.7. Legen wir die Konvention

p̂i(n) := 2 sin

(
n
pMi
2

)
(4.107)
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Abbildung 4.7: Die gemittelte Korrelationsfunktion Γ3(d,p) (4.105) des ’t Hooft-Polyakov-
Operators (4.99) nach Fourier-Transformation. Gitter: 184, β = 6.0, κ = 0.216, λ = 0.01.

bei der Bezeichnung der Komponenten des Gitterimpulses p̂i(n) zu den ganzzahligen Vielfa-
chen n ∈ Z des Matsubara-Impulses zugrunde, so lautet die von uns adaptierte Normierung
der Korrelationsfunktionen:

Γk ( 1, p̂i(n) ) = 1 für n = 1, 2, 3, (k = 1, 2, 3) . (4.108)

Die Messergebnisse der Korrelatoren wurden dabei für die Abstände d = 0 bzw. d = 18 nicht
berücksichtigt. Erwartungsgemäß sind die Datenpunkte, welche für verschwindenden Impuls
(n = 0) gemessen wurden, statistisch nicht signifikant. Die Datenpunkte für n > 0 hingegen
weisen minimale statistische Fehler auf, welche in dieser Abbildung durch Gauß’sche Feh-
lerfortpflanzung aus den Fehlern der Erwartungswerte der primären Größen vor Ausführung
der in (4.105) durchgeführten Mittelung berechnet wurden. Es ist deutlich zu erkennen, dass
die Korrelationen von Anregungen mit zunehmenden Impulsen und somit höheren Energien
E(p̂2) schneller zerfallen. Die Extraktion der Energie bzw. Masse der beobachteten Anregun-
gen geschieht durch einen nicht-linearen Fit der Messdaten an eine Funktion der Form

C(d, n) = A cosh
(
E
(
p̂2(n)

)[
d−Nt/2)

])
, (4.109)

welche den periodischen Randbedingungen, die wir den Simulationen zugrunde gelegt ha-
ben, durch Symmetrisierung des exponentiellen Verhaltens um die Mitte der zeitlichen Aus-
dehnung des Gitters Rechnung trägt. Die dabei extrahierten Werte für E(p̂2) können nach
Gleichung (4.104) über die Relation

Ê 2
L

(
p̂ 2
)

= 2
[
cosh

(
E(p̂ 2)

)
− 1
]

(4.110)

mit dem Quadrat der Gesamtenergie ÊL
(
p̂ 2
)
der Anregung in Gitterformulierung in Verbin-

dung gebracht werden. In Abbildung 4.8 sind die Resultate der Messungen von Ê 2
L(p̂

2) für
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Abbildung 4.8: Die
Dispersionsrelation
(4.104) einer masse-
losen Anregung, die
aus Messungen der
verbundenen Kor-
relationsfunktionen
(4.105) der beiden
Operatoren Γ1(p, t)
(4.94) und Γ3(p, t)
(4.99) auf Gittern
der Größe 164 und
184 extrahiert wur-
de.

β = 6.0, κ = 0.216,
λ = 0.01.

die Operatoren Γ1 und Γ3 für verschiedene Gittergrößen gegen die Quadrate der zugehörigen
Gitterimpulse p̂ 2 aufgetragen. Der Kurvenverlauf folgt somit der Form (4.104). Aufgrund
der vollen hyperkubischen Symmetrie des Gitters steht zu erwarten, dass Erwartungswerte
einzelner vektorieller und plaquettartiger Operatoren verschwinden werden, so dass die bei
der Berechnung von verbundenen Zweipunktfunktionen der Form (4.88) auftretenden Pro-
dukte von Einpunktfunktionen in diesen Fällen keine Rolle spielen sollten. Dies konnte für
alle Korrelatoren der drei verschiedenen Operatoren in Gleichung (4.101) verifiziert werden.
Die Anzahl der durchgeführten Messungen war also hinreichend groß, um ein Verschwinden
des zweiten Terms in (4.88) im Rahmen des statistischen Fehlers beobachten zu können.

Um die Energie der niedrigsten Anregung zu extrahieren, muss sichergestellt werden, dass die
zeitliche Entwicklung der erzeugten Zustände von Interesse hinreichend lang gedauert hat,
damit höhere Anregungen im selben Kanal das Ergebnis nicht mehr wesentlich beeinflussen
können. A priori ist nicht klar, wann der large time limit in praktischen Berechnungen erreicht
ist, dies hängt auch stark vom verwendeten Operator ab, der den zu untersuchenden Zustand
aus dem Vakuum erzeugt hat. Es bietet sich daher an, Energieplateaus der Form

meff(d, n) =
C(d+ 1, n) + C(d− 1, n)

2 C(d, n) (4.111)

zu studieren. Falls die gemessene Korrelationsfunktion dem Verlauf der Modellannahme
(4.109) folgt, so gilt meff(d, n) = cosh

(
E(p̂2(n))

)
. Somit wird das Erreichen des Limes großer

Zeiten dadurch angezeigt, dass der Graph der Funktion (4.111) vom Parameter d unabhängig
wird. Im Fall n = 0 erhält man dadurch eine Abschätzung für die effektive Masse der Anre-
gung, wodurch die für (4.111) ebenfalls gebräuchliche Bezeichnung

”
Massenplateau-Funktion“

herrührt. Eine komplementäre Vorgehensweise stellt die Durchführung von Fits der Daten an
eine Funktion der Form (4.109) für zunehmende Werte des minimalen zeitlichen Abstands
dmin der Schichten dar, wobei der Limes großer Zeiten dadurch identifiziert wird, dass das
extrahierte Ergebnis für die Energie E(p̂2(n)) unabhängig von d wird.
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Es hat sich gezeigt, dass dieser Limes für die Operatoren Γ1 und Γ3 bereits ab d = 2 erreicht
ist, für den Operator Γ2 hingegen war das Signal/Rausch-Verhältnis zu klein, als dass sich
ein statistisch aussagekräftiges Signal extrahieren ließe. Dieses Resultat deckt sich mit der
Beobachtung, dass die Operatoren Γ1 und Γ3, welche sich ja nach (4.99) gerade um den Anteil
des Operators Γ2 von einander unterscheiden, praktisch dasselbe Ergebnis bei der Messung
der Korrelationsfunktion (4.105) geliefert haben, was in Abbildung 4.8 deutlich zu erkennen
ist. An dieser Stelle soll nochmals auf die Eichinvarianz aller drei Operatoren (4.94, 4.96,
4.99) hingewiesen werden. Alle Datenpunkte, die durch nicht-lineare Fits nach der Standard-
methode der kleinsten χ2 von Levenberg-Marquardt [PTVF07] an die Funktion (4.109) mit
M = 2 Parametern extrahiert wurden, weisen ein χ2/ν < 1.5 auf, wobei die Anzahl der
Freiheitsgrade durch ν = N4 − 2dmin + 1−M gegeben ist.

Offenbar sind also die Operatoren Γ1 bzw. Γ3 für endliche Impulse hervorragend dazu ge-
eignet, eine Anregung zu detektieren, welche die Quantenzahlen des Photons besitzt und im
Kontinuumslimes an das physikalische Photon koppelt. Für die größten von uns betrachteten
Impulse sind die Abweichungen von der als gestrichelten Linie in Abbildung 4.8 angedeute-
ten Dispersionsrelation im Kontinuum minimal, und auch der Vergleich der auf Gittern der
Größe 164 und 184 gemessenen Datenpunkten zeigt, dass Effekte, die sich auf die endliche
Größe der diskretisierten Raumzeit zurückführen lassen, keine nennenswerten Auswirkungen
auf unser Ergebnis haben. Es wurde in Abschnitt 4.7.1 bereits darauf hingewiesen, dass die
DO
J für J > 1 reduzibel sind. Neben dem gewünschten Beitrag einer Anregung mit Spin

J = 1 wird als nächste mögliche Anregung im Kontinuumslimes auch ein Beitrag zu J = 3
erwartet [BB83, MM94]. Der Einfluss dieser Anregung, sowie weiterer höherer Anregungen
konnte aber in der Dispersionsrelation nicht beobachtet werden, vermutlich, da diese bereits
eine so hohe Energie aufweisen, dass sie aufgrund der exponentiellen Dämpfung schon nach
einer zeitlichen Entwicklung, die d = 2 Zeitschritten entspricht, nicht mehr nachweisbar sind.
Die Extrapolation der Datenpunkte zum Koordinatenursprung lässt den Schluss zu, dass es
sich bei dieser Anregung tatsächlich um ein masseloses Teilchen mit den Quantenzahlen des
Photons handelt.

4.7.3 Das Boson des adjungierten Skalarfeldes

Neben der bereits nachgewiesenen masselosen Anregung erwarten wir als weiteres Charakteri-
stikum des Higgs-Phänomens (mindestens) eine massive Anregung im Spektrum der Theorie,
nämlich die zum adjungierten Skalarfeld gehörige. Im Rahmen der perturbativen Analyse des
Modells in Kapitel 4.3.1 konnte bereits gezeigt werden, dass genau ein massives Higgs-Bosons
auftreten sollte, sofern der Vakuumerwartungswert des Skalarfeldes in (globaler) unitärer Ei-
chung von der Gestalt ist, dass φ3 = 0 und folglich H = SU(2) × U(1) gilt. Am von uns
untersuchten Punkt im Phasendiagramm (β = 6.0, κ = 0.216, λ = 0.01) ist die Theorie genau
in einer solchen Phase realisiert und der zum Feld ϕ(x) gehörige Massenterm ist in diesem
Fall gegeben durch

m2
ϕ = 4Λ tr

[
Φ2
0

]
. (4.112)

Die Masse des adjungierten Higgs-Bosons wird also sowohl durch den Wert des skalaren Kon-
densats, als auch durch die Selbstkopplungskonstante Λ in der Phase gebrochener Symmetrie
nach Renormierung kontrolliert. Da es sich bei dem adjungierten Higgs-Feld um ein reelles
Skalarfeld handelt, wird der von diesem Feld erzeugte Zustand unter Paritäts- und Ladungs-
konjugationstransformationen gerade sein.
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Abbildung 4.9: Das Verhal-
ten der Korrelationsfunktion
des adjungierten Skalarfeldes
(4.114) für endliche Impulse.
Gezeigt wird ebenfalls das Ver-
halten des Photonkorrelators
Γ3
(
d, p̂2(n)

)
(4.105) für n = 1

(gestrichelte Kurve), sowie ein
Fit (durchgezogene Kurve) an
CS
(
d, p̂2(n)

)
für n = 1. Auf-

grund der periodischen Rand-
bedingungen sind die Daten-
punkte symmetrisch bezüglich
der halben zeitlichen Ausdeh-
nung des Gitters, daher wird
nur das Intervall 1 ≤ d ≤ N4/2
gezeigt.

β = 6.0, κ = 0.216, λ = 0.01.

Ein eichinvarianter Operator, der an den durch JPC = 0++ charakterisierten physikalischen
Zustand koppelt, ist gegeben durch

S(x) := tr
[
Φ2(x)

]
. (4.113)

Wir untersuchen daher im Folgenden die verbundene Korrelationsfunktion

CS(d,p) = 〈 S(−p, d)S(p, 0) 〉c := 〈 S(−p, d)S(p, 0) 〉 − 〈S(−p, d) 〉 〈 S(p, 0) 〉 , (4.114)

um die niedrigste Anregung im 0++−Kanal, und somit die Masse des skalaren Bosons zu
finden. Die Ergebnisse unserer Untersuchungen für endliche Impulse sind in Abbildung 4.9
dargestellt. Wie in Gleichung (4.108) bei der Untersuchung der photonischen Korrelatoren
Γk(d, n) wurde die skalare Korrelationsfunktion gemäß

CS(d = 1, n) = 1 , n = 1, 2, 3 (4.115)

normiert, wobei sich die Messdaten im Falle eines verschwindenden räumlichen Impulses
(n = 0) wiederum als statistisch nicht relevant erwiesen haben. Letzteres ist darauf zurück-
zuführen, dass sich die beiden Beiträge zur verbundenen Korrelationsfunktion bei der Be-
rechnung von CS(d,0) im Rahmen des statistischen Fehlers kompensieren. Unser Ensem-
ble von 1450 Konfigurationen scheint also nicht groß genug gewesen zu sein, um diese auf
Auslöschungseffekten basierende statistische Unsicherheit so weit einschränken zu können,
als dass noch verlässliche Aussagen aus den Messdaten extrahiert werden könnten. Betrach-
tet man jedoch den Verlauf der Korrelationsfunktionen für n > 0, so ist zu erkennen, dass
die Kurven im Rahmen des statistischen Fehlers übereinstimmen und bereits für d > 3 auf
einen mit Null verträglichen Wert abgefallen sind. Dies ist mit dem Verhalten einer masselo-
sen Anregung zu vergleichen. Zu diesem Zweck wurde die bereits in Abbildung 4.7 gezeigte
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Abbildung 4.10: Das
Quadrat der Masse
des skalaren Bosons
m2
ϕ, extrahiert aus

Fits an CS(d, p̂2(n))
im Intervall d ∈ [1, 4]
für endliche Vielfache
n = 1, 2, 3 des mi-
nimalen Matsubara-
Impulses (4.102).

Gitter: 184, β = 6.0,
κ = 0.216, λ = 0.01.

p̂2

Ê
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Korrelationsfunktion Γ3(d, p̂(n)2) (4.105) für n = 1 (gestrichelte Kurve) in Abbildung 4.9 mit
aufgenommen. Die mit der masselosen Anregung verknüpfte Langreichweitigkeit der Wechsel-
wirkung manifestiert sich in einem von Null verschiedenen asymptotischen Wert, der von der
Korrelationsfunktion für den auf einem Gitter mit periodischen Randbedingungen maximal
zugänglichen Abstand d = N4/2 angenommen wird. Außerdem ist der Einfluss der endlichen
Impulse bei der Präparierung des Testzustands, der ein Photon beschreiben soll, durch das
Auffächern der zu n = 1, 2, 3 gehörenden Kurven in Abbildung 4.7 evident. Im Gegensatz
dazu muss für die Masse der zum adjungierten Skalarfeld gehörenden Anregung geschlossen
werden, dass diese zumindest so groß sein muss, dass die auf das Quadrat derselben bezogene
Differenz aller bei der Berechnung der Korrelationsfunktionen verwendeten Impuls-Quadrate
kleiner ist als deren relativer Fehler, und die Korrelation nach d = 3 Entwicklungsschritten für
alle endlichen Impulse vollständig zerfallen ist. Dies macht das Problem bei der Bestimmung
eines numerischen Wertes für die Masse des skalaren Bosons deutlich: Der Limes großer Zeiten
wird voraussichtlich erst erreicht, wenn bereits keine Korrelation der Felder mehr nachweisbar
ist.

Der Versuch einer Abschätzung ist in Abbildung 4.10 zu sehen. Zu diesem Zweck wurden
nicht-lineare least-χ2-fits der Messdaten für endliche Impulse an einen Kurvenverlauf der
Form (4.109) im Intervall d ∈ [1, dmax] durchgeführt. Die Ergebnisse für dmax = 4 waren:

n E(n) σE(n) χ2/DoF

1 1.91094 0.03858 1.77068

2 1.89562 0.03953 1.86669

3 1.91790 0.04336 0.04873

Eine graphische Darstellung des Resultats für n = 1 ist in Abbildung 4.9 als durchgezogene
Linie zu sehen. Aus den Werten für E(n) sowie den zugehörigen Fehlern wurde unter Verwen-
dung der Gleichungen (4.104) und (4.110) die Dispersionsrelation der Anregung berechnet,
um eine Abschätzung des Quadrats der Masse sowie des zugehörigen Fehlers in Einheiten
der (inversen) Gitterkonstanten zu erhalten. Die in Abbildung 4.10 gezeigten Daten deuten
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darauf hin, dass eine Extrapolation zum physikalisch relevanten Punkt einen endlichen Wert
liefert, den wir zu m2

ϕ = 5 ± 0.25 abschätzen. Dabei sollte angemerkt werden, dass sich die
Ergebnisse zur Abschätzung dieses Wertes als stabil gegenüber einer Veränderung der Ober-
grenze des zum Fit herangezogenen Intervalls auf dmax = 3 bzw. dmax = 5 erwiesen haben.
Die Masse des adjungierten Higgs-Bosons scheint also auf einer Skala angesiedelt zu sein, wel-
che für das Verhalten der Theorie im Bereich niedriger Energien eine untergeordnete Rolle
spielen sollte.

4.7.4 Das Spektrum der Eichbosonen

In einer Feldtheorie werden die verbundenen Zweipunktfunktionen aller Felder, die für die
Konstruktion dieser Theorie eine Rolle spielen, im Allgemeinen als Propagatoren bezeich-
net. Handelt es sich um eine quantisierte Eichtheorie, so muss der Berechnung der Propa-
gatoren stets die Wahl einer bestimmten Eichung zugrunde liegen, da ansonsten – wie in
Kapitel 4.2 erläutert – sämtliche Green’schen Funktionen der Theorie aufgrund ihrer Eich-
varianz verschwinden würden. Insbesondere lässt sich den Eichfeldern selbst immer nur in
einer konkreten Eichung ein Sinn verleihen. Im Gegensatz zu den bisherigen Untersuchungen
des Spektrums der Theorie wird daher die Fixierung einer Eichung nötig. Dabei ziehen wir
uns auf die in Kapitel 4.4 beschriebene Landau-Eichung mit anschließender globaler unitären
Eichung zurück.

Die Definition von Eichfeldern Aµ(x) auf dem Gitter ist nicht eindeutig, da es sich um abge-
leitete Größen handelt, die aus den Link-Variablen Uµ(x), den fundamentalen Freiheitsgraden
der Gitterformulierung, extrahiert werden müssen [GPP+98]. Wir verwenden im Folgenden
die mit der Landau-Eichung (4.54) kompatible Definition der dimensionslosen Eichfelder

Aaµ(x) := Im
{
tr
[
T a
(
Uµ(x)− U †

µ(x)
)]}

(4.116)

auf dem Gitter, in deren Konstruktion nun Link-Variablen aus einer gemäß Kapitel 4.4 eich-
fixierten Konfiguration {U} eingehen. Die Konventionen zur Fourier-Transformation dieser
Eichfelder, welche auf natürliche Weise mit den Mittelpunkten (x+ êµ/2) der entsprechenden
Links assoziiert werden, finden sich im Anhang A.4. Die Definition (4.116) bietet dabei den
Vorteil, dass sich die Korrekturterme bei der Betrachtung der zugehörigen dimensionsbehaf-
teten Eichfelder als von O(a2) herausstellen, lineare Korrekturen heben sich auf. Außerdem
besteht eine direkte Verbindung des Eichfixierungskriteriums auf dem Gitter zur Transver-
salitätsbedingung, der die zugehörigen Eichfelder in Landau-Eichung der Kontinuumsformu-
lierung genügen. Daher ist die prinzipielle Vergleichbarkeit von Resultaten gewährleistet, die
aus diesen beiden verschiedenen Zugängen gewonnen werden können. Die Definition des Ab-
bruchkriteriums bei der iterativen Fixierung der Landau-Eichung und weitere Erläuterungen
des verwendeten Algorithmus findet sich im Anhang C.

Fassen wir nun die skalaren Felder φa(x) sowie die Eichfelder Aaµ(x) der Theorie zu einem

gemeinsamen Feld χA(x) zusammen und ordnen in gleicher Weise die Quellen für beide Felder
in einer vereinheitlichten Quellenfunktion J A(x) an

χA(x) :=

(
φa(x)

Abµ(x)

)
, J A(x) :=

(
Ja(x)

jbµ(x)

)
, (4.117)
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so erhalten wir unter Verwendung der in Kapitel 4.2 eingeführten Konvention gemäß Glei-
chung (4.20) die Propagatoren

DAB(x, y) = − i δ2W [J ]
δJ A(x)δJ B(y)

∣∣∣∣
J=0

=

(
Dij(x, y)

Dab
µν(x, y)

)
. (4.118)

Die sogenannten
”
gemischten“ Propagatoren, also diejenigen Zweipunktfunktion, welche Ska-

larfelder mit Vektorfeldern verknüpfen, verschwinden aufgrund der Lorentz-Invarianz der
Theorie. Beschränken wir uns im Folgenden also auf den Propagator der Eichbosonen

D ab
µν (x, y) :=

〈
Aaµ(x)A

b
ν(y)

〉
c
, (4.119)

dessen Fourier-Transformierte D ab
µν(p) von besonderem Interesse ist. In Landau-Eichung han-

delt es sich dabei um ein transversales Objekt, welches sich wie folgt parametrisieren lässt:

D ab
µν (p) =

(
δµν −

pµ pν
p2

)
D ab(p2), pµD

ab
µν(p

2) = 0 . (4.120)

Die Kontraktion der Raumzeit-Indizes liefert also lediglich einen Beitrag zur Normierung, wir
betrachten daher im Folgenden die Fourier-Transformierte der Kontraktion von (4.119)

D ab(p2) :=
〈
Aaµ(−p)Abµ(p)

〉
c

bzw. D ab(x, y) := D ab
µµ(x, y) . (4.121)

Dabei handelt es sich im Falle endlicher Impulse um hermitesche Farb-Matrizen, welche im
Falle einer reinen SU(N)−Yang-Mills-Theorie (sowie in der hier betrachteten Theorie mit
Kopplung an ein adjungiertes Skalarfeld in der Wigner-Weyl-Phase) in Landau-Eichung Dia-
gonalgestalt besitzen. Die Invarianz der effektiven Wirkung Γ[χh] = Γ[χ] führt nämlich wie
bereits in Kapitel 4.2 diskutiert auf die Invarianz des erzeugenden Funktionals der verbunde-
nen Zweipunktfunktionen unter globalen Transformationen und infolge dessen auf die Glei-
chung

D ab(x, y) = Ω ac(h)D cd(x, y)
[
Ω−1

] db
(h) h ∈ H ⊂ G . (4.122)

Ist die Symmetrie nun nicht spontan gebrochen, so gilt H = G und Ω(h) ist ein Grup-
penelement in der adjungierten Darstellung der Gruppe G. Dabei handelt es sich um eine
endlich-dimensionale, irreduzible Darstellung der Gruppe, so dass als Konsequenz des Lem-
mas von Schur (vgl. [Hei90] III, §1.5) die Diagonalität des Propagators im Farbraum folgt,
D(x, y) ∝ 1. Dies ist Ausdruck der Tatsache, dass keiner der Basisvektoren der Lie-Algebra
in dieser Realisierungsphase der Theorie ausgezeichnet ist. Die Proportionalitätskonstante
berechnet sich durch Integration von Gleichung (4.122) bzgl. des normierten, invarianten
Haarschen Maßes über die Mannigfaltigkeit von G unter Ausnutzung der Orthogonalitätsre-
lation für Matrixdarstellungen ([Hei90] III, §1.9):

D ab(x, y) =

∫

G
dµ(g)Ω ac(g)D cd(x, y)Ω bd(g) =

1

n
tr[D(x, y)] δab . (4.123)

Dabei bezeichnet n die Dimension des Darstellungsraumes, im Falle einer SU(N) also
n = N2 − 1. Die Fourier-Transformierte dieses Proportionalitätsfaktors ist gerade der nicht-
triviale skalare Anteil des Gluon-Propagators D(p2), aus dem (formal) eine dynamische Masse
der Gluonen extrahiert werden kann, welche natürlich für alle n Anregungen identisch ist.
Die Ergebnisse einer entsprechenden Untersuchung im Fall der SU(2)−Yang-Mills-Theorie in
Landau-Eichung [LRG02] weisen auf einen Wert von mg ≃ 650± 20 MeV hin.
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In der von uns untersuchten Realisierungsphase der Theorie ist jedoch die residuelle Eich-
symmetrie erster Art eingeschränkt, da das adjungierte Skalarfeld, wie in Kapitel 4.5 gezeigt,
einen nicht-trivialen Vakuumerwartungswert der Form Φ0 = φ8T 8 (φ3 = 0) entwickelt. Da-
her ist eine Veränderung der Gestalt des Propagators (4.121) der Bosonen zu erwarten. Zur
Klärung der Struktur desselben betrachten wir Gleichung (4.122) für

Ω ∈ Ad(H) := {Ω ∈ SO(8) | Ω T̂ 8Ω−1= T̂ 8 } (4.124)

in der von uns gewählten Einbettung als Bestimmungsgleichung der Komponenten von
D(x, y) anstelle einer direkten Integration von (4.122) bezüglich eines auf H = SU(2)×U(1)
eingeschränkten Maßes. Die Generatoren in der adjungierten Darstellung der Gruppe werden
dabei konventionsgemäß (Anhang D.2) mit einem Dach bezeichnet, T̂ b = T bA. Es zeigt sich,
dass durch Ad(H) eine blockdiagonale, vollständig reduzible Darstellung von H der Form

Ω[θ ā](x) := exp
{
i
∑

ā

θ ā(x)T̂ ā
}
, ā ∈ Ā := {1, 2, 3, 8} (4.125)

gegeben ist, welche sich gemäß

Ω[θ ā](x) =

3⊕

i=1

Ω(i)[θ ā](x) (4.126)

darstellen lässt und somit in eine direkte Summe von irreduziblen Darstellungen zerfällt.
Dabei bezeichnet Ω(1)[θ ā](x) eine dreidimensionale Darstellung, Ω(2)[θ ā](x) ist eine vierdi-
mensionale Darstellung und Ω(3)[θ ā](x) bezeichnet die triviale Darstellung der GruppeH. Die
Anwendung des Lemmas von Schur im Falle der direkten Zerlegung einer reduziblen Darstel-
lung in irreduzible Untermoduln (vgl. [Hei90] III, §1.7) bestimmt die Gestalt des Propagators
zu:

D(x, y) = λ1(x, y)13×3 ⊕ λ2(x, y)14×4 ⊕ λ3(x, y) 1 , λi(x, y) ∈ R . (4.127)

Wir erwarten daher, dass höchstens drei verschiedene Werte für die Massen der möglichen
verschiedenen Anregungen im Spektrum der SU(3)−Eichtheorie mit skalarem Feld in adjun-
gierter Darstellung in der hier betrachteten Realisierungsphase der Theorie auftreten können.
Die Form des Propagators (4.127) gibt ferner Anlass zur Annahme, dass aufgrund der Mul-
tiplettstruktur eine dreifache Entartung derjenigen Anregungen vorliegen wird, welche mit
den Generatoren T 1, T 2 und T 3 der in G eingebetteten SU(2)-Untergruppe verknüpft sind.
Obwohl der Coset G/H keine Gruppe darstellt, da H offensichtlich keine invariante bzw.
normale Untergruppe von G ist, erwarten wir dennoch auch im von den Generatoren T c

(c ∈ Ā⊥ := {4, 5, 6, 7}) aufgespannten Unterraum eine vierfache Entartung.

Prinzipiell sollte also die Berechnung des im Impulsraum definierten Propagators D ab(p2)
(4.121) mittels der in (4.116) definierten Eichfelder ein farbdiagonales Objekt liefern, des-
sen acht (verschiedene) Komponentenfunktionen D aa(p2) mit den bei der Untersuchung des
Gluon-Propagators einer reinen Yang-Mills-Theorie in Landau-Eichung erfolgreich eingesetz-
ten Methoden [LRG02] analysiert werden könnten. Anstatt jedoch Messungen von Formfak-
toren F a(p2) für jede der Anregungen durchzuführen und insbesondere aus deren Infrarotver-
halten eine zugehörige spektrale Dichte ρa(m2) zu extrahieren, soll hier versucht werden, das
Problem der Extraktion von Massen aus Korrelationsfunktionen mit den bereits in Kapitel
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4.7.1 vorgestellten Methoden zu lösen. Dabei werden nun die Eichfelder als Erzeuger eines
eichabhängigen Zustands zu festem Impuls aufgefasst, dessen zeitliche Entwicklung unter-
sucht wird. Dadurch wird es möglich, Rückschlüsse auf die Masse der zugehörigen Anregung
zu ziehen. Die Verbindung der beiden Zugänge wird nach partieller Fourier-Transformation
des Propagators (4.121) offenbar:

1

N4

∑

p4

D ab(p2) exp(−ip4t) =
δab

N4

∑

p4

F a(p2)

p2
exp(−ip4t) = D ab(t,p) . (4.128)

Dabei ist die rechte Seite die Konkretisierung der allgemeinen, verbundenen Korrelationsfunk-
tion von Zeitschicht-Operatoren der Form (4.88), ausgewertet für Eichfelder als Erzeuger von
Zuständen bei räumlichem Impuls p und periodisch gemittelt über die zeitliche Ausdehnung
des Gitters:

D ab(t,p) :=
∑

x4

∑

µ

〈
Aaµ(−p, x4)Abµ(p, x4 + t)

〉
c

(4.129)

Um die Konsistenz der Notation zu gewährleisten, verwenden wir wie schon in den Kapiteln
4.7.2 und 4.7.3 im Folgenden weiterhin das Symbol d (distance) statt t für den Abstand der
Zeitschichten, in denen die Feldoperatoren endlicher Impulse definiert sind.

Die Grundlage unserer Messungen bildete wiederum das Ensemble der 1450 thermalisierten
Konfigurationen zu jeweils 184 Gitterpunkten. Bei der Berechnung der Korrelationsfunktionen
(4.129) wurde zur Erhöhung der Statistik wie schon im Falle der photonischen Korrelations-
funktionen die hyperkubische Symmetrie des Gitters ausgenutzt. Die numerischen Ergebnisse
beinhalten also eine weitere Mittelung über alle vier Hauptachsen des Gitters, längs derer
der Zerfall der Korrelationen gemessen wurde.

In einem ersten Schritt wurden die aus der gruppentheoretischen Analyse gewonnenen Er-
wartungen zur Gestalt des Propagators überprüft. Die Ergebnisse dieser Untersuchung sind
in Abbildung 4.11 in logarithmischer Darstellung zusammengefasst. Bei der Betrachtung der
Diagonalelemente des Propagators20 finden wir tatsächlich die in Gleichung (4.127) antizi-
pierte Form wieder. In Abbildung 4.11a ist das Verhalten dieser Matrixelemente für n = 1
sowie die exemplarisch ausgewählten Zeitschichtabstände d = 1, 5, 9 zu sehen. Wir unterschei-
den für d = 1 eindeutig drei verschiedene Werte für Dbb(1, 1) an den erwarteten Positionen,
inklusive des richtigen Entartungsgrads. Für die Propagatoren der Eichbosonen, die mit den
Generatoren der Untergruppe H vernüpft sind, besteht dieses Verhalten für alle betrachte-
ten Zeitschichtabstände d, im Falle der mit G/H assoziierten Eichbosonen gilt dies nur noch
näherungsweise. Die Korrelationen sind in diesem Fall bereits nach d = 5 Entwicklungsschrit-
ten um etwa zwei Größenordnungen abgefallen, und die zugehörigen Werte stimmen nurmehr
im Rahmen der statistischen Fehler überein, welche deutlich größer sind, als es für die Korre-
latoren Dbb(d,p) (b ∈ Ā) der Fall ist. Außerdem ist festzustellen, dass sich die Maximalwerte
der mit H und G/H assoziierten Korrelatoren bei gleicher Normierung um zwei Größenord-
nungen unterscheiden.

20Die Einstein’sche Summenkonvention gilt im Folgenden nicht mehr.
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Abbildung 4.11: Untersuchung der Matrixelemente des Propagators Dab(d,p) der Eichfelder.

Als nächstes wurden die Matrixelemente des Propagators außerhalb der Diagonalen unter-
sucht. Zu diesem Zweck wurden die Beträge des symmetrisierten Korrelators D(ab)(d,p) be-
trachtet:

Sab(d,p) = |D (ab)(d,p)| , D (ab)(d,p) :=
Dab(d,p) +Dba(d,p)

2
. (4.130)

Da es sich bei Dab(p2) um eine hermitesche Matrix handelt, sollte D(ab)(d,p) = Re(Dab(d,p))
gelten, bei der Betrachtung von Sab(d,p) werden also auch diejenigen Beiträge berücksichtigt,
die aufgrund der endlichen Anzahl an Messungen zu Abweichungen von der Hermitizität des
Propagators führen. Das Ergebnis unserer Untersuchungen ist in Abbildung 4.11b zu sehen.
Dabei wurden sowohl die fünfte als auch die achte Zeile des Korrelators zum niedrigsten
nicht-trivialen Impuls (n = 1) untersucht, wobei sich die Wahl von d an der bei der Untersu-
chung der Diagonalelemente getroffenen orientierte, was einen Vergleich mit den Ergebnissen
in der nebenstehenden Abbildung ermöglicht. Es zeigt sich, dass die nicht-diagonalen Ele-
mente gegenüber den Diagonalelementen stark unterdrückt sind, insbesondere ist der relative
Fehler häufig bereits so groß, dass diese Elemente als statistisch nicht mehr relevant ange-
sehen werden können. Ausnahmen bilden die Elemente D56(5, 1) und D57(5, 1), wobei sich
diese um mindestens zwei Größenordnungen vom Diagonalelement D55(5, 1) unterscheiden,
analoges gilt für die Elemente D82(1, 1),D83(1, 1) undD87(1, 1) im Vergleich zu D88(1, 1). Ein
Vergleich mit D88(d, 1) in Abbildung 4.11a zeigt darüber hinaus, dass diese Elemente immer
noch mindestens eine Größenordnung kleiner sind als der Wert, den der diagonale Korrela-
tor für die maximale zeitliche Entwicklung bei d = 9 angenommen hat. Vermutlich machen
sich in diesen Elementen die Abweichungen vom zu erwartenden Idealfall eines im Rahmen
der Fehlergenauigkeit hermiteschen Propagators besonders bemerkbar. Wir nehmen daher im
Folgenden an, dass die Diagonalität des Korrelators numerisch bereits in sofern hinreichend
akzeptabel ist, als dass zu erwarten steht, dass das Studium der diagonalen Korrelations-
funktionen allein es ermöglichen sollte, die wesentlichen Informationen über das Spektrum
der Theorie zu gewinnen und dieses sich durch Hinzufügen weiterer Konfigurationen zum
betrachteten Ensemble nicht wesentlich verändern sollte. Diese Annahme wird am Ende der
Untersuchung nochmals kritisch zu reflektieren sein.
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Abbildung 4.12: Zerfall der diagonalen Korrelationen Daa(d, n) für räumliche Impulse n = 0
(links), sowie n = 1 (rechts). Gitter: 184, κ = 0.216, λ = 0.01, periodische Randbedingungen.

Betrachten wir also die zu den acht Eichfeldern Aaµ(x) gehörenden diagonalen Korrelations-
funktionen Daa(d, n), die wie üblich gemäß

Daa(d = 1, n) = 1 für n = 0, 1, 2, 3 und a = 1 . . . 8 (4.131)

normiert wurden. Die Messergebnisse sind bezüglich d = N4/2 symmetrisch und werden in
Abbildung 4.12 für die Fälle n = 0 und n = 1 im Intervall d ∈ [1, 9] dargestellt. Zunächst
fällt bei der Betrachtung der linken Abbildung auf, dass die Korrelationsfunktionen für ver-
schwindende räumliche Impulse (n = 0) scheinbar in drei verschiedene Klassen zerfallen.
Die leichteste Anregung gehört zum Eichfeld A8

µ(x), etwas schwerer erscheint das entartete
Triplett zu sein, welches aus den mit Aaµ(x) (a = 1, 2, 3) assoziierten Anregungen besteht,

sowie zuletzt die Kollektion der aus den vier Eichfeldern Abµ(x) (b ∈ Ā⊥) gebildeten Korre-
lationsfunktionen, welche sehr schnell zerfallen und folglich mit sehr massiven Anregungen
verbunden sein müssen. An dieser Stelle soll daran erinnert werden, dass in Kapitel 4.3.1 bei
der perturbativen Diskussion des Higgs-Mechanismus in der vorliegenden Theorie neben einer
Vorhersage für die Masse des Higgs-Bosons (4.112) auch eine Vorhersage für die Massen der
mit den Generatoren der gebrochenen Symmetrien verknüpften Eichfelder gemacht wurde.
Das Ergebnis war m2 = 3g2tr[Φ2

0]/2 ∝ m2
ϕ. Eine solche Relation scheint sich auch in unserer

nicht-perturbativen Untersuchung zu bestätigen. Betrachten wir nämlich das Verhalten der
Korrelationsfunktionen für n = 1 in der rechten Abbildung von Figur 4.12, so ist eine weit-
gehende Übereinstimmung des Verlaufs von Dbb(d, 1) (b ∈ Ā⊥) mit der gestrichelten grauen
Kurve zu konstatieren, die das Ergebnis des bereits in Kapitel 4.7.3 diskutierten Fits an die
Messdaten der Korrelationsfunktion CS(d, 1) des adjungierten Skalarfeldes darstellt. In Ka-
pitel 4.7.3 wurde auch bereits auf die Schwierigkeiten hingewiesen, die sich bei dem Versuch
einer Abschätzung der physikalischen Teilchenmasse im Falle sehr schnell zerfallender Kor-
relationsfunktionen der zugehörigen Felder ergeben. Wir sehen daher an dieser Stelle davon
ab, eine derartige Untersuchung auch für die Propagatoren Dbb(d, n) (b ∈ Ā⊥) durchzuführen
und belassen es angesichts der in Abbildung 4.12 gezeigten Resultate bei der Vermutung,
dass durchaus die Möglichkeit besteht, dass die Massen der zugehörigen vier Anregungen mit
der Masse mϕ des adjungierten Skalarfeldes übereinstimmen könnten.
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Abbildung 4.13: (a) Der kinetische Beitrag zur Dispersionsrelation ist gegeben durch p̂2(n)
(horizontale Linien). (b) Die eingebettete Abbildung zeigt die Ergebnisse des Fits an die
Daten für p = 0 im Detail. Gitter: 184, κ = 0.216, λ = 0.01.

Des Weiteren fällt beim Vergleich der beiden Teilabbildungen 4.12 auf, dass die im Fall n = 0
offensichtliche Aufspaltung der zu Aaµ(x) (a = 1, 2, 3) und A8

µ(x) gehörigen Korrelationsfunk-
tionen im Fall n = 1 deutlich reduziert ist. Es liegt also möglicherweise eine weitere Entartung
der Massen des Tripletts sowie des Singuletts vor, die sich aber vielleicht erst bei der Unter-
suchung von Korrelationsfunktionen zu größeren Impulsen in voller Deutlichkeit zeigen wird.
Um diese Frage zu klären, wurden in einem nächsten Schritt die durch Gleichung (4.111)
definierten effektiven Massen meff(d, n) dieser vier Anregungen untersucht.

Das Ergebnis ist in Abbildung 4.13a zu sehen, wobei die Datenpunkte für die vier verschiede-
nen Anregungen der Übersichtlichkeit halber leicht gegeneinander verschoben wurden. Statt
der effektiven Masse wurde außerdem direkt die Größe 2(meff (d, n) − 1) gegen den Abstand
der Zeitschichten d aufgetragen, welche nach Gleichung (4.110) dem Quadrat der Energie der
Anregung Ê2

L(p̂
2) entspricht. Dabei wurden nur solche Messwerte für meff verwendet, deren

relativer Fehler kleiner als 0.1 war. Es ist zu beobachten, dass die erwartete Ausbildung der
Plateaus sehr schnell einsetzt, insbesondere für die Fälle n = 0, 1 ist das Ergebnis praktisch
völlig unabhängig vom Parameter d. Auch für die endlichen Impulse n = 2, 3 scheint der large
time limit praktisch unmittelbar erreicht zu sein, das Signal wird jedoch für zunehmendeWer-
te von n und d immer undeutlicher. Dieses Problem rührt aus dem Verhalten der Korrelatoren
selbst her. Die statistischen Fehler derselben sind bei festem n für jeden Wert von d etwa gleich
groß, da es sich jedoch um monoton fallende Funktionen handelt21 nimmt der relative Fehler
daher monoton zu. Die gezeigten Funktionswerte der sich ausbildenden Plateaus enthalten
immer noch die Beiträge der kinetischen Energie, deren Werte in der Abbildung durch die
horizontalen Linien zu n = 0, 1, 2, 3 dargestellt werden. Die Differenz der Datenpunkte zu der
jeweiligen Linie ergibt also eine Abschätzung für das Quadrat der Massen. Unsere Messungen
legen folglich nahe, dass es sich in allen vier Fällen um masselose Anregungen handelt. Diese

21Im Falle periodischer Randbedingungen gilt dies bis zum Symmetrisierungspunkt d = N4/2.
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Aussage kann mittels eines Fits an die Messdaten der zugehörigen Korrelationsfunktionen
quantifiziert werden. Bei der Auswahl der für den Fit zu verwendenden Datenpunkte bzw.
bei der Bestimmung von dmin lassen wir uns von den Resultaten unserer Untersuchungen der
Energie-Plateaus leiten. Die Annahme von dmin = 3 als Limes großer Zeiten erscheint ge-
rechtfertigt, Messwerte der Korrelationsfunktionen bei größeren Zeiten d wurden verwendet,
sofern der relative Fehler bei der Bestimmung zugehöriger effektiver Masse – wie in Abbil-
dung 4.13a gezeigt – kleiner war als 0.1. Das Resultat ist die in Abbildung 4.13b gezeigte
Dispersionsrelation, wobei alle Datenpunkte der zusätzlichen Einschränkung χ2/DoF < 3.5
unterliegen.

Eine Bemerkung zu den Ergebnissen im Fall n = 0 erscheint zum Schluss angebracht. Das
Verhalten der jeweiligen Korrelationsfunktionen in Abbildung 4.12 hatte die Vermutung nahe
gelegt, dass zwar eine Entartung der Masse innerhalb des SU(2)−Multipletts vorliegt, diese
sich aber von der Masse des Singulettzustands unterscheiden sollte. Tatsächlich unterschei-
den sich die extrahierten Werte in diesem Fall, wie aus der in Abbildung 4.13b eingebetteten
Detailansicht hervorgeht. Die Aufspaltung der Triplett- und Singulettmassen ist klar zu er-
kennen, jedoch ist ihr Abstand absolut gesehen sehr gering. Möglicherweise spiegelt sich
an dieser Stelle die erwähnte leichte Verletzung der Hermitizität des Propagators aufgrund
der endlichen Anzahl an Konfigurationen des betrachteten Ensembles besonders wider. Es
wäre daher interessant zu sehen, ob sich diese Lücke nach Durchführung weiterer Messungen
allmählich schließt. Eine Extrapolation der für endliche Impulse erzielten Ergebnisse zum
physikalischen Punkt lässt jedenfalls durchaus den Schluss zu, dass alle mit den Generatoren
der Untergruppe H assoziierten Eichbosonen tatsächlich masselos sein sollten. In diesem Fall
läge die höchst interessante Situation vor, dass eine effektive Quantenfeldtheorie ohne mass
gap eine ungebrochene SU(2) × U(1)−Symmetrie aufweist, wobei der zugehörige schwache
Isospin sowie die Hyperladung aber dennoch freigesetzt sind.

4.8 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Untersuchung konnte gezeigt werden, dass eine in D = 4 Dimen-
sionen definierte SU(3)−Eichtheorie, welche an ein skalares Feld in adjungierter Darstellung
gekoppelt und durch die Lagrangedichte (4.26) beschrieben wird, nach Fixierung der Eichsym-
metrie durch Wahl der Landau-Eichbedingung, sowie einer globalen unitären Eichbedingung
einen Phasenübergang zweiter Ordnung ermöglicht, der mit der spontanen Brechung der resi-
duellen globalen SU(3)−Symmetrie der eichfixierten Theorie einhergeht. Dies führt auf eine
Realisierungsphase der Theorie, die durch eine residuelle SU(2)× U(1)−Symmetrie gekenn-
zeichnet ist. Das Auftreten des Phasenübergangs, der von der Brechung einer zusätzlichen
globalen Reflexionssymmetrie der Theorie am selben kritischen Punkt begleitet wird, konnte
durch das Studium eichinvarianter, thermodynamischer Observablen beobachtet und im Pha-
sendiagramm lokalisiert werden. Zur eindeutigen Bestimmung insbesondere der Einbettung
der residuellen Symmetriegruppe H in die Symmetriegruppe G der Theorie in der Wigner-
Weyl-Phase hat es sich jedoch als vorteilhaft erwiesen, eine Eichung zu fixieren. Die Wahl
der globalen unitären Eichung in Kombination mit der Landau-Eichung hat es uns dabei auf
direkte Art und Weise ermöglicht, die nicht-trivialen Eigenwerte des globalen Skalarfeldes Φ
nach spontaner Symmetriebrechung – und somit H – zu bestimmen, sowie Eichfelder zu de-
finieren, welche aus den Freiheitsgraden der simulierten Gittereichtheorie extrahiert werden
können. Die Bestimmung von H zu SU(2) × U(1) hat uns ferner die Möglichkeit eröffnet,
das Verhalten eines Paares von statischen Testladungen bei verschiedenen Abständen zu un-
tersuchen, die sich nicht-trivial unter eben jener Symmetriegruppe transformieren, welche
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der Konstruktion der heute weitestgehend akzeptierten Theorie der elektroschwachen Wech-
selwirkung zugrunde liegt. Die Messergebnisse deuten darauf hin, dass die Kondensation
der Bosonen des adjungierten Skalarfeldes während des Phasenübergangs denselben Effekt
hervorruft, wie die Ausbildung eines Kondensats von fundamentalen Higgs-Bosonen bei der
spontanen Symmetriebrechung im Modell von Glashow, Weinberg und Salam: Obwohl es sich
beim schwachen Isospin um eine nicht-abelsche Symmetrie handelt, kann Materie, welche
Isospinladung trägt, im Rahmen der von uns untersuchten effektiven Theorie frei beobachtet
werden. Die für das Confinement-Phänomen charakteristische Form des Potentials ändert
sich beim Phasenübergang von einem linearen Anstieg für große Abstände der Quellen hin
zu einem Coulomb-Potential.

Das Spektrum der Theorie weist dabei sowohl eine masselose Anregung auf, welche die Quan-
tenzahlen des Photons trägt, als auch ein massives Boson, welches zum adjungierten Skalar-
feld gehört, und dessen Masse vom Vakuumerwartungswert des skalaren Kondensats und der
Selbstkopplungskonstante (4.112) bestimmt wird. Beide Anregungen konnten auf eichinvari-
ante Weise identifiziert werden. Die Massenskala der Theorie ist dabei nicht fixiert und könnte
durch weiteres Vordringen in die Phase gebrochener Symmetrie beliebig vergrößert werden,
was durch das beobachtete Verhalten von (4.112) als Funktion von κ nahe gelegt wird. Die dy-
namische Erzeugung einer weiteren Massenskala durch genuin nicht-perturbative Effekte, wie
sie etwa aus dem Studium des Infrarotverhaltens des Gluon-Propagators in Landau-Eichung
im Falle der SU(2) [LRG02] und SU(3) [BBLW00] Yang-Mills-Theorien bekannt ist, konnte
im nicht-abelschen Sektor der residuellen SymmetriegruppeH nicht beobachtet werden. Viel-
mehr wurde bei der Untersuchung der Propagatoren der in Landau- und globaler unitärer
Eichung (Abschnitt 4.4) definierten Felder festgestellt, dass diese in zwei Klassen zerfallen.
Die vier mit den Generatoren von H verknüpften Eichfelder gehören zu masselosen Anre-
gungen, während die mit den Generatoren von G/H assoziierten Eichfelder eine dynamisch
erzeugte Masse erhalten. Diese scheint direkt proportional zu mϕ, möglicherweise sogar gleich
der Masse des adjungierten Higgs-Bosons zu sein.

Dies ist insofern sehr interessant, als dass die vorliegenden Ergebnisse dem eingangs kurz re-
kapitulierten, perturbativ zu erwartenden Verhalten in Bezug auf das Spektrum der Theorie
voll und ganz zu entsprechen scheint, obwohl bei dieser üblicherweise angeführten Erklärung
des Higgs-Mechanismus aussschließlich die klassische Feldtheorie als Argumentationsgrundla-
ge bemüht wird und dabei offensichtlich von Voraussetzungen ausgegangen wird, die im Falle
der quantisierten Theorie nicht mehr unbedingt zutreffend sind. Ein besonders aufschlussrei-
ches Beispiel ist in diesem Zusammenhang das viel diskutierte Confinement-Phänomen in
nicht-abelschen Eichtheorien. Würde man der üblichen Argumentation auch in diesem Fall
folgen, so müsste man unabhängig von etwaigen nicht-perturbativ Effekten in stark gekoppel-
ten Quantenfeldtheorien zu dem Schluss kommen, dass solche Theorien aufgrund der intakten
(Eich-) Symmetrie ausschließlich masselose Eichbosonen aufweisen sollte. Dies ist aber ver-
mutlich in doppelter Hinsicht nicht der Fall. Zum einen treten Eichbosonen in derartigen
Theorien überhaupt nicht als asymptotische Zustände im Spektrum auf, versucht man den-
noch ihnen zumindest formal in einer bestimmten Eichung eine Masse zuzuweisen, so findet
sich typischerweise ein von Null verschiedener Wert22. Es ist daher höchst interessant, das
Zusammenspiel der verschiedenen Effekte zu studieren, die in nicht-abelschen Eichtheorien
bei der Ankopplung von skalaren Feldern auftreten können, die das Phänomen der spontanen

22Wie in Kapitel 4.1 ausgeführt wurde, ist dieser Punkt noch Gegenstand aktueller Untersuchungen.
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Symmetriebrechung ermöglichen23. Ein zentrales Ergebnis der in diesem Kapitel vorgestell-
ten Untersuchung ist dabei, dass die mit der residuellen Symmetriegruppe H assoziierten
Eichbosonen im Zuge der spontanen Symmetriebrechung tatsächlich im Spektrum der Theo-
rie nachweisbar werden und masselos sind. An dem von uns untersuchten Punkt im Pha-
sendiagramm der SU(3)−Eichtheorie mit adjungiertem Skalarfeld scheint somit eine höchst
interessante effektive Quantenfeldtheorie vorzuliegen, die weder das Confinement-Phänomen,
noch das Auftreten eines mass gap zeigt, obwohl die zugrunde liegende Symmetriegruppe H
einen nicht-abelschen Faktor enthält.

In der Einleitung wurde darauf hingewiesen, dass eine Kopplung der zu untersuchenden Theo-
rie (4.26) an dynamische fermionische Materie bewusst vernachlässigt wurde, um zunächst
zu klären, ob die SU(3)−Eichtheorie mit Skalarfeld in adjungierter Darstellung allein in
der Lage ist, die wesentlichen Merkmale einer Theorie der elektroschwachen Wechselwirkung
zu reproduzieren. Zum einen muss die Existenz einer masselosen vektoriellen Anregung im
Spektrum der Theorie gesichert sein, welche als das Photon der elektromagnetischen Wech-
selwirkung interpretiert werden kann. Zum anderen muss die Theorie einen Mechanismus
beinhalten, der sowohl effektive Massenterme für Eichfelder erzeugen kann, als auch eine Er-
klärung dafür bereithalten, warum eine bestimmte Linearkombination dieser Eichfelder genau
diejenigen Masseneigenzustände sein sollen, deren zugehörige Eichbosonen im Folgenden als
W± und Z0 interpretiert werden können und deren Massen gerade in einem Verhältnis stehen,
welches im Rahmen des GSW–Modells durch den sogenannten Weinberg-Winkel θW gemäß
mW /mZ = cos(θW ) parametrisiert wird und experimentell hervorragend gesichert ist.

Der eichinvariante ’t Hooft-Polyakov-Operator Γ3
µν(x), der zur Detektierung des Photons

konstruiert wurde, wird von einem Term (4.94) dominiert, der als Linearkombination der
Feldstärken aller nicht-abelschen Eichfelder interpretiert werden kann. Das masselose Vek-
torboson, welches an diesen Operator koppelt und im Spektrum der Theorie eindeutig nach-
gewiesen werden konnte, ist daher als eine Linearkombination zu verstehen, die von den vier
masselosen Eichfeldern Aaµ(x) (a ∈ Ā) dominiert wird, wobei Beiträge der (beliebig) massi-
ven übrigen Eichfelder für das langreichweitige Verhalten des Feldstärke-Korrelators offenbar
keine Rolle spielen. Obwohl es bei der ersten Betrachtung der Propagatoren der Eichbosonen
(4.12) für verschwindenden räumlichen Impuls den Anschein hatte, als würde sich im Nied-
rigenergiesektor der Theorie neben einer sehr leichten Anregung auch ein massives, quasi
entartetes Triplett von Eichbosonen als Kandidaten für die Vektorbosonen W±, Z0 nachwei-
sen lassen, hat sich diese gruppentheoretisch denkbare Möglichkeit (4.127) bei der anschlie-
ßenden Untersuchung der Dispersionsrelation aller Anregungen als äußerst unwahrscheinlich
erwiesen. Viel eher deutet die Extrapolation der Messdaten zum physikalischen Punkt darauf
hin, dass die Massen aller mit H assoziierten Eichbosonen mit Null verträglich sind, und die
Theorie somit zumindest an dem von uns untersuchten Punkt des Phasendiagramms nicht
direkt zu einer möglichen Alternative zur Beschreibung von elektroschwachen Vorgängen in
der Natur ausgebaut werden kann. In diesem Zusammenhang wäre es allerdings sehr interes-
sant, das Verhalten der Theorie bei einer Annäherung an die bereits beobachtete Grenzlinie
eines Phasenübergangs zweiter Ordnung zu studieren um die Frage nach der Existenz eines
nicht-trivialen Kontinuumslimes dieser Theorie näher zu untersuchen.

23Bereits in einer der ersten Untersuchungen des GSW–Modells auf dem Gitter hat sich angedeutet, dass
sowohl eine Confinement-Phase mit mass gap und SU(2)×U(1)Y −Symmetrie, als auch eine U(1)Q−Coulomb-
Phase realisiert sein kann, wobei keine analytische Verbindung zwischen beiden besteht [Shr86,MM94].
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Hält man am Konzept der Beschreibung der elektroschwachen Wechselwirkung durch eine
Eichtheorie in Verbindung mit spontaner Symmetriebrechung fest, so ist es vor allem die
(flavourunabhängige) Universalität der Kopplungskonstanten von Quarks und Leptonen in
elektroschwachen Prozessen, die einen starker Hinweis darauf gibt, dass die zugrunde liegende
Symmetriegruppe SU(2) × U(1) sein sollte24. Dass diese Symmetrie jedoch nicht unbedingt
durch ein fundamentales Higgs-Doublett gebrochen werden muss, wurde schon in Abschnitt
4.3.1 diskutiert. Vielmehr genügt es anzunehmen, dass der skalare Erweiterungssektor eine
ungebrochene globale (custodial) SU(2)−Symmetrie aufweist um zu zeigen, dass ein Symme-
triebrechungsschema möglich ist, das das Spektrum der beobachteten Eichbosonen reprodu-
ziert. Zudem muss es sich bei dem entsprechenden Boson nicht unbedingt um ein elementares
Teilchen handeln. Ebenso gut ist ein Mechanismus vorstellbar, der eine Analogie zur dyna-
mischen Brechung der chiralen Symmetrie in der Theorie der starken Wechselwirkung durch
Ausbildung eines skalaren Quarkkondensats 〈 q̄fqf 〉 6= 0 auf einer durch ΛQCD charakteri-
sierten Skala darstellt25. Allerdings gibt es für die Existenz derartiger Bindungszustände,
die unter dem Namen Techni-Mesonen bekannt sind, genau wie bei der Suche nach dem
fundamentalen Higgs-Boson, bisher keinerlei experimentelle Hinweise [A+08]. Dennoch ist es
interessant, über die Rolle der von uns untersuchten Quantenfeldtheorie in Verbindung mit
derartigen Theorien zu spekulieren, denn bei allen Anstrengung, die im fermionischen Sektor
unternommen werden müssen, um das Problem der dynamischen Erzeugung von Massenter-
men für ungleich zu behandelnde rechts- und linkshändige Familien von Materiefeldern zu
lösen, reduziert sich das Problem im Sektor der Eichbosonen letztlich immer auf die Brechung
einer SU(2) × U(1)−Symmetrie und der damit verbundenen Massenerzeugung für Eichfel-
der, die a priori stets als masselos angenommen werden. Nehmen wir also an, dass sich die
durch (4.26) gegebene Theorie oberhalb einer sehr hohen Energieskala µ′ in der symmetri-
schen Realisierungsphase befinde. Während des Phasenübergangs zweiter Ordnung erhalten
das adjungierte Boson und die zu G/H gehörigen Eichbosonen eine sehr große Masse und
entkoppeln somit faktisch von der resultierenden Quantenfeldtheorie bei deutlich niedrigeren
Energien. In diesem Energiebereich liegt somit eine Quantenfeldtheorie vor, welche zum einen
das Auftreten von freien Isospin-Ladungen erlaubt, zum anderen die residuelle Symmetrie-
gruppe H = SU(2)×U(1) besitzt, und die Voraussetzung der Masselosigkeit der zugehörigen
Eichfelder auf Quantenniveau erfüllt. Auf der elektroschwachen Skala, der im GSW–Modell
durch einen Vakuumerwartungswert des fundamentalen Higgs-Kondensats von v ≃ 250 GeV
gegeben ist, kann dann eine weitere Symmetriebrechung auf die elektromagnetische Gruppe
U(1)Q erfolgen, ohne dass dabei darauf zu achten wäre, dass dieser Mechanismus für die
Freisetzung des Isospins sorgen muss. Die Randbedingung ist dabei

”
lediglich“, dass zuletzt

das beobachtete Spektrum der elektroschwach wechselwirkenden Teilchen reproduziert wer-
den muss.

Die genaue Form dieses Symmetriebrechungsmechanismus ist nach wie vor eine der offenen
und drängendsten Fragen der Elementarteilchenphysik und wird vermutlich nur durch Hin-
weise aus weiteren experimentellen Untersuchungen zu klären sein. Es bleibt also zu hoffen,
dass die anstehenden Experimente am LHC (CERN) Licht ins Dunkel bringen werden.

24Da die beiden Faktoren miteinander kommutieren, kann es zwei unabhängige Kopplungskonstanten geben,
diese können durch die Werte der Fermi-Konstanten GF und sin2(θw) universell festgelegt werden [PS95].

25Überlegungen dieser Art haben bereits vor über 30 Jahren zum Anstoß einer Entwicklung von sogenann-
ten Technicolour -Theorien geführt [CL84]. Die wesentliche Idee ist dabei, Erweiterungen von QCD-artigen
Eichtheorien mit geeigneten RG−β−Funktionen zu finden, die ein besonderes Verhalten der laufenden Kopp-
lung aufweisen und dadurch die natürliche Einführung der Massenskala der elektroschwachen Wechselwirkung,
sowie eine Erklärung der Massenhierarchie zwischen den verschiedenen Familien der Fermionen ermöglichen.
Eine Einführung findet sich in den Übersichtsartikeln von Hill und Simmons [HS03], sowie Sannino [San08].





Anhang A

Diverses

A.1 Einheiten

Wir verwenden das natürliche Einheitensystem, in welchem ~ = c = 1 gesetzt wird.
In diesem System gilt

[Länge] = [Zeit] = [Energie]−1 = [Masse]−1

und die Umrechnung in physikalische Einheiten geschieht mittels der Relation

(1 MeV)−1 (~c) = 197.3 fm .

A.2 Metriken

• Minkowski-Raum M4: gµν = diag[+,−,−,−]
Ein Raumzeit-Ereignis wird nach Wahl eines Koordinatensystems mit

x = {x0, x1, x2, x3} = {x0,x}, xµ ∈ R
bezeichnet. Die quadratische Form aufM4 lautet

(x, x) = gµν x
µ xν = (x0)2 − (x1)2 − (x2)2 − (x3)2 = (x0)2 − x2 ,

was dem RaumM4 eine pseudo-euklidische Struktur gibt.

• Euklidischer Raum E4: gµν = δµν

Ein Vektor x ∈ E4 wird mit

x = {x1, x2, x3, x4} = {x, x4}, xµ ∈ R
bezeichnet. Die quadratische Form ist positiv definit, es handelt sich um einen Skalar-
produktraum mit euklidischer Struktur:

x2 = (x1)2 + (x2)2 + (x3)2 + (x4)2 = x2 + (x4)2 .
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A.3 Notationskonvention

Die Dimension der Raumzeit wird mit D bezeichnet. Es gilt also D = d + 1, wobei d die
Dimension des Raums bezeichnet.

• Griechische Symbole: Im Falle der euklidischen Raumzeit E4 gilt µ, ν, . . . ∈ [1, D].
Wird stattdessen der Minkowski-Raum M4 betrachtet, so gilt gemäß Konvention A.2
µ, ν, . . . ∈ [0, d]. Die Symbole α, β, . . . bezeichnen Spinor-Indizes.

• Lateinische Symbole: i, j, k, . . . ∈ [1, d] sind den räumlichen Dimensionen vorbehal-
ten, Farb-Indizes einer SU(N)−Yang-Mills-Theorie werden mit a, b, c, . . . ∈ [1, N 2− 1]
bezeichnet. Majuskel A,B,C, . . . bezeichnen in diesem Zusammenhang eine Kollektion
verschiedener Indizes, also einen sogenannten Multi-Index.

Falls nicht explizit anders angegeben, gilt stets die Einstein’sche Summenkonvention. Für
benachbarte Punkte x und y auf dem Gitter E4 verwenden wir häufig die Kurzschreibweise

y = x+ µ := x+ a êµ ,

wobei a die Gitterkonstante der Diskretisierung bezeichnet.

A.4 Fourier-Transformation

Für die vierdimensionale euklidische Fourier-Transformation gelten auf dem Gitter allgemein
die Konventionen

f̃(p) = a4
∑

x

f(x) exp[ i p x ] , f(x) =
1

a4N4

∑

p

f̃(p) exp[−i p x ] .

Dabei bezeichnet x y =
∑4

µ=1 xµ yµ nach den in A.2 getroffenen Konventionen das euklidische
Skalarprodukt, a ist wieder die Gitterkonstante.

Die Dirac’sche Delta-Distribution besitzt auf dem Gitter die diskretisierte Darstellung

δN4(x− y) =
1

N4

∑

p

exp[−i p (x− y) ] .

Eine Verbindung zwischen Eichfeldern Aµ(x) und Link-Variablen Uµ(x), die auf den Links
(x, x+ aêµ) des Gitters definiert sind, wird üblicherweise durch die Relation (C.48) herge-
stellt. Dabei werden die Eichfelder auf natürliche Weise mit den Mittelpunkten der zugehöri-
gen Links assoziiert [MM94]. Eine solche Definition ist immer nur nach Wahl einer bestimmten
Eichung sinnvoll [GPP+98]. Die Fourier-Transformation der beispielsweise in Landau-Eichung
definierten Eichfelder (4.116) ist dabei gegeben durch:

Ãaµ(p) = a4
∑

x

Aaµ(x) exp
[
i p (x+

a

2
êµ)
]
, Aaµ(x) =

1

a4N4

∑

p

Ãaµ(p) exp
[
−i p (x+

a

2
êµ)
]
.



Anhang B

Algorithmen zur numerischen
Simulation von Quantenfeldtheorien

Iacta alea est
Sueton: Divus Iulius, 32f

B.1 Markov-Prozesse und Monte-Carlo-Methoden

Im Rahmen der numerischen Simulation von Quantenfeldtheorien auf dem Gitter sollen Er-
wartungswerte verschiedener Funktionale f [ϕ] berechnet werden, wobei im Folgenden {ϕ}
eine Konfiguration von Feldvariablen bezeichnen soll. Dies führt auf die Berechnung eines
Pfadintegrals der Form

〈f〉 = Z−1

∫
Dϕf [ϕ] exp{−S[ϕ]} Z =

∫
Dϕ exp{−S[ϕ]} , (B.1)

wobei S[ϕ] die reellwertige Wirkung der diskretisierten Theorie darstellt. Eine direkte Aus-
wertung des Integrals verbietet sich aufgrund der Vielzahl der auftretenden Konfiguratio-
nen1. Das Ziel eines ökonomischen Monte-Carlo-Algorithmus muss also ein importance samp-
ling sein, bei dem ein Ensemble, bestehend aus einer großen Zahl N von Konfigurationen
{ϕ}n, (n = 1 . . . N) erzeugt wird, so dass die Verteilungsdichte dieser samples die gewünsch-
te Verteilungsdichte des kanonischen Ensembles Wc[ϕ] ∝ exp{−S[ϕ]} approximiert. Der in
diesem Ensemble berechnete Mittelwert

f̄ :=
1

N

N∑

n=1

f [ϕn] (B.2)

stellt eine Approximation des Erwartungswertes 〈f〉 dar. In einer numerischen Simulati-
on wird – ausgehend von einer Startkonfiguration {ϕ}0 – eine Folge von Konfigurationen
{{ϕ}k

∣∣k ∈ N0} generiert, dabei wird jede bereits erzeugte Konfiguration {ϕ} durch An-
wendung einer Aktualisierungsvorschrift (update step) mit einer Übergangswahrscheinlichkeit
P ({ϕ′} ← {ϕ}) in eine neue Konfiguration {ϕ′} überführt.

{ϕ}0 −→ {ϕ}1 −→ {ϕ}2 −→ {ϕ}3 −→ {ϕ}4 −→ · · · (B.3)

1Bereits für das zweidimensionale Ising-Modell auf einem Gitter mit 1002 Gitterplätzen x, in dem jede
Variable σ(x) ∈ {−1,+1} nur zwei verschiedene Werte annehmen kann, müssten bereits 2 10000 ∼ 10 3010

Konfigurationen berücksichtigt werden.
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Die Aktualisierung ist also ein stochastischer Prozess. Folgende Bedingungen sind zu erfüllen,
damit es sich bei dem Update-Prozess um einen Markov-Prozess handelt:

∑
{ϕ′}

P ({ϕ′} ← {ϕ}) = 1 ∀ {ϕ} (B.4)

P ({ϕ′} ← {ϕ}) > 0 ∀ {ϕ}, {ϕ′} (B.5)

P ({ϕ′} ← {ϕ})Wc[ϕ] = P ({ϕ} ← {ϕ′})Wc[ϕ
′] (B.6)

Neben der Normierungsbedingung (B.4) für die Übergangswahrscheinlichkeiten drückt die
Forderung nach strong ergodicity (B.5) aus, dass durch einen Update jede mögliche Konfi-
guration des Ensembles mit endlicher Wahrscheinlichkeit erreicht werden können muss. Die
letzte Forderung wird i.A. mit detailed balance bezeichnet, deren Erfüllung eine hinreichende
Bedingung für die üblicherweise geforderte Stabilitätsbedingung

∑
{ϕ}

P ({ϕ′} ← {ϕ})Wc[ϕ] = Wc[ϕ
′] (B.7)

darstellt. Die Stabilitätsbedingung garantiert, dass die Verteilung des kanonischen Ensembles
Wc ein (eindeutiger) Fixpunkt der Übergangswahrscheinlichkeit P ist [Wip07], d.h. vorausge-
setzt, die AnfangsverteilungW0 hat einen nichtverschwindenden Überlapp mit der Verteilung
des kanonischen Ensembles2, so konvergiert diese Verteilung im Grenzfall unendlich häufiger
Anwendung von P gegen die kanonische Verteilung. In der Praxis wird zunächst, ausgehend
von einer Startkonfiguration {ϕ}0, eine bestimmte Anzahl Ntherm. von Aktualisierungsschrit-
ten durchgeführt. Dies ist die sogenannte Thermalisierungsphase, in der die Entwicklung
W0[ϕ] → Wc[ϕ] stattfindet. Die danach erzeugten Konfigurationen werden zu einem En-
semble {{ϕ}n

∣∣n = 1 . . . N} zusammengefasst, welches zum Messung von Erwartungswerten
interessierender Observablen gemäß (B.2) herangezogen wird und die Gleichgewichtsvertei-
lung Wc[ϕ] approximiert.

Gleichbedeutend mit den Bedingungen (B.5, B.6) sind die zugehörigen lokalen Versio-
nen, denn falls ein Algorithmus lokal ergodisch ist und detailed balance lokal erfüllt, so
können die auf Konfigurationsebene gestellten Forderungen (B.5, B.6) durch Hintereinan-
derausführung von lokalen Aktualisierungsschritten an jedem Gitterpunkt x in der Form
P ({ϕ′} ← {ϕ}) =

∏
x Px({ϕ′} ← {ϕ}) erfüllt werden [MM94]. Diese Tatsache spielt eine

entscheidende Rolle bei der Konstruktion und Überprüfung der Gültigkeit von Metropolis-
und Heatbath-Algorithmen, die auf der lokalen Aktualisierung von dynamischen Variablen
basieren.

B.1.1 Metropolis-Algorithmus

Die Konstruktion der Übergangswahrscheinlichkeit

P ({ϕ′} ← {ϕ}) := Ptrial({ϕ′} ← {ϕ})Pacc.({ϕ′} ← {ϕ}) (B.8)

des (verallgemeinerten) Metropolis-Algorithmus geschieht in zwei Schritten:

• Es sei Ptrial({ϕ′} ← {ϕ}) eine beliebige Wahrscheinlichkeitsverteilung für den Vorschlag
{ϕ′} zur Aktualisierung der Konfiguration {ϕ}.

2Dies ist für jede Anfangsverteilung W0, die nur aus einer einzigen Anfangskonfiguration {ϕ}0 besteht,
aufgrund der Bedingung (B.5) immer gewährleistet [MM94].
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• Die Akzeptanzwahrscheinlichkeit Pacc.({ϕ′} ← {ϕ}) für diesen Vorschlag ist gegeben
als

Pacc.({ϕ′} ← {ϕ}) ∝ min
[
1,
Ptrial({ϕ} ← {ϕ′})Wc[ϕ

′]
Ptrial({ϕ′} ← {ϕ})Wc[ϕ]

]
. (B.9)

Der so definierte Algorithmus erfüllt die Bedingungen (B.4 – B.6), im Fall einer Gleich-
verteilung von Ptrial reduziert sich der Algorithmus auf den ursprünglich von Metropolis et
al. [MRR+53] vorgeschlagenen.

B.1.2 Heatbath-Algorithmus

Der Heatbath-Algorithmus ist ein Spezialfall des verallgemeinerten Metropolis-Algorithmus.
Der Vorschlagswahrscheinlichkeit Ptrial({ϕ′} ← {ϕ}) für eine neue Konfiguration {ϕ′} wird
dabei die kanonische Gleichgewichtsverteilung zugrunde gelegt. Dieser Vorschlag ist völlig
unabhängig von der alten Konfiguration {ϕ} und wird nach (B.9) immer akzeptiert. Es gilt
also

P ({ϕ′} ← {ϕ}) =Wc[ϕ
′] = Z−1 exp{−S[ϕ′]} . (B.10)

Die numerische Implementierung dieser Verteilung ist in den meisten Fällen nicht direkt für
die komplette Konfiguration möglich, wie bereits oben diskutiert kann man sich aber auf einen
lokal ergodischen Update-Schritt zurückziehen, dem eine lokale Version von (B.10) zugrunde
liegt. Diese lokale Wahrscheinlichkeitsverteilung einer Feldvariablen ϕ(x) im kanonischen En-
semble bezeichnen wir mit Wc[ϕ(x), ϕ̂(x)], wobei ϕ̂(x) alle umliegenden Variablen meint, die
während des Update-Schritts am Punkt x festgehalten werden. Die Ergodizität des Algorith-
mus wird durch die sukzessive Durchführung des lokalen Update-Schritts an allen Punkten
des Gitters wiederhergestellt, ein solcher sweep führt auch zur Realisierung von (B.10) auf
Konfigurationsebene.

Die eigentliche Aufgabe reduziert sich also im Falle des Heatbath-Algorithmus darauf, die
lokale kanonische Verteilung Wc[ϕ(x), ϕ̂(x)] zu erzeugen. Schreiben wir

dIϕ̂(x) =Wc[ϕ(x), ϕ̂(x)]dϕ(x) , (B.11)

so kann der Vorschlag ϕ′(x) bei Kenntnis des Integrals Iϕ̂(x) (und dessen Inversen I−1
ϕ̂(x))

direkt angegeben werden. Falls dies nicht ohne weiteres möglich ist, aber eine Zerlegung der
Verteilung gemäß

Wc[ϕ(x), ϕ̂(x)] =W0[ϕ(x), ϕ̂(x)]Wm[ϕ(x), ϕ̂(x)] (B.12)

in einen integrierbaren Anteil W0[ϕ(x), ϕ̂(x)] und einen Rest Wm[ϕ(x), ϕ̂(x)] existiert, kann
folgendes Verfahren angewandt werden:

• Zunächst wird mit Hilfe von W0[ϕ(x), ϕ̂(x)] ein Vorschlag ϕ′(x) erzeugt.

• In einem nachgelagerten Metropolis-Schritt ist dieser Vorschlag mit der Wahrschein-
lichkeit

Pacc.(ϕ
′(x)← ϕ(x), ϕ̂(x)) ∝ min

[
1,
Wm[ϕ

′(x), ϕ̂(x)]
Wm[ϕ(x), ϕ̂(x)]

]
(B.13)

zu akzeptieren.

Im Erfolgsfall ist das dadurch gewonnene Element nach der vollen kanonischen Verteilung
Wc[ϕ(x), ϕ̂(x)] verteilt. Anwendungen dieses Verfahrens im Rahmen des Updates von skalaren
Feldern in Eichtheorien finden sich in Kapitel B.3.
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B.2 Heatbath-Algorithmen für Yang-Mills-Theorien

Der Heatbath-Algorithmus in Anwendung auf reine Eichtheorien soll zunächst anhand des
Beispiels der SU(2)−Eichtheorie erläutert werden. Die Darstellung basiert dabei im Wesent-
lichen auf dem Vorschlag von Creutz [Cre80]. Auf die Vereinfachungen, die sich im Falle der
U(1)−Eichtheorie ergeben, sowie auf die Verallgemeinerungen im Falle der Gruppe SU(3)
wird im Anschluss eingegangen werden.

Die Anwendbarkeit eines lokalen Heatbath-Update-Schritts setzt, wie in Abschnitt B.1.2 dis-
kutiert, die Zerlegbarkeit der kanonischen Wahrscheinlichkeitsverteilung voraus. Dies ist ins-
besondere für die von Wilson [Wil74] vorgeschlagenen Wirkung (2.39), die wir durchgängig
verwenden, der Fall. Die lokale Wahrscheinlichkeitsverteilung der zu aktualisierenden Link-
Variablen Uµ(x) kann demnach geschrieben werden als

Wc(Uµ(x), Ûµ(x))dUµ(x) ∝ exp
{β
2
tr
[
Uµ(x)Bµ(x)

]}
dUµ(x) , (B.14)

wobei Bµ(x) die Summe der 2(D − 1) Bügel bezeichnet, die den Link Uµ(x) umgeben:

Bµ(x) :=
∑

ν 6=µ

[
U †
ν (x+ µ− ν)U †

µ(x− ν)Uν(x− ν) + Uν(x+ µ)U †
µ(x+ ν)U †

ν (x)
]
. (B.15)

Die Integration über die Gruppenmannigfaltigkeit erfolgt dabei bezüglich des invarianten,
normierten Haarmaßes dU

∫
f(AU) dU =

∫
f(UB) dU =

∫
f(U) dU , dU = d(AUB) A,B ∈ SU(2) , (B.16)

welches bei Verwendung der quaternionischen Parametrisierung (D.33) eines Gruppenelemen-
tes U ∈ SU(2) die Gestalt

dU =
1

π2
d4a δ(a2 − 1) ,

∫

SU(2)
dU = 1 (B.17)

annimmt. Hier wurde zur Vereinfachung der Notation bereits die Raumzeit- und Richtungs-
abhängigkeit des zu aktualisierenden Links Uµ(x) unterdrückt. Im Falle der SU(2) ist (B.15)
als Summe von Elementen aus SU(2) offenbar bis auf Normierung wieder ein Gruppenele-
ment:

B̄ = k−1B , k = ||B|| = det(B)
1
2 , B̄ ∈ SU(2) . (B.18)

Nach Einführung der Variablen Ū = UB̄ finden wir

exp
{βk

2
tr
[
UB̄

] }
dU = exp

{βk
2

tr
[
Ū
] }

dŪ , (B.19)

wobei die (Rechts-) Invarianz des Haarmaßes ausgenutzt wurde, und die Wahrscheinlichkeits-
verteilung (B.14) erhält bei Verwendung der Darstellung (D.33) für das Gruppenelement Ū
die Form

dP (a0,~a) ∝ d4a δ(a2 − 1) exp{βka0}, a2 = a20 + ~a · ~a . (B.20)

Die Abhängigkeit der Verteilung von ||~a|| kann mittels der Delta-Distribution eliminiert wer-
den, so dass sich die Wahrscheinlichkeitsverteilung für das Element Ū ∈ SU(2) ≃ S3 auf

dP (a0, ϑa, ϕa) ∝ da0dΩa

√
1− a20 exp{βka0} dΩa = sin(ϑa)dϑadϕa (B.21)
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reduziert. Nach einer Variablentransformation der Form

y = exp{βk(a0 − 1)} , exp{−2βk} ≤ y ≤ 1 (B.22)

zur weiteren Vereinfachung der Integration ergibt sich also schließlich

dP (y, ϑa, ϕa) ∝ dy dΩa

√
1− a20(y) . (B.23)

Numerische Durchführung

Es wird eine gleichverteilte Zufallszahl y ∈ [e−2βk, 1] gezogen, die mit der Wahrscheinlichkeit

pacc(y) =

√
1−

(
1 + (βk)−1 ln(y)

)2
(B.24)

zu akzeptieren ist. Zu diesem Zweck wird eine weitere, gleichverteilte Zufallszahl ξ ∈ [0, 1]
gewürfelt und mit pacc verglichen. Ist ξ > pacc(y), so wird dieser Vorschlag verworfen und
durch erneute Ziehung von y ein weiterer Vorschlag für a0 generiert. Diesem wird gemäß
(B.24) wieder eine bestimmte Akzeptanzwahrscheinlichkeit zugeordnet, welche mit einer neu-
en Zufallszahl ξ verglichen wird. Im Fall ξ < pacc(y) wird das aktuelle y akzeptiert, durch
Umkehrung der Transformation (B.22) das zugehörige a0 berechnet und danach die Richtung
von ~a gemäß dΩa gleichverteilt auf der Kugeloberfläche einer S2 bestimmt. Das auf diese Weise
erhaltene Element Ūµ(x) ist dann gemäß (B.21) verteilt, und nach Inversion der Substitution

wird das Element Uµ(x) zum Abschluss des Update-Schritts durch U ′
µ(x) = Ūµ(x)B̄

†
µ(x) er-

setzt. Alternativ dazu ist es aufgrund der zyklischen Eigenschaft der Spur in (B.19) ebenfalls

legitim, die Ersetzung U ′
µ(x) = B̄†

µ(x)Ūµ(x) durchzuführen.

Veränderungen im Falle der U(1)− und SU(3)−Eichtheorien
Abelsche Eichtheorie

Die Zustandssumme der (kompakten) U(1)–Eichtheorie ist nach Wilson gegeben durch

Z =

∫
DUµ exp

[
β
∑

x

∑

P

ReUP (x)
]

=

∫
Dθµ exp

[
β
∑

x

∑

µ<ν

cos
(
θµν(x)

)]
, (B.25)

wobei die sogenannten Plaquettenwinkel θµν(x) in (1.70) definiert wurden. Die Abspaltung
eines zu aktualisierenden Links Uµ(x) ist in diesem Fall ebenso wie die Berechnung von (B.15)
direkt möglich, der Heatbath-Algorithmus kann also unter Verwendung eines flachen Maßes
(θ ∈ (−π, π]) angewandt werden.

SU(3)−Yang-Mills-Theorie

Im Falle der Gruppe SU(3) ermöglicht zwar die Form der Wilson’schen Wirkung die Auf-
spaltung der lokalen Wahrscheinlichkeitsverteilung in einen Anteil für den zu aktualisieren-
den Link und einen davon unabhängigen Rest, das Problem stellt jedoch die Berechnung von
(B.15) dar, da im Falle der SU(3) die Summation von Gruppenelementen aus der Gruppe
hinausführt. Die Lösung des Problems besteht in unserem Fall in der Anwendung des von
Cabibbo und Marinari [CM82a] vorgeschlagenen Pseudo-Heatbath-Algorithmus, wobei alle
drei Einbettungen von SU(2)-Untergruppen der Reihe nach aktualisiert wurden. Details des
Algorithmus werden im Rahmen der Diskussion von Eichfixierungsalgorithmen in Anhang C
erörtert.
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B.3 Algorithmen für Eichtheorien mit skalaren Feldern

B.3.1 SU(2)−Yang-Mills-Theorie mit dynamischem Higgs-Feld

Updates der Eichfelder

Die Darstellung der Wirkung in der Form (2.42) ermöglicht aufgrund der Linearität in Uµ(x)
eine direkte Übertragung des für die reine SU(2)−Eichtheorie bereits vorgestellten Heatbath-
Algorithmus auf die vorliegende Situation. Die Wahrscheinlichkeitsverteilung für die Link-
Variable Uµ(x) lässt sich schreiben als

Wc(Uµ(x), Ûµ(x)) dUµ(x) ∝ exp
{β
2
tr
[
Uµ(x)Bµ(x)

]}
dUµ(x) , (B.26)

wobei die Definition des verallgemeinerte Bügels

Bµ(x) := Bµ(x) +
κ

β

[
Φ(x+ µ) ,Φ†(x)

]
, B̄ = b−1 B ∈ SU(2) , (B.27)

die in (B.15) definierte Summer der Bügel der reinen Yang-Mills-Theorie mit einschließt.

Updates des Higgs-Feldes

Zum Update des Higgs-Feldes verwenden wir den von Bunk [Bun95] vorgeschlagenen Hybrid-
Heatbath-Algorithmus. Der kinetische Anteil der Wirkung (2.42) kann in die Form

SKin[φ] = κ
∑

x,µ

1

2

[
φ†(x)Uµ(x)φ(x+ µ) + c.c.

]
(B.28)

gebracht werden. Die vier reellen Komponenten des Higgs-Feldes φ(x) (2.40) werden mit

ϕ1(x) = Re[φ1(x)], ϕ2(x) = Im[φ1(x)], ϕ3(x) = Re[φ2(x)], ϕ4(x) = Im[φ2(x)] (B.29)

bezeichnet und zu einem Vektor ϕ(x) ∈ R4 zusammengefasst. Fassen wir nun alle Beiträge in
(B.28), die an das zu aktualisierende Higgs-Feld ϕ(x) koppeln, zu einem Vektor R(x) ∈ R4

zusammen, so findet sich für die gesamte lokale Wirkung des Higgs-Sektors die Darstellung

SHiggs[ϕ(x)] =
(
ϕ(x)−R(x)

)2
+ λ

(
ϕ(x)2 − 1

)2
, (B.30)

und ein neues Higgs-Feld ist gemäß der Verteilung

dP (ϕ) = d4ϕp(ϕ) ∼ d4ϕ exp{−SHiggs[ϕ]} (B.31)

zu erzeugen. Zur Vereinfachung der Darstellung haben wir hier bereits die Abhängigkeit
der dynamischen Variablen vom Ort x unterdrückt, da wir im Folgenden den Update eines
Higgs-Feldes an einem festen Ort diskutieren wollen. Obwohl (B.30) bereits in Form einer
Wirkung vorliegt, welche die Anwendung eines Gauß’schen Heatbath-Algorithmus direkt zu-
lassen würde, besteht immer noch die Möglichkeit, die Verteilungsfunktion (B.31) dahinge-
hend zu verändern, dass eine optimale Akzeptanzrate während des Aktualisierungsprozesses
erzielt wird. Dies kann erreicht werden, indem zunächst ein Parameter α ∈ R eingeführt wird,
mithilfe dessen die Wirkung (B.30) umformuliert wird:

SHiggs[ϕ] = α
(
ϕ− α−1R

)2
+ λ

(
ϕ2 − v2α

)2
+ γ (B.32)
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v2α := 1 +
α− 1

2λ
, γ := (1− α)

(
1− R2

α
+

(α− 1)

4λ

)
. (B.33)

Die Konstante γ ist unabhängig von ϕ(x) und kann daher bei der Aktualisierung des Higgs-
Feldes nach (B.32) vernachlässigt werden. Daraus ergibt sich die modifizierte Verteilungs-
funktion

p(ϕ,α) = ptrial(ϕ,α) · pacc(ϕ,α) (B.34)

mit den beiden Faktoren

ptrial(ϕ,α) = N−1 exp
{
−α(ϕ−α−1R)2

}
und pacc(ϕ,α) = exp

{
− λ(ϕ2− v2α)2

}
. (B.35)

Die Normierungskonstante ist dabei durchN =
∫
d4ϕ exp

{
−α(ϕ−α−1R)2

}
gegeben. Zuletzt

wird durch das Parameterintegral

Racc.(α) :=

∫
d4ϕp(ϕ,α) , (B.36)

die Akzeptanzrate als Funktion des Parameters α definiert, und die zu fordernde Extremums-
bedingung für Racc.(α) führt auf die in [Bun95] angegebene kubische Gleichung

α3 − (1− 2λ)α2 − 4 · λα = 2λR2 , (B.37)

deren einzige positive Lösung (B.36) maximiert. Das weitere Vorgehen zur Bestimmung des
Vorschlags ϕtrial für die neue Higgs-Variable wird im folgenden Abschnitt erläutert, nachdem
eine Verallgemeinerung des bisher vorgestellten Algorithmus präsentiert wurde.

B.3.2 Die Verallgemeinerung des Algorithmus von Bunk

Das Ziel ist es, einen allgemein anwendbaren Heatbath-Algorithmus für die Aktualisierung
von Higgs-Feldern in Eichtheorien unter der Voraussetzung zu konstruieren, dass sich die
Wirkung des Higgs-Sektors auf eine Gauß’sche Form transformieren lässt. Als Folge dessen
ergibt sich eine Verallgemeinerung der kubischen Gleichung (B.37) zur Optimierung solcher
Algorithmen, die nun auf eine etwas andere Weise wie oben abgeleitet werden soll.

Angenommen, die Wirkung der betrachteten Theorie konnte bereits in die Form (B.32) ge-
bracht werden, wobei nun die Vektoren ϕ,R ∈ Rd. In einem ersten Schritt wird im Wechsel-
wirkungsterm der Wert von ϕ2 durch den zugehörigen Erwartungswert 〈ϕ2〉 angenähert, und
gefordert, dass

v2α = 〈ϕ2 〉 , (B.38)

was die Akzeptanzwahrscheinlichkeit paccept(ϕ,α) in Gleichung (B.35) maximiert. Als nächstes
berechnen wir den Erwartungswert von ϕ2 bezüglich der Vorschlagsverteilungsfunktion
ptrial(ϕ,α)

〈ϕ2 〉 = I1(α)/I0(α) , (B.39)

ausgedrückt durch die beiden Parameterintegrale

I0(α) =

∫
d4ϕ ptrial(ϕ,α) und I1(α) =

∫
d4ϕ ϕ2 ptrial(ϕ,α) . (B.40)
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Nach quadratischer Ergänzung durch Einführung eines Vektors χ := ϕ−α−1R reduziert sich
I1(α) auf

I1(α) =

∫
d4χ

[
χ2 + α−2R2

]
exp

{
− αχ2

}
, (B.41)

da der Term linear in ϕ verschwindet. I0 ist ein Standard-Gauß-Integral in d Dimensionen:

I0(α) =
[
(
π

α
)
1
2
]d

= πd/2α−d/2 . (B.42)

Zur Berechnung des ersten Beitrags zu I1(α) verwenden wir den Trick

∫
ddχ χ2 exp

{
− αχ2

}
= − d

dα

∫
ddχ exp

{
− αχ2

}
= − d

dα
I0(α) . (B.43)

Schließlich identifizieren wir 〈ϕ2〉 mit v2α um eine selbstkonsistente Lösung zu erhalten. Auf-
lösen der so erhaltenen Gleichung (B.38) führt auf die verallgemeinerte kubische Gleichung

α3 − (1− 2λ)α2 − d · λα = 2λR2. (B.44)

Einen Vorschlag ϕtrial für das zu aktualisierende Higgs-Feld erhält man nun, indem zunächst
vier Gauß-verteilte Zufallsvariablen xi mit σi = 1 und x̄i = 0 erzeugt werden:

∏

i

dxi p(x1, x2, x3, x4) =
∏

i

dxi
1√
2π

e−
1
2
(xi)2 (B.45)

Dazu wurde ein Box-Müller-Generator in Polardarstellung verwendet, eine mögliche Imple-
mentierung findet sich in [PTVF07]. Durch eine Variablentransformation der Form

ϕi = (2α)−
1
2 xi + α−1Ri, i = 1 . . . d (B.46)

erhält man den neuen Vorschlag für das Higgs-Feld, welcher dann mit der Wahrscheinlichkeit

pacc(ϕ,α) = exp
{
− λ(ϕ2 − v2α)2

}
(B.47)

zu akzeptieren ist.

Anmerkung: Für skalare Felder, die an eine SU(N)−Yang-Mills-Theorie koppeln und sich
unter der adjungierten Darstellung transformieren, gilt d = N2 − 1.

B.3.3 SU(3)−Eichtheorie mit skalarem Feld in adjungierter Darstellung

In Analogie zur Behandlung der SU(2)−Eichtheorie mit einem skalaren Feld in fundamen-
taler Darstellung wird zunächst die Wirkung des Higgs-Sektors der SU(3)−Eichtheorie mit
adjungiertem skalaren Feld (4.42, 4.51) in eine Form gebracht, die es gestattet, auf einfache
Weise eine für die Anwendung des Heatbath-Algorithmus notwendige quadratische Ergänzung
durchzuführen. Mit den von uns gewählten Konventionen ergibt sich der für den lokalen Up-
date relevante Teil der Wirkung zu

SHiggs[φ(x)] =
1

2

(
φ(x)−R(x)

)2
+
λ

4

(
φa(x)φa(x)

)2
. (B.48)



Anhang B 191

Dabei sind die Vektoren φ,R ∈ R8, und für die Komponenten von R gilt:

R a(x) = 2κ
∑

µ

tr
[
T aUµ(x)T

bU †
µ(x)

]
φb(x+ µ)

+ tr
[
T bUµ(x− µ)T aU †

µ(x− µ)
]
φb(x− µ) (B.49)

= κ
∑

µ

Oabµ (x)φb(x+ µ) +Obaµ (x− µ)φb(x− µ) . (B.50)

Die letzte Zeile macht dabei bereits von der in Gleichung (C.50) noch einzuführenden adjun-
gierten Darstellung der Links, Uadj(x)

ab
µ = Oabµ (x), Gebrauch. Die Reskalierung der Wirkung

mit α/2 erfolgt aufgrund der von uns in Kapitel 4 gewählten Konventionen im Vergleich zu
(B.30), und die Selbstkopplungskonstante ist nun λ/4. Daher folgt (wiederum nach Unter-
drückung der Ortsabhängigkeit) für die nur scheinbar vom Parameter α abhängige Wirkung

SHiggs[φ] =
α

2

(
φ− α−1R

)2
+
λ

4

(
φ2 − w2

α

)2
+ Γα , (B.51)

wobei

w2
α :=

(α− 1)

λ
und Γα :=

(α− 1)2

4λ
+
R2

2α
. (B.52)

Die Konstante Γα ist irrelevant für die lokale Aktualisierung des Skalarfeldes und wird daher
ignoriert, wir finden folglich

ptrial(φ, α) = N−1 exp
{
− α

2
(φ− α−1R)2

}
(B.53)

mit passender Normierung N , sowie die veränderte kubische Gleichung

α3 − α2 − 8λα− λR2 = 0 . (B.54)

Die Transformation der wie in (B.45) generierten Gauß’schen Zufallsvariablen xa auf die
Komponenten des skalaren Feldes in adjungierter Darstellung lautet

φa = α− 1
2 xa + α−1R a, a = 1 . . . 8 , (B.55)

und der auf diese Weise generierte Vorschlag für ein neues Higgs-Feld wird in einem nachge-
lagerten Metropolis-Schritt mit der Wahrscheinlichkeit

pacc(φ, α) = exp
{
− λ

4
(φ2 − w2

α)
2
}

(B.56)

akzeptiert.
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B.4 Overrelaxation und mikrokanonische Reflexion

Eine spezielle Möglichkeit, im Rahmen eines Metropolis-Update-Algorithmus einen Vorschlag
für ein zu aktualisierendes Element ϕ(x) zu erzeugen, ist unter dem Namen Overrelaxation
bekannt. Das Ziel ist die Bekämpfung des als critical slowing down bekannten Phänomens,
welches insbesondere in der Nähe des kritischen Punktes einer Feldtheorie auftritt und eine
mitunter extrem lange Thermalisierungsphase in der Markov-Kette hervorruft, was durch
ein (dynamisches) Skalierungsgesetz für die (integrierte) Autokorrelationszeit τint(A) einer
Observablen A ausgedrückt werden kann:

τint(A) ∝ ξzA . (B.57)

Ein effizienter Algorithmus wird durch eine geringe Autokorrelationszeit charakterisiert. Falls
es sich im einfachsten Fall bei 〈A〉 um den exakten (statistischen) Wert einer primären Obser-
vablen handelt, die nach Gleichung (B.2) als Mittel von N innerhalb einer Markov-Kette {ϕ}n
aufeinander folgenden Messwerten an approximiert wird, so berechnet sich die (diagonale)
Korrelationsfunktion zu

CAA(t) = 〈 (an −A)(an+t −A) 〉 , (B.58)

und die zugehörige integrierte Autokorrelationszeit ist definiert zu

τint(A) :=
1

2

+∞∑

t=−∞

CAA(t)

CAA(0)
. (B.59)

Für den statistischen Fehler σA des Schätzwertes (B.2) gilt dabei

σ2A = 2 τint(A) ·
VA
N

, (B.60)

wobei die
”
gewöhnliche“ Varianz von 〈A〉 mit VA := CAA(0) bezeichnet wird. Sind die Kon-

figurationen der Markov-Kette vollständig unkorreliert, so gilt CAA(t) ∝ δt0 und man findet
die bekannte Relation σ2A = 〈(ak − A)2〉/N . Im Allgemeinen wird die Berechnung der ver-
allgemeinerten, nicht-diagonalen Kovarianzmatrix CAB(t) erforderlich, um eine Abschätzung
des Fehlers von sekundären Observablen f(A,B) zu erhalten. Dieser Fall wird in [Wol04] dis-
kutiert, hier findet sich auch die Implementierung einer Routine zur Abschätzung von (B.59)
durch verschiedene selbstkonsistente und automatisierbare Trunkierungen der Summation,
die in unseren Untersuchungen zur Autokorrelation verschiedener Observablen herangezogen
wurde.

Für lokale Update-Algorithmen nimmt der dynamische kritische Exponent z üblicherweise
Werte von z ≃ 2 an, so dass bei divergierender Korrelationslänge ξ am Phasenübergang die
Unterschiede von einer Konfiguration zur nächsten minimal werden und somit keine Kon-
vergenz mehr eintreten kann. Eine Verringerung der Autokorrelationszeit kann nun dadurch
erzielt werden, dass ein Vorschlag ϕ′(x) für eine zu aktualisierende Variable ϕ(x) so gewählt
wird, dass sich diese maximal von ϕ(x) unterscheidet. Die zugrunde liegende Idee geht auf Ad-
ler [Adl81] zurück und wurde für multi-quadratische Wirkungen entwickelt: Bei der Annähe-
rung an ein lokales Minimum der Wirkung wählt man zunächst eine Transformation, die das
Funktional tatsächlich minimiert, und erlaubt danach durch Wahl einer Potenz ω ∈ [1, 2]
für diesen Schritt, das Minimum wieder zu verlassen, bzw. über es hinauszuschießen (over-
relaxation). Der Grenzfall ω = 2 entspricht dabei einer Reflektion am Minimum und führt
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auf das
”
Spiegelbild“ von ϕ(x). Der Parameter ω kann so eingestellt werden, dass die Auto-

korrelationszeit interessierender Observablen minimiert wird.

Betrachten wir das Vorgehen am Beispiel der SU(2)−Eichtheorie anhand von Gleichung

(B.14). B̄†
µ(x) ist dabei das Element, welches lokal die Wirkung (2.39) minimiert. Dann ist

die Transformation, welche nach Anwendung auf Uµ(x) zum Minimum der Wirkung führt,

gegeben durch B̄†
µ(x)U

†
µ(x). Zweifache Anwendung (ω = 2) führt auf die Form [Cre87]

U ′
µ(x) =

[
B̄†
µ(x)U

†
µ(x)

]2
Uµ(x) = B̄†

µ(x)U
†
µ(x) B̄

†
µ(x) , (B.61)

was eine Involution darstellt: Uµ(x) = B̄†
µ(x)U

′ †
µ (x) B̄†

µ(x). Daher kürzen sich die beiden
Faktoren Ptrial in (B.9) und die Transformation erfüllt detailed balance. Außerdem ändert
sich durch Verwendung des neuen Elements die Wirkung nicht (vgl. B.14), so dass dieser
Vorschlag immer akzeptiert wird, es gilt Pacc. = 1. Ein solcher Schritt ist nicht ergodisch
und wird als mikrokanonische Reflexion bezeichnet, da hierdurch statt des kanonischen En-
sembles ein mikrokanonisches Ensemble zu fester Wirkung erzeugt wird. Üblicherweise wird
daher eine feste Kombination von Heatbath- bzw. Metropolisschritten und mikrokanonischen
Update-Schritten an allen Gitterpunkten durchgeführt, um die Ergodizität des Algorithmus
wiederherzustellen. Die Anwendung einer solchen Kombination für jedes Element auf dem
Gitter wird als supersweep bezeichnet. Für die SU(3)−Eichtheorie wird das in [BW87] be-
schriebene Vorgehen der sukzessiven Anwendung des gerade beschriebenen Verfahrens auf
alle drei Einbettungen von SU(2)−Untergruppen angewandt, was sowohl elegant als auch
numerisch leicht durchführbar ist. Ein auf diese Weise erhaltenes Element U ′ wird in einem
nachgelagerten Schritt gemäß einer Wahrscheinlichkeitsverteilung ausgewählt, deren Boltz-
mannfaktor den noch relevanten Teil der Wirkung enthält.

Es sollte darauf hingewiesen werden, dass Vorschläge für die Anwendung von Overrelaxation-
Schritten in SU(N)−Eichtheorien existieren, die nicht auf irgendwelche Untergruppeneinbet-
tungen zurückgreifen, und dennoch zu einem schnelleren Abbau von Korrelationen führen
können [Cre87, dFJ05]. Da sich diese Untersuchungen jedoch nur auf reine SU(N)−Yang-
Mills-Theorien beziehen, und eine merkliche Reduktion von Autokorrelationszeiten in den
untersuchten Observablen außerdem erst für N ≥ 4 beobachtet wurde, haben wir derartige
Algorithmen in unseren Simulationen nicht eingesetzt.

Für das SU(2)−Modell mit fundamentalem Skalarfeld ϕ(x) ergibt sich die lokale Over-
relaxation-Transformation (ω = 2) im Higgs-Sektor zu

ϕ′(x) = 2α−1R(x)− ϕ(x) . (B.62)

Die Vorschlagswahrscheinlichkeit ptrial(ϕ
′, α) erfährt durch diese Transformation gegenüber

ptrial(ϕ,α) in Gleichung (B.35) keinerlei Änderung, daher muss das gespiegelte Element an-
schließend einfach mit Wahrscheinlichkeit pacc(ϕ

′, α) akzeptiert werden.

Die Verallgemeinerung auf den Fall der SU(3)−Eichtheorie mit einem skalaren Feld φ(x) in
adjungierter Darstellung verläuft nach (B.53) und (B.56) völlig analog.





Anhang C

Eichfixierung auf dem Gitter als
Minimierungsproblem

C.1 Landau-Eichung und Coulomb-Eichung

Auf dem Gitter wird die Aufgabe der Fixierung einer Eichung für eine gegebene Konfigura-
tion von Links {U} wie im Kontinuum ebenfalls auf die Minimierung eines eichfixierenden
Funktionals bezüglich einer Eichtransformation {Ω} zurückgeführt. Das Problem besitzt die
generischen Form

FU [Ω] =
∑

x

l∑

µ=1

Re tr
[1− UΩ

µ (x)
] Ω−→ min. (C.1)

Die Formulierung der Feldtheorie auf dem euklidischen Raum E4 ermöglicht eine vereinheit-
lichte Darstellung des Minimierungsproblems, im Falle der Coulomb-Eichung ist die Summa-
tion über die Kanten des Raumzeit-Gitter in (C.1) bis l = 3 auszuführen, für die Realisierung
der Landau-Eichung gilt l = 4. Anstatt wie im Rahmen der Kontinuumsformulierung eine
Entwicklung des Funktionals (1.94) nach Potenzen von ω(x) durchzuführen, wollen wir hier
einen anderen Weg beschreiten um einen Ausdruck für die Eichfixierungsbedingung, sowie die
zweite Variation auf dem Gitter zu erhalten. Um zu zeigen, dass die Minimierung von (C.1)
bezüglich der die Eichtransformation vermittelnde Funktion Ω(x) auf die Eichbedingung der
Coulomb- bzw. Landau-Eichung führt, parameterisieren wir diese Funktion durch

Ω(τ, x) := exp{iτω(x)} , ω(x) = ωa(x)T a ∈ su(N) , τ ∈ R . (C.2)

In dieser Formulierung lauten die hinreichenden Bedingungen für ein Minimum des Funktio-
nals

d

dτ
FUmin

[ω, τ ]

∣∣∣∣
τ=0

= 0 ,
d2

dτ2
FUmin

[ω, τ ]

∣∣∣∣
τ=0

≥ 0 , ∀ ω , (C.3)

wobei Umin := UΩmin(U). Um die Abhängigkeit der eichtransformierten Links vom Parameter
τ zu unterstreichen, schreiben wir

U τµ(x) = Ω(τ, x)Uµ(x)Ω
†(τ, x+ µ) , (C.4)

und berechnen daraus

d

dτ
U τµ(x) = iω(x)U τµ (x)− iU τµ(x)ω(x+ µ) . (C.5)
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Für die Extremalbedingung findet sich also:

d

dτ
FU [Ω, τ ] = −

∑

x

l∑

µ=1

Re tr

[
iω(x)U τµ (x)− iU τµ(x)ω(x+ µ)

]

=
∑

x

Im tr

[
ω(x)

∑

µ

(
U τµ(x)− U τµ (x− µ)

)]
. (C.6)

Auflösung des Imaginärteils liefert unter Verwendung der Relation (C.48) die explizite Dar-
stellung

d

dτ
FU [Ω, τ ] = −

i

2

∑

x

tr[ω(x)

[∑

µ

(
U τµ(x)− U τ †µ (x)

)
− (U τµ(x− µ)− U τ †µ (x− µ)

)]

= a
∑

x

tr

[
ω(x)

∑

µ

Aτµ(x)−Aτµ(x− µ)
]
. (C.7)

Fassen wir wie in Gleichung (1.94) die Summation über alle Gitterpunkte und die Bildung
der Spur im Farbraum zusammen, so erhalten wir für die (erste) Variation von FU [Ω, τ ]
schließlich

d

dτ
FU [Ω, τ ] = a2 Tr(ω ∂Aτ ) , (C.8)

wobei sich wiederum der Fall l = 3 in der Kontraktion ∂Aτ :=
∑l

µ=1 ∂µA
τ
µ auf die Coulomb-

Eichung, der Fall l = 4 auf die Landau-Eichung bezieht. Es ist anzumerken, dass die Form
des eichfixierenden Funktionals (C.6) in der Gitterformulierung der Eichtheorie entscheidend
von der Definition des Eichfeldes auf dem Gitter abhängt. Da die fundamentalen Größen in
der zugrunde liegenden Wilson’schen Formulierung Elemente der Eichgruppe G sind, ist das
Eichpotential eine abgeleitete Größe, und es existieren verschiedene Definitionen von A, die
sich formal nur um irrelevante Terme der Ordnung O(a) voneinander unterscheiden. Die von
uns verwendete Konvention (C.48) hat sich heute größtenteils als Standard etabliert, es gibt
aber keinen theoretischen Grund, diese Definition anderen Varianten vorzuziehen. Tatsächlich
konnte gezeigt werden, dass Green’sche Funktionen, die unter der Verwendung von zwei ver-
schiedene Definitionen des Eichpotentials konstruiert werden, zueinander proportional sind,
was die Eindeutigkeit des Gluonenfeldes im Kontinuumslimes garantiert [GPP+01].

An einem stationärer Punkt {UΩmin} des eichfixierenden Funktionals verschwindet die Varia-
tion desselben, daher erfüllt das daraus abgeleitete Gittereichfeld Aτ=0

min die Transversalitäts-
bedingung ∂Aτ=0

min = 0. Folglich ist es wünschenswert, Abweichungen von der Stationaritäts-
bedingung kontrollieren zu können, die während der iterativen Suche nach {Ωmin} auftreten
und anzeigen, dass noch kein Extremum von (C.1) gefunden wurde. Die explizite Darstellung
des Imaginärteils in (C.6) führt wie oben gezeigt zum Auftreten von inversen Links, was die
Definition von

B(x) :=

l∑

µ=1

[
Uµ(x) + U †

µ(x− µ)
]

(C.9)

motiviert, denn unter Verwendung von (C.48) erhält man mit den in Anhang D.2 angegebenen
Relationen für die hermiteschen Generatoren T b für die Größe

∆b
x := 2 Im tr[T bB(x)] = a2∂µA

b
µ(x) +O(a3) , (C.10)
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und somit ein Maß für die Güte der Realisierung der Transversalitätsbedingung für die Eich-
felder. Genau genommen handelt es sich hierbei um ein Kontinuum von Eichbedingungen (für
jeden Raumzeitpunkt eine), und um nur eine einzige Bedingung stellen zu müssen, definieren
wir die Größe

δ 2 :=
1

N

N∑

x=1

N2
c−1∑

b=1

[
∆b
x

]2
, N = Nt ×N3

s , (C.11)

deren Analogon in der Kontinuumsfeldtheorie mittels eines Lagrangeschen Multiplikators
durch Modifizierung des ursprünglichen Variationsproblems in der zugehörigen klassischen
Wirkung berücksichtigt werden kann [Roe91]. Im Kontinuumslimes reduziert sich (C.11) auf
einen eichfixierenden Term der Form

δ 2c =
1

V

∫
dDx [ ∂Ab(x) ]2 . (C.12)

Im Falle der Coulomb-Eichung wurde die Eichung sukzessiv in jeder Zeitschicht separat fi-
xiert, so dass nach Abschluss dieser Prozedur ein Gluonenfeld auf dem Gitter vorliegt, wel-
ches der dreidimensionalen Transversalitätbedingung genügt. Die noch bestehende residu-
elle Eichfreiheit wurde nicht weiter fixiert (vgl. die Diskussion in Kapitel 1.3.3). Im Falle
der Landau-Eichung handelt es sich bei den mit der Eichfixierungsbedingung kompatiblen
Eichtransformationen um ausschließlich globale Transformationen Ω ∈ G.

Zur Berechnung von d2

dτ2
FUmin

[ω, τ ] ist nach Gleichung (C.8) die Kenntnis von d
dτA

τ
µ(x) er-

forderlich. Im Kontinuum ist diese Ableitung des eichtransformierten Potentials (für τ = 0)
gegeben durch die kovariante Ableitung bezüglich ω(x):

d

dτ
AΩ
µ (x, τ)

∣∣∣∣
τ=0

= Dµ[A]ω(x) = ∂µω(x)− ig[Aµ(x), ω(x)] . (C.13)

Auf dem Gitter berechnen wir also unter Verwendung von (C.5) und (C.48) die Ableitung

a
d

dτ
Aτ aµ (x) = 2 Im tr

[ d
dτ
U τµ(x)T

a
]

(C.14)

= − 1

2
tr
[{
ω(x+ µ)− ω(x), T a

}(
U τµ(x) + U τ †µ (x)

)
(C.15)

+
[
ω(x+ µ) + ω(x), T a

](
U τµ(x)− U τ †µ (x)

)]
. (C.16)

Definieren wir den symmetrischen Anteil S, sowie den anti-symmetrischen Anteil A zu

Sµ[U
τ ]ab(x) :=

1

2
tr
[{
T a, T b

}(
U τµ (x) + U τ †µ (x)

)]
(C.17)

Aµ[U
τ ]ab(x) :=

1

2
tr
[ [
T a, T b

] (
U τµ (x)− U τ †µ (x)

)]
, (C.18)

so lässt sich die kovariante Ableitung auf dem Gitter in der Form

a
[
Dµ[U

τ ]ω
]a
(x) = Sab

µ [U τ ](x)
(
ωb(x)−ωb(x+µ)

)
+Aabµ [U τ ](x)

(
ωb(x)+ωb(x+µ)

)
(C.19)

darstellen, was sich für τ = 0 in führender Ordnung einer Entwicklung nach der Gitterkon-
stanten a auf

[
Dµ[U ]ω

]a
(x) = −Sab

µ [U ](x)∂µω
b(x) +

1

2
fabcAbµ(x)

(
ωc(x+ µ) + ωc(x)

)
(C.20)
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reduziert. Für die Minimumsbedingung (C.3) finden wir also

d2

dτ2
FUmin

[ω, τ ]

∣∣∣∣
τ=0

= a2 Tr(ω [−∂D[Umin]]ω) ≥ 0 , (C.21)

folglich ist der Faddeev-Popov-Operator auf dem Gitter für ein Minimum von FU [Ω] positiv
definit. Die Menge aller Minima {Umin} des Funktionals (C.1) längs eines Eichorbits ist Ω0,
die erste Gribov-Region auf dem Gitter, und die Menge aller absoluten Minima entspricht der
Fundamental Modular Region (FMR). Durch Verwendung von lokalen Update-Algorithmen
alleine ist die systematische Bestimmung des absoluten Minimums von FU [Ω] für eine vor-
gegeben Konfiguration {U} nicht möglich, da das Problem der eindeutigen Fixierung einer
Eichung äquivalent ist zum Problem der Bestimmung des Grundzustands eines Spin-Glases.
Für D ≥ 3 handelt es sich dabei um ein NP-hartes Problem, lediglich in D = 2 Dimensionen
bietet z.B. der von Edmonds [Edm65b,Edm65a] beschriebene Algorithmus die Möglichkeit zur
Lösung in polynomialer Zeit (vgl. die Diskussion in Kapitel 3). Eine Verbesserung der Situa-
tion kann jedoch durch den Einsatz eines von uns verwendeten Overrelaxation-Algorithmus
erzielt werden. Eine weiterführende Diskussion des Problems der im Rahmen der Eichfixie-
rung auf dem Gitter auftretenden Gribov-Kopien, sowie eine Übersicht über verschiedene
mögliche Algorithmen zur Behandlung desselben findet sich in [GPP+01].

C.1.1 Die Eichgruppen U(1), SU(2) & SU(3)

Zur Minimierung des eichfixierenden Funktionals (C.1) wurde ein Iteration-Overrelaxation-
Algorithmus verwendet. Dabei wird angestrebt, iterativ sowohl das Funktional lokal zu
minimieren, als auch gleichzeitig den als critical slowing down bekannten Effekt der Ver-
ringerung der Konvergenzgeschwindigkeit bei Annäherung an ein Minimum zu minimie-
ren. Zu diesem Zweck wird in einem ersten Schritt die Änderung des lokalen Funktionals
FU [Ω(x)] bei Durchführung einer Eichtransformation an einem festen Gitterpunkt x un-
tersucht. Hierbei werden Ω(x), sowie die zugehörige Inverse Ω†(x), als unabhängige Varia-
blen aufgefasst und Ω† ab(z) = Ω ab(z) = δab für z 6= x zugrunde gelegt. Aufgrund von
Re tr(M) = Re tr(M †), Mik ∈ C lässt sich das Problem auf die lokale Maximierung von

FU [Ω(x)] = Re tr
[
Ω(x)B(x)

]
(C.22)

mit dem in (C.9) definierten B(x) zurückführen. Die Lösung Ω(x) wird in einem zweiten
Schritt modifiziert, Ω(x) → Ωη(x), bevor eine Eichtransformation derjenigen Links durch-
geführt wird, die eine Verbindung zum Gitterpunkt x aufweisen.

U(1)−Eichtheorie in Coulomb-Eichung

Im Falle der U(1)−Eichtheorie ergibt sich aufgrund der abelschen Natur folgende Veränderung
für das eichfixierende Funktional (C.1):

FU [Ω] =
∑

x,t

3∑

i=1

Re
[
1− UΩ

i (x, t)
]
. (C.23)

Diese Änderung tritt auch im lokalen Funktional (C.22) auf, die Maximierung wird erreicht
durch die Wahl

Ω(x) = B̄†(x), B̄(x) = ||B(x)||−1B(x) ∈ U(1) . (C.24)
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Durch Einführung eines sogenannten Overrelaxation-Parameters η kann die Konvergenz-
geschwindigkeit des Eichfixierungsalgorithmus optimiert werden. Dadurch ist es möglich,
Transformationen durchzuführen, die im Vergleich zu Ω(x) eine größere Schrittweite bei der
Annäherung an ein Minimum von (C.1) erlauben und es gestatten, über selbiges hinaus-
zuschießen. Dies wird im Falle der U(1)−Eichtheorie durch Übergang zur Polardarstellung
Ω(x) = exp(iϕ(x)) und anschließende Ersetzung ϕ → ϕη := ηϕ erreicht. In unseren Simula-
tionen wurde dabei durchgehend ein Wert von η = 1.5 verwendet.

Die Abweichung von der Transversalitätsbedingung, sowie die für die Abbruchbedingung
maßgebliche Größe erhalten die Gestalt

δ2 =
1

Nin

∑

x

∆2
x, ∆x =

3∑

i=1

Im
[
UΩ
i (x) + UΩ †

i (x− i)
]
, (C.25)

wobei die Summation im Falle der Verwendung von räumlich offenen Randbedingungen auf
die Nin = (Ni − 2)3 ×Nt Gitterpunkte im Inneren des Gitters einzuschränken ist.

SU(2)−Eichtheorie

Verwenden wir die Normierungskonvention (B.18), so wird das lokale eichfixierende Funktio-
nal FU [Ω(x)], welches im Falle der SU(2)−Eichtheorie die Gestalt (C.22) besitzt, durch Wahl
von

Ω(x) = B̄†(x) (C.26)

maximiert. Der Übergang zur Polardarstellung von Elementen der Gruppe SU(2) gemäß

B̄ = cos(ϑ)1+ i sin(ϑ) n̂ · ~σ , n̂a = ||~b||−1 ba , a = 1 . . . 3 (C.27)

ermöglicht die Extraktion des Winkels ϑ und somit auf einfache Weise die Konstruktion einer
Transformation, welche über das lokale Maximum hinauszuschießen vermag. Die Matrix, die
diesen Overrelaxation-Schritt vermittelt, wird als

Ωη = cos(ϑη)1− i sin(ϑη) n̂ · ~σ , ϑη := η ϑ (C.28)

konstruiert. Die Wahl eines Wertes von η = 1.7 für die in unseren Simulationen betrachte-
ten Kopplungskonstanten orientierte sich an den Ergebnissen einer in [CM96] vorgestellten
Analyse verschiedener Algorithmen zur Fixierung der Landau-Eichung.

SU(3)−Eichtheorie

Eine direkte Übertragung des im Rahmen der SU(2)−Eichtheorie erläuterten Vorgehens
zur Maximierung des lokalen Funktionals (C.22) scheitert an der Tatsache, dass die dabei
verwendete Relation

∑
i g
i ∝ g für g, gi ∈ SU(3) keine Gültigkeit mehr besitzt. Dies ist

auch der Grund dafür, dass bei Simulationen von SU(N)−Eichtheorien (N ≥ 3) Heatbath-
Algorithmen nicht in direkter Form zum Einsatz kommen können. Ein möglicher Ausweg
wurde von Cabibbo und Marinari [CM82a] aufgezeigt: Dabei werden sukzessive verschie-
dene Einbettungen von SU(2)−Untergruppen in die SU(N) betrachtet, für deren Behand-
lung wiederum ein standardisierter Heatbath-Algorithmus verwendet werden kann [Cre80].
Die von uns verwendete Methode zur Fixierung der Coulomb- bzw. Landau-Eichung in der
SU(3)−Eichtheorie greift auf diese Technik zurück und soll nun kurz erläutert werden.
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Wie definieren zunächst die folgenden drei verschiedenen Einbettungen eines Gruppen-
elements U =

(
u1 u2
u3 u4

)
∈ SU(2) in ein entsprechendes Gruppenelement Ω(i) ∈ SU(3):

Ω(1) :=




u1 u2 0

u3 u4 0

0 0 1


 , Ω(2) :=




u1 0 u2
0 1 0

u3 0 u4


 , Ω(3) :=




1 0 0

0 u1 u2
0 u3 u4


 . (C.29)

Die gesamte Transformation Ω(x) ∈ SU(3), welche das Funktional (C.22) maximiert, wird
als Hintereinanderausführung Ω(x) =

∏
k Ω

(k)(x) konstruiert. Für die drei verschiedenen
Einbettungen erhalten wir

FU [Ω(k)(x)] = Re tr
[
Ω(k)(x)B(x)

]
= Re tr

[
U(x)B(k)(x)

]
2×2

+Re(b(k)(x)) , (C.30)

wobei B(k) die mit der in Ω(k) eingebetteten Matrix U durch Multiplikation zu kontrahierende
Untermatrix mit bij ∈ C (i, j = 1 . . . 3) und b(k) das Element bjj (j = 4 − k) der Matrix B
darstellt:

B(1) =

(
b11 b12
b21 b22

)
, B(2) =

(
b11 b13
b31 b33

)
, B(3) =

(
b22 b23
b32 b33

)
. (C.31)

Für jede Matrix M ∈ M(2,C) existiert nach (D.33) eine Zerlegung der Form

M = R+ i S = r R̄+ i s S̄, r = det(R)
1
2 , s = det(S)

1
2 ∈ R+, R̄, S̄ ∈ SU(2) . (C.32)

Beginnend mit B(1)(x) erhalten wir

tr
[
U(x)B(1)(x)

]
2×2

= r tr
[
U(x)R̄(1)(x)

]
2×2

+ i s tr
[
U(x)S̄(1)(x)

]
2×2

, (C.33)

und somit aufgrund der Reellwertigkeit der Spur im Falle der SU(2):

FU [Ω(1)(x)] = r tr
[
U(x)R̄(1)(x)

]
2×2

+Re (b33(x)) . (C.34)

Die lokale Maximierung geschieht durch Wahl von U(x) = R̄† (1)(x). Der Wiedereinbettung in
Ω(1)(x) geht die in (C.28) beschriebene Modifizierung durch Einführung eines Overrelaxation-
Parameters η voraus, anschließend wird die Transformation durchgeführt, welche auch Aus-
wirkungen auf die Form von (C.9) hat. Aus diesem modifizierten B(x) wird nun B(2)(x)
gewonnen, und daraus Ω(2)(x) konstruiert, modifiziert und angewandt. Sind alle drei Einbet-
tungen an diesem Punkt des Gitters herangezogen worden, so wird die iterative Maximierung
von FU [Ω] an einem benachbarten Gitterpunkt fortgesetzt. Neben (C.11) kann auch die Größe

θ 2 =
1

3N

N∑

x=1

3∑

k=1

ϑ(k)η (x)2 (C.35)

während des Eichfixierungsprozesses überwacht werden, um eine Kontrolle über die Güte
der Realisierung der Eichfixierungsbedingung zu erhalten. Am stationären Punkt weichen die
Eichtransformationen {Ωη} nämlich de facto nicht mehr von der Identität ab. Tatsächlich
hatte sich θ2 bei Erreichen des Abbruchkriteriums von δ2 < 10−12 in unseren Simulationen
auf θ2 ≃ 5 · 10−15 stabilisiert.
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C.2 Direkte Maximale Zentrums-Eichung (DMCG)

Bei der Implementierung der sogenannten Direkten Maximalen Zentrums-Eichung (DMCG)
folgen wir der in [DDFG+98] vorgeschlagenen Methode, eingebettet in eine Prozedur, die sich
als Kombination eines simulated annealing algorithm, sowie eines Overrelaxation-Algorithmus
ergibt. Die optimale Eichtransformation {Ωmin}, die zu einem Extremum des eichfixierenden
Funktionals führt, wird dabei als Folge von Eichtransformationen Ωi(x) konstruiert, welche
jeweils das eichfixierende Funktional

FMCG
x [Ω(x)] =

1

4

(∑

µ

tr[Ω(x)Uµ(x)]
2 + tr[Uµ(x− µ)Ω†(x)]2

)
(C.36)

lokal maximieren und sofort durchgeführt werden, bevor man sich dem nächsten Gitterpunkt
zuwendet. Angenommen, der Algorithmus erfülle nach m derartigen Durchgängen durch das
gesamte Gitter eine noch zu stellende Abbruchbedingung, so ist die resultierende, iterativ
konstruierte Eichtransformation {Ωmin} gegeben durch {∏m

i=1Ωi(x)|m ∈ N, x ∈ [1, N4]}.
Wir verwenden folgende Parametrisierung der Eichtransformationen sowie der Links:

Ω(x) = ω41− i ~ω · ~σ (C.37)

Uµ(x) = u4(µ)1+ i ~u(µ) · ~σ (C.38)

Uµ(x− µ̂) = u4(µ+ 4)1− i ~u(µ+ 4) · ~σ . (C.39)

Dies führt auf

FMCG
x [Ω(x)] =

∑

µ

({ 4∑

k=1

ωkuk(µ)
}2

+
{ 4∑

k=1

ωkuk(µ + 4)
}2)

=:
8∑

l=1

( 4∑

k=1

ωkuk(l)
)2

.

(C.40)

Die Maximierung dieses Ausdrucks unter der Nebenbedingung Ω(x) ∈ SU(2) geschieht durch
Einführung eines Lagrange’schen Multiplikators λ,

Fλ[Ω(x)] = FMCG
x [Ω(x)] + λ

( 4∑

k=1

ω2
k − 1

)
, (C.41)

und die sich daraus ergebenden 4+1 Bedingungen für ein Maximum (zunächst nur Extremum)
des Funktionals (C.36) lauten:

4∑

k=1

8∑

l=1

ui(l)uk(l) ωk = λωi ,
4∑

k=1

ω2
k = 1 . (C.42)

Damit ist die Implementierung der DMCG auf die Lösung eines vierdimensionalen, reellen
und symmetrischen Eigenwertproblems der Form

M ω = λω, Mik =

8∑

l=1

ui(l)uk(l) (C.43)

zurückgeführt. Das Standardverfahren der Wahl war die iterative Lösung mittels des Jacobi-
Verfahrens [PTVF07].
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Das Eichfixierungsfunktional (2.22) reagiert auf eine Veränderung des lokalen Funktionals
unter Nebenbedingung (C.41) gemäß

FMCG
x = ωTMω − λ

(
ωTω − 1

)
, ω =

(
ω4

~ω

)
. (C.44)

Bezeichnen wir die vier Eigenvektoren und zugehörigen Eigenwerte der Matrix M mit ek, λk,
so liefert die Wahl des Eigenvektors ω = emax zum größten Eigenwert λmax offensichtlich lokal
den maximalen Beitrag zum Eichfixierungsfunktional (2.22). Hier weichen wir von der Stan-
dardprozedur ab, um die in [GPP+01] diskutierten Probleme der in [DDFG+98] vorgestellten
Methode zur Eichfixierung zu überwinden: Mit der Wahrscheinlichkeit exp(βfλk) lassen wir
auch die Wahl der anderen Eigenvektoren ek zu, wobei βf die in der Klasse der simulated
annealing algorithms auftretende inverse Temperatur bezeichnet. Eine Abkühlung des Sy-
stems wird durch schrittweise Vergrößerung von βf simuliert, für niedrige Temperaturen wird
praktisch ausschließlich der größte Eigenwert gewählt, und im Grenzfall T → 0 stimmt der
Algorithmus wieder mit der Standardmethode überein. Zu Beginn des Abkühlungsvorgangs
kann die Suche nach dem globalen Maximum von (2.22) lokal durchaus in einer Richtung ek
orthogonal zum Gradienten des lokalen Funktionals (C.36) voranschreiten. Es besteht daher
die Möglichkeit der kurzfristigen Verminderung des Wertes von FMCG[Ω], so dass es dem Sy-
stem ermöglicht wird, die Anziehung des nächstgelegenen Maximums zu überwinden und das
globale, statt nur eines lokalen Maximums zu finden. Die auf diese Weise bestimmten lokalen
Eigenvektoren ω(x) wurden nach (C.37) zur Konstruktion der entsprechenden Eichtrans-
formationen Ω(x) herangezogen, die jedoch vor ihrer Durchführung noch gemäß Gleichung
(C.28) modifiziert wurden.

Numerische Durchführung:

Um die Güte der iterativen Eichfixierung kontrollieren zu können, wurden folgende Größen
definiert und während der Relaxation in ein Extremum von FMCG[Ω] überwacht:

δ2 :=
1

3N

N∑

x=1

3∑

b=1

ǫb(x)ǫb(x) (C.45)

ǫb(x) := 2

D∑

µ=1

u4µ(x)u
b
µ(x)− u4µ(x− µ)ubµ(x− µ) (C.46)

Eine thermalisierte Konfiguration {U} wurde zur Eichfixierung ausgewählt und die inverse
Temperatur βf zu Beginn der Eichfixierungsprozedur auf den Wert βf = 0.02 gesetzt. Die
Konstruktion der modifizierten SU(2)−Matrizen Ωη(x) wurde bereits in Abschnitt C.1.1
beschrieben, für den Parameter η wurde dabei ein Wert von η = 1.7 gewählt, was sich als guter
Kompromiss für die Optimierung des Algorithmus im gesamten Intervall von βf herausgestellt
hat. Nach jeweils 25 sweeps durch das Gitter wurde βf um ∆βf = 0.1 erhöht. Anstatt
eine fixe Anzahl an Aktualisierungsschritten vorzuschreiben, wurde ein Abbruchkriterium
von δ2 < 10−12 für die iterative Eichfixierung festgelegt. Der Zusammenhang der Direkten
Maximalen Zentrums-Eichung (DMCG) mit einer besonderen, der Kontinuumsformulierung
entlehnten Landau-Eichung wird im nächsten Abschnitt ebenso erklärt wie die Bedeutung
des Abbruchkriteriums (C.45) im Kontinuumslimes der Gittereichtheorie.
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C.2.1 Minimale Adjungierte Landau-Eichung und DMCG

Aufgrund der Relation
tradj [Uµ(x)] = | tr [Uµ(x)] |2 − 1 , (C.47)

die sich mittels (D.15) leicht beweisen lässt, ist die DMCG äquivalent zur Minimalen Ad-
jungierten Landau-Eichung (MALG) [ADd00]. Diese wird beispielsweise in [LSR05] bei der
Untersuchung des Gluon-Propagators in Landau-Eichung eingesetzt, da sich die Relation

Uµ(x) = exp { iaAµ(x)} , Âaµ(x) := aAaµ(x) = 2 Im
(
tr [Uµ(x)T

a]
)
, (C.48)

die unter der Annahme glatter Eichpotentiale üblicherweise dazu bemüht wird, um eine
Verbindung zwischen den Links als fundamentalen Freiheitsgraden einer Gitterformulierung,
sowie den Eichpotentialen als fundamentalen Freiheitsgraden einer Kontinuumsformulierung
herzustellen, als nicht vollständig konsistent erweist. Das Problem ist das Verhalten der auf
diese Weise extrahierten Eichpotentiale unter nicht-trivialen Transformationen aus dem Zen-
trum der Gruppe:

Uµ(x) → UZµ (x) = Zµ(x)Uµ(x) ⇐⇒ Âaµ(x) → ÂZ aµ (x) = Zµ(x)Â
a
µ(x) . (C.49)

Da sich die Eichpotentiale der Kontinuumsformulierung unter der adjungierten Darstellung
transformieren, welche N-alität Null [Gre03] besitzt, sind diese folglich

”
zentrumsblind“– im

Gegensatz zu den in Gleichung (C.48) definierten Eichpotentialen Âµ(x).

Daher empfiehlt sich die Definition von adjungierten Links der Form

Uadj(x)
ab
µ := 2 tr[T aUµ(x)T

bU †
µ(x)] , (C.50)

die ebenfalls
”
zentrumsblind“ sind. Für diese Links wird die MALG fixiert und danach der

Zentrumsgehalt aus den zugehörigen fundamentalen Links gemäß

UΩ
µ (x) = Zµ(x)Ūµ(x) (C.51)

abgelesen. Durch die Verwendung des Coset-Anteils

Ūµ(x) = exp
{
iaĀµ(x)

}
(C.52)

gelingt es, einen konsistent definierten Kandidaten für das Kontinuumseichpotential zu extra-
hieren. Quadrieren von (C.51) liefert unter Verwendung der Darstellung (D.33) und Berück-
sichtigung von Āµ(x) = Āaµ(x)T

a = Āaµ(x)σ
a/2 nach Entwicklung und Vergleich bis O(a2)

die alternative Definition
aĀbµ(x) := 2 a0µ(x) a

b
µ(x) . (C.53)

Unter Verwendung der Darstellung (C.38) kann schließlich noch gezeigt werden, dass

ǫb(x) = a2∂µĀ
b
µ(x) +O(a3) , (C.54)

daher ist (C.45) ein Maß für die Verletzung der adjungierten Landau-Eichbedingung, und
somit ebenfalls für die Verletzung der Eichbedingung (2.22). Im Kontinuumslimes finden wir
nach Entwicklung von (C.45) bezüglich der Gitterkonstanten a das Ergebnis

δ2 =
1

3V

∫
d4x (∂µĀ

b
µ(x))

2 . (C.55)





Anhang D

Gruppentheoretischer Anhang

D.1 Darstellungstheoretische Grundlagen

Für unsere Zwecke genügt es, Darstellungen von linearen Gruppen in endlich-dimensionalen
komplexen Vektorräumen V zu betrachten. Die linearen Gruppen sind isomorph zu einer ab-
geschlossenen Untergruppe von GL(n,K), insbesondere sind die speziellen unitären Gruppen
Teil der sogenannten klassischen Gruppen, welche linear sind (vgl. [Hei90]).

Definition 1. Es seien G und H lineare Gruppen. Dann heißt eine Abbildung f : G → H
ein Homomorphismus, wenn

• f(AB) = f(A)f(B) ∀A,B ∈ G ,

• und die Abbildung
fexp : R → H , t 7→ f ◦ expG(tX)

∀X ∈ LG stetig differenzierbar ist.

Dabei stellt expG() die auf G eingeschränkte Exponentialabbildung dar und LG bezeichnet
die zu G gehörende Lie-Algebra.

Definition 2. Eine Darstellung einer linearen Gruppe G ist ein Homomorphismus

ρ : G → GL(V )

linearer Gruppen.

Folglich ist ρ eine Darstellung von G im Sinne von Definition 1. Ein für die Konstruktion der
adjungierten Darstellung einer Gruppe relevanter Homomorphismus ist das folgende

Beispiel. Für A ∈ G wird mit κA die Konjugationsabbildung in G mit A bezeichnet:

κA : G → G , B 7→ ABA−1, ∀ B ∈ G .

Definition 3. Ein Vektorraum L über einem Körper K, ausgerüstet mit einer bilinearen
Abbildung (X,Y ) 7→ [X,Y ] heißt Lie-Algebra über K, wenn ∀X,Y,Z ∈ L gilt:

• [X,Y ] = −[Y,X]

205
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• [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Dabei wird die Lie-Klammer [, ] auch als Kommutator bezeichnet, die zweite Relation heißt
Jacobi-Identität.

Eine abgeleitet Darstellung der Lie-Algebra L einer linearen Gruppe G erhält man durch
Anwendung der Ableitung Lρ der Darstellung ρ von G.

Definition 4. Eine Darstellung der Lie-Algebra L über R ist ein Homomorphismus

ρ : L → gl(V )

der reellen Lie-Algebren.

Dieser Homomorphismus Lρ : LG → gl(V ) ist eine R-lineare Abbildung mit der Eigenschaft

Lρ([X,Y ]) = [Lρ(X),Lρ(Y )], ∀ X,Y ∈ LG .

Die adjungierte Darstellung

Die adjungierte Darstellung der Gruppe G ergibt sich als Spezialfall der Ableitungskonstruk-
tion für den im Beispiel D.1 eingeführten Konjugationshomomorphismus κA.

Die Abbildung t 7→ κA ◦ exp(tX) ist für jedes X ∈ LG stetig differenzierbar und es gilt

LκA(X) =
d

dt
κA ◦ exp(tX)

∣∣∣∣
t=0

= AX A−1 (D.1)

Dabei ist LκA ∈ GL(LG) und es gilt LκAB
= LκA◦κB = LκA ◦LκB , ∀ A,B ∈ G und beliebiges

X ∈ LG. Die Abbildung ist also eine Darstellung, nämlich

Definition 5.

Ad : G → GL(LG), A 7→ LκA (A ∈ G) ,

die sogenannte adjungierte Darstellung von G.

Definition 6. Die adjungierte Darstellung von LG erhält man durch Setzen von ad := L(Ad)
und nochmaligem Differenzieren:

ad: LG → gl(LG), adX(Y ) = [X,Y ], X, Y ∈ LG .

Eine nützliche Relation bei der Untersuchung von Lie-Gruppen und ihren zugehörigen Alge-
bren in adjungierter Darstellung lautet

Ad ◦ exp = exp ◦ ad .

Explizite Darstellungen im Fall der speziellen unitären Gruppen finden sich im Abschnitt D.2.
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Eichtransformationen

Transformiert sich ein Feld Φ (homogen) unter der adjungierten Darstellung einer Gruppe
G, so gilt Φ ∈ LG und die umgekehrte Lesart der Definition 5 führt auf das Transformati-
onsverhalten

Φ → Φ′ = gΦ g−1, g ∈ G (D.2)

unter der Wirkung von g ∈ G. Wählen wir eine Basis von LG, bezeichnet mit {T a}, so
transformieren sich die Komponenten φa von Φ = φaT a bezüglich dieser Basis gemäß

φa → φ′ a = Ωab(g)φb, Ωab(g) := 2 tr(T agT bg−1) , (D.3)

wobei die Normierungskonvention D.9 der Basisvektoren zugrunde gelegt wurde. Im Fall von
LG = su(N) ist die Dimension der adjungierten Darstellung gerade N2 − 1.

Transformiert sich ein Feld Ψ unter der fundamentalen Darstellung einer Gruppe G, so gilt
Ψ ∈ V für die Darstellung ρ : G → GL(V ). Durch die Darstellung ρ wird nämlich eine
Operation von G auf V induziert, also eine Abbildung

G× V → V, (g,Ψ) 7→ ρ(g)Ψ (D.4)

mit den folgenden Eigenschaften

ρ(gh)Ψ = ρ(g)(ρ(h)Ψ), ρ(e)Ψ = Ψ, ρ(g)(αΨ) = αρ(g)Ψ, ρ(g)(Ψ + χ) = ρ(g)Ψ + ρ(g)χ

für alle g, h ∈ G,Ψ, χ ∈ V und α ∈ K. Ein Vektorraum, der mit einer solchen Operation
ausgerüstet ist, heißt G-Modul.

Die Komponentenfunktionen Ψi eines Feldes Ψ transformieren sich dann unter einer solchen
fundamentalen Darstellung von G gemäß

Ψi → Ψ′ i = ρij(g)Ψj , i, j ∈ [1,Dim(V )] . (D.5)

D.2 Nützliche Relationen für SU(N)

Im Folgenden bezeichnen T a die hermiteschen Generatoren der Eichgruppe SU(N).

[T a, T b] = i fabc T c (D.6)

tr([T a, T b]T c) = C(N) i fabc (D.7)

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 (D.8)

Der Wert von C(N) wird durch die Normierung der Generatoren festgelegt:

tr(T aT b) = C(N) δab, C(N) =
1

2
(D.9)
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Für Generatoren in der fundamentalen Darstellung (N) gelten folgende Relationen:

tr(T a) = 0 (D.10)

{T a, T b} =
δab

N
1+ dabc T c (D.11)

tr({T a, T b}T c) =
1

2
dabc (D.12)

tr(T aT bT c) =
1

4
(dabc + i fabc) (D.13)

tr(T aT bT cT d) =
1

4N
δabδcd +

1

8
(dabe + ifabe)(dcde + if cde) (D.14)

[T a]ij [T
a]lm =

1

2

[
δimδjl −

1

N
δijδlm

]
(D.15)

Als Folge der Kommutatorrelation (D.6) sowie der Jacobi-Identität (D.8) genügen die Struk-
turkonstanten fabc der Relation

fadef bcd + f bdef cad + f cdefabd = 0 . (D.16)

Dies ermöglicht die Definition der sogenannten adjungierten Darstellung (A). Die Generatoren
sind dabei durch die Strukturkonstanten selbst gegeben und werden häufig auch durch ein
Dach auf dem Symbol des Generators gekennzeichnet:

[T aA]bc := [T̂ a]bc := −i fabc . (D.17)

Für diese gelten die folgenden Regeln bei der Bildung der Spur:

tr(T aA) = 0 (D.18)

tr(T aAT
b
A) = N δab (D.19)

tr(T aAT
b
AT

c
A) =

N

2
i fabc (D.20)

tr(T aAT
b
AT

c
AT

d
A) = δabδcd + δadδbc

+
N

4
(dabedcde − dacedbde + dadedbce) (D.21)

Der (quadratische) Casimir-Operator ist definiert zu T 2 := T aT a. Aufgrund der Relation

[T 2, T b] = 0, b ∈ [1, N2 − 1] (D.22)

ist T 2 eine Invariante der Lie-Algebra su(N) und nimmt daher in jeder irreduziblen Darstel-
lung r der Dimension d(r) einen konstanten Wert C2(r) an:

T ar T
a
r = C2(r)1d(r)×d(r) . (D.23)

Für die fundamentale (N) bzw. adjungierte Darstellung (A) gilt:

C2(N) =
N2 − 1

2N
, C2(A) = N . (D.24)
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Summenregeln:

dabcdabc = (N2 − 1)(N − 4

N
) (D.25)

fabcfabc = (N2 − 1)N (D.26)

dabcddbc = δad (N − 4

N
) (D.27)

fabcfdbc = δadN (D.28)

fabef cde =
2

N
(δacδbd − δadδbc + daceddbe − dadedbce) (D.29)

fadef beff cfd =
N

2
fabc (D.30)

Für die Eichgruppe SU(2) sind die Strukturkonstanten durch die Komponenten des total an-
tisymmetrischen Levi-Civita-Tensors gegeben, die symmetrischen Konstanten verschwinden
identisch:

fabc = ǫabc, dabc = 0 . (D.31)

Die Generatoren wählen wir in fundamentaler Darstellung zu T a = σa/2 mit den Pauli-
Matrizen

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (D.32)

Für Gruppenelemente G ∈ SU(2) existiert die spezielle quaternionische Darstellung

G = a0 1+ i~a · ~σ , (D.33)

und für den Vektor (a0,~a ) ∈ S3 gilt:

a20 + ~a · ~a = 1 . (D.34)

In der von uns bei der Behandlung von SU(3)−Eichtheorien durchgängig verwendeten, so-
genannten Gell-Mann-Darstellung, haben die Generatoren T a der zugehörigen Lie-Algebra
su(3) die folgende Gestalt:

T 1 =




0 1
2 0

1
2 0 0

0 0 0


 , T 2 =




0 −1
2 i 0

1
2 i 0 0

0 0 0


 T 3 =




1
2 0 0

0 −1
2 0

0 0 0




T 4 =




0 0 1
2

0 0 0
1
2 0 0


 T 5 =




0 0 −1
2 i

0 0 0
1
2 i 0 0


 T 6 =




0 0 0

0 0 1
2

0 1
2 0




T 7 =




0 0 0

0 0 −1
2 i

0 1
2 i 0


 T 8 =




1
2
√
3

0 0

0 1
2
√
3

0

0 0 − 1√
3




Eine explizite Darstellung der Strukturkonstanten fabc und dabc der su(3) findet sich in [IZ80].
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[FMS81] J. Fröhlich, G. Morchio, and F. Strocchi. Higgs phenomenon without symmetry
breaking order parameter. Nucl. Phys., B190:553–582, 1981.

[FR04] C. Feuchter and H. Reinhardt. Variational solution of the Yang-Mills Schroedin-
ger equation in Coulomb gauge. Phys. Rev., D70:105021, 2004, hep-th/0408236.

[FS79] Eduardo H. Fradkin and Stephen H. Shenker. Phase Diagrams of Lattice Gauge
Theories with Higgs Fields. Phys. Rev., D19:3682, 1979.

[G+05] Jochen Gattnar et al. Center vortices and Dirac eigenmodes in SU(2) lattice
gauge theory. Nucl. Phys., B716:105–127, 2005, hep-lat/0412032.

[GG72] Howard Georgi and Sheldon L. Glashow. Unified weak and electromagnetic
interactions without neutral currents. Phys. Rev. Lett., 28:1494, 1972.

[GH84] Subhash Gupta and Urs M. Heller. A Monte Carlo study of the SU(3) adjoint
Higgs model. Phys. Lett., B138:171, 1984.

[GIS97] M. Gurtler, Ernst-Michael Ilgenfritz, and A. Schiller. Where the electroweak
phase transition ends. Phys. Rev., D56:3888–3895, 1997, hep-lat/9704013.

[GJ87] James Glimm and Arthur M. Jaffe. Quantum Physics. A Functional Integral
Point Of View. Springer, New York, USA, Second edition, 1987. Chapter 3.3.



216 LITERATURVERZEICHNIS

[GO03] Jeff Greensite and Stefan Olejnik. Coulomb energy, vortices, and confinement.
Phys. Rev., D67:094503, 2003, hep-lat/0302018.

[Gol61] J. Goldstone. Field Theories with Superconductor Solutions. Nuovo Cim.,
19:154–164, 1961.

[GOZ04] Jeff Greensite, Stefan Olejnik, and Daniel Zwanziger. Coulomb energy, rem-
nant symmetry, and the phases of non- Abelian gauge theories. Phys. Rev.,
D69:074506, 2004, hep-lat/0401003.

[GOZ05a] Jeff Greensite, Stefan Olejnik, and Daniel Zwanziger. Center vortices and the
Gribov horizon. JHEP, 05:070, 2005, hep-lat/0407032.

[GOZ05b] Jeff Greensite, Stefan Olejnik, and Daniel Zwanziger. Relations between the
Gribov-horizon and center-vortex confinement scenarios. AIP Conf. Proc.,
756:162–171, 2005, hep-lat/0411032.

[GPP+98] L. Giusti, M. L. Paciello, S. Petrarca, B. Taglienti, and M. Testa. On the
definition of gauge field operators in lattice gauge-fixed theories. Phys. Lett.,
B432:196–202, 1998, hep-lat/9803021.

[GPP+01] L. Giusti, M. L. Paciello, C. Parrinello, S. Petrarca, and B. Taglienti. Problems
in lattice gauge fixing. International Journal of Modern Physics A, 16:3487,
2001.

[GQW09] Noah Graham, Markus Quandt, and Herbert Weigel. Spectral Methods in Quan-
tum Field Theory. Lect. Notes Phys., 777:1, 2009. Chapter 8.

[Gre03] J. Greensite. The confinement problem in lattice gauge theory. Prog. Part.
Nucl. Phys., 51:1, 2003, hep-lat/0301023.

[Gri78] V. N. Gribov. Quantization of non-Abelian gauge theories. Nucl. Phys., B139:1,
1978.

[Gut80] Alan H. Guth. Existence Proof of a Nonconfining Phase in Four- Dimensional
U(1) Lattice Gauge Theory. Phys. Rev., D21:2291, 1980.

[Har96] Jeffrey A. Harvey. Magnetic monopoles, duality and supersymmetry. Boulder
1996, Fields, Strings and Duality, pages 157–216, 1996, hep-th/9603086.
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Karls-Universität zu Tübingen, Fakultät für Mathematik und Physik, 2001.

[Sei82] E. Seiler. Gauge Theories as a Problem of Constructive Quantum Field Theory
and Statistical Mechanics. Lect. Notes Phys., 159:1–192, 1982.

[Shi08] M. Shifman. Theoretical Developments in SUSY. 2008, 0805.4378.

[Shr86] Robert E. Shrock. The Phase Structure Of SU(2)×U(1)Y Lattice Gauge Theory.
Nucl. Phys., B267:301, 1986.

[Sin78] I. M. Singer. Some Remarks on the Gribov Ambiguity. Commun. Math. Phys.,
60:7–12, 1978.

[SLR06] W. Schleifenbaum, M. Leder, and H. Reinhardt. Infrared analysis of propagators
and vertices of Yang- Mills theory in Landau and Coulomb gauge. Phys. Rev.,
D73:125019, 2006, hep-th/0605115.

[SM97] T. Shirakura and F. Matsubara. Low Temperature Phase of Asymmetric Spin
Glass Model in Two Dimensions. Phys. Rev. Lett., 79(15):2887–2890, Oct 1997.

[Spl03] K. Splittorff. Impossibility of spontaneously breaking local symmetries and the
sign problem. Phys. Rev., D68(5):054504, 2003.

[SS02] Adam P. Szczepaniak and Eric S. Swanson. Coulomb gauge QCD, confine-
ment, and the constituent representation. Phys. Rev., D65:025012, 2002, hep-
ph/0107078.

[ST95] D. Stoll and M. Thies. Higgs mechanism and symmetry breaking without red-
undant variables. 1995, hep-th/9504068. hep-th/9504068.

[Sta83] John D. Stack. The Heavy Quark Potential in SU(2) Lattice Gauge Theory.
Phys. Rev., D27:412, 1983.

[Sta84] John D. Stack. The Heavy Quark Potential in SU(3) Lattice Gauge Theory.
Phys. Rev., D29:1213, 1984.

[Str76] F. Strocchi. Gauge Groups in Local Field Theory and Superselection Rules.
Nijmegen 1975, Proceedings, Group Theoretical Methods In Physics, Berlin:87–
92, 1976.

[Str77] F. Strocchi. Spontaneous Symmetry Breaking in Local Gauge Quantum Field
Theory: The Higgs Mechanism. Commun. Math. Phys., 56:57, 1977.

[SW87] Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in
Monte Carlo simulations. Phys. Rev. Lett., 58(2):86–88, Jan 1987.

[SW92] John D. Stack and Roy J. Wensley. Monopoles, quark confinement and screening
in four- dimensional U(1) lattice gauge theory. Nucl. Phys., B371:597–617, 1992.



224 LITERATURVERZEICHNIS

[Szc04] Adam P. Szczepaniak. Confinement and gluon propagator in Coulomb gauge
QCD. Phys. Rev., D69:074031, 2004, hep-ph/0306030.

[Tep87] M. Teper. An Improved Method for Lattice Glueball Calculations. Phys. Lett.,
B183:345, 1987.

[tH71] Gerard ’t Hooft. Renormalizable Lagrangians for massive Yang-Mills Fields.
Nucl. Phys., B35:167–188, 1971.

[tH74a] Gerard ’t Hooft. A planar diagram theory for strong interactions. Nucl. Phys.,
B72:461, 1974.

[tH74b] Gerard ’t Hooft. Magnetic monopoles in unified gauge theories. Nucl. Phys.,
B79:276–284, 1974.

[tH75] Gerard ’t Hooft. Gauge Fields with Unified Weak, Electromagnetic, and Strong
Interactions. 1975. Rapporteur’s talk given at Int. Conf. on High Energy Physics,
Palermo, Italy, Jun 23-28, 1975.

[tH78] Gerard ’t Hooft. On the Phase Transition Towards Permanent Quark Confine-
ment. Nucl. Phys., B138:1, 1978.

[tH79] Gerard ’t Hooft. A Property of Electric and Magnetic Flux in Nonabelian Gauge
Theories. Nucl. Phys., B153:141, 1979.

[tH81] Gerard ’t Hooft. Topology of the Gauge Condition and New Confinement Phases
in Nonabelian Gauge Theories. Nucl. Phys., B190:455, 1981.

[VdF04] Michele Vettorazzo and Philippe de Forcrand. Finite temperature phase transi-
tion in the 4d compact U(1) lattice gauge theory. Phys. Lett., B604:82–90, 2004,
hep-lat/0409135.

[VF94] Tanmay Vachaspati and George B. Field. Electroweak string configurations with
baryon number. Phys. Rev. Lett., 73:373–376, 1994, hep-ph/9401220.

[Wan50] G. H. Wannier. Antiferromagnetism. The Triangular Ising Net. Phys. Rev.,
79(2):357–364, Jul 1950.

[Wei95] Steven Weinberg. The Quantum Theory of Fields. Vol. 1: Foundations. Cam-
bridge University Press, Cambridge, UK, 1995.

[Wei96] Steven Weinberg. The Quantum Theory of Fields. Vol. 2: Modern Applications.
Cambridge University Press, Cambridge, UK, 1996.

[Wey50] Hermann Weyl. The Theory of Groups and Quantum Mechanics. Dover, New
York, second edition, 1950. (translated from Gruppentheorie und Quantenme-
chanik, S. Hirzel, Leipzig, 2nd ed., 1931), p 256.

[Wil74] Kenneth G. Wilson. Confinement of Quarks. Phys. Rev., D10:2445–2459, 1974.

[Wip07] Andreas Wipf. Lecture notes: Quantum Field Theory 2, Sommersemester 2007.
http://www.personal.uni-jena.de/~p5anwi/lecturenotes.html.



225

[WO01] Matthew Wingate and Shigemi Ohta. Deconfinement transition and string tensi-
ons in SU(4) Yang-Mills theory. Phys. Rev., D63:094502, 2001, hep-lat/0006016.

[Wol89] Ulli Wolff. Collective Monte Carlo Updating for Spin Systems. Phys. Rev. Lett.,
62(4):361–364, Jan 1989.

[Wol04] Ulli Wolff. Monte Carlo errors with less errors. Comput. Phys. Commun.,
156:143–153, 2004, hep-lat/0306017.

[WY75] Tai Tsun Wu and Chen Ning Yang. Concept of nonintegrable phase factors and
global formulation of gauge fields. Phys. Rev., D12:3845–3857, 1975.

[Zar98a] K. Zarembo. Ground state in gluodynamics and quark confinement. Phys. Lett.,
B421:325–333, 1998, hep-th/9710235.

[Zar98b] K. Zarembo. Interquark potential in Schroedinger representation. Mod. Phys.
Lett., A13:2317–2325, 1998, hep-th/9806150.

[ZJ96] Jean Zinn-Justin. Quantum field theory and critical phenomena. Int. Ser. Mo-
nogr. Phys. 92, 1996.

[ZJ00] Jean Zinn-Justin. Quantum field theory at finite temperature: An introduction.
Lecture notes, SACLAY, 2000, hep-ph/0005272.

[Zwa03] Daniel Zwanziger. No confinement without Coulomb confinement. Phys. Rev.
Lett., 90:102001, 2003, hep-lat/0209105.





Dank s a gu ng
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Besonders danken möchte ich auch Herrn PD Dr. Markus Quandt, der jederzeit bereit war,
sich mit meinen zahlreichen Fragen auseinander zu setzen und mir dabei viel seiner Zeit ge-
opfert hat. Für das Korrekturlesen dieser Arbeit bin ich ihm ebenso dankbar wie für viele
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halb des Instituts gesorgt haben, möchte ich mich an dieser Stelle ebenfalls bedanken. Die
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