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Abstract. In this article, we present the Liouville field theory, which was introduced in the eighties in physics
by Polyakov as a model for fluctuating metrics in 2D quantum gravity, and outline recent mathematical
progress in its study. In particular, we explain the probabilistic construction of this theory carried out by
David-Kupiainen-Rhodes—Vargas in [1] and how this construction connects to the modern and general
approach of Conformal Field Theories in physics, called conformal bootstrap and based on representation
theory.

Résumé. Dans cet article, nous présentons la théorie des champs de Liouville, qui fut introduite en physique
dans les années 80 par Polyakov comme modele de métriques aléatoires dans le cadre de la gravité quantique
2D, et donnons un apercu de la construction probabiliste de cette théorie proposée par David-Kupiainen—
Rhodes-Vargas dans [1]. Nous expliquons comment cette construction se relie a 'approche moderne des
théories conformes de champs en physique appelée conformal bootstrap et basée sur la théorie des repré-
sentations.
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Figure 1. Typical sample of a random triangulation of the sphere (Wolfram Matemat-
ica®code by T. Budd).

1. Introduction

One of the simplest and at the same time most intriguing 2d Conformal Field Theory (CFT)
is Liouville field theory. It first appeared in 1981 in Polyakov’s formulation of bosonic string
theory [2] and, since then, was developed in physics as a model for Euclidean' two-dimensional
quantum gravity, namely as a way of summing over all possible geometries of a fixed two-
dimensional manifold. Ten years ago, this model was also connected to four dimensional gauge
theories via the AGT conjecture [3], thus experiencing a considerable renewal of interest.

We will outline below the ideas that have shaped this rich theory, ranging from original
Polyakov’s path integral formulation to the modern approach of conformal bootstrap.

1.1. Polyakov’s path integral

Roughly speaking and in physics, gravity is described by a Riemannian metric g on a fixed Rie-
mann surface .# (namely a two dimensional manifold with holomorphic charts) and quantum
gravity can be seen as a way to to sum over the space of Riemannian metrics g on .4 (seen up
to the action of diffeomorphisms), which we will call R(.#). Thus, quantum gravity aims to con-
struct (probability) measures on R(.#), which is a smooth infinite dimensional manifold. If it
were finite-dimensional, the natural procedure in (classical) differential geometry would be to
define a metric on R(.#) and then consider the attached volume form as a measure on R(.#).
The natural metric on was R(.#) is the L2-metric, which is also called the DeWitt metric, so that
the measure on R(.#) relevant to quantum gravity should take on the form?

Fr— F(g)e—SEH(g)Dg (1)
R(4)

1 Time is seen as another space variable via an analytic continuation argument called Wick rotation.
2For the sake of simplicity, we skip here the possibility of coupling gravity to conformal matter fields.
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where F is any arbitrary test function on R(.#), Sgy is the Einstein-Hilbert functional® and Dg
the putative volume form associated to the DeWitt metric. The obvious caveat is that R(.#) is
infinite-dimensional and there is no mathematically grounded way to define the volume form
Dg associated to the DeWitt metric. Yet, this could be faced by taking limits of appropriate finite
dimensional approximations. More subtle is the fact that defining Dg involves serious nonlinear
problems coming from the fact that, even in the finite-dimensional situation, defining volume
forms involves computations of determinants. This problem can be regularized on the lattice:
this gives rise to the random planar map approach that we discuss below, but Polyakov’s tour de
force in his founding paper [2] was to understand how to make sense of the measure (1) directly in
the continuum. His key argument, which we specify now to the Riemann sphere (identified with
the complex plane C by stereographic projection), was a change of variables in the measure (1)
to write each metric g under the form g = y* (e¥™¥|dx|?), where v is a diffeomorphism and v *
its pushforward, thus reducing the study of the random metric g to the study of its log-conformal
factor ¢ : C — R. Performing this change of variables, Polyakov argued that making sense of the
integration measure (1) boils down to making sense of the following functional measure

(F)yu:= F((p)e_sL("’]Dq), )
@p:C—R

where D¢ stands for the formal Lebesgue volume form (volume form of the L?-metric) over
the space of maps ¢ : C — R with boundary condition ¢(x) ~ —2QIn|x| as |x| — oo for some
parameter Q >0, F is any bounded reasonable test function and Sy is the action functional:

1
Sp(p) = Efc(w(p(xﬂz +4nuew’m) dx. 3

Here the most important parameter is y € (0,2) while p > 0 is less relevant as the theory obeys a
scaling relation in p so that theories with different u (and same y) are essentially the same. Finally
Q is fixed by conformal symmetry to the value Q = % +2,

This path integral was subsequently dubbed Liouville field theory due to the fact that critical
points ¢ of the functional Sy are solutions to the Liouville equation

A =2mpye’?e, (4)

hence provides metrics e?|dx|?> with uniformized Ricci curvature R, = —27z,uy2, which was
instrumental in Poincaré’s approach of uniformization of Riemann surfaces. In this respect,
Liouville field theory can be seen as the natural probabilistic theory of uniformization of Riemann
surfaces.

The gain in trading (1) for (2) is that, although the problem is still infinite-dimensional, the
formal definition of the volume form D¢ is now linear, which highly increases the possibility
of giving a proper construction. In spite of this drastic simplification, this path integral has not
been fully understood in physics and has mostly served to heuristically justify inputs in another
approach, more algebraic, of Liouville field theory called the conformal bootstrap (more later).
It is only very recently that a mathematical definition of this path integral has been achieved by
David-Kupiainen-Rhodes-Vargas [1, 4], which we will review subsequently.

1.2. Discrete random geometries

Random planar maps have been introduced as a discretization of Polyakov’s path integral (1).
They can be seen as a way to pick at random discrete geometries on a fixed Riemann surface.

3Its exact definition is not important for our discussion but it involves geometrical quantities related to the metric g
such as its volume or mean curvature.
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Figure 2. Zooming in the local structure of random triangulations embedded into the
sphere. Each triangle carries a unit mass. (Wolfram Matematica® code by T. Budd).

In this manuscript, we will focus on the case of the Riemann sphere and the situation where
the discretization consists in triangulating the surface, a standard procedure in Riemannian
geometry. One obtains a triangulation of the sphere by gluing equilateral triangles along their
edges in order to obtain a surface with the topology of the sphere (see Figure 1). There are finitely
many such triangulations of the sphere built out of a given number of triangles up to orientation
preserving homeomorphisms. One can thus pick uniformly at random such a triangulation.
Also, each triangulation carries naturally a complex structure (holomorphic charts, which means
that the gluing can be done holomorphically) and thus each triangulation can be conformally
embedded into the sphere via the Riemann mapping theorem. Thus we have a way to pick at
random a discretized geometry on the Riemann sphere so that this procedure is sometimes
dubbed discrete quantum gravity.

The question is then to determine the scaling limit of such random geometries when the
number of triangles is sent to infinity. In physics, it was soon understood [5] that the scaling limit
possesses a rich multifractal structure, as illustrated by Figure 2, and conjectured that this scaling
limit should correspond to Polyakov’s path integral formulation of Liouville field theory with
parameter y = v/8/3. Also, and instead of considering the uniform probability measure among all
possible triangulations with a fixed number of triangles, one could pick at random triangulations
according to the partition function of some conformal matter field* put on the triangulation,
e.g. the critical Ising model: this will modify the value of the parameter y of the Liouville theory
(y = V3 for Ising, see [6] for further pedestrian explanations).

Yet, in spite of a huge activity and important recent progress (see [7]), the connection between
random triangulations and the measure (1) is not fully understood at the mathematical level.

4Say a model of statistical mechanics on the triangulation with parameters tuned at their critical value so that the
model acquires conformal symmetry in the scaling limit.
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2. Probabilistic construction

Now we describe the construction of the path integral (2) carried outin [1,4]. In the same way that
the standard Lebesgue measure serves as the reference measure on finite dimensional spaces,
Gaussian measures are often the starting point for constructing measures in infinite-dimensional
spaces. The probabilistic construction of [1] relies on a Gaussian random field, called Gaussian
Free Field (GFF), associated to the squared gradient in (3)

(F)GFF1=f . RF(<P)e‘$fc|V<p(x)|2de(P' (5)
@:C—

where integration still runs over maps with boundary condition ¢(x) ~ —2QIn|x| as |x| — oo, in
such a way that the volume form (2) is defined by a reweighting of the Gaussian measure by the
exponential potential
(Fly,u=(Fetlee™@dx) . 6)
The Gaussian volume form (5) is well understood, both in mathematics and physics. One of its
specific feature is that it produces random outputs (x,w) — @(x,®) (w stands for randomness)
such that the paths x — ¢(x,w) (for fixed w) are too wild to make sense as pointwise defined
functions; instead for all w the “function” x — ¢(x,w) lives in some space of Schwartz distribu-
tions (also called generalized functions). The outcome of this observation is that the field ¢ can-
not be exponentiated straightforwardly to make sense of (6) and this term has to be renormal-
ized: one has to consider a regularization of the field ¢, call it ¢, which stands for a smoothing
of the field either with an ultraviolet frequency cut-off or a mollification at scale ¢, in such a way
that ¢, converges to ¢ as € — 0. Since the field x — ¢.(x) is smooth, it can be exponentiated to
obtain a regularized version of the potential [ eY%™ dx. This term diverges as € — 0 and Gauss-
ian computations enable to show that the rate of divergency is of the order ¢7*/2 if the variance
of the field behaves like Var(g.(x)) ~ In % One can then define the regularized potential as the
following limit
f e"?™ dx :=lim e”‘pf(x)_gvar(“’fm) dx Q]
C e~0Jc
where the renormalization by the variance enables to remove the first order divergence. This
renormalization procedure is standard in physics and is called Wick renormalization but in
the context of the exponential potential it was implemented rigorously in the eighties by the
mathematician Kahane [8] (see also [9]) who derived the optimal criterion for the convergence
of (7). His theory goes under the name of Gaussian multiplicative chaos and establishes that the
limit is indeed non trivial for y € (0,2)%, hence justifying the existence of (6) for u >0 and y € (0,2).
One can then define the correlation functions (observables) of Liouville theory in a similar
way. First, for z € C and «a € R, one defines the vertex operator

Va(z) := e,

Correlation functions (with n points) are obtained by choosing arbitrary points of the complex

plane zi, ..., z, € C with respective arbitrary weights a1, ..., @, € R and by integrating product of
vertex operators with respect to the functional integral (2), namely
(Vay (21) ... Va, (zn))y, - (8)

Again, this definition requires a renormalization procedure since the field ¢ can not be eval-
uated pointwise. The main result of [1] establishes existence and non triviality of the correla-
tion functions using the aforementionned procedure provided that @; < Q foralli =1, ..., n and

5A phase transition occurs for this model at y = 2, reminiscent of the freezing transition of some disordered systems
or spin glasses [10].
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Y.; a; >2Q, which implies in particular that n = 3. Moreover, the work [1] gives a new and explicit
probabilistic formula for the correlations based on the GFF and its exponential (7), i.e. Gaussian
multiplicative chaos (it is beyond the scope of this article to write these explicit formulas here).
It is proved in [1] that these correlation functions satisfy the axioms of 2d CFT, among which the

fact that they are conformally covariant. More precisely, if z;, - - -, z,, are n distinct points in C then
for a M6bius map y(z) = ?ZZIS (with a,b,c,d e Cand ad —bc=1)
n n N n
<n Va, (w(z,-))> =1 |v (=) =" <1‘[ Va, (z,-)> 9)
i=1 yu 0=l k=1 ¥

where A, is called the conformal weight of V,,
a a
Aa—E(Q—E), aeC. (10)

The conformal covariance of the correlation functions (9) is a generic fact of CFTs. Therefore
the 3 point correlation functions of a given CFT, here (Vy, (21) Va, (22) Vi, (23))y, 4» are completely
determined by the knowledge of (Vy, (0) Vy, (1) Vg, (00))y, i, Which are the so-called structure
constants.

3. Conformal bootstrap

It is certainly fair to say that the understanding of Liouville theory via the path integral approach
has remained unclear until very recently; instead, most progress (in physics) has been carried
out through another approach called the conformal bootstrap, which will be discussed in the
case of the Riemann sphere but can also be carried out on other Riemann surfaces (with some
non trivial modifications). This concept is born in the eighties following the attempt by Belavin—
Polyakov-Zamolodchikov (BPZ, see [11]) to compute the correlation functions of Liouville theory.
At that time, BPZ understood that the conformal symmetries that govern 2d CFTs give strong
constraints on the theory; in particular they realized that the conformal symmetries of a CFT
can be interpreted in terms of a representation of the Lie algebra generated by the symmetries,
here called the Virasoro algebra®, taking values in the space of operators acting on a Hilbert
space. This way, they connected to the classification of Lie algebras in representation theory.
They argued that one could parametrize 2d CFTs by a unique parameter c called the central
charge and that conformal symmetries can be translated in terms of PDEs (conformal Ward
identities), which can be used to obtain expressions for correlation functions in terms of special
functions from representation theory. In a nutshell, dilations are symmetries of any CFT and,
via the representation of the algebra of symmetries, they give rise to a semigroup of operators
acting on some Hilbert space. The generator of this semigroup can be diagonalized to obtain
decomposition of the Hilbert space akin to the Plancherel formula in harmonic analysis. With
this decomposition, they expressed recursively n point correlation functions into sums of m
point correlation functions with 3 < m < n). In other words, n point correlation functions can be
computed recursively starting from the structure constants for n = 3, hence the name conformal
bootstrap.

They solved this way many 2d CFTs for certain rational values of ¢ when the CFT has dis-
crete spectrum (minimal models, e.g. the critical Ising model) but fell short of solving Liouville
theory, which has a continuous spectrum. It is only 10 years later that Dorn—Otto [12] and the

6The infinite-dimensional Lie group of local conformal transformations does not exist mathematically speaking. But
if it would, then the Virasoro algebra could be seen as its Lie algebra.
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Zamolodchikov brothers [13] proposed the following formula, the celebrated DOZZ formula, for
the 3 point structure constants of Liouville theory

(Ve (0) Ve, (1) Vg (00)),,

2Q-

) == Y, (0)Yy(a)Yy(@2)Yy(as)
2 2 2 2

()2

1
2

(11)

Yr (§-QY (F-a) Yy (§-a2) Yy (5 -as)

where @ = a;+az+as, £(z) = l“{l(f)z) with I" the standard Gamma function and Y y (z) is Zamolod-

chikov’s special holomorphic function defined as the analytic continuation to Cof the following
expression for 0 < Re(z) < Q

. Q_ t 2
wegia= [7](@of e Ul Y ar N

2 sinh(%)sinh(%) ¢

The bootstrap formalism then states that higher correlation functions (n = 4) can be recovered
from these 3 point structure constants (which can be meromorphically continued to complex
values of the parameters aj, a2, as3). Of special interest is the case n = 4 in which case the
bootstrap formula reads
1
8
°° 2(Agsip—Da; A, 2
f <Va1 (O)Vaz(l)VQ—iP(OO)>Y H<VQ—iP(O)Va3(1)Va4(OO)>Y uIZI QriPm2a ") | Fp(Z)|"dP  (13)
0 , ,

(Va, (0) Vi, (2) Vi (1) Vi, (00))%” =

where &p are holomorphic functions in z called (spherical) conformal blocks and have strong
representation theoretical content. The conformal blocks are universal in the sense that they
only depend on the conformal weights Ay, = % (Q- %) and the central charge of Liouville theory
cr=1+60Q%.

4. Perspectives

Following the work [1], the present authors initiated with A. Kupiainen a program whose goal
is to show that the probabilistic construction of [1] on the Riemann sphere coincides with the
bootstrap construction used in physics. At first sight, the two approaches seem very distant,
as one is based on exact probabilistic expressions involving Gaussian multiplicative chaos and
the other one is based on representation theory. In order to unify both perspectives, the present
authors developed with A. Kupiainen a mapping between probability theory and representation
theory of the Virasoro algebra. This has led to a proof of the DOZZ formula [14, 15] and a proof of
the conformal bootstrap [16] on the Riemann sphere.

As mentioned briefly in the introduction, Liouville theory is expected to be equivalent to a
specific 4d gauge theory called A" = 2 SUSY Yang-Mills: this is the celebrated AGT conjecture [3].
Essentially, this conjecture states that the conformal blocks of Liouville theory equal the Nekrasov
partition functions (which appear as building blocks of A" = 2 SUSY Yang-Mills) for certain
values of the parameters. The proof of this conjecture on all Riemann surfaces remains open
at the level of mathematics though a version of this conjecture on the torus is a consequence
of recent works by Maulik-Okounkov [17] and Schiffman-Vasserot [18] (in these works the
conformal blocks are seen as formal power series in the moduli parameters and convergence
issues are not adressed). Following the recent probabilistic constructions of Liouville field theory
on all Riemann surfaces [1, 4], one can hope to show a strong version of this conjecture on any
Riemann surface. As an exciting output of this program, Ghosal-Remy-Sun-Sun [19] discovered a
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probabilistic expression involving Gaussian multiplicative chaos for the (toric) conformal blocks
which play a similar role on the torus to the (spherical) conformal blocks mentioned in the
previous paragraph. In particular, the work [19] establishes convergence of toric conformal
blocks. A generalization of their formulas to other surfaces would be a magnificent achievement.

Another challenging perspective is to investigate the links with geometric flows and “stochas-
tic uniformization”. Recall that one of the greatest achievements of the past century was to char-
acterize metrics with constant curvature on a given Riemannian manifold (.4, g) via a vast re-
search program led by Emile Picard, Felix Klein or Henri Poincaré. In the eighties, Richard Hamil-
ton brought his own perspective on the topic by introducing a dynamic on metrics, called the
Ricci flow (here on compact surfaces)

0:8ij = —2R;;(g) + Rar(8)&ij (14)

where g is a time dependent metric on ./, R; j(g) stands for the Ricci tensor and R,y (g) the mean
curvature. As time f goes to oo, g converges towards the constant curvature metric. Dubédat and
Shen [20] have recently introduced the stochastic version of this flow, called the stochastic Ricci
flow, which consists in adding an isotropic white noise in the space of metrics to the right-hand
side of (14). They have shown that Liouville theory is an invariant masure for this flow. This opens
new perspectives related not only to a rigorous quantization of gravity in two dimensions but also
to connections between Gaussian multiplicative chaos, random geometry and uniformization of
2d surfaces.
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