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Abstract

With more than one light scalar field contributing to cosmological perturba-

tions, multifield inflation models are distinguishable from scenarios with only

one field. We address here two issues that affect multifield inflation models’

ability to make predictions about the homogeneity of the universe and the

statistics of the primordial spectrum of curvature perturbations.

We first consider the sensitivity of the prototypical hybrid inflation model

to its initial conditions. We argue that physically comparable initial conditions

must be constrained so that a bijective mapping can be made between allowed

initial conditions and solutions to the equations of motion. Using this criterion,

hybrid inflation retains characteristics of strong nonlinearity, such as chaotic

dynamics, and that previous results for the robustness of the inflationary at-

tractor can be applied to the system’s solution space. We then extend this

analysis to include primordial inhomogeneity by using numerical lattice PDE

techniques. We find that the strong nonlinearity of hybrid inflation can result

in a significantly different final state for inhomogeneous universes as compared

to homogeneous initial conditions. A homogeneous universe that is unable

to inflate sufficiently may instead become viable with a small amount of sub-

horizon inhomogeneity, in contrast to the conventional analysis for single-field

inflation models.

We also consider how a multifield inflation model’s predictions for the pri-

mordial power spectrum depend on its initial state, given that many multifield

models have an infinite number of inflationary solutions. We develop an open-

source Fortran program for Monte Carlo exploration of multifield inflation and
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demonstrate numerically that Nf -quadratic inflation is not sensitively depen-

dent on the prior probability chosen for the fields’ initial conditions. Finally,

we calculate a generic prediction for the inflationary consistency relation nt/r

at the end of inflation for a wide class of phenomenologically viable multifield

inflation models. Although the models have significant complexity, the central

limit theorem reduces the dimensionality of the probability distributions for

observables, resulting in emergent simplicity for realistic multifield models.
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PART I

An Overview of Inflation
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Chapter 1

Beyond the Simplest Picture

1.1 Introduction

The amount of data available to cosmologists has undergone a radical expan-

sion in the early portion of the 21st century, ushering us into the era of “Pre-

cision Cosmology.” The recent improvement in the observations of the cosmic

microwave background (CMB) with the WMAP and Planck space-based tele-

scopes has drastically increased our ability to test for a primordial epoch of

inflation. Inflation is an early period of accelerated expansion of the universe,

which is invoked at the level of the classical background to create a flat and

approximately homogeneous universe. This basic picture was put forward in a

series of papers in the 1980s [1–4], which revolutionized our ideas of the early

universe. Importantly, inflation also generates random, classical perturbations

on an otherwise smooth and flat universe with a characteristic spectrum that

depends, typically, on the functional form of the potential energy density for

a scalar field. The statistics of these perturbations are distinguishable in the

present-day signal from the CMB and large-scale structure, allowing us to

constrain the model space of inflation.

In particular, with the WMAP9 dataset [5] the standard ΛCDM cosmology

acquired the parameter ns, which measures the deviation of the primordial

power spectrum from the featureless Harrison-Zel’dovich spectrum, at greater

than 5σ significance. A non-unity ns is one of the strongest predictions for

3



4 Chapter 1. Beyond the Simplest Picture

inflation, although the exact value can differ depending on the specifics of the

inflationary model and other early universe scenarios may also yield ns ≠ 1.

In this chapter we will discuss the role that the basic inflationary mechanism

plays in the standard picture of cosmology. We will introduce the semi-classical

picture of inflationary perturbations, the power spectrum, and the main sub-

ject of this thesis, multifield models of inflation, and how their predictions may

differ from the simple single-field models. Finally, we will discuss the role of

Bayesian statistics in understanding and reporting theoretical uncertainty in

models.

1.2 The need for inflation

The simple picture.— There are some major problems for the initial con-

ditions of the classical universe. Since curvature and inhomogeneities grow

on sub-horizon scales, the observed flatness and approximate homogeneity of

the modern universe on super-horizon scales would otherwise require an ex-

ceptional initial state that must have been many orders of magnitude flatter

and more homogeneous than today. An especially important problem for this

thesis is that the CMB is isotropic to first-order for regions of the sky that

were never in causal contact, the so-called horizon or homogeneity problem.

An early period of accelerated expansion provides a physical mechanism to

solve these problems by shrinking the size of the Hubble radius in comoving

coordinates during a phase of accelerated expansion, which has the scale factor

a evolving like ä > 0, with overdots indicating derivatives with respect to

cosmic time t. In physical coordinates, the Hubble radius is H−1, which gives

a comoving Hubble radius rcmv = (aH)−1 that shrinks as

d

dt
[ 1

aH
] = − ä

(ȧ)2
< 0. (1.1)
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Any gradients in the matter fields with comoving length R are then ex-

panded outside of the Hubble horizon during inflation, yielding an arbitrarily

homogeneous universe locally. This makes the physically-relevant neighbor-

hood around a given point in space-time decrease with time, so that the entire

present-day universe could have existed inside a causally connected region prior

to inflation; the typical size for homogeneous patches today would then exceed

the distance to the surface of last scattering.

The problem of initial conditions.– However, even at the level of the

classical background, this simple picture is not entirely adequate. Importantly,

one of the main assumptions hidden above is that inflation must start on a

super-H comoving region of the universe, despite there being no causal reason

for this [6,7]. Consequently, the horizon problem is only solved by this mecha-

nism if the initial conditions of the Universe satisfied the necessary conditions

for inflation in adjacent, but causally disconnected regions. We will address

this problem in Chapter 4.

1.3 Cosmological perturbation theory

The most important aspect of cosmological inflation is that classical curvature

perturbations larger than the comoving horizon are generated in a nearly scale-

invariant and stochastic fashion from quantum perturbations on sub-horizon

scales. The statistics of the classical perturbations have now been constrained

to a fine degree from CMB data. This enables us to put serious pressure on

some of the simplest inflationary models, significantly restricting the allowed

parameter space and changing our opinion on the types of models that yield

observationally viable universes. In this section we will discuss how quantum

perturbations lead to classical perturbations and how we calculate the statistics
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of the primordial perturbations.

1.3.1 Perturbed FLRW

To describe the basic mechanism we will start with a perturbed Friedmann-

Lemaître-Robertson-Walker (FLRW) metric:

gµν = ḡµν + hµν , (1.2)

where

ḡµν(τ) = a(τ) ηµν (1.3)

for scale factor a, when the time variable is conformal time dτ ≡ dt/a, and ηµν
is the Minkowski metric with signature (−,+,+,+). Throughout this thesis we

will use the convention where Greek indices run from µ = 0, . . . ,3 and Latin

indices from i = 1,2,3. The perturbations are defined as

h00 = −2a2Ψ (1.4)

h0i = 2a2Bi (1.5)

hij = a2 [(1 − 2Φ) + 2Eij] , (1.6)

where Ψ and Φ are scalars, but not Lorentz scalars; Bi is a 3-vector, i.e., is

invariant under spatial rotations; and Eij is a symmetric and trace-free (Ei
i ≡ 0)

3-tensor. All of the functions in Eqs (1.4)–(1.6) depend on xµ and the number

of independent components of hµν are matched by the number of degrees of

freedom in Ψ, Φ, Bi, and Eij.

Using the results of Ref. [8] we uniquely decompose Bi and Eij into scalar,

vector, and tensor components:

Bi ≡ ∂iB + B̂i (1.7)
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and

Eij ≡ ∂⟨i∂j⟩E + ∂(iÊj) + Êij, (1.8)

where the hat indicates that the object is transverse, symmetric, and trace-

free. The round and angled brackets in Eq. (1.8) imply symmetrization and

anti-symmetrization, respectively, so that

∂⟨i∂j⟩E = ∂i∂jE − 1

3
∇2E. (1.9)

At linear order in hµν , the perturbative Einstein equations for the scalar, vec-

tor, and tensor components above are decoupled, making this a valuable de-

composition for the metric perturbations.

1.3.2 Gauge invariance & diffeomorphism

General Relativity describes physics through the definition of a manifold M

with an associated set of fields, such as the metric g, a scalar φ, or the Maxwell

tensor F . If manifold N is diffeomorphic to M with ϕ ∶M → N , then M and

N have identical manifold structures, i.e., the manifold M is associated with

objects such as the metric g and connection ∇ that are mapped to structures

in N that have identical properties. To make General Relativity a sensible

model, it is therefore obvious that we must identify diffeomorphic manifolds

as being physically equivalent.

If we have a diffeomorphism ϕ ∶ M → N , then tensors on M are mapped

bijectively to tensors on N through the function ϕ∗, which is called the push-

forward, and from N to M via the pull-back ϕ∗, which is the inverse of the

push-forward.1 The components of the transformed tensors are given in the

1Note that the push-forward and pull-back can be defined independently of the existence

of any diffeomorphism, but are inverses of each other for this special case.
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usual fashion for change-of-basis with a tensor T changing as

T µν → (φ∗ ○ T )µν =
∂yµ

∂xρ
∂xσ

∂yν
T ρσ, (1.10)

where the coordinate bases xµ and yρ on M and N , respectively, are related

by the diffeomorphism. This can be expressed in a coordinate basis as

xµ
ϕ∗Ð→ yµ = xµ + ξµ(xν) (1.11)

for a vector field ξµ.

The Einstein-Hilbert action

SEH = 1

16πG ∫
d4x

√
−g R, (1.12)

where R is the Ricci scalar, is manifestly invariant with respect to the push-

forward of the metric, since R is a curvature invariant. In the rest of this

thesis we will use units where M−2
Pl ≡ 8πG ≡ 1. The contracted Bianchi identity

∇µTµν = 0, (1.13)

where Tµν is the energy-momentum tensor, ensures that this is also true for the

action for the matter sector, yielding equivalent equations of motion on mani-

folds M and N .2 For each diffeomorphism, obtained through the definition of

ξµ, we then have a set of identical physical situations. This diffeomorphism,

or gauge, invariance implies that four degrees of freedom in the system are

redundant and can be removed by fixing a gauge, i.e., uniquely choosing ξµ.

To understand the role that gauge freedom plays in cosmological pertur-

bation theory, we will follow Ref. [9] and identify the relationship in Eq. (1.2)

as resulting from a diffeomorphism ϕ that takes points in the neighborhood
2By not treating M and N as the same manifold, we are using the “active” view of

diffeomorphisms. If we instead interpret the right-hand side of Eq. (1.11) as defining another

coordinate system yµ on M , then this is the equivalent “passive” interpretation.
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of a point p in a manifold Mphys and maps them to another manifold Mptb as

p
ϕÐ→ p′, with a resulting change in the metric and stress-energy tensors as

gµν
ϕ∗Ð→ ḡµν + hµν (1.14)

and

Tµν
ϕ∗Ð→ T̄µν + tµν . (1.15)

In the above equations, the barred quantities are arbitrary reference tensors

and hµν and tµν are not yet required to be small. Since the pull-back is the

inverse of the push-forward, we can see that

hµν = (ϕ∗ ○ g)µν − ḡµν . (1.16)

and similarly for tµν . Consequently, hµν is small in the neighborhood of p′ ∈

Mptb for the family of diffeomorphisms ϕ that satisfy (ϕ∗ ○ g)µν ≈ ḡµν for a

given background metric ḡµν and stress-energy tensor Tµν that gµν and Tµν are

locally diffeomorphic to, respectively.

However, the freedom to choose both hµν to be small and the target metric

ḡµν independently will apply only locally near p′ ∈ Mptb; points close to p ∈

Mphys may have an arbitrarily large deviation from the desired behavior. For

instance, the diffeomorphism ϕ could induce a local normal coordinate chart

near p′ ∈Mptb where ḡµν is the Minkowski metric and hµν = 0, without loss of

generality. However, this will not generally induce a local normal coordinate

chart for points near p.

Consequently, to make this an effective scheme in which to do computations

we would ideally like a description of the spacetime where hµν is small and ḡµν

does not sensitively depend on the point p in the physical manifold Mphys.

In other words, we would like Eq. (1.16) to apply over a large region around

p ∈ Mphys, so that we only have to solve this system of equations once for all
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regions in Mphys of interest to us. To apply this to cosmology we therefore

need a description of what the universe looks like away from our local point in

space-time, which is given to us by the Copernican principle, resulting in the

FLRW metric above.

1.3.3 Gauge fixing & perturbations

Given an expansion for the metric and matter fields like Eqs (1.14) and (1.15),

there is a family of diffeomorphisms, which have a form as in Eq. (1.11), that

satisfy hµν ≪ 1 even for a well-motivated choice of target metric ḡµν , such as

the homogeneous FLRW metric. For example, if hµν is small in one coordinate

chart xµ on Mptb, then the mapping xµ → yµ = xµ+ εξµ, for an arbitrary vector

field ξµ, will also have small metric perturbations if ε≪ 1.

Consequently, we need to choose one of these diffeomorphisms, fixing the

four degrees of freedom available by the choice of ξµ in Eq. (1.11) to yield a

completely well-determined physical system in which to do our calculations.

This process is called gauge fixing and defines the coordinate system on the

perturbative manifold Mptb, which we interpret as a threading of spacetime

into time-like wordlines and space-like hypersurfaces that have properties that

will simplify the analysis.3

Using the scalar-vector-tensor decomposition above, we can split the vector

field that defines our diffeomorphism into

ξµ = (ξ0, ∂iξ + ξ̂i) . (1.17)

This results in a relationship between metric perturbations in different gauges,

which can be found explicitly in Ref. [8]. Importantly, the definition above

3However, starting with a given slicing/threading does not yield enough information to

uniquely determine the coordinate chart on Mptb. See the discussion in Ref. [10].
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splits the gauge transformations’ dependence on ξµ so that each scalar compo-

nent in Eqs (1.4)–(1.5) is related to its corresponding perturbation in the new

gauge by only the two functions ξ0 and ξ, while the vector components are

functions of also ξ̂i. The tensor components to the metric perturbations are

manifestly gauge invariant. We can therefore choose (ξ0, ∂iξ) in such a way to

remove two scalar degrees of freedom from the metric and ξ̂i to remove two

vector degrees of freedom. We will often choose the flat gauge with

Φ = E = 0, (1.18)

where constant-time hypersurfaces are spatially flat.

1.4 Single-field inflation

The simplest way that we can get inflation is through the action

Sφ = ∫ d4x
√
−g [−1

2
∂µφ∂µφ − V (φ)] , (1.19)

where φ is a Lorentz scalar with potential energy density V and a canonical

form for its kinetic energy. The equation of motion for φ from Eq. (1.19) is

the Klein-Gordon equation

1
√−g

∂µ (
√
−g ∂µφ) − dV

dφ
= 0, (1.20)

where the determinant of the FLRW metric is g = −a6 in three dimensions.

The 0 − 0 portion of the Einstein equation, for the homogeneous background

with a and φ independent of the spatial location, yields

H2 = 1

3
(1

2
φ̇2 + V (φ)) , (1.21)

where H ≡ ȧ/a is the Hubble parameter and overdots are derivatives with

respect to cosmic time t. This can be substituted into Eq. (1.20) to get

φ̈ + 3Hφ̇ + dV
dφ

= 0 (1.22)
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for a homogeneous scalar field.

Inflation is realized by a configuration that is dominated by V , which is

approximately constant and smooth, so that the field φ has almost no change

in its velocity. In this limit, the Hubble parameter is dominated by V , so that

H2 ≈ 1

3
V (φ) (1.23)

and the Klein-Gordon equation then becomes

φ̇ ≈ 1√
3V

dV

dφ
, (1.24)

which is the slow-roll approximation.

1.4.1 Inhomogeneities from inflation

Importantly, inflation will also generate a perturbed, classical universe from

quantum perturbations. In this section we will study this in the simplest

case, which is an approximately massless scalar field, and leave the detailed

exposition of the general equations for a collection of canonical scalar fields to

Chapter 2.

In flat gauge, we will consider a matter sector consisting of only one scalar

field that is approximately homogeneous with an inhomogeneous perturbation

of the form

φ(t, xi) = φ̄(t) + δφ(t, xi). (1.25)

The action S for the inflationary system is then the combination of the Einstein-

Hilbert graviational sector (1.12) for the perturbed FLRW metric in Eqs (1.3)–

(1.6) and the scalar action (1.19):

S = ∫ d4x
√
−g [1

2
R − 1

2
∂µφ∂

µφ − V ] . (1.26)
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We then obtain the equation of motion for δφ(t, xi) by expanding S to

second-order in the scalar field perturbation and first-order in the metric per-

turbations. Changing variables to u = aδφ simplifies the equation of motion

and we will perform our analysis with this variable. If we Fourier-transform

u(t, xi) → uk(t), then we obtain the Mukhanov-Sasaki equation

u′′k + (k2 − z
′′

z
)uk = 0, (1.27)

where a prime indicates a derivative with respect to conformal time τ ≡ ∫ dt/a.

We have defined the background quantities H ≡ a′/a, which is the conformal

Hubble parameter, and z ≡ aφ′/H. If the background is inflating, then modes

with a comoving length scale of k−1 will expand beyond the comoving Hubble

horizon.

1.4.2 Quantization

We will treat the background as if it were evolving purely classically, but require

the perturbations δφ to be quantum fields. In general, to get the three-point

and higher correlators for the theory we will need to perform calculations in

the semi-classical interacting picture. However, we will not need to calculate

these higher correlators from first-principles for the remainder of this thesis,

so we are free to use the Heisenberg picture.

We will quantize by first defining raising and lowering operators â†
k and

âk, respectively, by promoting uk and its conjugate momentum πk ≡ u′k to

quantum operators, where we define

ûk ≡ ukâk + u∗kâ
†
−k (1.28)

and similarly for its conjugate momentum and Hermitian conjugate. We then

impose canonical commutation relations for

[âk, â†
q] = δ(k − q), (1.29)
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with all other combinations of âk and â†
q commuting. We can relate this com-

mutation relation to that of ûk and π̂q as

[ûk, π̂q] = uku
′∗
q [âk, â†

−q] − u∗ku′q [âq, â
†
−k] (1.30)

= (uku
′∗
k − u∗ku′k) δ(k + q), (1.31)

where the second inequality assumes that the modes uk depend only on k = ∣k∣.

Importantly, we are not in general able to simultaneously enforce Eqs (1.29)

and have non-vanishing commutation relations for Eq. (1.31) in a time-

dependent background. Therefore, the conjugate variables ûk and π̂k may

either act like classical fields that commute or as quantum fields that do not.

Since an FLRW universe is locally diffeomorphic to Minkowski space, we

will look for solutions to Eq. (1.27) that yield the canonical commutation

relations [ûk, π̂q] = iδ(k+q) on sub-horizon scales with k ≫ aH. These modes

will have an equation of motion approximately equal to that of a massless

scalar field in the absence of gravity,

u′′k + k2uk ≈ 0. (1.32)

The solutions to this are plane waves, which give the Minkowski-space com-

mutation relations when

uk =
1√
2k

e−ikτ , (1.33)

up to an arbitrary choice of initial phase. It is standard to take this solution

to be the initial conditions for uk, since this is also an attracting solution for

substantially sub-horizon modes with k ≫ aH, although this initial condition

can certainly be altered.

We contrast this with super-horizon modes with k ≪ aH that satisfy

u′′k
uk

≈ a
′′

a
(1.34)
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for background solutions that obey the slow-roll equations of motion (1.24).

From Eq. (1.34) uk ∼ a and, since uk = aδφk, the field perturbations are con-

stant on super-horizon scales. Similarly, if we transform to a gauge where con-

stant time hypersurfaces have uniform density, we can directly relate the field

perturbations in flat gauge to curvature perturbations ζ in uniform-density

gauge; these curvature perturbations are also constant. It can be shown that

the super-horizon conservation of ζ is a consequence of adiabatic evolution and

is not exclusive to single-field inflation [11,12].

Since uk is a real function on super-horizon scales, from Eq. (1.31) we can

see that ûk and π̂k commute and modes of the quantum field that have exited

the horizon act as if they were purely classical. This is the “pragmatic view” of

the quantum-to-classical transition for inflationary perturbations, which can

be made more precise in terms of decoherence [13].

We can define the quasi–de Sitter vacuum state as ak ∣0⟩ ≡ 0, which gives

the tree-level two-point vacuum expectation value

⟨0∣ ûkû†
q ∣0⟩ = ∣uk∣2δ(k − q). (1.35)

Since a quantum expectation value is the mean value obtained from repeated,

independent measurements of a physical system, in the limit that the fields

become classical we can identify the N -point quantum expectation values of

uk as the N th moments of the probability distribution for a random classical

field. The two-point function on super-horizon scales then defines the variance

of the classical probability distribution from which the ∣uk∣ are drawn:

⟨0∣ ûkû†
q ∣0⟩k,q≪aH = Pu(k)δ(k − q), (1.36)

where Pu(k) is called the power spectrum for uk.

From here on we will drop the hat over the quantum operators and infer

whether it is an operator or c-number from context.
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1.5 Multifield inflation

The remainder of this thesis will be concerned with the behavior of inflation

models outside of this simple description. In particular, we will perform an

in-depth study of multifield inflation, which is a class of models that use more

than one light scalar field to drive the inflationary dynamics. These are well-

motivated scenarios for the early universe that naturally appear in high energy

theories such as string theory or supersymmetry. Furthermore, given that the

single-field inflation mechanism that we described in Sect. 1.4 is easy to realize

phenomenologically, we can treat multifield models as a generalization of the

picture presented above. These models have interestingly different behavior

that makes their analysis significantly more difficult than the simplest case.

The role of initial conditions.— Multifield inflation has a number of

potentially observable signatures, including large amounts of primordial non-

Gaussianity and a non-standard relationship between the tensor and scalar

power spectra. In this thesis we will be primarily concerned with the issue

of how the predictions of multifield inflation models depend on their classical

initial conditions. For a given set of Lagrangian parameters, e.g., masses and

couplings, there is a family of inflationary solutions corresponding to different

choices of initial conditions for the background spacetime. Each initial condi-

tion may result in a slightly different evolution for the potential energy and

its derivatives, resulting in quantitatively different behavior for the model as

modes of interest exit the comoving Hubble horizon. We can see the difference

in multifield and single-field behavior in Fig. 1.1.

Additionally, in Sect. 1.4.2 we saw that the field perturbations do not evolve

in single-field inflation outside of the horizon, which is also true for the comov-
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Figure 1.1: Inflationary solutions for a single-field (left) and multifield (right) model.

The red dots are field-space initial conditions and their potential energy V , which

are assumed to start in slow-roll. The black line is the field-space trajectory and its

V , which is offset a small amount to make it easy to visualize. The blue line (left)

and background (right) indicate a toy V . Most multifield models have a variety of

initial conditions that lead to inflationary solutions.

ing curvature perturbation ζ. However, multifield models that have solutions

that turn in field space will have significantly non-adiabatic evolution and ζ

will evolve on super-horizon scales when this happens. Consequently, to under-

stand the predictions of multifield models we will need to follow the solution to

the multifield Klein-Gordon equations until an approximately adiabatic con-

figuration is reached.

Gravitational wave consistency relation.— Of particular importance

to this thesis’ Chapter 6 is the gravitational wave consistency relation [14,15],

which relates the tensor spectral index nt to the tensor-to-scalar ratio r at the

pivot scale by

nt
r
= −1

8
. (1.37)
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This is valid for all single-field models with minimal coupling to gravity during

a period of slow-roll inflation, but can break down explicitly for multifield

inflation. Consequently, any detected deviation from this relationship may

indicate that the simplest single-field description of inflation has broken down

or possibly that inflation did not happen at all. It is therefore vitally important

that we understand the predictions for nt/r in multifield models with arbitrary

initial conditions, in order that we may use any potential detections of this

relationship to constrain or verify non-standard models.

1.6 Thesis outline

This thesis presents five independently published chapters that examine the

role of initial conditions in making predictions for multifield inflation mod-

els. This involves detailed study of both (A) the nonlinear behaviour in the

background Klein-Gordon equations for multifield systems and (B) the linear,

but complex relationship between adiabatic and isocurvature perturbations in

multifield systems. There is a significant numerical component to this work,

as well as many analytical calculations that guide our understanding of the

sytems.

We start first in Chapter 2 by describing the Fortran computer program

MultiModeCode, which was written to numerically solve the multifield

equations of motion to first order in the field perturbations. This involves

a significant exposition on the dynamics of multifield perturbation theory and

looks at the predictions of an interesting multifield system that has a series of

hyperbolic tangent steps in the potential energy density.

We then restrict ourselves in Chapter 3 to looking at the role of initial

conditions at the level of the classical background, by examining the classical
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hybrid inflation model’s ability to inflate for a sample of initial conditions. The

numerical solutions allow us to identify the end-state of allowed inflationary

initial conditions and identify whether or not they are able to inflate suffi-

ciently to result in a universe that looks like ours. In Chapter 4 we use lattice

PDE solvers to upgrade the analysis in Chapter 3 to include pre-inflationary

inhomogeneities that have wavelengths smaller than the Hubble radius.

The third portion of the thesis looks more specifically at the perturbation

spectrum resulting from large-field inflation models. As these models depend

on the background initial conditions, we study the sensitivity of these models’

predictions to the a priori assumptions that we place on the allowed initial

states. We do this both numerically and analytically, finding sharp, generic

predictions for these types of multifield models. We conclude the thesis with

a discussion on initial conditions, Bayesian methods, and how to understand

the uncertainty in a theory’s predictions.
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A Numerical Approach
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Chapter 2

MultiModeCode

This chapter is adapted from:

L. C. Price, J. Frazer, J. Xu, H. V. Peiris, and R. Easther

MultiModeCode: An efficient numerical solver for multifield inflation

JCAP 1503 (2015), 03 005, [16]

Copyright (2015) by the Institute of Physics

2.1 Abstract

We present MultiModeCode,1 a Fortran 95/2000 package for the numerical

exploration of multifield inflation models. This program facilitates efficient

Monte Carlo sampling of prior probabilities for inflationary model parameters

and initial conditions and is the first publicly available code that can efficiently

generate large sample-sets for inflation models with O(100) fields. The code

numerically solves the equations of motion for the background and first-order

perturbations of multi-field inflation models with canonical kinetic terms and

arbitrary potentials, providing the adiabatic, isocurvature, and tensor power

spectra at the end of inflation. For models with sum-separable potentials

MultiModeCode also computes the slow-roll prediction via the δN formal-

ism for easy model exploration and validation. We pay particular attention to

1Available at www.modecode.org.
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the isocurvature perturbations as the system approaches the adiabatic limit,

showing how to avoid numerical instabilities that affect some other approaches

to this problem. We demonstrate the use of MultiModeCode by exploring

a few toy models. Finally, we give a concise review of multifield perturbation

theory.

2.2 Introduction

Many simple models of inflation adeptly reproduce the observed properties of

the primordial cosmological perturbations [5,17–19], predicting a nearly scale-

invariant power spectrum and minimal amounts of primordial non-Gaussianity.

In the slow-roll, single-field paradigm the predictions of a given model are easily

determined as an algebraic function of the field’s potential V and its derivatives

in terms of a hierarchy of slow-roll parameters. The resulting observables are

simple to compute and easy to interpret.

However, relaxing any of the basic assumptions of the slow-roll, single-field

models complicates this simple analysis. In particular, for many inflation-

ary scenarios (e.g., multifield inflation, gauge inflation, and non-minimal cou-

plings), the background and mode equations are complex systems of coupled,

nonlinear ODEs, making analysis difficult in all but a few cases. Furthermore,

while slow-roll, single-field inflation is a simple and easily understood model,

it may not necessarily be considered natural in the context of high-energy

theories. For example, low energy effective theories derived from string theory

generically contain hundreds of scalar fields with complicated interactions, and

many theories consider non-minimal couplings to the Ricci scalar (for a recent

review, see Ref. [20]). While analytical studies have been able to overcome

subsets of these problems, most of the techniques that have been used are
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situation-specific, which limits their applicability to novel models.

While significant progress can be made in the slow-roll limit, only numeri-

cal techniques can explore the full predictions of more complex inflation mod-

els. Even in the purely homogeneous limit, numerically solving the nonlinear

Klein–Gordon equation for the homogeneous background fields reveals many

interesting features that do not arise in slow-roll analyses, e.g., sensitivity to

initial conditionsas studied in Refs [21,22] and Chapters 3 and 4. These com-

plications lead naturally to the numerical exploration of inflationary models.

In this chapter we present and describe MultiModeCode, an efficient

Fortran 95/2000 package that numerically solves the equations of motion for

the background fields and the first-order perturbations for multifield inflation

models in which the fields have canonical kinetic terms and are minimally

coupled to gravity. MultiModeCode calculates the adiabatic, tensor, and

various isocurvature power spectra as a function of scale k, but does not eval-

uate higher order correlators. If the potential is sum-separable, MultiMod-

eCode uses the solution to the background equations of motion to evaluate

the slow-roll δN predictions for the scalar and tensor power spectra and their

derivatives near the pivot scale k∗, also giving the slow-roll results for ns, r,

fNL, etc. The code has been extensively tested with various compilers, includ-

ing the open-source GNU Fortran compiler.

Several numerical codes have been developed to study single-field mod-

els [23–31]. Here, we build on ModeCode [32–34], which was developed to

test single-field inflation models and interfaced with tools such as CAMB [35],

CosmoMC [36], and MultiNest [37]. ModeCode was designed for the

Bayesian analysis of inflation and used by the Planck collaboration [19] to ob-

tain the posterior probabilities and marginal likelihoods for inflation models.

Moving to the multifield case significantly increases the numerical demands on
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the solver, and puts a premium on efficiency due to the much greater com-

putational resources required by these analyses. A few codes exist to analyze

multifield models, but the publicly available codes are inadequate for models

with many fields and arbitrary potentials. Notably, Pyflation [38–41] is an

object-oriented Python code that uses the same method we employ here for

solving the perturbation equations, but cannot easily generate large samples

due to the speed constraints imposed by a dynamic programming language.

This significant extension to ModeCode can be used to study the power

spectra of analytically intractable multifield inflationary potentials, and to

explore the generic predictions of complex models by marginalizing over large

numbers of possible parameters. Complementing currently available codes [38–

41], MultiModeCode specializes in obtaining large Monte Carlo samples of

initial conditions and parameter prior probabilities. To help users familiarise

themselves with MultiModeCode the package includes initial conditions

priors used in Ref. [42] and Chapters 3 and 5. The ability of this code to

efficiently generate large Monte Carlo samples has permitted studies of the

generic predictions of multifield inflation models with more than 100 fields, as

in Chapters 5 and 6.

In practice, the code can simulate the evolution of the mode equations for

O(102) fields,2 but will become inefficient for significantly more fields due to

the increasing dimensionality of the system, which increases with the number

of fields as O(N2
f ). However, it can efficiently sample the evolution of the

background equations of motion for at least O(103) fields. While solving just

the background equations allows the exploration of background dynamics for

such a large number of fields, if the model is sum-separable, then it will also

2Estimates regarding field number are based on Nf -quadratic inflation, which is not

numerically intensive.
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give the slow-roll predictions for the adiabatic curvature power spectrum, as

well as fNL and τNL, in terms of the δN approximation. This should be valid

when the fields are much lighter than H at horizon crossing and slow-roll

holds throughout the duration of inflation. MultiModeCode is released

with several example models already implemented and it is straightforward to

add to this number.

In §4.5, we demonstrate the features of MultiModeCode with an Nf–

flation potential with a sharp step, which we parametrize by a hyperbolic tan-

gent function, following Refs. [23,43]. We show that, in addition to oscillatory

features in the adiabatic curvature power spectrum that are expected from the

single-field analysis [23,44], with more than one field there are also oscillatory

features in the isocurvature spectra, which might result in non-trivial evolution

of the power spectrum after inflation. We also show that the numerical compu-

tation of isocurvature modes results in an inherent numerical instability, since

some definitions of isocurvature perturbations involve computing the difference

between two quantities that are of the same order of magnitude. This induces

a dominant numerical error when these two quantities begin to approach the

adiabatic limit. We overcome this problem by implementing a modified defi-

nition of isocurvature perturbations [45], which is numerically stable to many

more orders of magnitude than some alternative definitions. We also imple-

ment a geometrical optics indicator of isocurvature evolution as first presented

in Ref. [46]. While this measure only relies on background quantities and also

does not suffer from instabilities, as implemented here it does not provide an

absolute value of isocurvature, only an indicator of its growth or decay.

Finally, in §2.4 we provide a concise review of multifield perturbation theory

with the aim of dispelling misconceptions that exist about this topic, which

the enlightened reader can skip.
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2.3 Features of MultiModeCode

We begin by highlighting some of the useful characteristics of MultiMode-

Code.

Speed: The purpose of MultiModeCode is to provide a fast and efficient

solver that is well-tested and can be applied to a wide range of possible infla-

tionary scenarios. MultiModeCode is written in Fortran 95/2000, increasing

its capabilities relative to existing codes [38–41] and making it tractable to in-

vestigate models with many fields or to obtain large Monte Carlo samples from

a model’s parameter space.

Generality: The code facilitates Bayesian approaches to studying inflation,

where the model’s parameters are drawn from prior probabilities from which

we can compute a probability distribution for specified observable associated

with the model. We consider simple situations, e.g., evolving a model given

fixed model parameters and initial conditions, as sub-cases of the more gen-

eral Bayesian framework. To facilitate the use of general priors we have im-

plemented the sampling routines in modules which are simple to adapt and

restructure for the user’s purposes.

Robustness: The program exits gracefully when encountering fatal errors

of either a technical or cosmological nature, while also catching specific errors

that might only affect one particular configuration of the model. We have

extensively checked the program output on various Macintosh and Linux ma-

chines with both the gfortran and ifort compilers, and include both a

fourth-order Runge-Kutta integrator and an implicit backward-difference for-

mula method, which is suitable for stiff problems.
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Statistics: MultiModeCode provides pivot-scale observables, summarized

in Table 2.1 and can sample the adiabatic and isocurvature power spectra as

a function of scale k. We have implemented a variety of numerically stable

indicators of the amount of isocurvature present in the system.

Slow-roll comparison: If the potential V is sum-separable, MultiMode-

Code can also calculate observables using the δN approximation, which as-

sumes slow-roll. Since these quantities rely only on solutions of the background

equations of motion they are efficient and simple to calculate, scaling with the

number of fields as O(Nf). Consequently, if the model is well-described by

the slow-roll approximation between horizon crossing and the end of inflation,

computing observables in the δN formalism is efficient and easy.

2.4 A brief review of multifield perturbation the-

ory

We begin with a short review of first-order, non-interacting multifield per-

turbation theory before describing MultiModeCode and the dynamics of

many-field inflation. There are some substantial differences between single-

field and multifield inflation, which we highlight in Section 2.4.1. Table 2.1

gives a list of the pivot-scale observables that MultiModeCode computes.

There are a few excellent reviews of this topic [10, 39, 47, 48] and we par-

ticularly recommend Refs. [49, 50] for more information. We first present the

nuts-and-bolts of the mode function approach to first-order, multifield pertur-

bations, which is implemented in MultiModeCode. Then we describe the

widely-used δN -formalism, which has also been implemented for ease of use

and for comparison to the perturbation solutions.



30 Chapter 2. MultiModeCode

Power spectra (PS) Type Reference

PR(k) . . . . . . . . . . . . Adiabatic scalar spectrum . . . . . . . . . . . Eq. (5.5)

PS(k) . . . . . . . . . . . . Isocurvature spectrum . . . . . . . . . . . . . . . Eq. (5.6)

PPnad(k) . . . . . . . . . . Non-adiabatic pressure spectrum . . . . . Eq. (2.36)

Pent(k) . . . . . . . . . . . Entropic spectrum . . . . . . . . . . . . . . . . . . . Eq. (2.39)

CRS(k) . . . . . . . . . . . . Adiabatic–non-adiab. cross spectrum Eq. (2.29)

Ph(k) . . . . . . . . . . . . Tensor spectrum . . . . . . . . . . . . . . . . . . . . . –

Observable at k∗ Name Description

As . . . . . . . . . . . . . . . Scalar amplitude . . . . . . . . . . . . . . . . . . . . PR(k∗)

Aiso . . . . . . . . . . . . . . Isocurvature ampl. . . . . . . . . . . . . . . . . . . PS(k∗)

APnad . . . . . . . . . . . . Non-adiab. pressure ampl. . . . . . . . . . . . PPnad(k∗)

Aent . . . . . . . . . . . . . . Entropy ampl. . . . . . . . . . . . . . . . . . . . . . . . Pent(k∗)

ACross . . . . . . . . . . . . Cross spectra ampl. . . . . . . . . . . . . . . . . . CRS(k∗)

ns . . . . . . . . . . . . . . . . Scalar spectral index . . . . . . . . . . . . . . . . . D∗ logPR + 1

nt . . . . . . . . . . . . . . . . Tensor spectral index . . . . . . . . . . . . . . . . D∗ logPh

niso . . . . . . . . . . . . . . . Isocurvature spectral index . . . . . . . . . . D∗ logPS

nent . . . . . . . . . . . . . . Entropy spectral index . . . . . . . . . . . . . . . D∗ logPent

nPnad . . . . . . . . . . . . . Non-adiab. pressure spectral index . . . D∗ logPPnad

αs . . . . . . . . . . . . . . . . Scalar running . . . . . . . . . . . . . . . . . . . . . . . D2
∗ logPR

r . . . . . . . . . . . . . . . . . Tensor-to-scalar ampl. . . . . . . . . . . . . . . . Ph(k∗)/PR(k∗)

cos ∆ . . . . . . . . . . . . . ω-s correlation angle . . . . . . . . . . . . . . . . . Eq. (3.11)

Table 2.1: Typical observables at the pivot scale k∗. The derivative D∗ ≡ d/d log k is

evaluated at k = k∗. MultiModeCode can also generate the full power spectra as

a function of scale P(k).
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2.4.1 The highlights

Multifield inflation differs from the single field case in the following important

respects.

Isocurvature: Multifield inflation generally permits both adiabatic and isocur-

vature perturbations. Adiabatic perturbations are related by a gauge trans-

formation to the curvature perturbation on comoving hypersurfaces R, while

isocurvature perturbations are entropic perturbations between different mat-

ter components on flat hypersurfaces. In single-field inflation there is only one

matter component, so there are only adiabatic perturbations.

Super-horizon evolution: Isocurvature perturbations source adiabatic per-

turbations, causing them to evolve even on super-horizon scales. While this

can generate novel signatures such as non-Gaussianity, this can also be prob-

lematic for comparing the predictions of a model with observation: unless

isocurvature modes decay into an adiabatic limit before the end of inflation,

the curvature perturbation does not become conserved and is thus sensitive to

post-inflationary physics.

The two-index mode function: With more than one field, either (a) the

direct interaction between fields or (b) the gravity-mediated interaction will

mix the particle creation and annihilation operators as a function of time [49].

Instead of a single index mode function, we therefore need to solve for a mode

matrix ψIJ , where δφI = ψIJaJ , for Nf annihilation operators aJ .

Initial conditions dependence: Multifield inflation models have an infinite

number of possible inflationary solutions each of which can, in principle yield

a different perturbation spectrum. Consequently, the observable spectra for
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multifield models can depend on their initial conditions in ways that have no

direct analogue in slow-roll, single-field models, which have only one possible

trajectory in field-space.

Inherently stochastic predictions: Even if the potential V is completely

fixed, multifield models will give an inherent spread of predictions due to the

allowed variance in the fields’ initial conditions. In general, multifield models

will predict a variety of spectra, unless the stochasticity in the initial conditions

can be controlled a priori.

2.4.2 Classical background

Consider Nf scalar fields φI with the matter sector of the action given by

S = ∫ d4x
√
−g [−1

2
∂µφI∂

µφI − V (φI)] , (2.1)

where we use the Einstein summation convention over repeated indices. Greek

indices describe spacetime, going from 0, . . . ,3, upper-case Latin indices de-

scribe the number of fields, going from 1, . . . ,Nf , and lower-case Latin indices

describe space, going from 1, . . . ,3. The field space indices are raised using the

Kronecker delta δIJ . The determinant of the spatial metric gµν is g. In this

chapter we only consider inflation models with minimal coupling to Einstein

gravity and a matter sector described by scalar fields. The current incarnation

of MultiModeCode only solves models with canonical kinetic terms, but

implementing these general field-space metrics is straightforward since Mul-

tiModeCode has been written modularly, but is left for future work.

First-order, non-interacting perturbation theory separates the homogeneous,

classical background from the spatially-dependent modes as φI(t, x⃗) → φI(t)+

δφI(t, x⃗), where we assume that these two components can be treated indepen-
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dently. The homogeneous background fields obey the Klein–Gordon equations

φ̈I + 3Hφ̇I +
∂V

∂φI
= 0, (2.2)

where an overdot indicates a derivative with respect to cosmic time t and

we use MPl
2 = (8πG)−1 = 1 throughout this chapter. The 0-0 Einstein field

equation gives the Friedmann equation

3H2 = 1

2
φ̇I φ̇

I + V (φI), (2.3)

which can be differentiated with respect to t to yield

2Ḣ = −φ̇2
0. (2.4)

In Eq. (2.4) we have used the inflaton trajectory velocity, φ̇2
0 ≡ φ̇I φ̇I . We can

regard the composite field φ0 as the clock of multifield inflation. It is the

classical field defined along the inflaton trajectory, and represents the length

of the classical field-space path.

In practice, if the dynamics are inflationary, it is numerically convenient to

evolve the equation with the number of e-folds Ne ≡ lna(t) as the independent

variable, giving
d2φI
dN2

e

+ (3 − ε) dφI
dNe

+ 1

H2

∂V

∂φI
= 0, (2.5)

where we have defined the first slow-roll parameter as

ε ≡ − Ḣ
H2

= 1

2

dφI
dNe

dφI

dNe

. (2.6)

The Friedmann equation (2.3) can then also be expressed as

H2 = V

3 − ε
. (2.7)

If V ≈ 0, Eq. (2.7) requires ε ≈ 3, which will result in numerical instability

whenever we try to set initial conditions that are dominated by their kinetic
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energy. We side-step this issue by using the cosmic time Eq. (2.2) and H as

defined in Eq. (2.3).

Solving Eq. (2.5) therefore only requires the initial conditions φI and dφI/dNe,

because the dependence on the scale factor a is explicitly removed by the 0-0

Einstein equation (2.7) as a result of assuming a flat FLRW spacetime. As

mentioned in §2.4.1, the perturbation spectrum depends on these initial con-

ditions, which are specified as a prior probability distribution P (φI , φ′I).

2.4.3 Mode equations

To obtain the first-order equation of motion for the perturbations δφI , we need

to expand the action (2.1) to second-order and include the first-order scalar

perturbations to the flat FLRW metric, given by

ds2 = −(1 + 2Φ)dt2 − 2a2B,i dtdx
i + a2 [(1 − 2Ψ) δij − 2∂⟨i∂j⟩E]dxidxj, (2.8)

where

∂⟨i∂j⟩E ≡ ∂i∂jE − 1

3
δij∇2E (2.9)

is trace-free. We choose the spatially-flat gauge, so that Ψ = E = 0, and vary

the expanded action δSφ with respect to the perturbations δφI(t, x⃗) to get the

first-order equation of motion for the free-field perturbations. After Fourier-

transforming the scalar perturbations to δφI(k), the mode equations in this

gauge are
d2δφI
dN2

e

+ (3 − ε)dδφI
dNe

+ k2

a2H2
δφI +CIJδφJ = 0, (2.10)

where

CIJ ≡
∂I∂JV

H2
+ 1

H2
( dφI

dNe

∂JV + dφJ
dNe

∂IV ) + (3 − ε) dφI
dNe

dφJ
dNe

(2.11)

and ∂I ≡ ∂/∂φI . The equation of motion for the tensor metric perturbations

can be derived similarly; since the non-gauge degrees of freedom are massless
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and only minimally coupled to the matter sector, the resulting equations of

motion are identical to the case of single-field inflation.

To solve the perturbation equations, it is usually convenient to work with

the Mukhanov–Sasaki variable uI ≡ aδφI . The mode equation for uI is

d2uI
dN2

e

+ (1 − ε) duI
dNe

+ ( k2

a2H2
− 2 + ε)uI +CIJuJ = 0 (2.12)

with CIJ as in Eq. (2.11). Since the mass matrix, defined as m2
IJ ≡ ∂I∂JV ,

is not necessarily diagonal, the perturbation equations (2.12) mix the annihi-

lation operators for all of the fields [49]. We therefore need to expand each

perturbation mode uI(k) and u†
I(k) using Nf harmonic oscillators aJ(k):

uI(k,Ne) = ψ J
I (k,Ne)aJ(k) (2.13)

and

u†
I(k,Ne) = ψ J,∗

I (k,Ne)a†
J(k), (2.14)

where (†) and (∗) represent Hermitian and complex conjugation, respectively.3

We can then define canonical commutation relations

[aJ(k), a†
I(k′)] = (2π)3δIJδ

(3)(k − k′). (2.15)

The mode matrix ψIJ evolves according to

d2ψIJ
dN2

e

+ (1 − ε)dψIJ
dNe

+ ( k2

a2H2
− 2 + ε)ψIJ +CILψLJ = 0. (2.16)

Finding the perturbation spectrum requires setting initial conditions in Eq. (2.16)

and using the background equations (2.5) to find the time Ne,k when the mode

k leaves the horizon, which also depends on the moment at which the pivot

scale k∗ leaves the horizon, N∗ e-folds before the end of inflation.
3An alternative approach is to simply bypass this issue by solving for the field correlation

functions directly rather than the individual modes, as in the transport method [46,51–53].
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The usual initial condition is the Bunch-Davies state [54], which assumes

the field basis has been chosen such that the ψIJ are originally diagonal and sets

the initial condition for Eq. (2.16) as if the mode matrix were freely oscillating

in Minkowski space. This is well-motivated, since for modes deep in the horizon

k ≫ aH, the mode matrix ψIJ obeys the free wave equation in conformal time

d2ψIJ
dτ 2

+ k2ψIJ = 0, (2.17)

where dτ ≡ adt. If we assume that the mode matrix is initially diagonal at

τ = −∞, then Eq. (2.17) yields two solutions

ψIJ =
1√
2k

(C1e
ikτ +C2e

−ikτ) δIJ . (2.18)

Translating to e-fold time, the initial conditions can be set by

ψIJ ∣
Ne=0

= 1√
2k

(C1 +C2) δIJ (2.19)

and
dψIJ
dNe

∣
Ne=0

= i

aH

√
k

2
(C1 −C2) δIJ . (2.20)

The Bunch-Davies initial condition is equivalent to choosing C1 = 0 and C2 = 1.

While only the Bunch-Davies initial condition is implemented in MultiMod-

eCode, non–Bunch-Davies modes could be easily accommodated.

Although the uI ’s are convenient for short wavelength modes, they grow

exponentially after the modes exit the horizon. So once the mode is outside the

horizon, MultiModeCode switches from uI to δφI by matching boundary

conditions at a time N∗
e just after horizon crossing with

uI ∣
N∗e

= eN∗e δφI ∣
N∗e

and
duI
dNe

∣
N∗e

= eN∗e (δφI +
dδφI
dNe

) ∣
N∗e
. (2.21)
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2.4.4 Power spectra

Unlike single-field inflation, the multifield power spectrum involves contrac-

tions of the mode matrix. Using the canonical commutation relations above,

the two-point VEV of the field perturbations yields the power spectrum

P IJ
δφ (k) = k3

2π2
[ 1

a2
]ψIL ψJL,∗ . (2.22)

When the field trajectories are not turning, on super-horizon scales the fields

φI and their momenta πI commute, indicating that they have transitioned to

a regime where Eq. (2.22) can be interpreted as an expectation value over

realizations of classical, random fields.

To relate this field-space power spectrum to gauge-invariant perturbation

variables [55–57], we first define the curvature perturbation on comoving hy-

persurfaces R by

R ≡ Ψ + 1

3
∇2E + aH (B + v) , (2.23)

where v is given in terms of the momentum density of the stress-energy tensor

T µν as

T i0 ≡ (ρ̄ + P̄ ) δij ∂v
∂xj

, (2.24)

where ρ̄ and P̄ are the background energy and pressure densities, respectively.

If we evaluate Eq. (2.23) on spatially-flat hypersurfaces during inflation, R

reduces to

R = −H
φ̇0

ωIδφ
I , (2.25)

where ωI ≡ φ̇I/φ̇0 is a basis vector that projects δφI along the direction of the

classical background trajectory, given by the solutions to Eq. (2.5). The vector

ω⃗ and a complementary set of (Nf −1) mutually orthonormal basis vectors s⃗K

form the kinematic basis [58, 59], where the separation between the adiabatic

perturbations in Eq. (2.25) and transverse, isocurvature perturbations is made
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explicit. Since ω⃗ depends on the nonlinear background evolution, in Multi-

ModeCode we find the s⃗K numerically by Gram–Schmidt orthogonalization.

The adiabatic curvature power spectrum PR is then the projection of PIJδφ
along the field vector ωI , scaled by the pre-factor in Eq. (2.25), leaving

PR(k) =
1

2ε
ωIωJPIJδφ (k). (2.26)

The gauge-invariant scalar density spectrum in Eq. (5.5) is the final result for

the adiabatic two-point function to first-order in perturbation theory.

Since Eqs. (2.25) and (5.5) are projected along ω⃗, a simple definition for

the isocurvature perturbations SK is the orthogonal projection along the s⃗K

directions

SK ≡ −H
φ̇0

s J
K δφJ . (2.27)

By projecting PIJδφ onto all the directions sK that are orthogonal to ωI and

scaling the result as in Eq. (5.5), leads to the isocurvature power spectrum:

PS(k) =
1

2ε

Nf−1

∑
KL

Nf

∑
IJ

s K
I s L

J PIJδφ (k), (2.28)

where we have left the summations explicit to indicate that the isocurvature

basis vectors are (Nf − 1)–dimensional. We include this definition of isocurva-

ture because it is numerically stable, as we discuss in §2.6.1.

Similarly, we define the adiabatic-isocurvature cross-spectra CRS , which is

the cross-correlation between the comoving curvature perturbation and the

total isocurvature perturbation, given by the contraction of PIJδφ with both ω

and the isocurvature basis vectors sK

CRS(k) =
1

2ε

Nf−1

∑
K

Nf

∑
IJ

ωIs
J
K (PIJδφ + PJIδφ ) . (2.29)

Cross-correlations are generically expected if the background trajectory is

curved as modes of interest leave the horizon. By parametrizing Eq. (2.29)
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with the scalar value

cos ∆ ≡ CRS√
PRPS

, (2.30)

it was shown in Ref. [60] that, for the case of Nf = 2, the value of r is suppressed

relative to the single-field, slow-roll expectation by r ≈ 16ε sin2 ∆, to first-order

in slow-roll. In principle, ∆ may be detectable from CMB observations [61,62].

However, by differentiating Eq. (2.23) with respect to time t, the comov-

ing curvature perturbation will not necessarily be constant even for k ≪ aH.

Instead,

Ṙ = −H
φ̇2

0

δPnad, (2.31)

where δPnad is the non-adiabatic pressure perturbation [11,63,64]. This quan-

tity is the difference between the total pressure perturbation

δP = ∑
I

[φ̇I ˙δφI − φ̇2
IΦ − V,IδφI] , (2.32)

and the adiabatic pressure perturbation δPad = c2
sδρ, where the speed of sound

is c2
s = Ṗ /ρ̇ and the lapse function is

Φ = 1

2H
φ̇Iδφ

I , (2.33)

defined in the spatially-flat gauge [65]. Given the total density perturbation

δρ = ∑
I

[φ̇I ˙δφI − φ̇2
IΦ + V,IδφI] , (2.34)

the non-adiabatic pressure power spectrum PPnad reduces to

PPnad(k) =
k3

2π2a2
[AIAJψ L

I ψ
∗
LJ +AIBJψ L

I ψ
′
LJ (2.35)

+BIAJψ∗ LJ ψ′LI +BIBJψ′ LI ψ∗′LJ] ,

where (′) indicates a derivative with respect to e-foldings Ne and we have

defined the vectors

AI =
1

3aH2ε
φ′,L [(−3H2φ′L − ∂LV )∂IV +H2∂MV φ

′,M (δLI +
1

2
φ′Lφ

′
I)] (2.36)
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and

BI = (1 − c2
s)H2φ′I . (2.37)

By analogy to Eq. (2.27), we can build an entropy perturbation from the

non-adiabatic pressure perturbation [39,58,66], with

δS = H
Ṗ
δPnad. (2.38)

From this we obtain our final definition of isocurvature, the comoving entropy

spectrum, given by

Pent(k) = (H
Ṗ

)
2

PPnad. (2.39)

2.4.5 δN formalism

The separate-universe assumption [11, 67–71], often referred to as δN , states

that when smoothed on some physical scale much larger than the horizon, the

evolution of each smoothed patch can be computed using only background

quantities. By identifying that ζ = δN , where ζ is the curvature perturbation

on constant density hypersurfaces and δN measures the variation in the num-

ber of e-folds between an initial flat hypersurface and a subsequent constant

density hypersurface, Lyth and Rodriguez demonstrated that this assumption

can be taken advantage of when computing correlation functions by performing

a Taylor expansion in terms of the initial conditions [72].

ζ = N,Iδφ
I
∗ +

1

2
N,IJδφ

I
∗δφ

J
∗ + . . . . (2.40)

The main difficulty in this approach lies in computing the derivatives of the

number of e-folds (N,I ≡ ∂Ne/∂φI,∗, N,IJ etc.). However for sum-separable

models these expressions can be computed analytically [73, 74]. For models

with fields much lighter than H at horizon crossing, the numerically intensive
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calculation of solving for the modes may therefore be unnecessary. Multi-

ModeCode implements this δN slow-roll formalism where we assume that t∗

is the moment when the pivot-scale k∗ leaves the horizon and that the field

perturbations at this time are uncorrelated, with a power spectrum

PIJδφ = (H
2π

)
2

δIJ . (2.41)

We also assume that the tensor modes, which are massless and uncoupled to

the matter sector, have a power spectrum

Ph = 8 (H
2π

)
2

. (2.42)

At least to first order, on super-horizon scales ζ = R [75], which allows us to

compare the predicted power spectrum for ζ using the δN formalism to the

adiabatic power spectrum in Eq. (5.5).

If the potential V is sum-separable so that

V = ∑
I

VI(φI), (2.43)

then we can use the Klein–Gordon equations (2.5) for the scalar fields to ob-

tain a sum-separable expression for the amount of expansion between the two

surfaces

Ne = −∑
I
∫

c

∗

VI
V ′
I

dφI , (2.44)

where V ′
I ≡ dVI/dφI . If V were not sum-separable, the derivatives of Ne would

in general have to be obtained numerically by evolving the background equa-

tions of motion (2.5) on a stencil in field-space and taking the finite difference.

We have not implemented this feature in MultiModeCode as it is at least as

computationally intensive as solving the mode equations, since there would be

O(Nf) points in the stencil, each of which requires evaluating O(Nf) coupled

Klein-Gordon equations.
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When the potential is sum-separable, the derivatives of Ne can be simplified

into the expressions [73,74]

N,I =
1√
2ε∗I

V ∗
I +Zc

I

V ∗
(2.45)

and

N,IJ = δIJ [1 −
η∗I
2ε∗I

(
V ∗
I +Zc

I

V ∗
)] + 1√

2ε∗JV
∗

∂Zc
J

∂φ∗I
, (2.46)

where

Zc
I = V c ε

c
I

εc
− V c

I , (2.47)

Zc
IJ = −

V 2
c

V ∗

√
2

εJ

⎡⎢⎢⎢⎢⎣

Nf

∑
K=1

εK (εI
ε
− δIK)(εJ

ε
− δJK)(1 − ηK

ε
)
⎤⎥⎥⎥⎥⎦c
, (2.48)

and the slow-roll parameters are

ε ≡ ∑
I

εI =
1

2
∑
I

V ′2
I

V 2
(2.49)

and

η ≡ ∑
I

ηI = ∑
I

V ′′
I

V
. (2.50)

The contribution from the EOI surface is therefore completely encoded in the

functions ZI and its derivatives.

The relationship (6.4) and the expansion equation (2.44) allow us to define

pivot-scale observables for the scalar perturbations ζ. We will focus on the

observables obtainable only through the first and second derivatives of Ne,

and express our results only to the lowest order in slow-roll. We start with the

ζ power spectrum

Pζ = N,IN
,I (H

2π
)

2

, (2.51)

and obtain the tensor-to-scalar ratio by comparison to the tensor spectrum (2.42)

r = 8

N,IN ,I
. (2.52)
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These have simple expressions only in terms of N,I . The adiabatic and tensor

spectral indices ns and nt also have easily evaluated expressions

ns − 1 = −2ε∗ −
2

N,IN ,I
+ ( 2

V
)
V,IJN ,IN ,J

N,KN ,K
(2.53)

and

nt =
−2ε∗
1 − ε∗

. (2.54)

The expression for the scalar running αs is more complicated, but straightfor-

ward to compute (e.g., Eq. 6.14 in Ref. [76]).

To obtain the amplitude of the predicted non-Gaussianity we further as-

sume that the field perturbations at horizon crossing are purely Gaussian,

since the non-Gaussianity generated by sub-horizon evolution of the modes is

typically slow-roll suppressed [73, 77], assuming that slow-roll is not violated.

Following Refs. [73,78], we use the non-linearity parameter

− 6

5
fNL ≡ [∏i k

3
i

∑i k3
i

]
Bζ

4π4P2
ζ

≈
N,IN,JN ,IJ

(N,KN ,K)2 , (2.55)

where Bζ is the bispectrum. Given Gaussian field perturbations at horizon

crossing, the trispectrum amplitude is then parametrized by the non-linearity

parameters [79,80]

τNL =
N,IJN ,IKN ,JN,K

(N,LN ,L)3 (2.56)

and

gNL = (25

54
)
N,IJKN ,IN ,JN ,K

(N,LN ,L)3 . (2.57)

Since gNL ∼ N,IJK we do not compute it here, although it could be implemented

by taking the third derivative of Ne as in Ref. [74].

2.5 The method

We outline the procedure used to obtain the power spectrum predictions, with

the algorithmic structure of MultiModeCode in Algorithm 1. While this
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largely follows previous implementations, such as Pyflation [38–41], we give

the method for the sake of clarity and reproducibility.

We start by defining the functional form of the potential V and prior prob-

ability distribution functions (PDFs) for the parameters that define V , which

we call Lagrangian parameters or model parameters, and the background ini-

tial conditions φI,0 and φ′I,0. We treat the simple situation of exactly specifying

a set of Lagrangian parameters and initial conditions as a special case, where

the prior probability for these parameters is trivial. Given these priors, the

program will build a numerical sample by iteration until a pre-defined number

of samples is reached.

MultiModeCode first solves the background equations of motion (2.5)

until the end-of-inflation. While we have included the natural condition of ε = 1

as the default ending criterion for inflation, there is complete functionality to

end inflation by another method, in particular a waterfall transition via the

hybrid mechanism [81,82] at some reference phase-space point.

Given a value for the number of e-folds N∗ between when the pivot scale

k∗ leaves the horizon and the end-of-inflation, which is either fixed by the user

or set in each iteration of the code through the sampling of a prior probability

P (N∗), we obtain the value of H at horizon crossing by interpolating the

numerical background solution. The pivot scale k∗ must be pre-defined by the

user and defaults to 0.002 Mpc−1. From this, we normalize the size of the

universe so that k∗ = aH∗ at Ne = Ntot −N∗.

For each scale of interest k, we set the modes’ initial conditions at a time

Ne,0 when that mode is significantly sub-horizon, k ≫ a0H0. For the Bunch-

Davis initial state, this point is chosen iteratively by making sure that the

relative corrections to Eq. (2.17) that are sub-dominant for k ≫ aH are smaller

than a pre-defined tolerance. This tolerance is set to 1 × 10−5; from observing
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Algorithm 1 MultiModeCode method
define sample size, V , k∗

for all elements in sample do

procedure Background Solver:

get Lagrangian parameters for V and ICs for Eq. (2.5) from prior

PDF

with the end-of-inflation (EOI) criterion set by user, solve Eq. (2.5)

until EOI

check inflation (ä > 0) started and ended

procedure Scale-factor Normalizer:

get N∗ from user or by prior PDF

check total inflationary e-folds Ntot ≥ N∗

define a such that k∗ = a∗H∗ at Ne = Ntot −N∗ before inflation ends

procedure δN Calculator:

if V is sum-separable, then calculate δN observables near k∗

for all modes k do

procedure Mode Initializer:

define initial time Ne,0 with k ≫ a0H0

while the corrections to Eq. (2.17) are above some tolerance:

set earlier Ne,0 and check Ne,0 > 0

set Bunch-Davies IC for mode matrix ψIJ(k) at Ne,0

procedure Mode Solver:

solve Eq. (2.12) until k ≈ aH

change variable as in Eq. (2.21) and solve until EOI

calculate power spectra for k

procedure k∗-observable Calculator:

calculate amplitudes, spectral indices, etc. at k∗ by finite difference

in k-space
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the sub-horizon evolution of the modes, using a tolerance at least this tight

gives no change to the value of the modes at horizon crossing.

We then solve the mode equations (2.12) for the variable ψIJ for the period

of time when the modes are smaller than the causal horizon, k ≳ aH, and then

switch to a two-index matrix built from the uI in Eq. (2.21) for super-horizon

evolution. The power spectra are calculated for each k and various pivot-scale

statistics are evaluated by finite-difference between a few scales ki near k∗. If

the potential V is sum-separable, the program also calculates the δN values

for the observables described in Section 2.4.5.

Numerous checks are performed on the background and mode equation

evolution so that MultiModeCode will fail gracefully if a fatal exception is

raised and give an informative error. Similarly, if a particular initial parameter

set is invalid for a non-fatal reason, MultiModeCode will iteratively generate

a new set of parameters in order to explore cosmologically relevant parameter

sets by rejection sampling. We have extensively tested the numerical stability

of the code and have included a number of easily controllable options allowing

the user to control the numerical accuracy, as well as the type of ODE solver.

2.6 Numerical results

2.6.1 Isocurvature stability

Fig. 2.1 illustrates a problem that arises when computing the isocurvature

spectra PPnad and Pent. We have plotted the super-horizon evolution of the

power spectra for the adiabatic and non-adiabatic pressure perturbations, as

well as the adiabatic curvature, entropic, and isocurvature spectra, with N∗ =
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Figure 2.1: The evolution of the power spectra during the last 55 e-folds of inflation

for a two-field Nf -quadratic model. (Left) The power spectrum for adiabatic (green)

and non-adiabatic (blue) pressure perturbations δP . The total pressure spectrum

and the adiabatic pressure spectrum are nearly coincident on this scale, so the total

pressure spectrum PδP has not been plotted. The gray area is an estimate of the

region dominated by double-precision error due to round-off in PPnad. (Right) The

power spectra for perturbations in the adiabatic curvature PR, the isocurvature

PS , and the comoving entropy Pent. Pent is a rescaling of PPnad and is numerically

unstable for Ne ≳ 30 in this model. PS is numerically stable until the end of inflation.

55, for a two-field inflation model with the potential

V = 1

2
m2

1φ
2
1 +

1

2
m2

2φ
2
2. (2.58)

To match the analysis performed in Refs. [39,41,83,84] we choose m2
1 = 10−11.7,

m2
2 = 10−10.0, and initial conditions φ1,0 = φ2,0 = 12.0MPl. In particular, Fig. 2.1

can be compared directly to Figs 1 and 3 in Ref. [39]. With this choice of

parameters, the background trajectory evolves primarily along the direction

of the heavier field φ2 for Ne ≲ 25, then turns sharply toward the φ1 direction

for the remainder of inflation. The effect of this turn on the super-horizon

perturbations can be seen clearly in the power spectra in Fig. 2.1.
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In general, the calculation of PPnad and Pent becomes dominated by numer-

ical error as the isocurvature perturbations decay. From Fig. 2.1, regardless

of the amplitude of the isocurvature modes, the adiabatic pressure perturba-

tions δPad = c2
sδρ do not exponentially decay between horizon exit and the end

of inflation. For the example model (2.58), the power spectrum for δPad is

approximately constant after the turn at Ne ≈ 25. However, the total pres-

sure perturbation δP is approximately equal to δPad during this time and the

difference between the two reduces exponentially as the isocurvature modes

decay.

Since δPnad ≡ δP −δPad and δPad → δP , the numerical accuracy for δPnad is

limited by the real precision of the computer, which results in a finite difference

error in the numerical calculation of δPnad and a loss of significance. Using

standard double precision accuracy, the expected error in δPnad should then

be

∆errPPnad ∼ O(10−15) PδP ∼ O(10−15) PδP,ad, (2.59)

which is confirmed in Fig. 2.1. Without correcting for this dominant error

term, the value of PPnad will oscillate arbitrarily between zero and the limit

in Eq. (2.59), which is an upper bound on the amplitude of the non-adiabatic

pressure perturbations. Since entropic perturbations are usually defined as [66]

SIJ ≡ ζI − ζJ , (2.60)

where ζI is the curvature perturbation resulting from the Ith fluid, this problem

will arise naturally for all calculations of Pent.

In contrast, the calculation of PS in Eq. (5.6) is directly proportional to the

value of the decaying isocurvature modes in the kinematic basis. Using this

isocurvature spectrum largely alleviates the numerical problems with δPnad,

yielding a more faithful measure with a higher degree of accuracy. Figure 2.1
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shows the exponential decay of PS after the super-horizon turn at Ne ∼ 25. We

compare this to Pent, which becomes numerically unstable at Ne ≈ 30, showing

that the two measures PS and Pent are separated by 27 orders of magnitude at

the end of inflation, despite being of the same magnitude at horizon crossing.4

2.6.2 A case study: Nf-flation with a step

We will show in Chapters 5 and 6 that MultiModeCode is able to pro-

duce large volume Monte Carlo samples for Nf–monomial inflation with the

potential

V = 1

p
∑
I

λI ∣φI ∣p, (2.61)

for real exponents p [85–94]. In Chapter 5 we will focus on the Nf–quadratic

case with p = 2 and demonstrate that the predictions for the power spectrum do

not sensitively depend on the prior probability chosen for the initial conditions

of the fields. In Chapter 6 we further demonstrate this for the general case

in Eq. (2.61), while focusing on the gravitational wave consistency relation.

We will be able to straightforwardly compare the analytical δN results to the

numerics, greatly simplifying the procedure for comparing analytical results to

the full numerical calculation. We include all of the IC priors used in these

papers in MultiModeCode.

4As the adiabatic limit is approached, PS can also receive a dominant contribution from

roundoff error in the Gram-Schmidt orthogonalization procedure. If some components of

the isocurvature vectors sIK are much smaller than others, this can result in a spurious

projection of PR onto the isocurvature directions. In MultiModeCode we have included

an optional subroutine renormalize_remove_smallest in modpk_potential.f90, where

the components of sIK are set to zero if they do not affect the normalization of sK , i.e., if

the value of sIK is indistinguishable from roundoff error. In practice, we have never seen this

problem arise, so this option needs to be uncommented in the source code before compilation.
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In this chapter we will instead focus on a few case studies that are inter-

esting due to their analytic intractability. We present results for a multifield

generalization of the inflationary step-potential first used in Ref. [23]. This

potential has the form

V = 1

2
∑
I

m2
Iφ

2
I [1 + cI tanh(φI − Φ̄I

dI
)] (2.62)

with masses mI and real constants dI , cI , and Φ̄I specifying the slope, ampli-

tude, and position, respectively, for a step feature in the Ith field. Phase transi-

tions in sectors coupled only gravitationally to the inflaton sector may generate

these hyperbolic-tangent features in V and leave an observable imprint in the

primordial density spectra if these symmetry breaking transitions occur dur-

ing the last O(60) e-folds of inflation [23, 43]. In the sharp-step limit, these

features introduce oscillations as a function of k into the adiabatic curvature

power spectrum and a scale-dependent, oscillatory bispectrum [23, 44, 95, 96].

To keep V > 0 we require cI < 1 and to satisfy the latest constraints on oscilla-

tions in the scalar power spectrum amplitude requires cI ≲ 10−3, assuming that

the step occurs as the scales relevant for the CMB leave the horizon [97–99].

With cI → 0, Eq. (2.62) is an uncoupled assisted inflation model [85, 100],

first proposed in Ref. [90]. Models with a step feature are additionally interest-

ing, because they can fit a wider range of data and have been well-studied in

the single-field case. In particular, Ref. [44] contains an elegant analytical cal-

culation for the single-field case of Eq. (2.62). However, replicating the same

calculation for the general potential would be difficult — if not impossible

— with the same techniques, since the possible existence of isocurvature per-

turbations significantly complicates the analysis. Consequently, a numerical

exploration of this model is well-motivated.

Fixing the number of fields to Nf = 10, we set the initial conditions to

φI,0 = 10, with the initial velocities set in slow-roll. The size and slope of the
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Figure 2.2: (Left) The masses mI for each of the 10 fields in Eq. (2.62), drawn

from the distribution (2.63) with m̄2 = 4.3 × 10−11, compared to the corresponding

step positions Φ̄I for that field, which is positioned so that the pivot scale k∗ =

0.002 Mpc−1 leaves the horizon at Φ̄I , given the initial conditions φI,0 = 10. (Right)

The field trajectories (colored lines), with the same initial condition, as a function of

e-folding Ne, with k∗ (vertical line) leaving the horizon 55 e-folds before the end of

inflation. The step positions Φ̄I are marked in blue and Ne has been renormalized

so that k∗ = aH at Ne = 0.

step are set to cI = 10−3 and dI = 10−2 respectively, and the masses mI relative

to the fiducial mass to m̄2 = 4.30×10−11, which in the single-field limit yields As

at the best-fit value from the Planck TT data. Following Ref. [89], we choose

the masses mI according to the Marčenko-Pastur distribution

P (m2
I) =

1

2πm2
I m̄

2β

√
(β+ −m2

I) (m2
I − β−), (2.63)

where

β± = m̄2 (1 ±
√
β)

2
(2.64)

with β = 1/2. This distribution of masses is derived in Ref. [89], and has also

been used in Refs. [93,101,102] and Chapter 5.

We set the step positions Φ̄I for each field at the field-space point where
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Figure 2.3: Features in the power spectra due to the step (2.62), which is positioned

so that it affects the power spectra around the pivot scale k∗ = 0.002 Mpc−1 (gray).

We compare (dashed, blue) the no-step case with cI = 0, to (solid, green) the case

with cI = 10−3. While there are oscillations in the adiabatic PR, isocurvature PS ,

and entropic Pent spectra, there is little variation in the tensor spectrum Ph.

the pivot scale k∗ = 0.002 Mpc−1 leaves the horizon at N∗ = 55 e-folds before

the end of inflation in the no-step limit, cI → 0. Since the fields have identical

initial conditions, the Φ̄I are functions only of the masses, so we plot the step

positions versus the mI in Fig. 2.2. We also present the field-space trajectories

according to Eq. (2.5) for the last 75 e-folds of inflation with these parameters.

The heavier fields relax more quickly toward their minimum at φI = 0 and

the lighter fields have a larger value at horizon crossing. Since cI = 10−3, the

step is not obviously visible at the level of the background trajectory without

zooming in significantly.

However, Fig. 2.3 shows the substantial effect on the power spectra due
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to the steps. We see oscillatory behavior in the adiabatic, isocurvature, and

entropic power spectra, but almost no change in the tensor spectrum. Further-

more, we can see clearly that PS and Pent exhibit a nearly identical feature,

simply scaled by a factor of roughly 65. These features in the isocurvature

spectrum may lead to interesting effects during reheating or the subsequent

evolution of the post-inflation universe.

2.7 Conclusion

We present the Fortran 95/2000 code MultiModeCode, designed to max-

imize computational efficiency when numerically exploring a broad range of

multifield inflation models. The code also provides Monte Carlo sampling

of prior probabilities for inflationary model parameters and initial conditions,

enabling automated model exploration and the computation of probability dis-

tributions for observables. The mode equation method has a broad range of

applicability, but the computational cost scales with the number of fields as

O(N2
f ). For models with sum-separable potentials, we have also implemented

a slow-roll δN calculation, which only requires solving the background equa-

tions of motion once in order to obtain the full power spectrum as well as

higher order statistics. This drastically improves computation time, since the

background equations of motion are only O(Nf).

Here, we demonstrated its use with an Nf -flation model with a step. We

find that a feature in the inflationary potential not only results in a feature

in both the adiabatic power spectrum as a function of scale, PR(k), as well

as the isocurvature spectra PS , Pent, and PPnad, with possible implications for

the dynamics of many-field preheating scenarios. Further, we see numerical

evidence that the isocurvature spectrum PS is a simple rescaling of the entropic
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spectrum Pent, indicating that the projection of the mode power spectrum onto

the isocurvature directions is related to a quantity that sources a change in R

on super-horizon scales.

MultiModeCode complements codes that currently exist to numerically

compute the inflationary power spectra [23, 25, 32–34, 38–41, 103, 104]. The

theoretical basis of the method is outlined in Section 4.4. The ability of Mul-

tiModeCode to solve numerically challenging problems, such as the step-

potential in §2.6.2, and to provide large samples of many-field inflationary

models adds significantly to the early universe cosmologist’s toolkit for explor-

ing and understanding realistic inflation models.
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Chapter 3

The Homogeneous Initial Conditions

Problem

This chapter is adapted from:

R. Easther and L. C. Price

Initial conditions and sampling for multifield inflation

JCAP 1307 (2013) 027, [105]

Copyright (2013) by the Institute of Physics

3.1 Abstract

We investigate the initial conditions problem for multifield inflation. In these

scenarios the pre-inflationary dynamics can be chaotic, increasing the sensitiv-

ity of the onset of inflation to the initial data even in the homogeneous limit.

To analyze physically equivalent scenarios we compare initial conditions at

fixed energy. This ensures that each trajectory is counted once and only once,

since the energy density decreases monotonically. We present a full analysis

of hybrid inflation that reveals a greater degree of long range order in the set

of “successful” initial conditions than was previously apparent. In addition,

we explore the effective smoothing scale for the fractal set of successful initial

conditions induced by the finite duration of the pre-inflationary phase. The

role of the prior information used to specify the initial data is discussed in

57
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terms of Bayesian sampling.

3.2 Introduction

The standard hot big bang is synonymous with the Friedmann-Lemaître-

Robertson-Walker (FLRW) metric. This model imposes maximally symmetric

initial conditions on the metric and the mass-energy distribution, as specified

on an arbitrary initial spatial hypersurface. These initial conditions acausally

correlate spacelike-separated regions and require further fine-tuning for the

Universe to be spatially flat at late times, leading to the well-known hori-

zon and flatness problems. Famously, these problems are resolved by infla-

tion [1–4], which grafts a phase of accelerated expansion onto the very early

universe, setting the stage for the standard cosmology. During inflation the

comoving Hubble volume contracts and the visible universe is driven toward

the spatially flat FLRW universe.

Given that inflation attempts to explain the otherwise ad hoc initial con-

ditions of the standard hot big bang, a viable inflationary mechanism must

itself be free of tunings. Tunings can appear as technically unnatural parame-

ter values in the inflaton sector or the need for a special pre-inflationary field

configuration: the latter question is the focus of this chapter. Inflationary

models with unnatural initial conditions are at best incomplete and, at worst,

not viable as descriptions of the early universe. Moreover, the level of tuning

required to ensure the onset of inflation can differ substantially between sce-

narios with largely degenerate observational predictions, providing a possible

mechanism for discriminating between them.

The initial conditions problem arises even in the purely homogeneous limit.

For instance, chaotic inflation [106] begins for a large range of initial field val-
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Set Description

I . . . . . . . Initial conditions surface, however defined

Z . . . . . . . Set of initial conditions with zero velocity

CE . . . . . . Set of initial conditions with equal energy E

SE . . . . . . Successfully inflating subset of CE

FE . . . . . . Non-inflating subset of CE

BE . . . . . . Boundary between SE and FE

Table 3.1: Subsets of phase space: notation.

ues, but new inflation with the Coleman-Weinberg potential [3, 4] requires a

special initial state. Inflationary models with multiple scalar degrees of free-

dom introduce a further level of complexity. With two or more fields the

homogeneous dynamics are potentially chaotic, as first pointed out in Ref. [21]

and also discussed by Refs [22,107]. Chaos is synonymous with sensitive depen-

dence on initial conditions, rendering multifield models qualitatively different

from their single field counterparts. Multifield scenarios are widely studied

and more natural in many settings. In particular, string theoretic inflation-

ary scenarios often possess many scalar degrees of freedom. Further, even if a

model has an effective single-field description once inflation is underway, the

pre-inflationary phase may contain many interacting fields. Several analyses

of the initial conditions problem for multifield inflation exist [22,107–113] and

we return to this question here.

We need to sample the “initial conditions space” I for these scenarios, de-

termining the overall fraction that inflates and the topology of the inflationary

region within this space. A homogeneous, spatially flat universe containing
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N scalar fields φi with arbitrary interactions has 2N independent degrees of

freedom since the scale factor can be eliminated by the 0-0 Einstein equation.

The solutions to the equations of motion — called trajectories or orbits —

are non-intersecting curves that fill the 2N–dimensional phase space. Yet, the

initial field values and velocities are not independent or identically distributed

(iid) random variables as different points in I are correlated by the solutions

to the field-equations, i.e., many points belong to the same trajectory. (See

Table 3.1 for a summary of our notation.)

The phase space is foliated by surfaces of equal energy, CE. The energy

density ρ = E4 of FLRW universes is monotonic, decreasing in a homogeneous

universe as

ρ̇(t) = −3H
N

∑
i=1

φ̇2
i , (3.1)

where the Hubble parameter H ∝ E2 and overdots denote derivatives with

respect to coordinate time t. For a specific energy E, orbits intersect CE once

and only once, identifying each point on CE with a unique solution to the

equations of motion. To build a well-defined sample of trajectories we choose

initial conditions from the constraint surface CE.

Many previous treatments of the multifield initial conditions problem [108–

112] have been based on Z, the N–dimensional subset of I on which all ve-

locities vanish simultaneously. Although the set of inflationary trajectories

intersecting Z is easier to sample than CE, orbits for which all velocities van-

ish at the same instant are not generic, given the finite duration of the pre-

inflationary era. Many orbits thus never intersect Z, while in principle others

may intersect it multiple times, correlating apparently distinct points — is-

sues that cannot arise when sampling from CE. By contrast, Ref. [22] samples

the full phase space I and also varies the parameters in the potential itself,

effectively marginalizing over the energy scale E. The current chapter is the
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first analysis of the initial conditions problem for multifield inflation that does

not either (a) study a lower-dimensional surface in the initial conditions space

(however defined) or (b) sample the entirety of I, disregarding the fact that

different points belong to the same solution of the field equations.1

Any description of the primordial universe breaks down above some energy

scale, and this scale defines the appropriate initial conditions hypersurface CE
for a well-specified model.2 This energy will be associated with some scale in

the particle physics sector, such as the characteristic size of extra dimensions,

the string scale, next-to-leading order corrections to Einstein gravity, or ulti-

mately its breakdown at the Planck scale. Points on CE are thus physically

commensurate, whereas points in I span several orders of magnitude in energy.

Qualitatively, we will also find that the set of successfully inflating points has

a simpler structure and more obvious long range order when chosen from CE
rather than Z, allowing us to better understand the underlying cosmological

dynamics.

Beyond the choice of initial conditions surface, we must also specify the

prior probability distributions (in Bayesian terms) for the initial field values

and velocities. If ω is a probability distribution that weights an initial condition

x0 according to how well its final state matches the observed universe, then

the expected value of ω over initial conditions x0 ∈ CE is

⟨ω(CE)⟩ = ∫
CE

ω(x0)PE(x0)dNx0 ≈
1

n

n

∑
i=1

{ω(x(i)0 )}
x
(i)
0 ∈CE

, (3.2)

where PE is the prior probability distribution for initial conditions on the con-

straint surface CE and the sum is evaluated at n points sampled from CE. The
1Tetradis [110] presents a single equal energy slice, although a degree of freedom was

removed by requiring the velocities to be equal, similar to the projections we introduce for

convenience in Figs 3.3–3.5.
2If the potential has one or more local minima where VΛ > 0, choosing E4 < VΛ will

necessarily exclude all trajectories which evolve toward these minima.
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prior in Eq. (3.2) acts as the probability density function for initial conditions

on the space of FLRW universes. The form of PE is only weakly constrained

by fundamental considerations. The freedom to choose PE is analogous to the

measure problem in the multiverse [114–118], albeit restricted to the subspace

of homogeneous FLRW universes. In many previous works the prior is often

not directly discussed, and thus implicitly defined as a uniform distribution

on the initial conditions. We consider several possible choices of prior (all of

which are uninformative) and vary the energy of the surfaces CE. We find that

the choice of prior significantly alters the fraction of trajectories that lead to

inflation, potentially distorting conclusions about the extent to which a given

inflationary model requires fine-tuned initial conditions.

In what follows we work with a widely studied two-field model: canonical

hybrid or false-vacuum inflation [81, 82, 119]. We relate the initial conditions

problem to that of determining the (fractal) topology and the geometry of the

subset of points SE ⊂ CE that successfully inflate, since this is independent of

the choice of prior. Like Refs [22,112] we see that SE has a fractal topology due

to the presence of chaos in the underlying dynamical system, demonstrating

that hybrid inflation has regions of phase space where orbits are highly sensi-

tive to their initial conditions and confirming the results of Ref. [21]. Hybrid

inflation is associated with a blue power spectrum3 at odds with recent astro-

physical data [17,122–125]. However, our primary focus is not hybrid inflation

itself, but developing tools that can be used to understand the initial condi-

tions problems in generic models of multifield inflation. We use this model

because (a) it is the prototypical multifield model with chaotic dynamics and

a narrowly defined inflationary attractor; (b) we are primarily interested in

the onset of inflation; and (c) to make contact with previous work.

3Although see Refs [120,121].
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The pre-inflationary universe is dissipative, so the fractal structure must

have a nontrivial scale dependence: there is necessarily a minimum scale below

which two nearby trajectories will remain correlated until they reach either the

inflationary attractor or a minimum of the potential, smoothing SE below this

scale. Conversely, while we assume classical homogeneity, quantum fluctua-

tions prevent the universe from being perfectly smooth. If SE has structure on

scales smaller than a typical fluctuation we cannot sensibly define the homo-

geneous limit for this system. Consequently, we propose a sampling technique

that identifies regions where SE has structure below this minimum scale.

This chapter is arranged as follows: in Section 3.3 we review hybrid in-

flation and discuss its dynamics. In Section 4.5 we describe our numerical

methods, characterize the properties of the set of inflationary trajectories with

different energies and priors PE, and investigate the fractal dimension of SE.

In Section 4.6 we discuss the implication of our results and identify future lines

of enquiry.

3.3 Inflationary dynamics

For simplicity we consider two homogeneous scalar fields, ψ and the inflaton

φ, interacting through a potential V (ψ,φ) in a homogeneous FLRW universe.

The equations of motion are

φ̈ + 3Hφ̇ + ∂V
∂φ

= 0 and ψ̈ + 3Hψ̇ + ∂V
∂ψ

= 0, (3.3)

and the Hubble parameter H can be eliminated by the 0-0 Einstein equation

H2 = 8π

3M2
Pl

[1

2
φ̇2 + 1

2
ψ̇2 + V (ψ,φ)] , (3.4)
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where MPl is the Planck mass. Following Refs [21, 22, 107–112] we consider

hybrid inflation [81,82,119] with the potential

V (ψ,φ) = Λ4 [(1 − ψ2

M2
)

2

+ φ
2

µ2
+ φ

2ψ2

ν4
] , (3.5)

with real parameters Λ, M , µ, and ν. Inflation occurs in the “inflationary

valley" with ψ ≈ 0 and ∣φ∣ > φc, where φc =
√

2ν2/M is the critical point at

which the effective mass of ψ becomes complex and inflation comes to an end.

The potential is symmetric under φ → −φ and ψ → −ψ, with two equivalent

valleys for φ > φc and φ < −φc and minima at {ψ,φ} = {±M,0}. Orbits

will either enter one of the false-vacuum inflationary valleys or evolve directly

toward one of the true vacua.

We set the amplitude As of the dimensionless power spectrum PR to be

roughly compatible with the WMAP9 data [123,124], which fixes the potential

energy scale. This results in

As ≈
1

24π2M4
Pl

( V
εV

) = (2.43 ± 0.08) × 10−9, (3.6)

where εV = (M2
Pl/2)(V,φ/V )2 is the slow-roll parameter. Setting M = .03MPl,

µ = 500MPl, and ν = .015MPl and assuming perturbations are generated when

ψ ≈ 0 and φ ≈ φc, we derive Λ ≈ 6.8 × 10−6MPl.4 Lastly, Ref. [126] deter-

mined that quantum fluctuations dominate the classical field evolution in the

inflationary valley when

Λ > Λq ≡ 4π
√

3M3
Pl

φc
µ2
. (3.7)

For our parameters Λq = 9.6 × 10−4MPl, so the classical equations are self-

consistent.
4The super-Planckian value of µ is an artifact of this definition of the potential; the actual

mass term is m2
φ = 2Λ4/µ2 ≈ 10−26M2

Pl, and safely sub-Planckian.
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Figure 3.1: Distribution of successfully inflating initial conditions drawn from the

zero-velocity slice Z. White areas have the highest number of successful points;

darker regions have the fewest. This plot matches Fig. (1) of Ref. [22], with M =

.03MPl, µ = 636MPl, and ν = .0173MPl. The figures are similar (verifying our

codes and algorithms) but are not expected to be identical, due to different binning

procedures.
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The inflationary valley is a small subset of the total phase space, which

might suggest the model has a fine-tuning problem. References [108, 110, 111]

considered sub-Planckian initial field values on the zero-velocity surface Z,

pessimistically concluding that — in the absence of effects that increase the

friction experienced by the fields — only trajectories which start inside the

inflationary valley yield 60 e-folds of inflation. By contrast, Ref. [109] was

more optimistic, showing that a supergravity-inspired hybrid inflation model

has a significant number of “successful” points outside the inflationary valley.

With more exhaustive sampling of Z, subsequent studies by Clesse, Ringeval,

and Rocher [22,112] extended this optimistic conclusion to the potential (4.4).

They showed that successful initial conditions are distributed in an intricate

series of patches and fine lines outside the inflationary valley, with a fractal

boundary separating inflating and non-inflating initial conditions. The distri-

bution of successfully inflating initial conditions on Z, for a specific scenario

from Ref. [22], is reproduced in Fig. 3.1. The fine-tuning problem may also be

less serious if the initial field values are assumed to be super-Planckian or if

the interaction term dominates [112,127].

References [22, 120] also present a Markov Chain Monte Carlo (MCMC)

sampling of all possible parameter choices and sub-Planckian field configura-

tions, including those with initial velocities. The conclusion was that 60 e-folds

of inflation is generic for the potential in Eq. (4.4) and fine-tuned initial condi-

tions in the inflationary valley are not required. Although we have argued that

sampling from any two-dimensional subspace, such as Z, is of limited benefit,

sampling the whole four-dimensional space I may not be strictly necessary,

even though an MCMC technique marginalizes the unknown initial energy E.

We instead choose to explore how fine-tuned the initial conditions must be

when sampling from constraint surfaces CE that incorporate the energy con-
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straint Eq. (3.1).

3.4 Numerical results

3.4.1 Method

We numerically integrate Eqs (3.3)–(4.4) using a backward-difference formula

implemented by the Fcvode package from the Sundials computing suite

[128]. We sample initial conditions from constraint surfaces CE with constant

energy density

ρ = 1

2
ψ̇2

0 +
1

2
φ̇2

0 + V (ψ0, φ0) = E4, (3.8)

where

E = 10iMPl for i ∈ {−5, . . . ,0}. (3.9)

The last 60 e-folds of inflation occur at {ψ,φ} ≈ {0, φc} with E ∼ 10−6MPl.

With E = 100MPl we are at the limit of classical Einstein gravity; we only

include this case to illustrate the underlying dynamical system.

We stop integrating when either (a) the orbit achieves more than 60 e-folds

during inflation or (b) ρ < Λ4 and the trajectory is trapped by the potential

wells at {ψ,φ} = {±M,0}. Initial conditions which lead to 60 e-folds of inflation

are “successful” and define the subset SE, while its complement — the “failed”

points — comprise the subset FE.5 The boundary between these sets, whose

properties determine the extent to which they “mix,” is denoted BE.

We select points randomly on the constraint surface as follows. We first

draw φ0 and ψ0 from the uniform distribution over 0 ≤ {ψ0, φ0} ≤ .2MPl, ex-

cluding any choices with V (φ0, ψ0) > E4. The symmetry of the potential (4.4)

5Again, additional constraints can be added, e.g. data matching for ns, r, or other

observables.
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allows the restriction to positive field values, whereas the upper bound is set to

be consistent with Ref. [22]. Given these initial field values, the kinetic energy

is typically dominant unless E ≈ Λ ∼ 10−6 MPl. We apportion the remaining

energy by drawing one of v1 ∈ {φ̇0, ψ̇0} from a uniform prior on the range

−
√

2(E4 − V0) ≤ v1 ≤
√

2(E4 − V0) (3.10)

and giving the leftover energy to the other field velocity v2 with the overall

sign again chosen randomly. We maintain the symmetry between φ̇0 and ψ̇0

by alternating the order in which these velocity terms are set.6 This procedure

implicitly defines the initial priors Porig on the constraint surfaces CE.

To estimate the size of inhomogeneous fluctuations at the initial energy E,

we note that δφ ∼H/2π and H ∼ E2/MPl for a massless field in de Sitter space.

Similarly, the minimal variation in velocities is expected to be of order H2

across a Hubble volume [126,129,130]. The fields ψ and φ are not massless and

the pre-inflationary universe is not de Sitter, but we can use this relationship

to put an approximate lower bound on the homogeneity of the primordial

universe. In regions of SE whose typical scale in any phase space dimension is

less than

∆ ≡ {δψ0, δφ0, δψ̇0, δφ̇0} =
1

2π
{H,H,H2,H2} (3.11)

the homogeneous approximation breaks down and further analysis is invalid

or ambiguous. If we smooth the universe on scales larger than the Hubble

horizon, then ∆ indicates a 1σ fluctuation from the fiducial initial value in

phase space, if we assume a white noise spectrum. If a successfully inflating

point is within ∆ of an unsuccessful point, then there is significant ambiguity in

6This prior generates the high tails in the velocity distributions seen in Fig. 3.6. If the

first velocity chosen is v1, the second will be v2 = ±
√

2(E4 − V0) − v2
1 . Since v1 is uniformly

distributed, v2 is a quadratic distribution, favoring higher values.
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the final state due to this estimate of the initial inhomogeneity. Physically, in

these regions we cannot self-consistently assume that the primordial universe

is homogeneous.

We exclude these regions from SE by sampling CE in clusters. We first

choose points from CE and integrate Eqs (3.3)–(4.4). At each point that suc-

cessfully inflates we randomly draw 100 points within ∆ of that point.7 If any

of these new points do not inflate, we conclude that the original point was a

“false” (or perhaps ambiguous) positive. Applying this simple stability check

at various other points along the trajectory’s evolution is straightforward, but

computationally expensive. Furthermore, the largest fluctuations occur at the

highest energies, so testing the initial energy surface captures the most relevant

effects. Although this approach incorporates points lying near (but not actu-

ally on) our designated equal energy surface, we do not weight our conclusions

by these secondary points.

This analysis does not address the inhomogeneous initial conditions prob-

lem; it simply limits the extent to which the initial conditions can be self-

consistently fine-tuned in a homogeneous universe, given that the chaotic dy-

namics of the potential may cause closely correlated trajectories to diverge ex-

ponentially. Fig. 3.2 shows three solutions of Eqs (3.3)–(4.4), at E = 10−5MPl

with initial field values which differ by only 10−8MPl. They eventually diverge,

with each trajectory reaching a distinct end-state. If an inflation model has

a fractal SE or BE that is distributed in a complex manner over CE, then al-

most all successfully inflating initial conditions may be within ∆ of an initial

condition which does not inflate.

7For the lowest values of E, {δψ0/ψmax, δφ0/φmax, δψ̇0/ψ̇max, δφ̇0/φ̇max} ∼ 10−10, which is

far below the resolution of our figures. We confirmed the accuracy of the Fcvode integrator

in this domain by using an arbitrary precision integrator from Mathematica.
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Figure 3.2: Parametric trajectory plots for three orbits at energy E = 10−5MPl

initially separated by 10−8MPl in the field values and 10−8M2
Pl in the field velocities.

These orbits are exponentially diverging, with each of the three trajectories branching

at t ≈ 3600M−1
Pl ; one goes to each of the global minima at ψ = ±M and one inflates.

3.4.2 Successful inflationary trajectories

The fraction of successful points at any given energy E is summarized in Ta-

ble 3.2, both including and excluding the “false positives.” The highest prob-

ability for success is at higher energies. We should expect this since, given

that the effective equation of state is not the same on all trajectories, orbits

accumulate on the narrow inflationary attractor over time, leaving a larger flux

of orbits through the attractor at lower energies. In comparison to a sample

drawn from CE, an identical sample from a slice CE′ with E > E′ will not place

as much weight on trajectories inside the inflationary attractor and we expect

to see fewer successfully inflating initial conditions on the lower energy surface.

Figures 3.3 to 3.5 show two dimensional slices of SE at different values
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Figure 3.3: Two dimensional slicings of CE for E = 10−2MPl, including the ambigu-

ous, “false positive” points in SE . Parameters are Λ = 6.8 × 10−6MPl, M = .03MPl,

µ = 500MPl, and ν = .015MPl. The light and dark areas are regions that have a

higher and lower density of points in SE , respectively. The results have been binned

over a 1000×1000 grid. All velocities are of equal magnitude, however the left column

has φ̇ > 0, the right column is at φ̇ < 0, the top row has ψ̇ > 0, and the bottom row

has ψ̇ < 0.
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Figure 3.4: Two dimensional slicings of CE for E = 10−2MPl, excluding any ambigu-

ous or “false” positives from the set of successfully inflating initial conditions, SE .

All velocities are of equal magnitude; the left panel has ψ̇0 < 0 and φ̇0 > 0; and the

right panel has {ψ̇0, φ̇0} < 0.
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Figure 3.5: Two dimensional slicings of CE for E = 10−5MPl, where the checked

background has V (ψ0, φ0) > E4 and has not been sampled. All velocities are of

equal magnitude; the left panel has {ψ̇0, φ̇0} > 0 and the right panel has {ψ̇0, φ̇0} < 0.
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E [MPl] nsucc [M] ntotal [M] nfalse [k] ftrue ftotal

100 0.00 2.01 1000.0 0.000 0.498

10−1 1.00 2.24 72.7 0.447 0.479

10−2 1.00 2.57 114.6 0.389 0.434

10−3 1.00 3.34 105.9 0.300 0.331

10−4 1.00 4.89 30.4 0.205 0.211

†10−5 1.00 4.45 0.012 0.225 0.225

Table 3.2: Total fraction of successfully inflating points sampled from priors Porig

on the equal energy slices CE — both excluding (ftrue) and including (ftotal) false

positives from SE . Also shown are the number of successful points nsucc, the number

of false positives nfalse, and the combined number of fail points, false positives, and

successful points ntotal. The numbers nsucc and ntotal are measured in millions [M]

of points, nfalse is measured in thousands [k] of points, and the energy E is in units

of the Planck mass MPl. (†) The sampling procedure deviates from an “equal-area”

sample as E → Λ.

of E. We bin SE on a 1000 × 1000 grid: white regions are those with the

highest number of successful points and the darkest regions have the fewest. We

accumulated 2.5 million successful points on each slice and see minor stochastic

variation in the number of points per bin. Figures 3.3, 3.4 (E = 10−2MPl),

and 3.5 (E = 10−5MPl) show two-dimensional slices of CE on which the initial

velocities have equal magnitude ∣φ̇0∣ = ∣ψ̇0∣. Looking at Figs 3.3 through 3.5 we

can see areas where SE and FE mix together, forming an intricate substructure

similar to that seen in Refs [22,112]. In Fig. 3.4 we also see contiguous regions

and thick bands which reliably inflate and survive the subtraction of the false

positives from SE. Qualitatively, SE exhibits considerable long range order
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when compared to Fig. 3.1. At higher energy, contiguous regions in SE occupy

a larger portion of CE, which can be seen clearly in Figs 3.3 and 3.4. The

transition from Figs 3.3 to 3.5 shows how the geometry of SE changes with E.

Figures 3.3 to 3.5 are projections of three dimensional regions and suppress

information about the field velocities of the successful initial configurations.

Intuitively, the points most likely to inflate (for given φ0 and ψ0) would be those

which had a large ∣φ̇0∣ and small ∣ψ̇0∣. These points are essentially “launched”

up the inflationary valley, while the slope of the potential focuses them toward

smaller values of ψ. To show this dependence on the initial values φ̇0 and

ψ̇0, Fig. 3.6 shows histograms of these values sampled from the whole of CE.

The fraction of sampled points in SE as a function of initial velocity confirms

our intuition: most successful points have larger ∣φ̇0∣ and smaller ∣ψ̇0∣. Points

for which φ̇0 ≈ 0 are particularly disfavored, further suggesting that the zero-

velocity slice Z is unrepresentative of typical inflationary trajectories. We

can also see the impact of the “false positives” in these plots: these are more

frequent at high energies and in the limiting case E =MPl all naïvely-inflating

initial conditions are false positives, since ∆ encompasses the whole of I in

this limit.

With sub-Planckian initial field values the kinetic energy dominates the

potential energy for E ≫ Λ. Thus, even if a trajectory starts inside the in-

flationary valley, its velocity is such that it is unlikely to remain there. For

example, when E = 10−2MPl the slices of SE in Figs 3.3 and 3.4 show no special

preference for points within the valley. In contrast, with E = 10−5MPl ∼ 10Λ

the valley is clearly distinguishable, as shown in Fig. 3.5, but only when the

initial velocity of φ is directed “uphill,” i.e. with φ̇0 ≥ 0. Conversely, each slice

contains many successful points that lie outside the inflationary valley.

In Fig. 3.7 we project specific representative solutions of Eqs (3.3)–(4.4)
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Figure 3.6: Histograms of φ̇0 (left column) and ψ̇0 (right column) drawn from equal

energy surfaces CE with priors Porig. The rows have energy 10−1MPl (top), 10−3MPl

(middle), and 10−5MPl (bottom). The gray background is the total sample from CE

and the blue foreground is the successful subset SE . At E = MPl (not displayed),

there are false positives only.
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Figure 3.7: Successfully inflating trajectories projected onto the {ψ,φ} plane, with

initial conditions {ψ0, φ0} marked in red. The left panel is at energy E = 10−2MPl

and the right panel is at energy E = 10−4MPl. The gray, checked region is where the

magnitude of the field values exceeds MPl.

onto the {ψ,φ} plane for initial conditions with energies E = 10−2MPl and

E = 10−4MPl. Trajectories which unambiguously inflate show little topological

mixing and are all reflected off of the maximum of the potential Vmax = V ∣ψ=φ
toward the inflationary valley. For E ≳ 10−3MPl, most trajectories contain

regions in which the field values are super-Planckian. We do not exclude

these trajectories, but we could easily add this as a separate requirement for

a viable inflationary scenario, in which case almost no successful inflationary

trajectories exist at these energies.

To quantify the sensitive dependence on initial conditions independently

of our sampling procedure, we use the box-counting method to estimate the

fractal dimension of both SE and its boundary BE, including the “false” pos-

itives [131]. We first cover each set SE and BE with progressively smaller

four-dimensional boxes of size δ, then count the number N(δ) of δ-sized boxes
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Figure 3.8: The left panel shows the box counting of BE for E = 10−2MPl. The slope

of the best-fit line d = 2.558 is the box counting dimension. The right panel is the

box counting dimension d versus the energy E for sets SE and BE at the energies in

Eq. (3.9). The red line with boxes indicates SE and the blue line with circles is BE .

in each covering. The box-counting dimension

d = lim
δ→0

log(N(δ))
log(1/δ)

(3.12)

is estimated by the slope of the line fitted to the linear portion of the curve

log(N) as a function of log(1/δ). To compute the dimension of BE we count

boxes that contain elements of both SE and FE. Figure 3.8 shows both a

typical fit (for BE with E = 10−2MPl) and the computed values of d for SE and

BE. The result is sensitive to the detailed fitting procedure, which we trained

by testing the algorithm on sets with known dimension, such as Cantor dust.

Furthermore, the estimate for d depends both on the non-trivial distribution

of SE over CE and the resolution of sampled points, which is a function of

the initial energy and sampling prior. The reported values of d should be

interpreted as an upper bound to the related Hausdorff dimension [131] that

improves with increasing E, where the set SE has higher long-range order. The

Hausdorff dimension and the box-counting dimension coincide for cases where

the fractal is exactly self-similar.

The regions considered here are multifractal, in that the dimension of SE
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will be a function of both position in I and the overall scale. The first is easy

to see: each surface CE contains regions in which essentially all points inflate

(in these regions d ≈ 3) and regions that are approximately isolated points

(with d < 3). Consequently, the computed value of d is effectively a weighted

average of at least two different regions, which explains why the dimension

of SE is close to 3 but still measurably non-integer. Secondly, at very small

scales SE must consist of smooth contiguous regions and on these scales we

expect d → 3. These regions exist in spite of the chaotic dynamics due to the

dissipative terms in Eqs (3.3)–(4.4) and put a lower limit on the mixing scale.

3.4.3 The role of the prior

It is well-known [114–118, 127, 132] that probability measures on different hy-

persurfaces result in different conclusions regarding the likelihood of inflation;

we explore here how this relates to the choice of sampling prior. Although

surfaces with different energies (as well as different initial conditions surfaces,

such as a slice of constant comoving time) are homeomorphic to CE and, by

definition, have the same topology, the prior on CE is not a topological property

and is not preserved under either homeomorphism or a change of variables.8

Each initial condition surface then has a different prior and different likelihood

for inflation, even given the same sampling technique.

In Table 3.3 we compare different uninformative priors, defined implicitly

through four sampling algorithms, on surfaces CE at the energies in Eq. (3.9).

Since the kinetic energy is initially dominant for the energies and ranges we con-

sider, we leave the selection method for {ψ0, φ0} the same as in Section 3.4.1,

but vary the way we set the velocities v ∈ {ψ̇0, φ̇0}. The original prior Porig

8A homeomorphism is provided by time-translation along the integral curves of the equa-

tions of motion. Note that Z, being of a lower dimension, is not homeomorphic to CE .
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— Porig Psquare Pφ̇ Pψ̇

E [MPl] ftrue ftotal ftrue ftotal ftrue ftotal ftrue ftotal

100 0.000 0.498 0.000 0.497 0.000 0.704 0.000 0.294

10−1 0.447 0.479 0.426 0.471 0.651 0.681 0.243 0.276

10−2 0.389 0.434 0.347 0.408 0.582 0.624 0.196 0.242

10−3 0.300 0.331 0.245 0.285 0.438 0.469 0.162 0.194

10−4 0.205 0.211 0.188 0.195 0.247 0.253 0.163 0.169

10−5 0.225 0.225 0.215 0.215 0.265 0.265 0.183 0.183

Table 3.3: Fraction f of sampled points from CE that inflate — both excluding (true)

and including (total) false positives. The sampling techniques (Porig, Psquare, Pφ̇, and

Pψ̇) are explained in the text. Excluding the ambiguous or false positive cases only

significantly affects the success probability for E ≳ 10−1MPl.

draws one velocity v1 from a uniform distribution, bounded by ±
√

2(E4 − V0),

and then sets v2 by the energy constraint (3.8). All signs are chosen randomly

and this procedure is alternated on subsequent choices of points to obtain a

symmetric distribution in the velocities. The second prior Psquare is similar, ex-

cept we draw the square of the velocity v2
1 from a uniform distribution bounded

below by zero and above by 2(E4 − V0), with the sign of v1 chosen randomly.

Again, we alternate this to obtain a symmetric distribution. With this modest

change in prior, the calculated fraction ftrue of CE that inflates (excluding false

positives) differs by only a few percent, with Psquare giving a slightly lower

fraction at each energy. The fraction ftrue again decreases with decreasing E.

We compare this to two priors Pφ̇ and Pψ̇ that are asymmetric in the

velocities. For Pφ̇ we always draw ψ̇0 from a uniform distribution bounded
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by ±
√

2(E4 − V0) and always set φ̇0 by the energy constraint. For Pψ̇ we

do the opposite: draw φ̇0 and set ψ̇0. This gives a uniform distribution in

the sampled velocity v1, but a high-tail distribution similar to Fig. 3.6 in

the velocity v2. The prior Pφ̇ focuses more of the sample around ψ̇0 ≈ 0,

the area identified as being most-likely to inflate, and Pψ̇ gives more points

around φ̇0 ≈ 0, the area least-likely to inflate. At E = MPl the difference in

ftotal (including false positives) between the asymmetric priors is as much as

41.0 percentage points. The differences decrease with decreasing E, indicating

that later-time hypersurfaces become progressively independent of the prior.

However, Table 3.3 demonstrates how any measure of f is prior-dependent,

especially with respect to the implicit dependence of the prior on the initial

energy.

3.5 Conclusion

We have considered the initial conditions problem for multifield inflation, quan-

tifying the likelihood of inflation by sampling an initial conditions surface,

evolving the points numerically, and dividing them into successfully and un-

successfully inflating sets. We draw initial conditions from an equal energy

slice of phase space, denoted CE, the maximum energy at which the underly-

ing theory is assumed to be an accurate description of the primordial universe.

Since FLRW universes have a monotonic energy density, sampling initial con-

ditions from CE ensures that we count only unique solutions to the equations of

motion. A sample of points from CE is thus a well-defined sample of homoge-

neous universes. Typically, we cannot predict the flux of orbits through CE and

must choose a prior, accordingly. We considered four different uninformative

priors on CE and showed that the likelihood of inflation varies by as much as
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a factor of roughly two between candidate priors. However, one can imagine

scenarios where the prior dependence was much more dramatic.

After specializing to hybrid inflation we examined the topology of the set of

successful points SE, which is independent of continuous deformations to the

prior. We confirm that both SE and the boundary between the successful and

unsuccessful points is fractal for all sampled energies. The structure of SE, as

seen in Figs 3.3 to 3.5, is qualitatively smoother than when initial conditions

are chosen from the zero-velocity slice shown in Fig. 3.1. Further, since the

equations of motion (3.3)–(4.4) are dissipative, there must be a small-scale

cutoff to any fractal structure. However, quantum corrections to the classical

analysis presented here will generate inhomogeneities in the resulting semi-

classical picture, which would depend on the detailed behavior of the pre-

inflationary state. This puts a fundamental lower limit on the homogeneity

of the early universe: if SE has structure below this scale, the assumption of

homogeneity is not self-consistent. Fluctuations are larger at higher energies

and above some critical energy E the number of viable, homogeneous scenarios

is vanishingly small, even though the naïve counting statistic suggests that a

nontrivial fraction of the initial conditions space is inflationary.

Our specific calculations are performed for the hybrid potential (4.4), but

our underlying goal is to develop tools that can be applied to the initial condi-

tions problem associated with generic multifield scenarios. Recent progress has

been made by studying both random multifield models [133–138] and inflection

point models [132, 138–142]. These approaches yield contrasting conclusions

regarding the distribution of inflationary trajectories; applying the methods

developed here to these models will be an interesting extension of this work.

This analysis assumes that the universe is initially spatially flat and ho-

mogeneous, but even if inflation begins without tuning in the homogeneous
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limit there is no guarantee that this result will survive the addition of pre-

inflationary inhomogeneities. Inhomogeneous pre-inflationary configurations

were examined by Goldwirth and Piran [143–145], who showed that single-

field chaotic inflation and new inflation [3,4] remain robust in the presence of

nontrivial inhomogeneity, provided that the initial field value is approximately

correlated over several Hubble radii. We examine this question with lattice

PDE techniques in Chapter 4.
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Inflating an Inhomogeneous Universe

This chapter is adapted from:

R. Easther, L. C. Price, and J. Rasero,

Inflating an Inhomogeneous Universe

JCAP 1408 (2014) 041, [146]

Copyright (2014) by the Institute of Physics

4.1 Abstract

While cosmological inflation can erase primordial inhomogeneities, it is pos-

sible that inflation may not begin in a significantly inhomogeneous universe.

This issue is particularly pressing in multifield scenarios, where even the ho-

mogeneous dynamics may depend sensitively on the initial configuration. This

chapter presents an initial survey of the onset of inflation in multifield models,

via qualitative lattice-based simulations that do not include local gravitational

backreaction. Using hybrid inflation as a test model, our results suggest that

small subhorizon inhomogeneities do play a key role in determining whether in-

flation begins in multifield scenarios. Interestingly, some configurations which

do not inflate in the homogeneous limit “succeed” after inhomogeneity is in-

cluded, while other initial configurations which inflate in the homogeneous

limit “fail” when inhomogeneity is added.

83
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4.2 Introduction

The key predictions of inflation are strongly supported by observations of both

large-scale structure [147–150] and the cosmic microwave background, e.g.,

WMAP9 [123, 124], ACT [125], SPT [122, 151], and Planck [17, 152]. While

inflation can ameliorate fine-tunings associated with the hot Big Bang, this

presupposes that the inflationary mechanism does not itself rely on fine-tuned

fundamental parameters.1 In particular, if inflation can only begin from a

narrow range of possible configurations of the pre-inflationary universe, then

the fine-tuning problems of the standard Big Bang have not been solved.

Despite its importance, the inflationary initial conditions problem has re-

ceived relatively little attention. In some cases (e.g., new inflation [3, 4, 157])

the initial conditions must be tuned in the purely homogeneous limit, but

a complete treatment of the issue involves the fully inhomogeneous Einstein

equations. This problem has been addressed for single-field inflation, with

the conclusion that approximate homogeneity is needed over a volume of a

few Hubble radii for chaotic inflation [144, 145], whereas new inflation has an

inflationary attractor [158–161]. However, the inhomogeneous dynamics of

multifield inflation are almost entirely unexplored. Multifield inflation mod-

els have rich dynamics and are motivated from high-energy theory [162–165],

making them relevant for studies of inflationary initial conditions.

We take the first step toward analysing this topic by performing lattice sim-

ulations of the pre-inflationary period for two-field hybrid inflation [81,82,119].

This is a qualitative exploration, as our results are based on solutions of the

inhomogeneous scalar field dynamics in a homogeneous, expanding spacetime,

ignoring both local gravitational backreaction and non-zero spatial curvature.

1For a recent discussion of these problems see Refs [153–156].



85

By ignoring inhomogeneities in the metric we are making the same assumptions

that underpin a vast number of numerical studies of inflationary preheating.

We focus on initial configurations which represent small perturbations to a

homogeneous background, as the small initial field gradients ensure that our

analysis is self-consistent. Furthermore, this approach allows us to take ad-

vantage of the mature numerical tools that have been developed to analyze

preheating [166–168]. Consequently, while this project represents a significant

advance on previous studies of the initial conditions problem for multifield in-

flation, all of which have been performed in the purely homogeneous limit, it

also paves the way for analyses based on full numerical relativity.2

The chaotic nature of the homogeneous limit of multifield inflation (as in-

vestigated in Ref. [21] and Chapter 3) means adjacent trajectories in phase

space are highly divergent, but as field gradients contribute to the energy den-

sity, field values at nearby spatial points cannot diverge by arbitrary amounts.

This effect potentially “focusses” trajectories relative to the homogeneous limit,

and our lattice-based simulations let us explore the role of the gradient energy

in the inhomogeneous evolution of this system. Using Monte Carlo explorations

of the initial conditions space, we confirm that the qualitative consequences of

the chaotic dynamics, especially phase-space mixing, persist when moderate-

to-large inhomogeneity is added. However, for many initial configurations

the inflationary outcome is not changed by the addition of small amplitude

inhomogeneities, demonstrating the focussing effect. Moreover, while many

initial conditions that “succeed” in the homogeneous limit do “fail” when in-

2Numerical solvers for the single field Einstein-Klein-Gordon equation in three dimensions

are described by [144, 145, 169], and there has been recent progress in simulations of highly

inhomogenous bubble collisions for single field systems in one dimension [170,171] but three

dimensional, multifield scenarios with significant inhomogeneity are beyond the scope of

currently available numerical tools.
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homogeneity is included, we also see initial configurations which “fail” in the

homogeneous limit that successfully inflate when inhomogeneity is included.

4.3 Model

We consider hybrid inflation [81, 82] with two inhomogeneous scalar fields φ

and ψ, in a flat FLRW universe with equations of motion

φ̈i + 3Hφ̇i −
1

a2
∇2φi +

∂V

∂φi
= 0 , (4.1)

where a is the scale factor, H = ȧ/a is the Hubble parameter, and a subscript

i denotes the components of the vector {φ,ψ}. The inhomogeneous energy

density is

ρ(t,x) = 1

2
∑
i

[φ̇2
i +

(∇φi)2

a2
] + V (φi), (4.2)

the pressure is

p(t,x) = 1

2
∑
i

[φ̇2
i −

1

3

(∇φi)2

a2
] − V (φi), (4.3)

and a evolves according to the Einstein equations. In general, the metric is

spatially dependent, but we set a = ⟨a(t,x)⟩ and H2 = ⟨ρ(t,x)⟩ /3, where ⟨.⟩

indicates an integrated spatial average, which is an accurate approximation

when the fields’ variance is small. Relaxing this assumption would require a

full numerical treatment of the Einstein equations.

The generic hybrid inflation potential V has the form

V (φ,ψ) = Λ4 [(1 − ψ2

M2
)

2

+U(φ) + φ
2ψ2

ν4
] , (4.4)

where U(φ) drives a sustained period of slow-roll inflation in the “inflationary

valley” at ψ ≈ 0, but is otherwise subdominant. A graceful exit from inflation

occurs when the effective mass of the waterfall field m2
eff,ψ ≡ Λ4(φ2/ν4 − 2/M2)

becomes imaginary.
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Parameter Λ M µ ν

Value [MPl] 6.8×10−6 0.03 500.0 0.015

Table 4.1: Parameter values for the potential in Eqs (4.4) and (4.5). The overall

energy scale is set by Λ, but the background dynamics are not affected by this

choice.

We work with

U(φ) = φ
2

µ2
, (4.5)

although the Planck results [152] rule out slow-roll inflation with this form

of U(φ), since it predicts ns > 1. However, the exact form of U(φ) is likely

to have little impact on the initial conditions problem since, by hypothesis, it

only dominates the potential in a small portion of field space and the multifield

dynamics for this scenario are well-studied in Refs [22,107–112] and Chapter 3.

We use hybrid inflation as a toy model to illustrate the interesting multifield

dynamics resulting from the interaction between the dynamical fixed points

at ψ = {0,±M} and the tachyonic instability points φcrit = ±
√

2ν2/M . We

note that a red scalar spectrum can be achieved through other choices of U(φ)

[172,173], as does inflation during the waterfall transition [112,120,121,174].

The numerical parameters used in our simulations are listed in Table 4.1.

The background dynamics are independent of the value of Λ, but we choose Λ =

6.8 × 10−6MPl to match the measured amplitude of the scalar power spectrum

[152]. The onset of inflation in this model has been thoroughly investigated in

the homogeneous limit (e.g., Refs [22,107–112] and Chapter 3) and surveys of

initial conditions that consider both the initial velocities and field values [22,

105, 112] find that hybrid inflation scenario begins for a significant fraction of

initial configurations. However, the chaotic nature of the underlying dynamics
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ensures that the set of successful initial conditions is fractal.

4.4 Numerical methods

Equations: We solve the equations of motion (4.1) using LatticeEasy3

[166] and assuming periodic boundary conditions φi(t,x) = φi(t,x −L), where

L is the length of the spatial box defined by the simulation. On a lattice, the

Fourier transforms can be expressed as a finite series

φi(t,x) = ∫
d3k

(2π)3
φ̂i,k(t)e2πik⋅x → 1

L3∑
k

φ̂i,k(t)e2πik⋅x . (4.6)

We specify initial conditions in Fourier space, through φ̂i,k(0) and its time

derivatives ∂tφ̂i,k(0). In order to sample a large number of initial configura-

tions, we restrict the inhomogeneity to one spatial direction, effectively assum-

ing a translational symmetry in the orthogonal directions. We allow a small

initial velocity in the 0th mode, but set ∂tφ̂i,k>0 = 0.

Inhomogeneous Tµν: With a single excited mode, the initial field configu-

ration is

φi(0, x) = φ̄i,0 [1 +A sin(2πnx

L
)] . (4.7)

Periodic boundary conditions require the lattice-size to be a multiple of the

wavelength k = n/L for some integer n. Without loss of generality, we can set

the boxsize L to the wavelength of the largest mode we excite, given our choice

of periodic boundary conditions, and define nlargest ≡ 1.

We further assume that A ≲ 1 to keep the backreaction on the scale factor

initially small and maintain the self-consistency of Eq. (4.1). The average

3www.felderbooks.com/latticeeasy/

www.felderbooks.com/latticeeasy/
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initial energy density is

⟨ρ0⟩ =
1

2
∑
i

φ̇2
i + ⟨V (φi)⟩ +∑

i

(
nπAφ̄i,0
a0L

)
2

(4.8)

and the initial average gradient energy density is suppressed by (nA/L)2. Like-

wise, the relevant contribution of the inhomogeneity to the trace and traceless

parts of the stress tensor are proportional to the square of the field gradient

and are also suppressed by this factor at the start of the simulation. The

momentum density is

Jj = −∑
i

φ̇i∂jφi, (4.9)

which we keep small initially by considering only small initial velocities in the

0th mode, combined with a small value for nA/L. However, the spatial average

of Jj over the simulation volume is strictly zero when the fields have the form

in Eq. (4.7).

As the simulation progresses we do not require that the components of the

energy-momentum tensor to remain small, but only require that a and H are

well approximated by their spatial average. To ensure that the inhomogeneous

contributions to the stress-energy tensor do not induce a large backreaction on

the subsequent evolution, we require that each field’s variance

Vari ≡ ⟨φ2
i ⟩ − ⟨φi⟩2 (4.10)

remains small throughout the simulation, since large values would require a

more sophisticated analysis involving solutions of the full Einstein field equa-

tions. Solutions for which the variance exceeds Vari ≳ 10−2 MPl
2 are dropped

from our analyses, but in practice, almost none of the configurations we con-

sider generate variances that cross this threshold, as the overall simulation

time is relatively short.
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Initial inhomogeneity: We parametrize the initial inhomogeneity associ-

ated with a mode of wavenumber k using f , the ratio of its wavelength λ to

the initial Hubble radius in the homogeneous limit:

f ≡ a0H̄0

k
, (4.11)

where a0 ≡ 1 is the initial scale factor and H̄0 is the initial Hubble parameter

in the homogeneous limit, i.e., using only φ̄i,0 and ∂tφ̄i,0. The initial horizon

size in the homogeneous limit is related to the size of the simulation box by

2πf = a0H̄0L. We consider only subhorizon perturbations with f ≲ 1 since

superhorizon inhomogeneities can be well modeled by a collection of homo-

geneous universes with different initial conditions, using the separate universe

assumption. Subhorizon inhomogeneities contribute only perturbatively to the

Newtonian potential, which further justifies ignoring metric inhomogeneities.

Assuming we start in an almost-FLRW universe, these small-scale inhomo-

geneities can contribute only an effective pressure term with w = 1/3 that

cannot contribute to exponential expansion [175].

Ending condition: We require Ne ≥ 55 e-folds of accelerated expansion

with ε < 1, although this limit is somewhat arbitrary as almost any specific

initial condition yields either Ne ≫ 55 or Ne ≪ 5. We follow previous analyses,

such as Refs [22, 112] and Chapter 3, by defining an initial configuration as

“successful” if it gives Ne > 55, and as a “failure” if it does not. In practice,

almost all of the e-folds occur in the inflationary valley when ψ ≈ 0, so we

halt our simulations once Ne > 5 and ⟨ψ⟩ ≈ 0, i.e., once the trajectory has

settled into the inflationary valley. Alternatively, we stop the integration if

ρ < V (0, φc) = 2Λ4ν4/M2µ2, since the trajectory cannot enter the inflationary

valley; these trajectories are by definition unsuccessful. In Section 4.5 we

compare our results for initial configurations with non-zero gradient energies
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to the homogeneous cases studied in Refs [22, 105, 108–112], which are in the

“homogeneous limit” with ∇φi,0 → 0.

4.5 Results

4.5.1 Single excited mode

We begin by examining two specific background initial conditions, ICsucc and

ICfail, which have different homogeneous dynamics. These correspond to choices

of initial conditions for which Ne > 55 and Ne < 5, respectively. The specific

choices are

ICsucc ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̄0,succ

φ̄0,succ

˙̄ψ0,succ

˙̄φ0,succ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.6405 × 10−3 MPl

2.7359 × 10−2 MPl

−1.0211 × 10−10 M2
Pl

1.6059 × 10−11 M2
Pl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.12)

ICfail ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̄0,fail

φ̄0,fail

˙̄ψ0,fail

˙̄φ0,fail

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0361 × 10−2 MPl

2.7497 × 10−2 MPl

−6.6330 × 10−11 M2
Pl

7.3672 × 10−11 M2
Pl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.13)

The combined initial kinetic and potential energy is E0 = 10−5MPl and quan-

tum fluctuations at this energy should have minimal impact on the end-state of

the background evolution, as studied in Chapter 3. By adding initial inhomo-

geneity to these background field values, we find that the amount of inflation

given by both of these trajectories can change drastically.

In Fig. 4.1 we plot the spatially averaged values of (φ,ψ) for a set of 10

configurations with background field values of ICfail. We perturb each configu-
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Figure 4.1: Spatially averaged solutions to Eq. (4.1) for ten initial conditions with the

same background field values ICfail, with a sinusoidal inhomogeneity, of amplitude

A and comoving wavelength λ/2π = f/a0H̄0, added in-phase to both fields. In the

homogeneous limit the background field values give Ne ≪ 55. The blue contours

show the potential energy density V . (Left) The initial fraction f is fixed and the

amplitude is varied between 10−0.5 < A < 1. (Right) The initial amplitude is fixed to

A = 1 and the fraction f is varied between 10−2 < f < 10−1.

ration by adding a sinusoidal inhomogeneity with equal phases (as in Eq. (4.7))

to both fields. All of the plotted solutions explore much of the field space and

most of the sampled trajectories are eventually captured in the inflationary

valley at ⟨ψ⟩ = 0; however, only some trajectories stay there and inflate suf-

ficiently. Interestingly, this demonstrates that subhorizon inhomogeneity can

actually cause inflation in scenarios that fail to inflate in the homogeneous

limit. Hybrid inflation has been shown to be chaotic, first in the H → 0 limit

in Ref. [21], then in the homogeneous limit in Refs [22, 112] and Chapter 3.

Since phase-space mixing is a characterisitic of chaos, this is the first indica-

tion that this behaviour extends to the inhomogeneous Klein-Gordon equation.

The non-linear dynamics of multifield inflation may therefore have a significant
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Figure 4.2: Distribution of independent initial conditions that succeed at generating

Ne > 55 e-folds of inflation, as a function of initial inhomogeneity. The background

field values ICfail are set so that in the homogeneous limit Ne ≪ 55. A sinusoidal

inhomogeneity, with amplitude A and comoving wavelength λ/2π = f/a0H̄0, has been

added, in-phase, to both fields. The initial energy E0 is indicated by color.

effect on whether inflation successfully begins with from an inhomogeneous

universe.

Since we are solving (1+1)-dimensional PDEs, the computational cost of

evaluating each configuration is not excessive and we are able to generate large

samples to test whether this behavior is generic. Figure 4.2 shows O(106)

Monte Carlo samples with background field values of ICfail. We again add a

sinusoidal inhomogeneity with logarithmic priors on the parameters, −2.0 <

log10 f < −1.2 and −1.0 < log10A < 0.0. Trajectories with lower initial gradient

energy than this do not deviate significantly from the homogeneous solution

and fail. The set of successful points has a fractal structure, similar to that seen
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Figure 4.3: Addition of sub-horizon inhomogeneity can turn failure ICs into suc-

cessful ICs. We add one sinusoidal inhomogeneity (left) in-phase and (right) with

a random phase difference to 50 randomly selected background ICs that fail in the

homogeneous limit. We find 38/50 and 39/50 change to “successful,” respectively,

with no noticeable correlations between them. (Background) Histogram of success-

fully inflating ICs (Ne ≫ 55) in the homogeneous limit, with the number of successful

points per bin Nsucc indicated by color.

with homogeneous hybrid inflation. Using the box-counting method defined

in Eq. (3.12) we are able to determine a fractal dimension of d = 1.27, d = 1.85,

and d = 1.25, for the set of points in Fig. 4.2 that are successful, unsuccessful,

and the boundary between the two, respectively. This is convincing evidence

that the dynamics remain chaotic in some regions of parameter space.

We also check that this behavior does not depend on the specific choice of

ICfail, by looking at scenarios with different background field values, and with

the perturbations in φ and ψ either in-phase or with an arbitrarily chosen phase

difference. The results of this investigation are presented in Fig. 4.3. We set

the initial field velocities to zero and draw the background initial conditions

from 0.10MPl < φ̄0, ψ̄0 < 0.15MPl. We then chose 50 configurations that fail

in the homogeneous limit and add sub-horizon inhomogeneity with arbitrary
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Figure 4.4: Spatially averaged solutions to the inhomogeneous Klein-Gordon equa-

tion for twenty initial conditions ICsucc, and varying initial gradient energy, pro-

vided by a sinusoidal inhomogeneity, with amplitude A and comoving wavelength

λ/2π = f/a0H̄0, in each field and with identical phase. The blue contours show the

potential energy density V . (Left) The initial inhomogeneous wavelength is fixed to

the initial Hubble scale f = 1 and the amplitude is varied between 10−3 < A < 1.

(Right) The initial amplitude is fixed A = 1 and the wavelength is varied between

10−2 < f < 1.

or zero phase differences between the modes in each field. In most cases we

find a mixture of inflationary and non-inflationary solutions at each point,

demonstrating the generality of this phenomenon.

Conversely, Fig. 4.4 displays the spatially averaged trajectories for initial

configurations with background field values of ICsucc with the in-phase sinu-

soidal perturbations. The spatially averaged field trajectories begin by follow-

ing the homogeneous trajectory and oscillating around the inflationary valley

at ⟨φ⟩ < −φcrit. For those configurations with initially small gradient energies,

accelerated expansion exponentially dampens the inhomogeneity, the trajec-

tory is captured in the inflationary valley, and successfully inflates. The suc-
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cessfully inflating trajectories in Fig. 4.4 are nearly indistinguishable from each

other and from the field-space trajectory of the homogeneous solution. With

larger gradient energies — obtained either by reducing the wavelength of the

perturbation relative to the horizon or increasing the amplitude A— the inho-

mogeneity can pull the spatially averaged trajectory out of the valley. These

trajectories then evolve more-or-less directly to the minimum of the potential

and will give at most a few e-folds during any transient inflationary phases.

Fig 4.5 gives the variance Vari for representative successful and unsuccessful

solutions with initial background field values of ICsucc. For the successful case,

the trajectory is captured by the false vacuum and oscillates around ⟨ψ⟩ = 0

with a frequency of 40 [oscillations/e-fold]. Since Varψ ∼ ⟨ψ⟩2 it therefore

oscillates at a frequency of 80 [oscillations/e-fold]. The variance in φ peaks

only once at Ne = 0.5 and remains below Varφ < 10−7 M2
Pl. In the failing

universe there is no extended period of oscillation around the false-vacuum

at ⟨ψ⟩ = 0, so the oscillations in Varψ have a much smaller frequency. After

Ne ≳ 0.5 the inhomogeneities in ψ start to grow substantially, destablising the

dynamics, and causing failure.

Figure 4.6 shows the results of a Monte Carlo sampling for ICsucc, analogous

to that in Figure 4.2, with one initially excited mode added in-phase to both ψ

and φ. We again use a logarithmic prior, but with the ranges: −2.0 < log10 f <

0.0 and −3.0 < log10A < 0.0. Adding perturbations to ICsucc with initially

small gradient energies does not cause the spatially averaged trajectories in

field-space to deviate significantly from the homogeneous solution, as seen in

Fig. 4.4, and these configurations successfully inflate. However, if we add more

significant inhomogeneity with amplitude A ≳ 0.1, then any transitory inflation

is typically disrupted before Ne ∼ 5. We do not see any indication of a fractal

structure in the distribution of successful configuration in (A,f)-space for this
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Figure 4.5: Variance in the fields Vari = ⟨φ
2
i ⟩ − ⟨φi⟩

2 as a function of e-folding Ne

for initial configurations with background field values of ICsucc, as in Fig. 4.4. (Left)

Configuration yielding Ne > 55 with f = 1.890 × 10−1 and A = 2.035 × 10−3; (left

inset) zoom-in on ψ for Ne < 0.403. (Right) Configuration yielding Ne ≪ 55 with

f = 3.556 × 10−1 and A = 6.598 × 10−1.

initial condition.

4.5.2 Multiple excited modes

We now turn to the more general case, with multiple excited modes in both

fields φ and ψ:

φi(0, x) = φ̄i,0 [1 +
N

∑
j=1

Aij sin(
2πnijx

L
+ αij)] , (4.14)

where Aij is the real amplitude and αij is the phase of the jth mode for the ith

field. The box size L is set to the wavelength of the largest mode of interest

by fixing f via Eq. (4.11). The integer nij gives the ratio of the ith field’s jth

mode’s wavelength, relative to the largest mode. Each field is assumed to have

N excited modes.
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Figure 4.6: Distribution of independent ICs that succeed at generating Ne > 55 e-

folds of inflation, as a function of initial inhomogeneity. The background field values

ICsucc are set so that in the homogeneous limit Ne > 55. A sinusoidal inhomogeneity,

with amplitude A and comoving wavelength λ/2π = f/a0H̄0, has been added, in-

phase, to both fields. The initial energy E0 is indicated by color.

Figs 4.7 and 4.8 plot the results of a Monte Carlo analysis with N = 2

excited modes. We choose the background values (ψ̄, φ̄, ∂tψ̄, ∂tφ̄) so that each

configuration has initial energy E0 = 10−5MPl using the iso-E measure of Chap-

ters 3 and 5. In general, multifield models make predictions for observables

that are largely independent of the prior probability distribution of the ICs,

as demonstrated in Ref. [42] and Chapters 3 and 5, so this choice should not

have a large effect on the results. We then add initial inhomogeneity, which

marginally increases the overall energy. We draw the amplitudes from a loga-

rithmic prior, 10−2 < Aij < 1, and the largest mode with a logarithmic prior in

the range 10−3 < f < 1. The wavelength of the second mode is drawn uniformly
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Figure 4.7: Distribution of successful ICs in (left) field-space and (right) velocity-

space that are (blue dots) successful and (red stars) unsuccessful at giving Ne > 55

in the homogeneous limit. The homogeneous ICs are chosen with E0 = 10−5MPl.

The ICs have two initially excited modes of different scales. (Background) The gray

region has not been sampled since the initial energy density would have exceeded

E4
0 . For the velocities, the background has also been offset by Λ4.
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αij
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Figure 4.8: Histograms of marginalized inhomogeneity parameters from Eq. (4.14)

for successfully inflating ICs; the data for both fields have been plotted together.

Two modes have been initially excited in each field and we plot ICs that both (blue)

succeed and (red) fail to inflate in the homogeneous limit. The large amplitude bin

at n = 1 (far-right) results from setting the largest mode to n = 1 and is therefore

systematic.
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from the range 1 < nij < 5 with uniform random phase 0 < αij < 2π. These

plots can be compared to Fig. 3.5 in Chapter 3, which presents histograms of

successful ICs in the homogeneous limit.

Figure 4.7 shows successful initial configurations projected onto both the

homogeneous field space {ψ̄0, φ̄0} and the homogeneous velocity space {∂tψ̄0, ∂tφ̄0}.

When including initial inhomogeneity, successful configurations are approxi-

mately uniformly distributed for ψ̄0 ≲ 0.005MPl. There is some minor differ-

ence between the location of ICs that succeed and those that fail, which is

primarily due to the the fact that ICs closer to ψ ≈ 0 tend to be more likely

to inflate as they are closer to the inflationary valley. In velocity space, there

is a tendency for successful ICs to have ∂tφ̄0 ∼ 10−10M2
Pl and ∂tψ̄0 ≈ 0, since

having a large velocity in ψ causes the trajectory to evolve away from the

inflationary valley at ⟨ψ⟩ ≈ 0. This behavior again matches the homogeneous

limit of Chapter 3, as the blue points in Fig. 4.7 cluster in this range. Again,

many configurations that fail in the homogeneous limit succeed when multiple

modes are initially excited.

Fig. 4.8 displays normalized histograms of the inhomogeneity parameters

Aij, nij, and αij. Because we have not been careful to sample unique solutions

to Eq. (4.1) [105, 176, 177] and because we have used hybrid inflation (4.4)

only as a toy model, we do not give a detailed analysis of the inhomogeneity

parameters in each field, but rather plot the values together. The histograms

do not show any dependence on the phases αij, indicating that the results

in Section 4.5.1, which use in-phase inhomogeneities, are robust. There is a

large peak in the mode number nij at the largest wavelength; however, we

have forced at least one mode to have nij = 1 and set the other modes with

wavelengths with integer multiples of this largest mode. Consequently, the

spike at nij = 1 results from systematics only and there is no strong dependence
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on mode number for successful ICs that are either successful or unsuccessful

in the homogeneous limit. Because we fix the background energy scale, the

histogram for E0 directly measures the initial gradient energy, which we allow

to be up to 35 times the initial homogeneous energy.

Initial configurations that are successful in the homogeneous limit tend to

also be successful with initial inhomogeneity, provided the initial gradient en-

ergy is relatively small. Again, this can be understood in terms of Fig. 4.4, as

the trajectories with small initial gradients are indistinguishable from the ho-

mogeneous trajectory. However, many initial configurations that are successful

in the homogeneous limit remain successful with a large initial gradient, al-

though the fraction decreases with increasing initial gradient energy.

Points for which inflation fails in the homogeneous limit have a strong

dependence on the size of the largest initially excited mode f and a weak de-

pendence on mode amplitude Aij, favoring higher initial gradient energy. The

number of successful configurations decreases when the initial energy exceeds

E0 ≳ 7.5 × 10−5MPl. Given that our lattice simulation technique will be unre-

liable with large gradient energies, these cases need to be investigated within

the full Einstein equations.

4.6 Conclusion

We have demonstrated that adding subhorizon inhomogeneity can significantly

modify the pre-inflationary dynamics of hybrid inflation, yielding counterintu-

itive results. While the solutions to the Klein-Gordon equation are generally

stable to the addition of small initial inhomogeneity, if the inhomogeneity has

a larger amplitude, then the evolution changes dramatically. Unsurprisingly,

large primordial inhomogeneities may prevent the onset of inflation in models
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which do inflate in the homogeneous limit. However, this is not a certainty:

models which do not inflate in the homogeneous limit can successfully inflate

when inhomogeneity is added. The spatially averaged trajectories traverse

large regions of phase-space when the underlying dynamics are chaotic, giving

a greater chance of the trajectory finding attracting solutions, and inflating via

a different path in phase-space. We have presented an ensemble Monte Carlo

analysis with varying types of initial inhomogeneity to demonstrate that this

behavior is generic for hybrid inflation and should be true for any multifield

inflation model that has chaotic behavior.

We have analysed the toy hybrid inflation model defined by Eq. (4.4), but

argue that this behavior should be common for multifield inflation models that

have unstable fixed points or saddle points in the potential. This model does

not yield the correct perturbation spectrum, but this is not a significant issue

given that our focus here is the onset of inflation.

The solutions to the inhomogeneous Klein-Gordon equation (4.1) are still

qualitatively chaotic when the spatially averaged field trajectories are plotted.

This chapter thus provides the first confirmation that the chaotic dynamics

extend from the ordinary differential equations of the homogeneous problem to

the partial differential equations of the inhomogeneous universe. The chaotic

dynamics result from the interplay between the fixed points and the saddle

point at the critical value for φ. Consequently, our qualitative conclusions

should extend to other models with these features.

It was argued in Refs. [6, 7] that the conditions necessary to start infla-

tion must extend over a super-Hubble region. Here, we have demonstrated

that we do not need to necessarily require homogeneity and that significant

sub-horizon perturbations may not prevent inflation from beginning, despite

the conventional wisdom. This work clearly has a number of possible exten-
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sions, both to wider classes of models and also to include the effects of non-zero

curvature, which is generically expected in pre-inflationary scenarios [178,179].

Furthermore, including local gravitational backreaction by solving the full Ein-

stein field equations would extend this analysis to configurations with large or

asymmetric gradient energies.
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PART IV

Obtaining Generic Predictions
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Chapter 5

Simple Predictions from Multifield

Inflation

This chapter is adapted from:

R. Easther, J. Frazer, H. V. Peiris, and L. C. Price

Simple predictions from multifield inflationary models

Phys. Rev. Lett. 112 (2014) 161302, [45]

Copyright (2014) by the American Physical Society

5.1 Abstract

We explore whether multifield inflationary models make unambiguous pre-

dictions for fundamental cosmological observables. Focusing on N -quadratic

inflation, we numerically evaluate the full perturbation equations for models

with 2, 3, and O(100) fields, using several distinct methods for specifying

the initial values of the background fields. All scenarios are highly predic-

tive, with the probability distribution functions of the cosmological observ-

ables becoming more sharply peaked as N increases. For N = 100 fields,

95% of our Monte Carlo samples fall in the ranges ns ∈ (0.9455,0.9534);

α ∈ (−9.741,−7.047)×10−4; r ∈ (0.1445,0.1449); and riso ∈ (0.02137,3.510)×10−3

for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-

adiabatic ratio, respectively. The expected amplitude of isocurvature pertur-
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bations grows with N , raising the possibility that many-field models may be

sensitive to post-inflationary physics and suggesting new avenues for testing

these scenarios.

5.2 Introduction

The study of inflation has been transformed by the advent of precision cos-

mology. In 2013 the Planck Collaboration [18, 19] announced a 5σ detection

of scale-dependence in the primordial power spectrum, P(k). Likewise, the

non-Gaussian component of the initial perturbations is less than 0.01% [180]

and there are strong limits on isocurvature perturbations [19]. These results

are entirely consistent with single-field slow roll inflation.

The key theoretical challenge for inflation is to show how a phase of accel-

erated expansion is realized in particle physics. However, single-field models

are not always natural; e.g., string compactifications often result in hundreds

of scalar fields [162–165]. Multifield models yield a wider range of possible

P(k) and higher-order correlators than simple single-field scenarios. Conse-

quently, it is vital to determine not only what is possible in multifield models,

but whether specific multifield models yield generic predictions that can be

tested against data.

Multifield models permit many distinct inflationary trajectories, and can

thus be sensitive to the initial values of the background fields. The relative

likelihood for different initial conditions (ICs) in the overall phase-space of

the inflationary dynamical system must be encoded in the Bayesian prior for

the model. Inflationary models are, to some extent, ad hoc hypotheses, so

the IC priors typically cannot be computed or reliably predicted a priori.

Recently it was pointed out that some multifield models make predictions for
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the inflationary observables that do not depend strongly on the specific IC prior

[42,181–184], and this class of model unambiguously predicts the distributions

of the inflationary observables. On the other hand, observational data could

constrain the initial field configuration for models with strong sensitivity to

their initial conditions.

In this chapter we present the first generic predictions for a multifield infla-

tion model in the many-field limit. By numerically evolving the perturbations,

we find the probability density functions (PDFs) for the spectral index ns,

the tensor-to-scalar ratio r, the running α, and the isocurvature-to-adiabatic

ratio riso in N -quadratic inflation. We give the first complete analysis of the

many-field case [85, 87, 89–91, 93] by exploring inflation with N = 100 fields.

We consider three distinct IC priors to assess the sensitivity of the model’s

predictions to the initial conditions.

We see novel behavior in the many-field case, where trajectories in field

space “turn” until the end of inflation, yielding an increased riso that may be

relevant to reheating. The PDFs for ns, α, and r become more sharply peaked

at large N , implying that the many-field case is predictive. We also obtain

high-density samples in the low-N limit [185, 186] with N = {2,3}. In this

limit we also see sharply peaked PDFs and a nontrivial consistency relation in

the (ns, α)–plane, but with a greater dependence on the IC prior than with

N = 100 fields.

5.3 Method

We assess the “predictivity" of inflationary models as follows. We draw ICs

from a specified prior probability distribution and evolve the background equa-

tions of motion. We require the pivot scale kpiv = 0.002 Mpc−1 to leave the hori-
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zon 55 e-folds before the end of inflation; if there are fewer e-folds, we exclude

the IC and draw another. Otherwise, we solve the perturbation equations

numerically and compute observables by evaluating the power spectra at the

end of inflation. Iterating this process, we obtain the PDF for the inflationary

observables given the choice of IC prior.

We consider N -quadratic inflation with canonical kinetic terms, minimal

coupling to Einstein gravity, and potential

V = 1

2
m2
αφ

2
α , (5.1)

with an implied sum over repeated field indices. This model makes an excellent

test case as it is both extremely simple and well-defined for any value of N .

For N = 100 fields, we follow Ref. [89] and draw the mass values from

the Marčenko-Pastur distribution with β = 0.5. We choose the largest mass

ratio as 1/8.08 and the other masses so that they are equally spaced in the

cumulative probability distribution function. We do not expect our results to

depend strongly on this choice, provided the masses are all of the same order

of magnitude.

5.4 Initial conditions

We consider three IC priors:

1. The iso-E0 prior, defined in Chapter 3, with an equal-area prior on an

initial surface with energy E0.

2. The iso-Ne prior [42] with an equal-area prior set approximately Ne

e-folds before the end of inflation on the surface φαφα = 4Ne.

3. The slow-roll prior with velocities set in slow-roll and field ICs dis-

tributed uniformly over some pre-defined range.
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Figure 5.1: Histograms for N = 100 fields with the iso-E0 prior at E0 = 0.1MPl and

masses from the Marčenko-Pastur distribution [89] with a maximum mass ratio of

1/8.08 and r is plotted relative to a baseline value of 0.1443. All observables are

contained within a very small subvolume of the much larger range of possible values

the model can yield, showing that it makes precise predictions for the values of the

inflationary observables.
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Each prior has a different physical justification and leads to significantly

different distributions for the field values and velocities. For example, the iso-

Ne prior near Ne = 55 implies we know nothing about the initial state when

observable scales start to leave the horizon. By contrast, either (A) using the

iso-E0 prior with a relatively large initial energy; (B) requiring Ne ≫ 55 for

the iso-Ne prior; or (C) specifying a large field-space range for the slow-roll

prior typically give solutions more scope to evolve into dynamically-favored

regions of phase space, e.g., slow-roll along the direction of the lightest field.

Consequently, with these IC priors a higher proportion of trajectories find the

attractors before the end of inflation. Conversely, the iso-Ne prior with Ne ∼ 55

is the least predictive of these choices.

5.5 Multifield perturbations

We use MultiModeCode, as described in Chapter 2, which evolves the per-

turbation spectrum for an arbitrary potential, initial field values and velocities.

MultiModeCode solves the 2-index mode equation [39,49]

ψ′′αβ + (1 − ε)ψ′αβ + ( k2

a2H2
− 2 + ε)ψαβ +Mαγψγβ = 0 , (5.2)

where primes represent derivatives with respect to the number of e-folds, Ne;

ε ≡ −Ḣ/H2 is the slow-roll parameter; and ψαβ is related to the Mukhanov–

Sasaki variable, uα ≡ aδφα, by a sum over annihilation operators: uα(k,N) =

ψαβ(k,N)âβ(k). Finally, the mass matrix is given by

Mαβ =
∂α∂βV

H2
+

(φ′α∂βV + φ′β∂αV )
H2

+ (3 − ε)φ′αφ′β, (5.3)

where the Hubble parameter is H2 = V /(3 − ε).

For a mode k, we set the Bunch-Davies initial state for ψαβ when 100k = aH.
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The power spectrum for the field perturbations δφα is

Pαβ(k) =
k3

2π2
( 1

a2
)ψαγ(k)ψ∗βγ(k) , (5.4)

where star denotes complex conjugation. We compute the power spectra for

the comoving curvature perturbation R and isocurvature perturbations S via

an appropriately-scaled projection onto directions parallel and perpendicular

to the background trajectory. Consequently,

PR(k) =
1

2ε
ωαωβPαβ(k) (5.5)

where ωα = φ′α/φ′0 projects onto the direction of the background trajectory for

φ′20 ≡ φ′αφ′α. Directions perpendicular to ω are isocurvature directions, and can

source superhorizon evolution of R; we find the (N −1) isocurvature vectors sI
by Gram-Schmidt orthogonalization. In analogy to R, we define isocurvature

perturbations SI ≡ −(1/φ′0)sIαδφα with the spectrum

PS(k) =
1

2ε

N−1

∑
I,J

sIαsJβPαβ(k) . (5.6)

Conventionally, PR is characterized by an amplitude As and its logarithmic

derivatives D = d/d log k at the pivot scale k∗,

PR = As (
k

k∗
)
ns−1+ 1

2
α log k/k∗+...

(5.7)

with ns = D logPR and α = D2 logPR. We can similarly describe PS or the

adiabatic-isocurvature cross spectrum, although we report only the isocurvature-

to-adiabatic ratio riso = PS/PR. While MultiModeCode numerically com-

putes the full functional form of PR(k) and PS(k), for convenience ns and

α are computed by central finite differences near kpiv. Finally, we compute

the tensor-to-scalar ratio r by evolving the appropriately-normalized tensor

perturbations.
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Figure 5.2: Density function of isocurvature fraction riso = PS/PR for different ini-

tial condition priors with N = 100 fields. The average riso roughly decreases with

increasing number of e-folds between the surface on which we specify the IC and

the end of inflation, implying the heavier masses find their minima more often when

given more time to evolve before inflation ends.

5.6 Results

Figs. 5.1–5.3 show histograms for ns, α, r, and riso, with Scott-binning [187]

for the iso-E0 prior with E0 = 0.1MPl. Fig. 5.4 is the histogram-estimated

PDF for ns for different IC priors. The slow-roll prior yields results that are

effectively indistinguishable from the iso-E0 prior and are not plotted. We

sample O(106) ICs for N = {2,3} fields and O(104) ICs for N = 100.

Fig. 5.1 shows the first-ever general predictions for ns, α, and r for inflation

with N = O(100) light fields. Using the iso-E0 prior, we find that 95% of Monte

Carlo samples are in the ranges: ns ∈ (0.9455,0.9534); α ∈ (−9.741,−7.047) ×

10−4; r ∈ (0.1445,0.1449); and riso ∈ (0.02137,3.510) × 10−3, which is similar to

the predictions of this model in the single-field limit. Crucially, while many-

field N -quadratic inflation supports a broader range of possible observables, it

nevertheless makes a sharp generic prediction for ns, α, and r.
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Figure 5.3: Histograms for the spectral index ns and running α for N -quadratic

inflation with equal-energy initial conditions at E0 = 0.1MPl. (Top) Three fields

with mass ratios mi/m1 = {1,7,9}; (Bottom) comparison between three fields (blue;

masses as above) and two fields with mass ratio m2/m1 = 7 (red; inner contour)

and m2/m1 = 9 (gold; outer contour). The bottom figure emphasizes the outlying

regions and does not show the full range. All sampled distributions have a peak near

ns = 0.963 and α = −7 × 10−4, with appreciable deviation only in the tails.
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Figure 5.4: Probability distribution for (top)N = 3 fields and (bottom)N = 100 fields

with different initial conditions (ICs) priors. The slow-roll prior, which overlaps the

iso-E0 prior, has not been plotted. Importantly, the upper plot shows only the peak

in the PDF and the full range for ns has not been plotted. The distributions show

remarkable consistency, despite significantly different IC priors.

The riso component is significant with N = 100 fields for the two- and

three-field cases. The sensitivity of riso on the choice of IC prior is shown

in Fig. 5.2. The isocurvature fraction is largest for the iso-Ne = 60 prior,

reflecting the relatively short period this models has to evolve before inflation

ends. The average number of total e-folds for the iso-E0 = 0.1MPl prior is

Ne = 306.6, and the average riso roughly decreases with increasing total number

of e-folds. Unlike the case of a few fields, the heavier fields do not always

reach their minima before inflation ends, although they approach their minima

given more time to evolve. Trajectories are therefore typically turning in field-

space at the end of inflation, and it is known [41,46,135,188] that this causes

the isocurvature modes to grow. We attribute the increase in riso to these

dynamical effects.
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Fig. 5.3 shows the PDFs for the observables for N = 3 with an iso-E0 prior

with E0 = 0.1MPl. The PDFs have spikes in the bin ns ∈ (0.962,0.964) and

α ∈ (−0.001,−0.0005), which contains 48.8% of the Monte Carlo samples. With

N = 2 we find contours in the (ns,α)–plane, reproducing the analytic result of

Ref. [42]. For three fields the distribution is bounded by the same contours,

with a lower weighting around the outer contour (with m2/m1 = 9). Typical

trajectories become effectively single field before the end of inflation and hence

isocurvature modes decay, giving negligible riso.

To explicitly compare different IC priors, Fig. 5.4 plots the prediction for ns,

the observable best-constrained by Planck. For many fields, the distributions

are largely similar and are well-described near the maximum by Gaussians

with means µ = (0.950,0.951,0.951) and variances σ2 = (1.97,2.81,2.24)×10−3,

for the iso-E0, iso-Ne = 300, and iso-Ne = 60 priors, respectively.

With fewer fields, we see larger differences in the PDFs. Nevertheless, the

bin containing maximum probability mass coincides and all the PDFs have the

same overall shape. For the iso-E0 and iso-Ne = 300 priors the probability-mass

lies in a small range of observable-space, giving essentially the same prediction.

Furthermore, as seen in Fig. 5.3, the outlying contours non-trivially constrain

the joint prediction for (ns, α). For these two IC priors, the PDFs in Fig. 5.4

do not change drastically.

However, the iso-Ne = 60 prior (which is the least predictive choice a priori)

has a significantly lower peak in Fig. 5.3 and 95% of Monte Carlo samples in

the broad range ns ∈ (0.675,0.963), which is comparable to the full range

of predictions for this model, ns ∈ (0.543,0.964). Interestingly, this IC prior

yields significant mass below the most probable value of ns = 0.963, and may

thus perform far worse relative to the other IC priors in a Bayesian evidence

calculation, as the 68% Planck bounds are ns ∈ (0.954,0.973). This implies
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that Planck data may constrain the initial states when N is small.

5.7 Discussion

This chapter presents a complete analysis of multifield quadratic inflation.

We numerically integrate the multifield mode equations through to the end of

inflation, the first time this task has been performed for a model with many

degrees of freedom. We compute PDFs for key observables, and evaluate their

sensitivity to priors for the initial field values and velocities.

We find that the initial conditions are not “stiff parameters” [189–191] for

which small changes radically alter observables, demonstrating that this model

makes sharp, robust predictions for the inflationary parameters. Given that

multifield models can produce a wide range of perturbation spectra, one may

specify an IC prior for which the observables are far from the peak values in

the PDF found here. However, such scenarios are typically contrived, so the

corresponding prior is unlikely to be physically compelling. Moreover, even

with one field, initial conditions which violate slow-roll near Ne = 60 yield a

PR that differs significantly from the usual result.

The matching between the number of e-folds and present-day scales de-

pends on the post-inflationary equation of state [32, 33, 192]. This resulting

uncertainty in ns and other observables scales with α and is comparable to

the width of the large-N PDFs computed here. Consequently, the spread in

the predictions of the inflationary observables at large N — including the am-

biguity associated with the IC prior — need not be the dominant source of

theoretical uncertainty in multifield models.

For N = 100 the isocurvature modes are potentially nontrivial. This is a

new and significant result: the presence of isocurvature modes implies that
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the curvature perturbation may continue to evolve until an adiabatic limit is

reached [46, 63, 76, 193, 194], even if this is after the end of inflation. How-

ever, the most probable values for the power spectra observables at the end

of inflation are still concentrated in small regions. Recent studies of the

evolution of observables during reheating focus on models with only a few

fields [41, 195–197]. Given the magnitude of the riso for N = 100, it will be

important to examine the reheating dependence of observables at large N , for

which a non-zero riso may be generic.

With N = 100, the central values we find for ns, r and α are consistent with

those seen in previous work [89–91, 93] based on slow-roll expressions. If the

duration of inflation is increased by changing the initial conditions while other

parameters are held fixed, riso is reduced, consistent with Fig. 5.2. However,

there is no generic mechanism that forces the initial values of φ̇i to be small

(as noted in Chapter 3) and, with the exception of our slow roll prior , we start

our simulations with significant field velocities, in contrast to previous work.

This reduces the duration of inflation at fixed initial energy, and increases the

likelihood of seeing a nontrivial value of riso.

Importantly, our results suggest that the curvature perturbation of multi-

field inflationary models has a well-defined large-N limit. Consequently, these

models may be least predictive when N = 2 or 3. This situation mirrors that

found elsewhere [89, 133] and can be understood by analogy with the central

limit theorem. Determining the extent to which this phenomenon is generic

in N -field inflation is clearly of the utmost importance. Finally, this analysis

points the way to constraining multifield scenarios with data from observa-

tional surveys, such as Planck.
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Chapter 6

Gravitational Wave Consistency Relations

This chapter is adapted from:

L. C. Price, H. V. Peiris, J. Frazer, and R. Easther

Gravitational wave consistency relations for multifield inflation

Phys. Rev. Lett. 114 (2014) 031301, [198]

Copyright (2014) by the American Physical Society

6.1 Abstract

We study the tensor spectral index nt and the tensor-to-scalar ratio r in the

simplest multifield extension to single-field, slow-roll inflation models. We show

that multifield models with potentials V ∼ ∑i λi∣φi∣p have different predictions

for nt/r than single-field models, even when all the couplings are equal λi = λj,

due to the probabilistic nature of the fields’ initial values. We analyze well-

motivated prior probabilities for the λi and initial conditions to make detailed

predictions for the marginalized probability distribution of nt/r. With O(100)

fields and p > 3/4, we find that nt/r differs from the single-field result of

nt/r = −1/8 at the 5σ level. This gives a novel and testable prediction for the

simplest multifield inflation models.
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6.2 Introduction

A cosmological gravitational wave background (CGWB) is a compelling sig-

nature of inflation, which is already supported by the highly Gaussian primor-

dial perturbations [150, 180] and their broken scale invariance, now detected

at 5σ significance [18, 19]. A large-amplitude CGWB provides fundamentally

new tests of single-field slow-roll (SFSR) inflation via the consistency rela-

tion [14,15] nt/r = −1/8, which relates the tensor spectral index nt to the ratio

of the tensor and scalar perturbation amplitudes, r.

While there has been dramatic progress towards the direct detection of a

CGWB through the B-mode polarization in the cosmic microwave background

(CMB) [199], measuring nt is challenging with current technologies [200–202].

However, for r ≳ 0.1 this will be feasible with the next generation of space-

based [203, 204], ground-based [205–208], and balloon-borne [209, 210] exper-

iments, while future 21 cm projects [211, 212] could also detect lensing by a

CGWB and direct detection experiments [?, 213] would test the consistency

condition using the lever arm between CMB and solar system scales to far

greater accuracy with r ≳ O(10−3).

The simplest inflationary scenarios that yield an easily detectable CGWB

are monomial models with the inflationary potential V ∼ ∣φ∣p, which have

0.05 ≲ r ≲ 0.30 for 2/3 ≲ p ≲ 4. Single field models are simple but not necessarily

natural , as many high energy theories yield large numbers of scalar degrees of

freedom [162–165]. For multifield models the consistency relation is reduced

to an inequality, nt/r ≤ −1/8. While r and nt are correlated for Nf = 2 [61,62],

there is no known relationship between r and nt when Nf is large.

In this chapter, we derive a robust prediction for nt/r for Nf -monomial
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models, with potential

V = 1

p
∑
i

λi∣φi∣p, (6.1)

where λi are real, positive constants and summations run over the number of

fields, Nf . Eq. (6.1) arises naturally in many high energy theories [85–87, 87–

91,93] and is a simple, intuitive generalization of the chaotic SFSR models.

We treat the λi and the values of φi at a fixed number of e-folds before the

end of inflation as independent random variables. When Nf →∞, the central

limit theorem ensures that nt/r is a Gaussian random variable. Critically,

⟨nt/r⟩ does not reduce to the single-field limit if the couplings are identical

unless the field values φi,∗ when the pivot scale k∗ leaves the horizon are also

fixed, except for the special case p = 2. The expected value of nt/r depends

only on two moments of the distributions of the λi and φi, and is independent

of Nf . The variance in nt/r is s2
nt/r

∼ 1/Nf (for p > 3/4), giving a sharp, generic

prediction for the consistency relation in the many-field limit. This provides

a direct test for distinguishing between Nf -monomial models and their single-

field analogues.

6.3 Model

In some cases the λi in Eq. (6.1) might be derivable from fundamental theory,

but in general we are ignorant of their values, so we treat these terms as

independent random variables (RVs) with a prior probability P (λ). Similarly,

we do not know the fields’ initial conditions, so we also treat these as identically

distributed, but possibly correlated, RVs with a prior probability P (φ0). We

then marginalize over the P (λ) and P (φ0) to produce a probability distribution

for nt/r. Since a change of variables φi → φ̃i(φj, λj) will mix the λi and φi, it is

clear that there is no a priori difference between these two types of parameters,
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motivating our statistical approach.

The simplest choice for P (φ0) is a uniform distribution of φi,∗ defined when

the pivot scale k∗ leaves the horizon N∗ e-folds before the end of inflation. This

choice contains the least Shannon information about the fields’ initial states

and ensures that most of the fields are dynamically relevant. Further, this

P (φ0) and others were extensively studied in Chapter 5, where it was shown

that the initial conditions only weakly affect the predicted density spectra. The

likely values of ns and r for a related class of multifield monodromy models

was derived in Ref. [94], finding 0.955 ≲ ns ≲ 0.975. Furthermore, r = 4p/N∗,

and the non-Gaussianity is small.

6.4 δN formalism

The potential in Eq. (6.1) is sum-separable and, assuming slow-roll, N∗ is [73,

74]

N∗ = −∫
c

∗
∑
i

Vi
V ′
i

dφi, (6.2)

where V ′
i = λi∣φi∣p−1 and φi,∗ and φi,c denote field values at horizon crossing

and the end of inflation, respectively. For Nf -monomial inflation

N∗ =
1

2p
∑
i

[φ2
i,∗ − φ2

i,c] . (6.3)

The δN formalism relates the field perturbations at horizon crossing to the

gauge-invariant curvature perturbation ζ on constant density hypersurfaces

via

ζ ≈ ∑
i

N∗,iδφi,∗, (6.4)

where N∗,i ≡ ∂N∗/∂φi,∗. If the field perturbations are well-approximated by a

free field theory with power spectrum P ijδφ = (H∗/2π)2δij at horizon crossing,
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the tensor-to-scalar ratio is

r = 8

∑iN∗,iN∗,i

. (6.5)

To first-order in slow-roll nt = −2ε, where

ε = 1

2
∑
i

[
V ′
i

V
]

2

. (6.6)

For Nf -monomial models, the field values φi,c at the end of inflation can

typically be neglected. This horizon crossing approximation (HCA) (e.g.,

Refs. [73, 92]) is a simplification of the δN formalism that incorporates the

super-horizon evolution of ζ, but ignores quantities contributing to N∗ from

the end-of-inflation surface. Setting φi,c → 0 in Eq. (6.3), we find

nt
r

= − 1

4p2
ε∑

i

φ2
i,∗ , (6.7)

where we restrict our attention to cases that are slowly rolling at horizon

crossing. Requiring ε ≲ 0.1 then sets the maximum deviation from the single-

field result as

− (N∗

2p
) ×O(10−1) ≲ nt

r
≤ −1

8
. (6.8)

6.5 The many-field limit

We build the probability distribution for nt/r by marginalizing Eq. (6.7) over

P (φ0) and P (λ), and use the central limit theorem (CLT) to take the large Nf

limit, Nf →∞. By Eq. (6.3) the HCA implies that P (φ0) is a uniform distri-

bution pulled back onto an Nf -sphere in field-space with radius
√

2pN∗. Since

the multivariate normal distribution x⃗ ∼ N(0, 1⃗) is invariant under rotations

of x⃗, we can sample this Nf -sphere uniformly by defining

φi,∗ =
¿
ÁÁÀ2pN∗

∑j x2
j

xi for x⃗ ∼ N(0, 1⃗). (6.9)
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Using Eq. (6.9), the summations in Eqs. (6.6) and (6.7) are

∑
i

λni ∣φi,∗∣m = ∑
i

λni [
2pN∗

∑j x2
j

]
m
2

∣xi∣m. (6.10)

As Nf → ∞ the CLT shows that the numerator is normally distributed with

mean

µnum = Nf (2pN∗)m/2 ⟨λn⟩ ⟨∣x∣m⟩ (6.11)

and standard deviation

snum =
√
Nf (2pN∗)m/2 σn,m, (6.12)

where ⟨.⟩ indicates expected value and

σ2
n,m ≡ ⟨λ2n⟩ ⟨∣x∣2m⟩ − ⟨λn⟩2 ⟨∣x∣m⟩2

, (6.13)

which assumes that the λi and xj are independent. Finally, the denominator

in Eq. (6.9) is drawn from the χ-distribution, which is closely approximated

by N(
√
Nf ,1/

√
2) for xi ∼ N(0,1).

The numerator and denominator in Eq. (6.10) are correlated by the con-

straint in Eq. (6.3). For a given variance in P (λ), the correlation γ is maxi-

mized when m = 2 and ∣γ∣ → 1 as the variance vanishes. Since each ∑i λni ∣φi,∗∣m

is uniquely determined given λ⃗ and φ⃗∗, we expect a strong correlation between

the numerator and denominator in Eq. (6.6) for typical choices of P (λ). This

significantly reduces the variance of nt/r, and ensures a sharp prediction for

its value. We numerically calculate γ after defining the priors on λ.

For any normally distributed variable y ∼ N(µ,σ)

⟨∣y∣m⟩ = 2
m
2 σm√
π

Γ(1 +m
2

)F1,1 (
−m
2

;
1

2
;
−µ2

2σ2
) , (6.14)

for m > −1, and F1,1 is the confluent hypergeometric function of the first kind.

If µ = 0, as for xi ∼ N(0,1), then F1,1 = 1 and only the Γ function contributes

to the moments.
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If m < −1, ⟨∣y∣m⟩ may diverge if P (y = 0) does not vanish fast enough. This

is indeed the case for xi ∼ N(0,1), and we cannot predict the distribution of

the sums in Eq. (6.10) with m ≤ −1. Sums like Eq. (6.10) are effectively finite

numerical approximations to the integral

1

Nf
∑
i

λni ∣xi∣m ≈ ∫ ∣x∣mN(0,1)dx∫ λnP (λ)dλ, (6.15)

which diverges form < −1. While ratios of these sums might be well-defined [42],

our approach shows that a finite prediction for both the mean and the stan-

dard deviation of nt/r requires p > 3/4, while only requiring a finite mean needs

p > 1/2, using the CLT.

6.6 The method

Since nt/r is given by Eq. (6.7) and the sums in Eq. (6.10) are ratios of cor-

related, normally distributed RVs, the key tool for this analysis is the ratio

distribution fratio(α/β) for normally distributed RVs α and β. If w ≡ α/β,

then as P (β > 0) → 1 the CDF for the ratio distribution fratio(w) is approxi-

mately [214]

Fratio(w) = Φ [
µβw − µα
σασβa(w)

] , (6.16)

where µi and σ2
i are the respective means and variances,

a(w) ≡ [w
2

σ2
α

− 2γw

σασβ
+ 1

σ2
β

]
1/2

, (6.17)

and

Φ(z) ≡ 1

2
[1 +Erf ( z√

2
)] (6.18)

for real z. When Nf is large, fratio approaches a normal distribution with mean

µα/µβ and standard deviation

s =

√
µ2
βσ

2
α − 2γµαµβσασβ + µ2

ασ
2
β

µ2
β

. (6.19)
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The mean of fratio is independent of the correlations γ, and the standard de-

viation for nt/r is a straightforward — but messy — algebraic function of ⟨λ⟩,

⟨λ2⟩, and ⟨λ4⟩, as well as ⟨∣x∣m⟩ for m = 2,4, p,2p,2p − 2, and 4p − 4.

To obtain the distribution fratio(nt/r) we express the consistency relation

in terms of the sums in Eq. (6.10) as

nt
r
= −pN∗

4

⎡⎢⎢⎢⎢⎣

∑i λ2
i ∣φi,∗∣2p−2

(∑j λj ∣φj ∣p)
2

⎤⎥⎥⎥⎥⎦
. (6.20)

For each sum above, we calculate the covariance in Eq. (6.10) between the

numerator and denominator given P (λ), and use Eq. (6.19) to find the variance

of the sum. Although the denominator (∑i λi∣φi,∗∣p)2 is then χ2-distributed,

this is approximately normal in the many-field limit. We then substitute these

two normally-distributed RVs back into Eq. (6.16). Similarly, we evaluate

the correlation between the numerator and denominator in Eq. (6.20), finally

obtaining the probability distribution for nt/r.

6.7 Novel multifield predictions

From the ratio distribution (6.16), as Nf → ∞ the value of nt/r in Eq. (6.20)

is normally distributed with a mean

⟨nt
r
⟩
Nf ↑

= [−1

8
] [⟨λ

2⟩
⟨λ⟩2 ]

⎡⎢⎢⎢⎢⎣

√
π Γ (p − 1

2
)

2 Γ2 (p+1
2

)

⎤⎥⎥⎥⎥⎦
(6.21)

and a standard deviation proportional to

snt/r ∝
1√
Nf

→ 0 as Nf →∞, (6.22)

which can be found by substituting the means, variances, and correlations of

Eq. (6.10) into Eq. (6.19).
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Figure 6.1: The multifield prediction from Eq. (6.21) compared to the numerical

mean ⟨nt/r⟩ of simulations with 5000 samples, at each plotted value of p, with

Nf = 1000 using the horizon-crossing approximation. The field values φi,∗ as the

pivot scale k∗ leaves the horizon are drawn from a uniform prior on the surface in

Eq. (6.3) and all the couplings λi are identical.

The first bracketed term in Eq. (6.21) is the single-field prediction, the

second is due to the couplings λi, and the third arises from the uniform prior

for φi,∗ on the horizon-crossing surface. This last term is due only to the spread

in the field values at horizon crossing and is independent of everything except

p. The functional form of this term is fixed by the uniform prior distribution

on the horizon crossing surface, but other prior probabilities for φi,∗ result in

qualitatively similar behavior as demonstrated in Chapter 5. As Eq. (6.22)

vanishes in the many-field limit, Eq. (6.21) is the generic multifield prediction,

which deviates from the single-field result at > 5σ for Nf ≳ O(102) for typical

P (λ).

Consequently, even if ⟨λ2⟩ = ⟨λ⟩2, Nf -monomial models do not predict

nt/r = −1/8, unless the φi,∗ are also identical. Fig. 6.1 compares the predicted

value for ⟨nt/r⟩ in Eq. (6.21), with all λi equal, to numerical results obtained by

directly evaluating nt/r with Eq. (6.7), showing excellent agreement for many
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nt/r

Figure 6.2: Predicted probability distributions for nt/r with p = 2 compared with

histograms built from 10000 numerical samples. The couplings λi are drawn from

the Uniform Model with (left) Nf = 20 and (right) Nf = 100. For Nf ≲ O(102), the

distribution is skewed toward positive values as predicted.

fields. The divergence at p = 1/2 reflects the fact that ⟨∣x∣2p−2⟩ → ∞. Thus,

when p ≤ 1/2, ⟨nt/r⟩ may be arbitrarily large, which violates the slow-roll

assumption. Consequently, these models are most easily distinguished from

their single field analogues, but the hardest to make accurate predictions for.

6.8 Specific examples

To understand how the mean ⟨nt/r⟩ in Eq. (6.21) is affected by P (λ) we

compare two explicit priors that are widely used in Bayesian analyses of infla-

tion [19, 31–33, 215]. We focus on the p = 2 case, since the dependence on the

prior on φi,∗ in Eq. (6.21) cancels for this scenario.

We look at two cases: uniform prior probabilities over λi or αi for λi ≡ 10αi ,

which we denote the Uniform Model and Log Model, respectively. The Uniform

Model would be applicable when the relevant scale of λi is known to within

an order of magnitude, while the Log Model effectively scans over a range of

physical scales. The Log Model is invariant with respect to a change in scale

for λi and is equivalent to the Jeffreys prior [216], which is commonly used in

Bayesian analyses.
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For the Uniform Model, the λi are drawn from U[a, b], and Eq. (6.21)

becomes

(nt
r
)

unif

p=2

= −1

6
[b

2 + ab + a2

(b + a)2
] . (6.23)

For λi ∈ [10−14,10−13], as Nf → ∞ the predicted correlation coefficient for

fratio(nt/r) is γ ≈ −0.98 and ⟨nt/r⟩ = −0.153. We plot fratio and the results

of 10000 numerical realizations using the HCA in Fig. 6.2. We find excellent

agreement with Eq. (6.23), with fratio accurately capturing the higher order

moments of the nt/r distribution for Nf ≳ 20. For p = {3/2,2,3} the single-

field result nt/r = −1/8 is a 5σ deviation from the mean in Eq. (6.23) for

Nf ≳ {120,120,200}, respectively.

For the Log Model with α ∼ U[a, b],

(nt
r
)

log

p=2

= − log(10)(b − a)
16

[10b + 10a

10b − 10a
] . (6.24)

If a → b, we recover the single-field result in both Eqs. (6.23) and (6.24).

However, Eq. (6.24) diverges as a → −∞, reflecting the failure of slow-roll in

the limit of widely separated scales. For α ∈ [−14,−12] the Log Model predicts

Pζ ∼ O(10−9), ε ≲ 0.03, γ ≈ −0.95 and nt/r = −0.294. For p = {3/2,2,3}

the single-field result is a 5σ deviation from the mean in Eq. (6.24) for Nf ≳

{145,135,255}, respectively.

6.9 Relaxing the approximations

Fig. 6.3 compares the HCA prediction to numerical results that include the

contribution from the end-of-inflation surface in Eq. (6.3), with φi,c ≠ 0. We nu-

merically solve the background Klein-Gordon equations for 1000 realizations,

finding the field values at the end of inflation (defined by ε = 1) and obtain-

ing the full δN prediction without using the HCA. Fig. 6.3 also incorporates
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Figure 6.3: The consistency relation for the Uniform Model with p = 2 is plot-

ted for different Nf , marginalizing over initial field values. The boxes/whiskers

cover the 50/97% CIs and the gray regions delineate the same ranges as predicted

by the HCA and the central limit theorem. The (dashed) brown and (solid) gray

lines are the single-field and the many-field HCA predictions, respectively. For each

case we present results derived from full numerical solutions to the mode equations

(blue/left), the slow-roll prediction using the HCA (yellow/center), and the slow-roll

prediction including the end-of-inflation surface (red/right) for Nf = 20, 60, and 100.

both the sub-horizon evolution of the modes and any non–slow-roll behavior

by solving the mode equations numerically, as in Ref. [49] and Chapter 5, using

MultiModeCode [16]. Results are plotted for the Uniform Model, with the

ranges λi ∈ [10−14,10−13] and p = 2.

In all cases the numerical results are well-approximated by the HCA. The

HCA results are marginally larger than the numerical results, which we at-

tribute to second-order corrections to the slow-roll equations; nt = −2ε/(1− ε),

which suppresses nt relative to the first-order approximation. The variances in
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the numerical results scale as σ2 ∝ 1/
√
Nf , as predicted by the HCA results,

confirming that many-field models make sharp predictions for nt/r.

6.10 Conclusion

We have computed the probability distribution for the consistency relation nt/r

for inflation driven by multiple scalar fields with monomial potential terms, as a

function of the distribution of couplings and initial field values. The single-field

result is clearly distinguishable from the many-field limit, providing a clean

and compelling signature that distinguishes these models from their single-

field analogues. Other than for the quadratic case, this result holds even when

the couplings are identical.

We focused on computing the slow roll parameter ε, but the nature of the

slow-roll hierarchy [217] indicates that this approach will generalize to a variety

of observables, so quantities such as fNL that rely on the second and higher

slow-roll parameters should also have precise predictions that deviate from the

single-field expectation even when the couplings are degenerate. This provides

a further compelling example of a multifield scenario in which the observables

have a sharp and generic prediction in the many-field limit [42, 45, 79, 89, 91–

93,133,181–184,218,219].

The expected value ⟨nt/r⟩ depends on only two moments of the prior

probability distributions P (λ) and P (φ0), and the corresponding variance is

s2
nt/r

∝ 1/Nf . The single-field expectation of nt/r = −1/8 differs from the

multifield result at the 5σ level when Nf ≳ O(102). Consequently, given spe-

cific priors for the field values and couplings, we obtain generic and testable

predictions for the consistency relations in this large and interesting class of

multifield inflation models.



134 Chapter 6. Gravitational Wave Consistency Relations



PART V

Conclusion
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Chapter 7

Conclusion

This thesis has taken a joint numerical and analytical approach to studying

the background and perturbative dynamics of multifield inflation models. We

have focused extensively on the role that the background initial conditions play

in determining both the number of e-folds of inflation and the power spectrum

of models, with and without interactions. Applying Bayesian principles to the

analysis has allowed us to incorporate our beliefs in these models in terms of

prior probabilities for model parameters and initial conditions, leaving us with

probability distribution functions for inflation’s observable or quasi-observable

features.

7.1 How do we get enough inflation?

We have extensively studied two models, the first of which is the standard

hybrid inflation model with two dynamical fields. Hybrid inflation was chosen

primarily as a toy model for those early universe scenarios that might have

a pre-inflationary period that is dominated by the same scalar dynamics that

give inflation. Although this model generally does not predict the observed

spectrum (since ns > 1), it is possible to manipulate the inflationary portion

of the potential to achieve a red spectrum [120, 121, 220]. Consequently, our

results in Part III of this thesis should hold not only in general for toy multifield

cases, but perhaps also in the particular case of our universe, if inflation is

137
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indeed following a non-typical hybrid pattern.

In Part III we looked specifically at the way by which hybrid inflation can

begin, given an ensemble of initial states. Naïvely, hybrid inflation requires a

relatively special initial condition in order to begin inflating, with the heavy

hybrid field satisfying ⟨ψ⟩ ≈ 0. Depending on the initial condition chosen, this

may or may not be an attracting solution. Furthermore, hybrid inflation has

chaotic dynamics, which significantly complicates any prima facie conclusions

we might be able to draw based only on what we expect in limiting cases,

such as slow-roll. Previous analyses of the initial conditions dependence of

this model have reached a variety of conclusions on its stability.

In order to determine what the likely or expected outcome of the models

are, we first need to define how we expect the initial state to be distributed.

This addition to the model is necessary from the perspective of a Bayesian

model builder: if we do not know the initial state for the universe, we must

instead come up with an uninformed prior probability that incorporates this

level of ignorance. If different priors result in the same behavior, we can make

a strong statement on the model’s robustness.

This was performed in Chapter 3, where we constrained our initial con-

ditions to lie on equal energy slices of phase space, while neglecting inhomo-

geneity. This constraint allows us to do two things. First, we can identify

points on the constraint surface with unique solutions to the Klein-Gordon

equation, making it impossible for different initial conditions to be related to

each other by time-translation along allowed solutions in phase space. This

is a clearer description of what we mean by the universe’s initial state than

many previous studies that allow any possible field-space point to be the initial

condition, since two of our initial conditions will never give degenerate end-
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states.1 Second, choosing our constraint surface according to constant-energy

surfaces, which is a time-like parameter for expanding FLRW universes, gives

a physical criterion to define our initial state. Without any input from high

energy theory, we can then define priors for initial conditions on the equal en-

ergy surface that maximize information entropy and give us the least informed

way by which we can study this system. Using a variety of priors, we found

that hybrid inflation does indeed give many inflationary solutions, regardless

of the initial energy surface that we choose our initial conditions to lie upon.2

Chapter 4 is a significant improvement on the basic results obtained for the

homogeneous hybrid inflation analysis in Chapter 3. In this section we allowed

for initial conditions that had sub-horizon gradients, using lattice PDE solvers

to replicate our Monte Carlo exploration of hybrid inflation’s chaotic param-

eter regime. The chaotic pre-inflationary dynamics were instrumental in the

conclusions that we were able to draw: small changes in the phase, amplitude,

or wavelength of the perturbations can also result in radically different end-

states for the universe. The conventional wisdom is that adding inhomogeneity

to a pre-inflationary phase will only hurt the ability of a model to inflate. This

argument has made a strong comeback in studies that have critically examined

the inflationary paradigm, such as Refs. [153, 156]. However, we are able to

explicitly demonstrate that sub-horizon homogeneity before inflation is not a

necessary requirement for multifield models to begin inflating. In fact, initial

1This also defines a type of Cauchy surface in field space, in analogy to techniques in

classical general relativity theory [221].
2After the publication of Chapter 3, Ref. [177] found a prior probability that used constant

energy slicings for initial conditions, but whose predictions are independent on the initial

energy. While this is an improvement on the prior probability that we used, since we found

no significant energy dependence in our results, we expect this prior to have similar results

to our analysis.
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inhomogeneity may help an otherwise hopeless initial state to achieve many

e-folds of inflation. Since this was demonstrated only for those cases where we

could neglect the backreaction of the field perturbations onto the metric, we

would be very interested to see this analysis repeated with a full general rela-

tivity numerical code, such as those recently developed in Refs. [170,171,222].

It is important to note that we have assumed that the Lagrangian that is

valid during the epochs when observationally relevant modes leave the hori-

zon is also valid in a pre-inflationary epoch. This is a strong assumption

that deserves some explanation, since we might expect the potential to have

significantly different features away from the region that gives the last 50-60

e-folds of inflation. A particularly strong counterargument to our approach, as

mentioned recently in Refs [154,155] and others, is that there might exist non-

global minima, in which a classical trajectory might become trapped, prior to

yielding the inflationary action. This results in eternal inflation, which may

be ended by quantum tunneling out of the metastable vacuum directly into a

configuration that will inflate for O(100) e-folds, providing another dynami-

cal resolution to the initial conditions problem. While we feel that this is a

legitimate concern for the types of analysis presented in Part III, we take the

viewpoint that our results show that adding additional structure like nearby

minima to the pre-inflationary period is not strictly necessary to get a large

fraction of a model’s solutions to inflate. Instead, it can be achieved by a

variety of mechanisms, each of which might be termed “natural” depending on

whether a bottom-up or top-down philosophy of inflationary model building is

being used.
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7.2 How can we get generic predictions?

The second class of model we analyzed were large-field chaotic inflation models

with many fields assisting each other during inflation. These models have a

characteristic structure like V ∼ ∑i φ
p
i and are obvious generalizations of the

simplest phenomenological single-field models, like the simple m2φ2 potential.

In Part IV we assumed that there was some mechanism by which inflationary

solutions are generated, so that the concerns in Part III can be ameliorated.

However, these models have predictions that still depend on the background

solution. For instance, if a given mode ζk leaves the horizon when almost

all of the fields are in their minima, then the power spectrum for this mode

looks as if it came from a model with fewer actively evolving fields. In the

limit that all of the heavier fields have vanishing contributions during periods

of interest, the predictions for any of these models approaches that of single-

field inflation. Consequently, the prior probability for the model’s background

initial condition could fundamentally change the predictions for these models.

This might seem troubling since we do not have access to this type of

information in the vast majority of inflationary scenarios. This leads us to one

of the central points of this thesis: theoretical uncertainties can be integrated

out of a model, given a careful definition of the inflationary scenario. When we

have no knowledge of the initial state, we simply require the prior probability

for the initial condition to have maximum Shannon entropy, i.e., the definition

of the prior must contain the least amount of possible information.3 We then

3Often the prior probability cannot be specified in such a way that there will remain no

parametrization dependence, i.e., the prior for a parametrization θ will not necessarily be

the same as that for a related set of coordinates θ′. However, by studying the change in the

model’s predictions when the prior is altered we can qualitatively assess the robustness of

the predictions to the choice of parametrization, as was done in Chapter 5.
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integrate over all of these nuisance parameters to get a probability distribution

for the model’s generic predictions or its prior predictive distribution.

Common criticisms of this approach include:

The issue of subjectivity: If one changes the prior, then the shape of

the PDF for the observables would change. Since the definition of priors has

a subjective component, the marginalized predictions are subjective, too.

While this is true, we note that the sensitivity of a model to its priors can

be largely studied by comparing different prior probabilities, as was done in

Chapter 5.4 If we interpret the prior probability as incorporating our knowl-

edge or beliefs about the likely value of a given parameter, then this criticism

amounts to: if we knew more about the model, we would know more about

its predictions. In instances where no prior knowledge is applicable, this sub-

jectivity vanishes, since using anything besides the maximum entropy prior

implies some a priori hypothesis by definition. This is almost certainly the

case for dynamical parameters in the model, such as initial conditions, so our

results should be largely robust.

The issue of frequentism: The universe’s actual parameters might cor-

respond to a 5σ or greater deviation from the mean in the prior predictive

distribution for an observable. The model might very well be true, but the bulk

of the prior predictive distribution does not capture the model’s real prediction.

We can only place a probability on our belief in a model’s parameters

that is a deterministic function of the available data and our prior, which

will hopefully converge to the neighborhood around a value if we are given

updated, consistent datasets. In the limit that we had a clear and convincing

4We quickly note that if we associated each possible prior to one scientist, marginalizing

over priors would give a distribution for what a population of people would expect out of

the model.
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reason to prefer one configuration over others, our distribution would have a

strong peak near the prediction for this preferred configuration, recovering the

implicit expectations of a frequentist.

To simply study a model by finding the connection between the “actual”

parameter of the model and the corresponding prediction is not sufficient. For

most models, particularly phenomenological ones, this level of prior knowledge

is hugely impractical or even impossible. In contrast, the Bayesian methodol-

ogy that we have used incorporates all possible initial states with weightings

defined by the information available to us as model builders and returns a

correspondingly generic prediction.

7.3 What do generic predictions look like?

In Part IV we saw that the predictivity of our models can improve when we

increase the number of degrees of freedom by adding more dynamical fields.

In Chapter 5 we studied the pivot scale values for the power spectrum and its

derivatives, explicitly comparing different priors for initial conditions in the

Nf -quadratic model, using a wide variety of different forms including what

we used for hybrid inflation in Chapter 3. We found very little difference in

the functional form for the predictions and only trivial reweightings of the

probability distributions between different priors. We interpret these results

as indicating that these types of large-field model are not sensitively dependent

on their initial conditions.

In Chapter 6 we extended this further by analytically incorporating priors

on both initial conditions and Lagrangian parameters into a generic prediction

for a large class of observationally relevant inflation models. We found that

sum-separable, large-field models have sharp generic predictions as a conse-
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quence of the central limit theorem. We calculated this explicitly for the ratio

of the tensor spectral index to the tensor-to-scalar ratio nt/r, since any de-

viation from the single-field gravitational wave consistency relation indicates

genuinely multifield contributions to the prediction. We find that both nt and

r follow Gaussian distributions that are correlated, but easily characterized if

we assume that any background initial condition 55 e-folds before the end of

inflation is equally likely. This provides more evidence that multifield models

may become increasingly predictive as the number of fields increases.

While we have not yet carried out a similar analysis for small-field mod-

els or for multifield models with strong interactions between the fields, we

feel strongly that the simple principles we have discovered here will remain.

Multifield models are “predictive,” as measured by the typical variance in the

spread of the predicted observables; they are generally insensitive to the defi-

nition of the initial conditions prior; and this emergent behavior arises because

of the models’ large dimensionality. While these should be defining features

of multifield models, small-field models in particular might have some greater

dependence on the initial conditions than large-field inflation, since the infla-

tionary region usually only corresponds to a local attractor, with a qualitatively

smaller basin of attraction than a large-field model. Furthermore, the analytic

calculations that were performed in Chapter 6 explicitly do not apply for these

models, since we would need to incorporate the contribution to ζ in the δN

formalism from the end-of-inflation surface. Consequently, more work must be

done before we can study these types of models in as much detail as presented

here, which should be a fruitful avenue for further research.
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7.4 Outlook

With the release of the latest results from Planck, the next major milestones

in the collection of CMB data will be in measuring the polarization spectra.

While exciting results may certainly be obtained here, we might reasonably

be pessimistic about the possibility of observing signatures that will guide

us toward specific inflationary models in the near future. This point was

driven home with the controversy surrounding the interpretation of dust and

B-modes in the BICEP2 data, and may perhaps be a theme for next generation

cosmology. In the event that the key observables for inflation — ns, r, and

fNL — remain bounded in the general region of parameter space that they are

currently in, we may not soon have a data-driven reason to radically alter our

approach to inflation.

For an inflationary theorist this raises a few concerns. If one scalar field is

sufficient to explain all of the available data, then the motivation for multifield

models will remain no more concrete than what is mentioned in this thesis:

multiple fields are possible; they generalize the simplest cases; and they are

often naturally predicted from high energy theory. However, they are not

necessary. Consequently, their study would continue to focus on reconciling

general principles from high energy theory that favor large dimensionality with

observations that are completely consistent with simpler models.

This thesis makes progress toward these types of “post-modern” goals. Since

our theoretical uncertainty will remain approximately constant in the absence

of experimental pressure, the methods used here should become more relevant

for studies that attempt to propagate fundamental unknowns about a model

into a corresponding uncertainty in the prediction. However, since the analysis

of multifield models is more complicated than single-field models, this is not
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the methodology that is often chosen. Instead, people are usually content with

understanding the complicated relationship that exists between the primordial

spectra and a model’s masses and couplings, which is indeed a hard problem.

However, we would contend that this type of analysis is incomplete. In order

to assess a model’s observational status one must also carefully consider the

role of a priori information on the structure of both static and dynamical

parameters, such as masses and initial conditions, respectively. Even with a

complete lack of information one can still define sensible prior probabilities and

map these to predictions through the Bayesian technique of marginalization.

This allows us to calculate the complete predictions of a model and perhaps

begin to understand how an effectively single-field universe can be reconciled

with high energy theory.
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Bayesian Methods

Throughout this thesis we make frequent use of Bayesian statistical techniques.

While methods such as Markov Chain Monte Carlo (MCMC) are commonplace

in cosmological data analysis and data-based inference, they are rarely used

in theoretical modelling. In this appendix we will outline what techniques we

have used and how they apply to theoretical inflation models and the initial

conditions dependence of multifield inflation.

A.1 Bayes theorem

For random variables A and B, Bayes theorem relates conditional probabilities

in the following fashion:

P (A ∣B) = P (A)P (B ∣A)
P (B)

, (A.1)

where P (A) is the prior probability distribution for variable A, P (A ∣B) is the

posterior probability distribution for variable A given B, P (B ∣A) is the likeli-

hood of getting B given A, and P (B) is the Bayesian evidence or marginalized

likelihood for B. The prior probability encodes the a priori knowledge that

one has about variable A and allows you to invert the conditional probability

P (A ∣B) → P (B ∣A) up to the value of the evidence. The Bayesian evidence

is a normalization factor that is unimportant for our studies here, although it

arises when comparing models’ ability to explain data.
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A.2 Application to theoretical modeling

In our work we have used the Bayesian technique of marginalization. This is the

process of integrating out nuisance parameters from a model, with the param-

eters weighted by their prior probability. This obtains a simplified probability

distribution function (PDF) that is independent of the nuisance parameters but

incorporates our uncertainty in those parameters that have been marginalized.

If we wish to find the marginalized PDF for parameter A conditioned on

the value of parameter B, then we integrate out all extraneous parameters in

the model θi by

P (A ∣B) = ∫ dθiP (A ∣ θi,B)P (θi ∣B). (A.2)

If the PDF for the nuisance parameters is independent of B, then P (θi ∣B) →

P (θi), which is that nuisance parameter’s prior probability.

For a multifield inflation model we have observables O that we wish to

calculate, such as the tensor-to-scalar ratio r or the spectral index ns that are

valid near the pivot scale kpiv. We also may have pseudo-observables, such as

the total number of e-folds Ne between the initial and final state for a given

solution of the model, which we treat as if they were actually observable, but

are in fact only partially inferable from the data in the context of the chosen

model.

Any of these observables depend on a series of parameters in the La-

grangian, such as couplings gj and massesmi, as well as dynamical parameters,

like a particular realization’s initial conditions. In this thesis we will at vari-

ous times treat these parameters as both important and nuisance parameters,

sometimes marginalizing over them and sometimes not. For instance, in Chap-

ter 5 we compare a set of PDFs for observables Pµ(O) that depend on different
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prior probabilities for the background solution’s initial conditions Pµ(IC), with

the fields’ masses m⃗ ≡ {mi} fixed.

This can be expressed as

Pµ(O ∣ m⃗) = ∫ d(IC)P (O∣IC, m⃗)Pµ(IC, m⃗). (A.3)

We can perform integrals like Eq. (A.3) numerically by generating a sample of

initial conditions ICj from the prior probability Pµ(IC, m⃗) and using

P (O ∣ m⃗) ≈ 1

Nsamp
∑
j

P (O ∣ ICj, m⃗) (A.4)

for ICj ∼ Pµ(IC, m⃗), where Nsamp is the number of elements in the sample.

If P (O ∣ ICj, m⃗) is probabilistic, then we simply evaluate it for every initial

condition in the sample.

However, for inflation models we can uniquely determine a value for an

observable like ns given all of the parameters in the first-order equations of

motion, so that P (O ∣ ICj, m⃗) is a deterministic relationship with

P (O′ ∣ ICj, m⃗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if O(ICj, m⃗) = O′

0 otherwise

. (A.5)

In this case, we estimate P (O ∣m) from a histogram of the population statistics.

In other words, we draw a sample of parameters from the prior probability and

for every element in that sample we calculate the observable via the methods

presented in Chapter 2. We then bin the sample of observables we get from

this process and estimate the actual PDF from the sample histogram or kernel

density estimation.



150 Appendix A. Bayesian Methods



Bibliography

[1] A. A. Starobinsky, A New Type of Isotropic Cosmological Models

Without Singularity, Phys.Lett. B91 (1980) 99–102.

[2] A. H. Guth, The Inflationary Universe: A Possible Solution to the

Horizon and Flatness Problems, Phys.Rev. D23 (1981) 347–356.

[3] A. D. Linde, A New Inflationary Universe Scenario: A Possible

Solution of the Horizon, Flatness, Homogeneity, Isotropy and

Primordial Monopole Problems, Phys.Lett. B108 (1982) 389–393.

[4] A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified

Theories with Radiatively Induced Symmetry Breaking, Phys.Rev.Lett.

48 (1982) 1220–1223.

[5] WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson

Microwave Anisotropy Probe (WMAP) Observations: Cosmological

Parameter Results, Astrophys.J.Suppl. 208 (2013) 19,

[arXiv:1212.5226].

[6] T. Vachaspati and M. Trodden, Causality and cosmic inflation,

Phys.Rev. D61 (1999) 023502, [gr-qc/9811037].

[7] M. Trodden and T. Vachaspati, What is the homogeneity of our

universe telling us?, Mod.Phys.Lett. A14 (1999) 1661–1666,

[gr-qc/9905091].

[8] J. Stewart, Perturbations of Friedmann-Robertson-Walker cosmological

models, Class.Quant.Grav. 7 (1990) 1169–1180.

151

http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/gr-qc/9811037
http://arxiv.org/abs/gr-qc/9905091


152 Bibliography

[9] S. M. Carroll, Spacetime and geometry. An introduction to general

relativity, vol. 1. Addison-Wesley, 2004.

[10] D. H. Lyth and A. R. Liddle, The primordial density perturbation:

Cosmology, inflation and the origin of structure. Cambridge University

Press, 2009.

[11] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, A new approach

to the evolution of cosmological perturbations on large scales, Phys.Rev.

D62 (2000) 043527, [astro-ph/0003278].

[12] S. Weinberg, Adiabatic modes in cosmology, Phys.Rev. D67 (2003)

123504, [astro-ph/0302326].

[13] C. Kiefer and D. Polarski, Why do cosmological perturbations look

classical to us?, Adv.Sci.Lett. 2 (2009) 164–173, [arXiv:0810.0087].

[14] E. J. Copeland, E. W. Kolb, A. R. Liddle, and J. E. Lidsey, Observing

the inflaton potential, Phys.Rev.Lett. 71 (1993) 219–222,

[hep-ph/9304228].

[15] A. R. Liddle and D. H. Lyth, The Cold dark matter density

perturbation, Phys. Rept. 231 (1993) 1–105, [astro-ph/9303019].

[16] L. C. Price, J. Frazer, J. Xu, H. V. Peiris, and R. Easther,

MultiModeCode: An efficient numerical solver for multifield inflation,

JCAP 1503 (2015), no. 03 005, [arXiv:1410.0685].

[17] Planck Collaboration, P. Ade et al., Planck 2013 results. I. Overview

of products and scientific results, Astron.Astrophys. 571 (2014) A1,

[arXiv:1303.5062].

http://arxiv.org/abs/astro-ph/0003278
http://arxiv.org/abs/astro-ph/0302326
http://arxiv.org/abs/0810.0087
http://arxiv.org/abs/hep-ph/9304228
http://arxiv.org/abs/astro-ph/9303019
http://arxiv.org/abs/1410.0685
http://arxiv.org/abs/1303.5062


153

[18] Planck Collaboration, P. Ade et al., Planck 2013 results. XVI.

Cosmological parameters, Astron.Astrophys. 571 (2014) A16,

[arXiv:1303.5076].

[19] Planck Collaboration, P. Ade et al., Planck 2013 results. XXII.

Constraints on inflation, Astron.Astrophys. 571 (2014) A22,

[arXiv:1303.5082].

[20] D. Baumann and L. McAllister, Inflation and String Theory,

arXiv:1404.2601.

[21] R. Easther and K.-i. Maeda, Chaotic dynamics and two field inflation,

Class.Quant.Grav. 16 (1999) 1637–1652, [gr-qc/9711035].

[22] S. Clesse, C. Ringeval, and J. Rocher, Fractal initial conditions and

natural parameter values in hybrid inflation, Phys.Rev. D80 (2009)

123534, [arXiv:0909.0402].

[23] J. A. Adams, B. Cresswell, and R. Easther, Inflationary perturbations

from a potential with a step, Phys.Rev. D64 (2001) 123514,

[astro-ph/0102236].

[24] WMAP Collaboration, H. Peiris et al., First year Wilkinson

Microwave Anisotropy Probe (WMAP) observations: Implications for

inflation, Astrophys.J.Suppl. 148 (2003) 213, [astro-ph/0302225].

[25] J. Martin and C. Ringeval, Inflation after WMAP3: Confronting the

Slow-Roll and Exact Power Spectra to CMB Data, JCAP 0608 (2006)

009, [astro-ph/0605367].

[26] L. M. Hall and H. V. Peiris, Cosmological Constraints on Dissipative

Models of Inflation, JCAP 0801 (2008) 027, [arXiv:0709.2912].

http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/1404.2601
http://arxiv.org/abs/gr-qc/9711035
http://arxiv.org/abs/0909.0402
http://arxiv.org/abs/astro-ph/0102236
http://arxiv.org/abs/astro-ph/0302225
http://arxiv.org/abs/astro-ph/0605367
http://arxiv.org/abs/0709.2912


154 Bibliography

[27] R. Bean, X. Chen, H. Peiris, and J. Xu, Comparing Infrared

Dirac-Born-Infeld Brane Inflation to Observations, Phys.Rev. D77

(2008) 023527, [arXiv:0710.1812].

[28] L. Lorenz, J. Martin, and C. Ringeval, Brane inflation and the WMAP

data: A Bayesian analysis, JCAP 0804 (2008) 001,

[arXiv:0709.3758].

[29] J. Martin and C. Ringeval, First CMB Constraints on the Inflationary

Reheating Temperature, Phys.Rev. D82 (2010) 023511,

[arXiv:1004.5525].

[30] J. Martin, C. Ringeval, and R. Trotta, Hunting Down the Best Model of

Inflation with Bayesian Evidence, Phys.Rev. D83 (2011) 063524,

[arXiv:1009.4157].

[31] J. Martin, C. Ringeval, R. Trotta, and V. Vennin, The Best Inflationary

Models After Planck, JCAP 1403 (2014) 039, [arXiv:1312.3529].

[32] M. J. Mortonson, H. V. Peiris, and R. Easther, Bayesian Analysis of

Inflation: Parameter Estimation for Single Field Models, Phys.Rev.

D83 (2011) 043505, [arXiv:1007.4205].

[33] R. Easther and H. V. Peiris, Bayesian Analysis of Inflation II: Model

Selection and Constraints on Reheating, Phys.Rev. D85 (2012) 103533,

[arXiv:1112.0326].

[34] J. Norena, C. Wagner, L. Verde, H. V. Peiris, and R. Easther, Bayesian

Analysis of Inflation III: Slow Roll Reconstruction Using Model

Selection, Phys.Rev. D86 (2012) 023505, [arXiv:1202.0304].

http://arxiv.org/abs/0710.1812
http://arxiv.org/abs/0709.3758
http://arxiv.org/abs/1004.5525
http://arxiv.org/abs/1009.4157
http://arxiv.org/abs/1312.3529
http://arxiv.org/abs/1007.4205
http://arxiv.org/abs/1112.0326
http://arxiv.org/abs/1202.0304


155

[35] A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB

anisotropies in closed FRW models, Astrophys.J. 538 (2000) 473–476,

[astro-ph/9911177].

[36] A. Lewis and S. Bridle, Cosmological parameters from CMB and other

data: A Monte Carlo approach, Phys.Rev. D66 (2002) 103511,

[astro-ph/0205436].

[37] F. Feroz, M. Hobson, and M. Bridges, MultiNest: an efficient and

robust Bayesian inference tool for cosmology and particle physics,

MNRAS 398 (2009) 1601–1614.

[38] I. Huston and K. A. Malik, Numerical calculation of second order

perturbations, JCAP 0909 (2009) 019, [arXiv:0907.2917].

[39] I. Huston and A. J. Christopherson, Calculating Non-adiabatic Pressure

Perturbations during Multi-field Inflation, Phys.Rev. D85 (2012)

063507, [arXiv:1111.6919].

[40] I. Huston and K. A. Malik, Second Order Perturbations During

Inflation Beyond Slow-roll, JCAP 1110 (2011) 029,

[arXiv:1103.0912].

[41] I. Huston and A. J. Christopherson, Isocurvature Perturbations and

Reheating in Multi-Field Inflation, arXiv:1302.4298.

[42] J. Frazer, Predictions in multifield models of inflation, Journal of

Cosmology and Astroparticle Physics 2014 (2013), no. 01 028,

[arXiv:1303.3611].

[43] J. A. Adams, G. G. Ross, and S. Sarkar, Multiple inflation, Nucl.Phys.

B503 (1997) 405–425, [hep-ph/9704286].

http://arxiv.org/abs/astro-ph/9911177
http://arxiv.org/abs/astro-ph/0205436
http://arxiv.org/abs/0907.2917
http://arxiv.org/abs/1111.6919
http://arxiv.org/abs/1103.0912
http://arxiv.org/abs/1302.4298
http://arxiv.org/abs/1303.3611
http://arxiv.org/abs/hep-ph/9704286


156 Bibliography

[44] P. Adshead, C. Dvorkin, W. Hu, and E. A. Lim, Non-Gaussianity from

Step Features in the Inflationary Potential, Phys.Rev. D85 (2012)

023531, [arXiv:1110.3050].

[45] R. Easther, J. Frazer, H. V. Peiris, and L. C. Price, Simple predictions

from multifield inflationary models, Phys.Rev.Lett. 112 (2014) 161302,

[arXiv:1312.4035].

[46] D. Seery, D. J. Mulryne, J. Frazer, and R. H. Ribeiro, Inflationary

perturbation theory is geometrical optics in phase space, JCAP 1209

(2012) 010, [arXiv:1203.2635].

[47] D. H. Lyth and A. Riotto, Particle physics models of inflation and the

cosmological density perturbation, Phys.Rept. 314 (1999) 1–146,

[hep-ph/9807278].

[48] D. Langlois and S. Renaux-Petel, Perturbations in generalized

multi-field inflation, JCAP 0804 (2008) 017, [arXiv:0801.1085].

[49] D. Salopek, J. Bond, and J. M. Bardeen, Designing Density Fluctuation

Spectra in Inflation, Phys.Rev. D40 (1989) 1753.

[50] B. A. Bassett, S. Tsujikawa, and D. Wands, Inflation dynamics and

reheating, Rev.Mod.Phys. 78 (2006) 537–589, [astro-ph/0507632].

[51] D. J. Mulryne, D. Seery, and D. Wesley, Moment transport equations

for non-Gaussianity, JCAP 1001 (2010) 024, [arXiv:0909.2256].

[52] D. J. Mulryne, D. Seery, and D. Wesley, Moment transport equations

for the primordial curvature perturbation, JCAP 1104 (2011) 030,

[arXiv:1008.3159].

http://arxiv.org/abs/1110.3050
http://arxiv.org/abs/1312.4035
http://arxiv.org/abs/1203.2635
http://arxiv.org/abs/hep-ph/9807278
http://arxiv.org/abs/0801.1085
http://arxiv.org/abs/astro-ph/0507632
http://arxiv.org/abs/0909.2256
http://arxiv.org/abs/1008.3159


157

[53] D. J. Mulryne, Transporting non-Gaussianity from sub to super-horizon

scales, JCAP 1309 (2013) 010, [arXiv:1302.3842].

[54] T. Bunch and P. Davies, Quantum Field Theory in de Sitter Space:

Renormalization by Point Splitting, Proc.Roy.Soc.Lond. A360 (1978)

117–134.

[55] J. M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys.Rev.

D22 (1980) 1882–1905.

[56] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Spontaneous

creation of almost scale-free density perturbations in an inflationary

universe, Phys. Rev. D 28 (Aug, 1983) 679–693.

[57] S. Groot Nibbelink and B. van Tent, Density perturbations arising from

multiple field slow roll inflation, hep-ph/0011325.

[58] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Adiabatic and

entropy perturbations from inflation, Phys.Rev. D63 (2001) 023506,

[astro-ph/0009131].

[59] S. Groot Nibbelink and B. van Tent, Scalar perturbations during

multiple field slow-roll inflation, Class.Quant.Grav. 19 (2002) 613–640,

[hep-ph/0107272].

[60] C. T. Byrnes and D. Wands, Curvature and isocurvature perturbations

from two-field inflation in a slow-roll expansion, Phys.Rev. D74 (2006)

043529, [astro-ph/0605679].

[61] N. Bartolo, S. Matarrese, and A. Riotto, Adiabatic and isocurvature

perturbations from inflation: Power spectra and consistency relations,

Phys.Rev. D64 (2001) 123504, [astro-ph/0107502].

http://arxiv.org/abs/1302.3842
http://arxiv.org/abs/hep-ph/0011325
http://arxiv.org/abs/astro-ph/0009131
http://arxiv.org/abs/hep-ph/0107272
http://arxiv.org/abs/astro-ph/0605679
http://arxiv.org/abs/astro-ph/0107502


158 Bibliography

[62] D. Wands, N. Bartolo, S. Matarrese, and A. Riotto, An Observational

test of two-field inflation, Phys.Rev. D66 (2002) 043520,

[astro-ph/0205253].

[63] J. García-Bellido and D. Wands, Metric perturbations in two field

inflation, Phys.Rev. D53 (1996) 5437–5445, [astro-ph/9511029].

[64] K. A. Malik, D. Wands, and C. Ungarelli, Large scale curvature and

entropy perturbations for multiple interacting fluids, Phys.Rev. D67

(2003) 063516, [astro-ph/0211602].

[65] K. A. Malik, Cosmological perturbations in an inflationary universe,

astro-ph/0101563.

[66] K. A. Malik and D. Wands, Adiabatic and entropy perturbations with

interacting fluids and fields, JCAP 0502 (2005) 007,

[astro-ph/0411703].

[67] A. A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and

the Generation of Perturbations, JETP Lett. 42 (1985) 152–155.

[68] D. Lyth, Large Scale Energy Density Perturbations and Inflation,

Phys.Rev. D31 (1985) 1792–1798.

[69] M. Sasaki and E. D. Stewart, A General analytic formula for the

spectral index of the density perturbations produced during inflation,

Prog.Theor.Phys. 95 (1996) 71–78, [astro-ph/9507001].

[70] D. Salopek and J. Bond, Nonlinear evolution of long wavelength metric

fluctuations in inflationary models, Phys.Rev. D42 (1990) 3936–3962.

[71] M. Sasaki and T. Tanaka, Superhorizon scale dynamics of multiscalar

inflation, Prog.Theor.Phys. 99 (1998) 763–782, [gr-qc/9801017].

http://arxiv.org/abs/astro-ph/0205253
http://arxiv.org/abs/astro-ph/9511029
http://arxiv.org/abs/astro-ph/0211602
http://arxiv.org/abs/astro-ph/0101563
http://arxiv.org/abs/astro-ph/0411703
http://arxiv.org/abs/astro-ph/9507001
http://arxiv.org/abs/gr-qc/9801017


159

[72] D. H. Lyth and Y. Rodriguez, The Inflationary prediction for

primordial non-Gaussianity, Phys.Rev.Lett. 95 (2005) 121302,

[astro-ph/0504045].

[73] F. Vernizzi and D. Wands, Non-gaussianities in two-field inflation,

JCAP 0605 (2006) 019, [astro-ph/0603799].

[74] T. Battefeld and R. Easther, Non-Gaussianities in Multi-field Inflation,

JCAP 0703 (2007) 020, [astro-ph/0610296].

[75] K. A. Malik and D. Wands, Cosmological perturbations, Phys.Rept. 475

(2009) 1–51, [arXiv:0809.4944].

[76] M. Dias, J. Frazer, and A. R. Liddle, Multifield consequences for

D-brane inflation, JCAP 1206 (2012) 020, [arXiv:1203.3792].

[77] D. Seery and J. E. Lidsey, Primordial non-Gaussianities from

multiple-field inflation, JCAP 0509 (2005) 011, [astro-ph/0506056].

[78] J. M. Maldacena, Non-Gaussian features of primordial fluctuations in

single field inflationary models, JHEP 0305 (2003) 013,

[astro-ph/0210603].

[79] L. Alabidi and D. H. Lyth, Inflation models and observation, JCAP

0605 (2006) 016, [astro-ph/0510441].

[80] C. T. Byrnes, M. Sasaki, and D. Wands, The primordial trispectrum

from inflation, Phys.Rev. D74 (2006) 123519, [astro-ph/0611075].

[81] A. D. Linde, Hybrid inflation, Phys.Rev. D49 (1994) 748–754,

[astro-ph/9307002].

http://arxiv.org/abs/astro-ph/0504045
http://arxiv.org/abs/astro-ph/0603799
http://arxiv.org/abs/astro-ph/0610296
http://arxiv.org/abs/0809.4944
http://arxiv.org/abs/1203.3792
http://arxiv.org/abs/astro-ph/0506056
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/astro-ph/0510441
http://arxiv.org/abs/astro-ph/0611075
http://arxiv.org/abs/astro-ph/9307002


160 Bibliography

[82] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart, and

D. Wands, False vacuum inflation with Einstein gravity, Phys.Rev.

D49 (1994) 6410–6433, [astro-ph/9401011].

[83] Z. Lalak, D. Langlois, S. Pokorski, and K. Turzynski, Curvature and

isocurvature perturbations in two-field inflation, JCAP 0707 (2007)

014, [arXiv:0704.0212].

[84] A. Avgoustidis, S. Cremonini, A.-C. Davis, R. H. Ribeiro,

K. Turzynski, et al., The Importance of Slow-roll Corrections During

Multi-field Inflation, JCAP 1202 (2012) 038, [arXiv:1110.4081].

[85] A. R. Liddle, A. Mazumdar, and F. E. Schunck, Assisted inflation,

Phys.Rev. D58 (1998) 061301, [astro-ph/9804177].

[86] P. Kanti and K. A. Olive, On the realization of assisted inflation,

Phys.Rev. D60 (1999) 043502, [hep-ph/9903524].

[87] P. Kanti and K. A. Olive, Assisted chaotic inflation in higher

dimensional theories, Phys.Lett. B464 (1999) 192–198,

[hep-ph/9906331].

[88] N. Kaloper and A. R. Liddle, Dynamics and perturbations in assisted

chaotic inflation, Phys.Rev. D61 (2000) 123513, [hep-ph/9910499].

[89] R. Easther and L. McAllister, Random matrices and the spectrum of

N-flation, JCAP 0605 (2006) 018, [hep-th/0512102].

[90] S. Dimopoulos, S. Kachru, J. McGreevy, and J. G. Wacker, N-flation,

JCAP 0808 (2008) 003, [hep-th/0507205].

[91] S. A. Kim and A. R. Liddle, Nflation: multi-field inflationary dynamics

and perturbations, Phys.Rev. D74 (2006) 023513, [astro-ph/0605604].

http://arxiv.org/abs/astro-ph/9401011
http://arxiv.org/abs/0704.0212
http://arxiv.org/abs/1110.4081
http://arxiv.org/abs/astro-ph/9804177
http://arxiv.org/abs/hep-ph/9903524
http://arxiv.org/abs/hep-ph/9906331
http://arxiv.org/abs/hep-ph/9910499
http://arxiv.org/abs/hep-th/0512102
http://arxiv.org/abs/hep-th/0507205
http://arxiv.org/abs/astro-ph/0605604


161

[92] S. A. Kim and A. R. Liddle, Nflation: Non-Gaussianity in the

horizon-crossing approximation, Phys.Rev. D74 (2006) 063522,

[astro-ph/0608186].

[93] S. A. Kim and A. R. Liddle, Nflation: observable predictions from the

random matrix mass spectrum, Phys.Rev. D76 (2007) 063515,

[arXiv:0707.1982].

[94] D. Wenren, Tilt and Tensor-to-Scalar Ratio in Multifield Monodromy

Inflation, arXiv:1405.1411.

[95] X. Chen, R. Easther, and E. A. Lim, Large Non-Gaussianities in Single

Field Inflation, JCAP 0706 (2007) 023, [astro-ph/0611645].

[96] X. Chen, R. Easther, and E. A. Lim, Generation and Characterization

of Large Non-Gaussianities in Single Field Inflation, JCAP 0804

(2008) 010, [arXiv:0801.3295].

[97] R. Easther and R. Flauger, Planck Constraints on Monodromy

Inflation, JCAP 1402 (2014) 037, [arXiv:1308.3736].

[98] P. D. Meerburg, D. N. Spergel, and B. D. Wandelt, Searching for

Oscillations in the Primordial Power Spectrum: Perturbative Approach

(Paper I), Phys.Rev. D89 (2014) 063536, [arXiv:1308.3704].

[99] P. D. Meerburg and D. N. Spergel, Searching for Oscillations in the

Primordial Power Spectrum: Constraints from Planck (Paper II),

Phys.Rev. D89 (2014) 063537, [arXiv:1308.3705].

[100] E. J. Copeland, A. Mazumdar, and N. Nunes, Generalized assisted

inflation, Phys.Rev. D60 (1999) 083506, [astro-ph/9904309].

http://arxiv.org/abs/astro-ph/0608186
http://arxiv.org/abs/0707.1982
http://arxiv.org/abs/1405.1411
http://arxiv.org/abs/astro-ph/0611645
http://arxiv.org/abs/0801.3295
http://arxiv.org/abs/1308.3736
http://arxiv.org/abs/1308.3704
http://arxiv.org/abs/1308.3705
http://arxiv.org/abs/astro-ph/9904309


162 Bibliography

[101] D. Battefeld and S. Kawai, Preheating after N-flation, Phys.Rev. D77

(2008) 123507, [arXiv:0803.0321].

[102] T. C. Bachlechner, M. Dias, J. Frazer, and L. McAllister, Chaotic

inflation with kinetic alignment of axion fields, Phys.Rev. D91 (2015),

no. 2 023520, [arXiv:1404.7496].

[103] C. Ringeval, P. Brax, C. van de Bruck, and A.-C. Davis, Boundary

inflation and the wmap data, Phys.Rev. D73 (2006) 064035,

[astro-ph/0509727].

[104] M. Dias, J. Frazer, and D. Seery, Computing observables in curved

multifield models of inflation - A guide (with code) to the transport

method, arXiv:1502.03125.

[105] R. Easther and L. C. Price, Initial conditions and sampling for

multifield inflation, JCAP 1307 (2013) 027, [arXiv:1304.4244].

[106] A. D. Linde, Chaotic Inflation, Phys.Lett. B129 (1983) 177–181.

[107] R. O. Ramos, Fine tuning solution for hybrid inflation in dissipative

chaotic dynamics, Phys.Rev. D64 (2001) 123510, [astro-ph/0104379].

[108] G. Lazarides, C. Panagiotakopoulos, and N. Vlachos, Initial conditions

for smooth hybrid inflation, Phys.Rev. D54 (1996) 1369–1373,

[hep-ph/9606297].

[109] G. Lazarides and N. Vlachos, Initial conditions for supersymmetric

inflation, Phys.Rev. D56 (1997) 4562–4567, [hep-ph/9707296].

[110] N. Tetradis, Fine tuning of the initial conditions for hybrid inflation,

Phys.Rev. D57 (1998) 5997–6002, [astro-ph/9707214].

http://arxiv.org/abs/0803.0321
http://arxiv.org/abs/1404.7496
http://arxiv.org/abs/astro-ph/0509727
http://arxiv.org/abs/1502.03125
http://arxiv.org/abs/1304.4244
http://arxiv.org/abs/astro-ph/0104379
http://arxiv.org/abs/hep-ph/9606297
http://arxiv.org/abs/hep-ph/9707296
http://arxiv.org/abs/astro-ph/9707214


163

[111] L. E. Mendes and A. R. Liddle, Initial conditions for hybrid inflation,

Phys.Rev. D62 (2000) 103511, [astro-ph/0006020].

[112] S. Clesse and J. Rocher, Avoiding the blue spectrum and the fine-tuning

of initial conditions in hybrid inflation, Phys.Rev. D79 (2009) 103507,

[arXiv:0809.4355].

[113] N. Agarwal, R. Bean, L. McAllister, and G. Xu, Universality in

D-brane inflation, Journal of Cosmology and Astroparticle Physics

2011 (2011), no. 09 002, [arXiv:1103.2775].

[114] G. Gibbons, S. W. Hawking, and J. Stewart, A natural measure on the

set of all universes, Nuclear Physics B 281 (1987), no. 3 736–751.

[115] S. Hawking and D. N. Page, How probable is inflation?, Nucl.Phys.

B298 (1988) 789–809.

[116] G. Gibbons and N. Turok, The Measure Problem in Cosmology,

Phys.Rev. D77 (2008) 063516, [hep-th/0609095].

[117] B. Freivogel, Making predictions in the multiverse, Class.Quant.Grav.

28 (2011) 204007, [arXiv:1105.0244].

[118] J. S. Schiffrin and R. M. Wald, Measure and Probability in Cosmology,

Phys.Rev. D86 (2012) 023521, [arXiv:1202.1818].

[119] L. Kofman and A. D. Linde, Generation of Density Perturbations in

the Inflationary Cosmology, Nucl.Phys. B282 (1987) 555.

[120] S. Clesse, Hybrid inflation along waterfall trajectories, Phys.Rev. D83

(2011) 063518, [arXiv:1006.4522].

http://arxiv.org/abs/astro-ph/0006020
http://arxiv.org/abs/0809.4355
http://arxiv.org/abs/1103.2775
http://arxiv.org/abs/hep-th/0609095
http://arxiv.org/abs/1105.0244
http://arxiv.org/abs/1202.1818
http://arxiv.org/abs/1006.4522


164 Bibliography

[121] H. Kodama, K. Kohri, and K. Nakayama, On the waterfall behavior in

hybrid inflation, Prog.Theor.Phys. 126 (2011) 331–350,

[arXiv:1102.5612].

[122] K. Story, C. Reichardt, Z. Hou, R. Keisler, K. Aird, et al., A

Measurement of the Cosmic Microwave Background Damping Tail from

the 2500-square-degree SPT-SZ survey, Astrophys.J. 779 (2013) 86,

[arXiv:1210.7231].

[123] WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson

Microwave Anisotropy Probe (WMAP) Observations: Cosmological

Parameter Results, Astrophys.J.Suppl. 208 (2013) 19,

[arXiv:1212.5226].

[124] WMAP Collaboration, C. Bennett et al., Nine-Year Wilkinson

Microwave Anisotropy Probe (WMAP) Observations: Final Maps and

Results, Astrophys.J.Suppl. 208 (2013) 20, [arXiv:1212.5225].

[125] Atacama Cosmology Telescope Collaboration, J. L. Sievers et al.,

The Atacama Cosmology Telescope: Cosmological parameters from

three seasons of data, JCAP 1310 (2013) 060, [arXiv:1301.0824].

[126] J. Martin and V. Vennin, Stochastic Effects in Hybrid Inflation,

Phys.Rev. D85 (2012) 043525, [arXiv:1110.2070].

[127] G. N. Felder, L. Kofman, and A. D. Linde, Inflation and preheating in

NO models, Phys.Rev. D60 (1999) 103505, [hep-ph/9903350].

[128] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,

D. E. Shumaker, and C. S. Woodward, Sundials: Suite of nonlinear and

differential/algebraic equation solvers, ACM Trans. Math. Softw. 31

(Sept., 2005) 363396.

http://arxiv.org/abs/1102.5612
http://arxiv.org/abs/1210.7231
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1212.5225
http://arxiv.org/abs/1301.0824
http://arxiv.org/abs/1110.2070
http://arxiv.org/abs/hep-ph/9903350


165

[129] F. Finelli, G. Marozzi, A. Starobinsky, G. Vacca, and G. Venturi,

Stochastic growth of quantum fluctuations during slow-roll inflation,

Phys.Rev. D82 (2010) 064020, [arXiv:1003.1327].

[130] F. Finelli, G. Marozzi, A. Starobinsky, G. Vacca, and G. Venturi,

Generation of fluctuations during inflation: Comparison of stochastic

and field-theoretic approaches, Phys.Rev. D79 (2009) 044007,

[arXiv:0808.1786].

[131] J. Theiler, Estimating fractal dimension, J. Opt. Soc. Am. A 7 (1990)

1055–1073.

[132] S. Downes, B. Dutta, and K. Sinha, Attractors, Universality and

Inflation, Phys.Rev. D86 (2012) 103509, [arXiv:1203.6892].

[133] A. Aazami and R. Easther, Cosmology from random multifield

potentials, JCAP 0603 (2006) 013, [hep-th/0512050].

[134] S.-H. H. Tye, J. Xu, and Y. Zhang, Multi-field Inflation with a Random

Potential, JCAP 0904 (2009) 018, [arXiv:0812.1944].

[135] J. Frazer and A. R. Liddle, Multi-field inflation with random potentials:

field dimension, feature scale and non-Gaussianity, JCAP 1202 (2012)

039, [arXiv:1111.6646].

[136] D. Marsh, L. McAllister, and T. Wrase, The Wasteland of Random

Supergravities, JHEP 1203 (2012) 102, [arXiv:1112.3034].

[137] D. Battefeld, T. Battefeld, and S. Schulz, On the Unlikeliness of

Multi-Field Inflation: Bounded Random Potentials and our Vacuum,

JCAP 1206 (2012) 034, [arXiv:1203.3941].

http://arxiv.org/abs/1003.1327
http://arxiv.org/abs/0808.1786
http://arxiv.org/abs/1203.6892
http://arxiv.org/abs/hep-th/0512050
http://arxiv.org/abs/0812.1944
http://arxiv.org/abs/1111.6646
http://arxiv.org/abs/1112.3034
http://arxiv.org/abs/1203.3941


166 Bibliography

[138] L. McAllister, S. Renaux-Petel, and G. Xu, A Statistical Approach to

Multifield Inflation: Many-field Perturbations Beyond Slow Roll, JCAP

1210 (2012) 046, [arXiv:1207.0317].

[139] N. Itzhaki and E. D. Kovetz, Inflection Point Inflation and Time

Dependent Potentials in String Theory, JHEP 0710 (2007) 054,

[arXiv:0708.2798].

[140] R. Allahverdi, B. Dutta, and A. Mazumdar, Attraction towards an

inflection point inflation, Phys.Rev. D78 (2008) 063507,

[arXiv:0806.4557].

[141] N. Itzhaki and E. D. Kovetz, A Phase Transition between Small and

Large Field Models of Inflation, Class.Quant.Grav. 26 (2009) 135007,

[arXiv:0810.4299].

[142] M. Spalinski, Initial conditions for small field inflation, Phys.Rev. D80

(2009) 063529, [arXiv:0903.4999].

[143] D. S. Goldwirth and T. Piran, Inhomogeneity and the onset of

inflation, Phys.Rev.Lett. 64 (1990) 2852–2855.

[144] D. S. Goldwirth, On inhomogeneous initial conditions for inflation,

Phys.Rev. D43 (1991) 3204–3213.

[145] D. S. Goldwirth and T. Piran, Initial conditions for inflation,

Phys.Rept. 214 (1992) 223–291.

[146] R. Easther, L. C. Price, and J. Rasero, Inflating an Inhomogeneous

Universe, JCAP 1408 (2014) 041, [arXiv:1406.2869].

[147] 2dFGRS Collaboration, S. Cole et al., The 2dF Galaxy Redshift

Survey: Power-spectrum analysis of the final dataset and cosmological

http://arxiv.org/abs/1207.0317
http://arxiv.org/abs/0708.2798
http://arxiv.org/abs/0806.4557
http://arxiv.org/abs/0810.4299
http://arxiv.org/abs/0903.4999
http://arxiv.org/abs/1406.2869


167

implications, Mon.Not.Roy.Astron.Soc. 362 (2005) 505–534,

[astro-ph/0501174].

[148] SDSS Collaboration, D. J. Eisenstein et al., SDSS-III: Massive

Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy,

and Extra-Solar Planetary Systems, Astron.J. 142 (2011) 72,

[arXiv:1101.1529].

[149] T. Giannantonio, A. J. Ross, W. J. Percival, R. Crittenden, D. Bacher,

et al., Improved Primordial Non-Gaussianity Constraints from

Measurements of Galaxy Clustering and the Integrated Sachs-Wolfe

Effect, Phys.Rev. D89 (2014) 023511, [arXiv:1303.1349].

[150] B. Leistedt, H. V. Peiris, and N. Roth, Constraints on Primordial

Non-Gaussianity from Eight Hundred Thousand Photometric Quasars,

Phys.Rev.Lett. 113 (2014), no. 22 221301, [arXiv:1405.4315].

[151] Z. Hou, C. Reichardt, K. Story, B. Follin, R. Keisler, et al., Constraints

on Cosmology from the Cosmic Microwave Background Power

Spectrum of the 2500 deg2 SPT-SZ Survey, Astrophys.J. 782 (2014),

no. 2 74, [arXiv:1212.6267].

[152] Planck Collaboration, P. Ade et al., Planck 2013 results. XXII.

Constraints on inflation, Astron.Astrophys. 571 (2014) A22,

[arXiv:1303.5082].

[153] A. Ijjas, P. J. Steinhardt, and A. Loeb, Inflationary paradigm in trouble

after Planck2013, Phys.Lett. B723 (2013) 261–266, [arXiv:1304.2785].

[154] A. H. Guth, D. I. Kaiser, and Y. Nomura, Inflationary paradigm after

Planck 2013, Phys.Lett. B733 (2014) 112–119, [arXiv:1312.7619].

http://arxiv.org/abs/astro-ph/0501174
http://arxiv.org/abs/1101.1529
http://arxiv.org/abs/1303.1349
http://arxiv.org/abs/1405.4315
http://arxiv.org/abs/1212.6267
http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/1304.2785
http://arxiv.org/abs/1312.7619


168 Bibliography

[155] A. Linde, Inflationary Cosmology after Planck 2013, in 100e Ecole

d’Ete de Physique: Post-Planck Cosmology Les Houches, France, July

8-August 2, 2013, 2014. arXiv:1402.0526.

[156] A. Ijjas, P. J. Steinhardt, and A. Loeb, Inflationary schism after

Planck2013, Phys.Lett. B736 (2014) 142–146, [arXiv:1402.6980].

[157] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin

of Spontaneous Symmetry Breaking, Phys.Rev. D7 (1973) 1888–1910.

[158] A. Albrecht, R. H. Brandenberger, and R. Matzner, Numerical Analysis

of Inflation, Phys.Rev. D32 (1985) 1280.

[159] J. Kung and R. H. Brandenberger, The Initial Condition Dependence

of Inflationary Universe Models, Phys.Rev. D40 (1989) 2532.

[160] R. H. Brandenberger and J. Kung, Chaotic Inflation as an Attractor in

Initial Condition Space, Phys.Rev. D42 (1990) 1008–1015.

[161] H. A. Feldman and R. H. Brandenberger, Chaotic Inflation With

Metric and Matter Perturbations, Phys.Lett. B227 (1989) 359.

[162] M. Grana, Flux compactifications in string theory: A Comprehensive

review, Phys.Rept. 423 (2006) 91–158, [hep-th/0509003].

[163] M. R. Douglas and S. Kachru, Flux compactification, Rev.Mod.Phys. 79

(2007) 733–796, [hep-th/0610102].

[164] F. Denef, M. R. Douglas, and S. Kachru, Physics of String Flux

Compactifications, Ann.Rev.Nucl.Part.Sci. 57 (2007) 119–144,

[hep-th/0701050].

http://arxiv.org/abs/1402.0526
http://arxiv.org/abs/1402.6980
http://arxiv.org/abs/hep-th/0509003
http://arxiv.org/abs/hep-th/0610102
http://arxiv.org/abs/hep-th/0701050


169

[165] F. Denef, Les Houches Lectures on Constructing String Vacua,

arXiv:0803.1194.

[166] G. N. Felder and I. Tkachev, LATTICEEASY: A Program for lattice

simulations of scalar fields in an expanding universe,

Comput.Phys.Commun. 178 (2008) 929–932, [hep-ph/0011159].

[167] A. V. Frolov, DEFROST: A New Code for Simulating Preheating after

Inflation, JCAP 0811 (2008) 009, [arXiv:0809.4904].

[168] R. Easther, H. Finkel, and N. Roth, PSpectRe: A Pseudo-Spectral Code

for (P)reheating, JCAP 1010 (2010) 025, [arXiv:1005.1921].

[169] H. Kurki-Suonio, P. Laguna, and R. A. Matzner, Inhomogeneous

inflation: Numerical evolution, Phys.Rev. D48 (1993) 3611–3624,

[astro-ph/9306009].

[170] C. L. Wainwright, M. C. Johnson, H. V. Peiris, A. Aguirre, L. Lehner,

et al., Simulating the universe(s): from cosmic bubble collisions to

cosmological observables with numerical relativity, JCAP 1403 (2014)

030, [arXiv:1312.1357].

[171] C. L. Wainwright, M. C. Johnson, A. Aguirre, and H. V. Peiris,

Simulating the universe(s) II: phenomenology of cosmic bubble

collisions in full General Relativity, JCAP 1410 (2014), no. 10 024,

[arXiv:1407.2950].

[172] G. Dvali, Q. Shafi, and R. K. Schaefer, Large scale structure and

supersymmetric inflation without fine tuning, Phys.Rev.Lett. 73 (1994)

1886–1889, [hep-ph/9406319].

http://arxiv.org/abs/0803.1194
http://arxiv.org/abs/hep-ph/0011159
http://arxiv.org/abs/0809.4904
http://arxiv.org/abs/1005.1921
http://arxiv.org/abs/astro-ph/9306009
http://arxiv.org/abs/1312.1357
http://arxiv.org/abs/1407.2950
http://arxiv.org/abs/hep-ph/9406319


170 Bibliography

[173] W. Buchmüller, V. Domcke, K. Kamada, and K. Schmitz, Hybrid

Inflation in the Complex Plane, JCAP 1407 (2014) 054,

[arXiv:1404.1832].

[174] S. Clesse, B. Garbrecht, and Y. Zhu, Non-Gaussianities and Curvature

Perturbations from Hybrid Inflation, Phys.Rev. D89 (2014) 063519,

[arXiv:1304.7042].

[175] S. R. Green and R. M. Wald, A new framework for analyzing the effects

of small scale inhomogeneities in cosmology, Phys.Rev. D83 (2011)

084020, [arXiv:1011.4920].

[176] A. Corichi and A. Karami, On the measure problem in slow roll

inflation and loop quantum cosmology, Phys.Rev. D83 (2011) 104006,

[arXiv:1011.4249].

[177] A. Corichi and D. Sloan, Inflationary Attractors and their Measures,

Class.Quant.Grav. 31 (2014) 062001, [arXiv:1310.6399].

[178] A. Berera and C. Gordon, Inflationary initial conditions consistent with

causality, Phys.Rev. D63 (2001) 063505, [hep-ph/0010280].

[179] A. D. Linde, Creation of a compact topologically nontrivial inflationary

universe, JCAP 0410 (2004) 004, [hep-th/0408164].

[180] Planck Collaboration, P. Ade et al., Planck 2013 Results. XXIV.

Constraints on primordial non-Gaussianity, Astron.Astrophys. 571

(2014) A24, [arXiv:1303.5084].

[181] D. I. Kaiser and E. I. Sfakianakis, Multifield Inflation after Planck:

The Case for Nonminimal Couplings, Phys.Rev.Lett. 112 (2014)

011302, [arXiv:1304.0363].

http://arxiv.org/abs/1404.1832
http://arxiv.org/abs/1304.7042
http://arxiv.org/abs/1011.4920
http://arxiv.org/abs/1011.4249
http://arxiv.org/abs/1310.6399
http://arxiv.org/abs/hep-ph/0010280
http://arxiv.org/abs/hep-th/0408164
http://arxiv.org/abs/1303.5084
http://arxiv.org/abs/1304.0363


171

[182] R. Kallosh and A. Linde, Universality Class in Conformal Inflation,

JCAP 1307 (2013) 002, [arXiv:1306.5220].

[183] R. Kallosh and A. Linde, Non-minimal Inflationary Attractors, JCAP

1310 (2013) 033, [arXiv:1307.7938].

[184] R. Kallosh and A. Linde, Multi-field Conformal Cosmological

Attractors, JCAP 1312 (2013) 006, [arXiv:1309.2015].

[185] D. Polarski and A. A. Starobinsky, Spectra of perturbations produced by

double inflation with an intermediate matter dominated stage,

Nucl.Phys. B385 (1992) 623–650.

[186] J. Ellis, M. Fairbairn, and M. Sueiro, Rescuing Quadratic Inflation,

JCAP 1402 (2014) 044, [arXiv:1312.1353].

[187] D. W. Scott, On optimal and data-based histograms, Biometrika 66

(1979), no. 3 605–610.

[188] C. M. Peterson and M. Tegmark, Testing Two-Field Inflation,

Phys.Rev. D83 (2011) 023522, [arXiv:1005.4056].

[189] G. E. Crooks, Measuring thermodynamic length, Phys. Rev. Lett. 99

(Sep, 2007) 100602.

[190] M. K. Transtrum, B. B. Machta, and J. P. Sethna, Why are nonlinear

fits so challenging?, Phys.Rev.Lett. 104 (2010) 060201,

[arXiv:0909.3884].

[191] B. B. Machta, R. Chachra, M. K. Transtrum, and J. P. Sethna,

Parameter space compression underlies emergent theories and

predictive models, Science 342 (2013), no. 6158 604–607.

http://arxiv.org/abs/1306.5220
http://arxiv.org/abs/1307.7938
http://arxiv.org/abs/1309.2015
http://arxiv.org/abs/1312.1353
http://arxiv.org/abs/1005.4056
http://arxiv.org/abs/0909.3884


172 Bibliography

[192] P. Adshead and R. Easther, Constraining Inflation, JCAP 0810 (2008)

047, [arXiv:0802.3898].

[193] J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol, Evolution of fNL

to the adiabatic limit, JCAP 1111 (2011) 005, [arXiv:1106.2153].

[194] J. Frazer and A. R. Liddle, Exploring a string-like landscape, JCAP

1102 (2011) 026, [arXiv:1101.1619].

[195] G. Leung, E. R. Tarrant, C. T. Byrnes, and E. J. Copeland, Reheating,

Multifield Inflation and the Fate of the Primordial Observables, JCAP

1209 (2012) 008, [arXiv:1206.5196].

[196] G. Leung, E. R. Tarrant, C. T. Byrnes, and E. J. Copeland, Influence

of Reheating on the Trispectrum and its Scale Dependence, JCAP 1308

(2013) 006, [arXiv:1303.4678].

[197] J. Meyers and E. R. M. Tarrant, Perturbative Reheating After

Multiple-Field Inflation: The Impact on Primordial Observables,

Phys.Rev. D89 (2014), no. 6 063535, [arXiv:1311.3972].

[198] L. C. Price, H. V. Peiris, J. Frazer, and R. Easther, Gravitational wave

consistency relations for multifield inflation, Phys.Rev.Lett. 114 (2015),

no. 3 031301, [arXiv:1409.2498].

[199] BICEP2 Collaboration, P. Ade et al., Detection of B-Mode

Polarization at Degree Angular Scales by BICEP2, Phys.Rev.Lett. 112

(2014), no. 24 241101, [arXiv:1403.3985].

[200] L. Verde, H. Peiris, and R. Jimenez, Optimizing CMB polarization

experiments to constrain inflationary physics, JCAP 0601 (2006) 019,

[astro-ph/0506036].

http://arxiv.org/abs/0802.3898
http://arxiv.org/abs/1106.2153
http://arxiv.org/abs/1101.1619
http://arxiv.org/abs/1206.5196
http://arxiv.org/abs/1303.4678
http://arxiv.org/abs/1311.3972
http://arxiv.org/abs/1409.2498
http://arxiv.org/abs/1403.3985
http://arxiv.org/abs/astro-ph/0506036


173

[201] S. Dodelson, How much can we learn about the physics of inflation?,

Phys.Rev.Lett. 112 (2014) 191301, [arXiv:1403.6310].

[202] J. Caligiuri and A. Kosowsky, Inflationary Tensor Perturbations After

BICEP, Phys.Rev.Lett. 112 (2014) 191302, [arXiv:1403.5324].

[203] CMBPol Study Team Collaboration, D. Baumann et al., CMBPol

Mission Concept Study: Probing Inflation with CMB Polarization, AIP

Conf.Proc. 1141 (2009) 10–120, [arXiv:0811.3919].

[204] PRISM Collaboration Collaboration, P. Andre et al., PRISM

(Polarized Radiation Imaging and Spectroscopy Mission): A White

Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave

and Far-Infrared Sky, arXiv:1306.2259.

[205] R. W. Ogburn et al., BICEP2 and Keck array operational overview and

status of observations, in Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, vol. 8452, Sept., 2012.

arXiv:1208.0638.

[206] Z. Ahmed et al., Bicep3: a 95 ghz refracting telescope for degree-scale

cmb polarization, Proc. SPIE 9153 (2014) 91531N–91531N–12.

[207] T. Matsumura et al., Polarbear-2 optical and polarimeter designs, Proc.

SPIE 8452 (2012) 84523E–84523E–8.

[208] SPT-3G Collaboration, B. Benson et al., SPT-3G: A Next-Generation

Cosmic Microwave Background Polarization Experiment on the South

Pole Telescope, Proc.SPIE Int.Soc.Opt.Eng. 9153 (2014) 91531P,

[arXiv:1407.2973].

http://arxiv.org/abs/1403.6310
http://arxiv.org/abs/1403.5324
http://arxiv.org/abs/0811.3919
http://arxiv.org/abs/1306.2259
http://arxiv.org/abs/1208.0638
http://arxiv.org/abs/1407.2973


174 Bibliography

[209] P. Oxley, P. Ade, C. Baccigalupi, P. deBernardis, H.-M. Cho, et al.,

The EBEX experiment, Proc.SPIE Int.Soc.Opt.Eng. 5543 (2004)

320–331, [astro-ph/0501111].

[210] B. Crill, P. Ade, E. Battistelli, S. Benton, R. Bihary, et al., SPIDER: A

Balloon-borne Large-scale CMB Polarimeter, Proc.SPIE

Int.Soc.Opt.Eng. 7010 (2008) 2P, [arXiv:0807.1548].

[211] K. W. Masui and U.-L. Pen, Primordial gravity wave fossils and their

use in testing inflation, Phys.Rev.Lett. 105 (2010) 161302,

[arXiv:1006.4181].

[212] L. Book, M. Kamionkowski, and F. Schmidt, Lensing of 21-cm

Fluctuations by Primordial Gravitational Waves, Phys.Rev.Lett. 108

(2012) 211301, [arXiv:1112.0567].

[213] T. L. Smith, H. V. Peiris, and A. Cooray, Deciphering inflation with

gravitational waves: cosmic microwave background polarization vs.

direct detection with laser interferometers, Phys.Rev. D73 (2006)

123503, [astro-ph/0602137].

[214] D. V. Hinkley, On the ratio of two correlated normal random variables,

Biometrika 56 (1969), no. 3 635–639.

[215] J. Martin, C. Ringeval, and R. Trotta, Hunting down the best model of

inflation with Bayesian evidence, Phys.Rev. D83 (Mar., 2011)

[arXiv:1009.4157].

[216] H. Jeffreys, An invariant form for the prior probability in estimation

problems, in Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, vol. 186,

pp. 453–461, The Royal Society, 1946.

http://arxiv.org/abs/astro-ph/0501111
http://arxiv.org/abs/0807.1548
http://arxiv.org/abs/1006.4181
http://arxiv.org/abs/1112.0567
http://arxiv.org/abs/astro-ph/0602137
http://arxiv.org/abs/1009.4157


175

[217] R. Easther and J. T. Giblin, The Hubble slow roll expansion for multi

field inflation, Phys.Rev. D72 (2005) 103505, [astro-ph/0505033].

[218] Y.-S. Piao, On perturbation spectra of N-flation, Phys.Rev. D74 (2006)

047302, [gr-qc/0606034].

[219] D. Sloan, Minimal Coupling and Attractors, Class.Quant.Grav. 31

(2014) 245015, [arXiv:1407.3977].

[220] M. P. Hertzberg and F. Wilczek, Inflation Driven by Unification

Energy, arXiv:1407.6010.

[221] P. Townsend, Black holes: Lecture notes, gr-qc/9707012.

[222] K. Clough, P. Figueras, H. Finkel, M. Kunesch, E. A. Lim, et al.,

GRChombo : Numerical Relativity with Adaptive Mesh Refinement,

arXiv:1503.03436.

http://arxiv.org/abs/astro-ph/0505033
http://arxiv.org/abs/gr-qc/0606034
http://arxiv.org/abs/1407.3977
http://arxiv.org/abs/1407.6010
http://arxiv.org/abs/gr-qc/9707012
http://arxiv.org/abs/1503.03436

	Abstract
	Acknowledgments
	I An Overview of Inflation
	Beyond the Simplest Picture
	Introduction
	The need for inflation
	Cosmological perturbation theory
	Single-field inflation
	Multifield inflation
	Thesis outline


	II A Numerical Approach
	MultiModeCode
	Abstract
	Introduction
	Features of MultiModeCode
	A brief review of multifield perturbation theory
	The method
	Numerical results
	Conclusion


	III Sensitivity to Initial Conditions
	The Homogeneous Initial Conditions Problem
	Abstract
	Introduction
	Inflationary dynamics
	Numerical results
	Conclusion

	Inflating an Inhomogeneous Universe
	Abstract
	Introduction
	Model
	Numerical methods
	Results
	Conclusion


	IV Obtaining Generic Predictions
	Simple Predictions from Multifield Inflation
	Abstract
	Introduction
	Method
	Initial conditions
	Multifield perturbations
	Results
	Discussion

	Gravitational Wave Consistency Relations
	Abstract
	Introduction
	Model
	N formalism
	The many-field limit
	The method
	Novel multifield predictions
	Specific examples
	Relaxing the approximations
	Conclusion


	V Conclusion
	Conclusion
	How do we get enough inflation?
	How can we get generic predictions?
	What do generic predictions look like?
	Outlook

	Appendix Bayesian Methods
	Bayes theorem
	Application to theoretical modeling

	Bibliography

	coversheet.pdf
	http://researchspace.auckland.ac.nz
	Copyright Statement
	General copyright and disclaimer



