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ABSTRACT

With more than one light scalar field contributing to cosmological perturba-
tions, multifield inflation models are distinguishable from scenarios with only
one field. We address here two issues that affect multifield inflation models’
ability to make predictions about the homogeneity of the universe and the

statistics of the primordial spectrum of curvature perturbations.

We first consider the sensitivity of the prototypical hybrid inflation model
to its initial conditions. We argue that physically comparable initial conditions
must be constrained so that a bijective mapping can be made between allowed
initial conditions and solutions to the equations of motion. Using this criterion,
hybrid inflation retains characteristics of strong nonlinearity, such as chaotic
dynamics, and that previous results for the robustness of the inflationary at-
tractor can be applied to the system’s solution space. We then extend this
analysis to include primordial inhomogeneity by using numerical lattice PDE
techniques. We find that the strong nonlinearity of hybrid inflation can result
in a significantly different final state for inhomogeneous universes as compared
to homogeneous initial conditions. A homogeneous universe that is unable
to inflate sufficiently may instead become viable with a small amount of sub-
horizon inhomogeneity, in contrast to the conventional analysis for single-field

inflation models.

We also consider how a multifield inflation model’s predictions for the pri-
mordial power spectrum depend on its initial state, given that many multifield
models have an infinite number of inflationary solutions. We develop an open-

source Fortran program for Monte Carlo exploration of multifield inflation and
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demonstrate numerically that Ny-quadratic inflation is not sensitively depen-
dent on the prior probability chosen for the fields’ initial conditions. Finally,
we calculate a generic prediction for the inflationary consistency relation n;/r
at the end of inflation for a wide class of phenomenologically viable multifield
inflation models. Although the models have significant complexity, the central
limit theorem reduces the dimensionality of the probability distributions for

observables, resulting in emergent simplicity for realistic multifield models.
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PART 1

AN OVERVIEW OF INFLATION






CHAPTER 1

BEYOND THE SIMPLEST PICTURE

1.1 Introduction

The amount of data available to cosmologists has undergone a radical expan-
sion in the early portion of the 215 century, ushering us into the era of “Pre-
cision Cosmology.” The recent improvement in the observations of the cosmic
microwave background (CMB) with the WMAP and Planck space-based tele-
scopes has drastically increased our ability to test for a primordial epoch of
inflation. Inflation is an early period of accelerated expansion of the universe,
which is invoked at the level of the classical background to create a flat and
approximately homogeneous universe. This basic picture was put forward in a
series of papers in the 1980s [1-4], which revolutionized our ideas of the early
universe. Importantly, inflation also generates random, classical perturbations
on an otherwise smooth and flat universe with a characteristic spectrum that
depends, typically, on the functional form of the potential energy density for
a scalar field. The statistics of these perturbations are distinguishable in the
present-day signal from the CMB and large-scale structure, allowing us to

constrain the model space of inflation.

In particular, with the WMAP9 dataset [5] the standard ACDM cosmology
acquired the parameter n,, which measures the deviation of the primordial
power spectrum from the featureless Harrison-Zel’dovich spectrum, at greater

than 50 significance. A non-unity n, is one of the strongest predictions for
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inflation, although the exact value can differ depending on the specifics of the
inflationary model and other early universe scenarios may also yield n, # 1.
In this chapter we will discuss the role that the basic inflationary mechanism
plays in the standard picture of cosmology. We will introduce the semi-classical
picture of inflationary perturbations, the power spectrum, and the main sub-
ject of this thesis, multifield models of inflation, and how their predictions may
differ from the simple single-field models. Finally, we will discuss the role of
Bayesian statistics in understanding and reporting theoretical uncertainty in

models.

1.2 The need for inflation

The simple picture.— There are some major problems for the initial con-
ditions of the classical universe. Since curvature and inhomogeneities grow
on sub-horizon scales, the observed flatness and approximate homogeneity of
the modern universe on super-horizon scales would otherwise require an ex-
ceptional initial state that must have been many orders of magnitude flatter
and more homogeneous than today. An especially important problem for this
thesis is that the CMB is isotropic to first-order for regions of the sky that
were never in causal contact, the so-called horizon or homogeneity problem.
An early period of accelerated expansion provides a physical mechanism to
solve these problems by shrinking the size of the Hubble radius in comoving
coordinates during a phase of accelerated expansion, which has the scale factor
a evolving like a > 0, with overdots indicating derivatives with respect to
cosmic time ¢. In physical coordinates, the Hubble radius is H~!, which gives

a comoving Hubble radius 7y, = (aH)~! that shrinks as



Any gradients in the matter fields with comoving length R are then ex-
panded outside of the Hubble horizon during inflation, yielding an arbitrarily
homogeneous universe locally. This makes the physically-relevant neighbor-
hood around a given point in space-time decrease with time, so that the entire
present-day universe could have existed inside a causally connected region prior
to inflation; the typical size for homogeneous patches today would then exceed

the distance to the surface of last scattering.

The problem of initial conditions.— However, even at the level of the
classical background, this simple picture is not entirely adequate. Importantly,
one of the main assumptions hidden above is that inflation must start on a
super-H comoving region of the universe, despite there being no causal reason
for this [6,7]. Consequently, the horizon problem is only solved by this mecha-
nism if the initial conditions of the Universe satisfied the necessary conditions
for inflation in adjacent, but causally disconnected regions. We will address

this problem in Chapter 4.

1.3 Cosmological perturbation theory

The most important aspect of cosmological inflation is that classical curvature
perturbations larger than the comoving horizon are generated in a nearly scale-
invariant and stochastic fashion from quantum perturbations on sub-horizon
scales. The statistics of the classical perturbations have now been constrained
to a fine degree from CMB data. This enables us to put serious pressure on
some of the simplest inflationary models, significantly restricting the allowed
parameter space and changing our opinion on the types of models that yield
observationally viable universes. In this section we will discuss how quantum

perturbations lead to classical perturbations and how we calculate the statistics
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of the primordial perturbations.

1.3.1 Perturbed FLRW

To describe the basic mechanism we will start with a perturbed Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric:

Guv = G + Py, (1.2)

where
Gur(7) = a(T) N (1.3)

for scale factor a, when the time variable is conformal time dr = dt/a, and 7,
is the Minkowski metric with signature (-, +,+,+). Throughout this thesis we
will use the convention where Greek indices run from p = 0,...,3 and Latin

indices from 7 = 1,2,3. The perturbations are defined as

hOO = —QCLQ\P (14)
ho,‘ = 2(1231' (15)
hij = a*[(1 - 2®) +2E;], (1.6)

where ¥ and & are scalars, but not Lorentz scalars; B; is a 3-vector, i.e., is
invariant under spatial rotations; and E;; is a symmetric and trace-free (E', = 0)
3-tensor. All of the functions in Eqs (1.4)—(1.6) depend on z# and the number
of independent components of h,, are matched by the number of degrees of
freedom in ¥, ®, B;, and E;;.

Using the results of Ref. [8] we uniquely decompose B; and Ej; into scalar,

vector, and tensor components:



and

Eij = 3<18J)E + 8(1EA']) + Eij; (18)

where the hat indicates that the object is transverse, symmetric, and trace-
free. The round and angled brackets in Eq. (1.8) imply symmetrization and

anti-symmetrization, respectively, so that

00y E = 0;0;F - %VQE. (1.9)

At linear order in h,,,, the perturbative Einstein equations for the scalar, vec-
tor, and tensor components above are decoupled, making this a valuable de-

composition for the metric perturbations.

1.3.2 Gauge invariance & diffeomorphism

General Relativity describes physics through the definition of a manifold M
with an associated set of fields, such as the metric g, a scalar ¢, or the Maxwell
tensor F'. If manifold N is diffeomorphic to M with ¢ : M - N, then M and
N have identical manifold structures, i.e., the manifold M is associated with
objects such as the metric g and connection V that are mapped to structures
in N that have identical properties. To make General Relativity a sensible
model, it is therefore obvious that we must identify diffeomorphic manifolds
as being physically equivalent.

If we have a diffeomorphism ¢ : M — N, then tensors on M are mapped
bijectively to tensors on N through the function ¢,, which is called the push-
forward, and from N to M via the pull-back ¢*, which is the inverse of the

push-forward.! The components of the transformed tensors are given in the

'Note that the push-forward and pull-back can be defined independently of the existence

of any diffeomorphism, but are inverses of each other for this special case.
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usual fashion for change-of-basis with a tensor 7' changing as

oyt Ox°
T - (¢, 0T, = =— T 1.10
s~ (0.0, = 5L S0 T, (110
where the coordinate bases z# and y? on M and N, respectively, are related

by the diffeomorphism. This can be expressed in a coordinate basis as
ot Ly = gt G () (1.11)

for a vector field &+,

The Einstein-Hilbert action

— 1 4 —
SEH— 167TGfd T/ g%, (112)

where Z is the Ricci scalar, is manifestly invariant with respect to the push-
forward of the metric, since % is a curvature invariant. In the rest of this

thesis we will use units where Mp? = 87G = 1. The contracted Bianchi identity
V#T,, =0, (1.13)

where T),,, is the energy-momentum tensor, ensures that this is also true for the
action for the matter sector, yielding equivalent equations of motion on mani-
folds M and N.? For each diffeomorphism, obtained through the definition of
&1 we then have a set of identical physical situations. This diffeomorphism,
or gauge, invariance implies that four degrees of freedom in the system are
redundant and can be removed by fixing a gauge, i.e., uniquely choosing &~.
To understand the role that gauge freedom plays in cosmological pertur-
bation theory, we will follow Ref. [9] and identify the relationship in Eq. (1.2)

as resulting from a diffeomorphism ¢ that takes points in the neighborhood

2By not treating M and N as the same manifold, we are using the “active” view of
diffeomorphisms. If we instead interpret the right-hand side of Eq. (1.11) as defining another

coordinate system y* on M, then this is the equivalent “passive” interpretation.



of a point p in a manifold Mpnys and maps them to another manifold My, as

P 5 p’, with a resulting change in the metric and stress-energy tensors as

G > G + Py (1.14)
and
T 25 Ty + . (1.15)

In the above equations, the barred quantities are arbitrary reference tensors
and h,, and t,, are not yet required to be small. Since the pull-back is the

inverse of the push-forward, we can see that

Py = (040 9) uw = G- (1.16)

and similarly for ¢,,. Consequently, h,, is small in the neighborhood of p’ €
My, for the family of diffeomorphisms ¢ that satisfy (¢. 0 g)u ~ g, for a
given background metric g, and stress-energy tensor 7, that g,, and T, are
locally diffeomorphic to, respectively.

However, the freedom to choose both h,, to be small and the target metric
g independently will apply only locally near p’ € M,; points close to p €
M nys may have an arbitrarily large deviation from the desired behavior. For
instance, the diffeomorphism ¢ could induce a local normal coordinate chart
near p’ € My, where g, is the Minkowski metric and h,, = 0, without loss of
generality. However, this will not generally induce a local normal coordinate
chart for points near p.

Consequently, to make this an effective scheme in which to do computations
we would ideally like a description of the spacetime where h,,, is small and g,
does not sensitively depend on the point p in the physical manifold Mppys.
In other words, we would like Eq. (1.16) to apply over a large region around

D € Mphys, so that we only have to solve this system of equations once for all
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regions in Mppys of interest to us. To apply this to cosmology we therefore
need a description of what the universe looks like away from our local point in
space-time, which is given to us by the Copernican principle, resulting in the

FLRW metric above.

1.3.3 Gauge fixing & perturbations

Given an expansion for the metric and matter fields like Eqs (1.14) and (1.15),
there is a family of diffecomorphisms, which have a form as in Eq. (1.11), that
satisfy h,, << 1 even for a well-motivated choice of target metric g,,, such as
the homogeneous FLRW metric. For example, if h,, is small in one coordinate
chart x# on My, then the mapping x# — y# = z# +€£#, for an arbitrary vector
field £+, will also have small metric perturbations if € <« 1.

Consequently, we need to choose one of these diffeomorphisms, fixing the
four degrees of freedom available by the choice of £* in Eq. (1.11) to yield a
completely well-determined physical system in which to do our calculations.
This process is called gauge fixing and defines the coordinate system on the
perturbative manifold M,y,, which we interpret as a threading of spacetime
into time-like wordlines and space-like hypersurfaces that have properties that
will simplify the analysis.?

Using the scalar-vector-tensor decomposition above, we can split the vector

field that defines our diffeomorphism into

¢ = (0,07 +¢1). (1.17)

This results in a relationship between metric perturbations in different gauges,

which can be found explicitly in Ref. [8]. Importantly, the definition above

3However, starting with a given slicing/threading does not yield enough information to

uniquely determine the coordinate chart on Mp,. See the discussion in Ref. [10].
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splits the gauge transformations’ dependence on &# so that each scalar compo-
nent in Eqs (1.4)—(1.5) is related to its corresponding perturbation in the new
gauge by only the two functions £° and &, while the vector components are
functions of also fl The tensor components to the metric perturbations are
manifestly gauge invariant. We can therefore choose (£2,0/¢) in such a way to
remove two scalar degrees of freedom from the metric and éZ to remove two

vector degrees of freedom. We will often choose the flat gauge with
d=FE=0, (1.18)

where constant-time hypersurfaces are spatially flat.

1.4 Single-field inflation

The simplest way that we can get inflation is through the action

1
So= [ diovg|-50.00,0- V(@) (119
where ¢ is a Lorentz scalar with potential energy density V' and a canonical

form for its kinetic energy. The equation of motion for ¢ from Eq. (1.19) is

the Klein-Gordon equation

1 gy - WV _
\/—_—gau(\/—_ga ) 0 0, (1.20)

where the determinant of the FLRW metric is ¢ = —a% in three dimensions.

The 0 - 0 portion of the Einstein equation, for the homogeneous background

with a and ¢ independent of the spatial location, yields
1(1,
R (O] (1.21)
3\2
where H = a/a is the Hubble parameter and overdots are derivatives with

respect to cosmic time ¢. This can be substituted into Eq. (1.20) to get
av

95+3qu3+%:0 (1.22)
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for a homogeneous scalar field.
Inflation is realized by a configuration that is dominated by V', which is
approximately constant and smooth, so that the field ¢ has almost no change

in its velocity. In this limit, the Hubble parameter is dominated by V/, so that
5 1
H » 3V(9) (1.23)

and the Klein-Gordon equation then becomes

L dv (1.24)

V3V d¢

which is the slow-roll approzimation.

b~

1.4.1 Inhomogeneities from inflation

Importantly, inflation will also generate a perturbed, classical universe from
quantum perturbations. In this section we will study this in the simplest
case, which is an approximately massless scalar field, and leave the detailed
exposition of the general equations for a collection of canonical scalar fields to
Chapter 2.

In flat gauge, we will consider a matter sector consisting of only one scalar
field that is approximately homogeneous with an inhomogeneous perturbation

of the form
B(t, ) = o(t) + 5o (t, x%). (1.25)

The action S for the inflationary system is then the combination of the Einstein-
Hilbert graviational sector (1.12) for the perturbed FLRW metric in Eqs (1.3)—
(1.6) and the scalar action (1.19):

szfd%\/%[%@—% quauo;—v]. (1.26)
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We then obtain the equation of motion for §¢(¢,z') by expanding S to
second-order in the scalar field perturbation and first-order in the metric per-
turbations. Changing variables to u = ad¢ simplifies the equation of motion
and we will perform our analysis with this variable. If we Fourier-transform

u(t, z%) - ug(t), then we obtain the Mukhanov-Sasaki equation
z//
ug+(/~c2—?)uk:0, (1.27)

where a prime indicates a derivative with respect to conformal time 7 = [ dt/a.
We have defined the background quantities H = a//a, which is the conformal
Hubble parameter, and z = a¢’/H. If the background is inflating, then modes
with a comoving length scale of k! will expand beyond the comoving Hubble

horizon.

1.4.2 Quantization

We will treat the background as if it were evolving purely classically, but require
the perturbations d¢ to be quantum fields. In general, to get the three-point
and higher correlators for the theory we will need to perform calculations in
the semi-classical interacting picture. However, we will not need to calculate
these higher correlators from first-principles for the remainder of this thesis,
so we are free to use the Heisenberg picture.

We will quantize by first defining raising and lowering operators dL and

ay, respectively, by promoting u; and its conjugate momentum 7, = uj to

quantum operators, where we define
Qi = updy, +uial, (1.28)

and similarly for its conjugate momentum and Hermitian conjugate. We then

impose canonical commutation relations for

lar,al] = 6(k - q), (1.29)
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with all other combinations of a; and dz commuting. We can relate this com-

mutation relation to that of 4 and 7, as

[, 7] = wouy [an,aly] - upul [ag.a', ] (1.30)

= (uku;f —ujuy) d(k +q), (1.31)

where the second inequality assumes that the modes uy depend only on & = |k|.
Importantly, we are not in general able to simultaneously enforce Eqs (1.29)
and have non-vanishing commutation relations for Eq. (1.31) in a time-
dependent background. Therefore, the conjugate variables ; and 7, may
either act like classical fields that commute or as quantum fields that do not.

Since an FLRW universe is locally diffeomorphic to Minkowski space, we
will look for solutions to Eq. (1.27) that yield the canonical commutation
relations [y, 7,] = i0(k +q) on sub-horizon scales with k > aH. These modes
will have an equation of motion approximately equal to that of a massless

scalar field in the absence of gravity,
ul + kP, ~ 0. (1.32)

The solutions to this are plane waves, which give the Minkowski-space com-
mutation relations when
1

u :—e_ikT7 133
T (1.33)

up to an arbitrary choice of initial phase. It is standard to take this solution
to be the initial conditions for wu;, since this is also an attracting solution for
substantially sub-horizon modes with k& > aH, although this initial condition
can certainly be altered.

We contrast this with super-horizon modes with k << aH that satisfy

~

a'
a

(1.34)

|
2
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for background solutions that obey the slow-roll equations of motion (1.24).
From Eq. (1.34) uy ~ a and, since uy, = ad@y, the field perturbations are con-
stant on super-horizon scales. Similarly, if we transform to a gauge where con-
stant time hypersurfaces have uniform density, we can directly relate the field
perturbations in flat gauge to curvature perturbations ¢ in uniform-density
gauge; these curvature perturbations are also constant. It can be shown that
the super-horizon conservation of ( is a consequence of adiabatic evolution and
is not exclusive to single-field inflation [11,12].

Since uy, is a real function on super-horizon scales, from Eq. (1.31) we can
see that 1, and 7, commute and modes of the quantum field that have exited
the horizon act as if they were purely classical. This is the “pragmatic view” of
the quantum-to-classical transition for inflationary perturbations, which can
be made more precise in terms of decoherence [13].

We can define the quasi—de Sitter vacuum state as ay [0) = 0, which gives

the tree-level two-point vacuum expectation value
(Ol axaf|0) = |upl*d(k - aq). (1.35)

Since a quantum expectation value is the mean value obtained from repeated,
independent measurements of a physical system, in the limit that the fields
become classical we can identify the N-point quantum expectation values of
uy as the N*" moments of the probability distribution for a random classical
field. The two-point function on super-horizon scales then defines the variance

of the classical probability distribution from which the |ux| are drawn:

(0] aif [0) = Pu(k)o(k -q), (1.36)

k.,q<aH

where P, (k) is called the power spectrum for uy.
From here on we will drop the hat over the quantum operators and infer

whether it is an operator or c-number from context.
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1.5 Multifield inflation

The remainder of this thesis will be concerned with the behavior of inflation
models outside of this simple description. In particular, we will perform an
in-depth study of multifield inflation, which is a class of models that use more
than one light scalar field to drive the inflationary dynamics. These are well-
motivated scenarios for the early universe that naturally appear in high energy
theories such as string theory or supersymmetry. Furthermore, given that the
single-field inflation mechanism that we described in Sect. 1.4 is easy to realize
phenomenologically, we can treat multifield models as a generalization of the
picture presented above. These models have interestingly different behavior

that makes their analysis significantly more difficult than the simplest case.

The role of initial conditions.— Multifield inflation has a number of
potentially observable signatures, including large amounts of primordial non-
Gaussianity and a non-standard relationship between the tensor and scalar
power spectra. In this thesis we will be primarily concerned with the issue
of how the predictions of multifield inflation models depend on their classical
initial conditions. For a given set of Lagrangian parameters, e.g., masses and
couplings, there is a family of inflationary solutions corresponding to different
choices of initial conditions for the background spacetime. Each initial condi-
tion may result in a slightly different evolution for the potential energy and
its derivatives, resulting in quantitatively different behavior for the model as
modes of interest exit the comoving Hubble horizon. We can see the difference

in multifield and single-field behavior in Fig. 1.1.

Additionally, in Sect. 1.4.2 we saw that the field perturbations do not evolve

in single-field inflation outside of the horizon, which is also true for the comov-
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Figure 1.1: Inflationary solutions for a single-field (left) and multifield (right) model.
The red dots are field-space initial conditions and their potential energy V| which
are assumed to start in slow-roll. The black line is the field-space trajectory and its
V', which is offset a small amount to make it easy to visualize. The blue line (left)
and background (right) indicate a toy V. Most multifield models have a variety of

initial conditions that lead to inflationary solutions.

ing curvature perturbation (. However, multifield models that have solutions
that turn in field space will have significantly non-adiabatic evolution and ¢
will evolve on super-horizon scales when this happens. Consequently, to under-
stand the predictions of multifield models we will need to follow the solution to
the multifield Klein-Gordon equations until an approximately adiabatic con-

figuration is reached.

Gravitational wave consistency relation.— Of particular importance
to this thesis’ Chapter 6 is the gravitational wave consistency relation [14,15],
which relates the tensor spectral index n; to the tensor-to-scalar ratio r at the

pivot scale by

2 (1.37)
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This is valid for all single-field models with minimal coupling to gravity during
a period of slow-roll inflation, but can break down explicitly for multifield
inflation. Consequently, any detected deviation from this relationship may
indicate that the simplest single-field description of inflation has broken down
or possibly that inflation did not happen at all. It is therefore vitally important
that we understand the predictions for n;/r in multifield models with arbitrary
initial conditions, in order that we may use any potential detections of this

relationship to constrain or verify non-standard models.

1.6 Thesis outline

This thesis presents five independently published chapters that examine the
role of initial conditions in making predictions for multifield inflation mod-
els. This involves detailed study of both (A) the nonlinear behaviour in the
background Klein-Gordon equations for multifield systems and (B) the linear,
but complex relationship between adiabatic and isocurvature perturbations in
multifield systems. There is a significant numerical component to this work,
as well as many analytical calculations that guide our understanding of the
sytems.

We start first in Chapter 2 by describing the Fortran computer program
MULTIMODECODE, which was written to numerically solve the multifield
equations of motion to first order in the field perturbations. This involves
a significant exposition on the dynamics of multifield perturbation theory and
looks at the predictions of an interesting multifield system that has a series of
hyperbolic tangent steps in the potential energy density.

We then restrict ourselves in Chapter 3 to looking at the role of initial

conditions at the level of the classical background, by examining the classical
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hybrid inflation model’s ability to inflate for a sample of initial conditions. The
numerical solutions allow us to identify the end-state of allowed inflationary
initial conditions and identify whether or not they are able to inflate suffi-
ciently to result in a universe that looks like ours. In Chapter 4 we use lattice
PDE solvers to upgrade the analysis in Chapter 3 to include pre-inflationary
inhomogeneities that have wavelengths smaller than the Hubble radius.

The third portion of the thesis looks more specifically at the perturbation
spectrum resulting from large-field inflation models. As these models depend
on the background initial conditions, we study the sensitivity of these models’
predictions to the a priori assumptions that we place on the allowed initial
states. We do this both numerically and analytically, finding sharp, generic
predictions for these types of multifield models. We conclude the thesis with
a discussion on initial conditions, Bayesian methods, and how to understand

the uncertainty in a theory’s predictions.
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A NUMERICAL APPROACH
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CHAPTER 2

MULTIMODECODE

This chapter is adapted from:

L. C. Price, J. Frazer, J. Xu, H. V. Peiris, and R. Easther

MULTIMODECODE: An efficient numerical solver for multifield inflation

JCAP 1503 (2015), 03 005, [16]

Copyright (2015) by the Institute of Physics

2.1 Abstract

We present MULTIMODECODE,! a Fortran 95/2000 package for the numerical
exploration of multifield inflation models. This program facilitates efficient
Monte Carlo sampling of prior probabilities for inflationary model parameters
and initial conditions and is the first publicly available code that can efficiently
generate large sample-sets for inflation models with O(100) fields. The code
numerically solves the equations of motion for the background and first-order
perturbations of multi-field inflation models with canonical kinetic terms and
arbitrary potentials, providing the adiabatic, isocurvature, and tensor power
spectra at the end of inflation. For models with sum-separable potentials
MULTIMODECODE also computes the slow-roll prediction via the é N formal-

ism for easy model exploration and validation. We pay particular attention to

! Available at www.modecode.org.

23


www.modecode.org

24 Chapter 2. MULTIMODECODE

the isocurvature perturbations as the system approaches the adiabatic limit,
showing how to avoid numerical instabilities that affect some other approaches
to this problem. We demonstrate the use of MULTIMODECODE by exploring
a few toy models. Finally, we give a concise review of multifield perturbation

theory.

2.2 Introduction

Many simple models of inflation adeptly reproduce the observed properties of
the primordial cosmological perturbations [5,17-19], predicting a nearly scale-
invariant power spectrum and minimal amounts of primordial non-Gaussianity.
In the slow-roll, single-field paradigm the predictions of a given model are easily
determined as an algebraic function of the field’s potential V' and its derivatives
in terms of a hierarchy of slow-roll parameters. The resulting observables are

simple to compute and easy to interpret.

However, relaxing any of the basic assumptions of the slow-roll, single-field
models complicates this simple analysis. In particular, for many inflation-
ary scenarios (e.g., multifield inflation, gauge inflation, and non-minimal cou-
plings), the background and mode equations are complex systems of coupled,
nonlinear ODEs, making analysis difficult in all but a few cases. Furthermore,
while slow-roll, single-field inflation is a simple and easily understood model,
it may not necessarily be considered natural in the context of high-energy
theories. For example, low energy effective theories derived from string theory
generically contain hundreds of scalar fields with complicated interactions, and
many theories consider non-minimal couplings to the Ricci scalar (for a recent
review, see Ref. [20]). While analytical studies have been able to overcome

subsets of these problems, most of the techniques that have been used are
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situation-specific, which limits their applicability to novel models.

While significant progress can be made in the slow-roll limit, only numeri-
cal techniques can explore the full predictions of more complex inflation mod-
els. Even in the purely homogeneous limit, numerically solving the nonlinear
Klein-Gordon equation for the homogeneous background fields reveals many
interesting features that do not arise in slow-roll analyses, e.g., sensitivity to
initial conditionsas studied in Refs [21,22] and Chapters 3 and 4. These com-

plications lead naturally to the numerical exploration of inflationary models.

In this chapter we present and describe MULTIMODECODE, an efficient
Fortran 95/2000 package that numerically solves the equations of motion for
the background fields and the first-order perturbations for multifield inflation
models in which the fields have canonical kinetic terms and are minimally
coupled to gravity. MULTIMODECODE calculates the adiabatic, tensor, and
various isocurvature power spectra as a function of scale k, but does not eval-
uate higher order correlators. If the potential is sum-separable, MULTIMOD-
ECODE uses the solution to the background equations of motion to evaluate
the slow-roll 0V predictions for the scalar and tensor power spectra and their
derivatives near the pivot scale k,, also giving the slow-roll results for ng, r,
fno, ete. The code has been extensively tested with various compilers, includ-

ing the open-source GNU Fortran compiler.

Several numerical codes have been developed to study single-field mod-
els [23-31]. Here, we build on MODECODE [32-34], which was developed to
test single-field inflation models and interfaced with tools such as CAMB [35],
CosMOMC [36], and MULTINEST [37]. MODECODE was designed for the
Bayesian analysis of inflation and used by the Planck collaboration [19] to ob-
tain the posterior probabilities and marginal likelihoods for inflation models.

Moving to the multifield case significantly increases the numerical demands on
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the solver, and puts a premium on efficiency due to the much greater com-
putational resources required by these analyses. A few codes exist to analyze
multifield models, but the publicly available codes are inadequate for models
with many fields and arbitrary potentials. Notably, PYFLATION [38-41] is an
object-oriented Python code that uses the same method we employ here for
solving the perturbation equations, but cannot easily generate large samples

due to the speed constraints imposed by a dynamic programming language.

This significant extension to MODECODE can be used to study the power
spectra of analytically intractable multifield inflationary potentials, and to
explore the generic predictions of complex models by marginalizing over large
numbers of possible parameters. Complementing currently available codes [38—
41], MULTIMODECODE specializes in obtaining large Monte Carlo samples of
initial conditions and parameter prior probabilities. To help users familiarise
themselves with MULTIMODECODE the package includes initial conditions
priors used in Ref. [42] and Chapters 3 and 5. The ability of this code to
efficiently generate large Monte Carlo samples has permitted studies of the
generic predictions of multifield inflation models with more than 100 fields, as

in Chapters 5 and 6.

In practice, the code can simulate the evolution of the mode equations for
O(102) fields,? but will become inefficient for significantly more fields due to
the increasing dimensionality of the system, which increases with the number
of fields as (’)(NJ%). However, it can efficiently sample the evolution of the
background equations of motion for at least O(10?%) fields. While solving just
the background equations allows the exploration of background dynamics for

such a large number of fields, if the model is sum-separable, then it will also

?Estimates regarding field number are based on Nj-quadratic inflation, which is not

numerically intensive.



27

give the slow-roll predictions for the adiabatic curvature power spectrum, as
well as fyr, and 7w, in terms of the 0 N approximation. This should be valid
when the fields are much lighter than H at horizon crossing and slow-roll
holds throughout the duration of inflation. MULTIMODECODE is released
with several example models already implemented and it is straightforward to

add to this number.

In §4.5, we demonstrate the features of MULTIMODECODE with an N;—
flation potential with a sharp step, which we parametrize by a hyperbolic tan-
gent function, following Refs. [23,43]. We show that, in addition to oscillatory
features in the adiabatic curvature power spectrum that are expected from the
single-field analysis [23,44], with more than one field there are also oscillatory
features in the isocurvature spectra, which might result in non-trivial evolution
of the power spectrum after inflation. We also show that the numerical compu-
tation of isocurvature modes results in an inherent numerical instability, since
some definitions of isocurvature perturbations involve computing the difference
between two quantities that are of the same order of magnitude. This induces
a dominant numerical error when these two quantities begin to approach the
adiabatic limit. We overcome this problem by implementing a modified defi-
nition of isocurvature perturbations [45], which is numerically stable to many
more orders of magnitude than some alternative definitions. We also imple-
ment a geometrical optics indicator of isocurvature evolution as first presented
in Ref. [46]. While this measure only relies on background quantities and also
does not suffer from instabilities, as implemented here it does not provide an

absolute value of isocurvature, only an indicator of its growth or decay.

Finally, in §2.4 we provide a concise review of multifield perturbation theory
with the aim of dispelling misconceptions that exist about this topic, which

the enlightened reader can skip.
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2.3 Features of MULTIMODECODE

We begin by highlighting some of the useful characteristics of MULTIMODE-

CODE.

Speed: The purpose of MULTIMODECODE is to provide a fast and efficient
solver that is well-tested and can be applied to a wide range of possible infla-
tionary scenarios. MULTIMODECODE is written in Fortran 95/2000, increasing
its capabilities relative to existing codes [38—41] and making it tractable to in-
vestigate models with many fields or to obtain large Monte Carlo samples from

a model’s parameter space.

Generality: The code facilitates Bayesian approaches to studying inflation,
where the model’s parameters are drawn from prior probabilities from which
we can compute a probability distribution for specified observable associated
with the model. We consider simple situations, e.g., evolving a model given
fixed model parameters and initial conditions, as sub-cases of the more gen-
eral Bayesian framework. To facilitate the use of general priors we have im-
plemented the sampling routines in modules which are simple to adapt and

restructure for the user’s purposes.

Robustness: The program exits gracefully when encountering fatal errors
of either a technical or cosmological nature, while also catching specific errors
that might only affect one particular configuration of the model. We have
extensively checked the program output on various Macintosh and Linux ma-
chines with both the GFORTRAN and IFORT compilers, and include both a
fourth-order Runge-Kutta integrator and an implicit backward-difference for-

mula method, which is suitable for stiff problems.
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Statistics: MULTIMODECODE provides pivot-scale observables, summarized
in Table 2.1 and can sample the adiabatic and isocurvature power spectra as
a function of scale k. We have implemented a variety of numerically stable

indicators of the amount of isocurvature present in the system.

Slow-roll comparison: If the potential V' is sum-separable, MULTIMODE-
CODE can also calculate observables using the é N approximation, which as-
sumes slow-roll. Since these quantities rely only on solutions of the background
equations of motion they are efficient and simple to calculate, scaling with the
number of fields as O(Ny). Consequently, if the model is well-described by
the slow-roll approximation between horizon crossing and the end of inflation,

computing observables in the § N formalism is efficient and easy.

2.4 A brief review of multifield perturbation the-
ory

We begin with a short review of first-order, non-interacting multifield per-
turbation theory before describing MULTIMODECODE and the dynamics of
many-field inflation. There are some substantial differences between single-
field and multifield inflation, which we highlight in Section 2.4.1. Table 2.1
gives a list of the pivot-scale observables that MULTIMODECODE computes.
There are a few excellent reviews of this topic [10,39,47,48| and we par-
ticularly recommend Refs. [49,50] for more information. We first present the
nuts-and-bolts of the mode function approach to first-order, multifield pertur-
bations, which is implemented in MULTIMODECODE. Then we describe the
widely-used d N-formalism, which has also been implemented for ease of use

and for comparison to the perturbation solutions.
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Power spectra (PS) Type Reference
Pr(k) oot Adiabatic scalar spectrum ........... Eq. (5.5)
Ps(k) «ooovii. [socurvature spectrum ............... Eq. (5.6)
Prnaa(k) oo Non-adiabatic pressure spectrum .. ... Eq. (2.36)
Pent(k) oot Entropic spectrum ............... ..., Eq. (2.39)
Crs(k). oo, Adiabatic-—non-adiab. cross spectrum  Eq. (2.29)
Pr(k) oo, Tensor spectrum ..................... —
Observable at k, Name Description
Ag oo Scalar amplitude .................... Pr(k.)

2 P [socurvature ampl. .................. Ps(ks)
APnad oo Non-adiab. pressure ampl. ........... Prnaa(ks)
Aot oo Entropy ampl. ....................... Pent (k)
ACross v vveennnnn.. Cross spectra ampl. ................. Crs(ky)

Mg e e, Scalar spectral index ................. D,logPr +1
M o Tensor spectral index ................ D, log Py,
TUigo « v v Isocurvature spectral index .......... D, logPs
Nont v vverrnneennn Entropy spectral index ............... D, 10g Pent
NUPrad ««cvvvvvrnnns Non-adiab. pressure spectral index ... D, logPpnada
Qg weeiais Scalar running .............. ... ... D2?log Pr

T o Tensor-to-scalar ampl. ............... Pr(k.)[Pr(ks)
COSA ... w-s correlation angle .............. ... Eq. (3.11)

Table 2.1: Typical observables at the pivot scale k.. The derivative D, = d/dlogk is
evaluated at k = k.. MULTIMODECODE can also generate the full power spectra as

a function of scale P(k).
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2.4.1 The highlights

Multifield inflation differs from the single field case in the following important

respects.

Isocurvature: Multifield inflation generally permits both adiabatic and isocur-
vature perturbations. Adiabatic perturbations are related by a gauge trans-
formation to the curvature perturbation on comoving hypersurfaces R, while
isocurvature perturbations are entropic perturbations between different mat-
ter components on flat hypersurfaces. In single-field inflation there is only one

matter component, so there are only adiabatic perturbations.

Super-horizon evolution: Isocurvature perturbations source adiabatic per-
turbations, causing them to evolve even on super-horizon scales. While this
can generate novel signatures such as non-Gaussianity, this can also be prob-
lematic for comparing the predictions of a model with observation: unless
isocurvature modes decay into an adiabatic limit before the end of inflation,
the curvature perturbation does not become conserved and is thus sensitive to

post-inflationary physics.

The two-index mode function: With more than one field, either (a) the
direct interaction between fields or (b) the gravity-mediated interaction will
mix the particle creation and annihilation operators as a function of time [49].
Instead of a single index mode function, we therefore need to solve for a mode

matrix 17, where d¢; = ¢y;a”, for Ny annihilation operators a”’.

Initial conditions dependence: Multifield inflation models have an infinite
number of possible inflationary solutions each of which can, in principle yield

a different perturbation spectrum. Consequently, the observable spectra for
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multifield models can depend on their initial conditions in ways that have no
direct analogue in slow-roll, single-field models, which have only one possible

trajectory in field-space.

Inherently stochastic predictions: Even if the potential V' is completely
fixed, multifield models will give an inherent spread of predictions due to the
allowed variance in the fields’ initial conditions. In general, multifield models
will predict a variety of spectra, unless the stochasticity in the initial conditions

can be controlled a priori.

2.4.2 Classical background

Consider Ny scalar fields ¢; with the matter sector of the action given by

5= [ dtaoymg|-5oum00 - V(o). (2.1)

where we use the Einstein summation convention over repeated indices. Greek

indices describe spacetime, going from 0, ...,3, upper-case Latin indices de-
scribe the number of fields, going from 1,..., Ny, and lower-case Latin indices
describe space, going from 1,...,3. The field space indices are raised using the

Kronecker delta 6/7. The determinant of the spatial metric g,, is g. In this
chapter we only consider inflation models with minimal coupling to Einstein
gravity and a matter sector described by scalar fields. The current incarnation
of MULTIMODECODE only solves models with canonical kinetic terms, but
implementing these general field-space metrics is straightforward since MUL-
TIMODECODE has been written modularly, but is left for future work.
First-order, non-interacting perturbation theory separates the homogeneous,
classical background from the spatially-dependent modes as ¢;(t,%) — ¢;(t) +

0¢(t,z), where we assume that these two components can be treated indepen-
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dently. The homogeneous background fields obey the Klein—-Gordon equations

¢r+3Hor + 37‘)/[ =0, (2.2)

where an overdot indicates a derivative with respect to cosmic time ¢ and
we use Mp®> = (87G)~! = 1 throughout this chapter. The 0-0 Einstein field
equation gives the Friedmann equation

3H? = %gml +V(¢r), (2.3)

which can be differentiated with respect to ¢ to yield
2H = -¢2. (2.4)

In Eq. (2.4) we have used the inflaton trajectory velocity, Q% = ¢;0!. We can
regard the composite field ¢y as the clock of multifield inflation. It is the
classical field defined along the inflaton trajectory, and represents the length
of the classical field-space path.

In practice, if the dynamics are inflationary, it is numerically convenient to
evolve the equation with the number of e-folds N, = Ina(t) as the independent

variable, giving

d2¢; do; 1 0V
- A 9.
vz B OGN T Eae (2:5)
where we have defined the first slow-roll parameter as
H 1d¢; d¢!
11 , 2.
“TTHT T 24N, 4N, (2:6)
The Friedmann equation (2.3) can then also be expressed as
H? = 4 . (2.7)
3-¢€

If V ~0, Eq. (2.7) requires € ~» 3, which will result in numerical instability

whenever we try to set initial conditions that are dominated by their kinetic
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energy. We side-step this issue by using the cosmic time Eq. (2.2) and H as
defined in Eq. (2.3).

Solving Eq. (2.5) therefore only requires the initial conditions ¢; and d¢;/d N,
because the dependence on the scale factor a is explicitly removed by the 0-0
Einstein equation (2.7) as a result of assuming a flat FLRW spacetime. As
mentioned in §2.4.1, the perturbation spectrum depends on these initial con-

ditions, which are specified as a prior probability distribution P(¢r,¢}).

2.4.3 Mode equations

To obtain the first-order equation of motion for the perturbations d¢;, we need
to expand the action (2.1) to second-order and include the first-order scalar

perturbations to the flat FLRW metric, given by
ds? = - (1+2®)dt* - 2a’ B, dt dz’ + o [(1 - 20) &;; — 20,0y E] da'da?, (2.8)

where

is trace-free. We choose the spatially-flat gauge, so that ¥ = F = 0, and vary
the expanded action 0.5, with respect to the perturbations d¢;(¢,Z) to get the
first-order equation of motion for the free-field perturbations. After Fourier-

transforming the scalar perturbations to d¢;(k), the mode equations in this

gauge are
d*o¢r dégr  K? ;
anz * (3-¢) an, * 2001 +Crs0¢” =0, (2.10)
where
%0,V 1 (dcbf do, ) do do,
- 2 - 2.11
e TEA VT A A AR RSl ) R

and J; = 9/0¢;. The equation of motion for the tensor metric perturbations

can be derived similarly; since the non-gauge degrees of freedom are massless
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and only minimally coupled to the matter sector, the resulting equations of
motion are identical to the case of single-field inflation.

To solve the perturbation equations, it is usually convenient to work with
the Mukhanov—Sasaki variable u; = ad¢;. The mode equation for u; is

d2u1
dN?

+(1_€)du1 ( h

v a2 e) uy+Cryu’ =0 (2.12)

with Cr; as in Eq. (2.11). Since the mass matrix, defined as m?; = 9;0,V,
is not necessarily diagonal, the perturbation equations (2.12) mix the annihi-
lation operators for all of the fields [49]. We therefore need to expand each

perturbation mode u;(k) and u}(k) using Ny harmonic oscillators a;(k):
ur(k, N.) =,”(k, No)ay(k) (2.13)

and

ul(k, N,) = ¢, (k, N, )al (k), (2.14)

where (1) and () represent Hermitian and complex conjugation, respectively.?

We can then define canonical commutation relations
[a;(k),al (k)] = (27)367,6®) (k - K'). (2.15)

The mode matrix ¢;; evolves according to

d?ry
N2

d k2
+(]_—€) dlé}éj+(m_2+e)¢lj+0[[lwl:}:0' (216)

Finding the perturbation spectrum requires setting initial conditions in Eq. (2.16)
and using the background equations (2.5) to find the time N, when the mode
k leaves the horizon, which also depends on the moment at which the pivot

scale k, leaves the horizon, N, e-folds before the end of inflation.

3 An alternative approach is to simply bypass this issue by solving for the field correlation

functions directly rather than the individual modes, as in the transport method [46,51-53].
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The usual initial condition is the Bunch-Davies state [54], which assumes
the field basis has been chosen such that the 1y ; are originally diagonal and sets
the initial condition for Eq. (2.16) as if the mode matrix were freely oscillating
in Minkowski space. This is well-motivated, since for modes deep in the horizon

k> aH, the mode matrix v;; obeys the free wave equation in conformal time

2
oy k*ry =0, (2.17)
dr?

where dr = adt. If we assume that the mode matrix is initially diagonal at

T = —o0, then Eq. (2.17) yields two solutions

1 . ,
wIJ = E (Cle”” + Cge_ZkT) (5[]. (218)

Translating to e-fold time, the initial conditions can be set by

1

L o

(C1+C2) 1y (2.19)

and

dipry
dN.

7 k
N E\/;(Cl = Cy) 1y - (2.20)

The Bunch-Davies initial condition is equivalent to choosing C; =0 and C5 = 1.
While only the Bunch-Dayvies initial condition is implemented in MULTIMOD-
ECODE, non—Bunch-Davies modes could be easily accommodated.

Although the u;’s are convenient for short wavelength modes, they grow
exponentially after the modes exit the horizon. So once the mode is outside the
horizon, MULTIMODECODE switches from wu; to d¢; by matching boundary

conditions at a time N} just after horizon crossing with

dU[
.
ur|  =eMNedg; and

* N,

ddgr )
N * dN,

dN.

= el (§¢1+
Ne

. 2.21
w2
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2.4.4 Power spectra

Unlike single-field inflation, the multifield power spectrum involves contrac-
tions of the mode matrix. Using the canonical commutation relations above,

the two-point VEV of the field perturbations yields the power spectrum
PIJ k) _ k3 ]' I JL,* 2 22)
5o (k) = 7.2 |2 (UK (2.

When the field trajectories are not turning, on super-horizon scales the fields
¢r and their momenta 7; commute, indicating that they have transitioned to
a regime where Eq. (2.22) can be interpreted as an expectation value over
realizations of classical, random fields.

To relate this field-space power spectrum to gauge-invariant perturbation
variables [55-57|, we first define the curvature perturbation on comoving hy-
persurfaces R by

RE\II+%V2E+aH(B+v), (2.23)

where v is given in terms of the momentum density of the stress-energy tensor
T, as
. —. .. Ov
T,=(p+P)dé’"—, 2.24
0 (P ) Gy ( )
where p and P are the background energy and pressure densities, respectively.
If we evaluate Eq. (2.23) on spatially-flat hypersurfaces during inflation, R

reduces to

R = —.E wrop?, (2.25)

0

where wy = gb 1/ gbo is a basis vector that projects d¢; along the direction of the
classical background trajectory, given by the solutions to Eq. (2.5). The vector
& and a complementary set of (N —1) mutually orthonormal basis vectors 5
form the kinematic basis [58,59|, where the separation between the adiabatic

perturbations in Eq. (2.25) and transverse, isocurvature perturbations is made
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explicit. Since & depends on the nonlinear background evolution, in MULTI-
MODECODE we find the sk numerically by Gram—Schmidt orthogonalization.
The adiabatic curvature power spectrum Pgr is then the projection of 73({(‘;

along the field vector wy, scaled by the pre-factor in Eq. (2.25), leaving
1
Pr(k) = iwlePi;](k). (2.26)

The gauge-invariant scalar density spectrum in Eq. (5.5) is the final result for
the adiabatic two-point function to first-order in perturbation theory.

Since Eqs. (2.25) and (5.5) are projected along @, a simple definition for
the isocurvature perturbations Sk is the orthogonal projection along the s
directions

Sk = -f%d%. (2.27)

0

By projecting ’Pg(;f onto all the directions sx that are orthogonal to w; and
scaling the result as in Eq. (5.5), leads to the isocurvature power spectrum:
1 Nl Ny
Ps(k) = % ; IZstIKsJL Pid(k), (2.28)
where we have left the summations explicit to indicate that the isocurvature
basis vectors are (N —1)-dimensional. We include this definition of isocurva-
ture because it is numerically stable, as we discuss in §2.6.1.

Similarly, we define the adiabatic-isocurvature cross-spectra Crs, which is
the cross-correlation between the comoving curvature perturbation and the
total isocurvature perturbation, given by the contraction of Pf (‘; with both w
and the isocurvature basis vectors sgx

1 Nl Ny
Crs(k) = o ; ;wlsi{ (Pi]+Pi). (2.29)

Cross-correlations are generically expected if the background trajectory is

curved as modes of interest leave the horizon. By parametrizing Eq. (2.29)
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with the scalar value

Crs
COSA = ——, 2.30
B Pe (2.30)

it was shown in Ref. |60] that, for the case of Ny = 2, the value of r is suppressed

relative to the single-field, slow-roll expectation by 7 ~ 16esin® A, to first-order

in slow-roll. In principle, A may be detectable from CMB observations [61,62].

However, by differentiating Eq. (2.23) with respect to time ¢, the comov-

ing curvature perturbation will not necessarily be constant even for k < aH.
Instead,

. H

R = -

2

0

where 0 P,,q is the non-adiabatic pressure perturbation [11,63,64]. This quan-

5Pnad; (231)

tity is the difference between the total pressure perturbation

P=7Y" [¢15¢I - PP - Vidor], (2.32)
T

and the adiabatic pressure perturbation ¢ P,q = ¢20p, where the speed of sound

is ¢2 = P/p and the lapse function is

L
@ = i, (2.33)

defined in the spatially-flat gauge [65]. Given the total density perturbation

op = Z [él&bl - (%5%(1) + V,I5¢I] ) (2.34)
T

the non-adiabatic pressure power spectrum Pppaq reduces to

L3
Prnaa(k) = a2 [AIAJ¢1L¢ZJ + A[BJ?/J]LW;J (2.35)

#BIATG b+ BUB )

where (/) indicates a derivative with respect to e-foldings N, and we have
defined the vectors

1

Aj= ———
L™ 302

o'k [(—3H2¢'L ~9LV) 01V + H?0y V ¢"M (5u + %¢IL¢II):| (2.36)
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and

Br=(1-c%) H*¢j. (2.37)

By analogy to Eq. (2.27), we can build an entropy perturbation from the

non-adiabatic pressure perturbation [39,58,66], with
H
0S5 = EéPnad. (2.38)

From this we obtain our final definition of isocurvature, the comoving entropy

spectrum, given by

Poun () = (%)QPM. (2.39)

2.4.5 6N formalism

The separate-universe assumption [11,67-71], often referred to as J N, states
that when smoothed on some physical scale much larger than the horizon, the
evolution of each smoothed patch can be computed using only background
quantities. By identifying that ( = 0N, where ( is the curvature perturbation
on constant density hypersurfaces and § N measures the variation in the num-
ber of e-folds between an initial flat hypersurface and a subsequent constant
density hypersurface, Lyth and Rodriguez demonstrated that this assumption
can be taken advantage of when computing correlation functions by performing

a Taylor expansion in terms of the initial conditions [72].
1
C=Nsgl + §N,,J5¢£5¢;’ +.... (2.40)

The main difficulty in this approach lies in computing the derivatives of the
number of e-folds (N; = ON,./0¢"*, N, etc.). However for sum-separable
models these expressions can be computed analytically [73,74]. For models

with fields much lighter than H at horizon crossing, the numerically intensive
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calculation of solving for the modes may therefore be unnecessary. MULTI-
MODECODE implements this N slow-roll formalism where we assume that ¢,
is the moment when the pivot-scale k, leaves the horizon and that the field
perturbations at this time are uncorrelated, with a power spectrum

H 2
Pii = (g) 517, (2.41)

We also assume that the tensor modes, which are massless and uncoupled to

the matter sector, have a power spectrum

P, =8 (%)2 (2.42)

At least to first order, on super-horizon scales ¢ = R [75], which allows us to
compare the predicted power spectrum for ¢ using the 0N formalism to the
adiabatic power spectrum in Eq. (5.5).

If the potential V' is sum-separable so that

V= ZI:VI(%), (2.43)

then we can use the Klein-Gordon equations (2.5) for the scalar fields to ob-
tain a sum-separable expression for the amount of expansion between the two
surfaces
“ Vi
Ne=-3>" f Vdgzﬁl, (2.44)
I 7 I
where V/ = dV;/d¢!. If V were not sum-separable, the derivatives of N, would
in general have to be obtained numerically by evolving the background equa-
tions of motion (2.5) on a stencil in field-space and taking the finite difference.
We have not implemented this feature in MULTIMODECODE as it is at least as
computationally intensive as solving the mode equations, since there would be
O(Ny) points in the stencil, each of which requires evaluating O(Ny) coupled

Klein-Gordon equations.
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When the potential is sum-separable, the derivatives of N, can be simplified

into the expressions [73,74]

1 Vr+Z¢
N;= L =1 2.45
1 N (2.45)
and
0y (VF+Zf) 1 0z
Nir=0;711- 2.46
dJ IJ[ 26; v + 263‘/* a¢; ) ( )
where
Z¢=Vel _ye, (2.47)
€C

V2 2 Ny €r €J NK
4, === — — =0 — -9 1-— 2.4
v\ e [KZ_:leK( € IK)( € JK)( € ) ’ (2.48)

and the slow-roll parameters are

6521:61232—2 (2.49)

and

nzzl:mzzv. (2.50)
The contribution from the EOI surface is therefore completely encoded in the
functions Z; and its derivatives.

The relationship (6.4) and the expansion equation (2.44) allow us to define
pivot-scale observables for the scalar perturbations (. We will focus on the
observables obtainable only through the first and second derivatives of N,
and express our results only to the lowest order in slow-roll. We start with the

¢ power spectrum

2
Pe= NNt (25) , (2.51)

™

and obtain the tensor-to-scalar ratio by comparison to the tensor spectrum (2.42)

(2.52)
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These have simple expressions only in terms of N ;. The adiabatic and tensor

spectral indices ns and n,; also have easily evaluated expressions

2 2 V[JN’IN’J
s—1=-2¢, - - = 2.53
" “TNNT T (V) N N&K (2:59)
and
—2¢,
= ) 2.54
Ty 1-ec. ( )

The expression for the scalar running «, is more complicated, but straightfor-
ward to compute (e.g., Eq. 6.14 in Ref. [76]).

To obtain the amplitude of the predicted non-Gaussianity we further as-
sume that the field perturbations at horizon crossing are purely Gaussian,
since the non-Gaussianity generated by sub-horizon evolution of the modes is
typically slow-roll suppressed |73, 77|, assuming that slow-roll is not violated.

Following Refs. [73,78|, we use the non-linearity parameter

—§f _ nlk’? BC N NJN,JN’I‘]
5N T 2 k2 ATiPE (N g NK)?

where B is the bispectrum. Given Gaussian field perturbations at horizon

(2.55)

crossing, the trispectrum amplitude is then parametrized by the non-linearity

parameters [79, 80|

N NAKNAIN
TNL = —2 3 £ (2.56)
(NLNT)
and
25\ N 1jx NAN-/ N-&K
- [Z=Z )= 2.57
gNL (54) (N7LN’L)3 ( )

Since gni, ~ N 17k we do not compute it here, although it could be implemented

by taking the third derivative of N, as in Ref. [74].

2.5 The method

We outline the procedure used to obtain the power spectrum predictions, with

the algorithmic structure of MULTIMODECODE in Algorithm 1. While this
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largely follows previous implementations, such as PYFLATION [38-41], we give

the method for the sake of clarity and reproducibility.

We start by defining the functional form of the potential V' and prior prob-
ability distribution functions (PDFs) for the parameters that define V', which
we call Lagrangian parameters or model parameters, and the background ini-
tial conditions ¢ and ¢} ;. We treat the simple situation of exactly specifying
a set of Lagrangian parameters and initial conditions as a special case, where
the prior probability for these parameters is trivial. Given these priors, the
program will build a numerical sample by iteration until a pre-defined number

of samples is reached.

MUuLTIMODECODE first solves the background equations of motion (2.5)
until the end-of-inflation. While we have included the natural condition of € = 1
as the default ending criterion for inflation, there is complete functionality to
end inflation by another method, in particular a waterfall transition via the

hybrid mechanism [81,82] at some reference phase-space point.

Given a value for the number of e-folds N, between when the pivot scale
k. leaves the horizon and the end-of-inflation, which is either fixed by the user
or set in each iteration of the code through the sampling of a prior probability
P(N,), we obtain the value of H at horizon crossing by interpolating the
numerical background solution. The pivot scale k., must be pre-defined by the
user and defaults to 0.002 Mpc™. From this, we normalize the size of the

universe so that k., = aH, at N, = Nyoy — N,.

For each scale of interest k, we set the modes’ initial conditions at a time
N when that mode is significantly sub-horizon, k& > agH,. For the Bunch-
Davis initial state, this point is chosen iteratively by making sure that the
relative corrections to Eq. (2.17) that are sub-dominant for k£ > aH are smaller

than a pre-defined tolerance. This tolerance is set to 1 x 1072; from observing



45

Algorithm 1 MULTIMODECODE method

define sample size, V', k.
for all elements in sample do
procedure BACKGROUND SOLVER:
get Lagrangian parameters for V' and ICs for Eq. (2.5) from prior
PDF
with the end-of-inflation (EOI) criterion set by user, solve Eq. (2.5)
until EOI
check inflation (i > 0) started and ended

procedure SCALE-FACTOR NORMALIZER:

get N, from user or by prior PDF

check total inflationary e-folds Ny > N,

define a such that k., = a.H. at N, = Nox — N, before inflation ends
procedure 0N CALCULATOR:

if V' is sum-separable, then calculate 0 N observables near k,

for all modes k do
procedure MODE INITIALIZER:
define initial time N,y with k> aoH
while the corrections to Eq. (2.17) are above some tolerance:
set earlier N, and check N, >0

set Bunch-Davies IC for mode matrix ¢;;(k) at N,

procedure MODE SOLVER:
solve Eq. (2.12) until k ~ aH
change variable as in Eq. (2.21) and solve until EOI
calculate power spectra for k
procedure k,-OBSERVABLE CALCULATOR:
calculate amplitudes, spectral indices, etc. at k, by finite difference

in k-space
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the sub-horizon evolution of the modes, using a tolerance at least this tight

gives no change to the value of the modes at horizon crossing.

We then solve the mode equations (2.12) for the variable ¢r; for the period
of time when the modes are smaller than the causal horizon, k 2 aH, and then
switch to a two-index matrix built from the u; in Eq. (2.21) for super-horizon
evolution. The power spectra are calculated for each k£ and various pivot-scale
statistics are evaluated by finite-difference between a few scales k; near k,. If
the potential V' is sum-separable, the program also calculates the N values

for the observables described in Section 2.4.5.

Numerous checks are performed on the background and mode equation
evolution so that MULTIMODECODE will fail gracefully if a fatal exception is
raised and give an informative error. Similarly, if a particular initial parameter
set is invalid for a non-fatal reason, MULTIMODECODE will iteratively generate
a new set of parameters in order to explore cosmologically relevant parameter
sets by rejection sampling. We have extensively tested the numerical stability
of the code and have included a number of easily controllable options allowing

the user to control the numerical accuracy, as well as the type of ODE solver.

2.6 Numerical results

2.6.1 Isocurvature stability

Fig. 2.1 illustrates a problem that arises when computing the isocurvature
spectra Pppaa and Pen. We have plotted the super-horizon evolution of the
power spectra for the adiabatic and non-adiabatic pressure perturbations, as

well as the adiabatic curvature, entropic, and isocurvature spectra, with N, =
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Figure 2.1: The evolution of the power spectra during the last 55 e-folds of inflation
for a two-field Ny-quadratic model. (Left) The power spectrum for adiabatic (green)
and non-adiabatic (blue) pressure perturbations 0P. The total pressure spectrum
and the adiabatic pressure spectrum are nearly coincident on this scale, so the total
pressure spectrum Psp has not been plotted. The gray area is an estimate of the
region dominated by double-precision error due to round-off in Ppyaq. (Right) The
power spectra for perturbations in the adiabatic curvature Pr, the isocurvature
Ps, and the comoving entropy Pent. Pent is a rescaling of Ppyaq and is numerically

unstable for N, 2 30 in this model. Pg is numerically stable until the end of inflation.

55, for a two-field inflation model with the potential

1 1
V= §m%¢% + §mg¢§ (2.58)

To match the analysis performed in Refs. [39,41,83,84] we choose m? = 10117,
m3 = 107190 and initial conditions ¢ ¢ = ¢2 = 12.0 Mp). In particular, Fig. 2.1
can be compared directly to Figs 1 and 3 in Ref. [39]. With this choice of
parameters, the background trajectory evolves primarily along the direction
of the heavier field ¢, for N, < 25, then turns sharply toward the ¢; direction
for the remainder of inflation. The effect of this turn on the super-horizon

perturbations can be seen clearly in the power spectra in Fig. 2.1.
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In general, the calculation of Pppaq and Py becomes dominated by numer-
ical error as the isocurvature perturbations decay. From Fig. 2.1, regardless
of the amplitude of the isocurvature modes, the adiabatic pressure perturba-
tions d Paq = c20p do not exponentially decay between horizon exit and the end
of inflation. For the example model (2.58), the power spectrum for 6 P,q is
approximately constant after the turn at N, ~ 25. However, the total pres-
sure perturbation § P is approximately equal to 0 P,q during this time and the
difference between the two reduces exponentially as the isocurvature modes
decay.

Since 6 Ppaq = 0P -0 P,q and 0 P,q — 0 P, the numerical accuracy for 6 P,.q is
limited by the real precision of the computer, which results in a finite difference
error in the numerical calculation of dP,,q and a loss of significance. Using
standard double precision accuracy, the expected error in 0 P,,q should then

be
Aerr,PPnad ~ 0(10715) PzSP ~ 0(10715) P5P,ad7 (259>

which is confirmed in Fig. 2.1. Without correcting for this dominant error
term, the value of Pp,.q Will oscillate arbitrarily between zero and the limit
in Eq. (2.59), which is an upper bound on the amplitude of the non-adiabatic

pressure perturbations. Since entropic perturbations are usually defined as [66|

Sty =Cr=¢y, (2.60)

where (7 is the curvature perturbation resulting from the I** fluid, this problem
will arise naturally for all calculations of Pey.

In contrast, the calculation of Ps in Eq. (5.6) is directly proportional to the
value of the decaying isocurvature modes in the kinematic basis. Using this
isocurvature spectrum largely alleviates the numerical problems with 6 P,.q,

yielding a more faithful measure with a higher degree of accuracy. Figure 2.1
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shows the exponential decay of Ps after the super-horizon turn at N, ~ 25. We
compare this to Peyy, which becomes numerically unstable at N, ~ 30, showing
that the two measures Ps and Py are separated by 27 orders of magnitude at

the end of inflation, despite being of the same magnitude at horizon crossing.*

2.6.2 A case study: Ny-flation with a step

We will show in Chapters 5 and 6 that MULTIMODECODE is able to pro-
duce large volume Monte Carlo samples for Ny—monomial inflation with the

potential
1
V=Y Mol (2.61)
T

for real exponents p [85-94|. In Chapter 5 we will focus on the N;—quadratic
case with p = 2 and demonstrate that the predictions for the power spectrum do
not sensitively depend on the prior probability chosen for the initial conditions
of the fields. In Chapter 6 we further demonstrate this for the general case
in Eq. (2.61), while focusing on the gravitational wave consistency relation.
We will be able to straightforwardly compare the analytical 6N results to the
numerics, greatly simplifying the procedure for comparing analytical results to
the full numerical calculation. We include all of the IC priors used in these

papers in MULTIMODECODE.

4As the adiabatic limit is approached, Ps can also receive a dominant contribution from
roundoff error in the Gram-Schmidt orthogonalization procedure. If some components of
the isocurvature vectors s% are much smaller than others, this can result in a spurious
projection of Pr onto the isocurvature directions. In MULTIMODECODE we have included
an optional subroutine renormalize_remove_smallest in modpk_potential.f90, where
the components of sk are set to zero if they do not affect the normalization of sk, i.e., if
the value of S{K is indistinguishable from roundoff error. In practice, we have never seen this

problem arise, so this option needs to be uncommented in the source code before compilation.



50 Chapter 2. MULTIMODECODE

In this chapter we will instead focus on a few case studies that are inter-
esting due to their analytic intractability. We present results for a multifield
generalization of the inflationary step-potential first used in Ref. [23|. This

potential has the form

V= EZm%gb% ll+c;tanh(¢1_®l)] (2.62)
22 d

1

with masses m; and real constants d;, ¢;, and ®; specifying the slope, ampli-
tude, and position, respectively, for a step feature in the I'*? field. Phase transi-
tions in sectors coupled only gravitationally to the inflaton sector may generate
these hyperbolic-tangent features in V' and leave an observable imprint in the
primordial density spectra if these symmetry breaking transitions occur dur-
ing the last O(60) e-folds of inflation [23,43]. In the sharp-step limit, these
features introduce oscillations as a function of k into the adiabatic curvature
power spectrum and a scale-dependent, oscillatory bispectrum [23, 44,95, 96].
To keep V' > 0 we require ¢; < 1 and to satisfy the latest constraints on oscilla-
tions in the scalar power spectrum amplitude requires ¢; < 1073, assuming that
the step occurs as the scales relevant for the CMB leave the horizon [97-99).

With ¢; - 0, Eq. (2.62) is an uncoupled assisted inflation model [85,100],
first proposed in Ref. [90]. Models with a step feature are additionally interest-
ing, because they can fit a wider range of data and have been well-studied in
the single-field case. In particular, Ref. [44] contains an elegant analytical cal-
culation for the single-field case of Eq. (2.62). However, replicating the same
calculation for the general potential would be difficult — if not impossible
— with the same techniques, since the possible existence of isocurvature per-
turbations significantly complicates the analysis. Consequently, a numerical
exploration of this model is well-motivated.

Fixing the number of fields to Ny = 10, we set the initial conditions to

¢r0 = 10, with the initial velocities set in slow-roll. The size and slope of the
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Figure 2.2: (Left) The masses my for each of the 10 fields in Eq. (2.62), drawn
from the distribution (2.63) with m? = 4.3 x 107!, compared to the corresponding
step positions ®; for that field, which is positioned so that the pivot scale ky =
0.002 Mpc! leaves the horizon at ®;, given the initial conditions ér1,0 =10. (Right)
The field trajectories (colored lines), with the same initial condition, as a function of
e-folding Ne, with k. (vertical line) leaving the horizon 55 e-folds before the end of
inflation. The step positions ®; are marked in blue and N, has been renormalized

so that k. = aH at N, =0.

step are set to ¢; = 1073 and d; = 1072 respectively, and the masses m; relative
to the fiducial mass to m? = 4.30x 10711, which in the single-field limit yields A,
at the best-fit value from the Planck TT data. Following Ref. [89], we choose

the masses m; according to the Marcenko-Pastur distribution

P(n) = g (B = ) (= ), (2.63)

where
B =m*(1+/5) (2.64)
with § = 1/2. This distribution of masses is derived in Ref. [89], and has also

been used in Refs. [93,101,102] and Chapter 5.
We set the step positions ®; for each field at the field-space point where
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Figure 2.3: Features in the power spectra due to the step (2.62), which is positioned
so that it affects the power spectra around the pivot scale k, = 0.002 Mpc~! (gray).
We compare (dashed, blue) the no-step case with ¢; = 0, to (solid, green) the case
with ¢; = 1072, While there are oscillations in the adiabatic Pg, isocurvature Ps,

and entropic Pent spectra, there is little variation in the tensor spectrum Pj.

the pivot scale k, = 0.002 Mpc™ leaves the horizon at N, = 55 e-folds before
the end of inflation in the no-step limit, ¢; - 0. Since the fields have identical
initial conditions, the ®; are functions only of the masses, so we plot the step
positions versus the m; in Fig. 2.2. We also present the field-space trajectories
according to Eq. (2.5) for the last 75 e-folds of inflation with these parameters.
The heavier fields relax more quickly toward their minimum at ¢; = 0 and
the lighter fields have a larger value at horizon crossing. Since ¢; = 1073, the
step is not obviously visible at the level of the background trajectory without
zooming in significantly.

However, Fig. 2.3 shows the substantial effect on the power spectra due
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to the steps. We see oscillatory behavior in the adiabatic, isocurvature, and
entropic power spectra, but almost no change in the tensor spectrum. Further-
more, we can see clearly that Ps and P, exhibit a nearly identical feature,
simply scaled by a factor of roughly 65. These features in the isocurvature
spectrum may lead to interesting effects during reheating or the subsequent

evolution of the post-inflation universe.

2.7 Conclusion

We present the Fortran 95/2000 code MULTIMODECODE, designed to max-
imize computational efficiency when numerically exploring a broad range of
multifield inflation models. The code also provides Monte Carlo sampling
of prior probabilities for inflationary model parameters and initial conditions,
enabling automated model exploration and the computation of probability dis-
tributions for observables. The mode equation method has a broad range of
applicability, but the computational cost scales with the number of fields as
O (NJ%) For models with sum-separable potentials, we have also implemented
a slow-roll 0N calculation, which only requires solving the background equa-
tions of motion once in order to obtain the full power spectrum as well as
higher order statistics. This drastically improves computation time, since the

background equations of motion are only O(Ny).

Here, we demonstrated its use with an Ny-flation model with a step. We
find that a feature in the inflationary potential not only results in a feature
in both the adiabatic power spectrum as a function of scale, Pr(k), as well
as the isocurvature spectra Ps, Pent, and Ppnaq, With possible implications for
the dynamics of many-field preheating scenarios. Further, we see numerical

evidence that the isocurvature spectrum Pg is a simple rescaling of the entropic
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spectrum P, indicating that the projection of the mode power spectrum onto
the isocurvature directions is related to a quantity that sources a change in R
on super-horizon scales.

MULTIMODECODE complements codes that currently exist to numerically
compute the inflationary power spectra [23,25,32-34,38-41, 103, 104]. The
theoretical basis of the method is outlined in Section 4.4. The ability of MUL-
TIMODECODE to solve numerically challenging problems, such as the step-
potential in §2.6.2, and to provide large samples of many-field inflationary
models adds significantly to the early universe cosmologist’s toolkit for explor-

ing and understanding realistic inflation models.
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CHAPTER 3

THE HOMOGENEOUS INITIAL CONDITIONS

PROBLEM

This chapter is adapted from:

R. Easther and L. C. Price

Initial conditions and sampling for multifield inflation

JCAP 1307 (2013) 027, [105]

Copyright (2013) by the Institute of Physics

3.1 Abstract

We investigate the initial conditions problem for multifield inflation. In these
scenarios the pre-inflationary dynamics can be chaotic, increasing the sensitiv-
ity of the onset of inflation to the initial data even in the homogeneous limit.
To analyze physically equivalent scenarios we compare initial conditions at
fixed energy. This ensures that each trajectory is counted once and only once,
since the energy density decreases monotonically. We present a full analysis
of hybrid inflation that reveals a greater degree of long range order in the set
of “successful” initial conditions than was previously apparent. In addition,
we explore the effective smoothing scale for the fractal set of successful initial
conditions induced by the finite duration of the pre-inflationary phase. The

role of the prior information used to specify the initial data is discussed in

o7



58 Chapter 3. The Homogeneous Initial Conditions Problem

terms of Bayesian sampling.

3.2 Introduction

The standard hot big bang is synonymous with the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric. This model imposes maximally symmetric
initial conditions on the metric and the mass-energy distribution, as specified
on an arbitrary initial spatial hypersurface. These initial conditions acausally
correlate spacelike-separated regions and require further fine-tuning for the
Universe to be spatially flat at late times, leading to the well-known hori-
zon and flatness problems. Famously, these problems are resolved by infla-
tion [1-4], which grafts a phase of accelerated expansion onto the very early
universe, setting the stage for the standard cosmology. During inflation the
comoving Hubble volume contracts and the visible universe is driven toward
the spatially flat FLRW universe.

Given that inflation attempts to explain the otherwise ad hoc initial con-
ditions of the standard hot big bang, a viable inflationary mechanism must
itself be free of tunings. Tunings can appear as technically unnatural parame-
ter values in the inflaton sector or the need for a special pre-inflationary field
configuration: the latter question is the focus of this chapter. Inflationary
models with unnatural initial conditions are at best incomplete and, at worst,
not viable as descriptions of the early universe. Moreover, the level of tuning
required to ensure the onset of inflation can differ substantially between sce-
narios with largely degenerate observational predictions, providing a possible
mechanism for discriminating between them.

The initial conditions problem arises even in the purely homogeneous limit.

For instance, chaotic inflation [106] begins for a large range of initial field val-
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Set Description

T....... Initial conditions surface, however defined
Z.oi Set of initial conditions with zero velocity
Cg...... Set of initial conditions with equal energy F
Sg...... Successfully inflating subset of Cg

Fe..oo... Non-inflating subset of Cg

Bg...... Boundary between Sg and Fg

Table 3.1: Subsets of phase space: notation.

ues, but new inflation with the Coleman-Weinberg potential [3, 4] requires a
special initial state. Inflationary models with multiple scalar degrees of free-
dom introduce a further level of complexity. With two or more fields the
homogeneous dynamics are potentially chaotic, as first pointed out in Ref. [21]
and also discussed by Refs [22,107]. Chaos is synonymous with sensitive depen-
dence on initial conditions, rendering multifield models qualitatively different
from their single field counterparts. Multifield scenarios are widely studied
and more natural in many settings. In particular, string theoretic inflation-
ary scenarios often possess many scalar degrees of freedom. Further, even if a
model has an effective single-field description once inflation is underway, the
pre-inflationary phase may contain many interacting fields. Several analyses
of the initial conditions problem for multifield inflation exist [22,107-113| and

we return to this question here.

We need to sample the “initial conditions space” Z for these scenarios, de-
termining the overall fraction that inflates and the topology of the inflationary

region within this space. A homogeneous, spatially flat universe containing
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N scalar fields ¢; with arbitrary interactions has 2N independent degrees of
freedom since the scale factor can be eliminated by the 0-0 Einstein equation.
The solutions to the equations of motion — called trajectories or orbits —
are non-intersecting curves that fill the 2 N—dimensional phase space. Yet, the
initial field values and velocities are not independent or identically distributed
(iid) random variables as different points in Z are correlated by the solutions
to the field-equations, i.e., many points belong to the same trajectory. (See
Table 3.1 for a summary of our notation.)

The phase space is foliated by surfaces of equal energy, Cg. The energy
density p = E4 of FLRW universes is monotonic, decreasing in a homogeneous

universe as
N .
p(t) =-3H Y ¢7, (3.1)
i=1

where the Hubble parameter H o< E? and overdots denote derivatives with
respect to coordinate time ¢t. For a specific energy FE, orbits intersect Cr once
and only once, identifying each point on Cp with a unique solution to the
equations of motion. To build a well-defined sample of trajectories we choose
initial conditions from the constraint surface Cg.

Many previous treatments of the multifield initial conditions problem [108-
112] have been based on Z, the N-dimensional subset of Z on which all ve-
locities vanish simultaneously. Although the set of inflationary trajectories
intersecting Z is easier to sample than Cg, orbits for which all velocities van-
ish at the same instant are not generic, given the finite duration of the pre-
inflationary era. Many orbits thus never intersect Z, while in principle others
may intersect it multiple times, correlating apparently distinct points — is-
sues that cannot arise when sampling from Cg. By contrast, Ref. [22] samples
the full phase space Z and also varies the parameters in the potential itself,

effectively marginalizing over the energy scale E. The current chapter is the
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first analysis of the initial conditions problem for multifield inflation that does
not either (a) study a lower-dimensional surface in the initial conditions space
(however defined) or (b) sample the entirety of Z, disregarding the fact that
different points belong to the same solution of the field equations.

Any description of the primordial universe breaks down above some energy
scale, and this scale defines the appropriate initial conditions hypersurface Cg
for a well-specified model.? This energy will be associated with some scale in
the particle physics sector, such as the characteristic size of extra dimensions,
the string scale, next-to-leading order corrections to Einstein gravity, or ulti-
mately its breakdown at the Planck scale. Points on Cp are thus physically
commensurate, whereas points in Z span several orders of magnitude in energy.
Qualitatively, we will also find that the set of successfully inflating points has
a simpler structure and more obvious long range order when chosen from Cg
rather than Z, allowing us to better understand the underlying cosmological
dynamics.

Beyond the choice of initial conditions surface, we must also specify the
prior probability distributions (in Bayesian terms) for the initial field values
and velocities. If w is a probability distribution that weights an initial condition
X according to how well its final state matches the observed universe, then

the expected value of w over initial conditions xg € Cg is

(o)) = [ wO)Peto)an s+ S ()] (o, o (32

i=1

where Py is the prior probability distribution for initial conditions on the con-

straint surface Cg and the sum is evaluated at n points sampled from Cg. The

ITetradis [110] presents a single equal energy slice, although a degree of freedom was
removed by requiring the velocities to be equal, similar to the projections we introduce for

convenience in Figs 3.3-3.5.
2If the potential has one or more local minima where Vj > 0, choosing E* <V, will

necessarily exclude all trajectories which evolve toward these minima.
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prior in Eq. (3.2) acts as the probability density function for initial conditions
on the space of FLRW universes. The form of Pg is only weakly constrained
by fundamental considerations. The freedom to choose Py is analogous to the
measure problem in the multiverse [114-118|, albeit restricted to the subspace
of homogeneous FLRW universes. In many previous works the prior is often
not directly discussed, and thus implicitly defined as a uniform distribution
on the initial conditions. We consider several possible choices of prior (all of
which are uninformative) and vary the energy of the surfaces Cx. We find that
the choice of prior significantly alters the fraction of trajectories that lead to
inflation, potentially distorting conclusions about the extent to which a given

inflationary model requires fine-tuned initial conditions.

In what follows we work with a widely studied two-field model: canonical
hybrid or false-vacuum inflation [81,82,119]. We relate the initial conditions
problem to that of determining the (fractal) topology and the geometry of the
subset of points Sg c Cg that successfully inflate, since this is independent of
the choice of prior. Like Refs [22,112]| we see that Sg has a fractal topology due
to the presence of chaos in the underlying dynamical system, demonstrating
that hybrid inflation has regions of phase space where orbits are highly sensi-
tive to their initial conditions and confirming the results of Ref. [21]. Hybrid
inflation is associated with a blue power spectrum? at odds with recent astro-
physical data [17,122-125]. However, our primary focus is not hybrid inflation
itself, but developing tools that can be used to understand the initial condi-
tions problems in generic models of multifield inflation. We use this model
because (a) it is the prototypical multifield model with chaotic dynamics and
a narrowly defined inflationary attractor; (b) we are primarily interested in

the onset of inflation; and (c) to make contact with previous work.

3 Although see Refs [120,121].
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The pre-inflationary universe is dissipative, so the fractal structure must
have a nontrivial scale dependence: there is necessarily a minimum scale below
which two nearby trajectories will remain correlated until they reach either the
inflationary attractor or a minimum of the potential, smoothing Sg below this
scale. Conversely, while we assume classical homogeneity, quantum fluctua-
tions prevent the universe from being perfectly smooth. If Sp has structure on
scales smaller than a typical fluctuation we cannot sensibly define the homo-
geneous limit for this system. Consequently, we propose a sampling technique
that identifies regions where Sg has structure below this minimum scale.

This chapter is arranged as follows: in Section 3.3 we review hybrid in-
flation and discuss its dynamics. In Section 4.5 we describe our numerical
methods, characterize the properties of the set of inflationary trajectories with
different energies and priors Pg, and investigate the fractal dimension of Sg.
In Section 4.6 we discuss the implication of our results and identify future lines

of enquiry.

3.3 Inflationary dynamics

For simplicity we consider two homogeneous scalar fields, 1) and the inflaton
¢, interacting through a potential V (¢, ¢) in a homogeneous FLRW universe.

The equations of motion are

¢+3H¢+Z—‘;=o and ¢+3H¢+g—‘;=o, (3.3)

and the Hubble parameter H can be eliminated by the 0-0 Einstein equation

8t [1:.5 1:
H = g |59 59 V@9 (3.4
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where Mp; is the Planck mass. Following Refs 21,22, 107-112] we consider
hybrid inflation [81,82,119] with the potential

2\2 2 2,/,2
v -a(1-15) 50|

(3.5)
with real parameters A, M, p, and v. Inflation occurs in the “inflationary
valley" with ¢ ~ 0 and |¢| > ¢, where ¢, = \/212/M is the critical point at
which the effective mass of ) becomes complex and inflation comes to an end.
The potential is symmetric under ¢ - —¢ and 1) - —1, with two equivalent
valleys for ¢ > ¢. and ¢ < —¢. and minima at {¢,¢} = {£M,0}. Orbits
will either enter one of the false-vacuum inflationary valleys or evolve directly
toward one of the true vacua.

We set the amplitude A, of the dimensionless power spectrum Pxr to be
roughly compatible with the WMAP9 data [123,124], which fixes the potential
energy scale. This results in
o m (%) = (2.43+0.08) x 1077, (3.6)

where ey = (M3,/2)(V,/V)? is the slow-roll parameter. Setting M = .03 Mpy,
1 =500 Mpy, and v = .015 Mp; and assuming perturbations are generated when
Y ~ 0 and ¢ ~ ¢., we derive A ~ 6.8 x 1076 Mp.* Lastly, Ref. [126] deter-
mined that quantum fluctuations dominate the classical field evolution in the

inflationary valley when
A>A,= 4w¢§Mgl%. (3.7)
]

For our parameters A, = 9.6 x 107 Mp;, so the classical equations are self-

consistent.

4The super-Planckian value of 4 is an artifact of this definition of the potential; the actual

mass term is m3 = 2A*/p* ~ 1072° Mg, and safely sub-Planckian.
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Figure 3.1: Distribution of successfully inflating initial conditions drawn from the
zero-velocity slice Z. White areas have the highest number of successful points;
darker regions have the fewest. This plot matches Fig. (1) of Ref. [22], with M =
.03 Mpy, p = 636 Mp), and v = .0173 Mp;. The figures are similar (verifying our
codes and algorithms) but are not expected to be identical, due to different binning

procedures.
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The inflationary valley is a small subset of the total phase space, which
might suggest the model has a fine-tuning problem. References [108,110,111]
considered sub-Planckian initial field values on the zero-velocity surface Z,
pessimistically concluding that — in the absence of effects that increase the
friction experienced by the fields — only trajectories which start inside the
inflationary valley yield 60 e-folds of inflation. By contrast, Ref. [109] was
more optimistic, showing that a supergravity-inspired hybrid inflation model
has a significant number of “successful” points outside the inflationary valley.
With more exhaustive sampling of Z, subsequent studies by Clesse, Ringeval,
and Rocher [22,112] extended this optimistic conclusion to the potential (4.4).
They showed that successful initial conditions are distributed in an intricate
series of patches and fine lines outside the inflationary valley, with a fractal
boundary separating inflating and non-inflating initial conditions. The distri-
bution of successfully inflating initial conditions on Z, for a specific scenario
from Ref. [22], is reproduced in Fig. 3.1. The fine-tuning problem may also be
less serious if the initial field values are assumed to be super-Planckian or if

the interaction term dominates [112,127].

References [22,120] also present a Markov Chain Monte Carlo (MCMC)
sampling of all possible parameter choices and sub-Planckian field configura-
tions, including those with initial velocities. The conclusion was that 60 e-folds
of inflation is generic for the potential in Eq. (4.4) and fine-tuned initial condi-
tions in the inflationary valley are not required. Although we have argued that
sampling from any two-dimensional subspace, such as Z, is of limited benefit,
sampling the whole four-dimensional space Z may not be strictly necessary,
even though an MCMC technique marginalizes the unknown initial energy F.
We instead choose to explore how fine-tuned the initial conditions must be

when sampling from constraint surfaces Cp that incorporate the energy con-
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straint Eq. (3.1).

3.4 Numerical results

3.4.1 Method

We numerically integrate Eqs (3.3)—(4.4) using a backward-difference formula
implemented by the FCVODE package from the SUNDIALS computing suite
[128]. We sample initial conditions from constraint surfaces Cp with constant

energy density
1., 1.
p= 5% + §¢(2) +V (o, ¢0) = E*, (3.8)
where

E= 10Z Mp for 1€ {—5,...,0}. (39)

The last 60 e-folds of inflation occur at {1, ¢} ~ {0,¢.} with E ~ 1076 Mp,.
With E = 10°Mp, we are at the limit of classical Einstein gravity; we only
include this case to illustrate the underlying dynamical system.

We stop integrating when either (a) the orbit achieves more than 60 e-folds
during inflation or (b) p < A* and the trajectory is trapped by the potential
wells at {1, ¢} = {£M,0}. Initial conditions which lead to 60 e-folds of inflation
are “successful” and define the subset Sg, while its complement — the “failed”
points — comprise the subset Fg.°> The boundary between these sets, whose
properties determine the extent to which they “mix,” is denoted Bg.

We select points randomly on the constraint surface as follows. We first
draw ¢y and ¢y from the uniform distribution over 0 < {¢g, ¢o} < .2 Mp, ex-

cluding any choices with V(¢q,10) > E*. The symmetry of the potential (4.4)

®Again, additional constraints can be added, e.g. data matching for ng, r, or other

observables.
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allows the restriction to positive field values, whereas the upper bound is set to
be consistent with Ref. [22]. Given these initial field values, the kinetic energy
is typically dominant unless E ~ A ~ 1076 Mp;. We apportion the remaining

energy by drawing one of v € {¢o,1)} from a uniform prior on the range

—V2(E* - V) < vy <\2(E* - V) (3.10)

and giving the leftover energy to the other field velocity vy with the overall
sign again chosen randomly. We maintain the symmetry between ¢, and
by alternating the order in which these velocity terms are set.5 This procedure
implicitly defines the initial priors Py, on the constraint surfaces Cg.

To estimate the size of inhomogeneous fluctuations at the initial energy F,
we note that ¢ ~ H /2w and H ~ E?/Mp) for a massless field in de Sitter space.
Similarly, the minimal variation in velocities is expected to be of order H?
across a Hubble volume [126,129,130]. The fields ¢ and ¢ are not massless and
the pre-inflationary universe is not de Sitter, but we can use this relationship
to put an approximate lower bound on the homogeneity of the primordial
universe. In regions of Sg whose typical scale in any phase space dimension is

less than

A = {01, 5o, St 0o} = %{H, H,H? H?} (3.11)

the homogeneous approximation breaks down and further analysis is invalid
or ambiguous. If we smooth the universe on scales larger than the Hubble
horizon, then A indicates a 1o fluctuation from the fiducial initial value in
phase space, if we assume a white noise spectrum. If a successfully inflating

point is within A of an unsuccessful point, then there is significant ambiguity in

6This prior generates the high tails in the velocity distributions seen in Fig. 3.6. If the
first velocity chosen is vy, the second will be ve = £1/2(E* - Vp) — v%. Since v; is uniformly

distributed, vy is a quadratic distribution, favoring higher values.
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the final state due to this estimate of the initial inhomogeneity. Physically, in
these regions we cannot self-consistently assume that the primordial universe

is homogeneous.

We exclude these regions from Sg by sampling Cg in clusters. We first
choose points from Cg and integrate Eqs (3.3)—(4.4). At each point that suc-
cessfully inflates we randomly draw 100 points within A of that point.” If any
of these new points do not inflate, we conclude that the original point was a
“false” (or perhaps ambiguous) positive. Applying this simple stability check
at various other points along the trajectory’s evolution is straightforward, but
computationally expensive. Furthermore, the largest fluctuations occur at the
highest energies, so testing the initial energy surface captures the most relevant
effects. Although this approach incorporates points lying near (but not actu-
ally on) our designated equal energy surface, we do not weight our conclusions

by these secondary points.

This analysis does not address the inhomogeneous initial conditions prob-
lem; it simply limits the extent to which the initial conditions can be self-
consistently fine-tuned in a homogeneous universe, given that the chaotic dy-
namics of the potential may cause closely correlated trajectories to diverge ex-
ponentially. Fig. 3.2 shows three solutions of Eqs (3.3)-(4.4), at £ = 107> Mp,
with initial field values which differ by only 10-8Mp;. They eventually diverge,
with each trajectory reaching a distinct end-state. If an inflation model has
a fractal Sg or B that is distributed in a complex manner over Cg, then al-
most all successfully inflating initial conditions may be within A of an initial

condition which does not inflate.

"For the lowest values of E, {51/}0/1/)max, 060/ Pmaxs §¢o/¢max, 5gz50/q5max} ~107'% which is
far below the resolution of our figures. We confirmed the accuracy of the FCVODE integrator

in this domain by using an arbitrary precision integrator from Mathematica.
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Figure 3.2: Parametric trajectory plots for three orbits at energy F = 107> Mp;
initially separated by 107®Mpi in the field values and 10_8MF2)1 in the field velocities.
These orbits are exponentially diverging, with each of the three trajectories branching

at t ~ 3600 Mlgll; one goes to each of the global minima at 1 = +M and one inflates.

3.4.2 Successful inflationary trajectories

The fraction of successful points at any given energy E is summarized in Ta-
ble 3.2, both including and excluding the “false positives.” The highest prob-
ability for success is at higher energies. We should expect this since, given
that the effective equation of state is not the same on all trajectories, orbits
accumulate on the narrow inflationary attractor over time, leaving a larger flux
of orbits through the attractor at lower energies. In comparison to a sample
drawn from Cg, an identical sample from a slice Cgr with £ > E’ will not place
as much weight on trajectories inside the inflationary attractor and we expect
to see fewer successfully inflating initial conditions on the lower energy surface.

Figures 3.3 to 3.5 show two dimensional slices of Sg at different values
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Figure 3.3: Two dimensional slicings of Cg for E = 1072 Mpy, including the ambigu-
ous, “false positive” points in Sp. Parameters are A = 6.8 x 1076 Mp;, M = .03 Mpy,
@ = 500 Mpy, and v = .015 Mp;. The light and dark areas are regions that have a
higher and lower density of points in Sg, respectively. The results have been binned
over a 1000x 1000 grid. All velocities are of equal magnitude, however the left column
has ¢> > 0, the right column is at ¢) < 0, the top row has ¢ > 0, and the bottom row
has ¢ <0.
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Figure 3.4: Two dimensional slicings of Cg for E = 1072 Mpy, excluding any ambigu-
ous or “false” positives from the set of successfully inflating initial conditions, Sg.
All velocities are of equal magnitude; the left panel has 1/}0 <0 and <z50 > (0; and the
right panel has {t, do} < 0.
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Figure 3.5: Two dimensional slicings of Cp for E = 107° Mp;, where the checked
background has V' (1o, ¢o) > E* and has not been sampled. All velocities are of

equal magnitude; the left panel has {1, ¢o} > 0 and the right panel has {1, ¢o} < 0.
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E [Mpl] Nguce [M] Nytotal [M] Nfalse [k] ftrue ftotal

10° 0.00 2.01 1000.0  0.000 0.498
101 1.00 2.24 2.7 0.447 0.479
1072 1.00 2.57 1146  0.389 0.434
1073 1.00 3.34 105.9  0.300 0.331
10 1.00 4.89 30.4 0.205 0.211
T107° 1.00 4.45 0.012  0.225 0.225

Table 3.2: Total fraction of successfully inflating points sampled from priors Fyrig
on the equal energy slices Cp — both excluding (fiue) and including (fiota) false
positives from Sg. Also shown are the number of successful points ngycc, the number
of false positives ngyse, and the combined number of fail points, false positives, and
successful points nieta;. The numbers ngyee and niora) are measured in millions [M]
of points, ng,ee is measured in thousands [k| of points, and the energy E is in units
of the Planck mass Mp;. (f) The sampling procedure deviates from an “equal-area”

sample as E — A.

of E. We bin Sg on a 1000 x 1000 grid: white regions are those with the
highest number of successful points and the darkest regions have the fewest. We
accumulated 2.5 million successful points on each slice and see minor stochastic
variation in the number of points per bin. Figures 3.3, 3.4 (F = 1072 Mp)),
and 3.5 (F =107 Mp;) show two-dimensional slices of Cg on which the initial
velocities have equal magnitude || = |¢ho|. Looking at Figs 3.3 through 3.5 we
can see areas where S and Fg mix together, forming an intricate substructure
similar to that seen in Refs [22,112]. In Fig. 3.4 we also see contiguous regions
and thick bands which reliably inflate and survive the subtraction of the false

positives from Sg. Qualitatively, S exhibits considerable long range order
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when compared to Fig. 3.1. At higher energy, contiguous regions in Sg occupy
a larger portion of Cg, which can be seen clearly in Figs 3.3 and 3.4. The

transition from Figs 3.3 to 3.5 shows how the geometry of Sp changes with E.

Figures 3.3 to 3.5 are projections of three dimensional regions and suppress
information about the field velocities of the successful initial configurations.
Intuitively, the points most likely to inflate (for given ¢g and 1)) would be those
which had a large |¢0| and small WOL These points are essentially “launched”
up the inflationary valley, while the slope of the potential focuses them toward
smaller values of 1. To show this dependence on the initial values ¢ and
o, Fig. 3.6 shows histograms of these values sampled from the whole of Cp.
The fraction of sampled points in Sg as a function of initial velocity confirms
our intuition: most successful points have larger |¢o| and smaller |¢)|. Points
for which ¢y ~ 0 are particularly disfavored, further suggesting that the zero-
velocity slice Z is unrepresentative of typical inflationary trajectories. We
can also see the impact of the “false positives” in these plots: these are more
frequent at high energies and in the limiting case E = Mp all naively-inflating
initial conditions are false positives, since A encompasses the whole of Z in
this limit.

With sub-Planckian initial field values the kinetic energy dominates the
potential energy for £ > A. Thus, even if a trajectory starts inside the in-
flationary valley, its velocity is such that it is unlikely to remain there. For
example, when FE = 102 Mp, the slices of Sg in Figs 3.3 and 3.4 show no special
preference for points within the valley. In contrast, with £ = 1075 Mp; ~ 10A
the valley is clearly distinguishable, as shown in Fig. 3.5, but only when the
initial velocity of ¢ is directed “uphill,” i.e. with ¢y > 0. Conversely, each slice

contains many successful points that lie outside the inflationary valley.

In Fig. 3.7 we project specific representative solutions of Eqs (3.3)—(4.4)
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Figure 3.7: Successfully inflating trajectories projected onto the {1, ¢} plane, with
initial conditions {¢g, o} marked in red. The left panel is at energy E = 1072 Mp,
and the right panel is at energy F = 10~* Mp;. The gray, checked region is where the

magnitude of the field values exceeds Mp;.

onto the {1,¢} plane for initial conditions with energies F = 1072 Mp, and
E =10~* Mp,. Trajectories which unambiguously inflate show little topological
mixing and are all reflected off of the maximum of the potential Vijax = V]y=g
toward the inflationary valley. For E > 10-3Mp;, most trajectories contain
regions in which the field values are super-Planckian. We do not exclude
these trajectories, but we could easily add this as a separate requirement for
a viable inflationary scenario, in which case almost no successful inflationary

trajectories exist at these energies.

To quantify the sensitive dependence on initial conditions independently
of our sampling procedure, we use the box-counting method to estimate the
fractal dimension of both Sg and its boundary Bg, including the “false” pos-
itives [131]. We first cover each set Sp and B with progressively smaller

four-dimensional boxes of size §, then count the number N(§) of §-sized boxes
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Figure 3.8: The left panel shows the box counting of By for E = 1072 Mp;. The slope
of the best-fit line d = 2.558 is the box counting dimension. The right panel is the
box counting dimension d versus the energy F for sets S and Bg at the energies in

Eq. (3.9). The red line with boxes indicates Sg and the blue line with circles is Bg.

in each covering. The box-counting dimension

. log(N(9))
4= oa(1/0)

(3.12)
is estimated by the slope of the line fitted to the linear portion of the curve
log(N) as a function of log(1/d). To compute the dimension of Br we count
boxes that contain elements of both Sg and Fg. Figure 3.8 shows both a
typical fit (for Bg with £ = 1072 Mp;) and the computed values of d for Sg and
Bg. The result is sensitive to the detailed fitting procedure, which we trained
by testing the algorithm on sets with known dimension, such as Cantor dust.
Furthermore, the estimate for d depends both on the non-trivial distribution
of Sg over Cg and the resolution of sampled points, which is a function of
the initial energy and sampling prior. The reported values of d should be
interpreted as an upper bound to the related Hausdorff dimension [131] that
improves with increasing E, where the set Sg has higher long-range order. The
Hausdorff dimension and the box-counting dimension coincide for cases where
the fractal is exactly self-similar.

The regions considered here are multifractal, in that the dimension of Sg
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will be a function of both position in Z and the overall scale. The first is easy
to see: each surface Cp contains regions in which essentially all points inflate
(in these regions d ~ 3) and regions that are approximately isolated points
(with d < 3). Consequently, the computed value of d is effectively a weighted
average of at least two different regions, which explains why the dimension
of Sg is close to 3 but still measurably non-integer. Secondly, at very small
scales Sp must consist of smooth contiguous regions and on these scales we
expect d - 3. These regions exist in spite of the chaotic dynamics due to the

dissipative terms in Eqs (3.3)—(4.4) and put a lower limit on the mixing scale.

3.4.3 The role of the prior

It is well-known [114-118,127,132] that probability measures on different hy-
persurfaces result in different conclusions regarding the likelihood of inflation;
we explore here how this relates to the choice of sampling prior. Although
surfaces with different energies (as well as different initial conditions surfaces,
such as a slice of constant comoving time) are homeomorphic to Cg and, by
definition, have the same topology, the prior on Cg is not a topological property
and is not preserved under either homeomorphism or a change of variables.®
Each initial condition surface then has a different prior and different likelihood
for inflation, even given the same sampling technique.

In Table 3.3 we compare different uninformative priors, defined implicitly
through four sampling algorithms, on surfaces Cr at the energies in Eq. (3.9).
Since the kinetic energy is initially dominant for the energies and ranges we con-
sider, we leave the selection method for {1, ¢o} the same as in Section 3.4.1,

but vary the way we set the velocities v € {1}0,%}. The original prior Pg

8 A homeomorphism is provided by time-translation along the integral curves of the equa-

tions of motion. Note that Z, being of a lower dimension, is not homeomorphic to Cg.
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— Porig Psquare P¢ de

E [MPI] ftrue ftotal ftrue ftotal ftrue ftotal ftrue ftotal

10° 0.000 0.498 | 0.000 0.497 | 0.000 0.704 | 0.000 0.294

101 0.447 0.479 | 0.426 0.471 | 0.651 0.681 | 0.243 0.276
102 0.389 0.434 | 0.347 0.408 | 0.582 0.624 | 0.196 0.242
1073 0.300 0.331 | 0.245 0.285 | 0.438 0.469 | 0.162 0.194

104 0.205 0.211 | 0.188 0.195 | 0.247 0.253 | 0.163 0.169

1075 0.225 0.225 | 0.215 0.215 | 0.265 0.265 | 0.183 0.183

Table 3.3: Fraction f of sampled points from Cg that inflate — both excluding (true)
and including (total) false positives. The sampling techniques (Porig7 Fquare, P Py and
P ¢) are explained in the text. Excluding the ambiguous or false positive cases only

significantly affects the success probability for E 2 107 Mp.

draws one velocity v, from a uniform distribution, bounded by im ,
and then sets vy by the energy constraint (3.8). All signs are chosen randomly
and this procedure is alternated on subsequent choices of points to obtain a
symmetric distribution in the velocities. The second prior Psquare is similar, ex-
cept we draw the square of the velocity v? from a uniform distribution bounded
below by zero and above by 2(FE* - V), with the sign of v; chosen randomly.
Again, we alternate this to obtain a symmetric distribution. With this modest
change in prior, the calculated fraction fi.. of Cg that inflates (excluding false
positives) differs by only a few percent, with Piquae giving a slightly lower

fraction at each energy. The fraction fi.,. again decreases with decreasing F.

We compare this to two priors Py and P that are asymmetric in the

velocities. For Py we always draw Yo from a uniform distribution bounded
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by £1/2(E*-V,) and always set do by the energy constraint. For Py we

do the opposite: draw (bo and set 2/}0. This gives a uniform distribution in
the sampled velocity vy, but a high-tail distribution similar to Fig. 3.6 in
the velocity vs. The prior Py focuses more of the sample around o ~ 0,
the area identified as being most-likely to inflate, and P, gives more points
around ¢y ~ 0, the area least-likely to inflate. At E = Mp the difference in
frotar (including false positives) between the asymmetric priors is as much as
41.0 percentage points. The differences decrease with decreasing F, indicating
that later-time hypersurfaces become progressively independent of the prior.
However, Table 3.3 demonstrates how any measure of f is prior-dependent,
especially with respect to the implicit dependence of the prior on the initial

energy.

3.5 Conclusion

We have considered the initial conditions problem for multifield inflation, quan-
tifying the likelihood of inflation by sampling an initial conditions surface,
evolving the points numerically, and dividing them into successfully and un-
successfully inflating sets. We draw initial conditions from an equal energy
slice of phase space, denoted Cg, the maximum energy at which the underly-
ing theory is assumed to be an accurate description of the primordial universe.
Since FLRW universes have a monotonic energy density, sampling initial con-
ditions from Cg ensures that we count only unique solutions to the equations of
motion. A sample of points from Cg is thus a well-defined sample of homoge-
neous universes. Typically, we cannot predict the flux of orbits through Cr and
must choose a prior, accordingly. We considered four different uninformative

priors on Cp and showed that the likelihood of inflation varies by as much as
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a factor of roughly two between candidate priors. However, one can imagine

scenarios where the prior dependence was much more dramatic.

After specializing to hybrid inflation we examined the topology of the set of
successful points Sg, which is independent of continuous deformations to the
prior. We confirm that both Sg and the boundary between the successful and
unsuccessful points is fractal for all sampled energies. The structure of Sg, as
seen in Figs 3.3 to 3.5, is qualitatively smoother than when initial conditions
are chosen from the zero-velocity slice shown in Fig. 3.1. Further, since the
equations of motion (3.3)—(4.4) are dissipative, there must be a small-scale
cutoff to any fractal structure. However, quantum corrections to the classical
analysis presented here will generate inhomogeneities in the resulting semi-
classical picture, which would depend on the detailed behavior of the pre-
inflationary state. This puts a fundamental lower limit on the homogeneity
of the early universe: if Sg has structure below this scale, the assumption of
homogeneity is not self-consistent. Fluctuations are larger at higher energies
and above some critical energy E the number of viable, homogeneous scenarios
is vanishingly small, even though the naive counting statistic suggests that a

nontrivial fraction of the initial conditions space is inflationary.

Our specific calculations are performed for the hybrid potential (4.4), but
our underlying goal is to develop tools that can be applied to the initial condi-
tions problem associated with generic multifield scenarios. Recent progress has
been made by studying both random multifield models [133-138] and inflection
point models [132,138-142]. These approaches yield contrasting conclusions
regarding the distribution of inflationary trajectories; applying the methods

developed here to these models will be an interesting extension of this work.

This analysis assumes that the universe is initially spatially flat and ho-

mogeneous, but even if inflation begins without tuning in the homogeneous
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limit there is no guarantee that this result will survive the addition of pre-
inflationary inhomogeneities. Inhomogeneous pre-inflationary configurations
were examined by Goldwirth and Piran [143-145], who showed that single-
field chaotic inflation and new inflation [3,4| remain robust in the presence of
nontrivial inhomogeneity, provided that the initial field value is approximately
correlated over several Hubble radii. We examine this question with lattice

PDE techniques in Chapter 4.



CHAPTER 4

INFLATING AN INHOMOGENEOUS UNIVERSE

This chapter is adapted from:

R. Easther, L. C. Price, and J. Rasero,

Inflating an Inhomogeneous Universe

JCAP 1408 (2014) 041, [146]

Copyright (2014) by the Institute of Physics

4.1 Abstract

While cosmological inflation can erase primordial inhomogeneities, it is pos-
sible that inflation may not begin in a significantly inhomogeneous universe.
This issue is particularly pressing in multifield scenarios, where even the ho-
mogeneous dynamics may depend sensitively on the initial configuration. This
chapter presents an initial survey of the onset of inflation in multifield models,
via qualitative lattice-based simulations that do not include local gravitational
backreaction. Using hybrid inflation as a test model, our results suggest that
small subhorizon inhomogeneities do play a key role in determining whether in-
flation begins in multifield scenarios. Interestingly, some configurations which
do not inflate in the homogeneous limit “succeed” after inhomogeneity is in-
cluded, while other initial configurations which inflate in the homogeneous

limit “fail” when inhomogeneity is added.

83
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4.2 Introduction

The key predictions of inflation are strongly supported by observations of both
large-scale structure [147-150] and the cosmic microwave background, e.g.,
WMAP9 [123,124], ACT [125], SPT [122,151|, and Planck [17,152]. While
inflation can ameliorate fine-tunings associated with the hot Big Bang, this
presupposes that the inflationary mechanism does not itself rely on fine-tuned
fundamental parameters.! In particular, if inflation can only begin from a
narrow range of possible configurations of the pre-inflationary universe, then
the fine-tuning problems of the standard Big Bang have not been solved.

Despite its importance, the inflationary initial conditions problem has re-
ceived relatively little attention. In some cases (e.g., new inflation [3,4, 157])
the initial conditions must be tuned in the purely homogeneous limit, but
a complete treatment of the issue involves the fully inhomogeneous Einstein
equations. This problem has been addressed for single-field inflation, with
the conclusion that approximate homogeneity is needed over a volume of a
few Hubble radii for chaotic inflation [144, 145|, whereas new inflation has an
inflationary attractor [158-161]. However, the inhomogeneous dynamics of
multifield inflation are almost entirely unexplored. Multifield inflation mod-
els have rich dynamics and are motivated from high-energy theory [162-165],
making them relevant for studies of inflationary initial conditions.

We take the first step toward analysing this topic by performing lattice sim-
ulations of the pre-inflationary period for two-field hybrid inflation [81,82,119].
This is a qualitative exploration, as our results are based on solutions of the
inhomogeneous scalar field dynamics in a homogeneous, expanding spacetime,

ignoring both local gravitational backreaction and non-zero spatial curvature.

'For a recent discussion of these problems see Refs [153-156].
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By ignoring inhomogeneities in the metric we are making the same assumptions
that underpin a vast number of numerical studies of inflationary preheating.
We focus on initial configurations which represent small perturbations to a
homogeneous background, as the small initial field gradients ensure that our
analysis is self-consistent. Furthermore, this approach allows us to take ad-
vantage of the mature numerical tools that have been developed to analyze
preheating [166-168]. Consequently, while this project represents a significant
advance on previous studies of the initial conditions problem for multifield in-
flation, all of which have been performed in the purely homogeneous limit, it
also paves the way for analyses based on full numerical relativity.?

The chaotic nature of the homogeneous limit of multifield inflation (as in-
vestigated in Ref. [21] and Chapter 3) means adjacent trajectories in phase
space are highly divergent, but as field gradients contribute to the energy den-
sity, field values at nearby spatial points cannot diverge by arbitrary amounts.
This effect potentially “focusses” trajectories relative to the homogeneous limit,
and our lattice-based simulations let us explore the role of the gradient energy
in the inhomogeneous evolution of this system. Using Monte Carlo explorations
of the initial conditions space, we confirm that the qualitative consequences of
the chaotic dynamics, especially phase-space mixing, persist when moderate-
to-large inhomogeneity is added. However, for many initial configurations
the inflationary outcome is not changed by the addition of small amplitude
inhomogeneities, demonstrating the focussing effect. Moreover, while many

initial conditions that “succeed” in the homogeneous limit do “fail” when in-

2Numerical solvers for the single field Einstein-Klein-Gordon equation in three dimensions
are described by [144,145,169], and there has been recent progress in simulations of highly
inhomogenous bubble collisions for single field systems in one dimension [170,171] but three
dimensional, multifield scenarios with significant inhomogeneity are beyond the scope of

currently available numerical tools.
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homogeneity is included, we also see initial configurations which “fail” in the

homogeneous limit that successfully inflate when inhomogeneity is included.

4.3 Model

We consider hybrid inflation [81,82] with two inhomogeneous scalar fields ¢

and 1, in a flat FLRW universe with equations of motion

. o1 ov
+ 3H b, — —T20;

where a is the scale factor, H = a/a is the Hubble parameter, and a subscript

-0, (4.1)

i denotes the components of the vector {¢,%}. The inhomogeneous energy

density is

! Z [¢3 + (Vj;P] +V(¢i), (4.2)

t =
p(7X) 27{

the pressure is

ptx) = 5 [~ 3] - v, (43)

and a evolves according to the Einstein equations. In general, the metric is
spatially dependent, but we set a = (a(t,x)) and H? = (p(¢,x)) /3, where (.)
indicates an integrated spatial average, which is an accurate approximation
when the fields’ variance is small. Relaxing this assumption would require a
full numerical treatment of the Einstein equations.

The generic hybrid inflation potential V' has the form

V(6 1h) = A4 l(1 - %) FU(S) + M’Z] (4.4)

where U(¢) drives a sustained period of slow-roll inflation in the “inflationary
valley” at ¢ ~ 0, but is otherwise subdominant. A graceful exit from inflation
occurs when the effective mass of the waterfall field mZ; , = A*(¢? /v -2/ M?)

becomes imaginary.
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Parameter A M 1 v

Value [Mp] | 6.8x1076  0.03 500.0 0.015

Table 4.1: Parameter values for the potential in Eqs (4.4) and (4.5). The overall
energy scale is set by A, but the background dynamics are not affected by this

choice.

We work with

_¥
U(¢) = el (4.5)

although the Planck results [152| rule out slow-roll inflation with this form
of U(¢), since it predicts n, > 1. However, the exact form of U(¢) is likely
to have little impact on the initial conditions problem since, by hypothesis, it
only dominates the potential in a small portion of field space and the multifield
dynamics for this scenario are well-studied in Refs [22,107-112] and Chapter 3.
We use hybrid inflation as a toy model to illustrate the interesting multifield
dynamics resulting from the interaction between the dynamical fixed points
at ¢ = {0,+M} and the tachyonic instability points ¢ey = +/212/M. We
note that a red scalar spectrum can be achieved through other choices of U(¢)
[172,173|, as does inflation during the waterfall transition [112,120,121,174].
The numerical parameters used in our simulations are listed in Table 4.1.
The background dynamics are independent of the value of A, but we choose A =
6.8 x 1079 Mp; to match the measured amplitude of the scalar power spectrum
[152]. The onset of inflation in this model has been thoroughly investigated in
the homogeneous limit (e.g., Refs [22,107-112] and Chapter 3) and surveys of
initial conditions that consider both the initial velocities and field values |22,
105,112] find that hybrid inflation scenario begins for a significant fraction of

initial configurations. However, the chaotic nature of the underlying dynamics
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ensures that the set of successful initial conditions is fractal.

4.4 Numerical methods

Equations: We solve the equations of motion (4.1) using LATTICEEASY?
[166] and assuming periodic boundary conditions ¢;(¢,x) = ¢;(t,x — L), where
L is the length of the spatial box defined by the simulation. On a lattice, the

Fourier transforms can be expressed as a finite series
X 1 n mik-x
¢i(t,x) = f (21)3 ¢z k(1)e™ s zk:qbi,k(t)ez kex (4.6)

We specify initial conditions in Fourier space, through ggiyk(()) and its time
derivatives 8tg5i,k(0). In order to sample a large number of initial configura-
tions, we restrict the inhomogeneity to one spatial direction, effectively assum-
ing a translational symmetry in the orthogonal directions. We allow a small

initial velocity in the 0" mode, but set 0tq3i7k>0 =0.

Inhomogeneous 7,,: With a single excited mode, the initial field configu-

ration is

¢:(0,7) = dio [1+Asin(27rgx)] . (4.7)

Periodic boundary conditions require the lattice-size to be a multiple of the
wavelength &k = n/L for some integer n. Without loss of generality, we can set
the boxsize L to the wavelength of the largest mode we excite, given our choice
of periodic boundary conditions, and define njapgest = 1.

We further assume that A $1 to keep the backreaction on the scale factor

initially small and maintain the self-consistency of Eq. (4.1). The average

3www.felderbooks.com/latticeeasy/


www.felderbooks.com/latticeeasy/
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initial energy density is

mrAgEm )2 (4.8)

1o
=— “+ (V(¢)) + —
() =5 T+ V(@) + 3 (T
and the initial average gradient energy density is suppressed by (nA/L)?. Like-
wise, the relevant contribution of the inhomogeneity to the trace and traceless
parts of the stress tensor are proportional to the square of the field gradient
and are also suppressed by this factor at the start of the simulation. The

momentum density is
Jj = —Z¢i3j¢i, (4.9)

which we keep small initially by considering only small initial velocities in the
0* mode, combined with a small value for nA/L. However, the spatial average
of J; over the simulation volume is strictly zero when the fields have the form
in Eq. (4.7).

As the simulation progresses we do not require that the components of the
energy-momentum tensor to remain small, but only require that a and H are
well approximated by their spatial average. To ensure that the inhomogeneous
contributions to the stress-energy tensor do not induce a large backreaction on

the subsequent evolution, we require that each field’s variance

Var; = (¢7) - (¢s)° (4.10)

remains small throughout the simulation, since large values would require a
more sophisticated analysis involving solutions of the full Einstein field equa-
tions. Solutions for which the variance exceeds Var; > 1072 Mp)? are dropped
from our analyses, but in practice, almost none of the configurations we con-
sider generate variances that cross this threshold, as the overall simulation

time is relatively short.
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Initial inhomogeneity: We parametrize the initial inhomogeneity associ-
ated with a mode of wavenumber £ using f, the ratio of its wavelength A to
the initial Hubble radius in the homogeneous limit:

aoHy

fe22,

(4.11)

where ag = 1 is the initial scale factor and H, is the initial Hubble parameter
in the homogeneous limit, i.e., using only ¢; ¢ and d;¢;o. The initial horizon
size in the homogeneous limit is related to the size of the simulation box by
21 f = agHyL. We consider only subhorizon perturbations with f < 1 since
superhorizon inhomogeneities can be well modeled by a collection of homo-
geneous universes with different initial conditions, using the separate universe
assumption. Subhorizon inhomogeneities contribute only perturbatively to the
Newtonian potential, which further justifies ignoring metric inhomogeneities.
Assuming we start in an almost-FLRW universe, these small-scale inhomo-
geneities can contribute only an effective pressure term with w = 1/3 that

cannot contribute to exponential expansion [175].

Ending condition: We require N, > 55 e-folds of accelerated expansion
with € < 1, although this limit is somewhat arbitrary as almost any specific
initial condition yields either N, > 55 or N, << 5. We follow previous analyses,
such as Refs [22,112] and Chapter 3, by defining an initial configuration as
“successful” if it gives N, > 55, and as a “failure” if it does not. In practice,
almost all of the e-folds occur in the inflationary valley when ¢ ~ 0, so we
halt our simulations once N, > 5 and (¢) ~ 0, i.e., once the trajectory has
settled into the inflationary valley. Alternatively, we stop the integration if
p < V(0,0.) = 2A*w*/M?12, since the trajectory cannot enter the inflationary
valley; these trajectories are by definition unsuccessful. In Section 4.5 we

compare our results for initial configurations with non-zero gradient energies
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to the homogeneous cases studied in Refs [22,105,108-112|, which are in the

“homogeneous limit” with V¢, o — 0.

4.5 Results

4.5.1 Single excited mode

We begin by examining two specific background initial conditions, 1Cgy.. and

[Crai1, which have different homogeneous dynamics. These correspond to choices

of initial conditions for which N, > 55 and N, < 5, respectively. The specific

choices are

ICsucc

[Cpait =

Do suce
P suce
T
G0.suce
Vo fail
0, fail
7720,fai1

(,Bo,faﬂ

9.6405 x 1073 Mp
2.7359 x 10_2 Mp1
~1.0211 x 10710 M2,

1.6059 x 1011 M2,

1.0361 x 102 Mp,
2.7497 x 102 Mp,
~6.6330 x 10711 M2,

7.3672 x 10711 M2,

: (4.12)

(4.13)

The combined initial kinetic and potential energy is Ey = 107° Mp; and quan-

tum fluctuations at this energy should have minimal impact on the end-state of

the background evolution, as studied in Chapter 3. By adding initial inhomo-

geneity to these background field values, we find that the amount of inflation

given by both of these trajectories can change drastically.

In Fig. 4.1 we plot the spatially averaged values of (¢,v) for a set of 10

configurations with background field values of ICg,;. We perturb each configu-
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Figure 4.1: Spatially averaged solutions to Eq. (4.1) for ten initial conditions with the
same background field values ICg,j, with a sinusoidal inhomogeneity, of amplitude
A and comoving wavelength \/27 = f/agHy, added in-phase to both fields. In the
homogeneous limit the background field values give N, < 55. The blue contours
show the potential energy density V. (Left) The initial fraction f is fixed and the
amplitude is varied between 107%% < A < 1. (Right) The initial amplitude is fixed to

A =1 and the fraction f is varied between 1072 < f < 1071

ration by adding a sinusoidal inhomogeneity with equal phases (as in Eq. (4.7))
to both fields. All of the plotted solutions explore much of the field space and
most of the sampled trajectories are eventually captured in the inflationary
valley at (1) = 0; however, only some trajectories stay there and inflate suf-
ficiently. Interestingly, this demonstrates that subhorizon inhomogeneity can
actually cause inflation in scenarios that fail to inflate in the homogeneous
limit. Hybrid inflation has been shown to be chaotic, first in the H — 0 limit
in Ref. [21], then in the homogeneous limit in Refs [22,112] and Chapter 3.
Since phase-space mixing is a characterisitic of chaos, this is the first indica-
tion that this behaviour extends to the inhomogeneous Klein-Gordon equation.

The non-linear dynamics of multifield inflation may therefore have a significant
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Figure 4.2: Distribution of independent initial conditions that succeed at generating
N, > 55 e-folds of inflation, as a function of initial inhomogeneity. The background
field values ICg,; are set so that in the homogeneous limit N, < 55. A sinusoidal
inhomogeneity, with amplitude A and comoving wavelength \/2m = f/agHp, has been

added, in-phase, to both fields. The initial energy Fjy is indicated by color.

effect on whether inflation successfully begins with from an inhomogeneous

universe.

Since we are solving (141)-dimensional PDEs, the computational cost of
evaluating each configuration is not excessive and we are able to generate large
samples to test whether this behavior is generic. Figure 4.2 shows O(10)
Monte Carlo samples with background field values of ICg,;. We again add a
sinusoidal inhomogeneity with logarithmic priors on the parameters, —-2.0 <
logyo f <—1.2 and -1.0 <log;, A < 0.0. Trajectories with lower initial gradient
energy than this do not deviate significantly from the homogeneous solution

and fail. The set of successful points has a fractal structure, similar to that seen
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Figure 4.3: Addition of sub-horizon inhomogeneity can turn failure ICs into suc-
cessful ICs. We add one sinusoidal inhomogeneity (left) in-phase and (right) with
a random phase difference to 50 randomly selected background ICs that fail in the
homogeneous limit. We find 38/50 and 39/50 change to “successful,” respectively,
with no noticeable correlations between them. (Background) Histogram of success-
fully inflating ICs (N, > 55) in the homogeneous limit, with the number of successful

points per bin Ny indicated by color.

with homogeneous hybrid inflation. Using the box-counting method defined
in Eq. (3.12) we are able to determine a fractal dimension of d = 1.27, d = 1.85,
and d = 1.25, for the set of points in Fig. 4.2 that are successful, unsuccessful,
and the boundary between the two, respectively. This is convincing evidence

that the dynamics remain chaotic in some regions of parameter space.

We also check that this behavior does not depend on the specific choice of
ICrtapn, by looking at scenarios with different background field values, and with
the perturbations in ¢ and v either in-phase or with an arbitrarily chosen phase
difference. The results of this investigation are presented in Fig. 4.3. We set
the initial field velocities to zero and draw the background initial conditions
from 0.10 Mp; < ¢g, % < 0.15 Mp;. We then chose 50 configurations that fail

in the homogeneous limit and add sub-horizon inhomogeneity with arbitrary
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Figure 4.4: Spatially averaged solutions to the inhomogeneous Klein-Gordon equa-
tion for twenty initial conditions ICguc, and varying initial gradient energy, pro-
vided by a sinusoidal inhomogeneity, with amplitude A and comoving wavelength
A2 = flagHp, in each field and with identical phase. The blue contours show the
potential energy density V. (Left) The initial inhomogeneous wavelength is fixed to
the initial Hubble scale f = 1 and the amplitude is varied between 1073 < A < 1.
(Right) The initial amplitude is fixed A = 1 and the wavelength is varied between
102 < f<1.

or zero phase differences between the modes in each field. In most cases we
find a mixture of inflationary and non-inflationary solutions at each point,

demonstrating the generality of this phenomenon.

Conversely, Fig. 4.4 displays the spatially averaged trajectories for initial
configurations with background field values of 1Cg,.. with the in-phase sinu-
soidal perturbations. The spatially averaged field trajectories begin by follow-
ing the homogeneous trajectory and oscillating around the inflationary valley
at (@) < —¢err. For those configurations with initially small gradient energies,
accelerated expansion exponentially dampens the inhomogeneity, the trajec-

tory is captured in the inflationary valley, and successfully inflates. The suc-
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cessfully inflating trajectories in Fig. 4.4 are nearly indistinguishable from each
other and from the field-space trajectory of the homogeneous solution. With
larger gradient energies — obtained either by reducing the wavelength of the
perturbation relative to the horizon or increasing the amplitude A — the inho-
mogeneity can pull the spatially averaged trajectory out of the valley. These
trajectories then evolve more-or-less directly to the minimum of the potential

and will give at most a few e-folds during any transient inflationary phases.

Fig 4.5 gives the variance Var; for representative successful and unsuccessful
solutions with initial background field values of IC... For the successful case,
the trajectory is captured by the false vacuum and oscillates around () = 0
with a frequency of 40 |oscillations/e-fold]. Since Vary ~ (1)” it therefore
oscillates at a frequency of 80 [oscillations/e-fold|. The variance in ¢ peaks
only once at N, = 0.5 and remains below Var, < 1077 M3. In the failing
universe there is no extended period of oscillation around the false-vacuum
at () = 0, so the oscillations in Var, have a much smaller frequency. After
N 2 0.5 the inhomogeneities in 1 start to grow substantially, destablising the

dynamics, and causing failure.

Figure 4.6 shows the results of a Monte Carlo sampling for ICy,., analogous
to that in Figure 4.2, with one initially excited mode added in-phase to both v
and ¢. We again use a logarithmic prior, but with the ranges: —2.0 <log;, f <
0.0 and -3.0 < log;y A < 0.0. Adding perturbations to ICg, with initially
small gradient energies does not cause the spatially averaged trajectories in
field-space to deviate significantly from the homogeneous solution, as seen in
Fig. 4.4, and these configurations successfully inflate. However, if we add more
significant inhomogeneity with amplitude A > 0.1, then any transitory inflation
is typically disrupted before N, ~ 5. We do not see any indication of a fractal

structure in the distribution of successful configuration in (A, f)-space for this
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Figure 4.5: Variance in the fields Var; = (gf)?) —(¢)? as a function of e-folding N,
for initial configurations with background field values of ICqycc, as in Fig. 4.4. (Left)
Configuration yielding N, > 55 with f = 1.890 x 107! and A = 2.035 x 1073; (left
inset) zoom-in on 1 for N, < 0.403. (Right) Configuration yielding N, < 55 with
f=3556x10"" and A =6.598 x 107,

initial condition.

4.5.2 Multiple excited modes

We now turn to the more general case, with multiple excited modes in both

fields ¢ and ¥:

_ N VTN
¢Z(0,$) = ¢i,0 [1 + Z Aij sin( T”Z,jjx + Oém')] y (414)
j=1

where A;; is the real amplitude and «;; is the phase of the j*h mode for the i*®
field. The box size L is set to the wavelength of the largest mode of interest
by fixing f via Eq. (4.11). The integer n;; gives the ratio of the i*® field’s jh
mode’s wavelength, relative to the largest mode. Each field is assumed to have

N excited modes.
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Figure 4.6: Distribution of independent ICs that succeed at generating N, > 55 e-
folds of inflation, as a function of initial inhomogeneity. The background field values
ICgucc are set so that in the homogeneous limit N, > 55. A sinusoidal inhomogeneity,
with amplitude A and comoving wavelength /27 = f/agHp, has been added, in-
phase, to both fields. The initial energy Ej is indicated by color.

Figs 4.7 and 4.8 plot the results of a Monte Carlo analysis with N = 2
excited modes. We choose the background values (v, ¢, 9,1, 9,$) so that each
configuration has initial energy Fy = 10~ Mp| using the iso-E measure of Chap-
ters 3 and 5. In general, multifield models make predictions for observables
that are largely independent of the prior probability distribution of the ICs,
as demonstrated in Ref. [42] and Chapters 3 and 5, so this choice should not
have a large effect on the results. We then add initial inhomogeneity, which
marginally increases the overall energy. We draw the amplitudes from a loga-
rithmic prior, 102 < 4;; < 1, and the largest mode with a logarithmic prior in

the range 1073 < f < 1. The wavelength of the second mode is drawn uniformly
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Figure 4.7: Distribution of successful ICs in (left) field-space and (right) velocity-
space that are (blue dots) successful and (red stars) unsuccessful at giving N, > 55
in the homogeneous limit. The homogeneous ICs are chosen with Ey = 107> Mpy.
The ICs have two initially excited modes of different scales. (Background) The gray
region has not been sampled since the initial energy density would have exceeded

Eé. For the velocities, the background has also been offset by A*.
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Figure 4.8: Histograms of marginalized inhomogeneity parameters from Eq. (4.14)
for successfully inflating ICs; the data for both fields have been plotted together.
Two modes have been initially excited in each field and we plot ICs that both (blue)
succeed and (red) fail to inflate in the homogeneous limit. The large amplitude bin
at n =1 (far-right) results from setting the largest mode to n = 1 and is therefore

systematic.
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from the range 1 < n;; < 5 with uniform random phase 0 < a;; < 27. These
plots can be compared to Fig. 3.5 in Chapter 3, which presents histograms of

successful ICs in the homogeneous limit.

Figure 4.7 shows successful initial configurations projected onto both the
homogeneous field space {1, ¢} and the homogeneous velocity space {9,, J;do}.
When including initial inhomogeneity, successful configurations are approxi-
mately uniformly distributed for ¢ < 0.005 Mp,. There is some minor differ-
ence between the location of ICs that succeed and those that fail, which is
primarily due to the the fact that ICs closer to ¥ » 0 tend to be more likely
to inflate as they are closer to the inflationary valley. In velocity space, there
is a tendency for successful ICs to have 0,¢y ~ 10710 M2, and Oy ~ 0, since
having a large velocity in ¢ causes the trajectory to evolve away from the
inflationary valley at (1)) ~ 0. This behavior again matches the homogeneous
limit of Chapter 3, as the blue points in Fig. 4.7 cluster in this range. Again,
many configurations that fail in the homogeneous limit succeed when multiple

modes are initially excited.

Fig. 4.8 displays normalized histograms of the inhomogeneity parameters
A;j, nij, and «;;. Because we have not been careful to sample unique solutions
to Eq. (4.1) [105, 176, 177] and because we have used hybrid inflation (4.4)
only as a toy model, we do not give a detailed analysis of the inhomogeneity
parameters in each field, but rather plot the values together. The histograms
do not show any dependence on the phases «;;, indicating that the results
in Section 4.5.1, which use in-phase inhomogeneities, are robust. There is a
large peak in the mode number n;; at the largest wavelength; however, we
have forced at least one mode to have n;; = 1 and set the other modes with
wavelengths with integer multiples of this largest mode. Consequently, the

spike at n;; = 1 results from systematics only and there is no strong dependence
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on mode number for successful ICs that are either successful or unsuccessful
in the homogeneous limit. Because we fix the background energy scale, the
histogram for Fy directly measures the initial gradient energy, which we allow
to be up to 35 times the initial homogeneous energy.

Initial configurations that are successful in the homogeneous limit tend to
also be successful with initial inhomogeneity, provided the initial gradient en-
ergy is relatively small. Again, this can be understood in terms of Fig. 4.4, as
the trajectories with small initial gradients are indistinguishable from the ho-
mogeneous trajectory. However, many initial configurations that are successful
in the homogeneous limit remain successful with a large initial gradient, al-
though the fraction decreases with increasing initial gradient energy.

Points for which inflation fails in the homogeneous limit have a strong
dependence on the size of the largest initially excited mode f and a weak de-

pendence on mode amplitude A;;, favoring higher initial gradient energy. The

R
number of successful configurations decreases when the initial energy exceeds
Ey 2 7.5 x107°Mp;. Given that our lattice simulation technique will be unre-
liable with large gradient energies, these cases need to be investigated within

the full Einstein equations.

4.6 Conclusion

We have demonstrated that adding subhorizon inhomogeneity can significantly
modify the pre-inflationary dynamics of hybrid inflation, yielding counterintu-
itive results. While the solutions to the Klein-Gordon equation are generally
stable to the addition of small initial inhomogeneity, if the inhomogeneity has
a larger amplitude, then the evolution changes dramatically. Unsurprisingly,

large primordial inhomogeneities may prevent the onset of inflation in models
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which do inflate in the homogeneous limit. However, this is not a certainty:
models which do not inflate in the homogeneous limit can successfully inflate
when inhomogeneity is added. The spatially averaged trajectories traverse
large regions of phase-space when the underlying dynamics are chaotic, giving
a greater chance of the trajectory finding attracting solutions, and inflating via
a different path in phase-space. We have presented an ensemble Monte Carlo
analysis with varying types of initial inhomogeneity to demonstrate that this
behavior is generic for hybrid inflation and should be true for any multifield

inflation model that has chaotic behavior.

We have analysed the toy hybrid inflation model defined by Eq. (4.4), but
argue that this behavior should be common for multifield inflation models that
have unstable fixed points or saddle points in the potential. This model does
not yield the correct perturbation spectrum, but this is not a significant issue

given that our focus here is the onset of inflation.

The solutions to the inhomogeneous Klein-Gordon equation (4.1) are still
qualitatively chaotic when the spatially averaged field trajectories are plotted.
This chapter thus provides the first confirmation that the chaotic dynamics
extend from the ordinary differential equations of the homogeneous problem to
the partial differential equations of the inhomogeneous universe. The chaotic
dynamics result from the interplay between the fixed points and the saddle
point at the critical value for ¢. Consequently, our qualitative conclusions

should extend to other models with these features.

It was argued in Refs. [6, 7] that the conditions necessary to start infla-
tion must extend over a super-Hubble region. Here, we have demonstrated
that we do not need to necessarily require homogeneity and that significant
sub-horizon perturbations may not prevent inflation from beginning, despite

the conventional wisdom. This work clearly has a number of possible exten-
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sions, both to wider classes of models and also to include the effects of non-zero
curvature, which is generically expected in pre-inflationary scenarios [178,179).
Furthermore, including local gravitational backreaction by solving the full Ein-
stein field equations would extend this analysis to configurations with large or

asymmetric gradient energies.
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CHAPTER 5

SIMPLE PREDICTIONS FROM MULTIFIELD

INFLATION

This chapter is adapted from:

R. Easther, J. Frazer, H. V. Peiris, and L. C. Price

Simple predictions from multifield inflationary models

Phys. Rev. Lett. 112 (2014) 161302, [45]

Copyright (2014) by the American Physical Society

5.1 Abstract

We explore whether multifield inflationary models make unambiguous pre-
dictions for fundamental cosmological observables. Focusing on N-quadratic
inflation, we numerically evaluate the full perturbation equations for models
with 2, 3, and O(100) fields, using several distinct methods for specifying
the initial values of the background fields. All scenarios are highly predic-
tive, with the probability distribution functions of the cosmological observ-
ables becoming more sharply peaked as N increases. For N = 100 fields,
95% of our Monte Carlo samples fall in the ranges n, € (0.9455,0.9534);
a € (=9.741,-7.047)x107%; r € (0.1445,0.1449); and 7, € (0.02137,3.510)x 1073
for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-

adiabatic ratio, respectively. The expected amplitude of isocurvature pertur-
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bations grows with N, raising the possibility that many-field models may be
sensitive to post-inflationary physics and suggesting new avenues for testing

these scenarios.

5.2 Introduction

The study of inflation has been transformed by the advent of precision cos-
mology. In 2013 the Planck Collaboration [18,19] announced a 5o detection
of scale-dependence in the primordial power spectrum, P(k). Likewise, the
non-Gaussian component of the initial perturbations is less than 0.01% [180]
and there are strong limits on isocurvature perturbations [19]. These results
are entirely consistent with single-field slow roll inflation.

The key theoretical challenge for inflation is to show how a phase of accel-
erated expansion is realized in particle physics. However, single-field models
are not always natural; e.g., string compactifications often result in hundreds
of scalar fields [162-165|. Multifield models yield a wider range of possible
P(k) and higher-order correlators than simple single-field scenarios. Conse-
quently, it is vital to determine not only what is possible in multifield models,
but whether specific multifield models yield generic predictions that can be
tested against data.

Multifield models permit many distinct inflationary trajectories, and can
thus be sensitive to the initial values of the background fields. The relative
likelihood for different initial conditions (ICs) in the overall phase-space of
the inflationary dynamical system must be encoded in the Bayesian prior for
the model. Inflationary models are, to some extent, ad hoc hypotheses, so
the IC priors typically cannot be computed or reliably predicted a priori.

Recently it was pointed out that some multifield models make predictions for
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the inflationary observables that do not depend strongly on the specific IC prior
[42,181-184], and this class of model unambiguously predicts the distributions
of the inflationary observables. On the other hand, observational data could
constrain the initial field configuration for models with strong sensitivity to
their initial conditions.

In this chapter we present the first generic predictions for a multifield infla-
tion model in the many-field limit. By numerically evolving the perturbations,
we find the probability density functions (PDFs) for the spectral index ns,
the tensor-to-scalar ratio r, the running «, and the isocurvature-to-adiabatic
ratio ri, in N-quadratic inflation. We give the first complete analysis of the
many-field case [85,87,89-91,93| by exploring inflation with N = 100 fields.
We consider three distinct IC priors to assess the sensitivity of the model’s
predictions to the initial conditions.

We see novel behavior in the many-field case, where trajectories in field
space “turn” until the end of inflation, yielding an increased rj, that may be
relevant to reheating. The PDFs for ng, «, and r become more sharply peaked
at large NV, implying that the many-field case is predictive. We also obtain
high-density samples in the low-N limit [185,186] with N = {2,3}. In this
limit we also see sharply peaked PDFs and a nontrivial consistency relation in
the (ns, a)—plane, but with a greater dependence on the IC prior than with
N =100 fields.

5.3 Method

We assess the “predictivity" of inflationary models as follows. We draw ICs
from a specified prior probability distribution and evolve the background equa-

tions of motion. We require the pivot scale kpi, = 0.002 Mpc ™! to leave the hori-
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zon 55 e-folds before the end of inflation; if there are fewer e-folds, we exclude
the IC and draw another. Otherwise, we solve the perturbation equations
numerically and compute observables by evaluating the power spectra at the
end of inflation. Iterating this process, we obtain the PDF for the inflationary
observables given the choice of IC prior.

We consider N-quadratic inflation with canonical kinetic terms, minimal

coupling to Einstein gravity, and potential

1
V = Zm2¢?
2ma (o]

(5.1)
with an implied sum over repeated field indices. This model makes an excellent
test case as it is both extremely simple and well-defined for any value of N.
For N = 100 fields, we follow Ref. [89] and draw the mass values from
the Marcenko-Pastur distribution with 5 = 0.5. We choose the largest mass
ratio as 1/8.08 and the other masses so that they are equally spaced in the
cumulative probability distribution function. We do not expect our results to

depend strongly on this choice, provided the masses are all of the same order

of magnitude.

5.4 Initial conditions

We consider three IC priors:

1. The iso-FEy prior, defined in Chapter 3, with an equal-area prior on an

initial surface with energy Ej.

2. The iso-N, prior |42] with an equal-area prior set approximately N,
e-folds before the end of inflation on the surface ¢,¢, = 4N,.

3. The slow-roll prior with velocities set in slow-roll and field ICs dis-

tributed uniformly over some pre-defined range.
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Figure 5.1: Histograms for IV = 100 fields with the iso-FEq prior at Ey = 0.1 Mp; and
masses from the Mar¢enko-Pastur distribution [89] with a maximum mass ratio of
1/8.08 and r is plotted relative to a baseline value of 0.1443. All observables are
contained within a very small subvolume of the much larger range of possible values
the model can yield, showing that it makes precise predictions for the values of the

inflationary observables.
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Each prior has a different physical justification and leads to significantly
different distributions for the field values and velocities. For example, the iso-
N, prior near N, = 55 implies we know nothing about the initial state when
observable scales start to leave the horizon. By contrast, either (A) using the
iso-Ey prior with a relatively large initial energy; (B) requiring N, > 55 for
the iso-NN, prior; or (C) specifying a large field-space range for the slow-roll
prior typically give solutions more scope to evolve into dynamically-favored
regions of phase space, e.g., slow-roll along the direction of the lightest field.
Consequently, with these IC priors a higher proportion of trajectories find the
attractors before the end of inflation. Conversely, the iso- N, prior with N, ~ 55

is the least predictive of these choices.

5.5 Multifield perturbations

We use MULTIMODECODE, as described in Chapter 2, which evolves the per-
turbation spectrum for an arbitrary potential, initial field values and velocities.
MULTIMODECODE solves the 2-index mode equation [39, 49|

2

k
¢g5+(1—6)¢;5+(m—2+6) VYap + Mayhyg =0, (5.2)

where primes represent derivatives with respect to the number of e-folds, N,;
e=-H /H? is the slow-roll parameter; and 1,z is related to the Mukhanov—
Sasaki variable, u, = ad¢,, by a sum over annihilation operators: u,(k, N) =

Yap(k, N)ag(k). Finally, the mass matrix is given by

0,05V (0,05V + ¢,0aV)

Maﬁ = H?2 + H?2 + (3 - E)qb:xqb/lfja (53)

where the Hubble parameter is H? =V /(3 —¢).
For amode k, we set the Bunch-Davies initial state for ¢, when 100k = aH.
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The power spectrum for the field perturbations d¢,, is

Pas(h) = 35 (25 ) v (B3, (8), (5:4)

where star denotes complex conjugation. We compute the power spectra for
the comoving curvature perturbation R and isocurvature perturbations S via
an appropriately-scaled projection onto directions parallel and perpendicular

to the background trajectory. Consequently,
1
PR(]{?) = Q—GWQWB'Paﬁ(/{?) (55)

where w, = ¢/,/¢{, projects onto the direction of the background trajectory for

02 = ¢, ¢!,. Directions perpendicular to w are isocurvature directions, and can
source superhorizon evolution of R; we find the (N —1) isocurvature vectors sy
by Gram-Schmidt orthogonalization. In analogy to R, we define isocurvature

perturbations Sy = —(1/¢})s1a0¢, with the spectrum

| =

Ps(k) =

[\

€

N-1
Z S[aSJgpag(/{) . (56)
I1,J

Conventionally, Px is characterized by an amplitude Ay and its logarithmic

derivatives D = d/dlog k at the pivot scale k,,

k n571+%a10g klk«+...
) (5.7)

Pr= a1

with ns = DlogPr and a = D?logPr. We can similarly describe Ps or the
adiabatic-isocurvature cross spectrum, although we report only the isocurvature-
to-adiabatic ratio ris, = Ps/Pr. While MULTIMODECODE numerically com-
putes the full functional form of Pg(k) and Ps(k), for convenience ny and
a are computed by central finite differences near kp;,. Finally, we compute
the tensor-to-scalar ratio r by evolving the appropriately-normalized tensor

perturbations.
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Figure 5.2: Density function of isocurvature fraction ris, = Ps/Pr for different ini-

tial condition priors with N = 100 fields. The average ris roughly decreases with

increasing number of e-folds between the surface on which we specify the IC and

the end of inflation, implying the heavier masses find their minima more often when

given more time to evolve before inflation ends.

5.6 Results

Figs. 5.1-5.3 show histograms for n,, «, r, and ri,, with Scott-binning [187]
for the iso-FEy prior with Fy = 0.1 Mp,. Fig. 5.4 is the histogram-estimated
PDF for ng for different IC priors. The slow-roll prior yields results that are
effectively indistinguishable from the iso-E, prior and are not plotted. We
sample O(108) ICs for N = {2,3} fields and O(10*) ICs for N =100.

Fig. 5.1 shows the first-ever general predictions for n,, a;, and r for inflation
with N = O(100) light fields. Using the iso-Ej prior, we find that 95% of Monte
Carlo samples are in the ranges: ng € (0.9455,0.9534); a € (=9.741,-7.047) x
1074; r € (0.1445,0.1449); and 7y € (0.02137,3.510) x 103, which is similar to
the predictions of this model in the single-field limit. Crucially, while many-
field N-quadratic inflation supports a broader range of possible observables, it

nevertheless makes a sharp generic prediction for ng, o, and r.
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Figure 5.3: Histograms for the spectral index ns and running « for N-quadratic
inflation with equal-energy initial conditions at Ey = 0.1 Mp). (Top) Three fields
with mass ratios m;/m1 = {1,7,9}; (Bottom) comparison between three fields (blue;
masses as above) and two fields with mass ratio ma/m; = 7 (red; inner contour)
and mg/my =9 (gold; outer contour). The bottom figure emphasizes the outlying
regions and does not show the full range. All sampled distributions have a peak near

ne =0.963 and o = =7 x 1074, with appreciable deviation only in the tails.



116 Chapter 5. Simple Predictions from Multifield Inflation

400 i i ; T

— is0-E; Ep = 0.1 Mpy I

- is0-Ne; Ne = 300
iS0-Neg; Ne = 60

\V]
=]
=)
P I I I -

O | PP T
0.940 0.945 0950 0.955 0.960 0.965

-y

0.940 0.945 0.950 0.955 0.960
N

Figure 5.4: Probability distribution for (top) N = 3 fields and (bottom) N = 100 fields
with different initial conditions (ICs) priors. The slow-roll prior, which overlaps the
iso- E prior, has not been plotted. Importantly, the upper plot shows only the peak
in the PDF and the full range for ns has not been plotted. The distributions show

remarkable consistency, despite significantly different IC priors.

The ri, component is significant with N = 100 fields for the two- and
three-field cases. The sensitivity of 7y, on the choice of IC prior is shown
in Fig. 5.2. The isocurvature fraction is largest for the iso-N, = 60 prior,
reflecting the relatively short period this models has to evolve before inflation
ends. The average number of total e-folds for the iso-E, = 0.1 Mp, prior is
N, = 306.6, and the average ri, roughly decreases with increasing total number
of e-folds. Unlike the case of a few fields, the heavier fields do not always
reach their minima before inflation ends, although they approach their minima
given more time to evolve. Trajectories are therefore typically turning in field-
space at the end of inflation, and it is known [41,46, 135, 188| that this causes
the isocurvature modes to grow. We attribute the increase in ri, to these

dynamical effects.
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Fig. 5.3 shows the PDFs for the observables for N = 3 with an iso-E, prior
with Ey = 0.1 Mp,. The PDFs have spikes in the bin n, € (0.962,0.964) and
a € (=0.001,-0.0005), which contains 48.8% of the Monte Carlo samples. With
N =2 we find contours in the (ns,a)—plane, reproducing the analytic result of
Ref. [42]. For three fields the distribution is bounded by the same contours,
with a lower weighting around the outer contour (with ma/m; =9). Typical
trajectories become effectively single field before the end of inflation and hence

isocurvature modes decay, giving negligible rig,.

To explicitly compare different 1C priors, Fig. 5.4 plots the prediction for ng,
the observable best-constrained by Planck. For many fields, the distributions
are largely similar and are well-described near the maximum by Gaussians
with means p = (0.950,0.951,0.951) and variances 02 = (1.97,2.81,2.24) x 1073,
for the iso-FEy, iso-N, = 300, and iso-N, = 60 priors, respectively.

With fewer fields, we see larger differences in the PDFs. Nevertheless, the
bin containing maximum probability mass coincides and all the PDFs have the
same overall shape. For the iso-FEj and iso-/N, = 300 priors the probability-mass
lies in a small range of observable-space, giving essentially the same prediction.
Furthermore, as seen in Fig. 5.3, the outlying contours non-trivially constrain
the joint prediction for (ng, «). For these two IC priors, the PDFs in Fig. 5.4

do not change drastically.

However, the iso- N, = 60 prior (which is the least predictive choice a priori)
has a significantly lower peak in Fig. 5.3 and 95% of Monte Carlo samples in
the broad range ng € (0.675,0.963), which is comparable to the full range
of predictions for this model, ng € (0.543,0.964). Interestingly, this IC prior
yields significant mass below the most probable value of ng = 0.963, and may
thus perform far worse relative to the other IC priors in a Bayesian evidence

calculation, as the 68% Planck bounds are ng € (0.954,0.973). This implies
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that Planck data may constrain the initial states when N is small.

5.7 Discussion

This chapter presents a complete analysis of multifield quadratic inflation.
We numerically integrate the multifield mode equations through to the end of
inflation, the first time this task has been performed for a model with many
degrees of freedom. We compute PDFs for key observables, and evaluate their
sensitivity to priors for the initial field values and velocities.

We find that the initial conditions are not “stiff parameters” [189-191] for
which small changes radically alter observables, demonstrating that this model
makes sharp, robust predictions for the inflationary parameters. Given that
multifield models can produce a wide range of perturbation spectra, one may
specify an IC prior for which the observables are far from the peak values in
the PDF found here. However, such scenarios are typically contrived, so the
corresponding prior is unlikely to be physically compelling. Moreover, even
with one field, initial conditions which violate slow-roll near N, = 60 yield a
Pr that differs significantly from the usual result.

The matching between the number of e-folds and present-day scales de-
pends on the post-inflationary equation of state [32,33,192|. This resulting
uncertainty in n, and other observables scales with « and is comparable to
the width of the large-N PDFs computed here. Consequently, the spread in
the predictions of the inflationary observables at large N — including the am-
biguity associated with the IC prior — need not be the dominant source of
theoretical uncertainty in multifield models.

For N =100 the isocurvature modes are potentially nontrivial. This is a

new and significant result: the presence of isocurvature modes implies that
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the curvature perturbation may continue to evolve until an adiabatic limit is
reached [46, 63, 76,193, 194], even if this is after the end of inflation. How-
ever, the most probable values for the power spectra observables at the end
of inflation are still concentrated in small regions. Recent studies of the
evolution of observables during reheating focus on models with only a few
fields [41,195-197]. Given the magnitude of the ri, for N = 100, it will be
important to examine the reheating dependence of observables at large N, for
which a non-zero ri,, may be generic.

With N =100, the central values we find for n,, r and « are consistent with
those seen in previous work [89-91, 93] based on slow-roll expressions. If the
duration of inflation is increased by changing the initial conditions while other
parameters are held fixed, ri, is reduced, consistent with Fig. 5.2. However,
there is no generic mechanism that forces the initial values of gbz to be small
(as noted in Chapter 3) and, with the exception of our slow roll prior, we start
our simulations with significant field velocities, in contrast to previous work.
This reduces the duration of inflation at fixed initial energy, and increases the
likelihood of seeing a nontrivial value of ri,.

Importantly, our results suggest that the curvature perturbation of multi-
field inflationary models has a well-defined large-N limit. Consequently, these
models may be least predictive when N =2 or 3. This situation mirrors that
found elsewhere [89,133] and can be understood by analogy with the central
limit theorem. Determining the extent to which this phenomenon is generic
in N-field inflation is clearly of the utmost importance. Finally, this analysis
points the way to constraining multifield scenarios with data from observa-

tional surveys, such as Planck.
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CHAPTER 6

GRAVITATIONAL WAVE CONSISTENCY RELATIONS

This chapter is adapted from:

L. C. Price, H. V. Peiris, J. Frazer, and R. Easther

Gravitational wave consistency relations for multifield inflation

Phys. Rev. Lett. 114 (2014) 031301, [198)

Copyright (2014) by the American Physical Society

6.1 Abstract

We study the tensor spectral index n; and the tensor-to-scalar ratio r in the
simplest multifield extension to single-field, slow-roll inflation models. We show
that multifield models with potentials V' ~ ¥, A;|¢;[P have different predictions
for n;/r than single-field models, even when all the couplings are equal \; = A;,
due to the probabilistic nature of the fields’ initial values. We analyze well-
motivated prior probabilities for the \; and initial conditions to make detailed
predictions for the marginalized probability distribution of n;/r. With O(100)
fields and p > 3/4, we find that n,/r differs from the single-field result of
n/r = —1/8 at the 50 level. This gives a novel and testable prediction for the

simplest multifield inflation models.

121
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6.2 Introduction

A cosmological gravitational wave background (CGWB) is a compelling sig-
nature of inflation, which is already supported by the highly Gaussian primor-
dial perturbations [150, 180] and their broken scale invariance, now detected
at 5o significance [18,19]. A large-amplitude CGWB provides fundamentally
new tests of single-field slow-roll (SFSR) inflation via the consistency rela-
tion [14,15] ny/r = —1/8, which relates the tensor spectral index n; to the ratio

of the tensor and scalar perturbation amplitudes, 7.

While there has been dramatic progress towards the direct detection of a
CGWB through the B-mode polarization in the cosmic microwave background
(CMB) [199], measuring n; is challenging with current technologies [200-202].
However, for r 2> 0.1 this will be feasible with the next generation of space-
based [203,204], ground-based [205-208|, and balloon-borne [209, 210]| exper-
iments, while future 21 cm projects [211,212] could also detect lensing by a
CGWB and direct detection experiments [?,213| would test the consistency
condition using the lever arm between CMB and solar system scales to far

greater accuracy with r > O(1073).

The simplest inflationary scenarios that yield an easily detectable CGWB
are monomial models with the inflationary potential V' ~ |¢P, which have
0.05 $r $0.30 for 2/3 < p S 4. Single field models are simple but not necessarily
natural, as many high energy theories yield large numbers of scalar degrees of
freedom [162-165]. For multifield models the consistency relation is reduced
to an inequality, n;/r < —1/8. While r and n; are correlated for Ny =2 [61,62],

there is no known relationship between r and n, when Ny is large.

In this chapter, we derive a robust prediction for n;/r for Ng-monomial
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models, with potential
1

where \; are real, positive constants and summations run over the number of
fields, Ny. Eq. (6.1) arises naturally in many high energy theories [85-87,87—
91,93| and is a simple, intuitive generalization of the chaotic SFSR models.
We treat the A\; and the values of ¢; at a fixed number of e-folds before the
end of inflation as independent random variables. When N; — oo, the central
limit theorem ensures that n./r is a Gaussian random variable. Critically,
(n¢/r) does not reduce to the single-field limit if the couplings are identical
unless the field values ¢; . when the pivot scale k. leaves the horizon are also
fixed, except for the special case p = 2. The expected value of n;/r depends
only on two moments of the distributions of the \; and ¢;, and is independent
of Ny. The variance in n;/r is sit/T ~1/Ny (for p > 3/4), giving a sharp, generic
prediction for the consistency relation in the many-field limit. This provides
a direct test for distinguishing between Ny-monomial models and their single-

field analogues.

6.3 Model

In some cases the \; in Eq. (6.1) might be derivable from fundamental theory,
but in general we are ignorant of their values, so we treat these terms as
independent random variables (RVs) with a prior probability P()). Similarly,
we do not know the fields’ initial conditions, so we also treat these as identically
distributed, but possibly correlated, RVs with a prior probability P(¢g). We
then marginalize over the P(\) and P(¢) to produce a probability distribution
for ny/r. Since a change of variables ¢; - ggi(gbj, A;) will mix the \; and ¢, it is

clear that there is no a priori difference between these two types of parameters,
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motivating our statistical approach.

The simplest choice for P(¢y) is a uniform distribution of ¢; , defined when
the pivot scale k, leaves the horizon N, e-folds before the end of inflation. This
choice contains the least Shannon information about the fields’ initial states
and ensures that most of the fields are dynamically relevant. Further, this
P(¢o) and others were extensively studied in Chapter 5, where it was shown
that the initial conditions only weakly affect the predicted density spectra. The
likely values of ns and r for a related class of multifield monodromy models
was derived in Ref. [94], finding 0.955 < ng $ 0.975. Furthermore, r = 4p/N,,

and the non-Gaussianity is small.

6.4 ON formalism

The potential in Eq. (6.1) is sum-separable and, assuming slow-roll, N, is |73,

74]
Vi
N*:—[ > Tde, (6.2)

where V! = \;|¢;[P~! and ¢; . and ¢;. denote field values at horizon crossing

and the end of inflation, respectively. For N;-monomial inflation

1

N, = —
2p 5

[ 22,* - (bz?,c] : (63>

The 0N formalism relates the field perturbations at horizon crossing to the
gauge-invariant curvature perturbation ( on constant density hypersurfaces
via

C N ZN*,i(qui,*, (64)

where N, ; = ON./0¢; .. If the field perturbations are well-approximated by a

free field theory with power spectrum Pg; = (H,/27)?6% at horizon crossing,
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the tensor-to-scalar ratio is

8

TRV (6:5)

T

To first-order in slow-roll n; = —2¢, where

V2

=5 Y [V] | (6.6)
For Nj-monomial models, the field values ¢; . at the end of inflation can

typically be neglected. This horizon crossing approzimation (HCA) (e.g.,

Refs. [73,92]) is a simplification of the N formalism that incorporates the

super-horizon evolution of (, but ignores quantities contributing to N, from

the end-of-inflation surface. Setting ¢; . - 0 in Eq. (6.3), we find

Uz

1 2
P —4—292521:@,*7 (6.7)

where we restrict our attention to cases that are slowly rolling at horizon
crossing. Requiring € < 0.1 then sets the maximum deviation from the single-

field result as
N n 1
(=) xo0a0t) ¢ = < -=. 6.8

6.5 The many-field limit

We build the probability distribution for n;/r by marginalizing Eq. (6.7) over
P(¢o) and P(X), and use the central limit theorem (CLT) to take the large Ny
limit, Ny — co. By Eq. (6.3) the HCA implies that P(¢¢) is a uniform distri-
bution pulled back onto an N-sphere in field-space with radius \/2pN,. Since
the multivariate normal distribution Z ~ A'(0,1) is invariant under rotations

of Z, we can sample this Ny-sphere uniformly by defining

29N, 4
Gin = | 2y for @~N(0,1). (6.9)
i
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Using Eq. (6.9), the summations in Egs. (6.6) and (6.7) are

zw% zvlwl ™ (6.10)

25
As Ny — oo the CLT shows that the numerator is normally distributed with

mean

= Ny (2PN (A7) ([]™) (6.11)

and standard deviation

Snum = \/ Nf (QPN*)m/Q On,m; (612>

where (.} indicates expected value and
m = (A7) (JeP) = (A (™), (6.13)

which assumes that the \; and z; are independent. Finally, the denominator
in Eq. (6.9) is drawn from the y-distribution, which is closely approximated
by N (\/Ny,1/3/2) for z; ~ N'(0,1).

The numerator and denominator in Eq. (6.10) are correlated by the con-
straint in Eq. (6.3). For a given variance in P(\), the correlation 7 is maxi-
mized when m = 2 and |y| - 1 as the variance vanishes. Since each Y; \?|¢; .|™
is uniquely determined given X and é*, we expect a strong correlation between
the numerator and denominator in Eq. (6.6) for typical choices of P(\). This
significantly reduces the variance of n;/r, and ensures a sharp prediction for
its value. We numerically calculate v after defining the priors on A.

For any normally distributed variable y ~ A (u, o)

270m _(1+m -m 1 —pu
my = r F 6.14
(i) = 2 (S5 P (G5 ) (6.14)

for m > -1, and £, is the confluent hypergeometric function of the first kind.

If =0, as for x; ~N(0,1), then F1; =1 and only the I" function contributes

to the moments.
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If m < -1, (Jy/™) may diverge if P(y = 0) does not vanish fast enough. This
is indeed the case for x; ~ N(0,1), and we cannot predict the distribution of
the sums in Eq. (6.10) with m < -1. Sums like Eq. (6.10) are effectively finite

numerical approximations to the integral

1
= DA f A0, 1) dar f A" P(A)dA, (6.15)
foi
which diverges for m < —1. While ratios of these sums might be well-defined [42],
our approach shows that a finite prediction for both the mean and the stan-

dard deviation of n;/r requires p > 3/4, while only requiring a finite mean needs

p > 1/2, using the CLT.

6.6 The method

Since n;/r is given by Eq. (6.7) and the sums in Eq. (6.10) are ratios of cor-
related, normally distributed RVs, the key tool for this analysis is the ratio
distribution fiaio(/8) for normally distributed RVs « and 5. If w = a/p,
then as P( > 0) - 1 the CDF for the ratio distribution f,a.(w) is approxi-
mately [214]

Fragio(w) = ® [M] , (6.16)
gaoga(w)
where y; and o7 are the respective means and variances,
2 o 112
a(w) = [w—Z g, | (6.17)
04 Oa0p  Of

and

O(z2) = % [1 + Exf (% ] (6.18)

for real z. When Ny is large, fiatio approaches a normal distribution with mean

ta/ps and standard deviation

¢%ﬁ—%mm%%+%%
S = .

(6.19)
13
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The mean of fia, is independent of the correlations ~, and the standard de-
viation for n;/r is a straightforward — but messy — algebraic function of (\),
(A\?), and (\*), as well as (|z|™) for m =2,4,p,2p,2p -2, and 4p — 4.

To obtain the distribution frai0(7/7) We express the consistency relation

in terms of the sums in Eq. (6.10) as

(6.20)

ny _ pNo | Zi A l¢i P2
r 4 '

(25 \l5)°
For each sum above, we calculate the covariance in Eq. (6.10) between the
numerator and denominator given P()\), and use Eq. (6.19) to find the variance
of the sum. Although the denominator (X; Ai|¢; «|P)? is then x2-distributed,
this is approximately normal in the many-field limit. We then substitute these
two normally-distributed RVs back into Eq. (6.16). Similarly, we evaluate
the correlation between the numerator and denominator in Eq. (6.20), finally

obtaining the probability distribution for n/r.

6.7 Novel multifield predictions

From the ratio distribution (6.16), as Ny — oo the value of n,/r in Eq. (6.20)

is normally distributed with a mean

EOR [ ) R

and a standard deviation proportional to

1
Spfr ¢ —=—=—>0 as Ny - oo, (6.22)

N,

which can be found by substituting the means, variances, and correlations of

Eq. (6.10) into Eq. (6.19).
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Figure 6.1: The multifield prediction from Eq. (6.21) compared to the numerical
mean (ny/r) of simulations with 5000 samples, at each plotted value of p, with
Ny = 1000 using the horizon-crossing approximation. The field values ¢; . as the
pivot scale k, leaves the horizon are drawn from a uniform prior on the surface in

Eq. (6.3) and all the couplings \; are identical.

The first bracketed term in Eq. (6.21) is the single-field prediction, the
second is due to the couplings A;, and the third arises from the uniform prior
for ¢; . on the horizon-crossing surface. This last term is due only to the spread
in the field values at horizon crossing and is independent of everything except
p. The functional form of this term is fixed by the uniform prior distribution
on the horizon crossing surface, but other prior probabilities for ¢; . result in
qualitatively similar behavior as demonstrated in Chapter 5. As Eq. (6.22)
vanishes in the many-field limit, Eq. (6.21) is the generic multifield prediction,
which deviates from the single-field result at > 50 for Ny 2 O(10?) for typical
P()).

Consequently, even if (A2) = (\)?, Ny-monomial models do not predict
n/r = —1/8, unless the ¢, , are also identical. Fig. 6.1 compares the predicted
value for (n;/r) in Eq. (6.21), with all A; equal, to numerical results obtained by

directly evaluating n;/r with Eq. (6.7), showing excellent agreement for many
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Figure 6.2: Predicted probability distributions for n;/r with p = 2 compared with
histograms built from 10000 numerical samples. The couplings \; are drawn from
the Uniform Model with (left) Ny =20 and (right) Ny = 100. For Ny < O(10?), the

distribution is skewed toward positive values as predicted.

fields. The divergence at p = 1/2 reflects the fact that (|z|??2) - co. Thus,
when p < 1/2, (n;/r) may be arbitrarily large, which violates the slow-roll
assumption. Consequently, these models are most easily distinguished from

their single field analogues, but the hardest to make accurate predictions for.

6.8 Specific examples

To understand how the mean (n;/r) in Eq. (6.21) is affected by P(\) we
compare two explicit priors that are widely used in Bayesian analyses of infla-
tion [19,31-33,215]. We focus on the p = 2 case, since the dependence on the
prior on ¢; . in Eq. (6.21) cancels for this scenario.

We look at two cases: uniform prior probabilities over A; or «y; for A; = 10%,
which we denote the Uniform Model and Log Model, respectively. The Uniform
Model would be applicable when the relevant scale of A; is known to within
an order of magnitude, while the Log Model effectively scans over a range of
physical scales. The Log Model is invariant with respect to a change in scale
for \; and is equivalent to the Jeffreys prior [216|, which is commonly used in

Bayesian analyses.
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For the Uniform Model, the \; are drawn from U[a,b], and Eq. (6.21)

unif
ny 1102 +ab+ a?
ot = | — " | 6.23
( ) 6 l ] (6.23)

T ) p=2 (b+a)?

For \; € [10714,10713], as Ny — oo the predicted correlation coefficient for

becomes

fratio(ne/r) is v » =0.98 and (n;/r) = -0.153. We plot fraio and the results
of 10000 numerical realizations using the HCA in Fig. 6.2. We find excellent
agreement with Eq. (6.23), with fiato accurately capturing the higher order
moments of the n/r distribution for Ny 2 20. For p = {3/2,2,3} the single-
field result n;/r = —-1/8 is a 50 deviation from the mean in Eq. (6.23) for
Ny 2{120,120,200}, respectively.

For the Log Model with a ~U[a, b],

r B 100 — 10 |

(@)log _log(10)(b-a) [10b+ 10&] (6.24)
p=2 16

If @ - b, we recover the single-field result in both Egs. (6.23) and (6.24).
However, Eq. (6.24) diverges as a - —oo, reflecting the failure of slow-roll in
the limit of widely separated scales. For « € [-14,-12] the Log Model predicts
Pe ~ O(107%), € £ 0.03, v » -0.95 and ny/r = -0.294. For p = {3/2,2,3}

the single-field result is a 50 deviation from the mean in Eq. (6.24) for Ny 2
{145, 135,255}, respectively.

6.9 Relaxing the approximations

Fig. 6.3 compares the HCA prediction to numerical results that include the
contribution from the end-of-inflation surface in Eq. (6.3), with ¢; . # 0. We nu-
merically solve the background Klein-Gordon equations for 1000 realizations,
finding the field values at the end of inflation (defined by € = 1) and obtain-

ing the full )N prediction without using the HCA. Fig. 6.3 also incorporates
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Figure 6.3: The consistency relation for the Uniform Model with p = 2 is plot-
ted for different Ny, marginalizing over initial field values. The boxes/whiskers
cover the 50/97% CIs and the gray regions delineate the same ranges as predicted
by the HCA and the central limit theorem. The (dashed) brown and (solid) gray
lines are the single-field and the many-field HCA predictions, respectively. For each
case we present results derived from full numerical solutions to the mode equations
(blue/left), the slow-roll prediction using the HCA (yellow/center), and the slow-roll
prediction including the end-of-inflation surface (red/right) for Ny = 20, 60, and 100.

both the sub-horizon evolution of the modes and any non—slow-roll behavior
by solving the mode equations numerically, as in Ref. [49] and Chapter 5, using
MULTIMODECODE [16]. Results are plotted for the Uniform Model, with the
ranges \; € [10714,10713] and p = 2.

In all cases the numerical results are well-approximated by the HCA. The
HCA results are marginally larger than the numerical results, which we at-
tribute to second-order corrections to the slow-roll equations; n; = —2¢/(1 - €),

which suppresses n; relative to the first-order approximation. The variances in
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the numerical results scale as 02 o< 1/\/Ny, as predicted by the HCA results,

confirming that many-field models make sharp predictions for n;/r.

6.10 Conclusion

We have computed the probability distribution for the consistency relation n/r
for inflation driven by multiple scalar fields with monomial potential terms, as a
function of the distribution of couplings and initial field values. The single-field
result is clearly distinguishable from the many-field limit, providing a clean
and compelling signature that distinguishes these models from their single-
field analogues. Other than for the quadratic case, this result holds even when
the couplings are identical.

We focused on computing the slow roll parameter €, but the nature of the
slow-roll hierarchy [217] indicates that this approach will generalize to a variety
of observables, so quantities such as fyi, that rely on the second and higher
slow-roll parameters should also have precise predictions that deviate from the
single-field expectation even when the couplings are degenerate. This provides
a further compelling example of a multifield scenario in which the observables
have a sharp and generic prediction in the many-field limit [42,45,79,89,91—
93,133,181-184,218,219].

The expected value (n;/r) depends on only two moments of the prior
probability distributions P(\) and P(¢p), and the corresponding variance is
52 I < 1/N¢. The single-field expectation of n;/r = —-1/8 differs from the
multifield result at the 50 level when Ny 2 O(10?). Consequently, given spe-
cific priors for the field values and couplings, we obtain generic and testable
predictions for the consistency relations in this large and interesting class of

multifield inflation models.
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CHAPTER 7

CONCLUSION

This thesis has taken a joint numerical and analytical approach to studying
the background and perturbative dynamics of multifield inflation models. We
have focused extensively on the role that the background initial conditions play
in determining both the number of e-folds of inflation and the power spectrum
of models, with and without interactions. Applying Bayesian principles to the
analysis has allowed us to incorporate our beliefs in these models in terms of
prior probabilities for model parameters and initial conditions, leaving us with
probability distribution functions for inflation’s observable or quasi-observable

features.

7.1 How do we get enough inflation?

We have extensively studied two models, the first of which is the standard
hybrid inflation model with two dynamical fields. Hybrid inflation was chosen
primarily as a toy model for those early universe scenarios that might have
a pre-inflationary period that is dominated by the same scalar dynamics that
give inflation. Although this model generally does not predict the observed
spectrum (since ng > 1), it is possible to manipulate the inflationary portion
of the potential to achieve a red spectrum [120,121,220]. Consequently, our
results in Part III of this thesis should hold not only in general for toy multifield

cases, but perhaps also in the particular case of our universe, if inflation is
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indeed following a non-typical hybrid pattern.

In Part IIT we looked specifically at the way by which hybrid inflation can
begin, given an ensemble of initial states. Naively, hybrid inflation requires a
relatively special initial condition in order to begin inflating, with the heavy
hybrid field satisfying (1) ~ 0. Depending on the initial condition chosen, this
may or may not be an attracting solution. Furthermore, hybrid inflation has
chaotic dynamics, which significantly complicates any prima facie conclusions
we might be able to draw based only on what we expect in limiting cases,
such as slow-roll. Previous analyses of the initial conditions dependence of

this model have reached a variety of conclusions on its stability.

In order to determine what the likely or expected outcome of the models
are, we first need to define how we expect the initial state to be distributed.
This addition to the model is necessary from the perspective of a Bayesian
model builder: if we do not know the initial state for the universe, we must
instead come up with an uninformed prior probability that incorporates this
level of ignorance. If different priors result in the same behavior, we can make

a strong statement on the model’s robustness.

This was performed in Chapter 3, where we constrained our initial con-
ditions to lie on equal energy slices of phase space, while neglecting inhomo-
geneity. This constraint allows us to do two things. First, we can identify
points on the constraint surface with unique solutions to the Klein-Gordon
equation, making it impossible for different initial conditions to be related to
each other by time-translation along allowed solutions in phase space. This
is a clearer description of what we mean by the universe’s initial state than
many previous studies that allow any possible field-space point to be the initial

condition, since two of our initial conditions will never give degenerate end-
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states.! Second, choosing our constraint surface according to constant-energy
surfaces, which is a time-like parameter for expanding FLRW universes, gives
a physical criterion to define our initial state. Without any input from high
energy theory, we can then define priors for initial conditions on the equal en-
ergy surface that maximize information entropy and give us the least informed
way by which we can study this system. Using a variety of priors, we found
that hybrid inflation does indeed give many inflationary solutions, regardless

of the initial energy surface that we choose our initial conditions to lie upon.?

Chapter 4 is a significant improvement on the basic results obtained for the
homogeneous hybrid inflation analysis in Chapter 3. In this section we allowed
for initial conditions that had sub-horizon gradients, using lattice PDE solvers
to replicate our Monte Carlo exploration of hybrid inflation’s chaotic param-
eter regime. The chaotic pre-inflationary dynamics were instrumental in the
conclusions that we were able to draw: small changes in the phase, amplitude,
or wavelength of the perturbations can also result in radically different end-
states for the universe. The conventional wisdom is that adding inhomogeneity
to a pre-inflationary phase will only hurt the ability of a model to inflate. This
argument has made a strong comeback in studies that have critically examined
the inflationary paradigm, such as Refs. [153,156]. However, we are able to
explicitly demonstrate that sub-horizon homogeneity before inflation is not a

necessary requirement for multifield models to begin inflating. In fact, initial

!This also defines a type of Cauchy surface in field space, in analogy to techniques in

classical general relativity theory [221].
2 After the publication of Chapter 3, Ref. [177] found a prior probability that used constant

energy slicings for initial conditions, but whose predictions are independent on the initial
energy. While this is an improvement on the prior probability that we used, since we found
no significant energy dependence in our results, we expect this prior to have similar results

to our analysis.
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inhomogeneity may help an otherwise hopeless initial state to achieve many
e-folds of inflation. Since this was demonstrated only for those cases where we
could neglect the backreaction of the field perturbations onto the metric, we
would be very interested to see this analysis repeated with a full general rela-

tivity numerical code, such as those recently developed in Refs. [170,171,222].

It is important to note that we have assumed that the Lagrangian that is
valid during the epochs when observationally relevant modes leave the hori-
zon is also valid in a pre-inflationary epoch. This is a strong assumption
that deserves some explanation, since we might expect the potential to have
significantly different features away from the region that gives the last 50-60
e-folds of inflation. A particularly strong counterargument to our approach, as
mentioned recently in Refs [154,155] and others, is that there might exist non-
global minima, in which a classical trajectory might become trapped, prior to
yielding the inflationary action. This results in eternal inflation, which may
be ended by quantum tunneling out of the metastable vacuum directly into a
configuration that will inflate for O(100) e-folds, providing another dynami-
cal resolution to the initial conditions problem. While we feel that this is a
legitimate concern for the types of analysis presented in Part III, we take the
viewpoint that our results show that adding additional structure like nearby
minima to the pre-inflationary period is not strictly necessary to get a large
fraction of a model’s solutions to inflate. Instead, it can be achieved by a
variety of mechanisms, each of which might be termed “natural” depending on
whether a bottom-up or top-down philosophy of inflationary model building is

being used.
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7.2 How can we get generic predictions?

The second class of model we analyzed were large-field chaotic inflation models
with many fields assisting each other during inflation. These models have a
characteristic structure like V' ~ ¥, ¢ and are obvious generalizations of the
simplest phenomenological single-field models, like the simple m?¢? potential.
In Part IV we assumed that there was some mechanism by which inflationary
solutions are generated, so that the concerns in Part III can be ameliorated.
However, these models have predictions that still depend on the background
solution. For instance, if a given mode (; leaves the horizon when almost
all of the fields are in their minima, then the power spectrum for this mode
looks as if it came from a model with fewer actively evolving fields. In the
limit that all of the heavier fields have vanishing contributions during periods
of interest, the predictions for any of these models approaches that of single-
field inflation. Consequently, the prior probability for the model’s background
initial condition could fundamentally change the predictions for these models.

This might seem troubling since we do not have access to this type of
information in the vast majority of inflationary scenarios. This leads us to one
of the central points of this thesis: theoretical uncertainties can be integrated
out of a model, given a careful definition of the inflationary scenario. When we
have no knowledge of the initial state, we simply require the prior probability
for the initial condition to have maximum Shannon entropy, i.e., the definition

of the prior must contain the least amount of possible information.? We then

30ften the prior probability cannot be specified in such a way that there will remain no
parametrization dependence, i.e., the prior for a parametrization 6 will not necessarily be
the same as that for a related set of coordinates 6’. However, by studying the change in the
model’s predictions when the prior is altered we can qualitatively assess the robustness of

the predictions to the choice of parametrization, as was done in Chapter 5.
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integrate over all of these nuisance parameters to get a probability distribution

for the model’s generic predictions or its prior predictive distribution.
Common criticisms of this approach include:

The issue of subjectivity: If one changes the prior, then the shape of
the PDF for the observables would change. Since the definition of priors has

a subjective component, the marginalized predictions are subjective, too.

While this is true, we note that the sensitivity of a model to its priors can
be largely studied by comparing different prior probabilities, as was done in
Chapter 5.* If we interpret the prior probability as incorporating our knowl-
edge or beliefs about the likely value of a given parameter, then this criticism
amounts to: if we knew more about the model, we would know more about
its predictions. In instances where no prior knowledge is applicable, this sub-
jectivity vanishes, since using anything besides the maximum entropy prior
implies some a prior: hypothesis by definition. This is almost certainly the
case for dynamical parameters in the model, such as initial conditions, so our

results should be largely robust.

The issue of frequentism: The universe’s actual parameters might cor-
respond to a bo or greater deviation from the mean in the prior predictive
distribution for an observable. The model might very well be true, but the bulk

of the prior predictive distribution does not capture the model’s real prediction.

We can only place a probability on our belief in a model’s parameters
that is a deterministic function of the available data and our prior, which
will hopefully converge to the neighborhood around a value if we are given

updated, consistent datasets. In the limit that we had a clear and convincing

4We quickly note that if we associated each possible prior to one scientist, marginalizing
over priors would give a distribution for what a population of people would expect out of

the model.



143

reason to prefer one configuration over others, our distribution would have a
strong peak near the prediction for this preferred configuration, recovering the
implicit expectations of a frequentist.

To simply study a model by finding the connection between the “actual”
parameter of the model and the corresponding prediction is not sufficient. For
most models, particularly phenomenological ones, this level of prior knowledge
is hugely impractical or even impossible. In contrast, the Bayesian methodol-
ogy that we have used incorporates all possible initial states with weightings
defined by the information available to us as model builders and returns a

correspondingly generic prediction.

7.3 What do generic predictions look like?

In Part IV we saw that the predictivity of our models can improve when we
increase the number of degrees of freedom by adding more dynamical fields.
In Chapter 5 we studied the pivot scale values for the power spectrum and its
derivatives, explicitly comparing different priors for initial conditions in the
Ny-quadratic model, using a wide variety of different forms including what
we used for hybrid inflation in Chapter 3. We found very little difference in
the functional form for the predictions and only trivial reweightings of the
probability distributions between different priors. We interpret these results
as indicating that these types of large-field model are not sensitively dependent
on their initial conditions.

In Chapter 6 we extended this further by analytically incorporating priors
on both initial conditions and Lagrangian parameters into a generic prediction
for a large class of observationally relevant inflation models. We found that

sum-separable, large-field models have sharp generic predictions as a conse-
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quence of the central limit theorem. We calculated this explicitly for the ratio
of the tensor spectral index to the tensor-to-scalar ratio n;/r, since any de-
viation from the single-field gravitational wave consistency relation indicates
genuinely multifield contributions to the prediction. We find that both n, and
r follow Gaussian distributions that are correlated, but easily characterized if
we assume that any background initial condition 55 e-folds before the end of
inflation is equally likely. This provides more evidence that multifield models

may become increasingly predictive as the number of fields increases.

While we have not yet carried out a similar analysis for small-field mod-
els or for multifield models with strong interactions between the fields, we
feel strongly that the simple principles we have discovered here will remain.
Multifield models are “predictive,” as measured by the typical variance in the
spread of the predicted observables; they are generally insensitive to the defi-
nition of the initial conditions prior; and this emergent behavior arises because
of the models’ large dimensionality. While these should be defining features
of multifield models, small-field models in particular might have some greater
dependence on the initial conditions than large-field inflation, since the infla-
tionary region usually only corresponds to a local attractor, with a qualitatively
smaller basin of attraction than a large-field model. Furthermore, the analytic
calculations that were performed in Chapter 6 explicitly do not apply for these
models, since we would need to incorporate the contribution to ¢ in the 6N
formalism from the end-of-inflation surface. Consequently, more work must be
done before we can study these types of models in as much detail as presented

here, which should be a fruitful avenue for further research.
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7.4 Outlook

With the release of the latest results from Planck, the next major milestones
in the collection of CMB data will be in measuring the polarization spectra.
While exciting results may certainly be obtained here, we might reasonably
be pessimistic about the possibility of observing signatures that will guide
us toward specific inflationary models in the near future. This point was
driven home with the controversy surrounding the interpretation of dust and
B-modes in the BICEP2 data, and may perhaps be a theme for next generation
cosmology. In the event that the key observables for inflation — ng, r, and
fnL — remain bounded in the general region of parameter space that they are
currently in, we may not soon have a data-driven reason to radically alter our

approach to inflation.

For an inflationary theorist this raises a few concerns. If one scalar field is
sufficient to explain all of the available data, then the motivation for multifield
models will remain no more concrete than what is mentioned in this thesis:
multiple fields are possible; they generalize the simplest cases; and they are
often naturally predicted from high energy theory. However, they are not
necessary. Consequently, their study would continue to focus on reconciling
general principles from high energy theory that favor large dimensionality with

observations that are completely consistent with simpler models.

This thesis makes progress toward these types of “post-modern” goals. Since
our theoretical uncertainty will remain approximately constant in the absence
of experimental pressure, the methods used here should become more relevant
for studies that attempt to propagate fundamental unknowns about a model
into a corresponding uncertainty in the prediction. However, since the analysis

of multifield models is more complicated than single-field models, this is not



146 Chapter 7. Conclusion

the methodology that is often chosen. Instead, people are usually content with
understanding the complicated relationship that exists between the primordial
spectra and a model’s masses and couplings, which is indeed a hard problem.
However, we would contend that this type of analysis is incomplete. In order
to assess a model’s observational status one must also carefully consider the
role of a priori information on the structure of both static and dynamical
parameters, such as masses and initial conditions, respectively. Even with a
complete lack of information one can still define sensible prior probabilities and
map these to predictions through the Bayesian technique of marginalization.
This allows us to calculate the complete predictions of a model and perhaps
begin to understand how an effectively single-field universe can be reconciled

with high energy theory.



APPENDIX A

BAYESIAN METHODS

Throughout this thesis we make frequent use of Bayesian statistical techniques.
While methods such as Markov Chain Monte Carlo (MCMC) are commonplace
in cosmological data analysis and data-based inference, they are rarely used
in theoretical modelling. In this appendix we will outline what techniques we
have used and how they apply to theoretical inflation models and the initial

conditions dependence of multifield inflation.

A.1 Bayes theorem

For random variables A and B, Bayes theorem relates conditional probabilities
in the following fashion:

P(A)P(B[A)

P(A|B) = =g

(A.1)

where P(A) is the prior probability distribution for variable A, P(A|B) is the
posterior probability distribution for variable A given B, P(B|A) is the likeli-
hood of getting B given A, and P(B) is the Bayesian evidence or marginalized
likelthood for B. The prior probability encodes the a priori knowledge that
one has about variable A and allows you to invert the conditional probability
P(A|B) - P(B|A) up to the value of the evidence. The Bayesian evidence
is a normalization factor that is unimportant for our studies here, although it

arises when comparing models’ ability to explain data.
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A.2 Application to theoretical modeling

In our work we have used the Bayesian technique of marginalization. This is the
process of integrating out nuisance parameters from a model, with the param-
eters weighted by their prior probability. This obtains a simplified probability
distribution function (PDF) that is independent of the nuisance parameters but
incorporates our uncertainty in those parameters that have been marginalized.

If we wish to find the marginalized PDF for parameter A conditioned on

the value of parameter B, then we integrate out all extraneous parameters in

the model 6; by
P(A|B) = / d0;P(A|0;, BYP(6;] B). (A.2)

If the PDF for the nuisance parameters is independent of B, then P(6;|B) —
P(0;), which is that nuisance parameter’s prior probability.

For a multifield inflation model we have observables O that we wish to
calculate, such as the tensor-to-scalar ratio r or the spectral index n, that are
valid near the pivot scale kp;,. We also may have pseudo-observables, such as
the total number of e-folds N, between the initial and final state for a given
solution of the model, which we treat as if they were actually observable, but
are in fact only partially inferable from the data in the context of the chosen
model.

Any of these observables depend on a series of parameters in the La-
grangian, such as couplings g; and masses m;, as well as dynamical parameters,
like a particular realization’s initial conditions. In this thesis we will at vari-
ous times treat these parameters as both important and nuisance parameters,
sometimes marginalizing over them and sometimes not. For instance, in Chap-

ter 5 we compare a set of PDFs for observables P,(O) that depend on different
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prior probabilities for the background solution’s initial conditions P,(IC), with
the fields’ masses m = {m;} fixed.

This can be expressed as
P(O|) = f d(1C) P(O[IC, i) P, (IC, 7). (A.3)
We can perform integrals like Eq. (A.3) numerically by generating a sample of

initial conditions IC; from the prior probability P,(IC,m) and using

P(O]1i) » —

S P(O|1C;, ) (A.4)

samp j
for IC; ~ P,(IC,m), where Ngmp is the number of elements in the sample.
If P(O|IC;,m) is probabilistic, then we simply evaluate it for every initial
condition in the sample.

However, for inflation models we can uniquely determine a value for an
observable like n, given all of the parameters in the first-order equations of
motion, so that P(O|IC;,m) is a deterministic relationship with

1 if O(IC,,m)=0"

P(O'|1C;, 1) = (A.5)

0 otherwise
In this case, we estimate P(O|m) from a histogram of the population statistics.
In other words, we draw a sample of parameters from the prior probability and
for every element in that sample we calculate the observable via the methods
presented in Chapter 2. We then bin the sample of observables we get from
this process and estimate the actual PDF from the sample histogram or kernel

density estimation.



150 Appendix A. Bayesian Methods




[1]

2]

3]

4]

[5]

[6]

7]

18]

BIBLIOGRAPHY

A. A. Starobinsky, A New Type of Isotropic Cosmological Models
Without Singularity, Phys.Lett. B91 (1980) 99-102.

A. H. Guth, The Inflationary Universe: A Possible Solution to the
Horizon and Flatness Problems, Phys.Rev. D23 (1981) 347-356.

A. D. Linde, A New Inflationary Universe Scenario: A Possible
Solution of the Horizon, Flatness, Homogeneity, Isotropy and
Primordial Monopole Problems, Phys.Lett. B108 (1982) 389-393.

A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified
Theories with Radiatively Induced Symmetry Breaking, Phys.Rev.Lett.
48 (1982) 1220-1223.

WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson
Microwave Anisotropy Probe (WMAP) Observations: Cosmological
Parameter Results, Astrophys.J.Suppl. 208 (2013) 19,
[arXiv:1212.5226].

T. Vachaspati and M. Trodden, Causality and cosmic inflation,
Phys.Rev. D61 (1999) 023502, [gr-qc/9811037].

M. Trodden and T. Vachaspati, What is the homogeneity of our
universe telling us?, Mod.Phys.Lett. A14 (1999) 1661-1666,
l[gr-qc/9905091].

J. Stewart, Perturbations of Friedmann-Robertson-Walker cosmological

models, Class.Quant.Grav. 7 (1990) 1169-1180.

151


http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/gr-qc/9811037
http://arxiv.org/abs/gr-qc/9905091

152

Bibliography

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. M. Carroll, Spacetime and geometry. An introduction to general

relativity, vol. 1. Addison-Wesley, 2004.

D. H. Lyth and A. R. Liddle, The primordial density perturbation.:
Cosmology, inflation and the origin of structure. Cambridge University

Press, 2009.

D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, A new approach
to the evolution of cosmological perturbations on large scales, Phys.Rev.

D62 (2000) 043527, [astro-ph/0003278|.

S. Weinberg, Adiabatic modes in cosmology, Phys.Rev. D67 (2003)
123504, [astro-ph/0302326|.

C. Kiefer and D. Polarski, Why do cosmological perturbations look
classical to us?, Adv.Sci.Lett. 2 (2009) 164-173, [arXiv:0810.0087].

E. J. Copeland, E. W. Kolb, A. R. Liddle, and J. E. Lidsey, Observing
the inflaton potential, Phys.Rev.Lett. 71 (1993) 219-222,
[hep-ph/9304228].

A. R. Liddle and D. H. Lyth, The Cold dark matter density
perturbation, Phys. Rept. 231 (1993) 1-105, |astro-ph/9303019].

L. C. Price, J. Frazer, J. Xu, H. V. Peiris, and R. Easther,
MultiModeCode: An efficient numerical solver for multifield inflation,
JCAP 1503 (2015), no. 03 005, |arXiv:1410.0685].

Planck Collaboration, P. Ade et al., Planck 2013 results. 1. Qverview
of products and scientific results, Astron.Astrophys. 571 (2014) Al,
[arXiv:1303.5062].


http://arxiv.org/abs/astro-ph/0003278
http://arxiv.org/abs/astro-ph/0302326
http://arxiv.org/abs/0810.0087
http://arxiv.org/abs/hep-ph/9304228
http://arxiv.org/abs/astro-ph/9303019
http://arxiv.org/abs/1410.0685
http://arxiv.org/abs/1303.5062

153

18]

[19]

20]

[21]

[22]

23]

[24]

[25]

[26]

Planck Collaboration, P. Ade et al., Planck 2013 results. XVI.
Cosmological parameters, Astron.Astrophys. 571 (2014) A16,
[arXiv:1303.5076].

Planck Collaboration, P. Ade et al., Planck 2013 results. XXII.
Constraints on inflation, Astron.Astrophys. 571 (2014) A22,
[arXiv:1303.5082].

D. Baumann and L. McAllister, Inflation and String Theory,
arXiv:1404.2601.

R. Easther and K.-i. Maeda, Chaotic dynamics and two field inflation,
Class. Quant. Grav. 16 (1999) 1637-1652, [gr-qc/9711035].

S. Clesse, C. Ringeval, and J. Rocher, Fractal initial conditions and
natural parameter values in hybrid inflation, Phys.Rev. D80 (2009)
123534, [arXiV :0909. 0402].

J. A. Adams, B. Cresswell, and R. Easther, Inflationary perturbations
from a potential with a step, Phys.Rev. D64 (2001) 123514,
[astro-ph/0102236].

WMAP Collaboration, H. Peiris et al., First year Wilkinson
Microwave Anisotropy Probe (WMAP) observations: Implications for
inflation, Astrophys.J.Suppl. 148 (2003) 213, [astro-ph/0302225].

J. Martin and C. Ringeval, Inflation after WMAP3: Confronting the
Slow-Roll and Exact Power Spectra to CMB Data, JCAP 0608 (2006)
009, |[astro-ph/0605367].

L. M. Hall and H. V. Peiris, Cosmological Constraints on Dissipative
Models of Inflation, JCAP 0801 (2008) 027, [arXiv:0709.2912].


http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/1404.2601
http://arxiv.org/abs/gr-qc/9711035
http://arxiv.org/abs/0909.0402
http://arxiv.org/abs/astro-ph/0102236
http://arxiv.org/abs/astro-ph/0302225
http://arxiv.org/abs/astro-ph/0605367
http://arxiv.org/abs/0709.2912

154

Bibliography

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

R. Bean, X. Chen, H. Peiris, and J. Xu, Comparing Infrared
Dirac-Born-Infeld Brane Inflation to Observations, Phys.Rev. D77
(2008) 023527, [arXiv:0710.1812].

L. Lorenz, J. Martin, and C. Ringeval, Brane inflation and the WMAP
data: A Bayesian analysis, JCAP 0804 (2008) 001,
[arXiv:0709.3758|.

J. Martin and C. Ringeval, First CMB Constraints on the Inflationary
Reheating Temperature, Phys. Rev. D82 (2010) 023511,
[arXiv:1004.5525|.

J. Martin, C. Ringeval, and R. Trotta, Hunting Down the Best Model of
Inflation with Bayesian Evidence, Phys.Rev. D83 (2011) 063524,
[arXiv:1009.4157].

J. Martin, C. Ringeval, R. Trotta, and V. Vennin, The Best Inflationary
Models After Planck, JCAP 1403 (2014) 039, [arXiv:1312.3529|.

M. J. Mortonson, H. V. Peiris, and R. Easther, Bayesian Analysis of
Inflation: Parameter Estimation for Single Field Models, Phys.Rev.
D83 (2011) 043505, [arXiv:1007.4205|.

R. Easther and H. V. Peiris, Bayesian Analysis of Inflation II: Model
Selection and Constraints on Reheating, Phys.Rev. D85 (2012) 103533,
[arXiv:1112.0326].

J. Norena, C. Wagner, L. Verde, H. V. Peiris, and R. Easther, Bayesian
Analysis of Inflation II1: Slow Roll Reconstruction Using Model
Selection, Phys.Rev. D86 (2012) 023505, [arXiv:1202.0304].


http://arxiv.org/abs/0710.1812
http://arxiv.org/abs/0709.3758
http://arxiv.org/abs/1004.5525
http://arxiv.org/abs/1009.4157
http://arxiv.org/abs/1312.3529
http://arxiv.org/abs/1007.4205
http://arxiv.org/abs/1112.0326
http://arxiv.org/abs/1202.0304

155

[35]

[36]

137]

38

[39]

[40]

[41]

[42]

[43]

A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB
anisotropies in closed FRW models, Astrophys.J. 538 (2000) 473-476,
lastro-ph/9911177].

A. Lewis and S. Bridle, Cosmological parameters from CMB and other
data: A Monte Carlo approach, Phys.Rev. D66 (2002) 103511,
|astro-ph/0205436].

F. Feroz, M. Hobson, and M. Bridges, MultiNest: an efficient and
robust Bayesian inference tool for cosmology and particle physics,

MNRAS 398 (2009) 1601-1614.

I. Huston and K. A. Malik, Numerical calculation of second order

perturbations, JCAP 0909 (2009) 019, [arXiv:0907.2917].

I. Huston and A. J. Christopherson, Calculating Non-adiabatic Pressure
Perturbations during Multi-field Inflation, Phys.Rev. D85 (2012)
063507, [arXiv:1111.6919].

I[. Huston and K. A. Malik, Second Order Perturbations During
Inflation Beyond Slow-roll, JCAP 1110 (2011) 029,
[arXiv:1103.0912].

I. Huston and A. J. Christopherson, Isocurvature Perturbations and

Reheating in Multi-Field Inflation, arXiv:1302.4298.

J. Frazer, Predictions in multifield models of inflation, Journal of
Cosmology and Astroparticle Physics 2014 (2013), no. 01 028,
[arXiv:1303.3611].

J. A. Adams, G. G. Ross, and S. Sarkar, Multiple inflation, Nucl. Phys.
B503 (1997) 405425, |hep-ph/9704286].


http://arxiv.org/abs/astro-ph/9911177
http://arxiv.org/abs/astro-ph/0205436
http://arxiv.org/abs/0907.2917
http://arxiv.org/abs/1111.6919
http://arxiv.org/abs/1103.0912
http://arxiv.org/abs/1302.4298
http://arxiv.org/abs/1303.3611
http://arxiv.org/abs/hep-ph/9704286

156

Bibliography

|44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

P. Adshead, C. Dvorkin, W. Hu, and E. A. Lim, Non-Gaussianity from
Step Features in the Inflationary Potential, Phys.Rev. D85 (2012)
023531, [arXiv:1110.3050].

R. Easther, J. Frazer, H. V. Peiris, and L. C. Price, Simple predictions
from multifield inflationary models, Phys.Rev.Lett. 112 (2014) 161302,
[arXiv: 1312. 4035].

D. Seery, D. J. Mulryne, J. Frazer, and R. H. Ribeiro, Inflationary
perturbation theory is geometrical optics in phase space, JCAP 1209
(2012) 010, |arXiv:1203.2635|.

D. H. Lyth and A. Riotto, Particle physics models of inflation and the
cosmological density perturbation, Phys.Rept. 314 (1999) 1-146,
[hep-ph/9807278].

D. Langlois and S. Renaux-Petel, Perturbations in generalized

multi-field inflation, JCAP 0804 (2008) 017, [arXiv:0801.1085].

D. Salopek, J. Bond, and J. M. Bardeen, Designing Density Fluctuation
Spectra in Inflation, Phys. Rev. D40 (1989) 1753.

B. A. Bassett, S. Tsujikawa, and D. Wands, Inflation dynamics and
reheating, Rev.Mod.Phys. 78 (2006) 537589, [astro-ph/0507632].

D. J. Mulryne, D. Seery, and D. Wesley, Moment transport equations
for non-Gaussianity, JCAP 1001 (2010) 024, [arXiv:0909.2256].

D. J. Mulryne, D. Seery, and D. Wesley, Moment transport equations
for the primordial curvature perturbation, JCAP 1104 (2011) 030,
[arXiv:1008.3159|.


http://arxiv.org/abs/1110.3050
http://arxiv.org/abs/1312.4035
http://arxiv.org/abs/1203.2635
http://arxiv.org/abs/hep-ph/9807278
http://arxiv.org/abs/0801.1085
http://arxiv.org/abs/astro-ph/0507632
http://arxiv.org/abs/0909.2256
http://arxiv.org/abs/1008.3159

157

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

D. J. Mulryne, Transporting non-Gaussianity from sub to super-horizon

scales, JCAP 1309 (2013) 010, [arXiv:1302.3842|.

T. Bunch and P. Davies, Quantum Field Theory in de Sitter Space:
Renormalization by Point Splitting, Proc.Roy.Soc.Lond. A360 (1978)
117-134.

J. M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys.Rev.
D22 (1980) 1882-1905.

J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Spontaneous
creation of almost scale-free density perturbations in an inflationary

universe, Phys. Rev. D 28 (Aug, 1983) 679-693.

S. Groot Nibbelink and B. van Tent, Density perturbations arising from
multiple field slow roll inflation, hep-ph/0011325.

C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Adiabatic and
entropy perturbations from inflation, Phys.Rev. D63 (2001) 023506,
[astro-ph/0009131].

S. Groot Nibbelink and B. van Tent, Scalar perturbations during
multiple field slow-roll inflation, Class. Quant.Grav. 19 (2002) 613-640,
[hep-ph/0107272].

C. T. Byrnes and D. Wands, Curvature and isocurvature perturbations
from two-field inflation in a slow-roll expansion, Phys.Rev. D74 (2006)
043529, [astro-ph/0605679].

N. Bartolo, S. Matarrese, and A. Riotto, Adiabatic and isocurvature
perturbations from inflation: Power spectra and consistency relations,

Phys.Rev. D64 (2001) 123504, [astro-ph/0107502].


http://arxiv.org/abs/1302.3842
http://arxiv.org/abs/hep-ph/0011325
http://arxiv.org/abs/astro-ph/0009131
http://arxiv.org/abs/hep-ph/0107272
http://arxiv.org/abs/astro-ph/0605679
http://arxiv.org/abs/astro-ph/0107502

158

Bibliography

62]

63]

[64]

|65]

[66]

67]

68

[69]

[70]

[71]

D. Wands, N. Bartolo, S. Matarrese, and A. Riotto, An Observational
test of two-field inflation, Phys.Rev. D66 (2002) 043520,
lastro-ph/0205253].

J. Garcia-Bellido and D. Wands, Metric perturbations in two field
inflation, Phys.Rev. D53 (1996) 5437-5445, [astro-ph/9511029].

K. A. Malik, D. Wands, and C. Ungarelli, Large scale curvature and
entropy perturbations for multiple interacting fluids, Phys.Rev. D67
(2003) 063516, [astro-ph/0211602].

K. A. Malik, Cosmological perturbations in an inflationary universe,

astro-ph/0101563.

K. A. Malik and D. Wands, Adiabatic and entropy perturbations with
interacting fluids and fields, JCAP 0502 (2005) 007,
lastro-ph/0411703].

A. A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and
the Generation of Perturbations, JETP Lett. 42 (1985) 152-155.

D. Lyth, Large Scale Energy Density Perturbations and Inflation,
Phys.Rev. D31 (1985) 1792-1798.

M. Sasaki and E. D. Stewart, A General analytic formula for the
spectral index of the density perturbations produced during inflation,

Prog. Theor.Phys. 95 (1996) 71-78, [astro-ph/9507001].

D. Salopek and J. Bond, Nonlinear evolution of long wavelength metric

fluctuations in inflationary models, Phys.Rev. D42 (1990) 3936-3962.

M. Sasaki and T. Tanaka, Superhorizon scale dynamics of multiscalar

inflation, Prog. Theor.Phys. 99 (1998) 763782, [gr-qc/9801017].


http://arxiv.org/abs/astro-ph/0205253
http://arxiv.org/abs/astro-ph/9511029
http://arxiv.org/abs/astro-ph/0211602
http://arxiv.org/abs/astro-ph/0101563
http://arxiv.org/abs/astro-ph/0411703
http://arxiv.org/abs/astro-ph/9507001
http://arxiv.org/abs/gr-qc/9801017

159

[72]

73]

[74]

[75]

[76]

7]

78]

[79]

[80]

[81]

D. H. Lyth and Y. Rodriguez, The Inflationary prediction for
primordial non-Gaussianity, Phys.Rev.Lett. 95 (2005) 121302,
|astro-ph/0504045]|.

F. Vernizzi and D. Wands, Non-gaussianities in two-field inflation,

JCAP 0605 (2006) 019, [astro-ph/0603799].

T. Battefeld and R. Easther, Non-Gaussianities in Multi-field Inflation,
JCAP 0703 (2007) 020, [astro-ph/0610296|.

K. A. Malik and D. Wands, Cosmological perturbations, Phys.Rept. 475
(2009) 1-51, [arXiv:0809.4944].

M. Dias, J. Frazer, and A. R. Liddle, Multifield consequences for
D-brane inflation, JCAP 1206 (2012) 020, [arXiv:1203.3792].

D. Seery and J. E. Lidsey, Primordial non-Gaussianities from

multiple-field inflation, JCAP 0509 (2005) 011, |[astro-ph/0506056].

J. M. Maldacena, Non-Gaussian features of primordial fluctuations in
single field inflationary models, JHEP 0305 (2003) 013,
[astro-ph/0210603].

L. Alabidi and D. H. Lyth, Inflation models and observation, JCAP
0605 (2006) 016, [astro-ph/0510441].

C. T. Byrnes, M. Sasaki, and D. Wands, The primordial trispectrum
from inflation, Phys.Rev. D74 (2006) 123519, [astro-ph/0611075].

A. D. Linde, Hybrid inflation, Phys.Rev. D49 (1994) 748-754,
[astro-ph/9307002].


http://arxiv.org/abs/astro-ph/0504045
http://arxiv.org/abs/astro-ph/0603799
http://arxiv.org/abs/astro-ph/0610296
http://arxiv.org/abs/0809.4944
http://arxiv.org/abs/1203.3792
http://arxiv.org/abs/astro-ph/0506056
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/astro-ph/0510441
http://arxiv.org/abs/astro-ph/0611075
http://arxiv.org/abs/astro-ph/9307002

160

Bibliography

[82]

[83]

[84]

[85]

[36]

87]

88

[89]

[90]

[91]

E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart, and
D. Wands, Fulse vacuum inflation with Einstein gravity, Phys.Rev.
D49 (1994) 6410-6433, |astro-ph/9401011].

Z. Lalak, D. Langlois, S. Pokorski, and K. Turzynski, Curvature and
isocurvature perturbations in two-field inflation, JCAP 0707 (2007)
014, [arXiV:O704.0212].

A. Avgoustidis, S. Cremonini, A.-C. Davis, R. H. Ribeiro,
K. Turzynski, et al., The Importance of Slow-roll Corrections During

Multi-field Inflation, JCAP 1202 (2012) 038, [arXiv:1110.4081].

A. R. Liddle, A. Mazumdar, and F. E. Schunck, Assisted inflation,
Phys.Rev. D58 (1998) 061301, [astro-ph/9804177].

P. Kanti and K. A. Olive, On the realization of assisted inflation,
Phys.Rev. D60 (1999) 043502, [hep-ph/9903524|.

P. Kanti and K. A. Olive, Assisted chaotic inflation in higher
dimensional theories, Phys.Lett. B464 (1999) 192-198,
[hep-ph/9906331].

N. Kaloper and A. R. Liddle, Dynamics and perturbations in assisted
chaotic inflation, Phys.Rev. D61 (2000) 123513, [hep-ph/9910499].

R. Easther and L. McAllister, Random matrices and the spectrum of
N-flation, JCAP 0605 (2006) 018, [hep-th/0512102).

S. Dimopoulos, S. Kachru, J. McGreevy, and J. G. Wacker, N-flation,
JCAP 0808 (2008) 003, [hep-th/0507205].

S. A. Kim and A. R. Liddle, Nflation: multi-field inflationary dynamics
and perturbations, Phys.Rev. D74 (2006) 023513, [astro-ph/0605604].


http://arxiv.org/abs/astro-ph/9401011
http://arxiv.org/abs/0704.0212
http://arxiv.org/abs/1110.4081
http://arxiv.org/abs/astro-ph/9804177
http://arxiv.org/abs/hep-ph/9903524
http://arxiv.org/abs/hep-ph/9906331
http://arxiv.org/abs/hep-ph/9910499
http://arxiv.org/abs/hep-th/0512102
http://arxiv.org/abs/hep-th/0507205
http://arxiv.org/abs/astro-ph/0605604

161

[92] S. A. Kim and A. R. Liddle, Nflation: Non-Gaussianity in the
horizon-crossing approximation, Phys.Rev. D74 (2006) 063522,
|astro-ph/0608186].

[93] S. A. Kim and A. R. Liddle, Nflation: observable predictions from the
random matriz mass spectrum, Phys.Rev. D76 (2007) 063515,
[arXiv:0707.1982].

[94] D. Wenren, Tilt and Tensor-to-Scalar Ratio in Multifield Monodromy
Inflation, arXiv:1405.1411.

[95] X. Chen, R. Easther, and E. A. Lim, Large Non-Gaussianities in Single
Field Inflation, JCAP 0706 (2007) 023, [astro-ph/0611645|.

[96] X. Chen, R. Easther, and E. A. Lim, Generation and Characterization
of Large Non-Gaussianities in Single Field Inflation, JCAP 0804
(2008) 010, |arXiv:0801.3295|.

[97] R. Easther and R. Flauger, Planck Constraints on Monodromy
Inflation, JCAP 1402 (2014) 037, [arXiv:1308.3736].

[98] P. D. Meerburg, D. N. Spergel, and B. D. Wandelt, Searching for
Oscillations in the Primordial Power Spectrum: Perturbative Approach

(Paper I), Phys.Rev. D89 (2014) 063536, |arXiv:1308.3704].

[99] P. D. Meerburg and D. N. Spergel, Searching for Oscillations in the
Primordial Power Spectrum: Constraints from Planck (Paper II),
Phys.Rev. D89 (2014) 063537, [arXiv:1308.3705|.

[100] E. J. Copeland, A. Mazumdar, and N. Nunes, Generalized assisted
inflation, Phys.Rev. D60 (1999) 083506, [astro-ph/9904309].


http://arxiv.org/abs/astro-ph/0608186
http://arxiv.org/abs/0707.1982
http://arxiv.org/abs/1405.1411
http://arxiv.org/abs/astro-ph/0611645
http://arxiv.org/abs/0801.3295
http://arxiv.org/abs/1308.3736
http://arxiv.org/abs/1308.3704
http://arxiv.org/abs/1308.3705
http://arxiv.org/abs/astro-ph/9904309

162 Bibliography

[101] D. Battefeld and S. Kawai, Preheating after N-flation, Phys.Rev. D77
(2008) 123507, |arXiv:0803.0321].

[102] T. C. Bachlechner, M. Dias, J. Frazer, and L. McAllister, Chaotic
inflation with kinetic alignment of axion fields, Phys.Rev. D91 (2015),
no. 2 023520, [arXiv:1404.7496].

[103] C. Ringeval, P. Brax, C. van de Bruck, and A.-C. Davis, Boundary
inflation and the wmap data, Phys.Rev. D73 (2006) 064035,
[astro-ph/0509727].

[104] M. Dias, J. Frazer, and D. Seery, Computing observables in curved
multifield models of inflation - A guide (with code) to the transport
method, arXiv:1502.03125.

[105] R. Easther and L. C. Price, Initial conditions and sampling for
multifield inflation, JCAP 1307 (2013) 027, [arXiv:1304.4244|.

[106] A. D. Linde, Chaotic Inflation, Phys.Lett. B129 (1983) 177-181.

[107] R. O. Ramos, Fine tuning solution for hybrid inflation in dissipative
chaotic dynamics, Phys.Rev. D64 (2001) 123510, [astro-ph/0104379|.

[108] G. Lazarides, C. Panagiotakopoulos, and N. Vlachos, Initial conditions
for smooth hybrid inflation, Phys.Rev. D54 (1996) 1369-1373,
[hep-ph/9606297].

[109] G. Lazarides and N. Vlachos, Initial conditions for supersymmetric

inflation, Phys.Rev. D56 (1997) 4562-4567, [hep-ph/9707296].

[110] N. Tetradis, Fine tuning of the initial conditions for hybrid inflation,
Phys.Rev. D57 (1998) 5997-6002, [astro-ph/9707214].


http://arxiv.org/abs/0803.0321
http://arxiv.org/abs/1404.7496
http://arxiv.org/abs/astro-ph/0509727
http://arxiv.org/abs/1502.03125
http://arxiv.org/abs/1304.4244
http://arxiv.org/abs/astro-ph/0104379
http://arxiv.org/abs/hep-ph/9606297
http://arxiv.org/abs/hep-ph/9707296
http://arxiv.org/abs/astro-ph/9707214

163

111

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

L. E. Mendes and A. R. Liddle, Initial conditions for hybrid inflation,
Phys.Rev. D62 (2000) 103511, |[astro-ph/0006020].

S. Clesse and J. Rocher, Avoiding the blue spectrum and the fine-tuning
of initial conditions in hybrid inflation, Phys.Rev. D79 (2009) 103507,
[arXiv:0809.4355].

N. Agarwal, R. Bean, L. McAllister, and G. Xu, Universality in
D-brane inflation, Journal of Cosmology and Astroparticle Physics

2011 (2011), no. 09 002, [arXiv:1103.2775|.

G. Gibbons, S. W. Hawking, and J. Stewart, A natural measure on the
set of all universes, Nuclear Physics B 281 (1987), no. 3 736-751.

S. Hawking and D. N. Page, How probable is inflation?, Nucl. Phys.
B298 (1988) 789-8009.

G. Gibbons and N. Turok, The Measure Problem in Cosmology,
Phys.Rev. D77 (2008) 063516, [hep-th/0609095|.

B. Freivogel, Making predictions in the multiverse, Class.Quant.Grav.

28 (2011) 204007, [arXiv:1105.0244].

J. S. Schiffrin and R. M. Wald, Measure and Probability in Cosmology,
Phys.Rev. D86 (2012) 023521, |arXiv:1202.1818|.

L. Kofman and A. D. Linde, Generation of Density Perturbations in

the Inflationary Cosmology, Nucl. Phys. B282 (1987) 555.

S. Clesse, Hybrid inflation along waterfall trajectories, Phys. Rev. D83
(2011) 063518, [arXiv:1006.4522].


http://arxiv.org/abs/astro-ph/0006020
http://arxiv.org/abs/0809.4355
http://arxiv.org/abs/1103.2775
http://arxiv.org/abs/hep-th/0609095
http://arxiv.org/abs/1105.0244
http://arxiv.org/abs/1202.1818
http://arxiv.org/abs/1006.4522

164

Bibliography

[121]

[122]

[123]

124]

[125]

[126]

[127]

[128]

H. Kodama, K. Kohri, and K. Nakayama, On the waterfall behavior in
hybrid inflation, Prog. Theor.Phys. 126 (2011) 331-350,
[arXiv:1102.5612].

K. Story, C. Reichardt, Z. Hou, R. Keisler, K. Aird, et al., A
Measurement of the Cosmic Microwave Background Damping Tail from
the 2500-square-degree SPT-SZ survey, Astrophys.J. 779 (2013) 86,
[arXiv:1210.7231].

WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson
Microwave Anisotropy Probe (WMAP) Observations: Cosmological
Parameter Results, Astrophys.J.Suppl. 208 (2013) 19,
[arXiv:1212.5226].

WMAP Collaboration, C. Bennett et al., Nine-Year Wilkinson
Microwave Anisotropy Probe (WMAP) Observations: Final Maps and
Results, Astrophys.J.Suppl. 208 (2013) 20, [arXiv:1212.5225].

Atacama Cosmology Telescope Collaboration, J. L. Sievers et al.,
The Atacama Cosmology Telescope: Cosmological parameters from

three seasons of data, JCAP 1310 (2013) 060, [arXiv:1301.0824].

J. Martin and V. Vennin, Stochastic Effects in Hybrid Inflation,
Phys.Rev. D85 (2012) 043525, [arXiv:1110.2070].

G. N. Felder, L. Kofman, and A. D. Linde, Inflation and preheating in
NO models, Phys.Rev. D60 (1999) 103505, [hep-ph/9903350].

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,

D. E. Shumaker, and C. S. Woodward, Sundials: Suite of nonlinear and
differential/algebraic equation solvers, ACM Trans. Math. Softw. 31
(Sept., 2005) 363396.


http://arxiv.org/abs/1102.5612
http://arxiv.org/abs/1210.7231
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1212.5225
http://arxiv.org/abs/1301.0824
http://arxiv.org/abs/1110.2070
http://arxiv.org/abs/hep-ph/9903350

165

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

F. Finelli, G. Marozzi, A. Starobinsky, G. Vacca, and G. Venturi,
Stochastic growth of quantum fluctuations during slow-roll inflation,

Phys.Rev. D82 (2010) 064020, [arXiv:1003.1327|.

F. Finelli, G. Marozzi, A. Starobinsky, G. Vacca, and G. Venturi,
Generation of fluctuations during inflation: Comparison of stochastic
and field-theoretic approaches, Phys.Rev. D79 (2009) 044007,
[arXiv:0808.1786].

J. Theiler, Estimating fractal dimension, J. Opt. Soc. Am. A7 (1990)
1055-1073.

S. Downes, B. Dutta, and K. Sinha, Attractors, Universality and
Inflation, Phys.Rev. D86 (2012) 103509, |arXiv:1203.6892].

A. Aazami and R. Easther, Cosmology from random multifield
potentials, JCAP 0603 (2006) 013, [hep-th/0512050].

S.-H. H. Tye, J. Xu, and Y. Zhang, Multi-field Inflation with a Random
Potential, JCAP 0904 (2009) 018, [arXiv:0812.1944|.

J. Frazer and A. R. Liddle, Multi-field inflation with random potentials:
field dimension, feature scale and non-Gaussianity, JCAP 1202 (2012)
039, [arXiv:1111.6646].

D. Marsh, L. McAllister, and T. Wrase, The Wasteland of Random
Supergravities, JHEP 1203 (2012) 102, [arXiv:1112.3034].

D. Battefeld, T. Battefeld, and S. Schulz, On the Unlikeliness of
Multi-Field Inflation: Bounded Random Potentials and our Vacuum,
JCAP 1206 (2012) 034, [arXiv:1203.3941].


http://arxiv.org/abs/1003.1327
http://arxiv.org/abs/0808.1786
http://arxiv.org/abs/1203.6892
http://arxiv.org/abs/hep-th/0512050
http://arxiv.org/abs/0812.1944
http://arxiv.org/abs/1111.6646
http://arxiv.org/abs/1112.3034
http://arxiv.org/abs/1203.3941

166 Bibliography

[138] L. McAllister, S. Renaux-Petel, and G. Xu, A Statistical Approach to
Multifield Inflation: Many-field Perturbations Beyond Slow Roll, JCAP
1210 (2012) 046, [arXiv:1207.0317].

[139] N. Itzhaki and E. D. Kovetz, Inflection Point Inflation and Time
Dependent Potentials in String Theory, JHEP 0710 (2007) 054,
[arXiv:0708.2798|.

[140] R. Allahverdi, B. Dutta, and A. Mazumdar, Attraction towards an
inflection point inflation, Phys.Rev. D78 (2008) 063507,
[arXiv:0806.4557].

[141] N. Itzhaki and E. D. Kovetz, A Phase Transition between Small and
Large Field Models of Inflation, Class.Quant.Grav. 26 (2009) 135007,
[arXiv :0810. 4299].

[142] M. Spalinski, Initial conditions for small field inflation, Phys.Rev. D80
(2009) 063529, |arXiv:0903.4999|.

[143] D. S. Goldwirth and T. Piran, Inhomogeneity and the onset of
inflation, Phys.Rev.Lett. 64 (1990) 2852-2855.

[144] D. S. Goldwirth, On inhomogeneous initial conditions for inflation,

Phys.Rev. D43 (1991) 3204-3213.

[145] D. S. Goldwirth and T. Piran, Initial conditions for inflation,
Phys.Rept. 214 (1992) 223-291.

[146] R. Easther, L. C. Price, and J. Rasero, Inflating an Inhomogeneous
Universe, JCAP 1408 (2014) 041, [arXiv:1406.2869].

[147] 2dFGRS Collaboration, S. Cole et al., The 2dF Galaxy Redshift

Survey: Power-spectrum analysis of the final dataset and cosmological


http://arxiv.org/abs/1207.0317
http://arxiv.org/abs/0708.2798
http://arxiv.org/abs/0806.4557
http://arxiv.org/abs/0810.4299
http://arxiv.org/abs/0903.4999
http://arxiv.org/abs/1406.2869

167

[148]

149

[150]

[151]

[152]

153

[154]

implications, Mon.Not. Roy. Astron.Soc. 362 (2005) 505-534,
[astro-ph/0501174].

SDSS Collaboration, D. J. Eisenstein et al., SDSS-I1II: Massive
Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy,
and Extra-Solar Planetary Systems, Astron.J. 142 (2011) 72,
[arXiv:1101.1529].

T. Giannantonio, A. J. Ross, W. J. Percival, R. Crittenden, D. Bacher,
et al., Improved Primordial Non-Gaussianity Constraints from

Measurements of Galaxy Clustering and the Integrated Sachs- Wolfe
Effect, Phys.Rev. D89 (2014) 023511, [arXiv:1303.1349|.

B. Leistedt, H. V. Peiris, and N. Roth, Constraints on Primordial
Non-Gaussianity from FEight Hundred Thousand Photometric Quasars,
Phys.Rev. Lett. 113 (2014), no. 22 221301, [arXiv:1405.4315]|.

Z. Hou, C. Reichardt, K. Story, B. Follin, R. Keisler, et al., Constraints
on Cosmology from the Cosmic Microwave Background Power
Spectrum of the 2500 deg?> SPT-SZ Survey, Astrophys.J. 782 (2014),
no. 2 74, [arXiv:1212.6267].

Planck Collaboration, P. Ade et al., Planck 2013 results. XXII.
Constraints on inflation, Astron.Astrophys. 571 (2014) A22,
[arXiv:1303.5082].

A. Tjjas, P. J. Steinhardt, and A. Loeb, Inflationary paradigm in trouble
after Planck2013, Phys.Lett. B723 (2013) 261-266, [arXiv:1304.2785|.

A. H. Guth, D. I. Kaiser, and Y. Nomura, Inflationary paradigm after
Planck 2013, Phys.Lett. B733 (2014) 112-119, [arXiv:1312.7619|.


http://arxiv.org/abs/astro-ph/0501174
http://arxiv.org/abs/1101.1529
http://arxiv.org/abs/1303.1349
http://arxiv.org/abs/1405.4315
http://arxiv.org/abs/1212.6267
http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/1304.2785
http://arxiv.org/abs/1312.7619

168

Bibliography

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

[163]

[164]

A. Linde, Inflationary Cosmology after Planck 2013, in 100e Ecole
d’Ete de Physique: Post-Planck Cosmology Les Houches, France, July
8-August 2, 2013, 2014. arXiv:1402.0526.

A. Tjjas, P. J. Steinhardt, and A. Loeb, Inflationary schism after
Planck2013, Phys.Lett. B736 (2014) 142-146, |arXiv:1402.6980].

S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin
of Spontaneous Symmetry Breaking, Phys.Rev. D7 (1973) 1888-1910.

A. Albrecht, R. H. Brandenberger, and R. Matzner, Numerical Analysis
of Inflation, Phys.Rev. D32 (1985) 1280.

J. Kung and R. H. Brandenberger, The Initial Condition Dependence
of Inflationary Universe Models, Phys.Rev. D40 (1989) 2532.

R. H. Brandenberger and J. Kung, Chaotic Inflation as an Attractor in
Initial Condition Space, Phys.Rev. D42 (1990) 1008-1015.

H. A. Feldman and R. H. Brandenberger, Chaotic Inflation With
Metric and Matter Perturbations, Phys.Lett. B227 (1989) 359.

M. Grana, Flux compactifications in string theory: A Comprehensive

review, Phys.Rept. 423 (2006) 91-158, [hep-th/0509003|.

M. R. Douglas and S. Kachru, Flux compactification, Rev. Mod.Phys. 79
(2007) 733-796, [hep-th/0610102].

F. Denef, M. R. Douglas, and S. Kachru, Physics of String Flux
Compactifications, Ann.Rev. Nucl. Part.Sci. 57 (2007) 119-144,
[hep-th/0701050].


http://arxiv.org/abs/1402.0526
http://arxiv.org/abs/1402.6980
http://arxiv.org/abs/hep-th/0509003
http://arxiv.org/abs/hep-th/0610102
http://arxiv.org/abs/hep-th/0701050

169

[165]

[166]

[167]

168

[169]

[170]

[171]

[172]

F. Denef, Les Houches Lectures on Constructing String Vacua,

arXiv:0803.1194.

G. N. Felder and I. Tkachev, LATTICEEASY: A Program for lattice
simulations of scalar fields in an expanding universe,

Comput. Phys. Commun. 178 (2008) 929-932, |hep-ph/0011159].

A. V. Frolov, DEFROST: A New Code for Simulating Preheating after
Inflation, JCAP 0811 (2008) 009, [arXiv:0809.4904].

R. Easther, H. Finkel, and N. Roth, PSpectRe: A Pseudo-Spectral Code
for (P)reheating, JCAP 1010 (2010) 025, |[arXiv:1005.1921|.

H. Kurki-Suonio, P. Laguna, and R. A. Matzner, Inhomogeneous
inflation: Numerical evolution, Phys.Rev. D48 (1993) 3611-3624,
|[astro-ph/9306009].

C. L. Wainwright, M. C. Johnson, H. V. Peiris, A. Aguirre, L. Lehner,
et al., Simulating the universe(s): from cosmic bubble collisions to
cosmological observables with numerical relativity, JCAP 1403 (2014)
030, [arXiv:1312.1357].

C. L. Wainwright, M. C. Johnson, A. Aguirre, and H. V. Peiris,
Simulating the universe(s) 1I: phenomenology of cosmic bubble
collisions in full General Relativity, JCAP 1410 (2014), no. 10 024,
[arXiv:1407.2950].

G. Dvali, Q. Shafi, and R. K. Schaefer, Large scale structure and
supersymmetric inflation without fine tuning, Phys.Rev.Lett. T3 (1994)
1886-1889, [hep-ph/9406319].


http://arxiv.org/abs/0803.1194
http://arxiv.org/abs/hep-ph/0011159
http://arxiv.org/abs/0809.4904
http://arxiv.org/abs/1005.1921
http://arxiv.org/abs/astro-ph/9306009
http://arxiv.org/abs/1312.1357
http://arxiv.org/abs/1407.2950
http://arxiv.org/abs/hep-ph/9406319

170

Bibliography

[173]

[174]

175

[176]

177]

[178]

[179]

[180)]

[181]

W. Buchmiiller, V. Domcke, K. Kamada, and K. Schmitz, Hybrid
Inflation in the Complex Plane, JCAP 1407 (2014) 054,
[arXiv:1404.1832].

S. Clesse, B. Garbrecht, and Y. Zhu, Non-Gaussianities and Curvature
Perturbations from Hybrid Inflation, Phys.Rev. D89 (2014) 063519,
[arXiv:1304.7042].

S. R. Green and R. M. Wald, A new framework for analyzing the effects
of small scale inhomogeneities in cosmology, Phys.Rev. D83 (2011)
084020, [arXiv:1011.4920].

A. Corichi and A. Karami, On the measure problem in slow roll
inflation and loop quantum cosmology, Phys. Rev. D83 (2011) 104006,
[arXiv:1011.4249|.

A. Corichi and D. Sloan, Inflationary Attractors and their Measures,

Class. Quant. Grav. 31 (2014) 062001, [arXiv:1310.6399|.

A. Berera and C. Gordon, Inflationary initial conditions consistent with

causality, Phys.Rev. D63 (2001) 063505, [hep-ph/0010280].

A. D. Linde, Creation of a compact topologically nontrivial inflationary

universe, JCAP 0410 (2004) 004, [hep-th/0408164].

Planck Collaboration, P. Ade et al., Planck 2013 Results. XXIV.
Constraints on primordial non-Gaussianity, Astron.Astrophys. 571

(2014) A24, [arXiv:1303.5084].

D. I. Kaiser and E. I. Sfakianakis, Multifield Inflation after Planck:
The Case for Nonminimal Couplings, Phys.Rev.Lett. 112 (2014)
011302, [arXiv:1304.0363].


http://arxiv.org/abs/1404.1832
http://arxiv.org/abs/1304.7042
http://arxiv.org/abs/1011.4920
http://arxiv.org/abs/1011.4249
http://arxiv.org/abs/1310.6399
http://arxiv.org/abs/hep-ph/0010280
http://arxiv.org/abs/hep-th/0408164
http://arxiv.org/abs/1303.5084
http://arxiv.org/abs/1304.0363

171

[182]

[183]

[184]

185

[186]

[187]

[183]

[189]

[190]

[191]

R. Kallosh and A. Linde, Universality Class in Conformal Inflation,
JCAP 1307 (2013) 002, [arXiv:1306.5220].

R. Kallosh and A. Linde, Non-minimal Inflationary Attractors, JCAP
1310 (2013) 033, [arXiv:1307.7938|.

R. Kallosh and A. Linde, Multi-field Conformal Cosmological
Attractors, JCAP 1312 (2013) 006, |arXiv:1309.2015].

D. Polarski and A. A. Starobinsky, Spectra of perturbations produced by
double inflation with an intermediate matter dominated stage,

Nucl. Phys. B385 (1992) 623-650.

J. Ellis, M. Fairbairn, and M. Sueiro, Rescuing Quadratic Inflation,
JCAP 1402 (2014) 044, [arXiv:1312.1353].

D. W. Scott, On optimal and data-based histograms, Biometrika 66
(1979), no. 3 605-610.

C. M. Peterson and M. Tegmark, Testing Two-Field Inflation,
Phys.Rev. D83 (2011) 023522, [arXiv:1005.4056].

G. E. Crooks, Measuring thermodynamic length, Phys. Rev. Lett. 99
(Sep, 2007) 100602.

M. K. Transtrum, B. B. Machta, and J. P. Sethna, Why are nonlinear
fits so challenging?, Phys.Rev.Lett. 104 (2010) 060201,
[arXiv:0909.3884].

B. B. Machta, R. Chachra, M. K. Transtrum, and J. P. Sethna,
Parameter space compression underlies emergent theories and

predictive models, Science 342 (2013), no. 6158 604-607.


http://arxiv.org/abs/1306.5220
http://arxiv.org/abs/1307.7938
http://arxiv.org/abs/1309.2015
http://arxiv.org/abs/1312.1353
http://arxiv.org/abs/1005.4056
http://arxiv.org/abs/0909.3884

172

Bibliography

[192]

193]

[194]

195

[196]

[197]

198

[199]

[200]

P. Adshead and R. Easther, Constraining Inflation, JCAP 0810 (2008)
047, [arXiv:0802.3898].

J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol, Fvolution of fNL
to the adiabatic limit, JCAP 1111 (2011) 005, [arXiv:1106.2153|.

J. Frazer and A. R. Liddle, Ezploring a string-like landscape, JCAP
1102 (2011) 026, [arXiv:1101.1619).

G. Leung, E. R. Tarrant, C. T. Byrnes, and E. J. Copeland, Reheating,
Multifield Inflation and the Fate of the Primordial Observables, JCAP
1209 (2012) 008, [arXiv:1206.5196].

G. Leung, E. R. Tarrant, C. T. Byrnes, and E. J. Copeland, Influence
of Reheating on the Trispectrum and its Scale Dependence, JCAP 1308
(2013) 006, [arXiv:1303.4678].

J. Meyers and E. R. M. Tarrant, Perturbative Reheating After
Multiple-Field Inflation: The Impact on Primordial Observables,
Phys.Rev. D89 (2014), no. 6 063535, [arXiv:1311.3972].

L. C. Price, H. V. Peiris, J. Frazer, and R. Easther, Gravitational wave
consistency relations for multifield inflation, Phys. Rev.Lett. 114 (2015),
no. 3 031301, [arXiv:1409.2498|.

BICEP2 Collaboration, P. Ade et al., Detection of B-Mode
Polarization at Degree Angular Scales by BICEP2, Phys.Rev.Lett. 112
(2014), no. 24 241101, [arXiv:1403.3985|.

L. Verde, H. Peiris, and R. Jimenez, Optimizing CMB polarization
experiments to constrain inflationary physics, JCAP 0601 (2006) 019,
[astro-ph/0506036].


http://arxiv.org/abs/0802.3898
http://arxiv.org/abs/1106.2153
http://arxiv.org/abs/1101.1619
http://arxiv.org/abs/1206.5196
http://arxiv.org/abs/1303.4678
http://arxiv.org/abs/1311.3972
http://arxiv.org/abs/1409.2498
http://arxiv.org/abs/1403.3985
http://arxiv.org/abs/astro-ph/0506036

173

[201]

202]

203]

[204]

205

[206]

207]

208]

S. Dodelson, How much can we learn about the physics of inflation?,

Phys.Rev. Lett. 112 (2014) 191301, [arXiv:1403.6310|.

J. Caligiuri and A. Kosowsky, Inflationary Tensor Perturbations After
BICEP, Phys.Rev.Lett. 112 (2014) 191302, |arXiv:1403.5324|.

CMBPol Study Team Collaboration, D. Baumann et al., CMBPol
Mission Concept Study: Probing Inflation with CMB Polarization, AIP
Conf.Proc. 1141 (2009) 10-120, [arXiv:0811.3919|.

PRISM Collaboration Collaboration, P. Andre et al., PRISM
(Polarized Radiation Imaging and Spectroscopy Mission): A White
Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave

and Far-Infrared Sky, arXiv:1306.2259.

R. W. Ogburn et al., BICEP2 and Keck array operational overview and
status of observations, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, vol. 8452, Sept., 2012.
arXiv:1208.0638.

Z. Ahmed et al., Bicep3: a 95 ghz refracting telescope for degree-scale
cmb polarization, Proc. SPIE 9153 (2014) 91531N-91531N-12.

T. Matsumura et al., Polarbear-2 optical and polarimeter designs, Proc.

SPIE 8452 (2012) 84523E-84523E-S.

SPT-3G Collaboration, B. Benson et al., SPT-3G: A Next-Generation
Cosmic Microwave Background Polarization Experiment on the South
Pole Telescope, Proc.SPIE Int.Soc.Opt.Eng. 9153 (2014) 91531P,
[arXiv:1407.2973|.


http://arxiv.org/abs/1403.6310
http://arxiv.org/abs/1403.5324
http://arxiv.org/abs/0811.3919
http://arxiv.org/abs/1306.2259
http://arxiv.org/abs/1208.0638
http://arxiv.org/abs/1407.2973

174

Bibliography

209

[210]

[211]

[212]

[213]

[214]

[215]

[216]

P. Oxley, P. Ade, C. Baccigalupi, P. deBernardis, H.-M. Cho, et al.,
The EBEX experiment, Proc.SPIE Int.Soc.Opt.Eng. 5543 (2004)
320-331, [astro-ph/0501111].

B. Crill, P. Ade, E. Battistelli, S. Benton, R. Bihary, et al., SPIDER: A
Balloon-borne Large-scale CMB Polarimeter, Proc.SPIE
Int.Soc.Opt.Eng. 7010 (2008) 2P, [arXiv:0807.1548|.

K. W. Masui and U.-L. Pen, Primordial gravity wave fossils and their
use in testing inflation, Phys.Rev.Lett. 105 (2010) 161302,
[arXiv:1006.4181].

L. Book, M. Kamionkowski, and F. Schmidt, Lensing of 21-cm
Fluctuations by Primordial Gravitational Waves, Phys.Rev. Lett. 108
(2012) 211301, [arXiv:1112.0567].

T. L. Smith, H. V. Peiris, and A. Cooray, Deciphering inflation with
gravitational waves: cosmic microwave background polarization vs.
direct detection with laser interferometers, Phys.Rev. D73 (2006)
123503, |astro-ph/0602137].

D. V. Hinkley, On the ratio of two correlated normal random variables,

Biometrika 56 (1969), no. 3 635-639.

J. Martin, C. Ringeval, and R. Trotta, Hunting down the best model of
inflation with Bayesian evidence, Phys.Rev. D83 (Mar., 2011)
[arXiv:1009.4157].

H. Jeffreys, An invariant form for the prior probability in estimation
problems, in Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, vol. 186,

pp- 453-461, The Royal Society, 1946.


http://arxiv.org/abs/astro-ph/0501111
http://arxiv.org/abs/0807.1548
http://arxiv.org/abs/1006.4181
http://arxiv.org/abs/1112.0567
http://arxiv.org/abs/astro-ph/0602137
http://arxiv.org/abs/1009.4157

175

[217] R. Easther and J. T. Giblin, The Hubble slow roll expansion for multi
field inflation, Phys.Rev. D72 (2005) 103505, [astro-ph/0505033|.

[218] Y.-S. Piao, On perturbation spectra of N-flation, Phys.Rev. D74 (2006)
047302, [gr-qc/0606034|.

[219] D. Sloan, Minimal Coupling and Attractors, Class. Quant.Grav. 31
(2014) 245015, |[arXiv:1407.3977|.

[220] M. P. Hertzberg and F. Wilczek, Inflation Driven by Unification
Energy, arXiv:1407.6010.

[221] P. Townsend, Black holes: Lecture notes, gr-qc/9707012.

[222] K. Clough, P. Figueras, H. Finkel, M. Kunesch, E. A. Lim, et al.,
GRChombo : Numerical Relativity with Adaptive Mesh Refinement,
arXiv:1503.03436.


http://arxiv.org/abs/astro-ph/0505033
http://arxiv.org/abs/gr-qc/0606034
http://arxiv.org/abs/1407.3977
http://arxiv.org/abs/1407.6010
http://arxiv.org/abs/gr-qc/9707012
http://arxiv.org/abs/1503.03436

	Abstract
	Acknowledgments
	I An Overview of Inflation
	Beyond the Simplest Picture
	Introduction
	The need for inflation
	Cosmological perturbation theory
	Single-field inflation
	Multifield inflation
	Thesis outline


	II A Numerical Approach
	MultiModeCode
	Abstract
	Introduction
	Features of MultiModeCode
	A brief review of multifield perturbation theory
	The method
	Numerical results
	Conclusion


	III Sensitivity to Initial Conditions
	The Homogeneous Initial Conditions Problem
	Abstract
	Introduction
	Inflationary dynamics
	Numerical results
	Conclusion

	Inflating an Inhomogeneous Universe
	Abstract
	Introduction
	Model
	Numerical methods
	Results
	Conclusion


	IV Obtaining Generic Predictions
	Simple Predictions from Multifield Inflation
	Abstract
	Introduction
	Method
	Initial conditions
	Multifield perturbations
	Results
	Discussion

	Gravitational Wave Consistency Relations
	Abstract
	Introduction
	Model
	N formalism
	The many-field limit
	The method
	Novel multifield predictions
	Specific examples
	Relaxing the approximations
	Conclusion


	V Conclusion
	Conclusion
	How do we get enough inflation?
	How can we get generic predictions?
	What do generic predictions look like?
	Outlook

	Appendix Bayesian Methods
	Bayes theorem
	Application to theoretical modeling

	Bibliography

	coversheet.pdf
	http://researchspace.auckland.ac.nz
	Copyright Statement
	General copyright and disclaimer



