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Numerical study of electron acceleration and betatron radiation based on
interaction of petawatt femtosecond laser with near-critical-density plasma

Xie Bo, Zhang Xiaohui, Li Tianyue, Wang Zitao, Qi Wei, = Wen Jiaxing, = Zhang Zhimeng
(Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang 621900, China)

Abstract: [Background] Laser-driven betatron radiation is a wide-energy-spectrum X-ray source analogous to
synchrotron radiation. Compared to the quasi-monochromatic X-ray spectra of synchrotron radiation or free-electron
lasers, the broad energy spectrum of betatron radiation is more favorable for X-ray absorption spectroscopy.
Additionally, laser-driven betatron radiation features a small source size, short pulse duration, low divergence, and
high brightness, making it comparable to third-generation synchrotron sources. [Purpose] The photon energy yield of
betatron radiation is closely related to the quality of the electron beam, plasma density, and transverse oscillation
amplitude. However, current technology faces two major challenges: first, there is a trade-off between electron beam
charge and energy, with single-shot charges typically limited to the hundreds-of-pC range; second, the radiation
conversion efficiency is significantly influenced by target parameters, necessitating breakthroughs through innovative
target structures. [Methods] For typical petawatt-class femtosecond laser facility parameters, a capillary-type gas-cell
structure target is proposed to generate a near-critical density plasma with a hundred-micrometer scale and a steep
density gradient. This gas-cell structure target features low back pressure and minimal gas injection. Due to the
confinement by the gas cell walls, a more stable platform-like gas density distribution can be produced within the cell.
[Results] Particle-in-cell simulation methods were employed to study the electron acceleration and betatron radiation
processes resulting from the interaction of petawatt-class femtosecond lasers with this near-critical density plasma. By
adjusting the gas density and laser pulse width, a high-charge and high-energy electron beam can be induced to
undergo transverse oscillations within the plasma channel, thereby generating a high-brightness betatron radiation

source with a peak photon energy of approximately 8 keV and a brightness of 1.75x 1020 ph-s~' - mm~2 - mrad 2
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(0.1%bw)~!. [Conclusions] The results indicate that appropriate gas density and laser pulse width are conducive to
the stable formation of plasma channels. Within these channels, electrons undergo effective laser wakefield
acceleration firstly. These accelerated high-energy electrons interact directly with the tail of the laser. Through
betatron resonance and direct laser acceleration, their yield and cutoff energy can be further enhanced. Additionally,
the study focuses on the impact of gas density and laser pulse width on the betatron radiation source and elucidates the
underlying mechanisms.
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Fig. 2 Spatial distributions of electron density and on-axis laser field at /=6007}, when the laser reaches the
gas density plateau region for different pressures
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Fig.3 Angular distributions of accelerated electrons and the energy spectrum at /=6007, as the laser

reaches the gas density plateau region for different pressures
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Fig. 4 Angular distributions of betatron radiation and the photon energy spectrum at /=12007,
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Fig. 5 Electron spectrum and betatron radiation spectrum for different laser pulse durations
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Fig. 6 betatron radiation intensity and energy transfer efficiencies depending on the different laser pulse durations
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