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FOUR-BODY SEMILEPTONIC DECAYS OF D MESONS

Raymond Lloyd Culbertson, Ph.D.
Department of Physics
University of Illinois at Urbana-Champaign, 1993
James E. Wiss, Advisor

Results on measurements of the four-body semileptonic decays Dt —
I_\'*O;ﬁu, D — K* utv, and D} — ¢utv are presented. New limits on
related decays are presented: I'(D* — K~ ntu*u(nonresonant))/T(Dt —
(K-7t)ptv) = .083+.029, and (Dt — (K~=nt)n0utv)/T(Dt = (K=nt)uty) <
.042. The relative branching ratio is presented: I'(Dt — F’mp*u)/I‘(D‘+ —
K=n%nt) = .56 + .04 = .06. The form factors in the decay D* — f‘o;ﬁu are
measured to be R, = 1.74 + .27 + .28, and R; = .78 £+ .18 + .10 which imply
I';/Ty = 1.20 + .13 & .13. The ratios of the D® and D* widths is measured:
D(D° — K*ptv)/T(D* - K pty) = 137+ .34 215 The D} semilep-
tonic width is measured: T(D} — ¢ptv)/T(D} — ¢nt) = 58 £ .11 £ .08
which implies an absolute branching ratio: T'(D} — ¢nt)/T(DF — all ) =
(3.1 =+ .6(stat) .5 (sys) = .4 (theoretical))%.
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Chapter 1

Introduction

This thesis reports on analysis of the data collected by E687 during the years
1987 through 1991 at the Wideband Photon Lab at the Fermi National Acceler-
ator Laboratory. E687 uses a photon beam with a mean energy of approximately
200GeV and a Beryllium target to produce charm mesons and baryons. The
products of the interactions are are detected by a large aperture magnetic spec-

trometer. We have collected approximately 80,000 fully reconstructed charm

decays.

There are three ways that charmed particles have been produced in large
numbers. The first is in ete™ rixigs where the center of mass energy is near
the threshold for producing two charm particles. The other two are fixed target
methods with either hadron beams or photon beams. The advantage of produc-
tion through ete™ collisions is that there are few background mechanisms but
the overall rate is low. The advantage of hadroproduction is a large production
rate but the hadron-hadron collisions tend to produce large numbers of parti-
cles in every event. This, together with significant cross sections for non-charm
production, leads to large backgrounds. Photoproduction has the advantage of
a large production rate but the photon-hadron interactions tend to have fewer

particles in each event, giving better signal to noise than hadroproduction.

E687 data are consistent [1] with the photon-gluon fusion [2] production
mechanism shown in Figure 1.1. In this mechanism, the photon interacts with a
gluon from a target nucleon that has fluctuated into a charm, anti-charm quark
pair. The quarks are forced out of the nucleon and are dressed to produce the
charm mesons or baryons. Charm particles live approximately 1ps then decay
weakly to (predominately) strange and other particles. We then detect these
decay products. The finite lifetime of charm particles is the principle property

that we exploit to isolate signals from copious non-charm backgrounds.
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In this thesis we give an overview of the E687 spectrometer and the data
reconstruction and processing methods. We present a method for calculating the
true errors on track parameters that were estimated from least squares fits that
ignore mutiple Coulomb scattering and tests of these calculations. We present a

candidate driven vertexing algorithm and demonstrate its effectiveness.

We investigate the muonic four-body semileptonic decays of the ground state
charm mesons: Dt — T{-*Ou"'u, D —» K* utv, and D} — ¢utv. The =
is detected in its K~n+ decay mode, the K*~ is detected in its K,m~ decay
mode, and the ¢ is detected in its KTK~ decay mode. Because we do not
detect the neutrino in these decays, they are not fully reconstructed and therefore

are susceptible to insidious backgrounds. We will present extensive studies of

potential backgrounds.

In the D* analysis we will measure the branching ratio of this decay mode
relative to K~nt7t and the form factors governing the decay. These measure-
ments can be compared to theoretical predictions to provide information on the
internal structure of the charm mesons. In the D? analysis we will measure the
branching ratio between the D° and D% semileptonic decays. This is a test
of isospin symmetry. In the D} analysis we will report a measurement of the
branching ratio relative to ¢7n*. This branching ratio has implications for all
D7} absolute branching ratios because, with a theoretical input, it can be used

to determine the absolute branching ratio for D — ¢nt.
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Figure 1.1. The photon-gluon fusion mechanism for the photoproduction of

charm.



Chaptei' 2

The Phenomenology of Four-body Semileptonic Decays

2.1 Overview

In this chapter we review some of the phenomenology relevant to the three
semileptonic decays discussed in this thesis: D* — _I?Op"'u , D® - K*puty
and D} — ¢utv. Invariance arguments can be used limit the description of the |
decay intensity which governs the decay angular distribution and rate to a set
of four form factors. Isospin symmetry can be used to equate the form factors
for D° — K*~p*v to those for D1 — F0p+v decay. This relationship is tested
in Chapter 8. Dynamical calculations predict these form factors, and relate the
form factors for D} — ¢utv to those for D+ — -I?*Oy"'v. Chapter 7 compares
our measurements of the D¥ — K gty form factors to several phenomenolog-
ical predictions. Chapter 9 uses the expected relationship between D} and D%
semileptonic form factors to help discriminate against possible ¢ptv backgrounds

and to infer new measurements of the D} — ¢nt absolute branching ratios.

Since the semileptonic decays of charmed mesons should proceed via a sim-
ple spectator diagram (see Figure 2.1) they should be among the most theoret-
ically understandable charm particle decays. Because the decay amplitude can
be factorized into a hadronic and a well understood lei)tonic part, the validity
of theories on the hadronic part can be studied experimentally. As a result, the
investigation of these three decay modes and related semileptonic decays in both
the beauty and charm sector has become a major focus of theoretical and ex-

perimental heavy quark physics at both fixed target facilities [3,4,5] and at ete™
collider facilities [6).

This thesis concentrates on specific semileptonic decays of the form D — Vuv

where the D (either the D? , Dt or D} ) is a ground state 0~ meson and the V is a
. =0 . . .

1~ vector meson (either the K, K* or ¢) which decays into two pseudoscalars.

The amplitude for semileptonic factorization into hadronic and leptonic parts can

4




be written as follows: A = %VC,L“H s Where G and V., are the Fermi constant
and CKM coupling, L¥ is the pointlike leptonic current given by:

L = a(v)y*(1 — vs)v(p) (2.1)

and H, is a hadronic current of the form: H,(¢?) =< V(E')|J,(,had) |D >.

This hadronic current depends on the polarization state of the vector meson,
V, as well as the the momentum transfer (¢ = ¢*) between the D and V meson.
Because the initial and final state are composite rather than pointlike particles,
their hadronic current depends on a set of ¢° dependent form factors which
describe the coupling of their wave functions to the virtual W+. Because this
current describes the coupling of cs system to virtual W, one traditionally [7,8]
assumes that these form factors have a simple pole dependence (M?+¢?)~! where
the pole mass M is assumed to be the mass of the lowest D** states which have

the same spin and parity as the current described by each form factor.

One builds the hadronic current using all possible Lorentz invariant forms
that can be constructed from the D and V four momenta and the V polariza-
tion (€). One can show [9,10] that four independent ¢? dependent form factors
are required. One of these form factors only produces amplitude terms which
are proportional to mz /q® which are totally negligible for the case of electronic
semileptonic decay and produce only slight corrections for the case of muonic

semileptonic decay.

The € (vector meson spin) dependence in the hadronic current produces a non-
isotropic vector meson decay angular distribution. The V — A4 lepton helicity rule
which describes the coupling of the v system to the virtual W+ vertex produces
a non-isotropic u*v angular distribution. By fitting the ¢? dependence of the
vector meson decay and the angular distributions, one can in principle measure
each of the four form factors and compare them to theoretical calculations. Such
calculations are ultimately based on models of the wave functions which describe

how the mesons couple to their quark constituents. This comparison is made in
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Chapter 7 for the three major form factors whose effects survive in the my — 0
limit.

Before summarizing the formal phenomenology of the semileptonic decay dis-
tributions, we give a simplified, heuristic picture of the angular decay distribution
which is schematically illustrated in Figure 2.2. For definitiveness, consider the
case of the Dt decaying to Fo;ﬁu in the my — 0 limit. In this simple picture,
the virtual W+ which connects both the p*v and B > K-nt decays can exist
in any of the three possible helicity states m = —1, 0, or +1 with a probability
proportional to a width I'y,. The helicity states m = 41 correspond to transverse
W*’s where the W spin lies along or against its momentum vector (like the spin

of a photon); the helicity state m = 0 corresponds to the longitudinal W+.

Angular momentum conservation applied to the D* — K~ ntW vertex tells
us that this decay amplitude is proportional to the Wigner D-matrix d},, (cos 6,)
where 0, is the angle of the pion with respect to the virtual D direction in the
T*° rest frame. The fact that the kaon and pion are spinless implies that W has
zero angular momentum along the T decay axis while simultaneously having
an angular momentum of m along its momentum axis. The fact that the v
must be left-handed while the u* is overwhelmingly right-handed implies that
the W* — u*v decay amplitude is proportional to d},, (cos ,) where 8, is the
angle of the neutrino with respect to the D direction in the W rest frame. We

then expect:

d’T
dcos 8, dcosé,

m=1
% Y T |dip (cos 6,) [* db (cos 6,) |
m=-1 ]

x sin?8, {(1+cos8,)? Ty + (1 —cos6,)?T_} +4cos?,sin’6, Ty (2.2)

where we have averaged over the azimuthal angle between the uty and K~ 7t
decay planes and ignored any possible g2 dependance on the I'y,’s. If all three

['n's were equal (not the case in reality!) there would be no net alignment effects

6



and isotropic decay distributions would result. The degree of cosf, anisotropy
is directly related to the ratio of the longitudinal I’y = I'y and transverse (I'; =
'y +T_) widths:

dr Y 2
doos 0. x1-— (2 T, ~ 1) cos* 6, (2.3)

The next section describes how the longitudinal and transverse W+ widths and

their g> dependence depend on the relevant form factors.

2.2 The Semileptonic Decay Intensity

In this section we present the formal decay intensity for the the decay D —
Vuv. Although this intensity applies to any decay of the form D — Vuv, we will
present it in terms of the the specific decay Dt — i ptv. The decay width
has the form [7,9,10]:

d‘T
dM3. dt dcosb, dcosb,

3 My
(47r)5 M%MKw

=G%’|Vcs|22

2
M1 Kt (1T
(M2, — M%.)? + M%.T'? t
m2
diagonal terms + cross terms + —t’-‘-(mass terms)
(2.4)
diagonal terms = sin® 4, {(1+ cos 6,)° |[Hy+(t)> + (1 —cos 6,)* |H_(t)|2}

+ 4 cos® 6, sin® 6, |Ho(t)|?
(2.5)

cross terms = — 2sin’ 6, sin® 6, cos 2y Re(H}LH-)
— 4sin6, cos 6, sin6,(1 + cosf,)cos x Re(H{Hg)  (2.6)
+ 4siné, cos 8, sin6,(1 — cos b, ) cos x Re(H* Hyp)
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mass terms =2sin? 8, sin? 0,(|H4 | + |H-]*)
+8 cos? 0,(1 + cos® 6,)| Ho|?
+4sin? 8, sin’ 6, cos2x Re(H H)
+2sin 26, sin 26, cos x Re(H4+Hy + H_Hy)
+16 cos’ 6, cos 8, Re(H,Hy)
+4sin26, sin 0, cos x Re(HH; + H_H})

(2.7)

Gr is the Fermi coupling constant, V,, is the relevant CKM matrix element,
Mg+ is the K* mass, My, is the Kn invariant mass, m, is the muon mass,
and K is the K7 momentum in the D rest frame. The kinematic variables (in
addition to Mg ) are cos 8, the angle between the 7 and the D direction in the
0 rest frame, cos §,, the angle between the v and the D direction in the uv
rest frame, t, the square of the puv mass, and x the angle between the K7 and

uv planes in the D rest frame.

D~ decays have the same definition of variables and no change is required in
the matrix element. There is a vast amount of confusion in the literature [7,9,10]
concerning this point although it is a reasonably straightforward consequence of
the approximate CP symmetry of the weak interaction. Under CP the D7 is
transformed into the D~ and the muon and neutrino helicities reverse, causing
factors such as 1 + cos 6, to transform into 1 — cos 6,. Simultaneously the W+
with helicity +1 transforms into a W~ with helicity F1 causing the H+ form
factor to transform into the H~ form factor. The effect of both transformations

is to leave the decay intensity (as expressed by equations 2.4-7) unchanged in

going from the particle to antiparticle case.

Note that if we integrate over x, the cross terms and half of the mass terms
produce no contribution to the width. If the muon mass is replaced by the
electron mass, which is negligible, the mass terms, which are already small for

muons, become negligible for electrons.




We note that the phase space in this expression is written for the three-body
decay T’ ptv, and the Breit-Wigner has been included as a post-hoc correction.
The three-body phase space contributes the factor of K and one factor of (1 —
mf‘ /t) while the matrix element itself contributes the factor of ¢ and another
factor of (1 — mZ/t).

Because the K* is spin 1, the Breit Wigner is a parameterized as with a

p-wave form where the width is given by:

P#3
Py

I'=T (2.8)

where P* is the momentum of the A in the K rest frame, the 0 subscript refers

to the value at Mg, = Mk-.

The H; appearing in the matrix element expression are the projections of the

form factors on the W helicity basis.

As(t)]

MpK
Hiy(t)=(M MpE )AL () F2————V (¢
+(t) = (Mp + Mg )A1(t) F MD+MK1r()
1 M3 K?
Hy(t) = ————— (M3 — M2_ —t)(M Mg )AI(t) —4—2— 4 t]
o) = M en i [( o = Mite =M+ Mk = Sy a2
MpK | (Mi —M2._+1) 2t
Hi(t) = M Mg Ai(t) — LT A(t) + —m————
t( ) ]\/IKW\/'Z ( D+ Iﬁr) 1() MD+MK7r 2( )+ MD+MI\"1r
(2.9)

There are three axial form factors, A;, and one vector form factor, V with
an unknown t dependence. The usual assumption [7,8] is that these form factors

have a single pole form:

Ai(0)
1-t/M2’

vy = —9 | (2.10)

Ait) = T 1-t/M2

Where M,y = 2.5GeV/c? and My = 2.1GeV/? which are the masses of the lowest

lying ¢35 meson states with the correct quantum numbers.
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In Chapter 7 we will fit for the ratios of the form factors at ¢t = 0:

_ Y0

_ Ay(0) _ A3(0)
v — —A_I(O), Ty R3

B2 =20y =40

(2.11)

which are determined by the shape of the distributions of the kinematic variables.
Given these form factor ratios, Vs, and the partial width I'(D* — -R'-‘Op*'u), we
can calculate the value of A;(0) which is determined by the overall decay rate.

For this we integrate the matrix element expression over the angles and find:

G%|Ves|?
= —Sé,:f | / M, / dt G(t, Mi,)(|Ha? + [H_] + |He?)  (2.12)
where
G(t, Mk ) = My~ | My T i1 2 2.13
(t, Mgz) = MiMgr (M2, — M2.)2 + M%.T? : -3 (2.13)

We can then do the integrals after factoring out A;(0) and inserting our mea-
surements of the form factor ratios. This leaves an expression for the width in

terms of A;(0) which can then be solved for 4;(0), as we do in Chapter 7.

D+ —>T\7*0#+V) I(D* - K—ntx*) h
F(D+ —_ I{_W+7r+) I‘(D+ — a].].) TD+
G%|Ves2A3(0

. 98[:441( )/dM}\.,r /dt G(t, Mkr)(|H? + |H-|* + |Ho[*)/A3(0)

(2.14)

=T(D* - K pv) =

When we make this calculation in Chapter 7, we will use our new measure-

ment [11] of the Dt — Eutv to DY — K—atnt branching ratio.

The ratio of longitudinal to transverse width (polarization) of the W is defined
as:
o _ [dM%_ [dt G(t,Mky)| Hol|? (2.15)
Ty [dM}, [dt G(t, Mk )(|Hy|? + |H-|?) S

This then determines the curvature of the cos 6, distribution in equation 2.3.

10



The polarization depends slightly on the lepton mass. Because other exper-
iments analyze the equivalent decay mode Dt — _I?‘oe‘*u, we report this result

in the limit that the lepton mass is negligible.

2.3 Relating the Semileptonic Decays of the D+, D® and D}

Isospin symmetry applied to the D semileptonic decay predicts that the
Dt - Fop"'v and D® — K*~utv should have identical form factors. Al-
though, in general, strong isospin is not a valid symmetry for weak decays, in
Cabibbo favored semileptonic decays (such as those studied here), the weak cur-
rent transforms like an isosinglet since it connects the isosinglet ¢ to the isosinglet
s quark. Given that this is true one can transform the current < _I&_"OIJ ,(.had) |D+¥ >
into the current for < Ix""lJ,(,had)lD0 > (apart from possible phase factors) by
simply rotating by 180° about I,. This will transform the D7 into its isodoublet
partner, the D° and the E*° into its isodoublet partner, the K*~. Because the
phase space for Dt — K*Ou*’t/ and D® — K*~utv are nearly identical (since
the DT and D° differ in mass by only &~ 3 MeV/c?), equality of the form factors
implies equality of the partial widths T(D® — K*~ptv) = D(D* — K utv).
This prediction is directly tested in Chapter 8.

There are no simple symmetry arguments which we are aware of which can
be used to directly relate the decay D+ — K"—‘Op"’u to the decay D} — gutv.
All dynamical calculations, which are based on various models of the meson wave
functions, conclude that the form factor ratios should be nearly identical [12] and
partial widths should be equal to within 20% [13]. We make use of these results
in Chapter 9.
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Figure 2.1. Tle spectator diagram for the four-body semileptonic decay of the
D+.

| 4
n
6, 9’
D - ¥ x% D
K
K" frame " W frame

Figure 2.2. Schematic for the definitions of the cosines in the four-body semilep-
tonic decay of the D*. cos#8, is the angle between the 7 and the D direction in

—=+0 . . . .
the It rest frame and cos 6, is the angle between the v and the D direction in
the jiv rest frame.



Chapter 3

Experimental Apparatus and Run History

The E687 apparatus has been described in detail [3,14] and we include a brief

description here.

3.1 Beamline

To provide beams for fixed target experiments, the Fermilab Tevatron oper-
ates in cycles of about one minute. The Tevatron is filled with a protons which are
accelerated to 800GeV and then extracted over a 20s “spill”. About 3 — 4 x 1012
protons are delivered to the E687 beamline during each spill. The beam is di-

rected to a liquid deuterium target where it interacts producing a hadron shower.

A large number of 7%’s are produced in the shower which immediately decay
to two photons. At this point magnets sweep the charged particles out of the
beam leaving only the photons, neutrons and neutral A’s. The beam strikes
a 50% radiation length lead foil (the convertor) which causes about half of the
photons to convert into ete™ pairs. The electrons are bent out of the beam and

the neutral hadrons and positrons continue into a dump where they are absorbed.

More dipoles combined with collimators select the electrons with a mean en-
ergy approximately 350GeV. The energy range is intentionally large, 15% ( wide-
band). to provide a large luminosity. Finally, the electrons are directed to a 27%
radiation length lead foil (the radiator) which causes them to bremsstrahlung,
producing a photon beam. The recoiling electrons are swept away and the photon

beam strikes the experimental Be target.

3.2 Beam Tagging

For some measurements, we must know the energy of the photon. There are
three parts to this measurement. The first part is to measure the energy of the
incoming electron before it reaches the radiator. This job is accomplished by a

set of five planes of silicon microstrips, known as the "beam tagging” detector, in
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the electron beam. The planes are arranged so that there are two planes, followed
by a dipole magnet, followed by another plane, another dipole and the last two
planes. The planes are orientated so that they can measure the electron’s bend

in the magnets, which provides its energy (E;nc).

After the electron radiates photons in the radiator, it passes through another
dipole to measure its energy again. The difference in the incoming and outgoing
electron energy is how much energy was released in photons as the electron passed
through the radiator. Just downstream of the radiator is set of dipoles which
sweep the recoil electron into a set of scintillators called the RESH. The struck
counter number detérmines the electron’s magnetic deflection which measures

the recoiling electron energy (E').

To this point, we have measured the amount of energy that the electron has
lost. However, that energy will be divided up between the photon that interacts
in the target and other non-interacting photons. The latter are collected in an
electromagnetic calorimeter called the BGM which is centered on the beam, near
the end of the detector. This energy sum is called Eggpy. (In the 1991 run the
BGM was removed to accommodate a downstream experiment. This experiment

provided a signal from their calorimeter to replace the BGM measurement.)

The energy of the interacting photon is estimated from:

Ey=Ein.— E' — Epcu. (3.1)

3.3 Microstrips

The experimental target is a slab of Beryllium 2.54cm square and approxi-

mately 4cm long (12% of an interaction length).

About 5cm downstream of the target sits the microstrip system which mea-
sures charged particle trajectories with very high precision. This device is used

to exploit the lifetime of charm (typically lcm decay flight distance for mesons)
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to identify charm signals. A layout of the microstrip system is shown in Figure
3.1. The twelve microstrip planes are arranged into four stations of three planes
each. In each station, one plane measures in the y direction and the other two are
tilted in opposite directions from the y plane by 45°. The first station is about
6cm downstream of the target a.nd last is about 30cm downstream. Each plane
is divided into an inner, high-resolution region and an outer, lower-resolution
region. The strips of the planes in the first station have pitches of 25um (inner

region) and 50pm (outer) and all other stations have pitches of 50um (inner) and
100um (outer).

The charge collected from each strip is amplified and read by an ADC. Charge

division between adjacent strips is used to improve the resolution.

Two experimental targets were used during the 1990-91 run. These were
made from layers of Be, 2.54cm square and 4mm thick. For about the first 1/2
of the 90 run, 9 layers were used, then 11 layers were used for the rest of the run.
The squares are tilted at 45° to align them with the high-resolution region of the

microstrip planes.

3.4 MWPC’s and Magnets

A layout of the MWPC system along with the rest of the spectrometer is
shown in Figure 3.2 and summarized in Table 3.1. After charged particles pass
through the microstrips, they are bent vertically (in y) in a dipole magnet, M1,
with a kick (= .3 B dI) of .4GeV/c. After the magnet are three multiwire
proportional chambers (P0-P2). PO has 2mm wire spacings, P1 and P2 have

3mm wire spacings.

Each of the chambers has four views, one measures in z, one in y and two
others (u and v) are tilted in opposite directions from the y view by 11°. Each
view is a set of readout wires separated from the other views by a cathode plane,
also made of wires. Charged particles passing through these chambers ionize

Ar-Ethane gas while a high voltage between the readout and cathode planes
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amplifies and collects the ions. The signals are further amplified and are recorded

by TDC'’s.

Downstream of these chambers, there is another vertically bending magnet,
M2, with a kick of -.836GeV/c. The kicks of the two magnets are opposite to
improve acceptance. Finally, following M2 are two more MWPC stations of the
same design (P3 and P4). P3 has 2mm wire spacings and P4 has 3.3mm wire

spacings.
3.5 Particle Identification

3.5.1 Cherenkov

E687 has three threshold Cherenkov counters to help identify particle types.
C1, with a 7 threshold of 8.4GeV is located between the first and second MWPC
stations. This counter is segmented into an inner region with two 45° plane mir-
rors directing the Cherenkov light to phototubes mounted on the side. The outer
region is made of focusing mirrors which direct the light backwards to photo-
tubes mounted near the upstream end of the counter. C2, with a = threshold of
4.5GeV is located between the second and third MWPC stations. This counter
has two large 45° plane mirrors directing light to the phototubes mounted on the
side. C3, with a 7 threshold of 17.4GeV is located between the third and fourth
MWPC stations. This counter has only focusing mirrors. C1 contains a helium-
nitrogen mixture, C2 contains nitrous oxide and C3 contains pure helium. A
layout of the Cherenkov system along with the rest of the spectrometer is shown

in Figure 3.2 and summarized in Table 3.1.

3.5.2 Muon Identification

E687 has an outer muon detector which is shielded behind M2. It has two lay-

ers of scintillators (OMH, OMV) and separate z and y views of 5.08cm diameter
proportional tubes (OMX OMY).
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There is also an inner muon detector which is shielded by the inner electro-
magnetic detector, the hadron calorimeter, cement blocks and steel. After this
material there are 2 layers of scintillators (IMH1, IMV1) and z and y 5.08cm di-
ameter proportional tube arrays (IM1X, IM1Y). After this there is more shielding
followed by another set of z and y proportional tube arrays (IM2X, IM2Y) and
another layer of scintillators (IM2H). A layout of the muon system along with

the rest of the spectrometer is shown in Figure 3.2 and summarized in Table 3.1.

During the 1990 run, some periods had no muon identification due to an error
in timing of the readout. During the 1991 run a large slice in both z and y was
removed from the inner system to accommodate a downstream experiment. This

caused additional noise and inefficiencies for muon identification.

3.5.3 Calorimeters

E687 has inner and outer electromagnetic detectors. The outer detector (OE)
lies just upstream of M2 and frames the aperture of M2. It is made from layers
of lead and scintillator. The inner detector (IE) is also lead and scintillator but
the scintillator is formed into bundles of fibers. This construction allows for a
inexpensive, longitudinally thin calorimeter which minimizes the confusion from

hadronic showers.

The hadron calorimeter only covers the inner part of the spectrometer and
lies immediately behind the inner electromagnetic calorimeter. This is a gas
hadrometer which uses steel as the absorber and Ar-Ethane proportional tubes

as the ionization medium. The measured resolution oz /E =~ 1.33/,/(E).

3.6 Trigger

In high-energy photoproduction on Be, the rate for hadronic interactions is
about 1/500 of the rate for pair production. The purpose of the trigger is to
select only these hadronic interactions by accepting only events with wide angle

tracks and non-negligible energy deposited in the hadron calorimeter.
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The main hadronic trigger is evaluated in two stages. A first level trigger con-
sisting only of scintillators requires the presence of a multiparticle event outside

of the region where beam related ete™ pairs are produced.

Once a first level trigger (“master gate” or MG) occurs, the evaluation of
the second level trigger and readout of the event begins. The second level takes
longer to evaluate than the first level and makes more stringent requirements on
the event. If the event does not pass the second level trigger, the readout of the

event is stopped, the data aquisition is reset and becomes available for the next
MG.

3.6.1 First Level Trigger

The first level is derived from several scintillators. First there are the TR
counters. TR1 lies between the target and the microstrips and ensures there are
charged particles coming from the target. TR2 lies downstream of the microstrips

and reQuires that the particles that fired TR1 also go through the microstrips.

We ran with several combinations of veto requirements. The large TM coun-
ters, laying upstream of the target, are intended to veto events with a muon
coming from interactions in the primary target. There are also two small coun-
ters, A0 and Al, in the photon beam to reject events with hadrons in the beam.

The TR counters and the vetoes are combined into a signal called T.

To require wide angle tracks in the event we use a scintillator hodoscope called
HxV. This array of a layer of horizontal paddles crossed with a layer of vertical
paddles lies immediately downstream of M2, just after the last PWC station. A
vertical gap (of about 4cm) allows pairs from beam photons to pass. A logic
module computes if the pattern of hits is consistent with at least one particle
(HxV;) or more than one (HxV3). Another single layer of scintillator mounted
on the upstream end of of the outer electromagnetic calorimeter is called OH.

The full requirement of the MG is then

T.(H x V, + H x V;.0H)

18



although some data was restricted to the H x V; component.

3.6.2 Second Level Trigger

When the second level trigger is evaluated, the modules reading out the PWC
system have produced a pulse proportional to the number of hits in each plane.
The outputs from all planes are combined and a minimum requirement is made
in a logic module. Most of the data the required evidence for at least three
tracks outside of the pair region. Some data was taken with looser multiplicity

requirements.

The most important element in the second level trigger is the HC energy
requirement which provides additional rejection against ete™ pair events. The
charge output of the HC is summed to provide an estimate of the hadronic energy
and a minimum deposition is required. The requirement corresponded to roughly

35GeV in the 1988 run and 40-50GeV in the 1990 and 1991 runs.

When a MG fires, it holds off further MG’s for approximately 100ns while
the second level trigger is decided. If the second level trigger is satisfied, further
MG’s are are again held off until the detector is read out. The combination of

these gives a typical deadtime of about 25%.

3.6.3 Muon Runs

A very wide beam of muons from interactions in the primary deuterium target
is always passing through the detector. If the normal photon beam is blocked,
only the muon beam survives. Under these conditions we can make a triggerv out
of the TM counter and HxV; to get events with a single muon passing through
the detector. These runs are used to calibrate the calorimeters, the Cherenkovs

and the inner muon system.

3.7 Coordinate Systems

There are two main coordinate systems employed in analysis. Both have

the positive z axis oriented along the beam direction, positive z pointing to the
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west, and positive y vertically upward. The first system, called the M2 system,
has the origin at the bend center of M2. The second system, called granite block
coordinates, has its origin at the upstream edge of the granite block that supports
the microstrips; the offset between the two is &~ 1240cm. M2 coordinates are used
for analysis of MWPC data and lepton identification while the granite block

coordinates are used for analysis of SSD based information such as vertexing.

3.8 Run History

E687 took data during three separate periods which are called the ’88, '90,
and 91 runs, referring to the year they took place. The '88 run took = 60 million

hadronic triggers while the 90 and 91 runs each took about 250 million hadronic
triggers.

During part of the 1990 run, there were timing problems in the muon pro-
portional tube readout which caused the muon identification to be inefficient.
There were also periods where the muon system was moved out of the detector
to accommodate tests of the downstream experiment. These periods of no muon

identification comprised about 40% of the 1990 luminosity and are removed for

analyses involving muons.

Table 3.1. Spectrometer Layout

Device z (center) [ z extent | y extent
TARGET -3.00 2.54 2.54
SSD1 4.56 2.48 3.50
SSD2 10.57 4.96 4.96
SSD3 16.59 4.96 4.96
SSD4 28.51 4.96 4.96

M1 US MIRROR 77.44 168.00 | 192.00

M1 - 220.95 175.26 | 273.05

(continued)
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Table 3.1. Spectrometer Layout (continued)

M1 DS MIRROR | 370.17| 168.00 192.00
PWC 0 403.14| 38.10| 63.50

C1 519.75| 50.80| 76.20
PWC 1 644.58| 76.20( 114.30

C2 757.00| 76.20|114.30

PWC 2 879.18| 76.20{114.30

OE 962.99| 135.00 150.00

M2 US MIRROR | 1091.43 168.00| 192.00
M2 1238.11] 175.26 273.05

M2 DS MIRROR | 1383.52 168.00 192.00
OMX 1399.24) 152.40 254.00
OMY 1416.94 152.40| 254.00
PWC 3 1444.13 38.10| 63.50
OMH 1474.56 152.40| 243.84
OMV 1505.06] 152.40} 254.00

C3 | 1884.42 95.25|114.30

PWC 4 2285.88 76.20(114.30
HxV 2328.19 137.15 182.90

IE 2399.67 68.58|114.30

HC 2569.78 101.60 152.40

BGM 2430.32 12.70| 11.43

(continued)
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Table 3.1. Spectrometer Layout (continued)

CHC 2778.00| 22.86| 22.86
IM SHIELD 1| 2895.66|115.57 165.10
IM1X 2973.48| 101.6(} 152.40
IM1Y 62993.21] 101.60} 152.40
IM1V 3012.52| 106.6§ 152.40
IM1H 3036.07| 101.60 152.40
IM SHIELD 2| 3079.66|115.57 165.10
IM2X 3138.95( 101.60 152.40
IM2Y 3158.09| 101.60 152.40
IM2H | 3178.25|101.60 152.40
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Figure 3.1. The layout of the SSD (Silicon Strip Detector) in EG87.
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Chapter 4

Reconstruction and Skims

The reconstruction process recduces the raw detector information, such as

PWC hits, to produce higher level information such as the trajectory of particles

and their momentum.

4.1 Reconstruction

The first step in the reconstruction is to identify microstrip tracks from the
microstrip hits. These microstrip tracks are then combined into vertices. Tracks
are found in the chambers, linked to the microstrip tracks, and momentum ana-
lyzed. Finally, particle identification including Cherenkov, muon and calorimeter
analysis is added to the reconstructed tracks. Events most likely to contain charm

are skimmed off onto separate tapes for distribution to the collaboration.

4.1.1 Microstrips

The twelve planes of the microstrips are arranged into three views. First,
projections of particles trajectories are found in each separate view where they
must leave at least three hits in the four planes in the view. The projections
are then fit in three dimensional space and must pass a loose x2 cut. Since
microstrip tracks are found independently from the PWC system, no momentum
information is available and a least-squares fit is performed which ignores MCS
(multiple Coulomb scattering) effects. The effects of not including MCS in the
fit are discussed in depth in Chapter 5. In the case of two adjacent hits, the
hit position is interpolated by weighting between the strip positions based on
the relative pulse height recorded in the adjacent strips. Hits are allowed to be

shared between tracks.
The resulting resolution of the transverse position of the track at the center
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of the target is calculated to be (see Chapter 5):

2
oo 11,“41 (1260

2
oy = 7.7um\/1 + (256;6‘/) (4.1)

Additional routines find wide angle tracks that leave hits in only two of the

four microstrip stations.

4.1.2 VERTIC

Once the microstrip tracks are found, they are combined into vertices by a
routine called VERTIC. The algorithm forms a trial vertex from all the tracks in
the event. If the x? is not acceptable then the track which contributes the most
to the x? is removed and the vertex is refit. The process of removing the worst
track continues until a good vertex is left. The process is repeated on the tracks
that were dropped, and iterated until an acceptable set of vertices, and possibly
some unused tracks, remain. The fit only uses the microstrip hits and utilizes no

MCS information.

VERTIC provides a primary vertex (the photon interaction vertex) for further
reconstruction routines such as neutral vees, and for the momentum analysis of

some categories of tracks.

VERTIC has been used to obtain very clean charm signals in decays such
as D¥ — K~ ntr* by demanding the daughters appear in a single vertex with
no other tracks. The secondary vertex is required to lie downstream of another
VERTIC identified (primary) vertex and the D momentum vector (the sum of the
daughter’s momenta) must point to the primary vertex. For a charm vertex to
be found as a separate vertex by this routine, it must be well separated from the

primary vertex, must be separated from other tracks in the event and no charm
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daughter track can point back to the primary vertex. The resulting signals are
extraodinarily clean but the technique is inefficient at short lifetimes. In response,
I have developed another vertexing technique which is more efficient since it is
based only on the assumption that the D momentum vector points to the primary
vertex. This vertexing routine, called SDVERT, will be described in detail in
Chapter 6.

4.1.3 PWC’s

Finding PWC tracks is done in several stages. First, projections of tracks in
each view are found. Microstrip tracks are used to help search for projections in
non-bend view (z). Projections downstream of M2 are connected to the upstream

segment through the constraint that they intersect in the center of M2.

Sets of two projections that pass consistency cuts are combined with other
projections. The projections are combined into three dimensional trajectories
using a fit to all the chamber hits where no microstrip information is used. Tracks
cannot be missing more than 5 hits total or more than 2 in each chamber. Cuts

on the x? are loose because no MCS information is used in this least squares fit.

At this stage there are only 3-chamber (PO through P2, called “stubs”) and
5-chamber (PO through P4) tracks. For 3-chamber tracks we have no momentum
information yet since no use has been made of the microstrip information. For
the 3-chamber tracks we estimate the track parameters z, ' = p,/p,, y, and
y' = py/p:. The slopes and intercepts are specified for the track trajectory in the

region between the magnets at P1 with the intercepts referenced to the center of
M2.

For 5-chamber tracks we include a fifth track parameter, the bend angle in
M2, &, = yy — y; where y} is the y slope of the track before M2 and v} is the
slope after the bend in M2.

Additional recovery routines find tracks that only are accepted in PO and P1

or attempt to extend a stub through M2 by including hits in P3 and P4. These
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categories are small compared to the stub and 5-chamber track categories.

4.1.4 Linking

Most particles leave tracks in both the microstrip system and the chamber
system. The process of connecting chamber tracks with the appropriate mi-
crostrip track is called “linking”. A global fit to the hits from a microstrip track
and the hits from a chamber track is used to test the hypothesis that the two
track segments are consistent with being created by the same particle. A mo-
mentum dependent correction to the x? to account for MCS is applied before
the cut is made. We do not use this global fit to find the final track parameters
because the lack of MCS information results in worse resolution than separate
fits to chamber and microstrip segments. Because e*e™ pairs produced are often

found as a single track in the microstrips, we allow two chamber tracks to be

linked to a single microstrip track.

4.1.5 Momentum Calculation

The momentum is found by various methods selected to exploit the available
information about the track. Once the momentum is found, the track is refit
including magnetic corrections. These include the effect of the magnetic field
extending into the chambers and the fact that trajectories that enter the magnet

at an angle or with a lower momentum will traverse more field, etc.

The basic i)roblem is to propagate a particle of momentum p from the point
70 = (0, Yo, 20) to the point ¥ = (z,y,2). The momentum vector is described as
a total momentum p, and slopes # = dr/dz.

A straightforward application of the Lorentz force equation gives:

z

/ @) x B@) da (42)

20

7 7 20007
= +
1+ 2 + y2 \/1 + 182 + y62 p

This can be solved for the momentum from the intial and final slopes. The only

problem is to do the integral. If we take on the largest component of the field
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(Bz, which gives the kick in y) we find:

| 20007 / i B (43

¥ %
1+2'2 4y 14 P 4y p

Which gives, to a good approximation, for particles traversing the entire magnet,

p = K/(y — y3). If we continue and solve for the position instead of just the

slopes we have:

T = z0 + zp(z — 20)

1+ yg (4.4)

z 21
y =yo+yo(z — z0) + 14y + =z /d21 /Bz(fz) dz;
20 20

In the actual implementation, equation 4.4 is expanded in powers of 1/p and

various moments of the magnetic field which are precomputed.

Using this magnetic trace formalism, 5-chamber tracks are fit using least-
squares including the bend angle in M2 and the momentum is found from that

angle. The resolution, using the methods in Chapter 5, is:

op _ P 23GeV
P = 1.4% (—————IOOGeV) \/1 + ( FZ (4.5)

The second term in the resolution equation 4.5 reflects MCS uncertainty and is

discussed in Chapter 5.

Stubs that are linked to microstrip tracks are fit with a global least-squares
fit to the microstrip and chamber hits. For tracks that pass only through the

high resolution region of the microstrips the resolution is:

op _ P 17GeV
p = 4% (100GeV> \ﬁ + ( P (4.6)

At high momentum this is dominated by y' resolution in the chambers but at

low momentum it is dominated by y' resolution in the microstrips.
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Tracks that are found only in PO and P1 and are linked are fit the same way

but have worse resolution because there is less lever arm for the measurement of
y' after M1.

Tracks that do not pass through M2 and are not linked are assumed to emi-
nate from a VERTIC vertex, and the momentum is estimated from the require-
ment that the particle originated from the vertex. If no VERTIC vertex was

found, the track is assummed to eminate from the center of the target.

4.1.6 Cherenkov

After the tracks are found and their momentum analysed, the Cherenkov
analysis determines which of the five possible long-lived particles is the most
likely hypothesis. For each track, the predicted light yield in each cell of each
Cherenkov counter is calculated using the hypothesis that the particle is a pion
if P > Pr and an electron if P < P, where Py, is the pion threshold of the
counter. The cells of each counter are classified as either on or off according to

the phototube response as read out by ADC’s.

For each track in each counter, the predicted light yield in each cell is com-
bined with knowledge of whether that cell is on or off to provide identification.
If any light is predicted in a cell and that cell is on, that track is called on in that
counter. If there is significant light predicted but all cells are off, the counter is
called off for that track. If two or more tracks have a prediction for a cell and
that cell is on, the counter is called confused because we don’t know which track

produced the light.

The pattern of counters which are on or off is combined with the momentum
information to determine which particle hypothesis the Cherenkov response is
consistent with. The considered hypotheses are electron, pion, kaon, or proton.
Muons are not separated from pions because their thresholds are so close. The
Cherenkov response is summarized by a word where bit 0 is on if the response was

consistent with an electron, bit 1 for pion consistency, bit 2 for kaon consistency,
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and bit 3 for proton consistency. Possible outcomes include definite categories,
such as 4, which would be kaon definite, ambiguous categories such as 12, which
would be kaon-proton ambiguous, or 0, which means the system found incon-
sistent responses in the different counters. A reéult of 15 means the Cherenkov
system could provide no information. Table 4.1 shows the Cherenkov identifica-
tion for the different particles and momentum ranges for 5-chamber tracks and
Table 4.2 is the same for stubs. We have the capability of separating kaons from
pions in the momentum range 4.5 to 61.8GeV/c if it is a 5-chamber track and
from 4.5 to 29.8GeV/c if it is a stub.

Table 4.1. Cherenkov Identifications for 5-Chamber Tracks

p(GeV/e)le|m |K|p
0.0-4.5 1114|1414

45-160 | 1|2 ]12(12
16.0-174 (12| 418
174-565 |3 (3148
56.5-61.8 | 3 (3 ]12]12
61.8-1170| 7| 7| 7|8

1170-° |15]15|15(15

Table 4.2. Cherenkov Identifications for Stubs

p(GeV/e)le |m|K|p
00-45 |1|14)14|14
45-84 [1]2)|12(12
84-160)3 |3 12|12
16.0-20813 |3 |4 |8
208-565| 77| 7|8
56.5 - 151515115

31



Several Cherenkov cuts are commonly used in our analyses. When high
statistics are needed, we cut only on the kaon, requiring ID=12 (K —p ambiguous)
if P < 61.8GeV/c or ID=7 (n/K/p ambiguous) if P > 61.8GeV/c. This is called
the KP7 cut. If we need somewhat cleaner signals we use K/p ambiguous only.
This is about 80% efficient compared to K P7. It is almost never advantageous
to go all the way to K only (called Kdef) because it is only about 40% as efficient
as KP7. Using KP identification often eliminates a reflection where a 7 is being
used as a K such as in the K27 background to K K. In some cases we also put
requirements on 7’s. Here typical cuts are ID# 4, 8,12 (not-heavy), = bit set in
the ID word (pi-con), or ID= 2,3 (pi-identified).

4.1.7 Yees

The decays K; — ntn~ and Ag — pm are common in our data. Because
these are neutrals decaying to two charged daughters, they are referred to as
vees. Because of their long decay length, there are several regions where these
can be reconstructed. These decays are useful as a source of particles with known
identities to study particle identification. They are also used to reconstruct charm

decays such as D® — K ntn—.

About 10% of the Ky — 77~ decays are found with decay vertices upstream
of the first microstrip station. We run SDVERT (see Chapter 6) to find a pro-
duction vertex for the vee which may be either the primary vertex or a secondary,
charm vertex.. A very clean sample can be found by requiring the decay vertex

to be separated from the primary vertex.

About 80% of the K, decays are found with the decay vertex downstream
of the microstrips and upstream of PO. No microstrip information is available.
The daughters may be either two stubs, a 5-chamber track and a stub, or two
5-chamber tracks. The vees are fit using a MCS corrected fit with the constraint
that the neutral was produced at the primary vertex. This fit constrains the
daughters of the neutral to intersect using a routine that can trace a charged

particle to anywhere in M1. A powerful cleanup cut for these K,’s is to require
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that the fit converged and the confidence level is good. We also typically require
that the vee has a significant opening angle in £ which eliminates the background

from ete™ pairs.

Additional routines find vees that decayed in between the first and second

microstrip station or downstream of PO0.

4.1.8 Muons

Tracks that are found to have traversed P4 are analysed to see if they are
consistent with leaving hits in the inner muon system. The track is projected to
each muon plane which is searched for hits within 3 times the average multiple
scattering radius. A minimum of three hits is required if P < 30 GeV/c and 5 hits
if P > 30 GeV/c. A hit may be in the scintillator planes or in the proportional

tubes.

4.2 Processing History

The reconstruction process is very CPU intensive. A farm of several dozen
IBM RS600 RISC machines located at Fermilab was able to complete the re-
construction in about one year. Since most of the code was developed on the
Vax, we had to port and verify the code on the unix system. The most critical
verification was done by operating on an output tape produced on the RS600,
re-reconstructing it on the Vax and comparing the high-level results such as mo-
mentum of tracks on a track by track basis. We can characterize the discrepancies
as being on the 1% level and mostly in non-critical cases where the result is poorly

measured or sensitive to roundoff errors.

4.3 Skims

Because the E687 reconstructed data set consists of about 4000 8mm tapes,
direct distribution to the collaboration for analysis is prohibitive. We handled
this problem by creating smaller data summaries (DST’s) for the subset of events

which are likely to contain charm.
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4.3.1 DST’s

When an event is reconstructed, the output contains considerable informa-
tion that is not generally needed for high-level analysis. (This information is
useful for developing reconstruction routines or reprocessing.) To greatly reduce
the number of tapes needed for distributing the skims, the events are summa-

rized on data summary tapes (DST’s). This also greatly reduces the subsequent

processing time.

The reduction in the number of tapes and the time to process them is ap-
proximately a factor of 10. Critical information such as track momentum vectors
and Cherenkov identifications are kept but information such as PWC hits and
ADC'’s are dropped. |

4.3.2 All Charged Skim

For all charged decays such as K7 or K27 we run the candidate driven ver-
texer (see Chapter 6) and make minimal cuts on mass, Cherenkov identification
and ¢/o. These cuts vary according to the state. We take all events that pass
these cuts. With this skim we can accept all charm events with any useable signal

so this skim is 100% efficient for useful, fully reconstructed charm states.

The results of the vertex-finder as well as the mass of the candidate and
other relevant information is stored on the tape for very fast subskimming and

processing later. This skim is called the EZDEE skim.

4.3.3 Global Vertex Skim

Since charm states have a lifetime which is characterized by decay lengths on
the order of lcm, we expect charm events to have secondary vertices separated

from the primary vertex. The global vertex skim requires evidence for secondary

vertices.

Specifically, all combinations of pairs of tracks are formed into vertices. Only

vertices with a confidence level greater than 1% are kept. If any two vertices

34



are separated by more than a minimum number of standard deviations in their

z positions, the event is excepted. The requirement was 3.0 in the '88 data and
4.5 in the ’90-’91 data.

The purpose of this skim is to accept decays which are not fully reconstructed

such as Kmuv and K7nx0.
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Chapter 5

Error Calculations

In this chapter we discuss the calculation, testing, and application of measure-
ment errors. The quantities we are concerned with are the slopes and intercepts
of tracks in the microstrips, slopes and intercepts of tracks in the PWC’s, and

momentum. We will also propagate the errors into quantities calculated from

these track parameters.

The measurement error of track parameters can vary widely from track to
track, depending on the topology and momentum of the track. Error calculation
is critical for extracting the maximum information from an event with the max-
imum efficiency. For example, if we want to require that two tracks intersect we
could require that their distance of closest approach is # microns. If the mea-
surement error varies widely, then this cut will be inefficient for tracks with large
measurement errors and, at the same time, it will be very loose for tracks with
small measurement error, introducing background. If we can instead require that
the distance of closest approach is less than, say, 3o then the cut will have the
same efficiency for all classes of events and will not introduce any unnecessary
background. Because the cut becomes uniformly efficient, it is also less sensitive

to biases and model dependence.

5.1 Description of Errors

Three sources of measurement error include pattern recognition (and effi-
ciency), resolution, and multiple Coulomb séattering (MCS). Errors from pattern
recognition occur when microstrip or chamber hits are assigned to the wrong par-
ticle track or some hits are missing. This may occur when hits are lost due to
inefficiency or additional hits are present due to noise or unfound particles. These
errors are unavoidable but can be minimized by careful choice of algorithms and
cuts. They cannot be easily calculated and we rely on the Monte Carlo to simu-

late their effect. Pattern recognition typically results in small non-Gaussian tails.
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We will not discuss this source of errors further except when they appear in tests

of error calculations.

The second source of error is resolution. If we find a certain particle leaves a
hit in a microstrip plane, we only know that track’s position to the width of the
strip. While our measured position is taken to be the center of the strip, the true
position of the particle will have a square distribution with the width of the strip.
If the width of the strip is A then the variance of the this distribution is A%/12.
As we discuss later, the track parameters are deduced from a fit to the hit coor-
dinates. The deviation in track parameters from true track parameters therefore
represents a convolution of the many coordinate deviations, each of which has
a “square” measurement error. The central limit theorem says that only the

variance is relevant and the fit deviations approach Gaussian distributions.

Approximately 20-30% of the time the particle leaves hits in two adjacent
SSD strips. In these cases the intercept is known, in principle, with a factor
of two better precision compared to the case of no adjacencies. When adjacent
strips fire, the measurement is taken to be the position between the strips. We
find from studies of the data that it is not a serious approximation to ignore

adjacency effects in calculating resolutions.

The third source of error is MCS (Multiple Coulomb Scattering). This occurs
when a charged particle passes through a material and is deflected through many
Coulomb collisions with the nuclei of the material. It is strongly dependent on

particle momentum.

5.1.1 Basic_Covariance Matrix

In this section we describe the calculation of the track parameter covariance

matrix for a particle passing through a system of transverse measurement planes

with a finite resolution.

This method is applied to the microstrip system where the fit parameters are

(z.2',y.y'), the chamber system where the fit parameters are (z,z',y,y', 6v'),
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and, in some cases, to both systems. The intercepts = and y are the track
positions at the coordinate system position z = 0 which is a point near the first
microstrip station in the granite block coordinate system. The slopes are defined
as ¢’ = p;/p,, and y’' = py/p.. 6y’ may be the y bend in M1 or M2, defined as

the y slope downstream of the bend minus the y slope upstream of the bend.

Let us call the coordinate of the i’th plane X;. For simplicity we will express
these coordinates in units of “wire numbers” with “wire spacing ” A;. The

random deviation of coordinate X; (in a Gaussian model) is:

1 1 &
6X; = v Gi + .X" > dm(P) (Zi — Zm) Gm V2 cos (& — ¢:) (5.1)

m=1

Where dm(P)=9'%i\/t_,; with P in GeV/c

The G; values are uncorrelated, normalized Gaussian random numbers which

( averaging over many tracks) obey:
< GiGj >=6i (5.2)

The first term of equation 5.1 represents the coordinate error due to finite gran-
ularity. The Central Limit Theorem tells us that Gaussian distribution describes
the 6 X; deviations of fitted tracks in the limit of a large number of planes. The
subsequent terms of equation 5.1 model the effects of MCS on a track of mo-
mentum P (in GeV/c) by all matter “slabs” located upstream of the i’th plane
(Zm < Z;). The m’th matter slab has a thickness (in radiation lengths) of t,,.
The MCS error is normalized to the “wire spacing” of the i’th plane, A;. The
multiple scattering is directed in a random & direction with respect to ¢; , the
read-out direction of the i’th plane. The presence of the /2 multiplying the
cosine is present in order to convert from the “projected” MCS error factor of

0.014 (in the d,,(P) function) to a “half cone” factor reflecting both projections.
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Correlating 6X; with 6X; and averaging over ¢ we obtain the coordinate

correlation matrix:

Cl =< 6X; 6X; >_5'_’f+°°3 ¢,, Z d2(P) (Zi = Zm) (Z; — Zm) (5.3)

where ¢;; is the angle between the read out directions of the i’th and j’th plane.

Equation 5.3 follows from equation 5.1 and the trig idehtity:

2r
L,, / d® cos(® — ¢i) cos(® — ¢;) = M (5.4)
) .

Equation 5.3 means that the coordinates measured by independent planes
are correlated due to MCS from the matter upstream of the most upstream

coordinate.

There is a subtlety in deciding over which slabs should be summed in equa-
tion 5.3. The sum depends on at which point one wishes to make the best
estimate of the track parameters. If the result of the fit is intended to give the
best track parameters and errors for the particle at the vertex point, then the
sum over materials would include the remaining part of the target and the sum
would be continued over all slabs upstream of planes 7 and j. If the result of the
fit is to give the best parameters and errors for the particle just downstream of
the target then the sum would be over all slabs downstream of the target but
upstream of planes ¢ and 3. If the result of the fit is intended to give the track pa-
rameters downstream of the microstrip than one essentially sums in reverse and
includes all slabs (including microstrip planes) downstream of planes ¢ and j but

upstream of the position where the “true” track parameters are to be measured.

We now proceed to describe the linear fit used to find track parameters from
the set of measurements. We will use the repeated index summation convention
and use Roman indices for plane numbers and Greek indices for track param-

eters. Let us denote the track parameters as t, , the transport matrix which
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relates plane coordinate and track parameter as T4, and the coordinate covari-
ance matrix as C. We note that C' may be either the correct covariance matrix
of the hits, C’, or it may be the coordinate covariance matrix ignoring MCS,
C’,-le = 12 ;5. The effects of these two choices is the central result of this section
and will be discussed below. The transport equation and track parameter x?

which is minimized in track fitting are given by:
X =Ty ta , X? = Ci;l (Tia ta — Xi) (Tjﬁ 17 —Xj) (5.5)
The minimization condition is:
ox?

5 =205 (Tp tp = Xi) Tia =0 (5.6)

The solution to equation 5.6 can be written as:

t = H7'V where the H and V components are :

Hap=Cj' Tja Tig ,Va =Tja Cj;' Xi (5.7)

It is useful to write two forms of the track parameter solutions in component

form using two sets of dummy indices:

ta=Hyg Vp=H; Tjg C7' Xi

o

ts = Hé_,yl I, C;}l X (5.8)

Equation 5.8 leads easily to a component form for the track parameter covariance

matrix E:
Eq5 =< btq 6t >=H 5 Tjs C;;' < 6X; Xy > C' Ty, s

=Hz5 Tjs Cj' C'a O Thy Hp, (5.9)

Note in equation 5.9 that we have made a distinction between the fit covariance

matrix C and the #rue covariance matrix C'. In practice the fit matrix is the co-
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ordinate covariance matrix neglecting MCS (C;jl = 12 é;;). The true coordinate

covariance matrix (C') includes MCS and is given by equation 5.3.

Equation 5.9 can be written in matrix form (using transpose symmetry of

the H matrix) as:
E=H'H H™ ' where I;Tfh =T C";l C'i C'k_ll T (5.10)

Using the symmetry of the C' matrices (and re-dummying some indices), the H

matrix can be written in a form analogous to equation 5.7:
Hop = Cj;' Tjo Tipg where C'=C"1 C' C™! (5.11)

Equation 5.10 and equation 5.11 give the result for the parameter covariance
matrix (E) for the case where the assumed fit coordinate covariance matrix C
differs from the true coordinate covariance matrix C' presumably because the fit

leaves out a source of coordinate error such as MCS.

To explicitly review these central results, we have calculated the true error
matrix for a set of track parameters which were found using a fit that ignores
MCS. In this (first) case C{jl = 12 é;; and the tracks parameters (t) and their

error matrix (E) is:

t=H7vV, H=T!C™'T, V=TC"lXx

E=H"'T'c"'c'c7'TH™! (5.12)

This is the scheme implimented in E687.

These errors will be somewhat larger than the optimal case where the fit

matrix includes MCS (C = C'). Note this case requires inverting C’ for each
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track so it cannot be implemented on a large scale.

t=Hlv, H=T'C"T, V=TC"'X

E=H'T'C'"'TH™! (5.13)

The final case is what happens if we simply ignore MCS everywhere. The fit
will have the same results as the first case but now the errors will be underesti-
mated. We do not use this scheme but may people do. in this case C,-le = 12 §;;

and the track parameters and their error matrix is:

t=H"y, H=T'Cc™'T, V=TC'X

E=H'T'CITH™! (5.14)

Here C is a constant so these error matrices are constants.

Finally we include a note on implementation. We see that equation 5.12 is of
the form E = RK!'C'K where K is a constant matrix. From equation 5.1, C’ has

the form Cj; = 6;;/12 + aij/ p?, a constant part and a momentum dependent

part. Therefore when we calculate E, we actually use the form:

Eij(P) = 0% (1 + (i—‘z)) (5.15)

where P, is called the effective momentum and is the momentum where MCS

effects are the same scale as granularity effects.

5.1.2 Momentum Error

For 5 chamber tracks (PWC tracks that are measured both upstream and
downstream of M2) the momentum is determined through the bend in M2. The

track paramneters, (z,2’,y,y’,6y’), have been fit to the 20 planes of the PWC

42



system. The calculation of section 5.1.1 applied to the PWC system gives the

error on 6y’ which is propagated to an error on p:

23.00(;eV/c)2

. (5.16)

op = 1.351 x 10—4(GeV/c)-1P2‘/1 + (

For 3 chamber tracks there is only the segment between M1 and M2 which

is fit to a straight line. If the track is associated with a SSD track then the SSD
track is fit separately from chamber segment and the difference between 3’ in the

SSD’s and y' in the PWC’s is used to find the momentum. The errors from each

segment are propagated to find:

2
op = 3.391 x 10‘4(GeV/c)"1P2\/ 1+ (w) (5.17)
if the SSD segment is in the high resolution region and:
2
op = 3.932 x 10-4(GeV/c)-1P2\/ 1+ (L}W) (5.18)

if the SSD segment is in the low resolution region.

5.1.3 Extrapolated Errors and Target MCS

The basis of vertexing is the transverse errors on a microstrip track when

extrapolated to the region of the vertex.

First we note that the error in z and y are almost completely uncorrelated

due to the symmetry of the microstrip geometry.

Table 5.1. Extrapolation Resolutions

Ooco p*
x ext | 10.749 um [ 15.03 GeV
y ext | 7.741 um |21.69 GeV
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These values are for the measurements from the high-resolution regions of
the SSD’s and are extrapolated to the center of the target. The low resolution
regions have twice the asymptotic resolutions and half the effective momenta.
The effective momenta do not include MCS in the target or TR1 which is taken

into account by an additional term.

We modify the asymptotic resolutions to calculate the extrapolation errors

to Zy’s other than the target center. The forms used are:

o) = 1/30.068 +0.41589 (Zy — 10.335cm)? pm

o) = -\/15.021 + 0.20682 (Zy — 10.733cm)? pm (5.19)

where Zy is the vertex location in granite block coordinates (Zy ~ —3cm). MCS
in the Be target is incorporated by adding an additional term in quadrature in

both x and y:

1 .014GeV/c (Zm—2Zv) [Zm— 2y
7Be =R P 38.08cm (5:20)

where Z,, is the downstream end of the target material in granite block coordi-
nates. This term is found assuming the target is a continuous scatterer and the

MCS is integrated through the target. Finally we add an independent MCS term
in quadrature for TR1:

.014GeV /c (3cm — Zy)
P

orr1 = 0.068cm (5.21)

The TR1 and target MCS contributions are comparable.

5.1.4 Unlinked Tracks

Since unlinked microstrip tracks have no chamber track associated with them,

we do not know the correct momentum to use when calculating the errors on these
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tracks. However, these tracks are useful because they help to pin down primary
vertices. In order to find a default momentum for these tracks we used a Monte
Carlo and compared the extrapolation resolution and to the prediction for various

momenta. We found that a nominal momentum of 7GeV/c seems to produce a

reasonably accurate errors.

The fact that this momentum produces a reasonable prediction does not
imply that the average momentum of unlinked tracks is 7GeV/c. We feel that
the resolution is probably unexpectedly good for these tracks because they are

low momentum and large MCS might result in dropped hits after a large scatter.

5.1.5 fj; and Missing Hits Approximations

When we calculate the track parameter’s errors we, in principle, need to
account for missing hits in equation 5.1. We also need to account for the fact that
some hits are in the high resolution region while some are in the low resolution

region.

To incorporate these effects completely correctly we would have to recalculate
equation 5.12 with a new C and T for each track or store the results of the
calculation for all combinations of missing hits and high/low resolution hits. The
first method would be too CPU intensive while the second would require millions

of prestored matrices.

Since most tracks have all or nearly all their hits present, we find that the
calculation for this case serves as a good approximation for all tracks. For the

hit resolution problem we make an approximation:
0% = fuiopi + (1 = fui), (5:22)

Where the errors marked “hi” and “lo” are the predicted error for the case of all
high resolution and all low resolution hits respectively. This makes the approxi-
mation that it doesn’t matter where the high resolution hits were, just how many

there were.
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With these final approximations, we are prepared to calculate covariance

matrices for any track from two prestored momentum dependent matrices.

5.2 Tests and Applications of Errors

5.2.1 Mass Error

The uncertainty on a mass measurement can vary significantly with topology

and momentum. We use the mass formula:

M2 =D EN = () pei) = O pei) — O pai)? (5.23)
make the approximations:
E; ~ pi(1 - M}/2p})
Pz = pi(1 = (2 +4%)/2)

and propagate the errors from each set of daughter track parameters (t, =

(5.24)
z,2',y,y,p): |
o} (M?) =" OM?[Bta; Eqapi OM*/Btg; (5.25)

Figure 5.1 shows a normalized mass plot for the golden modes.

5.2.2 Vertex Intercepts

The best test to compare our calculations of the anticipated SSD resolutions
to the data involves measuring the distance from a given SSD track to the primary
vertex, from which the candidate track has been removed. The anticipated z
and y impact error should reflect both the uncertainty in the track as well as the
uncertainty in the vertex. The deviation equation for the z intercept (z;) for a

given track to a given vertex is:
b(x—X,)=bz,+62' Zy+ 72 62, - 6X,=bz+2' 62, - 6X, (5.26)

Note that we have grouped the two variations 6z, + 6z’ Z, into a single variation

dx; which describes how accurately a given SSD track can be extrapolated back
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to a fixed vertex plane (Z,). Autocorrelating é(z; — X,) and setting all correla-
tions between track and vertex quantities to zero (since the track will be always

removed from the vertex prior to vertex fitting) we get:
oty =o0l+ok +3d} —22 <6X,62Z,> (5.27)

The o, represents the extrapolation error of the track whose computation in

described in the previous section.

5.2.3 Test of The f; Approximation

We have plotted the vertex intercept variables (described in section 5.2.2)
distributions for linked tracks with indicated cuts on fj; or the fraction of hits in
the high resolution region of the SSD. These plots provide an incisive test of our

granularity weighting scheme. The widths are summarized in the below table:

Table 5.2. fp; Dependence of Extrapolation Errors

fui cut | (2 = X)/o | (y— Yu)/o |M.C.(e - X,)/o |M.C. (y - Vo) /o
fri=0 0.87 1.01 - _

0< fai <05| 1.12 1.09 0.90 0.95

05< fiu<1| 115 1.06 0.94 0.90
fri=1 1.02 1.04 0.91 0.88

The granularity weighting scheme appears to do a surprisingly good job over-
all in reproducing the observed extrapolation errors. (Their are limited statistics

for the case f;; = 0 in Monte Carlo.)

5.2.4 Pair Removal

Many events contain ete™ pairs that come from multi-brem photons or from
photons from a second electron within the event window in time. These pairs

are produced very nearly along the direction of travel of the photon or z axis.
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Many times we want to flag these pairs in order to reduce backgrounds. This is
accomplished by asking if a track is consistent with being produced along the 2z

X' = ((z' — xp)foe ) + (v - w0)/oy)? (5.28)

where z{ and y; represent a small offset between our z and the beam direction.
The confidence level distribution of this x2? is flat between zero and one. We

identify pairs as those tracks which have CL > 1%.

5.2.5 Matching

It is often necessary to ask if a particular reconstructed track in a Monte Carlo
event corresponds to a particular generated track. We accomplish this by com-

paring microstrip track parameters (¢, = z,z’,y,y') with generated parameters

(ta):

X’ = (ta —ty) EZ} (tg —th). (5.29)

The confidence level distribution of this x? is reasonably flat between zero and
one. We require CL > 1% to match a track. This confidence level distribution

is shown in Figure 5.2.

This method of matching has an advantage over matching by comparing hits
because it succeeds when the track was reconstructed correctly within errors

which is a physics-driven criteria.

5.2.6 Vertex Fit

Most vertex fits are based on minimizing the distance of closest approach of
the tracks. Because the tracks in our spectrometer all have very shallow angles,
we make the very good approximation that the vertex can be found by minimizing

the transverse distance of closest approach. The x? of a fit for the vertex of N
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tracks is then:

2= i": (z,, —(zi + sn:;z,,))2 4 (yv —(yi+ yizv))2 (5.30)

=1 Oz, Oy,

where z and z; are the slope and intercept of the ith track and the fit parameters
are the vertex position, (24, yy, 2y). The o’s represent the extrapolation error on
the track. They include effects of the error on the slope and the intercept and
MCS in the target and TR1:

0l =0 +2z02, + 220l + a,za,g + o4 p; (5.31)
There is some explicit z dependence in this error and some implicit in the target
and TR1 MCS terms. In principle, the fit could be iterated but we find there is
no significant bias when we assume the errors are appropriate to the center of
the target. Note that there is no correlation between the x and y terms in the

x? because of the symmetry in the microstrip geometry.

This fit i1s not the usual linear fit in several ways. First, the errors on the
measured variables vary from event to event as opposed to, for example, hits in
the PWC’s which are assumed to have a constant measurement error determined
by the wire spacing. Secondly, there is the z'z, term in the x? which means the
transport matrix contains the measured variables 2’ and y'. These two points
mean that the fit matrix must be calculated and inverted on an event by event
basis. Because it is only a 3 x 3 matrix, the inversion time is negligible. Despite
these unusual characteristics, the fit is linear in the sense that it converges in one

iteration (with the approximation that the errors are not dependent on z).

5.2.7 High Level Fits

It can be proven that in any fit, one should include as much information as

available, provided we use the correct errors. If the errors are not completely

49




correct, it may actually improve resolution on the fitted variables if some infor-
mation is ignored. This is the case with 5-chamber linked tracks. Since the least
squares fits for the track parameters only use the infinite momentum errors for
the hits and ignore MCS, it actually improves resolution to ignore the microstrip

information when calculating momentum.

However, with the calculation presented above we can find the correct error
matrices on the track parameters. Since we now have the full error matrix, we
can include all the information and improve momentum resolution. So there are
a hierarchy of possible resolutions. The best resolution would be achieved with
a fit of track parameters to the chamber and microstrip hits with full covariance
matrices including MCS. The second best resolution is achieved by performing
separate fits to the chamber and microstrip segments without MCS. One could
then refit the tracks to a global set of parameters using the computed track
covariance matrix which incorporates MCS information. The worse resolution
would be achieved with a fit of the global track parameters to the hits without

any MCS information.

The first case is impractical since it involves the inversion of large matrices
for every track. Since the second best is practical, we have implemented it and

discuss the results here.

For 5-chamber tracks we have developed a fit where the the microstrip seg-
ment and chamber segment track parameters are the measured parameters and
the global set of (z,z',y,y', p) is the set of fit parameters. One way of envisioning
the improvement is to think of the momentum as being measured in both M1
and M2 instead of just in M2. Because the lever arm of the chamber system is
so large, the slopes of the tracks are measured better than when just using the
microstrip information. For stubs we get less improvement in the momentum
resolution but gain some because of the constraint that the chamber and SSD

segments intersect in M1.

We can take the process a step further and fit groups of tracks, For example,

50



if we have a K7 candidate, we could fit the decay vertex and all the sets of
track parameters to the sets of track segments. This introduces the additional

constraint that the tracks must come from a common point.

We have evaluated these fits on a D® — K signal in data. Figure 5.3 shows
the signal using the standard algorithms, with the individual track segments refit,
and with the tracks refit including the vertex constraint. We can see there is a

significant gain in using the refitted tracks, but there is little further gain using

the vertex constraint.
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Chapter 6

Vertexing

E687 data is dominated by events where a hadronic interaction occurs but
no charm is produced. In these events, all the charged particles originate from
a single vertex. In events where charm is produced, the ground state charm
particles typically travel a distance of .6-1.5cm before decaying because these
charm particles decay weakly. A D accepted by the trigger and apparatus has
an average momentum of about 100GeV/c implying a time dilation factor of
v = E/M =~ p/M = 50. Since the D° (D*) proper time is 7 =.42ps (1ps), one

expects an average flight distance of £ = 7y¢ = .6cm (1.4cm).

The D is produced at the primary vertex (photon interaction point) along
with an average of 2.2 charged tracks. A recoil charm particle is also produced
to conserve charm in the strong interaction. The main purpose of vertexing is to
exploit the lifetime of charm candidates (which creates the separation of primary

and secondary vertices) to distinguish charm events from non-charm events.

This chapter discusses the vertexing scheme used in our analyses. This
scheme uses the very good microstrip resolution to find charm candidates that
are well separated from the primary vertex. The basic algorithm is to form a D
track from the daughter tracks then search for the primary vertex which has to
lay along the D track, somewhere upstream. The error calculations from Chap-
ter 5 allow us to make cuts based on statistical significance of the detachment
of the charm decay vertex from the primary vertex. This detachment is written

{/o where ¢ is the separation and o is it’s error.

The set of routines is called Super DVERT or SDVERT. This collection of

utility routines can be combined to address many specific vertexing needs.

We will discuss the basic algorithm, then the efficiency of the algorithm, and
finally tests of the error calculations. We next discuss isolation cuts. These

require that the candidate is isolated from other tracks in the event one way
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or another and are found to be very effective in suppressing backgrounds. The
next section addresses some special cases of the vertexing algorithm and the last
section discusses an alternative vertexing scheme that is used for analyses where

we don’t know the D direction because not all the daughters are reconstructed.

6.1 Algorithm

A typical decay mode that we are investigating is D — Kx. The K and 7 are
reconstructed in the spectrometer where we measure their slopes and intercepts

(z,7',y,¥') in the microstrips and momenta, p, in the PWC system.

We then calculate the daughter’s momentum vectors and combine them to
form the D momentum vector. We calculate the secondary (K7) vertex position
in space using the fit described in section 5.2.6. Since the D must have passed
through the secondary vertex position and we know the the D direction from the
momentum vector, we can calculate the complete set of track parameters for the

D, (z,2',y,v,p).

To calculate the error matrix of the D track parameters, we propagate the
errors from the daughter track parameters. Since the propagation involves a
non-linear fit for the secondary vertex, we do the propagation through finite
differences. In other words, we vary each daughter track parameter ¢, ; and find
the effect on the D track parameter tg to find the derivatives Dz,i then propagate

using the matrix equation:

C =) _ DICiD; (6.1)

where the sum is over daughters, C is the D track covariance matrix, and C; is
the covariance matrix of the daughter track as described in Chapter 5. These
matrices are momentum dependent (include the effects of MCS). They are cal-
culated assuming the daughter track was produced at the center of the target for
the MCS calculation. In principle we could recalculate the daughter track error

matrix based on the secondary vertex position but we find this is not necessary.
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Once we have the D track parameters and their covariance matrix, we prop-
agate once again and find the error on the transverse position of the D track
at the center of the target. With this information the D track is ready to be

included in a vertex fit with other tracks in the event.

Since the primary vertex must also lie along the D track, we proceed to
cluster other tracks around the D vector to form a candidate primary vertex.
The algorithm is to first form a subset of microstrip tracks that do not include
the daughters of the D candidate. From this subset, we find all tracks that are
consistent with forming a vertex with the D. A track is considered consistent if
the confidence level of the vertex fit is greater than 1%. If no consistent tracks

are found then the algorithm has failed and the candidate is rejected.

If only one intersecting track is found, then this single track is used for the
primary vertex. £ is calculated as the 3-dimensional distance between the primary
and secondary. If the primary is upstream of the secondary, £ > 0, but if the
primary is downstream, £ < (0. The error on ¢ is propagated from the error on
the two vertices. This 1s not statistically optimal since the the primary includes

the D track which shares some information with the secondary vertex and this

correlation is not considered.

If only two tracks are found to be consistent with forming a vertex with the
D track then the algorithm checks if the D track will form a vertex with both
tracks together. If this is not true then the track with the higher confidence level

in the vertex fit is chosen as the primary vertex and ¢/¢ is calculated for the

one-track case.

If both tracks together with the D form a good vertex then the two tracks are
taken as the primary vertex. Now the D track can be removed from the primary

vertex, the vertex is refit and a statistically correct £/o is calculated.

Now we are left with the case of more than two tracks are consistent with
forming a vertex with the D track. In this case, all pairs of tracks are fit together

with the D track. If no pairs of tracks form a good vertex, then the single track

56



with the highest confidence level is taken as the primary. If one or more pairs
of tracks are consistent with form a vertex with the D, then the pair with the
highest confidence level from the fit is chosen for further processiﬂg. The last
stage is when the routine attempts to add more tracks to the primary (together
with the selected pair and the D) as long as the confidence level of the primary
vertex remains over 1%. The tracks are added one at a time starting with the

one that contributes the least to the x? of the vertex.

Because of the last step, the confidence level distribution of the primary is

not flat but peaked toward low confidence level.

Typically we require that DCL, the confidence level that the daughters form a
good vertex, is greater than 1%. This cut removes most background from events

where the daughters did not truly originate from the same vertex while it should
be 99% efficient.

The range of /0 cuts varies widely depending on how much rejection is
needed. This cut can range from ¢/c > 0 for K© D*’s which yields a signal to
noise of 1, to {/o > 20 for K27 which yields a signal to noise of approximately
20.

Figure 6.1 shows a K27 mass plot for all events, with a DCL>.01 cut, with
a cut {/oc > 8 and both. The figure shows that both cuts are needed to really
bring out a signal. The last plot in the figure show the effect of an isolation cut

which 1s discussed below.

6.2 Tests of the Algorithm

Since it is possible to see a D® — K signal with a D* cut and no vertexing
requirements, we can test the absolute efficiency of the algorithm. Figure 6.2
shows such a signal with the sole requirement that the K« forms a good vertex.
Figure 6.2 shows the signal divided between events that pass the requirement that
the algorithm succeeded and those that didn’t. We conclude that the algorithm
is very cfficient, € > .96 at the 90% confidence level.
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Figure 6.3 shows how the signal survives the DCL cut for data and Monte
Carlo. Ideally, these plots should be straight lines going through (1,0). The extent
to which they are not straight lines indicates the sensitivity to the assumptions we
made in computing the errors. A discrepancy between data and Monte Carlo is
noted at low DCL which gets stronger as the multiplicity in the secondary vertex
grows. We believe that this problem is probably due to pattern recognition and

noise problems in the track fitting which produces non-Gaussian tails in the fitted

track parameters

Figure 6.4 shows the distribution of ¢/ for a small sample of K7 candidates
just above or below the D mass. This plot is completely dominated by non charm
events where we expect £ = 0 and therefore £/0 should be a unit Gaussian if we
understand our errors. The data agrees well the displayed fit which is a Gaussian
with a width of 1.01. This figure also demonstrates the huge level of non-charm

background that we can eliminate by requiring our candidates pass an £/o cut.

Figure 6.5 shows the survival of a K 2 signal as a function of the £/o cut.
Overplotted in this figure is the Monte Carlo prediction. It is interesting to note
that the logarithmic slope of this plot can be used as an operational definition of
our experimental charm proper time resolution. In our experiment, the proper
time of a decay (t) is measured directly from the detachment (£) between the
primary and secondary vertex according to t = (M/Pc){. Because the fractional
error on £ is much larger than the fractional error on charm momentum P we have
the relationship o¢/¢ = o/t. We next show that o; is expected to be independent

of charm particle momentum.

Because the microstrips measure the transverse separation between tracks,
we can show that the ability to measure the longitudinal position of a vertex is
proportional to §~1 where @ represents the root mean square angle between any
two tracks in the vertex. In the ultrarelativistic limit, all angles scale inversely as
the momentum of the charm particle which implies that the error in longitudinal

position of the secondary vertex should be proportional to the charm particle
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momentum. At high enough charm momentum the secondary vertex error will
dominate over the fixed primary vertex error and one will have a detachment
error which is proportional to the momentum (¢, = & P). Substituting into
oy = (M/cP)og, we have a constant proper time resolution oy = (M/c)é which

depends the charm particle mass and decay topology.

Using the relationship a;/¢ = 04/t, we can recast the lifetime survival expres-

sion for a particle with a mean lifetime of 7 into a detachment survival expression:

¢
N(time >t) = Ny e~¥/" — N(detach > f—) = Np emp(—% a_) (6.2)
£ L4

From the logarithmic slope of Figure 6.5 we calculate a proper time resolu-
tion which we find to be .045ps. Since increasing the charm particle mass gives
decay secondaries a larger p; with respect to the parent D direction, # «x M and
& /M should be approximately constant and universal. We therefore expect, and
observe, that our proper time resolution of about 0.045 ps is approximately true
for all charged particle charm decays where all daughters are reconstructed in

the microstrip system.

6.2.1 Primary Vertex Contamination

We have found that there is significant contamination of recoil charm tracks in
the primary vertex. Sometimes the recoil charm particle decays near the primary
vertex so that its tracks are indistinguishable from the primary vertex. Also the
decay may be well separated from the primary but some daughter tracks may
point back to the primary. In these cases, there is no harm in including the recoil
charm tracks in the primary, however, there is also the case where the primary
vertex in an event isn’t well represented with many charged tracks but the recoil
decay is. If the recoil decay is also near the D seed track, the recoil charm decay
may be found as the primary vertex, or the recoil decay may pull the measured

primary vertex downstream from the true primary.
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Figure 6.6 shows the distribution of the measured proper time minus the true
proper time divided by the expected error for a K2r Monte Carlo. The pulling

of the primary can be seen as a longer tail on the negative side.

If we find a sample of decays where we reconstruct both the charm particle
and the recoil charm particle, we can explicitly see how often the recoil charm
tracks are included in the primary vertex. Figure 6.7 shows the distribution of
the number of linked tracks in the primary vertex for all events compared to
events where we can remove the recoil charm tracks. The average number of
tracks for these two distributions are 3.3 and 2.2 respectively, indicating that we
include about one track from the recoil charm decay on average. This is in good

agreement with our Monte Carlo.

6.3 Isolation cuts

We have found that requiring the secondary vertex to be isolated is an effec-
tive way to improve signal to noise. The first style of isolation cut, called CL1,
requires that the confidence level that any of the daﬁghter tracks is consistent
with coming from the primary vertex is less than a cut, typically 20-50%. This
cut is designed to remove events where tracks from a charm fragment are unin-
tentionally combined with tracks that come from the primary vertex to form a
charm candidate. By requiring that the daughters are not consistent with coming
from the primary vertex we can limit this background. We find that we cannot
cut very hard on CL1 because it becomes too inefficient, cutting signal where one

the daughters accidentally points to the primary vertex.

The second isolation cut, called CL2, requires that the secondary vertex is
not consistent with forming a vertex with other tracks in the event, not including
the tracks in the primary. We loop over the microstrip tracks that are riot in the
secondary or primary and fit them in a vertex together with the secondary and
require that the largest confidence level is less than .1-1%. This cut is removes
background from higher multiplicity decays (at large detachments, charm is the

major background). This cut is requiring that the recoil charm decay is far from
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the candidate vertex. While this is an implied /o cut, it is not exclusively
an /o cut and it’s effectiveness is not well understood. However, the cut is
extremely effective at improving signal to noise with little loss in yield and is

used extensively in this thesis and in other analyses in E687.

Figure 6.8 shows the effectiveness of the isolation cuts. We plot the signal

yield vs signal to noise for various isolation cuts.

6.4 Other capabilities of SDVERT

Although these extensions of SDVERT are not used in this thesis, they have
been used extensively throughout the collaboration to obtain charm signals in
such special decay modes as D° —» Kn7% Dt — K,r, Q0 —» Q~ =% [15], E0 —
=-7t [15], and EF — E- 7t #t [16]. The Q is seen as a AK and the = is seen as

a Am. We include this section for completeness.

6.4.1 One Prong

A one-prong decay is a mode that has complete direction information but
incomplete intercept information such as D% o K,n. The =« is found in the
microstrips but the K is found in the spectrometer so it has only direction
information. Other examples of this case would be KK 7 and K7° In these
cases the combination of the D direction and the intercept information from the
single microstrip track defines a plane that must contain the primary vertex, as
opposed to the usual case where the D track defines a line that must contain the

primary vertex.

For the one-prong case the algorithm searches for pairs of tracks that are
consistent with forming a vertex in the plane defined by the daughters. Since
all single tracks will intersect the plane, there is no discrimination power and we
cannot allow one-track primaries. Once a pair of tracks that verticize in the plane
is found, other tracks are clustered around this pair as long as the confidence level

remains above 1%.
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When these vertices are being fit, the information from the plane defined by

the daughters is included in the fit with an additional x? term:

- - -

(%)2, where D = (V — B). N (63)

and V is the vertex to be fit for, P points to a point in the plane, and N is the
plane’s normal. Since the error on D is strongly dependent on the distance from
the daughter measured in the microstrips to the primary vertex, we found that
a center of the target approximation is insufficient for calculating the error on D

so we use the position of the most upstream VERTIC vertex.

To find /o we cannot use the separation of the primary and secondary since
there is no secondary vertex position found. We use a fit that is based on the
D direction and the transverse distance between the microstrip track and the

primary vertex.

6.4.2 Force and Exclusi 1sts

The routines have a capability to force anything in the primary vertex. This
could be used to force two D’s to be in the primary vertex to find a sample of
events with two reconstructed D’s. This could also be used to force the soft pion
from a D*t decay in the primary. This particular trick is not effective because
the standard algorithm is already very efficient so forcing the soft pion candidate

into the primary only serves to bring in more background.

SDVERT also has the capability to exclude anything from being considered
for the primary vertex. Doubly linked microstrip tracks (which are mostly ete™
pairs) are excluded by default. Some possible uses of this feature are to exclude
high momentum tracks from the primary or tracks identified as kaons. This

would be to try to remove the recoil charm from the primary.

6.4.3 Decay Chains

SDVERT has the capability of creating decay chains. An example of this
would be the decay B — Dnw, D — Knn. The analysis would search for the D,
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create the D track, then combine it with pions to form a B track which is then
used to seed the search for the primary vertex. There is no limit to the length
of the decay chain because once a set of tracks are combined into a single track,

that new track is equivalent to any other track.

6.4.4 7°’s, Kinks, and =’s

0

7° — 27 are reconstructed in the electromagnetic calorimeters where the the
energy and position of each v is measured. This information, combined with the
assumption that the 7% comes from the target gives the 7% momentum vector.
There is no useful intercept information because of the target constraint and
calorimeter resolution.. The 70 is treated like a K, found in the magnet, the
momentum vector and it’s error is used to define the D direction but the 7°

cannot help determine the D vertex position.

A kink is a charged particle that decays into a charged and a neutral particle
somewhere between the microstrips and PO, such as ¥ — pn?. The ¥ is found
as a microstrip track so it’s slopes and intercepts and their errors are straight-
forward to calculate. Because the 7 is not reconstructed, there is usually a
two-fold ambiguity in the ¥’s momentum and each case is handled separately.
To rigorously calculate the error on the ¥ momentum would be difficult so the

momentum for the ¥ is put in the formula for the momentum error on a track.

Z’s are found in the decay mode Am, if the decay is upstream of the mi-
crostrips, it is called a type 1, if the decay is downstream of the microstrips, it is
called a type 2. For type 1’s the algorithm is the same as the one prong case, A;7
discussed above. Type 2 =’s leave a track in the microstrips so the slopes and
intercepts are straightforward to calculate. The error on the momentum of the =

is found as the error on the momenta of the two daughters added in quadrature.

6.5 DVFREE

DVFREE is routine that can find a primary vertex in the case that there is

no seed track from a charm candidate. This occurs for decays with v’s, such as
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Kruv or unreconstructed 79’s, such as K719 Because the daughters are not all

found, the D direction is not known so we can’t create a seed track.

Typically, a set of tracks is found as a D candidate, these tracks are entered
in the exclusion list then DVFREE is called. DVFREE returns a set of vertices
formed from the rest of the tracks in the event and a primary vertex is chosen,

usually as the most-upstream vertex or the highest multiplicity vertex.

The DVFREE algorithm begins with finding any pair of tracks that form a
vertex with a confidence level greater than 1%. It then adds as many tracks as
possible to that vertex as long as the confidence level remains above 1%. The

tracks are not searched or included in any particular order.

The routine then chooses a track that is not in the first vertex and attempts
to cluster other tracks around it. When it is looking for these additional tracks,
it considers tracks that might already be in a vertex. This way a track may be in
any number of vertices. The process of choosing a track that is not in a vertex
and clustering around it is tepeafed until all tracks are in every vertex they are

consistent with or in no vertex at all.

Figure 6.9 compares the performance of DVFREE to the standard algorithm
using the seed track for K27, Kn, and K3n. The plots show the yield plotted
against the signal to noise for several /o cuts. The three lines are for the
standard algorithm, DVFREE, and DVFREE with the requirement that the D
track points to the primary. It is clear that the DVFREE efficiency is very high
and the signal to noise is comparable. For the K= case, the signal to noise is

actually improved.
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Chapter 7

Dt — Fou"'v

In this chapter we analyze the decay D¥ — (Kw)uv with the K= forming
a 7?*0(892). We will show that the K7 spectrum is dominated by the T and

address the level of nonresonant decays and possible backgrounds.

We will first address the cuts used to extract a signal. The basic analysis is
to find detached Kmpu vertices, plot the K mass, and use the area under the
i peak as an estimate of the signal. Because we do not detect the neutrino,
we are not fully reconstructing the decay, so we will present tests that the signal
is the decay mode we are looking for. To further distinguish the signal from
backgrounds, we will present a fit for the signal using all the available kinematic

information.

After establishing the signal, we will present the branching ratio I'(D* —
Fo;ﬁu) J/T(D* — K~ntzn%t) Finally, we will present a fit for the form factors

governing the decay (see Chapter 2).

7.1 Dt — F‘Oy"'u Signal

We use the global vertex skim to search for the signal (see section 4.3.3).
This skim should be very efficient since it requires a mildly detached two-track

vertex and the signal we are looking for has highly detached three-track vertex.

In this analysis, all tracks are searched for correct sign, mass, lepton and
Cherenkov identification combinations to form K7y candidates. All daughter
tracks must be found in both the microstrips and the PWC system. The muon
is identified in the inner muon detector. The kaon must be identified by the
Cherenkov system as kaon definite or kaon-proton ambiguous and the pion and

muon must not be identified as either a kaon or proton.

We require the Kwu combination to form a good vertex with a confidence
level greater than 10%, thus greatly reducing the background from events where

the Ii'. =, and u do not come from the same vertex.
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The muon system is shielded by many radiation lengths of material. This
causes some difficulty in matching muon system hits to low momentum tracks
because of the large multiple scattering. To avoid this region of confusion, we
require the muon to have a momentum greater than 10 GeV/c. The Kmp com-

bination must have a momentum greater than 50 GeV/c.

Background from D% — K2r, where a pion is misidentified as a muon, is

eliminated by requiring that the reconstructed K7y mass be less than 1.8GeV/c2.

We find the primary vertex by searching for the most upstream high-quality
vertex in the target region that can be made from the tracks which remain after
the K'mp combination is removed. This is the DVFREE algorithm explained in
section 6.5 where we show that the algorithm is highly efficient.

In order to suppress that large level of non-charm background, we exploit the
long lifetime of the Dt by requiring the candidate to be well detached from the
primary vertex. For the major results discussed here, we require the separation

divided by its error, £/o is greater than 20 (about one D* lifetime).

We require that the K7y vertex be isolated from other tracks in the event
(not including tracks in the primary vertex) by requiring that the maximum
confidence level for another track to form a vertex with the candidate be less
than 1%. This cut removes any possible background from higher multiplicity
decays. It also removes background from events where a hadron has reinteracted
in the target to fake a detached vertex. These interactions, being hadron-nucleon,

are expected to be larger multiplicity.

The quark constituents of the Dt are the ¢ and d. In the spectator decay
(Figure 2.1) the c quark decays to an s quark and a W+ which decays to ptv.
The s and the spectator d form the & which decays to K~n*. This decay
chain gives the charge correlation Q, # Qk. Real charm decays will produce
an excess of right-sign events over wrong-sign. We will subtract the wrong-sign

sample from our right-sign data distributions.

In the next section we will discuss the vertexing cuts in more detail.
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7.1.1 Signal Cut Response

Figure 7.1 shows the wrong-sign subtracted signals for several £/o cuts. Note
that the low mass bump from the decay D** — (K~ utv)rt disappears with
larger detachment cuts due to the shorter D? lifetime. We can identify this re-
flection by its distinctive K'n mass spectrum as computed with a Monte Carlo.
Figure 7.2a shows the signal’s survival vs the £/0 cut compared to the survival
predicted by our D* Monte Carlo. The very good agreement at longer de-
tachments indicates little contamination from shorter lived charm states beyond
£lo > 5.

Figure 7.2b shows the signal survival as a function of the minimal confidence
level requirement for the secondary vertex compared to that predicted by our
Monte Carlo. The accumulation of events at low secondary vertex confidence
level in the data suggests there is some contamination from charm backgrounds
where the Ry tracks do not originate from a common vertex. Most of this
background is eliminated by the requirement that the secondary vertex confidence

level exceeds 10%.

Figure 7.2¢ compares the data and Monte Carlo response to the secondary
vertex isolation cut. Here the vertex is more isolated as the confidence level cut
gets smaller. Agreement is good indicating negligible potential background from
charm states with an additional charged track in the same vertex as the Kwpu

candidate. We require this confidence level to be less than 1%.

7.2 Limits on Dt — (K~ 7))ty and Dt — K-ntuty

The decay modes may appear appear as right sign excess in the (Km)uv

sample are:
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Table 7.1. Kmpu Backgrounds

number mode fit parameter
1 (Kn)uv (signal) |1—fi— fo—f3
2 | Kmpv (nonresonant) h
3 D*t = (Kuv)w fo
4 (Km)ruv f3/2 |
5 (Kn®)mpv f3/2

We make the standard assumption [17] that the last two final states are
produced through the decay of a hypothetical isospin 1/2 resonance into a K*=
final state. Under this assumption the yields of process 4 and 5 are the same as
shown in the following table of the relevant branching ratios deduced by isospin

symmetry (Clebsch-Gordon decompositions)

Table 7.2. Clebsch-Gordan Coefficients

number mode coefficient
1 BR(K*® — K—7%) 2/3
2 BR(K** — K%9) 1/3
3 BR(K*~ — K—n%) 1/3
4 BR(K*~ — K%r™) 2/3
5 BR((1/2,1/2)° — K*%x0) 1/3
6
7
8

BR((1/2,1/2)° — K* =) 2/3
BR((1/2,-1/2)" — K*~=%) 1/3
BR((1/2,-1/2)" = K*'r™) 2/3

The yield of the fourth decay mode is the product of the fifth entry in Ta-
ble 7.2 and the first entry which gives 2/9. The yield of the fifth decay mode is
the product of the sixth entry and the third entry which is also 2/9.
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We fit the two dimensional distribution of the K7 mass and the K7y mass.
For the fitting function we use the Monte Carlo distributions of these variables
and for the (K'7)urv mode we include the effects of the matrix element which are
significant. All modes are generated according to phase space except where the
K*(892) is indicated. We constrain the total number of events in the fit, and the
the yields of the last two modes are constrained to be the same so we are left

with 3 fit parameters which are the fraction of events in the decay mode.

The fit is binned maximum likelihood. There are 23 bins in the K7 mass and
6 bins in K7y mass. The fit prediction is the Monte Carlo distributions scaled
by the fit parameters plus the wrong-sign distribution. The binning is displayed
in Figure 7.3 which shows the projections of the distributions and the fit results.

The fit results are summarized in ’I‘able 7.3.

Table 7.3. Nonresonant Fit Results

mode fit parameter result
(Km)uv (signal) 1—fi—fo— f3]|.884 £.031
Kruv (nonresonant) h .073 £ .026
D*t — (Kuv)w f2 .043 + .012
(KT)mpuv+(K7n®)mpv f3 0+.018

Since the efficiencies for resonant and nonresonant decays are the essentially

same we obtain a measurement of the branching ratio:

+ C— ot
ID™ = Ko7 u”v(nonresonant) _ g3 4 g9
N(D* — (K-a+)uty)

or a limit of < .12 at the 90% confidence level. The previous limit on this decay
was < .23 [18].

To find the limit on f3 we integrate the likelihood to the 90% point and find

f3 < .059. Since this is the limit on the last two decay modes, the limit on each
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mode individually is < .029. Our Monte Carlo finds that the modes with an
additional ¥ have an efficiency that is 70% of the (K7 )uv efficiency so the limit

is corrected by this factor and we obtain:

(Dt — (K~ 7 H)r%utv)
T(D* = (K-n)ptr)

< .042

or correcting by the K* branching ratios from Table 7.2 (a factor of 9/4) we
obtain:

+ * .0, 4+
I(D* - (K*n) utv) < 095
L(D* - (K—nt)uty)

The previous limit on this decay was < .87 [17].

7.3 T(D* — K u*v)/T(Dt — K-ntat)

We are only using the 1988 and 1990 samples for this branching ratio because
the increased noise in the 1991 muon system (see 3.5.2) would introduce a sys-

tematic error which is comparable to the statistical error in this high-statistics

analysis.

We find the {27 signal with the same vertexing scheme and the same cuts
(except for the muon cuts). The resulting signal is show in Figure 7.4. Back-
ground from T 7+ 70 where the pion is misidentified as a muon is corrected for
by assuming a 1.3% misidentification probability which we measure with high

statistics charm decays.

Possible contamination from K **x® pv is included as a systematic error. We
also consider the effect of changing the K* lineshape based on uncertainty in the
form factors. Since the muon does not strongly interact, we include as a system-
atic error due to the possible loss in efficiency from elastic nuclear scattering of
the extra w in A'27. Since the muon does not leave as much energy in the HC for
the trigger, we include a systematic based on varying the HC trigger response by

20%. We add these contributions in quadrature.
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Table 7.4. Branching Ratio Systematics Summary

source % error

line shape 5

scattering 5
{/o variation 6
HC 3
total 10

The result is (D — K ptv)/T(D* —» K-ntnt) = .56 :t .04 + .06. This
ratio includes a correction factor for the undetected decay K - E°7° The

current world average (measured using the equivalent electron decay mode) is

51+ .05 [19].

7.4 Form Factors

In this section we will fit for the form factors that govern the decay D* —
(Km)puv. We will first discuss the how the kinematics are reconstructed, then

discuss the fit itself, Monte Carlo studies, and finally systematics and results.

The form of the matrix element is described in Chapter 2. There are four
kinematic variables, cos§,, cos8,, t=M (pv), and x. We will use the distri-
butions of the first three variables as the measured distributions in the fit. We
ignore x as justified below in section 7.4.4. cos 8, is the angle between the 7 and
the D direction in the K" rest frame, cos 8, is the angle between the v and the
D direction in the uv rest frame. D~ decays have the same definition of variables

and no change is required in the matrix element (see Chapter 2).

As explained in Chapter 2, in the absence of lepton mass effects, there are
two axial and one vector form factor, 4:(t), A2(t), and V(t). We assume these
form factors have a simple pole dependence with masses My = 2.5 GeV and
My = 2.1 GeV, and fit for the ratio of the form factors evaluated at t = O:
R, =V(0)/A;(0) and R» = A2(0)/A;1(0).
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We now discuss specifics of how the kinematic variables are calculated in the

following two sections on unphysical decays and reconstructing the kinematic

variables.

7.4.1 Unphysical Decays

Due to resolution and pattern recognition (determining which particles be-
long) of the primary vertex, we sometimes reconstruct a D+_—+ Kruv decay such
that the kinematics of the decay are unphysical. With the D% direction and the
total momentum vector of the charged (Kmu) particles, p., we can test if the
decay is physically allowed. First we find the component of $, that is perpen-
dicular to the D% direction, p,.. If we then boost into the D* rest frame, this
component does not change p% . = pi.. The charged transverse momentum is
balanced by py, and p%, < E; where E; = (M} — M?2)/2Mp. If the decay is
physical we find p* . = p%, < E; while if the the reconstruction of the decay is
unphysical we find p% . > Ej.

Figure 7.5 is a histogram of E} — p .. About 50% of the events have this
variable greater than zero, indicating an unphysical reconstruction. Overplotted

is the Monte Carlo prediction which shows good agreement.

Another way to picture the décay is that p . defines a cone for allowed
positions of the primary vertex with the apex at the D* vertex and spreading
out towards the primary vertex. If the reconstruction of the decay is physical,
the primary will be in this cone, otherwise it will be outside this cone. To recover
unphysical decays, we move the primary vertex position to the nearest allowed
position on this cone and recompute the kinematic variables. Figure 7.6 compares
the resolution in the cosines for events that were originally reconstructed as
physical and for all decays. There is very little difference in these resolutions so
we will include these events in the analysis. We also found very little improvement
in the signal to noise by requiring that the decay was originally reconstructed as

physical so we make no requirement on this condition.
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7.4.2 Reconstructing the Kinematic Variables

The fit for the form factors is a fit to the kinematic variables describing
the decay (see Chapter 2). These are cos#d,, the angle between the 7 and the
D direction in the K°° rest frame, cos6,, the angle between the v and the D
direction in the uv rest frame, and ¢, the square of the yv mass. D~ decays have

the same definition of variables.

We start by checking that the decay is physical, and if it is not, then recover
it. The charged tracks are measured in the spectrometer so we have their four-
vectors. We assume the Dt momentum vector points along the direction between
the primary and secondary vertices, we fix the Dt mass to be 1.8693 GeV/c?,

and we fix the v mass to be zero.

We start with the four vector equation: pp = p.+ P». Squaring this we have
EpE. = |pp||pe| cos 6p. + M? (7.1)

where M2 = (M} + M?2)/2 and cosfp, is the cosine of the angle between the
charged track momentum and the D* direction. Putting Ep = {/p% + M and

squaring again we get:
(E? — pcosbpc) ph — 2p.M*cosbp.pp + M*+ MBE: = 0 (1.2)

which is a quadratic equation for pp. We chose the lower |pp| solution. Since we
have the D direction and magnitude, we have the D four-vector and with that

we can find the neutrino four-vector and proceed find the kinematic variables.

To justify the choice of the lower momentum solution, we histogram the
reconstructed cosines minus the true value for both solutions in Figure 7.7 and
find no significant difference. The lower momentum solution has a marginally

better resolution in the kinematic variables so we choose that solution.

81




7.4.3 The Fit

The fit is binned maximum likelihood with three equal bins in cos #8,, three in
cos b, and two in t /t;,;. Because the matrix element tends to produce relatively
broad structures in the kinematic variables, we can use a rather coarse binning
to extract the form factors without much loss in statistical power. This allows
us to use moderate size Monte Carlo samples, facilitates our ability to compare
the fit to the data, and tends to minimize the effects of resolution. We also can
avoid hot spot regions where the decay intensity is nearly zero and we would be

sensitive to each background event. The bins are displayed in Figure 7.8.

To justify this binning further we can linearize the fit and use matrix algebra
to predict the loss of statistical power. The information can be summarized by
the matrix equation t* = pX. where t* is a vector containing the form factors,
and X is a vector containing the bin populations. In this linearized picture, p is
essentially a weight for each bin and the fit parameters are weighted averages of
the bin populations. Figure 7.9 shows the elements of the p matrix. Since I'j/I’
is a combination of the form factors, an equivalent set of p matrix elements can be
calculated for this ratio from the derivatives of the decay intensity with respect
to the form factors. These are also shown in Figure 7.9. The underlying workings
of the fit can be seen in these figures. For example, a positive polarization ratio
should be revealed in a positive curvature in cos, which can be seen in the I';/T’;
p matrix elements i.e. the central cos 6, bins are weighted more negati';'ely than
the outer cos6, bins. The p matrix gives expected errors in terms of the the
autocorrelation of the fit parameters (< 6t6t' >) which depends on the p matrix
and the poisson fluctuations of the bin yield, < 6tét! >= p! < éxéx* > p. This
allows us to assess the statistical power of various binning schemes, summarized
in Table 7.4. The 18 bins we use are the smallest number of bins that gives a
negligible loss in statistical power (=21%). This is easy to understand. The three
bins in cos, and cos 6, gives us the ability to measure separate curvature and
asymmetries in those variables. The two bins in y = t/t;ne, allows one to follow

their t evolution to get additional statisétQical power.



Table 7.4. Anticipated Errors vs Binning Scheme

Case| N, | N, | N, | o(R,) VN | o(Rz) VN | Corr | o(T¢/Ty) VN
0 Joo| oo | oo 6.56 4.18 -.33 2.86
1 [w0{10[10] 6.66 434 | -34 2.96
ol s|s5|3| 710 456 | -.35 3.09
3 |3)s|2| 793 500 |-.36 3.38
4 |l2|2|2]| 1013 596 | -.29 4.24
5 2] 2|0 o973 517 | -.21 3.79
6 1|10 427 535 | -.06 10.07
713|3|1]| on 8.02 | -57 4.84
s 221 108 152 |-.996 83

In the fit, the prediction of the yield in each bin is the integral of the matrix
element over the bin. This number is multiplied by a Monte Carlo correction
factor which is the number of events reconstructed in the bin divided by the
number generated in the bin with a trial set of form factors. The correction
is largest at low cos§, and low t, where the efficiency is approximately half
the maximum efficiency. Because of finite bin size and resolution, the Monte
Carlo correction depends on the form factors so we take the current fit results,
recalculate the correction, and perform the fit again. We find that only two

iterations are necessary.

To predict the background in a right-sign bin, we add the wrong-sign yield in
the bin, scaled by a third fit parameter, the background level. This fit parameter
allows background level fluctuations to be reflected in the form factor errors, and
it is tied to the observed number of wrong-sign events through an additional

Poisson factor in the likelihood.

This fit procedure eliminates any biases from events where the wrong solution

is chosen, recovered unphysical events, and resolution. It has the advantage that
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we are not required to invent a background parameterization.

The correction due to finite muon mass is done in two stages. The matrix
element in the fit function includes an overall factor of (1 — m?/t)2. The (much
smaller) additional finite mass terms are included in the Monte Carlo correction
factors on successive iterations. We assume that the third form factor in the

finite mass terms, R3, is zero.

7.4.4 Mini-Monte Carlo Studies

A mini-Monte Carlo is a program that simulates data samples using approx-
imations for the effects of spectrometer resolution. It is a stand-alone program
apart from the full Monte Carlo simulation. This faster simulation of data sets
allows us to generate and fit maﬂy data sets to test systematics of the fitting

process.

To simulate a data set we generate decays according to phase space and reject
on the matrix element. We then allow for resolution by drawing a momentum,
lifetime, and primary and secondary vertices for the decay and require £/0 >
20. We give the primary vertex a transverse position error of 30um as a rough
estimate of the true total primary and secondary vertex resolution. We then
solve for the decay the same way as it is done in the data including the effects of
resolution and the quadratic ambiguity. Figure 7.10 shows the distribution of the
difference between the reconstructed and true cosines for the mini-Monte Carlo
and for the full Monte Carlo. The distributions are almost identical, indicating
that we have functionally recreated almost all the resolution effects in the mini-
Monte Carlo. We also geherate background according to the projections of the

wrong-sign data in the kinematic variables.

First, the mini-Monte Carlo is used to test the value of including the copla-
narity, x, in the fit. We find that including it cannot reduce the error on R,
and can reduce the error on Rz by only 25%. This is a negligible gain for a

measurement that has systematic error comparable to the statistical error.
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By allowing the background level to vary in the fit, we allow for the un-
certainty in the number of background events but this does not allow for the
uncertainty due to using the finite wrong-sign sample as the parent population
of the background in the fit. One way to think of this is that we allow for the
uncertainty from the background level, but not from the background shape. The
additional uncertainty from this source can be measured with the mini-Monte

Carlo and is found to increase the reported uncertainty by 14%.

As explained in Chapter 2, the finite muon mass allows for a third form factor
ratio, R3 which assume is zero. To assess our sensitivity to this assumption, we
fit for R, and R; in mini-Monte Carlo samples generated with R3 = 0 and R3 = 3

and found the results varied by less than 7% of our statistical error.

Finally, the mini-Monte Carlo is used to test the general reliability of the
errors reported by the fit. The fit cannot include in the reported errors the
additional uncertainty due to the effect of events moving from one bin to another
due to resolution. This effect can be seen in the limit of resolution so poor
that all the measured distributions are flat so no measurement can be made and
the uncertainties should approach infinity. We find that the errors are accurate,
that this resolution-based source of error is negligible. Also we find there is no

significant bias.

7.4.5 Systematics

If the muon system is uniformly inefficient, there will be no systematic effect
in the form factors because they are determined from the shape of the distribu-
tions of the kinematic variables. However, if there is non-uniform inefficiency,
there may be some distortion of the distributions. To compute this source of sys-
tematic error, we again linearize the fit and the information can be summarized
by the matrix equation t* = pX where ¢* is a vector containing the form factors,
and X is a vector containing the bin populations. A nonuniform muon efficiency

can be translated to a non-uniform efficiency in each of the bins in a Monte Carlo
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then the systematic error can be found as 6t* = péX where 6 X represents the

change in the bin populations due to the additional, non-uniform efficiency.

We conservatively estimate a possible non-uniform inefficiency as the dif-
ference between uniform efficiency and the efficiency as seen in the 1991 system
which varied in the transverse dimension due to noise. This estimated systematic

error is summarized in Table 7.5.

We can apply the same procedure to find the systematic due to the fact
that the HC triggering threshold is uncertain. Here we take the change in the
efficiency for each fit bin when the threshold is raised by 30GeV/c? and again

propagate the bias into the form factors.

The largest source of systematic error is found by scaling the background by
1.5 before subtracting it in the fit. The factor of 1.5 is the factor necessary to
remove the non-K* right-sign excess. Although we feel the excess is due to know
charm decays, we have no knowledge of the matrix elements that these decays
proceed by. Table 7.5 summarizes the sources of systematic error and shows the

total, which is the contributions added in quadrature.

Table 7.5. Form Factor Systematics

x |HC|BG [total
R, |.04|.09]|.26| .28
R, |.014] .06 |.08| .10
I;/T,|.02|.07].11] .13

7.4.6 Results
The fit results are [11] R, = 1.74 + .27+ .28 and Ry = .78 +.18 + .10 with a

correlation of —.15%. As described in Chapter 2, we calculate the polarization for
for the electron decay, I';/Ty = 1.20+.13%.13. The fit is displayed in Figure 7.11.

Table 7.6 compares this result to other recent measurements and Table 7.7

shows some theoretical predictions.

86



Table 7.6. Form Factor Ratio Comparisons

Exp R, R, I)/Ty
This result [11]|.78 .18 +.10(1.74 + .27+ .28 [1.20 £ .13 £ .13
E691 [7] 00+.5+.2 | 20+.6+.3 1879+ 3
E653 (8] | .82+2+.11 | 200+3 +.16 [1.18+.18+.08
Table 7.7. Form Factor Ratio Predictions
Authors R, R, /Ty
BSW [20] 1.31 1.44 91
KS [10] 1.0 1.0 1.16
AW/GS[9] 75 1.88 1.20
BBD [21]| 1.2+.2 2.2+ .2 86+ .11
ELC [22]| .01+.7 1.63 + .27 1.84 + .63
BES [23] |.70 £ .16 +32 |1.99 + .22 *-30 (1.21 + .12 13

some theoretical predictions.
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As described in Chapter 2, we can calculate the values of the overall form
factor, A1(0), from the form factor ratios given the branching ratio, [(D* —
F0y+u)/I‘(D+ — K~ntxt) = .56 +.04+.06 [11], the absolute branching ratio,
(Dt —» K~ntrt)/T(DY — all) = .08 + .0075 [19], 7p+ = 1.066 + .023ps [19],
and |Vs| = .975 [19]. The results are summarized in Table 7.8 which compares
our measurement to the only other recent measurement. Using our value for A;(0)
and our values for the form factors ratios, and properly propagating errors, we

can calculate A2(0) and V(0) which are also in Table 7.8. Table 7.9 summarizes




Table 7.8. Form Factor Comparison

Exp A1(0) A2(0) V(0)
This result | .56 + .04 + .03 | .44 4 .09 + .06 | .98 + .19 £+ .18
E691[7] |46+.05+.05] 00+£.2+.1 | 9+.3.1
Table 7.9. Form Factor Predictions

Authors A1(0) A,(0) V(0)
BSW [20] 88 1.15 1.21

KS [10] 82 82 .82
AW/GS[9] 8 6 1.5
BBD [21] B0+ .15 .60+ .15 1.10£ .25
ELC [22] .52 £ .07 .05+ .35 .85+ .08
BES [23]|.83 £ .14 £ 28 | .59 +.14 +24| 1.43 + .45 +48
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Figure 7.1. Dt — K ' ity signal after wrong-sign subtraction for the indicated
(/o cuts. The fit for the signal yield is the solid line. The fit uses a Monte Carlo

prediction for the lineshape, based on our measurement of the form factors. The

background term is of the form aj2*2¢~%* where a; are the fit parameters and

ais M(ILn) — (M(K) + M(w)).
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Chapter 8

D - K*uty

In this chapter we analyze the decay D® — K*~uv with the K*~(892) de-
tected in the K,7~ decay mode.

There is a big difference between this decay mode and D — Fo,u"‘u, dis-
cussed in Chapter 7. The basic analysis is similar: we find detached 7y vertices
in events with a K, plot' the K,m mass, and use the K*~ peak as the signal.
The K, decays downstream of the microstrips 85% of the time and in this case
we cannot require that it is in the vertex with the 7 and p. This results in a
large background, mostly from events with a X ~u% vertex in one charm decay
and a K, from the recoil charm decay. We can, however, subtract the wrong-sign
sample where the m and y have the same charge to eliminate some non-charm
background and charm backgrounds where the = and p come from different ver-

tices.

Following Chapter 7, we will first address the cuts used to extract a signal.
Again, because we do not detect the neutrino, we are not fully reconstructing
the decay so we will present tests that the signal dominated by the decay mode

we are looking for.

After establishing the signal, we will present the ratio of the widths I'(D°? —
K*~utv)/T(Dt — Fop“’u) We present this ratio as opposed to, for example,
I'(D° — I\'*_;-L"‘V)/F(DO — K) to reduce systematics. Also it is a test of the
prediction T(D® — K* utv) =~ (Dt — Fou"'u). This follows from the fact
that the weak semileptonic decays proceed by isosinglet currents which connect

the isosinglet ¢ and s quarks.

8.1 D° » K* utv Signal

We use the global vertex skim to search for the signal (see section 4.3.3). This

skim should be efficient since it requires a mildly detected two-track vertex and

97



the signal we are looking for has a detached two-track vertex. Using this skim

will also reduce systematics in the ratio of the widths presented below.

In this analysis, all tracks are searched for correct sign, mass, lepton and
Cherenkov identification combinations to form K,mu candidates. The 7 and u
tracks must be found in the microstrips and the PWC system (they are linked).
The muon is identified in the inner muon detector. The K, must pass basic

cleanup cuts (see section 4.1.7). The 7 and g must not be identified as a kaon or

proton by the Cherenkov system.

We require the mu combination to form a good vertex with a confidence
level greater than 10%. (When the K, decays upstream of the microstrips, we
include the K, track in this fit.) The muon must have a momentum greater
than 10GeV/c and the K mp combination must have a momentum greater than
50GeV/c. Background from D® — K,27, where a pion is misidentified as a

muon, is eliminated by requiring that the reconstructed K,mu mass be less than
1.8GeV/c2.

We find the primary vertex by searching for the most upstream high-quality
vertex in the target region that can be made from the tracks which remain after

the I\ymp combination is removed. This is the DVFREE algorithm explained in

section 6.5.

Finally, we require that the 7wy vertex be isolated from other tracks in the
event (not including tracks in the primary vertex) by requiring that the maximum

confidence level for another track to form a vertex with the candidate be less than

1%.

8.1.1 Signal Cut Response

Figure 8.1 shows the wrong-sign subtracted signals for several £/ cuts.

The first plot in Figure 8.2 shows the signal’s survival vs the £/o cut compared

to the survival predicted by our Dt Monte Carlo. The very good agreement
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indicates little contamination from shorter lived charm states or the longer-lived

D+

Figure 8.2b shows the signal survival as a function of the minimal confidence
level requirement for the secondary vertex compared to that predicted by our
Monte Carlo. The agreement is very good indicating there is negligible back-

ground from events where the 7 and y do not originate from the same vertex.

Figure 8.2c compares the data and Monte Carlo response to the secondary
vertex isolation cut. Here the vertex is more isolated as the confidence level cut
gets smaller. Agreement is good indicating negligible potential background from
charm states with an additional charged track in the same vertex as the K mpy

candidate. We require this confidence level to be less than 1%.

8.2 D(D° — K*~u*v)/T(D* - K 'utv)
Table 8.1 shows the yields and efficiencies for these two decay modes.

Table 8.1. Semileptonic Signals

Signal Yield [Efficiency | Corrected Yield

D° — K*~pty|243 £59) 01265 | 19200 + 4700
Dt o K utv|874 +44] 02237 | 39000 + 2000

We need to include some post-hoc corrections to the yield of D*’s. Detailed
comparisons of data and Monte Carlo show that the Monte Carlo is optimistic
about the efficiency to link a PWC track to a microstrip track. Since the analysis
of the DT mode requires the kaon is linked while there is no such requirement
on the K, in the D% mode, we will lower the D yield by 3%.

We also correct for the presence of charm backgrounds where a pion has been

misidentified as a muon. We have measured the probability of misidentification
. - ] .

using the high-statistics all-charged decay K2x. D — K n*x° can appear in

the D* signal when the pion is misidentified as a muon so we lower the D% yield
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by 1.3%. Similarly, because D® — K*~ 7% 7% can appear in the D signal through
misidentification, we lower the D° yield by 7%.

Finally, to extract the ratio of the widths we have to include production ratio
of D* /D" and the ratio of the total widths, which is the inverse of the ratio of

the lifetimes, 7 /70:

N(K*~ptv) D7 T4 Yield(K*~ putv)
& uty)y D° 7 Yield®E ptv)

(8.1)

In the 1988 data, E687 measured the production ratio D*/ D® =042+ .05
[24]. This ratio was measured by comparing the yield of D — K=, D® — K3r
and Dt — K2r and correcting with the known [19] branching ratios. This
production ratio is also consistent with a simple model where both isospin states
(D° and D* or D*® and D*t) are photoproduced equally and the D*’s (with
their three spin states) are produced three times as often as the D’s. This simple

model, combined with the known [19] D* branching ratios, lead to essentially the

same production ratio.

In the 1988 data, E687 measured the lifetime ratio 74 /79 = 2.52 £ .17 [25].
Putting the all the numbers together, we find the ratio of the partial widths is
1.37 £ .34.

Most of the systematics such as muon identification probability and trigger
variations cancel. We include a 10% systematic for the potential mismodeling of
the Cherenkov cut on the kaon in the Dt decay mode and another 10% for the

potential mismodeling of the K, reconstruction efficiency in the D° mode.

Possible contamination of the D° from K*~x%u*v is included as an asymmet-
ric systematic error of —32% from the current limit [26]. Possible contamination
of the D* from T *'x" pv is included as an asymmetric systematic error of +5%

from the limit presented in Chapter 7.
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The result is consistent with the expected ratio of unity:

- M_%—’-‘:i’l =137+.34 118
(K ptv)
This is the first confirmation of the expectation that that weak current re-
sponsible for Cabibbo favored semileptonic decay acts as an isosinglet since it
shows that one gets a consistent decay rate under the simultaneous rotation of
the Dt into the DY and the K*~ into the K%, If we assume that the isospin test
must work, this result could be interpreted as a test of the absolute branching
ratios used to find the E687 D* /DO production ratio.
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Figure 8.1. D® — K*~ptw signal alicr wrong-sign subtraction for the indicated
(/o cuts. The data are the points with the error bars and the fit for the signal
yield is the solid line. The fit uses a Monte Carlo prediction for the lineshape,
based on our measurement of the form factors in Chapter 7. The background
term is of the form ayx®2e™** where a; are the fit parameters and z is M (7)) —
(M(Is) + AM(x)).
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Chapter 9

D} — ¢utv

The decay D} — ¢uv is the D} analogy of the decay Dt — T’ pv discussed
in Chapter 7. As discussed in [19], this branching ratio is used to normalize all
D7 branching ratios. Theory predicts (D} — ¢uv) =~ T(D+ — F*opw). This
prediction, combined with the branching ratio reported in this chapter, the D*
and D7 lifetimes, and I'(D* — b4 pv) allows us to calculate the partial width
I'(DF — ¢n). This is critical because all other D} branching ratios are measured

as ratios to ¢.

In this chapter we will discuss the analysis used to find the D} — @puv signal.
As in the D* case, we are only reconstructing part of the final state because we
do not detect the neutrino so we discuss the signal’s response to analysis cuts,
investigating possible contaminations. Next, we perform a fit to distinguish the
signal from background using all the available kinematic information. Next, we
obtain a signal in D} — ¢ and report a measurement of I'(D} — ¢uv)/T(D} —
¢7). Finally we report a new measurement of I'(D} — ¢7)/T(D? — all)

9.1 Analysis Method

Following the D% semileptonic analysis, we will find detached K* K~ u* ver-
tices, plot the K+ K~ mass and use the ¢ peak as the signal.

In the DT case we can find wrong-sign muons with a K" because of the
K — p charge correlation of the signal. This allows us to subtract backgrounds
from a random muon with a K- . In the D} case, we have a ¢ - K~ K for the
resonance so there is no ' — u charge corelation to separate a right-sign from
wrong-sign and allow the subtraction of the background from a ¢ combined with
a random muon. Without a wrong-sign subtraction we have to even more careful

that all backgrounds are removed or understood.

To begin, we find all ¢ candidates which form a good vertex (DCL> .2) with
a muon identified in the inner muon detector. We call DVFREE to find the
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primary vertex and require /6 > 3. We require CL2< .1 and KP Cherenkov
identification on both kaon candidates. To avoid a possible contamination from

diffractively produced ¢’s, we require the p? of the ¢ is greater than .05GeV?/c2.

Figure 9.1 shows the ¢ mass histogram for candidates passing these cuts for
the 1990 and 1991 data sample.

9.2 Signal Cut Response

Figure 9.2 shows the ¢ signal response for successively larger £/o cuts. Fig-
ure 9.3a shows the ¢ yield vs the ¢/o cut and compares it to the D} — ¢uv
Monte Carlo prediction, showing géod agreement. This implies the signal is not
dominated by a D% signal which would have a significantly longer survival, or

any background with a lifetime different from the D}.

Figure 9.3b-d shows the ¢ yield vs three different analysis cuts compared
to the D} — ¢uv Monte Carlo prediction. The first (b) shows the DCL cut
response has a significant build-up at low DCL compared the Monte Carlo. This
implies a significant background from events where the ¢ did not originate from
a single vertex. To avoid this background we require DCL> .2 for all further

analysis.

The dashed line on Figure 9.3b, the DCL cut response, is the result of running
the analysis on a c¢ LUND Monte Carlo. This Monte Carlo will have the signal
as well as all known charm decay modes in approximately the right ratios. We
find the DCL response tends to peak up at low DCL, like the data. We find
this background is from D} — ¢77®, with the 7 going undetected and the muon
from the semileptonic decay of the ¢ meson. (Also see the discussion of DCL in

section 6.2.)

Figure 9.3c shows the response to the CL2 cut, again we are seeing a build-
up, but this time it is at large CL2 where we expect backgrounds from higher-

multiplicity decay modes such as ¢37 with a 7 being misidentified as a u. We
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can greatly reduce this background by requiring CL2< .1. Figure 9.3d shows the

CL1 response agrees very well.

Figure 9.4 compares the ¢ signal’s K K yu mass to the Monte Carlo prediction.

The agreement is reasonable, the data might tend to a lower KKy mass.

Figure 9.5 shows the p% (relative to the beam direction) distribution for the
¢. This distribution shows a small excess at very low p4 which is not predicted
by the Monte Carlo. This is probably due to diffractively produced ¢’s from
beam photons combined with a random muon. To avoid these ¢’s completely we

require p2 > .05 for the final branching ratio.

9.3 Kinematic Fit

To extract the yield of D} — @uv we will fit the distributions of the kinematic
variables. In practice, we find the most difficult background to discriminate

against is ¢m0uv.

We can reconstruct all the kinematics of the decay using the method outlined
in Chapter 7 for Dt — x° pv. We can then proceed to calculate the magnitude
of the matrix element for each D} — ¢uv candidate. As discussed in Chapter 2,
the values for R, and R; for the D} decay should be the same as for the D+
decay [12]. D} — ¢uv decays should proceed by the semileptonic matrix element
and preferentially populate larger values of the matrix element than decays that

proceed through phase space, allowing some discrimination between the two.

Figure 9.6 shows six possible distributions that we could use to try to separate
the signal from backgrounds. We show the expected distributions for the signal
and the ¢7n%ur contamination. In this figure we see that the ¢u mass should
discriminate between the signal and the é7%uv, but the distribution of the matrix
element is not a good discriminant. This is because ¢7°uv populates lower values

of cos 6, which has a large value of the matrix element.

Of the three variables which are used to characterize the angular decay dis-

tribution, only cosf, and cosf, show good discrimination power, y = t/tma:
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does not. On the ¢ resonance, one can compute the ¢u mass given cosé, and
Yy = t/tmez. Therefore we expect no gain in overall discrimination power by
including all three angular discriminants rather than just any two of the three.
Because of the similarity between the signal and background y distributions, we
also expect a fairly modest gain in discrimination power by including, say, cos§,
as well as the ¢y mass compared to the use of the ¢u mass as the sole angular

discriminant.

To quantitatively determine which discriminants are best and what bin sizes
are needed, we calculate the effectiveness of each choice of discriminant and
binning. We work with a simplified model where there is only the signal and
the ¢7%uv contamination and there is no non-¢ background. We bin the Monte
Carlo distributions and calculate the estimated error in a binned likelihood fit
with one fit parameter, f, which is the fraction of events that are the background,

additional 7%, mode:

1 14
5 = §d—;2£ w=-2InLl (9.1)
Nl —H:
L::Zui_]\z'i ui=(1—f)fsig+ff1r° Ni =(1_f0)fsi9+f0f7"°

bins

We compute these a priori errors for the case of a parent population background
level of fo = 27%. Because the parent bin populations are normalized to unity,

the calculation will return ov/N where N is the total ¢ yield.
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Table 9.1. ¢ Fit Discriminants

N M(¢r)
)

2
<

N M.E. | N cos8y| N cos8,|ovVN

1 1 1 | 1.58
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7.71
4.23
1.66
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We can see immediately that, as expected, neither-y or the matrix element
provides any significant discrimination power as indicated by the large error pre-
dicted for the (1,5,1,1,1) and (1,1,5,1,1) cases. Similarly, we find cosf, has a
little more power and M(¢m) and cos 8, have good discrimination power. The
(8,1,1,1,1) case compared to the (5,1,1,1,1) case indicates that we don’t need
to add any more bins to M(¢n). Comparing the (5,5,1,1,5) to (5,1,1,1,5) and
(5,5,1,1,1) we see that M(¢7), y, and cosé, are mostly not independent because

including all three does not improve the error over using any two.

Going from (5,1,1,3,1) to (5,1,1,5,1) does not significantly improve the error,
indicating only three bins are necessary in cosf,. We will proceed with the last

set, (6,1,1,5,4), because it has the best predicted error. We go with 6 bins in
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M(¢m) to get the maximum power from that variable and include both cosé,

and cosé,.

Finally, to separate guv from potential D* backgrounds, we use the proper
time distribution as the last distribution to fit. We fit to the joint distribution of
M(¢m), cosb,, and cos 8, and the projection of the proper time since we expect

the proper time to be uncorrelated with the other variables.

The decay modes which we allow in ¢ fit are presented in Table 9.2. For
the modes with measured branching ratios we also report the fraction of the ¢
signal expected from this mode. Note that D¥ — ¢uv is not expected to be seen
because it is Cabibbo suppressed and the dd in the final state quark diagram must
rescatter to form a ¢. We also do not expect to see any significant D} — ¢n%uv
because the the formation of the additional 7° from gluons is Okubo-Zweig-lizuka
suppressed. As reported in Chapter 7, the equivalent decay for the D, F*Owo;w

: e . . =40
is not seen and is limited to be very small relative to D* — K uv.

Table 9.2. ¢ Fit Considered Decz;y Modes

Decay Mode |Matrix Element | Estimate (% of ¢’s)
D} — ¢uv s.l. -
D+ — ¢uv s.l. <12

D} — ¢nn® p.s. 58+3.5

- D} — ¢37 p.s. 39+ .18

Dt — ¢mn® p.s. 51+3.3

Dt — ¢_I?O;w p.s. -

D} — ¢nuv p-s. -

The estimate of the background level is made from a combination of the
relative efficiencies of the the background and signal, the branching ratios for the
modes, our measurement of the muon misidentification probability, (x = .0088),

and, for the Dt mode, the production ratio, DY /D% = .6+.2, which is estimated
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from the the yields of D*, D} — KK, and their known [19] branching ratios.

For example, for the Dt — ¢77® mode:

BR(D* — ¢7n7°) (Dt — ¢7n®) DY

= 5.1+ 3.3%
BR(DY — ¢uv) «(DF — ¢uv) DF - ’

%contamination =

The fit is binned maximum likelihood and the fit function is simply the Monte
Carlo distributions of the three kinematic variables. To subtract the non-¢ back-
ground, we add the distribution of the events in the ¢ high and low sidebands to
the fit prediction. The errors are slightly underestimated because we are ignoring
fluctuations in the non-¢ background distribution about the parent population.
The fit variables are the fractions of the ¢ signal in each decay mode. There is a

constraint that the sum of the fractions is one.

The fit results are summarized in Table 9.3.

Table 9.3. ¢ Fit Results (%)

Decay Mode |fraction (%)

Df —¢uv | 58419

DY — guv 416
Dt — ¢rn® 6+3
D} — ¢3w 4+ .2
Dt - ¢mn® 6+3

D* - ¢F0;w 57
DY — ¢nuv 21+20

Figure 9.7 shows the fit results displayed over the data distributions of the
three kinematic variables. The large errors on the signal and ¢7°uv yield in-
dicates that there is little power to discriminate between the two and the fit is
consistent with a large of of combinations of these two modes. The yield of signal

plus ¢7%uv is 79 + 9%. We will proceed assuming that this sum is actually all
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signal. This is standard assumption used by other workers [27,28,29] and we are
consistent with no ¢x%uv. If we fit without the ¢x°ur background, we find the

signal fraction is 76 + 9, completely consistent.

If we assume there is no contribution from Dt — ¢uv, Dt — ¢-I?0 pv, and
D} — ¢7°%uv which are expected to be insignificant, and simply subtract the
expected levels of the other contaminants, we find the ¢ peak is 89 + 6% signal.

Figure 9.8 shows data distributions overlayed with the prediction under these

assumptions.

9.4 I[(D} — ¢ptv)/T(DF — ¢nt)

We find the D} — ¢ signal in the same skim and with the vertexing and
cuts except for the muon cuts and we require /0 > 5. We look at three D} signal
regions based on the D} mass error, 9.505MeV/c?2. We take £20¢ as the signal
region with weight= 1 and two sidebands 40 to +£60 with weight= —1 and
make a weighted histogram of the K K mass. The resulting signal is Figure 9.9.

The branching ratio is found separately in 1990 and 1991 data since we expect
significantly different muon efficiencies. The semileptonic efficiencies include the
small (15%) effect of the matrix element. The numbers in Table 9.4 shows the

yields, uncorrected by the results of the fit for contamination.

Table 9.4. Branching Ratio Signals

Mode Yield |efficiency (%)
DY — ¢uv (°90)| 44 £9 2.595
D} — ¢7 (’90) | 98 + 14 4.548
Dt — ¢uv (91)| 81+ 13 1.447
D} — ¢ (’91) |203 £20 3.395

The resulting branching ratio, uncorrected for contamination but with a 5%

correction for the target absorption of the extra hadron in ¢én, is .75 £+ .18 in
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the '90 data and .89 + .17 in the ’91 data. These two are completely consistent
so we proceed to combine them and find .82 + .12. Taking the results of the
contamination fit which gives 79+9% signal, the branching ratio becomes .65+.12.
Since the ¢ Monte Carlo predicts some contamination, about 10%, from ¢’
with a muon from the ¢ decay, and since the data response to the DCL cut shows
a slight excess at DCL> .2 compared to DCL> .4, also about 10%, we will make
a post-hoc correction by lowering the branching ratio by 10% to .58 &+ .11.

As the main source of systematic error we take the difference in this mea-
surement and the result if we ignore the kinematic fit and simply subtract the
expected backgrounds. This method gives a 13% systematic. The other sources
we expect are 5% for the difference in absorption and scattering of the additional

hadron in ¢7, and 3% for the possible variations in the HC triggering thresholds.

Table 9.5 compares this measurement to the other measurements available.

Table 9.5. Branching Ratio Measurements

Experiment Signal BR
E687 (1) 97+ 17 584 .11 + .08
E691[27] (e) - < .45
CLEO[28] (p+¢€) |(17+6) + (37+9)| .49+ .10F])
ARGUS[29] (e) 104 + 26 B5T+.15+ .15

9.5 I(D} — ¢nt)/T(D} — all)
To calculate the absolute width for D} — ¢n we use the formula:
T(Df — ¢7*)  T(DF — ¢nt) 7(DF) I(D* » K utv) T(DF — ¢ptv)

T(Df —all)  T(DF - ¢uty) 7(D*)  T(D* —all) p(p+ o, BOuty)
(9.2)

where we have used the fact that I'(X — all) = k/7x.
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The last factor relating the dominant semileptonic widths of of the D*
and D} is expected[13] to range from .78 to 1.02, we will use .9 + .12. We
use a lifetime ratio taken from our recent measurement[30] of the D} life-
time (0.475 + 0.02 £ .007 ps) and the world average [19] lifetime for the D*
(1.066 + .023ps). The Dt — _I?o;w width is obtained using the measure-
ment of the B~ pv branching ratio relative to K~n*n* presented in Chapter 7
(.56 = .04 + .06) and the present world average [19] absolute branching ratio
for D — K-ntnt (8 23%). The result is (D} — ¢n%)/T(D} — all ) =
(3.1 + .6(stat) £ .5 (sys) =+ .4 (theoretical))%. This compares well the current
world average, 2.8 £ .5%.
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Figure 9.1. D — ¢utv signal. The data is the histogram and the fit for the
signal yield is the solid line. The fit is a Breit-Wigner with the known [19] ¢
width, convoluted with a Gaussian of width 1MceV/c? which is our measurement

error, from Monte Carlo. The background is a linear function.
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Figure 9.7. The projections of the fit results. The data are shown as the points
with the errors bars. The fit result is displayed as a solid histogram. The three

dimensions are a) M(¢u), b) cosé,, c) cosb,, and d) the proper time.
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Figure 9.8. The projections predicted when we do not fit but simply subtract the
expected backgrounds. The data are shown as the points with the errors bars.
The prediction is displayed as a solid histogram. The three dimensions are a)

M(¢u), b) cosb,, c) cosb,, and d) the proper time.
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Figure 9.9. The ¢ mass for D} — ¢rt candidates after subtracting the D7
sidebands. The data are shown as the points with error bars and the fit is

displayed as a solid line.
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Chapter 10

Conclusion

We have presented an overview of the fixed target photoproduction experi-
ment E687. We have presented a method of calculating the true errors on track
parameters that were found by fits that ignore MCS and tests of these calcula-

tions. We have presented a candidate driven vertexing algorithm and demon-

strated it effectiveness.

We have presented extensive tests demonstrating the experiments ability to
reconstruct samples of four-body muonic semileptonic decays of D mesons, and

have presented new measurements of the branching ratios:

I'(D* = K~ n*p*v(nonresonant))

DT = (s ) = .083 +.029
(or a limit of < .12 at the 90% confidence level),
+ C= V0 gt
Fé?p:;( ?Kf w'?’;piul)j) <042
and ;
DD — B uty) _ 56 &+ .04 £+ .06

(Dt —- K—ntrnt)
We have measured the form factors governing the decay Dt — Fou‘*uz
R, =174+27+.28, Ry =.78+.18+.10, whichimply  Iy/T; = 1.20+.13+.13

We have presented the results of the isospin test:

I(D® — K* u*v)
(Dt — Fop"’u)

15
=1.37+.3¢ 732

122



Finally, we have presented a measurement of the branching ratio:

(DY — ¢utv)
= .58 £.114+ .08
(D} — ¢nt)

*

which, with a theoretical input, implies

(DY — ¢7t)
T(DF — all )

= (3.1 + .6(stat) £ .5 (sys) = .4 (theoretical))%
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