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ABSTRACT 

The method of Lagrange multipliers, generalized to include inequality con- 
1. 

straints, is used to derive various bounds on scattering amplitudes based on 

unitarity and polynomial behavior. Various physical quantities associated with 

two body scattering processes are treated, such as the total cross section, 

elastic cross section, absorptive part and real part of the scattering amplitude. 

Using these new mathematical techniques, several familiar problems are treated 

and generalized. In addition, a number of new results are presented. Both 

asymptotically large energy bounds and finite energy bounds with no arbitrary 

constants will be given. 
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I. INTRODUCTION 

For several years, the hope has persisted that the general principles of 

Lorentz invariance, unitarity, and maximal analyticity of scattering amplitudes 

would determine most if not all the properties of the strong interactions, if, in 

addition, the scale of masses is given. [l] Usually, these general principles 

have been supplemented by additional assumptions about internal symmetries, 

maximal analyticity in angular momentum, and asymptotic behavior. [2] Although 

the phenomenological applications of this so-called S-matrix approach have been 

many, so far, no explicit example has been given of a model consistent with all 

three general principles. Consequently, in the absence of a theory, it is inter- 

esting to explore the consequences of various subsets of the general assumptions. 

For example, recently much attention has been given to models [I33 which are 

Lorentz invariant and crossing symmetric but which violate unitarity. A com- 

plementary area of investigation explores the consequences of Lorentz invariance 

and unitarity as well as rather weak assumptions about analyticity, and it is to 

this subject that the current investigation is devoted. 

Beginning with the classic work by Froissart,[4] it was realized that unitarity 

severely limited the high energy behavior of scattering amplitudes. Subsequently, 

a great many upper and lower bounds[5] have.been derived on various quantities 

of physical interest, such as total cross sections, elastic cross sections, dif- 

fraction peaks, the difference between particle and antiparticle cross sections, 

and so forth. In general, the results obtained, however interesting, have been 

more useful as limitations on theoretical models than in phenomenological ap- 

plications. One of the frustrations associated with this work is that very often 

the methods used to solve one problem are peculiar to that particular problem 

and not easily transferable to the next problem. A sedond deficiency has been 
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that, having obtained an upper or lower bound, one seldom knows whcthcr it is 

the least upper bound or greatest lower bound under the stated assumptions. 

To a significant degree, the methods developed in this paper rclicvc both of 

these frustrations. It is hoped that the use of thcsc powerful mathematical 

techniques will allow more physical input into these types of problems. 

We hope that the only prerequisite for understanding this paper is an clemen- 

tary working knowledge of the method of Lagrange multipliers for finding maxima 

and minima. [6] To put the present discussion into a physical context, however, 

it would be useful to have some familiarity with the general results on this 

subject, as presented for example, in the book by Eden. [5] In the interest of 

brevity, we will omit any motivation for the introduction of Lagrange multipliers 

and their previous applications in physics. [7] 

Our mathematical presentation will be based almost entirely upon the very 

elegant discussion by M. R. Hestenes. [8] However, in the interest of simplicity, 

some definitions and the theorems, although stated correctly, have not been 

given in complete generality. We highly recommend Chapters 1 and 5 of H to 

those physicists interested in a detailed mathematical discussion. 

The outline of the paper is as follows: Section II contains the mathematical 

basis for the techniques used to solve problems in subsequent sections. As a 

pedagogical recommendation, we suggest that the reader skim over this section 

to try to absorb the general idea and then to proceed to the examples. He should 

however pay close attention to the discussions of the significance of multipliers 

which follow Theorems 1 and 2 and to the example following Theorem 3. He 

might later return to the mathematical section after seeing how the theorems 

are used in several examples. 
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Sections III through V describe applications of the method to particular 

problems. Sections III and IV contain applications at a fixed energy. Bounds 

are given for the imaginary part, the real part, and combinations thereof. I. 

Section V contains applications to averages over a finite energy range. These 

latter examples involve straightforward generalizations of the theorems given 

in Section II. 

II. MATHEMATICAL PRELIMINARIES 

A. 

The notion of the tangent line to a curve or the tangent plane to a surface is 

very familiar. For the subsequent discussion, however, it is essential that these 

notions be generalized to the tangent cone of a set [s] S at a point x0 e S. The 

first step is the concept of directional convergence. In S let {xi} be a sequence 

of points converging to a point x0 (but xi # x0). We will say {xi/ converges to 

x0 in the direction of the unit vector h if 

More geometrically, if x(t) is any curve in S terminating at x0, the half-line 

tangent to the curve is generated by the unit vector h. The collection of all such 

half-lines originating at x0 is called the tangent cone C to S at x0; For example, 

if S is the surface of a sphere, the tangent cone at a point x0 on this surface is 

the familiar tangent plane. The unit vectors h which generate this plane sweep _A 

out a unit disc tangent to the surface. They satisfy (x0, h) = 0. If S is the surface 
a 

and interior of a ball (closed ball), the generators h of the tangent cone to a point 

x0 on the surface sweep out a hemisphere satisfying (x0, h) 5 0. The generators 

of the tangent cone at a point inside the ball sweep out a unit sphere. Briefly, 
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1 

the tangent cone C of S at x0 is the collection of all tangent lines to all curves 

in S which terminated at x0. 

To discuss the maxima and minima of functions, it is necessary first to 

introduce some notations. Given a function f(x), we denote its gradient vector 

at x0 by ft(xo). Given any vector v, the linear functional f’(xo, v) = (ft(xo), v) will 

be called the first differential of f. If the vector v or point x0 is incidental, we 

may suppress them and abbreviate the first differential by the notation[lO] 6f. 

Similarly, the second differential of f at x0 is defined by the quadratic form 

ft’(XO,V) = vi 
#f(XO) 
ax ax _ vj’ 

i j 

Let us first restate in this language and notation two familiar theorems on 

Lagrange multipliers. Suppose we wish to ma..ximize[ll] a function f subject to 

a number of (equality) constraints among the variables of the form 

f@(X) = 6 r o!= 1, . . . . 

In the following, S will denote the subset of gn satisfying these constraints. Let 

x0 E S and let C denote the tangent cone of S at x0. Then one can easily show that - 

Po,(xOJ4 = 0 o!=l 3 l -‘t r (1) 

(r 5 n) for all vectors h in C. If, conversely, every vector h satisfying these 

equations (1) lies in the tangent cone C, then x0 is called a regular point of S. 

Thus, for a regular point, the tangent cone is’ uniquely defined by the linear 

homogeneous equations (1). If the gradients fA(x6) are all linearly independent, 

then x0 is called a normal point. One can prove that every normal point is a 

regular point. The fundamental theorem on the existence of Lagrange multipliers 

characterizes those local maxima which are regular points. m 

THEOREM 1 

Suppose x0 is a regular point of S and suppose x0 is a local maximum of 

f.onS, 
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(a) Then there exist multipliers p, such that the auxiliary function 

.x = f + c’&fQ 

has a vanishing gradient, 

s?‘(x,) = 0 

, 
(b) Moreover, the second differential is nonpositive, 

-P’(xo, h) <, 0, 

for all h in the tangent cone C of S at x0. 

(c) If x0 is normal, the multipliers are unique. 
. 

The tangent cone plays an essential role in the statement of the theorem in 
. . 

two respects: (1) Only for a regular point do the conditions 6(x0, h) = 0 uniquely 
_: 
determine the tangent cone, and this appears to he essential to the proof of the 

theorem. (2) The second differential need have a definite sign only when restricted 

to vectors in the tangent cone. 

The usefulness of the theorem is that it almost reduces the problem of maxi- 

mizing a function f on a space S defined by a number of constraints fQ to the 
.’ 

problem of maximizing an auxiliary function[l2] 9 on the whole space &‘“. The 

way in which this theorem is used in practice is as follows: One solves the n 

gradient equations, .ZZt(xO) = 0, for x0 as a function of the unknown multipliers ~1,. 

These solutions x0 = x0&J are inserted into the constraint functions fa(xO) and 

the multipliers are chosen to satisfy the constraint conditions for(xo) = 0. The 

solutions are limited to those for .which LZII(xo, h) 5 0. Thus one arrives at 

a number of candidates xobQ) (calledcriticalpoints) -for local maxima. The 

theorem assures one that all local maxima which are regular points will be - 

among these critical points. Unfortunately, the theorem does not say which of 

these critical points will be local maxima and which will only be saddle points. 
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However, those points for which St(xo, h) is strictly negative will in fact be 

local maxima. Actually, this conclusion, as given in the next theorem, holds 

even if x0 is not a regular point. 

THEOREM 2 

Suppose there exists an auxiliary function of the form 9’= f + pcy& with 

multipliers p, such that its gradient vanishes at a point x0, i. e. , 

B’(xo) = 0 

* Suppose, furthermore, that the second differential is strictly negative 

P(xo, h) < 0 

for all h # 0 in the tangent cone C of S at x0. Then x0 is a local maximum of f. 

Before proceeding to the generalization of the above to inequality constraints, 

let us discuss an interesting interpretation of the multipliers. To be specific, 

suppose we wish to maximize function f(x) subject to a constraint of the form 

fL(x) = a- b(x) = 0. Let x0 be a local maximum. Then according to Theorem 1, 

there is a multiplier p such that the auxiliary function 

.2’= f + p(a- b) 

has a vanishing derivative, 

P(xo) = f’(xo) - pb’(xo) = 0. (2) 

Since b(xd = a the point x 
.O 

depends implicitly on a, and hence, the maximum 

value f(xo) also depends implicitly on a. We should like to investigate just how 

the maximum value changes &r small change of a. By the chain rule 
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Since f’(xo) = pb’(xo) by Eq. (2), it follows that 

However, $ b(xo) = 2 = 1, so finally we arrive at 

Wx,) 
Ir= & (3) 

The multiplier ~1 is precisely the rate of change of the maximum value of f with 

respect to a,which is the magnitude of the constraint function b(x). [13] This 

result may only be a mathematical curiousity at first sight, but in physical 

applications it can be very useful. Often, on intuitive grounds alone, one knows 

whether an increase in the magnitude of some constraint will increase or decrease 

the magnitude of the maximum of f and, hence, the sign of the multiplier can be 

immediately determined. In many circumstances one will be able to guess the 

order of magnitude of such changes and, therefore, estimate p even before 

beginning to solve the gradient equations. In any case, Eq. (3) is the basis for 

the physical interpretation of the multiplier in the solution to any given problem. 

There is another more general way to state this result. Let xO.be a local 

maximum of f(x) subject to the constraint fl(x) = 0. As before define the 

multiplier p and the auxiliary function 

9=f+/.Jf1. 

How does the maximum value f(xo) change with an infinitesimal variation 6fl 

in the function fl? Proceeding as above, one finds at x0 
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In the general case considered by Theorem 1, one has 

where it is to be understood that, during the variation of a given constraint 

function fQ, all other constraints are held fixed. 

The elegance and usefulness of the concept of tangent cone and of the inter- 

pretation of the multipliers given above will now be demonstrated by the generali- 

zation of these theorems to include inequality constraints. Consider the problem 

of maximizing a function f subject to a number of inequality constraints ga! which 

we write in the form 

g,(x) I 0 cY= 1,2,...,q (4) 

In addition, there may also be a number of equality constraints 

f,(x) = 0 a= l,...,r (5) _ 

Let S denote the set of points satisfying both sets of constraints (4) and (5). 

Consider any point x0 E S. If g (x 
Y O 

) > 0 for some y, then g,(x) > 0 for all x 

in some neighborhood N(xo) of x0. But then, in this neighborhood, the set S is 

determined independently of the constraint gy. Hence, for studying local prop- 

erties around x0, we may ignore any constraints g y for which g+xo) > 0. This 

crucial observation essentially reduces the study of inequality constraints to 

equality constraints. Given a point x0 E S, it is convenient to divide up the 

inequality constraints into two sets 
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Intuitively, one may think of I 
xO 

as those inequality constraints for which x0 is 

in the Interior, whereas B is the collection of constraints for which x 
xO 0 is on 

the Boundary. One can,easily show that 

gh(x,, h) L 0 

patxo, h) = 0 

Q!eB 
. - xO 

cY=l ,***s r V-9 

for all h in the tangent cone C’of S at x0. As before, if the converse is true and 

every vector h satisfying these conditions is in C, then x0 will be called a 

regular point. A point x0 will be called normal if all the gradients 

gh a!eB 
.xo 

f’ cl! a! = 1,. . . , r, 

are linearly independent. It can be shown that ‘a normal point is a regular point. 

The analogue of Theorem 1 will now be given: 

THEOREM 3 

Let x0 be a regular point of S and suppose x0 is a local maximum of f on S. 

(a) Then there exists multipliers ha 1 0, p, such that the auxiliary function 

has a vanishing gradient 

$qx,) = 0 . 

Furthermore, ifa!eI 
xO’ 

we may choose A a = 0. (This is simply 

a repetition of the statement that we may ignore any inequality constraint 

gQ! for which g,(x,) > b.) 

(b) Let I denote the set of indices y for which Ay > 0, and let SI be the 

subset of S defined by 

gr’x) = 0. * 
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Then the second differential is nonpositive 

P(xo, h) 5.0 

for every h in the tangent cone Cl of SI at x0. 

(c) If x0 is normal, the multipliers are unique. 

It is interesting that, in part (a) of the theorem, the existence of multipliers 

is supplemented by the statement that, for the inequality constraints, their sign 

is known (h 
Y 

L 0), something which cannot be said for equality constraints. One 

can easily show that the earlier result, which shows that the multiplier is the rate 

of change of the maximum with respect to the constraint, also holds .for inequality 

constraints. Thus if we write g,(x) = aQ! - b@(x) 2 0, we have 

‘.A =i!&. 
CY a! 

Since increasing the upper bound aa! cannot decrease the maximum value, it 

follows that hQ! L 0. Alternatively; one may vary the function gc, rather than 

its value to obtain 

(7) 

for all (Y. In particular, if gY(xo) > 0, then clearly the maximum value f(xo) 

is independent of infinitesimal variations of the function g and, hence, A = 0. 
Y Y 

Perhaps it is worthwhile emphasizing this result by considering an example 

in one-dimension. Let a regular point x0 be a local maximum of f(x) subject to 

the constraint g(x) _> 0, and suppose x0 is at an endpoint so that g(x,) = 0. The 

constraint breaks up the real line into admissible subsets, e.g. , x 2 0 or 

sin wx 2 0. (See Fig. 1.) The tangent cone at x0 is the half-line from x0 to + Q) 

(or to --Q)) when x o is approached in S from the right (or from the left). A unit 
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vector h in C satisfies g’(xo, h) = hgf(xo) 2 0, and h = +l (-1) if x0 is approached 

from the right (left). The assumption that x0 is regular implies that 

gt(xo) # 0. Since x0 is assumed to be a local maximum of f, we have f’(xo, h) = 

hff(xo) 5 0. According to Theorem 3, there exists a multiplier A such that the 

auxiliary function 

has zero derivative 

$?=f+hg 

s?’ = f’ + Ag’ = 0. 

Hence 

h 
-f’(xg) -Wx()) 

= g’(x,) = hgyxo) 2 0. 

This simply means that,if f is rising as the boundary is approached, a positive 

quantity must be added to form an auxiliary function which has a zero slope at 

the boundary. Note the correspondence between this result and our genera1 

result (3). It is quite remarkable that the methods .of differential calculus can 

be extended to end points [14]. Part (b ) of the theorem tells us that, for those 

multipliers Ay for which Ay > 0, the corresponding inequality constraints may 

be treated essentially as equality constraints. In particular, if x0 is also a 

regular point of SI (which follows if x0 is normal), then Cl is the set of all 

vectors in the tangent cone C of S at x0 for which 

g;txo, h) = 0 (Y E r) 

Finally, there is a simple generalization of Theorem 2; 

THEOREM 4 

Suppose there exists an auxiliary function JZ= f f hy ga t- p,fa with multi- 

pliers hy I 0, and p,, such that 

P(xo) = 0. 
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As before, let f be the set of indices y for which hy > 0, and suppose that 

L? “(x0, h) < 0 

for all h# 0 in the subset of tangent cone C of S at x0 for which 

g,;(xot h) = 0 (Ym 

also holds. Then x0 is a local maximum. 

Once again, we see in Theorem 4 that an inequality constraint for which the 

corresponding multiplier is positive may be treated essentially as an equality 

constraint. 

The method by which Theorems 3 and 4 used to solve problems in practice 

is precisely the same procedure described after Theorem 1 for equality con- 

straints. Perhaps the best way to illustrate this is to consider some physical 

examples. 

III. BOUNDS ON THE ABSORPTIVE PART 

A. - 

As a first application of the methods of Lagrange multipliers described 

above, we will rederive two results originally given by Singh and Roy[15]. . In 

presenting these derivations, a notation will be established for the remainder 

of the paper. We will be quite explicit, perhaps even verbose, in our construc- 

tion of the solution. Subsequent applications will be considerably abbreviated 

but these first examples are very helpful in understanding the mathematics 

involved. First, let us consider the problem of finding the maximum possible 

value of the absorptive part of an amplitude at a fixed angle which is consistent 

with a given value of the total cross section. The only additional constraint is 

that of unitarity. In particular, no assumptions of analyticity in momentum 

transfer will be made. It will be assumed, of course,’ that the partial wave 
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expansion converges in the physical region. The usual Mandelstam variables 

will be used to describe the scattering of scalar, unit mass particles. 

In mathematical terms, our problem is to maximize 

A( s, t) = x(21 + 1) amPm( z) 

if the total cross section oT is given, 

A0 = A(s, 0) = 

The unitarity condition is 

2 2 ura -a Jj p pp, 

where ri and am are the real and imaginary parts of the partial wave amplitude. 

Since we will work at fixed s, this variable will be suppressed. Only the maxi- 

mization problem will be treated here, but the minimization problem can be 

carried through in a similar manner by changing the signs of the multipliers. 

To solve this problem, the auxiliary function 9 is introduced as 

LX?= A(s,t) + - x(2Q+l) am 1 + x(21 + l)hm urn : 
The multiplier Q! has been introduced for the equality constraint and the multi- 

pliers hp > 0 for the inequality constraints of unitarity. Since increasing the 

total cross section will undoubtedly increase the maximum value of A(s, t), the 

corresponding multiplier Q! is nonnegative. (See Eq. (3)). Since the constraint 

is surely nontrivial, cy is strictly positive. Moreover, for a given change 6A0 

in the total cross section, the maximum value of A is expected to change by a 

smaller amount, and one anticipates that CY = $$- <_ 1. By varying the rm and 
0 . 

the am, we obtain the equations 

-2 her1 = 0 

and 

P,(z) - a +AQ(l-2'aJ = 0.. 

- 15 - 



The second derivatives will define a nonpositive form if A1 L 0, which has already 

assumed to be the case. These equations are necessary conditions on the r1 and 

am. Any given partial wave is either purely elastic, urn = 0, or inelastic, i.e., it 

is inside the unitarity circle, urn > 0. Thus it is natural to divide the partial 

waves into two classes: 

I= (mlu, > 0) 

B = {f+, = 0} 

where I(B) will be called the Interior (Boundary). 

Now according to Theorem 3, for 1 E I, we are instructed to set he = 0. From 

Eqs. (5) and (6) it is necessary to have P,(z) = CY, but no constraints are required 

on rm and am except that they lie inside the unitarity circle. 

For B E B on the other hand, we must have $2 0. If r1 # 0 then he = 0 and 

a = P,(z), as before. If however rm = 0, then am = ,O or 1 on the boundary and it 

is convenient to distinguish two classes in B: 

B. = llrl = 0, aa = ,O 

and 

BI = PIrl = 0, am= 1 
> 

Solving for hg in each of these classes, we find that 

if P E Bo, then ha = a! - P,(z) L 0 

and 

if P E Bl, then At = Pn( z) - a! 2 0 
. 

In order to utilize the necessary conditions to actually construct the solution, _ 

we must try to invert them to determine their sufficiency. It is easy to see that 
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the partial waves can be divided into three classes, so that 

if P,(z) - Q! > 0, then f! E BI (a Q= 1) 

if P,(z) -a!<O, thenl!eBo (a P = 0) 

if P,(z) - a! = 0, then no restriction on Q (OS “m’ 1) 

Thus the only ambiguity occurs when P,(z) = (Y. n 

Since Bl must be a finite class in order that the sum over B converge, (Y 

must be positive. If BI and I are to have any members, then a! < 1 as cxpccted. 

Now let us turn to the determination of the multiplier cy from the equality con- 

straint (2) : 

A0 = c (2L+l) + c(21+l)ap 
B, I 

(9) 
.A 

At this juncture it is useful to recall that P,(z) for fixed z oscillates as a function 

of I with decreasing amplitudes e.g., 
( 

P,(z) -Jo[2P sin i] for B--coo and small 13 
> 
, 

Therefore one can choose CY to be as small as possible consistent with the sum 

over BI being still less than or equal to Ao. This is always possible since as 

CY decreases from one to zero, the sum over B1 increases monotonically (although 

not continuously) from zero to infinity. Then it is easy to show that one can always 

choose the second sum to fit the given value of Ao. If there is only one integer 

with P,(z) = Q, then the corresponding 0 5 am 5 1 is uniquely determined. If there 

are more than one such integer, then only their sum is determined. However, 

since they all correspond to the same value of P (z) Q 
= (Y, this indeterminancy 

does not affect the maximum value of A; i.e., 

ALAmax= C 

B1 

(21+1) P,(z) f Q C (2L-t- 1) at 
I 

(10) 
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Because of the presence of I, the second differential is not strictly ncgativc, so 

it is impossible to apply Theorem 4 to establish that AmU is truly a maximum. 

This kind of local ambiguity arises occasionally, especially when maximizing 

linear functions or when dealing with linear constraints. There is an almost 

obvious theorem (unstated in H or in L) which may be useful. 

THEOREM 0 

Consider a function f(x) on a domain S and let xoe S. Suppose fl(xo, h) < 0 

for all h f 0 in the tangent cone C of S at x0. Then x0 is a local maximum of f. 

The realm of applicability of the hypothesis is rather limited since, for a 

regular point, a necessary and sufficient condition that there be a vector hI # 0 

such that f’(x o, hI) = 0 is that the set Cl (defined in Theorem 3) be nonempty. 

However, the theorem is relevant to the above example, since usually the set I 

will have at most one element L = L. From the inequality constraint pf 1 0 we 

determine that, for B e B, 
_ 

(1 - 2aa)hm 1 0 

for all h in the tangent cone C. From the equality constraint, we have 

(2~ + l)hL + c (28 + l)hl = 0. 
B 

However, 

At(xo, h) = - x(21 + l)h&l - 2am)hn I 0 
B 

Every term in the sum is nonnegative and, hence, the sum connot vanish unless 

ha = 0 for all P E B. But then hL =Oandsoh=O. ThusA1(xo,h)fOforallhfO m 

in C. By Theorem 0, x0 is a local maximum. 
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The argument fails when there is more than one element in I, for the problem 

is invariant under variations in the subspace of S determined by I. However, since 

A(s, t) is independent of such a degeneracy, the redundant variables can be simply 

eliminated by defining a new variable 6 by 

gF2’ -I- 1) = Cczn + l,“a l 

I 

Then, in spite of the ambiguity among the elements of I, both 4‘ and the maximum 

of A are unique. (See Singh and Roy [15]. ) 

B. - 

The above derivation contains the essence of all our subsequent applications. 

As a second example of this technique, let us add an additional constraint to the 

problem just solved. Again following Singh and Royp5], it will be assumed in 

addition that the total elastic cross section is fixed, 

2 
k* 
4s el 

= zel = x(21 + 1) (a: f ri) . 

Therefore consider the auxiliary function 

.A!?= A + h! - x(21 + I,“e 

We assume of course, that eel < ,oT, so the new constraint will benontrivial. 

Increasing A0 for fixed Eel will have the same effect on the maximum value of 

A as in the preceding example, so we anticipate 0 < a! I 1. Increasing Eel for 

‘fixed A0 will surely increase Amax so it is expected that a > 0. 

The variational equations are easily obtained in the usual manner. For 

I E I, one readily obtains 

rl= 0 am = atP,(z) _- a) 

- 19 - 



where one must have 0 < a1 < 1 by unitarity. For B e B, introducing B1 and B. 

as before, one finds th.at ri = 0, and 
. 

whereas 

if 1 E B1, then Ae = P1 - 0 - t 10 

if d E Bo, then A P 
1 Q! -P$O 

The second derivatives are 

and 

Assuming that I is not empty, this will define a nonpositive form if and only ’ 

if a > 0. Assuming that the total and elastic cross sections are not equal, the 

additional constraint will be nontrivial, i. e., a f 0. Hence, we must require 

a > 0, which in turn implies that the second variation is negative definite. Thus 

by Theorem 2, we are assured that any solution we construct will be a local 

maximum. In this sense, this problem is simpler than the previous example. 

This problem is also simpler in a second respect, viz., the necessary conditions 

displayed above are also completely sufficient to define uniquely the solution. 

The multipliers a and cy are determined from the equations 

A0 = c (26 + 1) +.x(21 + 1) a(Pe(z) - Q) 
Rl - .” I 

c el= C (21 -t 1) + 7321 -t 1) a2(P1(z) - a)2 (11) 
B1 - I... , I. * . 

Having determined a and a, one then computes the maximum value of A. Since 

both of these problems have been discussed by Singh and Roy[15] an explicit 

evaluation will be omitted. Our main purpose here was to present illustrations 
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of the mathematical method in a familiar context. We have already established 

that a > 0 and it can be shown that 0 <a! < 1 as was conjectured. 

It is straightforward to generalize ‘the problem to include more equality 

constraints. Such generalizations have been considered by Jacobs g 2. , [16], 

although these authors obtained the correct form of the maximum only in the 

, case that the set Bl is empty. 

It is interesting to note that the two examples quoted above required no 

assumptions of analyticity in momentum transfer, but required only the conver- 

gence of the partial wave sum in the physical-region. Mathematically, the reason 

that bounds exist in such cases is that the imaginary parts of the partial wave 

amplitude have a definite sign. If similar problems are posed for the real parts 

of the scattering amplitude, no solution can be found because the rl’s can oscil- 

late in sign. One way to get finite bounds is to force the partial waves to fall off 

rapidly for large 1, and this can be accomplished by the requirements of analyticity 

in momentum transfer. Another way would be to require all rm for sufficiently 

large I to have a definite sign. Let us now turn to these considerations. 

C. - 

In this section, the Lagrange multiplier method will be used to improve some 

of the bounds for problems which are well bown. For the problem to be dis- 

cussed here, the new physical requirement to be imposed is that of Jin and 

Martin [17]. 

G E A(s, tI) = x(21 i 1) a&s) P,(w) 5 (12) 

where 
2t, 

w=l+--z s-4 

This is assumed to be true for tI below the nearest c,ontinuum singularity in the 

t-‘channel, which occurs at tI = 4 or 4 2 if the mass is explicitly restored. 



Although the scale so is unknown, what is significant for asymptotic bounds is 

. the power of s. For purposes of discussion, it will be assumed that for any 

given value of s and tl, ,so is chosen sufficiently small so that the inequality 

(12) holds. Also, so approaches a constant as s -QO. 

The first natural problem to consider is the problem of maximizing the 

absorptive part A(s, t) given the Jin-Martin bound. This is essentially the prob- 

lem of Froissart[4] and leads in the forward direction, to the well-known bound, 

o- < 
T- 

“ln2 $ . 
m2. ( 1 0 

We will consider explicitly the slightly more difficult problem of maximizing 

A(s, t) if we are given the total elastic cross section in addition to the &n-Martin 

bound. Thus consider the auxiliary function 

9=A+$ el [Z - x(21 + 1) (ai + rf )] + g [%($-,” - G] +nzQ + lPmuQ 
. 

where the inequality multipliers g and A1 are nonnegative. Since Amax will 

increase with increasing C el, we expect that a > 0; The variations with respect 

to ;h and am yield 

and 

PQW - oyw) - ia1+$(l-2ae) = 0 

The second derivative constraints require that (hn + 1/2a) be positive. As before 

one concludes that r1 = 0 and that a > 0. The second variation is strictly negative, . . . 

so our construction will lead to a local maximum. The L’s split into the usual 

three classes according to the conditions 

if 0 < am = a(P& z) - g P,(w)) < 1, then P e I 

if he = Pm(z) - g P,(w) +o, then d E BI 
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I 

and if 

A1 = gP&w) - P,(z) > 0, then P E Bo. 

, 

Since all sufficiently large B must lie in Bo, g is positive definite and hence the 

maximization requires that -G = 2 (s/so12. In order to have BI or I nonempty, 

one must have g 5 1. Having determined am and he in terms of a and g, these 

latter parameters are determined from the conditions 

= C (2f + 1) P&w) + a C (28 + 1) <P,(z) - g P&w> P&w) 

B1 I 

and 

‘el = C (28 + 1) + a2 

B1 

C(2rn + 1) (P&z, - g P&W2 
I - 

If suffices for our purposes to consider the case when Bl is empty. After solving 

the problem, one can then find out what are the permissible values of ccl and so : “. 

for this to pertain. 

The multiplier g is determined from the equation 

In the appendix we show that g is uniquely determined whenever the left-hand 

side is between zero and one. This will certainly be true for large enough s. 

Then a is found to be . . 

/ F(2f + l)(Pp(z) - gPp(w))2]1’2. 

These parameters must satisfy the conditions that all an must lie between zero 

and one. Finally, the maximum value of A will be given by 

A max(s’ t) = a x(26 -t I) (P&z) - g PI(w)) P,(z)* 
I 
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For large s, small t, the results of the appendix lead to 

l/2 

A(s,t) L Pn C(s) (13) 

where 

and 

C(s) x 4ms 

where m is the exchanged particle mass which has been restored for dimensional 

reasons. As discussed in the appendix, this formula is valid for x < x0 z 2.4, the 

first zero of the Bessel function Jo(x), and only if 

uel I [J&l + J1(Q2] $.fn” C(s) 

If- a,lviolates this condition, then the set B1 must be included. 

From (13), a bound on the total cross section is obtained by setting t = 0; 

one finds 
m 

Jh C(s) (14) 
. 

If uel goes to zero as s ----a, then this bound is an improvement over the result 

of Singh and Roy [18] who have 1/eel in the log rather than its square root. 

IV. BOUNDS ON THE REAL PART 

Let us now turn to bounds involving the real part of the scattering amplitude. 

As noted previously, because the sign of the real part is not fixed, analyticity 

in momentum transfer outside the physical region (in the form of the Jin-Martin 
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bound) is essential for obtaining finite results. One might imagine maximizing 

the real part in the forward direction given only the Jin-Martin bound and uni- 

tarity . This problem is essentially the same as deriving the Froissart bound on 

AO, except that unitarity requires IrlI 5 l/2. Thus one expects that the maxi- 

mum real part is only one-half the Froissart bound, and this may be verified by 

explicit calculation. This problem will be returned to later. 

We will consider in this section the problem of maximizing the real part of 

the amplitude in a definite direction, 

R&t) = x(21 + 1) rf P,(z), 

for a fixed value of the elastic cross section; the Jin-Martin bound, and unitarity. 

The auxiliary function is written as 

.9 = R + p - x(21 + 1) 6 +rij+g[:(<,” - G]+c(,l+ I)A1ul: 

Increasing Eel will surely increase R.-, so p 1 0. Proceeding in the by-now 

familiar manner, one finds that the interior I is empty. On the boundary, which 

corresponds to purely elastic scattering, the solution is 

rl = P,(z)/~(~~ + P) 

. 

where 

ai = Pi (z)/2(4 + P)($ + 2P + g P&w)) - 

Ap + p‘= K(z) + (p + gPl(w))zli/2 

Notice that the sign of ri oscillates as does that of P&z). Using the methods 

developed in the appendix the values of p and g are directly evaluated in terms of . . 

-‘el and so. Assuming that p + g >> 1, which is the physically interesting case, 

the ,limit becomes 

R < Rmax = % ) [&d ” +G] 1’2 (15) 

-25- 



where 

x = (-t/4m2)1’2 tie/S: cr ) 

The approximations made in deriving this form for Rmax hold if 

4m2 o ./n << b2 
( 0 ) [520(x) + Jg9] l 
s/s2 o 

In the forward direction, (x = 0) this condition means that the above form of 

the solution is invalid if uel approaches ‘the Froissart limit. It is 

reasonable to expect the condition to fail under such circumstances, since the 

Froissart bound on Q is already implied by the Jin-Martin bound. In mathe- 

matical terms, this means that the constraint imposed by uel is really not an 

independent constraint and, hence we expect the corresponding multiplier /? to 

vanish. 

Noting that the constraints in 9 are invariant under the transformation 

r --r 
B 

L, one can easily show that -Rmax is the minimum of R. Hence, one has 

This result can be written in a number of interesting ways. For example, 

in the forward direction [19], \ 

Away from the forward direction, this can be-written 

R max(% ternax (s, 0) = [J2o(x) + ,,xiy2 

and for s -cc), this ratio goes to zero as 

= [2/742 - [l/&l S-J l/2 

The vanishing of the ratio for s A, at fixed nonzero t is the effect of the 

shrinkage of the diffraction peak on the real part of the amplitude. 
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B. 

In this section a new type of problem will be treated. An upper bound on a 

two body reaction amplitude F will be derived by using unitarity, a fixed total 

reaction cross section o r’ and the Jin-Martin bound on the associated elastic 

scattering channels. We have in mind here charge exchange, or other, more 

general, two body inelastic reactions. The amplitude will be written as 

IFI 5 I+ = c PL + 1) f~lPp(z)l, 

where IF,1 = ft. The corresponding coupled elastic scattering amplitude will be 

described in terms of a1 and ra. Unitarity in this latter channel demands that 

2 
am - am 

The auxiliary function is chosen to be 

where cr is proportional to the total reaction cross section. Intuitively we 

expect Pmax to increase with increasing cr, so the multiplier 7 should be 

positive. The variational equations yield the amplitudes 

2am = 1 - ‘g P&w)/ut 

and the second derivative conditions demand that ZJ~ > 0, and (ve + ) 0. Since 

v1 cannot vanish, the solutions must be on the boundary, that is, un = ff , and 

the resulting equation for vp is . 

1 = P;/(V, -t 77)2 + g2 P,2(w)/u;. 
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For large n, vd must grow, and one finds 

““p = Pi(z) + g2 P; (w) + 0 1/v; 
( ) 

Using the techniques of integration and summation discussed in the appendix, it 

is straightforward to show that 

fi s j$‘(o-../Rm2 )l’2 ,(s/siq) [4(x) + J~(X)]~‘~ (17) 

and x has been defined before, Eq, (15). The close resemblance between this 

bound and the bound on R should be no surprise due to the similar nature of the 

unitarity conditions in the two cases. In the forward direction, this bound should 

be compared with the result of Roy and Singh[20]. 

However, it is interesting to note that the Jin-Martin bound on G was applied 

to the imaginary part of ‘the associated elastic scattering amplitude. The lowest 

threshold in t is at 4m2, which is reflected in the bound [17]. In some of the 

Roy and Singh [20] bounds, such as nucleon-nucleon scattering, one pion exchange 

is used as the lowest threshold. However, two pion exchange is equally correct 

and yields a better bound by a factor of two. In view of their comparisons with 

. 

experiments in the pion-nucleon case, a factor of two improvements may be very 

important. 

C. - 

It is interesting to add an additional constraint to the problem in Section IV. A, 

viz., suppose the total cross section c T is fixed as well. Assuming that eel< oT, 

the new constraint will be nontrivial and so, at least some of the partial waves 

must be inelastic, i.e., I cannot be empty. Let us also recall the upper bound 

on aT determined by o-el given in Section RI. C., 

h-l C(S) . (14) 
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This bound was derived by maximizing the imaginary part, given ucl. Thus, if 

the bound is almost saturated, inelastic partial wnvcs will bc important and the 

real part must bc very small. In the other extreme, if ucl x o-~, most partial 

waves will be elastic and the bound on the real part will be the same as that 

derived in Section IV. A. 

The new auxiliary function is 

- C(2f + l)al 1 [ + P C,, - 733 

We expect that p > 0, since an increase in uel for fixed uT will increase the 

maximum value of the real part Rmax. On the other hand, according to the 

inequality given above, Eq. (14), increasing uT for fixed uel must reduce Rma, 

and hence, (Y > 0 also. 

Proceeding in the usual way the solutions in the interior I are 

rm = r P,(z) 

a =a-Y 
I 2 Jyw, t 

where we have defined more convenient multipliers 

1 
r= 2ps a=$, y= -ii-. 

c > 2P 

In B, the solutions are 
P,(z) 

r=- II 

a = d Bhi(h; -k g (1- 2a + y PI(w)) 

. 
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where 

x; = Am +p = [PJz)2 + (&)2 (1 - 2a + Y pp)) 2]1’2 

The multipliers r, a, and y, must be determined by the constr;Lints 

c C(2P + 1) a2 + r2 eB = I ( f J+ p--l- l)ap 

Ao= I z(2l! f l)al + x(21 + ;,a1 
B 

Motivated by our introductory observations, we expect the relative importance 

of the sum over the inelastic partial waves (I) with respect to the elastic partial 

waves (B) will be sensitive to the inelastic cross section, ain= u T - uem. Based 

on the previous examples, one anticipates that the cutoff l/y will be of order s, 

and that the contribution to any one partial wave will be small, a2 -CC a << 1. 

Unitarity requires that r2< a; however, 

if uel= u T’ then r2 z a 

but if uel .c< uT, then r2 << a. 

This is the mathematical transcription of the introductory remarks that the real 

part is a measure of the inelasticity. Having established these orders of magni- 

tude, we may approximate 

Ai = (1 + yPe(w))/2r 

so that, in B, 

r1 = 
r P,(z) 

(1 + YPp9) 
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The condition that any given partial wave L lie in I is approximately 

r2 P&z)~ < a - $ P&w) . 

There are solutions of ‘this inequality only if y/2 < a - r2. We will assume that 

“T - uel is sufficiently large so this is indeed satisfied. In fact, it will be assumed 

that y/2 C-C a - r2, i.e., there are many inelastic partial waves. Then all partial 

waves are in I from P = 0 to I = L, defined by r2PL(z)2 = a - $ P,(w). (For sim- 

plicity, we will assume there is a unique solution of this equation. This is not an 

essential assumption. ) All partial waves for I > L will be purely elastic and hence 

in B. This situation is depicted in Fig. 2. 

One may now proceed to apprbximate the sums using the techniques and results 

of the appendix. The mathematical methods are essentially the same as in the 

. 

preceding problems, except ‘that, in general, the contributions from the interior 

I and the boundary B are of the same order and so must be treated quite carefully. 

It is informative to study the solution first in the forward direction. One finds 

-$ (f--J M $ Pn(+){qa - r2) + r2} 

where 

25 (a2 + r2) J?n2 

t2Ao =aJn 

t2= 4t1/s . 

(18) 

These equations determine the multipliers. Once they are known, the maximum 

value of the real part can be evaluated 

t2R 2 1 
Omax 

=r!n - 
0 Y 
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Solving for the multipliers, one finds 

where l/y is to be determined from 

The regimes for which these approximate formulas apply are a2<< a << 1, 

r2< a, y/2<<a- r2. 

These equations become more transparent by setting tl = 4. 12Ao = uT/x; 

c2 c,,= “ep It can be easily checked that this result has the expected behavior 

in various limiting cases. For example, if uel z o;r, the result of the preceding 

section is recovered. 

If uem is of the order of u~/r(h2(s/s~c$))e uT, then 

12R Omax= (19) 

where 

h(t) k Bn $J- . 
-( ) 

In this case, the bound depends on the precise relationship between uel and 

uT/f!n(s/so), and the approximations made leading to the Eq. (18) for the multi- 

pliers must be revised. The physics however is quite clear. If uel falls as 
* 

rapidly as possible consistent with uT, the amplitude becomes purely imaginary 

and a very strict bound is imposed upon the real part. One might argue that all 

this concern over logarithms, whose scale (so) is unknown, is unwarranted. 

However, by the methods of Section V, these results could be converted to finite 
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s bounds and the scale of the logarithm determined by low energy data such as 

scattering lengths or the elastic cross section at low and intermediate energies. 

These bounds then impose limitations on the ratio of the real to imaginary part 

which can be compared with experiment or with theoretical models. 

The determination of the bound at a fixed nonforward angle involves some 

rather complicated integrals, probably most easily done with the help of a com- 

puter. However, as in the preceding section, it is not difficult to obtain the 

form inthe near-forward direction. The equations for the multipliers become 

-$ (f-r = $ b($)k(a-r2 J:(x)) + r2 J:(x)} 

t c et 
z jYJ2 1 

0 Y ( a2+ r2) {J&O + J$} 

and 

where the argument of the Bessel functions is 

-t 1 
x= d-4) 4m2 ;;J l 

Finally, R is given .by 
max 

As in the preceding section, one sees the effect of shrinkage but it is considerably 

more complicated in this solution. 

t.1 D. - 

Next let us consider the problem of maximizing gt _ o 
I- 

=A2 +R2 o o, given 

the Jin-Martin bound. First, let us anticipate the result. As noted in the intro- 

duction to Section lV.A, the maximum value of Ro, the real part in the forward 
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direction, is one-half the Froissart bound. This limit is achieved by having all 

the partial waves purely eiastic. If the imaginary part to which this solution 

corresponds is then calculated, not surprisingly,’ one finds A0 equal to one-half 

the Froissart bound. Thus the corresponding value of Ai + Ri is also one-half 

the Froissart limit. To increase Ao, one must decrease Ro; however, one can 

clearly do better by having a vanishing real part and setting A0 equal.to the 

Froissart limit. Thus, we expect that the maximum value of Ai + Ri will cor- 

respond to an asymptotically vanishing real part and a maximum imaginary part, 

This expectation will be born out by the calculation below. 

Using a notation which should be familiar by now, let us define the auxiliary 

function 

Assuming R. # 0, we find that I must be empty. In B, the solutions are 

hQ(aQ- l/2) = A0 - gP1 

Solving for hp, we obtain 

hg=2 R2,+(Ao- 
S g pd2] 1’2 

These solutions involve R. and A0 which we hoped to compute, so in what sense 

are these %olutions” at all? In this problem, because of its nonlinearity, one 

cannot obtain an explicit formula for the, r1 and am in terms of the multipliers 

alone. However, what we have here is an-implicit representation of the solution, 

very much analogous to implicit differentiation in ordinary calculus. The implicit 

solutions are made explicit by returning to the defining equations for R. and Ao. 

First, let us modify the notation slightly. Since the problem is symmetric 
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under r f? --rl, we suppose, without loss of generality, that R. > 0. Let 

us define p = Ro/Ao, Then our implicit solutions become 

By the definition of p, we have 

Ao-p o=O lR 

Using the solutions given above, and introducing 

we may write the requirement as 

w, Y) s CPQ+l) i$P,Yl = 0. 

This implicitly defines the ratio p as a function of the multiplier y. Having solved ~ 

for p = p(y), the multiplier y is then determined in the usual way from the con- 

straint 

(l-Yp3 

c _ 
p2 +(yPp- 1)2 1’2 11 pQ 

This completes the statement of the formal solution. 

Before making any approximations, it is useful to understand qualitatively 

the mathematical problems encountered. One can show that I@, y), for fixed y, 
<’ 

is continuous and monotonic in p and will always change sign once as p varies 

from 0 to Sm. Hence I@, y) = 0 has a unique solution p = p(y) > 0. Solving, 
. 

one finds to a good approximation, 

1 &’ * 
a= - 

0 P Y 
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so that as y--O, p -0 although more slowly than y. Consequently, one is not 

surprised to find that y has its canonical value 

and that A0 achieves the Froissart limit 

S en2 (s/so) 
16m2 _ 

which was the result anticipated. Thus, the final result is 

du 
c 

16nA; 

dt -0 L s2 (1 + p2) z -& !n2(s/so) (20) 

Although the mathematics is complicated and the result not surprising, we 

believe this problem is interesting in two respects. First, it illustrates the power 

of using Lagrange multipliers for inequality constraints. Secondly, using the 

trick of implicitly representing the solution for the variables (in this case, the 

partial wave amplitudes), one sees the method may be used to treat complicated 

nonlinear functions. Bounds on du/dt will be much .more useful experimentally I 
-I 

than on either the real or imaginary parts separately and will eliminate the nec- 

essity for having to suppose at high energy that the real part is negligible. 

V. INTEGRAL BOUNDS 

Reviewing the problems considered so far we see that all the bounds have 

been derived for a fixed energy and fixed angle or momentum transfer. Except 

for the first two examples, analyticity in the form of the Jin-Martin bold has 

been essential to obtain finite results. Unfortunately, the actual magnitude of _ 

these results remains unknown because the scale so is unknown. However, as 

pointed out by Jin-Martin [17] one consequence of their bound is the convergence 

of the Froissart-Gribov dispersion formulas for the partial wave scattering 
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I 

lengths dp for L ? 2, 

d ’ Iyn + 1) 

‘=’ r(k+3/2)I-(l/2) 

Conversely, knowing dl, the imaginary part A cannot grow as fast as s’. Clearly, 

the most stringent requirement on the growth is given by requiring the D-wave 
_’ 

scattering length d2 to be finite. However, knowing the value of d2, we have more 

information, since then the scale of the bound is determined. This observation 

is the basis of the bound with no arbitrary constraints, discussed recently by 

Yndurain 1213 and extended by Common [22]. Since the new input is in the form 

of an integral, the quantity to be maximized must be compatible with this form 

of the constraint, i.e., it must involve a range of energies. 

Since the D-wave scattering length may be difficult to determine experimentally, 

it may be more convenient in certain cases to use, say, the P-wave effective range. 

If there is a low energy resonance in the P-wave system, then the effective range 

may be more accessible to measurement. This latter problem is very similar 
, 

to the one worked below, and details will be dealt with elsewhere. 

From a mathematical standpoint, this involves a generalization of the theorems 

presented in Section I, since we now deal with a continuum of variables (i. e. , 

functions) rather than a countable number. However such natural generalizations 

are familiar from other physical problems (notably, in field theory) and, conse- 

quently, we will not pause to state these explicitly. The rigorous justification for 

the following discussion may be found in Chapter 5 of H. 
: 

1 
I 
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A. - 

The first problem we choose to consider is to maximize the average total 

cross section Z T, defined by 

I. S 
5 T = & 

/ 
b ds’(s’ ‘: 4) q(s’) uT(s’) 

ds’ q(s!) x(21 + 1) al(sr) 

given the D-wave scattering length d2 = (8/15?r)d, where 

(22) 

d= 
/ 4 

ds K(s) x(21 + 1) “m(s) P,(w), 
I - 

w = (s+4)/(s-4), 

and 

K(s) = G/ks3. 

The function q(s) is an arbitrary weight function and 

Q(s) = bs ds’(S’ 
I- 

- 4) qts’)* 

The auxiliary function is written as 
Qo 00 

9 = ~a~/16 K + d - $ ds KC(28 + 1) aQFp4 
_ I 

+ Ct2J- + 1) 
4 

ds’ KA&s’). 

Notice that the bound is required for a fixed value of s, and hence the multiplier 

D depends only on s. On the other hand,. since unitarity must hold for all values 

of s’, the unitarity multiplier A&s’) must be a function of s’. As usual, A&s’) 2 0, 

and since increasing d will increase the maximum value of ?? T’ one expects 

D(s) > 0. : 

The variational equations are 

-2 AL ra = 0, 
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and 

e(s : 8’) e(s’ - b) h(s’) - DP&w’) + hI(l - 2a$ = 0, 

where h(s’) = r(s’)/K(s’). As in our earlier discussions two classes of B’s are 
‘i 

introduced, namely I.and B. Since all sufficiently large B must belong to Bo, 

, the multiplier D must be positive. For s’ outside the range b to s, it is easy to 

’ see that all d E Do. Therefore let us examine only this nontrivial interval. For 
L 

Q c I, since hp = 0, rm and am are not determined by the integer I must be such that 
* 

‘. h =. DPl(w 0. 

The set B1, which has a1 = I., must have 

A&s’, s) = h(s’).- D(s) P&w’) L 0. 

If h(s’) is sufficiently small for certain ranges of s’, then the inequality fails, 

which means that the class B1 will be empty for these values of s’. To describe 

this possibility, it is convenient to define a function s1 = sl(s) by the equation 

D(s) = h(sl) = hl. Then the condition to be in B1 can be written as 

P,(w’) 5 h’/hl . 

The cutoff on the I sum, L(sl, s) is then defined by 

P,(w’) = h’/hl . 

We will content ourselves to solve these equations in the large s limit, thereby 

throwing away part of one of the important features of this type of problem, namely 

completely determined finite energy bounds.. These will be examined in a later 

paper. Using the results in the appendix, one finds that 

L(k s) N g Pn(h’/hl) 

and 

CPQ + 1) ap, PQW z s L(s’, s) (h’/hl) 
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The condition due to the scattering length which determines the multiplier hl can 

be written as 

- 4) r(s’) O(sf - sl) h(h’/hl) 

Finally, the result for aT becomes 

iYT 5 -!L J 
S 

Q b ds’(s’ 
- 4) r(s’) e(s’ - sl) b2(h’/h,) . 

Let us consider the case treated by Common [21] in which r(s ) wsNW1 for 

large s. One then finds 

h(s)/Q(s) = ; s(N + l), 

and 

(s/s,)~:~ in(s/sl) = -8s d (N + l)/(N +‘2). 

This latter equation implies that 4 << sl << s for large s. Therefore in this limit 

the leading term of the right-hand side of the bound becomes 

sd(N + 1) 1 + . . . 

It should be stressed that it is not at all necessary to take the limit of large s; 

the exact solution given above exists for any energy value. The asymptotic limit 

was taken only to show the form of the result. 

This bound can be improved in a simple manner by introducing more physical 

information in the following way. It will be assumed that one of the amplitudes, 
.” 

say aJ, is known in the energy region 4 <, s 5 c, where c 5 b. Then the scattering 

length condition can be written as 

dJ = d - (2J + 1) dsr p a; PJ(w1)/h’st3 

I 
00 

/ 

= 

4 
ds(,/?/a’s13) C’(21+ 1) anPn’(w) (25) 
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where the prime on the sum means to omit a J from the sum and integral in the 

region sf < c. The previous discussion goes- through as before with dJ occurring 

in the logarithm in place of d. If more than one value of J is known, then the 

bound can be improved by subtracting their contributions to d as above. This 

subtraction process may be useful in the physically interesting cases of pion- 

pion scattering in which the contribution due to rho and f exchange can be sub- \. 
’ tracted from the input information which is either the D-wave scattering length 

or the P-wave effective range. 

B. - 

As a second example of these techniques, iet us treat a problem that involves 

both an integral constraint and a constraint that is local in the energy. Defining 

A(s, t) as before, the problem is to find the maximum value of ‘m4), 

dsf r(s’) x(21 -I- 1) a&s’) P,(z), 

where 

Q = f; ds’ q(s’) (s’ - 4) 

* . z = 1 + 2t/(s’ - 4), 

and r(s’) is an arbitrary weight function. The integral constraint will be the 

same as before, and the local constraint w.ill be chosen to be a given value of 
. 

the total elastic cross section %l at each value of s’, 
..a 

C,i(s’) = (s’ - 4) ~-~(s~)/167r = z(2f f 1) . 
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. 

The auxiliary function L? is written as 

,!Z = Rm + D(s) 
4. [ 

d - J ds’ k’x(2Q + 1) aIPf(w) 
4 1 - 

00 
-I- X(21 + 1) 

f 4 
ds’ lqs’) lqs’) 

00 

+ ds’ K’C’ts’) 

In order to find the.maximum it is convenient to divide the s’ interval into 

two regions. Region 0 will be the ranges 4 I s’ L b and s < s’ c a0 . Region R 

willbetherangebc s’< s. It has been assumed that eel is given for all s’ 

whereas the maximization involves only the region R. Increasing eel inside R 

will increase the maximum, hence C(s’) L 0 for s’ E R. On the other hand, 

increasing ~1 outside this range will decrease the maximum, thus tie expect 

C(s’) <, 0 for s’ e 0. The variational equations are 

and 

h(s’) Pf(Z) 6(s - s’) e(s’ - b) - DP&w) - C am + A&l - 2a$ = 0 (26) 

- rf( C .+ 2h& = 0. 

The requirement that the second derivatives are nonpositive is 

(C + 29 ? 0. 

Let us first examine region 0.; In this region the term involving h(s’) is not 

present in the equation for am. It is easy to see that there are no I E I since if 

h1 = 0, c 5 0, and there is no positive solution for am. Therefore all the 1’s are 

on the boundary. In the class Bl, the multiplier is 

An= -C - DP&w), 2 0 \ 

and in Bo, 

AQ= DP1(w) 1 0. 
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However, if C + 2h1 vanishes, which demands that A1 = DP1, then the equations do 

not determine am and rm. Values of B in this class will be denoted by B. Since all 
. 

large Ifs must be in Boz D > 0, and in order to have any nonzero values of am, the 

equality multiplier C(s’) must be negative in region 0. The solution is that all 

1 E Bl for 1 < Ll, f! E B for P =,Ll, and L E B. for I >,Ll, where the integer Ll 

is determined from 

&(sf) = Lk1(21 + 1) -t (2Ll + 1) 
0 

= L; + (2Ll + 1) a$. 

Thus the existence of the class B allows a fit to any value of ‘Eel for an integer 

value of Ll(sl). As in Section II. A, this equation uniquely determines both L1 

andOIaL’I 1. 
1 

_ In region R, the presence of the h(s’) term in Eq. (26) allows some of the a1 

and r1 to lie in the interior I of the umtarity circle. For this class one has rm = 0 

and 

aQ = $iy [hw pm<“, - w-1 ppw] - 
The multiplier C(s’) must evidently be positive in region R as expected. For 

values of P for which this expression yields an am which is greater than one, the i 
correct value lies in Bl and A 

8 
is easily seen to .be positive. If this expression 

is negative then it is easily seen that the correct 1’s lie in Bo. Therefore, one 

..I 

Eel= C (21-t 1) + x(21 + 1) 

B1 -1 - C 
WI(z) - DPJw) 2/C2(s’) 1 

which determines the parameter C( s’). 

The multiplier D(s) is determined by requiring that the scattering length d 

be given correctly. Finally, now that all the parameters are determined, the 
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value of the maximum possible value of Al(s- can be evaluated in terms of 

(r (s’) and d. In order to illustrate the general form of the result, the various 

quantities will be evaluated in the limit of large s and large Eel. It will be 

assumed that d is such that the class Bl is empty. 

For large values of Eel, one has 

. 2 L1 z ‘el 

and hence using the results of the appendix, 

The contribution of region 0 to d will be denoted by do, and it is given by 

do= 
s’ K(s’) cst 

4rn2 

In evaluating the contribution of region R to d, it is necessary to know the 

sums (see appendix) 

Ll 
z(2Q + 1) 
0 

gPQ(w) 1 P&w) z L2 P,(w) GL 

and 

Ll 
c (2t + l)[Ipp(z) - gPQ(w)]” 5 L2EL , 
0 . 

where 

g = D(s)/h(s’) = K(9) o(s)/s(s’) = PL(z)/PL(w) 

Therefore, 

d - do =x ds’ K(s’)[Zel/‘EL]1’2 L P,(w) GL 
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or 

D(s) (d- do) = ;m 
P 

ds’ q(s’) (s’ - 112 

b 
PLb) yGL 1 1 

where y GL [ 1 is given in the appendix. This equation dctcrmincd D(s). The 

maximum value of ‘A/(s is therefore 

ds’ q(s’) (s’ - 4) Eel@‘) E,/~T]I’~ - y(s’) 

where y is determined from 

IO(y) = Jo(x) W)/Ws’) D(s) , 

and D is given in terms of (d - do). For r wsfn , the limit becomes 

where 

Y(S) = b[4ms(d - do)(n + 2)/(0~l/43”~] , 

and terms of order unity have been dropped in the argument of the logarithm. 

In the forward direction, this expression yields an asymptotic bound on the 

total cross section 

FT Z [*crl/m2]1’2. y(s) 

Thus it is seen that d and crel set the energy scale in the log. Also, since the 

amplitudes have been constrained to yield a given total elastic cross section at 

all energies, this improves the bound given in the previous section by decreasing 

d by the minimum amount do that,can come from region 0. The presence of ael 

under the square root is also an improvement on the previous result. 

. VI. CONCLUSION 

In conclusion, let us reflect on the mathematical machinery used here and 

its potential usefulness.- First, one should note that the mathematical theory 
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presented in Section II gave only necessary conditions on local extrema. One may 

then wonder why, in the subsequent applications, the solution to each problem 

was a.lmost always unique. The answer [23] is that WC wcrc dealing with convex 

function& with convex constraints. This choice of problems was due less to 

design than to luck. 

Secondly, we should stress our hope that the mathematical tools dcvcloped 

here, in addition to unifying the treatment of these diverse types of bounds, will 

allow more physical input to be injected into similar problems. If it should be 

the case that scattering amplitudes grow logarithmically with energy, then the 

asymptotic bounds may be of more than just academic interest and may have 

phenomenological applications. 

Roy and Singh 20 have used bounds on reaction amplitudes to discuss the 

Pomeranchuk theorem and to bound the difference between particle and anti- 

particle total cross sections at large energies. Unfortunately, their very im- 

portant results hold only at infinite energies. It is possible to derive an integral 

form of the very important bound on reaction amplitudes. These integral forms 

will hold at finite energies and may prove to be very interesting. This problem 

will be discussed elsewhere. 

No paper on bounds would be complete without mentioning the tremendous 

impetus given to the subject by A. Martin [24] and collaborators. The recent 

revival of interest in the subject is due, we believe, to the Serpukhov data [25) 

suggesting a violation of the Pomeranchuk theorem [26] and to the very interesting 

results by S. M. Roy and V. Singh [15, 18, 201. 
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APPENDIX 

Reluctantly, WC must now turn to some rather tomcntosc cnlculations. The 

basic formula used to perform the sums in the text is 

F w + 1) P,(z) PQW = (L + 1) [PL(“) P-&w) - P,(w) I$.&&“)] /(w - z) 

and its limiting forms when w = 1, and w = z. After performing the sums, ap- 

proximations have been used to simplify the final formulas. The most useful 

approximations are 

P,(z) = Jo(x) 

P,(w) 2-s q)(Y) 

where 

x=L f.$ [- 1 l/2 

and 

An approximate formula used many times in the text which follows from the 

above relations is 

L 
c (2n+ 1) P&z)2 = 
0 

(F + l12[J20(x) + JY(I 

In many applications it is necessary to perform sums of the form 

S = Carbm 

where an is a slowly varying function of 1 for I< L and for B > L and rapidly 

varying for L- L. It is convenient in such cases to perform a summation by parts 

by introducing 
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so that 

Inserting this into S and redefining summation variables achieves the form 

S = C(a, - “n+l) Bf! 

Since the am change most rapidly for 1 -L, the expansion of Bk about this value 

yields 

s = ao BL + xtaQ - aQ++ tBQ - BL) 
This will be a useful procedure if the second term can be shown to be small in 

comparison with the first. This will be the case under the conditions stated. . 
In Section III. C, it is necessary to perform sums over positive functions 

of the form (P,(z) - gP&w)) and its square. Since P,(z) oscillates, for sim- 

plicity, it will be assumed that the momentum transfer is small enough so that 

only the first cycle of P,(z) need be considered. The second term P,(w) grows 

monotonically with B and the sum must terminate. Define L to be the last value 

of P to contribute, then it follows that 

P,(z) P 
-ZL? p 

L-tl(z) 
pLw L+l(w) 

In the equation that determines g it is clear that for g - 0, or L- m, the 

ratio of sums on the right-hand side vanishes. As g - 1, this ratio also goes 

to one. It is straightforward to prove using Schwartz’s inequality that the deri- 

vation of the ratio with respect to g is positive definite for 0 < g < 1. Hence 

the ratio is monotonic and g is unique. Using the summation formulas and the 

asymptotic behavior of I,(y), the solution for A max> Eq. (1% is easily derived. 

The condition that only the first cycle of Pgz) contribute is the requirement that 

x be less than the first zero of Jo(x). 
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The summations required for Rmax in Section IV. A are easily performed 

by using summation by parts and the usual summation formulas. 

In Section JV. D, some care must be taken in evaluating the sum over tl 

which yields the connection between y and p . It is convenient to divide the sum 

over P into three regions. Assuming that y and p are small, the regions are 

defined by 
. 

\ 

1. ypn<l-p 

2. l-P<Ypp+P 

3. l+ p<yPg . 

Expansions in p can be made in each of these regions, and there are important 

cancellations between region 1 and 3 which must be treated carefully. 

In Section V, the summations are of the canonical form and one finds 

EL = J&J + Jf(x) 

Assuming that y x> 1, GL becomes 

yGL=- (y2- 
C 

x2) Jo(x) + 2xy J1(x) 1 /(y” + x2, . 
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Fig. 1 

1667Al 

Maximizing f(x) on the set g(x) 2 0. 
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1667A2 

Argand diagram. The unitarity circle is ai + ri = aI. The heavy line 

indicates the values of the partial wave amplitudes ; inelastic for L c L, 

elastic for L > L. 
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edge, showing the;oscillations in f" and f' through 

the edcje. 


