13

13

16

23

36
39

39

39

41

41

42

42

52

SLAC-PUB-768
(TH.)
July 1970

BOUNDS ON SCATTERING AMPLITUDES*

Martin B. Einhorn and Richard Blankenbecler

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

ERRATUM
Line For Change to
23 AY g, Aaga
24 A =0 A =0
Y o
1 has already has already been
7 (Py(z)-g Py(w)P (W) (Py(2)- g Py(W))P (W)
7 !an !Ln4
3 r(s" q(s")
7 determined by * determined but
22 L(s, s) L(s', s)
13 R Q
13 r(s') q(s")
2 R Q
19 c C
13 : add "Phys. Rev., tobe

published. "

* .
Work supported by the U. S. Atomic Energy Commission.



SLAC-PUB-768
(TH.)
July 1970

BOUNDS ON SCATTERING AMPLITUDES*

Martin B; Einhorn and Richard Blankenbecler

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

If it is true, it can be proved. - M. L. Goldberger
I do not know. - J. L. Lagrange

(Submitted to Ann. Phys. (N.Y.))

X
Work supported by the U. S. Atomic Energy Commission.



ABSTRACT

The method of Lagrange multipliers, generalized to include inequality con-
straints, is used to.deri"ve various bounds on scattering amplitudes based on
unitarity and polynomial behavior. Various physical quanﬁties associated with
two body scattering processes are treated, such as the total cross section,
elastic cross section, absorptive part and real part of the scatfering amplitude.
Using these new mathematical techniques, several familiar problems are treated
and generalized. In addition, a number of new results are presented. Both
asymptotically large energy bounds and finite energy bounds with no érbitrary

constants will be given.



I. INTRODUCTION

For several years, the hope has persisted that the general principles of
Lorentz invariance, unitarity, and maximal analyticity of scattering amplitudes
would determine most if not all the properties of the strong interactions, if, in
addition, the scale of masses is given. [1] Usually, these general principles
have been supplemented by additional assumptions about internal symmetries,
maximal analyticity in angular momentum, and asymptotic behavior.[2] Although
the phenomenological applications of this so-called S-matrix approach have been
many, so far, no explicit example has been given of 2 model consistent with all
three general principles. Consequently, in the absence of a theory, it is inter-
esting to explore the consequences of various subsets of the general assumptions.
For example, recently much attention has been given to models [3] which are
Lorentz invariant and crossing symmetric but which violate unitarity. A com-
plementary area of investigation explores the consequences of Lorentz invariance
and unitarity as well as rather weak assumptions about analyticity, and it is to
this subject that the current investigation is devoted.

Beginning with the classic work by Froissart,[4] it was realized that unitarity
sevefely limited the high energy behavior of scattering amplitudes. Subsequently,
a great many upper and lower bounds[5] have been derived on various quantities
of physical interest, such as total cross sections, elastic cross sections, dif-
fraction peaks, the difference between particle and antiparticle cross sections,
and so forth. In general, the results obtained, howeéver interesting, have been
more useful as limitations on tﬂeoretical models than in phenomenological ap-
plications. One of the frustrations associated with this work is that very often
the methods used to solve one problem are peculiar to that particular problem

and not easily transferable to the next problem. A second deficiency has been



that, having obtained an upper or lower bound, one scldom knows whether it is
the least upper bound or greatest lower bound under the stated assumptions.
To a significant degree, the methods developed in this paper relieve both of
these frustrations. It is hoped that the use of these powerful mathematical
techniques will allow more physical input into these types of problems.

We hope that the only prerequisite for understanding this paper is an elemen-
tary working knowledge of the method of Lagrange multipliers for finding maxima
and minima.[6] To put the present discussion into a physical context, however,

" it would be useful to have some familiarity with the general results on this
subject, as presented for example, in the book by Eden. [5] In the interest of
brevity, we will omit any motivation for the introduction of Lagrange multipliers
and their previous applications in physics. (7]

Our mathematical presentation will be based almost entirely upon the very
elegant discussion by M. R. Hestenes. [8] However, in the interest of simplicity,
some definitions and the thedrems, although stated correctly, have not been
given in complete generality. We highly recommend Chapters 1 and 5 of H to
those physicists interested in a detailed mathematical discussion.

The outline of the paper is as follows: Section II contains the mathematical
basis for the techniques used to solve problems in subsequent sections. As a
pedagogical recommendation, we suggest that the reader skim over this section
to try to absorb the general idea and then to proceed to the examples. He should
however pay close attention to the discussions of the significance of muitipliers
which follow Theorems 1 and 2 and to the example following Theorem 3. He
might later return to the mathematical section after seeing how the theorems

are used in several examples.



Sections III through V describe applications of the method to particular
problems. Sections IIl and IV contain applications at a fixed energy. Bounds
are given for the imagirzary part, the real part; and combinations theréof.
Section V contains applications to averages over a finite energy range. These

latter examples involve straightforward generalizations of the theorems given

WON VA AL Ads

II. MATHEMATICAL PRELIMINARIES
' A.

The notion of the tangent line fo a curve or the tangent plane to a surface is
very familiar. For the subsequent discuséion, however, it is eésential that these
notions be generalized to the tangent cone of a set[9] S at a point Xy € S. The
first step is the concept of directional convergence. In S let { xi} be a sequence
of péints converging to a point X (but X, # xo). We will say {xi} converges to
X in the direction of the unit vector h if

lim 0 - p

e %] '
More geometrically, if x(t) is any curve in S terminating at X0 the half-line
tangent to the curve is generated by the unit vector h. The collection of all such
half-lines originating at X, is called‘the tangent cone C to S at X For example,
if S is the surface of a sphere, the tangent cone at a point X, on this .surface is
the familiar tangent plane. The umt vectors h which generate this plane sweep
out a unit disc tangent to the surface. They satisfy ‘(xo, h) = 0. If S is the surface
and interior of a ball (closed ball), the generators h éf the tangent cone to a point )

X, on the surface sweep out a hemisphere satisfying (xo, h) < 0. The generators

of the tangent cone at a point inside the ball sweep out a unit sphei‘e. Briefly,



the tangent cone C of S at X0 is the collection of all tangent lines to all curves
in S which terminated at Xge

To discuss the maxima and minima of functions, it is necessary first to
introduce some notations. Given a function f(x), we denote its gradient vector
at x by f'(xo). Given any vector v, the linear functional f'(xo, V) = (f'(xo), v) will

be called the first differential of f. If the vector v or point x_ is incidental, we

0
may suppress them and abbreviate the first differential by the notation[10] 8f.

Similarly, the second differential of f at X, is defined by the quadratic form

- 821(xq)
f (xo,v) =V _—-8xiaxj- Vj'

Let us first restate in this language and notation two familiar théorems on
Lagrange multipliers. Suppose we wish to maximize [11] a function f subject to
a number of (equality) constraints among the variables of the form

fx)=0 @=1, ..., r ‘

In the following, S will denote the subset of & n satisfying these constraints. Let

X, € Sandlet C denote the tangent cone of § at x,. Then one can easily show that

f'a(xo,h) =0 a=1,...,r (1)
(r < n) for all vectors h in C. If, conversely, every vector h satisfying these

equations (1) lies in the tangent cone C, then X, is called a regular point of S.

Thus, for a regular point, the tangent cone is uniquely defined by the linear

‘homogeneous equations (1). If the gradients f&(xo) are all linearly independent,

then X, is called a normal point. One can prove that every normal point is a
regular point. The fundamental theorem on the existence of Lagrange multipliers

characterizes those local maxima which are regular points.

THEOREM 1

Suppose X, is a regular point of S and suppose x

0 is a local maximum of

fonS, -



(a) Then there exist multipliers By such that the auxiliary function
z=1 +'pa'fa
has a vanishing gradient,
Q‘(xo) =0
(b) Moreover, the second differential is nonpositive,
2"(xq,h) < 0,
for all h in the tangent cone C of S at X

(c) I x, is normal, the multipliers are unique.

0 .
The tangent cone plays an essential role in the statement of the theorem in
two respects (1) Only for a regular point do the conditions f' (xo, h) = 0 uniquely
determme the tangent cone, and this appears to be essential to the proof of the . -
theorem. (2) The second differentjal need have a definite sign only when restricted
to vectors in the tangent cone. o
The usefulness of the theorem is that it almost reduces the problem of maxi-
mizing a functlon fona space S defined by a number of constraints f to the
problem of maximizing an aux111ary functmn[lz] & on the whole space &™. The
way in which this theorem is used in practice is as follows: One solves the n
gradient equations, Sé"(xo) = (0, for X, as a function of the unknown multipliers o
These solutions Xg = xo(ua) are inserted into the constraint functi_ens fa(xo) and
the multipliers are chosen to satisfy the constraint conditions fa(xO) = 0. The
solutions are limited to those for which Q"(xo,h) < 0. Thus one arrives at

a number of candidates xo(ua) (calledcritical points) for local maxima. The

theorem assures one that all local maxima which are regular points will be
among these critical points. - Unfortunately, the theorem does not say which of

these critical points will be local maxima and which will only be saddle points.



However, those points for which £ '(xo, h) is strictly negative will in fact be
local maxima. Actually, this conclusion, as given in the next theorem, holds

even if Xq is not a regular point.

THEOREM 2

Suppose there exists an auxiliary function of the form &= { + “afa with
multipliers Ho such that its gradient vanishes at a point Xq» i.e.,
! =
Zz (xo) 0
Suppose, furthermore, that the second differential is strictly negative
Q"(xo, h) <0

for all h# 0 in the tangent cone C of S at X Then X, is a local maximum of {.

Before proceeding to the generalization of the above to inequality constraints,
let us discuss an interesting interpretation of the multipliers. To be specific,
s;xppose we wish to maximize function f(x) subject to a constraint of the form
fl(x) =a-b(x) = 0. Let X be a local maximum. Then according to Theorem 1,
there is a multiplier s such that the auxiliary function

Z=f+ua-bh)
has a vanishin;g derivative,
Z'(xg) = f(xg) - pb(xg) = 0. (2)
| Since b(xo) = a the point X depends implicitly oﬁ a, and hence, the maximum
value f(xo) also depends implicitly on a. We should like to investigate just how

the maximum value changes for small change of a. By the chain rule




Since f'(x() = pb'(xo) by Eq. (2), it follows that
df(xo) < dx0> db(x )
= # = #

& b(xg). 3 )

d _da _ X .
However, Py b(xO) =3 - 1, so finally we arrive at

df(xo)
k= "3 _ (3)

The multiplier p is precisely the rate of change of the maximum value of f with
respect to a,which is the magnitude of the constraint function b(x). [13] This
result may only be 2 mathematical curiousity at first sight, but in physical
applications it can be very useful. Often, on intuitive grounds alone, one knowé
whether an increase in the magnitude of sbme constraint will increase or decrease
the magnitude of the maximum of f and, 'hence, the sign of the multiplier can be
immediately determined. In many circumstancés one will be able to guess the
order of magnitude of such changes and, therefore, estimate y even before
beginning to solve the gradient equations. In any case, Eq. (3) is the basis for

the physical interpretation of the multiplier in the solution to any given problem.

There is another more general way to state this result. Let xo.be a local
maximum of f(x) subject to the constraint fl(x) = 0. As before define the
multiplier x4 and the auxiliary function

.Z’=f+uf1 .

How does the maximum value f(xo) change with an infinitesimal variation Sfl
in the function fl ? Proceeding as above, one finds at X

__ ot
H= 5%



In the general case considered by Theorem 1, one has
N
Bo =" 31
4. a

where it is to be understood that, during the variation of a given constraint

function fa’ all other constraints are held fixed.
B.

The elegance and usefulness of the concept of tangent cone and of the inter-
pretation of the multipliers given above will now be demonstrated by the generali-
zation of these theorems to include inequality constraints. Consider the problerh
of maximizing a function f subject to a number of inequality constraints g, which
we write in the form |

ga(x)zo d¥1,2,...,q (4)
In addition, there may also be a number of equality constraints

£,x=0 e=1,...,r (5)

Let S denote the set of poinfs satisfying both sets of constraints (4) and (5).
Consider any point X € S. If gy(xo) > 0 for some v, then gy(x) > 0 for all x

in some neighborhood N(xO) of X0 But then, in this neighborhood, the set S is
determined independently 6f the constraint f';y. Hence, for studyipg_}_qc_a& prop-
erties around X, Wwe may _ignore any constraints gy for which g,y(xo) > 0. This
crucial observation essentially reduces the study of inequality constraints to
equality constraints. Given a point X, € S, it is cox}venient to divide up the

inequality constraints into two sets

Ixo = {alga(xo) > 0}

B, = {élga(xo) - o}.

- 10 -



Intuitively, one may think of Ix as those inequality constraints for which x, is

0
-0

in the Interior, whereas Bx is the collection of constraints for which X is on

.70
the Boundary. One can easily show that

. ’ g
ga(XO’ h)y >0 a € on
f'a(xo,h)= 0 a=1,...,r (6)

for all h in the tangent cone Cof S at Xor As before, if the converse is true and

every vector h satisfying these conditions is in C, then x, will be called a

0
regular point. A point X will be called normal if all the gradients

1
y o€ on

f:x a=1,...,r,

are linearly independent. It can be shown that a normal point is a regular point.

The analogue of Theorem 1 will now be given:

THEOREM 3

Let X be a regular point of S and suppose X, is. a local maximum of f on S.
(a) Then there exists multipliers Aa >0, o such that the auxiliary function
=1+ )\'a‘ga + ”afd
has a vanishing gradient |
L'(x)=0.
Furthermore, ifae Ixo, we may choose ?xa = 0. (This is simply
a repetition of the statement that we may ignore any inequality constraint
g,, for which g (x.) > 0.) A
(b) Let I denote the set of indices y for which )\7 > 0, and let S1 be the
subset of S defined by

gy(x) = 0.

- 11.-



Then the second differential is nonpositive

ZMx ) <0

for every h in the tangent cone C, of S, at x,.

(c) I X0 is normal, the multipliers are unique.

It is interesting that, in part (a) of the theorem, the existence of multipliers
is supplementeci by the statement that, for the inequality constraints, their sign
is known (?\Y > 0), something which cannot be said for equality constraints. One
can easily show that the earlier result, which shows that the multiplier is the rate
of change of the maximum with respect to the constraint, also holds for inequali;cy
constraints. Thus if we write ga(x) =a,- ba(x) > 0, we have

A, = %’%;
Since increasing the upper bound a, canndt decrease the maximum value, it
follows that A o > 0. Alternatively, one may vary the function gy rather than

its value to obtain

=4

f
S

A =-
Q

(7

(=d

for all @. Inparticular, if gy(xo) > 0, then clearly the maximum value f(x )

is indepéndent of infinitesimal variations of the function g'Y and, hence, A’Y = 0.
Perhaps it is worthwhile emphasizing this result by considering an example

in one-dimension. Let a regular point X be a local maximum of f(x) subject to

the constraint g(x) > 0, and suppdse X is at an endpoint so that g(xo) = 0. The

constraint breaks up the real line into admissible subsets, e.g., x 20 or.

sin wx > 0. (See Fig. 1.) The tangent cone at x, is the half-line from X to +

(or to -«) when x is approached in S from the right (or from the left). A unit

- 12 -



vector h in C satisfies g'(xo,h) = hg'(xo) >0, and h = +1 (-1) if X is approached
from the right (left). The assumption that X, is regular implies that
g'(xy) # 0. Since x) is assumed to be a local maximum of f, we have f'(xg, h) =
hf'(xo) < 0. According to Theorem 3, there exists a multiplier A such that the
auxiliary function
L =1+Ag
has zero derivative
L' =1 +2g' = 0.
Hence
-f'(xo) -hf'(xo)

At TERg T TRy S

This simply means that,if f is rising as the boundary is approached, a positive
quantity must be added to form an auxiliary function which has a zero slope at
the boundary. Note the correspondence between this résult and our general
result (3). It is quite remarkable that the methods of differential calculus can
be extended to end points [14]. Part (b) of the theorem tells us that, for those
multipliers AY for which 7\7 > 0, the corresponding inequality constraints may
be treated essentially as equality constraints. In particular, if X, is also a
regular point of Sl (wﬁich follows if X is normal), then C1 is the set of all
vectors in the tangent cone C of S at X for which |

g)(%q. B} = 0 (v er)

Finally, there is a simple generalization of Theorem 2;:

THEOREM 4

Suppose there exists an auxiliary function Z= f + 7\7 g, * “afa with multi-
pliers A‘Y >0, and H, such that

Q'(xo) = 0.

- 13 -



As before, let I" be the set of indices y for which Ay> 0, and suppose that
Q"(xo,h) <.0
for all h#0 in the subset of tangent cone C of S at x, for which
g {xg 1) = 0 (ver)
also holds. Then Xy is a local maximum.

Once again, we see in Theorem 4 that an inequality constraint for which the
corresponding multiplier is positive may be treated essentially as an equality
constraint.

The method by which Theorems 3 and 4 used to solve problems in practice
is precisely the same procedure described after Theorem 1 for equality con-

straints. Perhaps the best way to illustrate this is to consider some physical

examples.

III. BOUNDS ON THE ABSORPTIVE PART
. ; L

As a first application of the methods of Lagrange multipliers described
above, we will rederive two results originally given by Singh and Roy([15]. In
presenting these derivations, a notation will be established for the remainder
of the paper. We will be quite explicit, perhaps even verbose, in our construc-
tion of the solution. Subsequent applications will be considerably‘ abbreviated
but these first examples are very helpful in understanding the mathematics
involved. First, let us consider the problem of finding the maximum possible
value of the absorptive part of an amplitude at a fi}Aced angle which is consistent
with a given value of the total cross section. The only additional constraint is
that of unitarity. In particular, no assumptions of analyticity in momentum

transfer will be made. It will be assumed, of course,” that the partial wave

214 -



expansioh converges in the ‘physical region. The usual Mandelstam variables
will be used to describe the scattering of scalar, umit mass particles.

In mathematical terms, our problem is to maximize
A(s,t) = D (20+1) a P (z)

if the total cross section o, is given,

T
-4
| A0 = A(s,0) = (—ls—(;—-T-r-)crT = 2(22 + 1) 2,

The unitarity condition is

u

-az—r
2 [

Eaﬁ

™ N

20, (8)

where r2 and a!Z are the real and imaginary parts of the partial wave amplitude.
| Since we will work at fixed s, this variable will be suppressed. Oﬂy the maxi-
mization problem will be treated here, but the minimization problem can be
carried through in a similar manner by changing the signs of the multipliers,

To solve this problem, the auxiliary function &£ is introduced as

L= A(s,t) + [AO - Y20+ 1) az] CD NIRRT

The multiplier @ has been introduced for the ‘equality constraint and the multi-
pliers 7\2 >0 for the inequality constraints of unitarity. Since incréasing the
total cross section will undoubtedly increase the maximum value of A(s,t), the
corresponding multiplier « is nonnegative. (See Eq. (3)). Since the constraint

is surely nontrivial, « is-strictly positive. Moreover, for a given change SAO

~ in the total cross section, the maximum value of A is expected to change by a

SA

8A 0

smaller amount, and one anticipates that o =

< 1. By varying the X, and

the aﬂ, we obtain the equations

~2 A£r2= 0

and

Pg(z) - o +)\ﬁ(1—2 aj)=0.

9

- 15 -



The second derivatives will define a nonpositive form if A, 2 0, which has already
é.ssumed to be the case. These equations are necessary conditions on the rﬁ and

a,. Any given partial wave is either purely elastic, w, = 0, or inelastic, i.e., it

is inside the unitarity circle, u, > 0. Thus it is natural to divide the partial

waves into two classes:
I= { .Qluﬂ > O}
B= {tfu, = o}
where I(B) will be called the Interior (Boundary).
Now according to Theorem 3, for IX: 1, we are instructed to set 7\1 =0, From

Eqs. (5) and (6) it is necessary to have Pﬂ(z) = @, but no constraints are required

onr, and a, except that they lie inside the unitarity circle.

[}
For { € B on the other hand, we must havelkﬁz 0. Kr, # 0 then Ap=0 and
o= Pi(z), as before. If however r)= 0, then ay = 0 or 1 on the boundary and it

is convenient to distinguish two classes in B:

B, = {£|r£= 0, a,= .o}

and _ '
B, = {2|r2=_0, a,= 1} |

Solving for A, in each of these classes, we find that

iffe BO’ then A

=q - >
=@ Pﬂ(z)_O

and

if ¢ €B;, then2

2=P£(z)-a20

In order to utilize the necessary conditions to a:ctually construct the solution, .

we must try to invert them to determine their sufficiency. It is easy to see that

- 16 -



the partial waves can be divided into three classes, so that

if Pﬂ(z) -a>0, then( € B1 (a2 = 1)
if Pﬂ(z) - a <0, then eBO (a!Z = 0)

if Pz(z) - d = 0, then no restrictiononf (0< agg 1)

Thus the only ambiguity occurs when Pﬂ(z) =q. n

Since B, must be a finite class in order that the sum over £ converge, «
must be pdsitive. If Bl and I are to have any members, then o <1 as expected.
Now let us turn to the determination of the multiplier @ from the equality con-

straint (2):

Ay = 3 o(2e+1) + 3o (20+ l)a, (9)
B, I .
At this juncture it is useful to recall that Pﬂ(z) for fixed z oscillates as a function

0
2

Therefore one can choose o to be as small as possible consistent with the sum

of £ with decreasing amplitudes {e.g., Pﬂ(z) ~JO [Zﬁ sin —] for ¢ —oe and small ()>

over B, being still less than or equal to AO. This is always possible since as

a decreases from one to zero, the sum over B, increases monotonically (although
not continuously) from zero to infinity. Then it is easy to show thatone can always
choose the second sum to fit the given value of AO' If there is only one integer
with Pﬂ(z) = o, then the corresponding 0 < a, <1 is uniquely determined. If there
are more than one such integer, then only their sum is determined. However,

since they all correspond to the same value of PIZ(Z) = o, this indeterfninancy

does not affect the maximum value of A; i.e.,

A<A = %; (28+1) P (z) + o 213(2“1)5‘2 (10)
1

- 17 -
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Because of the presence of I, the second differential is not strictly negative, so
it is impossible to apply Theorem 4 to establish that Amax is truly 2 maximum.
This kind of local ambigqity arises occasionally, cspecially when maximizing
linear functions or when dealing with linear constraints. There is an almost

obvious theorem (unstated in H or in L) which may be useful.

THEOREM 0

Consider a function f(x) on a domain S and let X € S. Suppose f’(xo, h)y < 0

for all h # 0 in the tangent cone C of S at Xq- Then X is a local maximum of f.

The realm of applicability of the hypothesis is rather limited since, for a
regular point, a necessary and sufficient condition that there be a vector h1 £0
such that f'(xo, hl) = 0 is that the set Cl (defined in Theorem 3) be nonempty.
However, the theorem is relevant to the above example, since usually the set I
will have at most one element £ = L. From the inequality constraint u 9 > 0 we
determine that, for ¢ € B,

(1-2a)h 20

for all h in the tangent cone C. From the équality constraint, we have

(2L + i)hL + %(za +1jh) = 0.

However,

A'xy,h) = - }I;:(z;z + 11 - 2a)h) < 0

Every term in the sum is nonnegative and, hence, the sum connot vanish unless

hy=0forallf e B. Butthenhy =0andsoh=0. Thus A'(xy,h) # 0 forallh#0 ~

in C. By Theorem 0, x, is a local maximum,

0

- 18 -



is invariant under variations in the subspace of S determined by I. However, since
A(s, t) is independent of such a degeneracy, the redundant variables can be simply

eliminated by defining a new variable ¢ by

EX(20+ 1) =D (20 + ba, .
I 1

Then, in spite of the ambiguity among the elements of I, both £ and the maximum

of A are unique. (See Singh and Roy [15].)

B.

The above derivation contains the essence of all our subsequent applications.
As 2 second example of this technique, let us add an additional constraint to the
problem just solved. Again following Singh and Roy [15], it will be assumed in

addition that the total elastic cross section is fixed,

2 :

k - T _ 2 2
i %= Eel_ Y (20 +1) (a£+r£> .
Therefore consider the auxiliary function

F=A+ 'a[AO - 2+ 1)a2]+ ?15 [Za -2 (2!; + 1) (af,+ rf)] + 3.(2¢ + 1)7\!lu2 .

We assume of course, that del < O so the new constraint will bg_nontrivial.' »
Increasing A0 for fixed 2. el will have the same effect on the maximum value of
A as in the preceding example, so we anticipate 0 < o <1. Increasing Zel for
fixed A, will surely increase Ams;x so it is expected that a > 0.

The variational equations ai'e easily obtained in the usual manner. For

£ € I, one readily obtains

r,=0 al = a(PR(z) - q)

- 19 -



where one must have 0< a, <1 by uniiarity. For{ € B, introducing B

9 1 and BO
as before, one finds that rll = 0, and
if 0 €B,, thenA, =P, -a -2 >0
r 2 2 a ~

whereas

i - - >
ifg € BO’ then AI o P2 0
The second derivatives are

8%z e

| 1
ba,8a, -~ Or,or, = O 220+ 1Y) (_2-5 +A£>
and
o’ _,
aalarﬂ, '

Assuming that I is not empty, this will define a nonpositivefo‘rm if and only
if a > 0. Assuming that the total and elastic cross sections are not equal, the
additional constraint will be nontrivial, i.e., a # 0. Hence, we must require
a > 0, which in turn implies that the second variation is negative definite. Thus
by Theorem 2, we are assured that any solution we construct will be a local
maximum. In this sense, this problem is simpler than the previous example.
This pr‘oblem is also simpler in a second respect, viz., the necessary conditions
displayed above are also completely sufficient to define uniquely the solution.

The multipliers a and a are determined from the equations

Ag= 2 (2e+1)+.3 (28 + 1) a(P(z) - a)

B, . I
T = 220+ 1)+ Y(ee+1) aZ(Pﬂ(‘z) - o) (11)
¢ B T .. ‘ ‘

. 1 i -
Having determined a and oz, one then computes the maximum value of A. Since
both of these problems have been discussed by Singh and Roy[15] an explicit

evaluation will be omitted. Our main purpose here was to present illustrations

-~ 20 -



of the mathematical method in a familiar context. We have already established

that a > 0 and it can be shown that 0 < @ <1 as was conjectured.

It is straightforward to generalize the problem to include more equality
constraints. Such generalizations have been considered by Jacobs et al., [16],
although these authors obtained the correct form of the maximum only in the
case that the set B1 is empty. )

It is interesting to note that tﬁe two examples quoted above required no
assumptions of analyticity in momentum transfer, but required only the conver-
gence of the partial wave sum in the physical region. Mathematically, the reason
that bounds exist in such cases is that the imaginary parts of the partial wave
amplitude have a definite sign. If similar problems are posed for the real parts
of the scattering amplitude, no solution can be found because the rl's can oscil-
late in sign. One way to get finite bounds is to force the partial waves to fall off
rapidly for large £, and this can be accomplished by the requirements of analyticity
ir; momentum transfer. Another way would be to require all r, for sufficiently

£
large £ to have a definite sign. Let us now turn to these considerations.

C.

In this section, the Lagrange multiplier method will be used to improve some
of the bounds for problems which are well known. For the problem to be dis-

cussed here, the new physical requirement to be irﬁpos_ed is that of Jin and

Martin [17].
k /s 2 .
G = A(s,t)) = E(zg +1) a(s) Pyw) < T/_—S—(E—o) (12)
where .» |
2t1
w=1+ -S—TZ

This is assumed to be true for t below the nearest continuum singularity in the

t-channel, which occurs at tl =4 or 4M2 if the mass is explicitly restored.
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Although the scale o is uhknbwn, what is significant for asymptotic bounds is
the power of s. For purposes of discussion, it will be assumed that for any
given value of s and t,, s, 18 chosen sufficiently small so that the inequality

(12) holds. Also, 5o approaches a constant as s —0,

The first natural problem to consider is the problem of maximizing the
absorpfive part A(s, t) given the Jin-Martin bound. This is essentially the prob~

lem of Froissart[4] and leads in the forward direction, to the well-known bound,

g < Zg0(2).
T m* 50

We will consider explicitly the slightly more difficult problem of maximizing
A(s, t) if we are given the total elastic cross section in addition to the Jin-Martin
bound. Thus consider the auxiliary function

L= A+ '21—a[ze1 - ) (20 +1) (af + rf)] + g[%(%%)z _ G] +D (20 + 1);\!quZ

where the inequality multipliers g and AE are nonnegative. Since Amax will
increase with increasing Zeﬂ’ we expect that a > 0. The variations with respect

to ) and a yield

1\ .
-2 r£<7\2+ -z—a) =0

and

1 —
Pl(z) - gPﬂ(w) ~adyt 7&2(1— 2a£) =0

The second derivative constraints require that (A 0 + 1/2a) be positive. As before
one concludes that r,= 0 and thatj,ﬂa > 0. The second variation is strictly negative,
so our construction will lead to a local maximum. The £'s split into the usual
three classes according to the conditions

if 0<a,= a:(PB(z) - g P(w))<1, thenf €1

if 7\£= Pﬂ(z) -»gPﬁ(w) - % 20, thenf e B1
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and if
A£= ng(w) - Pﬂ(z) >0, thent € BO'
Since all sufficiently' larLge £ must lie in BO’ g is positive definite and hence the
maximization requires that G= —\l;—_ (s/sb)z. In order to have B1 or I nonempty,
8

one must have g <1, Having determined a, and A ' in terms of ;1 and g, these

latter parameters are determined from the conditions

2
k s
e <§3) - B):l (22+1) Byw) + 2 213(21 +1) (P(z) - gPyw) Py(w)

and

B1 1

2 ' 2
Tg= 2@+ +a” 3 (20+1) (Pyz) - g»Pz(w))
If suffices for our purposes to consider the case when By is empty. After solving
the problem, one can then find out what are the permis-sible. values of Zel and s 0

for this to pertain.

The multiplier g is determined from the equation

271/2
. s 2 [}Tj(zz + l)(PB(z) - gPl_(w)> ]
1er, () -+ |
[}I:(zz + 1)(Py(2) - gPyw) Pﬂ(w)] .

In the appendix we show that g is uniquely determined whenever the left-hand
side is between zero and one. This will certainly be true for large enough s.
Then a is found to be

* =[2e1 / 213(2!{_+ 1)(P(2) - gpz('w»z]l/z_

These parameters must satisfy the conditions that all a) must lie between zero

and one. Finally, the maximum value of A will be given by

A, (s,H)=2 ?(zz +1) (Pz(z) - gPR(W)) P,(2).
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For large s, small t,' the results of the appendix lead to

mz(r 1/2
s el 2
A SA_ ~ 5 [ a (Jﬁ(x) * 338 )] ;moE
where -
¢ \L/2
X= (——2-) In C(s)
4m
and
C(s) ~ 4ms (s% O'el)—l/z

where m is the exchanged particle mass which has been restored for dimensional

reasons. As discussed in the appendix, this formula is valid for x<x,= 2.4, the

]
first zero of the Bessel function J 0(x), and only if

o < [75m + 3,07 ] - m® ces)

If o violates this condition, then the set B; must be included.

From (13), a bound on the total cross section is obtained by setting t = 0;

TOo 1/2 ‘ '
0'T5< §1> fn C(s) (14)

-~

If 0, g0es to zero as s —, then this bound is an improvement over the result

one finds

of Singh and Roy [18] who have l/o;a 1 in the log rather than its square root.

IV. BOUNDS ON THE REAL PART

A.

——

Let us now turn to bounds involving the real part of the scattering amplitude.
As noted previously, because the sign of the real part is not fixed, analyticity

in momentum transfer outside the physical region (in the form of the Jin-Martin
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bound) is essential for obtaining finite results. One might imagine maximizing
the real part in the forward direction given only the Jin-Martin bound and uni-
tarity. Th1s problem is essent1a1‘1y the same as der1v1ng the Froissart bound on

A except that unitarity requires | | 1/2. Thus one expects that the maxi-

0)
mum real part is only one-half the Froissart bound, and this may be ver1f1ed by
explicit calculation. This problem will be returned to later.

We will consider in this section the problem of maximizing the real part of

the amplitude in a definite direction,
R(s, t) = Z(zyz +1) r, P (2),

for a fixed value of the elastic cross sectlon the Jin-Martin bound, and umtanty.

The auxiliary function is written as

- 2
ZL=R+ ﬁ[Zel—Z(Zﬂ + 1) (af + ri)] + g[—lis-(gs-(;) - G] + (20 + I,

Increasing 2 ol will surely increase R , 8o > 0. Proceeding in the by-now
familiar manner, one finds that the interior I is empty. On the boundary, which
corresponds to purely elastic scattering, the solution is

r, = Pl(z)/Z(Aﬂ +B)

2, = P (2)/2(, + BYAy + 28 + EPYW))

where :
A +p‘='[1>§(z) +(B+ gPl(w)>2]1/2 |

Notice that the s1gn of r!Z oscillates as does that of Pl(z) Using the methods

developed in the appendix the values of § and g are dlrectly evaluated in terms of

D> el and s,. Assuming that +g >>1, which is the physically interesting case,

0
the limit becomes B
R<R_ .. = %(oel/wmzh)l/ ? m(S/S%) %1 ) [J%(x) %.Ji(x)] M2 (15)
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where

X = (-{:/IJ:mz)l/2 !Zn(s/s% o )

The approximations made in deriving this form for R .y bold if
am? o /T << £n2<s/s‘30' ) [J%(x) + le(x)]

In the forward direction, (x = 0) this condition means that thé above form of
the solution is invalid if oy approaches the Froissart 1iﬁit. It is
reasonable to expect the éondition to fail under such circurhstances, since the
Froissart bound on %1 is already ifnplied by the Jin-Martin bound. In mathe-
matical terms, this means that the constraint imposed by o is really not an
independent constraint and, hence we expect the corresponding multiplier § to
vanish. |

Noting that the constraints in & are invariant under the transformation

rh———rr one can easily show that —Rmax is the minimum of R. Hence, one has

[RI <R -

This result can be written in a number of'interesting ways. For example,

in the forward direction[19],
2 271/2 .
IROI/A0 f_n(s/so) < [w%l/m O'T]' | (16)
Away from the forward direction, this can be written
_ 1/2
R s /R (5,0) = (3509 + )]

and for s — e, this ratio goes to zero as -
~ [2/1rx]1/2 ~ (1/m 5]1/2 |
The vanishing of the ratio for s—~ o at fixed nonzero t is the effect of the

shrinkage of the diffraction peak on the real part of the amplitude.
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B.

In this section a new type of problem Will be treated. An upper bound on a
two body reaction amplitude F will be derived by using unitarity, a fixed total
reaction cross section 0L aﬁd the Jin-Martin bound on the associated elastic
scattering channels. We have in mind here charge exchange, or other, more
general, two body inelastic reactions. The amplitude will be written as

|F| < ﬁ - T+ 1) £|P 2],

where |F1| = fg' The corresponding coupled elastic scattering amplitude will be

describéd in terms of 2, and r,. Unitarity in this latter channel demands that

a

- - - >
) aﬂ rﬂ ) 0.

The auxiliary function is chosen to be
| 2

~ProlE(E) - , -
@=1+ g[\/é (So> G] + n[Zr e+ 1)%] +Y(20+ 1) v fu, ff) ,

where Er is proportional to the total reaction cross section. Intuitively we
A
expect Fma.x to increase with increasing Zr’ so the multiplier n should be

positive. The variational equations yield the amplitudes

2a£= 1- gPﬂ(w)/vﬂ

r, =10

21, =Pyz)/(+ ),

and the second derivative conditions demand that ) > 0, and (Vﬂ + ) 0. Since

cannot vanish, the solutions must be on the boundary, that is, u,={ 2,, and

Yy [

thie resulting equation for v ) is

2 2 2.2 2
1~P£/(V£+n) +g PE(W)/VQ'
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,,i - Pf(z) + g2 Pi (w) + 0(1/pf>

Using the techniques of integration and summation discussed in the appendix, it

is straightforward to show that

#< T% (a'r/ﬂmz )1/ 2 m<s/sﬁ O'r) [J%(x) + le(x)] 1/2 (17)
and x has been defined before, Eq. (15). The close resemblance between this
bound and the bound on R should be no surprise due to the similar nature of the
unitarity conditions in the two cases. In the forward direction, this bound should
be compared with the result of Roy and Singh[20].

However, it is interesting to note that the Jin-Martin bound on G was applied
to the imaginary part of the associated elastic écattering amplitude. The lowest
threshold in t is at 4m2, which is reflected in the bound {17]. In somé of the
Roy and Singh [20] bounds,- such as nucleon-nucleon scattering, one pion exchange
is used as the lowest threshold. However, two pion exchange is equally correct
and yields a better bound by a factor of two. In view of their comparisons with

experiments in the pion-nucleon case, a factor of two improvements may be very

important.

C.

It is interesting to add an additional c:onstraint to the problem in Section IV. A,
viz., suppose the total cross section o is fixed as well. Assuming that 01 < Ops
the new constraint will be nontrivial and so, at leaét some of the partial waves
must be inelastic, i.e., I cannot be empty. Let us also recall the upper bound
on o,, determined by 01 given in Section II. C.,

T )
To, 1/2 ) . v
-O-T<‘< z > n C(s) N (14)

m
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This bound was derived by maximizing the imaginary part, given 1 Thus, if
the bound is almost saturated, inelastic partial waves will be important and the

real part must be very small. In the other extreme, if g,] ® O, Most partial

T,
waves will be elastic and the bound on the real part will be the same as that

derived in Section IV. A.

The new auxiliary function is

#=R-afa,- Tt + 1] + 5[262 -Teee+ ) (a2 +x? )]
2

e[k ()

We expect that § > 0, since an increase in 01 for fixed o will increase the

maximum value of the real part Rmax' On the other hand, according to the

- G] + 2.2 + 1)7\12uﬂ

inequality given above, Eq. (14), increasing o for fixed o1 must reduce Rmax’

and hence, a > 0 also.

Proceeding in the usual way the solutions in the interior I are

r,=r Pl(z)

=a-X
a=a-g3 Pﬂ(w),

where we have defined more convenient multipliers

=1 -z - (B
T= 25 a=25 7 (2(3)'
In B, the solutions are
P (z)
_ 4
X, = ———
1
21y
. Pﬂ(z)z
4= 1
H 1 — -
zxﬁ(xﬂ = (1-2a +'yP£(w))
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where
2
2 1 )
1= = e
Az >‘£ +8 [Pz(z) +(2r

The multipliérs r, a, and vy, must be determined by the constriints

(1-2a+vy Pﬁ(w)) ]

2
k /8\ _
\'ﬁ(‘s—&) = 21 (22 + l)al P,Q (w) + BE (22 + 1)a£PB(w)
2 2
Zel = EI 2L+ 1) (all + r2)+ %(22 + 1)3'2

Ay= ¥(22 +1)a, + %(22 + i)al

Motivated by our introductory observations, we expect the relative importance
of the sum over the inelastic partial waves (I) with respect to the elastic partial
waves (B) will be sensitive to the inelastic cross section, Oin= O ~ Oy Based
on the previous examples, one anticipates that the cutoff 1/y will be of order s,
and that the contribution to any one partial wave will be small, az «<a<xl,
Unitarity requires that r2< a; however,
then r2 X a

but if o, <« Oms then r2 « a.

el
This is the mathematical transcription of the introductory remarks that the real
part is 2 measure of the inelasticity. Having established these orders of magni-
tude, we may approximate

AE = (1+ yPﬂ(w))/Zr

so that, in B,
: rP (z)
ro~ b
1% TFrPw)
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The condition that any given partial wave £ lie in I is approximately
2 2 v
r Pﬂ(z) <a- ) Pz(w) .

There are solutions of Lthis inequality only if y/2 < a - rz. We will assume that
Tp =~ %y is suﬂicieﬁtly large so this is indeed satisfied. In fact, it will be assumed
that v/2 <« a - rz, i.e., there are many inelastic partial waves. Then all partial
waves are in I from { = 0 to £ = L, defined by r‘?'PL(z)2 =a- % PL(w). (For sim-
plicity, we will assume there is a unique solution of this equation. This is not an
essential assumption.) All partial waves for £ >L will be purely elastic and hence
in B. This situation is depicted in Fig. 2.

One may now proceed to appr;u;imate the sums using the techniques and results
of the appendix. The mathematical methods are essentially the same as in the
preceding problems, except that, in general, the contributions from the interior
I and the boundary B are of the same order and so must be treated quite carefully.
It is informative to study the solution.first in the forward direction. One finds

(e = 3 o)

¢e

Q

0

2 2
szel z(a2+r)£n(%>

CZAO ~ a g’ (—1—\) ’ ‘ (18)

where

§2 =4t /s .

These equations determine the multipliers. Once they are known, the maximum

value of the real part can be evaluated
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Solving for the multipliers, one finds

\ (ng )2 1/2°
2 0 1
{ RO max ~ 1 z:el - ’ 1 ﬂn(—,};)

where 1/v is to be determined from

3 Ingl@;)— z;;_ (ESE)Z/ [(‘%Ao) (ay- 2 Ty)+ (Cz et (TI/) - () 2)]

The regimes for which these approximate formulas apply are a2 <<a<<l,
r_2< a, Y/2<<a- r2.
These équations become more transparent by setting tl =4, §2AO = O'T/1r;
gz Ze1= % /m. It can be easily checked that this result has the éxpected behavior
in various limiting cases. For example, ‘if %G1 = O the result of the preceding

section is recovered.

. 2 2 2 2
If o, is of the order of O'T/ﬂ(ﬂn (s/ s OO.T)) « 0oy, then
, 1o )2
- _\T 1
U Romax ™~ |7 %1 mz(_1_) fn(:Y), (19)
” A

where

In this case, the bound depends on the precise rélationship between Ty and
O'T/!ln(s/ SO)- and the approximations made leading to ﬁhe Eq. (18) for the multi—.
pliei's must be revised. The physics however is quite clear. If %1 falls as
rapidly as possible consis-tent w.ii;h 0., the amplitude becomeé purely imaginary
and a very strict bound is imposed»upon the real part. One might argue that all
this concern over logarithms, whos’e scale (so) is unknown, is unwarranted.

However, by the methods of Section V, these results could be converted to finite
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" 8 bounds and the scale of thé logarithm determined by low energy data such as
scattering lengths or the elastic cross section at low and intermediate energies.
These bounds then impose limitations on the ratio of the real to imaginary part
which can be compared with experiment or with theoretical models. -

The determination of the bound at a fixed nonforward angle involves some

puter. However, as in the preceding section, it is not difficult to obtain the

form in the near-forward direction. The equations for the multipliers become

£ (2 - 3 -2 oe) o

2 5y~ 2(2) e e (e + )

and

2, o .21
4 AO = fn (y)a{J% + Ji}
where the argument of the Bessel functions is
R = ml) .
‘ 4m2 v

Finally, R is given by
max

Roa = 2 (2) {5 2)

max
As in the preceding section, one sees the effect of shrihkage but it is considerably

more complicated in this solution.

D.

—

2
0

the Jin-Martin bound. First, let us anticipate the result. As noted in the intro-

Next let us consider the problem of maximizing %;—T t=0 " A+ R:(?;, given

duction to Section IV.A," the maximum value of Ry, the real part in the forward
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direction, is one-half the Froissart bound. This limit is achieved by having all
the partial waves purely eiastic. If the inﬁaginary part to which this solution
corresponds is then calculated, not surprisingly, one finds A 0 equal to one-half
the Froissart bound. Thus the corresponding value of Ag + R?) is also one-half
the Froissart limit. To increase AO’ one must decrease RO; however, one can
clearly do better by having a vanishing real part and setting AO equal to the
Froissart limit. Thus, we expect that the maximum value of Ag + Ri will cor-
respond to an asyfnptotica]ly vanishing real part and a makimum imaginary part.
This expectation will be born out by the calculation below.

Using a notation which should be familiar by now, let us define the auxiliary
function

k 2

2 2 s
P=A,+ R, +2¢g ———(——-)
0 0 [Jg 50

Assuming R # 0, we find that I must be empty. In B, the solutions are

- G] + T(20+ 1,

Aty = By

A, - 1/2) = Ay - gP!Z

Solving for A p We obtain

A, =2 [R% +(Ag - gPﬂ)Z]l/z
Thesg solutions involve RO and A 0 which we hoped to compute, so in what sense
are these "solutions! at all? In this problem, because of its nonlinearity, one
cannot obtain an explicit for'mula for the r, and a, in terms of the mulfipliers
alone. However, what we have here is animplicit —representation of the solution,
very much analogous to implicit differentiation in ordinary caléulus. The implicit

solutions are made explicit by returning to the defining equations for RO and A 0’

First, let us modify the notation slightly. Since the problem is symmetric
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under rﬂ-—-—-rg, we suppose, without loss of generality, that R, > 0. Let

0
us define p = RO/AO’ and g = Ao'y. Then our implicit solutions become

. 2[p +(1—'yP2)2:|1/2
a = .l 14— (1"YP2) 7
(A 1/2

By the definition of p, we have

=a -1, 2111 2
§ﬂ_a pr 21

[oz+(yP24 1)2J1/2 :

we may write the requirement as
Ip, M =2 (20+1) £p, 1) =0.

This implicitly defines the ratio p as a function of the multiplier y. Having solved
for p = p(y), the multiplier y is then determined in the usual way froﬁ1 the con-

straint

' 2 (1-vP)
k(£ ) =2 =3 -

S (=) = (@+1a,P ==Y@0+1) |1+

Vs (SO 2ty 2 [p2+(yP2- 1)2]1‘/2

Py

This completes the statement of the formal solution.

Before making any approximations, it is useful to understand qualitatively
the mathematical problems encountered. One can show that I(p, v), for fixed v,
is continuous and monotonic in 'p and will ::Llways ch_ange sign once as p varies
from 0 to +». Hence I(p,vy) = 0 has a unique solution p = p(y) > 0. Solving,
one finds to a géod approximation, )

WA
)

1
Y

O f=
i
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so that as y—0, p—=0 although more slowly than y. Consequently, one is not

surprised to find that 7y has its canonical value
2,2 '
m(y) ~ £n<-§—4 (SO) > o ﬂn(s/so),

and that A0 achieves the Froissart limit

s
16 m

5 o2 (/8¢

which was the result anticipated. Thus, the final result is
16mA2

Although the mathematics is complicated and the result not surprising, we
believe this problem is interesting in two respects. First, it illustrates the power
of using Lagrange multipliers for inequality constraints. Secondly, using the
trick of implicitly representing the solution for the variables (in this case, the
partial wave amplitudes), one sees the method may be used to treat complicated
‘nonlinear functions. Bounds on do7/dt will be much -mofe useful experimentally
than on either the reai or imaginary parts separately and vs;ill eliminate the nec-

essity for having to suppose at high energy that the real part is negligible.

V. INTEGRAL BOUNDS

Reviewing the problems considered so far we see that all the. bounds have
been derived for a fixed energy and fixed angle or momentum transfer. Except
for the first two examples, analyticity in the form of the Jin-Martin bo:md has
been essential to obtain finite results. Unfbrtunately, the actual magnitude of
these results remains unknown because the scale s;) is unknown. However, as

pointed out by Jin-Martin [17] one consequence of their bound is the convergence

of the Froissart-Gribov dispersion formulas for the partial wave scattering
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lengths d for ¢ 2 2,

(]
. 0
4= % r(f+1 /‘ )lés; ;A&'(Le,!Zz f)lds 1)
I(e+3/2) T(1/2) J, 5

Conversely, .knowing d 5 the imaginary part A cannot grow as fast as si. Clearly,
the most stringent requirement on the growth is given by requiring the D-wave
scattering length dz to be finite. Ho?;vever, knowing the value of d2’ we have more
information, since then the scale of the bound is determined. This observation

is the basis of the bound with no arbitrary constraints, discussed recently by
Yndurain [21] and extended by Common [22]. Since the new input is in the form

of an integral, the quantity to be maximized must be compatible with this form

of the constraint, i.e., it must involve a range of energies.

Since the D-wave scattering length may be difficultto determine experiméntally,
it may be more cdnvenient in certain cases to use, say, the P-wave effective range.
If there is a low energy resonance in the P-wave system, then the effective range
may be more accessible to measurement. This latter problem is very similar
to the one worked below, and details will be dealt with elsex;/here.

From a mathematical standpoint, this involves a generalization of the theorems
presénted in Section I, since we now deal with a continuum of variables (i.e.,
functions) rather than a countable number. However such natural generalizations
are familiar from other physical problems (hotably, in field theofy) and, conse-
quently, we will not pause to state these explicitly. The rigorous justification for

the following discussion may be found in Chapter 5 of H.
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A.

The first problem we choose to consider is to maximize the average total

cross section 0., defined by

o ]
O = 6(1—57 /}; ds'(s' - 4) q(s") O'T(S')

- 26T ' g(s' '
- Q(S) b ds Q(S.) Z(Zﬁ + 1) az(s) (22)

given the D-wave scattering length d, = (8/157)d, where

0

d= / ds K(s) D_(2£ + 1) a,(s) Py(w),
- J4 [

w = (s +4)/(s-4),
and
K(s) = \/E_'/ks3.-

The function g(s) is an arbitrary weight function and
s ,
Q(s) = f ds'(s" - 4) q(s").
b .
The auxiliary function is written as
o0 o0
ZL=Qo. /16T +D(s)| d- f ds KXY (22 +1)a P (w) |+ 2(2L+ 1) f ds' KA u(s').
T _ 4 ('} 4 ()

Notice that the bound is required for a fixed value of s, and hence the multiplier
D depends only on s. On the other hand, since unitarity must hold for all values
of s', the unitarity multiplier Afs" must be a function of s'. As usual, A(s') 2 0,
and since increasing d will increase the maximum value of o, one expects

D(s) > 0.

— The variational equations are

-2 7\er= 0,
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and |
8(s - 8') B(s' - b) I(s') - DPw") +A (1 - 22) = 0,

: where h(s') = r(s')/K(s_')L. As in our earlier discussions two classes of {'s are
introdﬁced, namely Iand B. Since all Suffiéiently large £ must belong to BO’
the multiplier D rﬁust be f)ositiv_e. For s' outside the raﬁge bto s, it is éasy to
"see that all £ € i30. Therefore: let u$_ examine only this nontrivial interval. For
Lel, since }‘!l = 0, r, and a, aré not determined by the integer £ must be such that

b= .DP'Q(W').
The set Bl’ which has a,= 1, must have

' Ags',8) = B(s") - D(s) P(w') 20.
If h(s') is sufficiently small for certain ranges 6f s', then the inequality fails,
which means that the class B1 will be empty for these values of s'. To describe
this possibility, it is coﬁvenient to define a function 8y = s,(s) by the equation
D(s) = h(sl) = hl' Then fhe condition to be in B, can be written as
Pl(w') < h'/h1 .

The cutoff on the £ sum, L(s', s) is then defined by

Py (W)= b'/b, .

We will content ourselves to solve these equations in the large s limit, thereby
throwing away part of one of the important features of this type of problem, namely
completely determined finite energy bounds. These will .be examined in a later
paper. Using the results in the appendix, one finds that

L(s, s) ~ -2% fn(h' /h,)

and

Y o(20+1) a,(s") Py(w') = % L(s', s) (h'/hl)
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The condition due to the scattering length which determines the multiplier h1 can

be written as

. _
Bmga ) @ - o -8y m(h'/h)
Finally, the result for E:T becomes

s ' '
O'T < —g— j; ds'(s' -~ 4) r(s") 6(s' - 5,) mz(h'/hl) . (23)

N-1

Let us consider the case treated by Common [21] in which r(s ) ~s for

large s. One then finds '
h(s)/Q(s) =~ -;- s(N + 1),
and

N+2

(8/5) © n(s/s;) = 8sd(N + 1)/(N +2).

This latter equation implies that 4 << 8, < 8 for lafrge 8. Therefore in this limit

the leading term of the right-hand side of the bound becomes

G, < —;1—2- pn? [41\/12 SA(N + 1)] . 24)
It should be stressed that it is not at all necessary to take the limit of large s;
the exact solution given above exists for any energy value. The asymptotic limit
was taken only to show the form of the result. '

This bound can be improved in a simple manner by introducing more physical
informati.on in the following way. It will be assumed théf: one of the amplitudes,
say a,, is known in the energy ;'é;gion 4<s<c, whéere c <b. Then the scattering

length condition can be written as

3
=d- ' T ot 1 1t
dy d (2J+1)/: ds' /s ay Py(w )/h's

00 o
= f ds(/'/a's'®) D20 + 1) a P, (w) (25)
4 - .
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where the prime on the sum means to omit ay from the sum and integral in the

region s' < c. The previous vdiscussion goes through as before with dJ occurring
in the logarithm in piac_e of d. If more than one value of J is known, then the
bound can bé improved by subtracting their contributions to d as above. This
subtraction process may be useful in the physically interesting cdses of pion-
pion scattering in which the c?ntribution due to ‘rho and f-exchange can be sub-

“ tracted from the input information which is either the D-wave scattering length

or the P-wave effective range.

B.

As a second example of these techniques, let us treat a problem that involves
both an integral constraint and a constraint that is local in the energy. Defining

A(s, t) as before, the problem is to find the maximum value of Al(s-4 ,.
s
Al(s - 4) = 'I_Ji_ f ds' r(s') (22 + 1) aﬂ(s') Pz(z),
b
where
s
Q= [ st ae(s -
b

z=1+2t/(s' - 4),
and r(s') is an arbitrary weight function. The integral constraint will be the
same as before, and the local constraint will be chosen to be a given value of

the total elastic cross section o at each value of s',

ZeI(St)=(st - 4) Oél(s:‘)/lfiﬂ = 2(22 + 1) (ai + rf) .
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The auxiliary function & is written as

Z=RA/s - 4) + D(s) [d - f ds' K'2(2lz + 1) aﬂPR(w):l
. R 4

: o0
+ Y@L+ 1) / ds' KA (8") u(s')
4.

P
+ '[ds' K'C(s') [Zeﬂ(s') - }2:'(22 + 1) (af + ri)] _

In order to find thé_,maximufn it‘is convenient {o divide the s' interval into
fwo regions. Region O will be the ranges 4 < s'< bands <s'< w. Region R
will be the range b < s' < s. It has been assuméd that g, is given for all s'
whereas the maximization involves only the region R. Increasing 0,1 inside R
will increase the maximum, hence C(s') > 0 for s' € R. On the other hand,
increasing %1 outside this range will decrease the maximum, thus we expect
C(s') < 0 for s' € O. The variational equations are

h(s') Pﬂ(z) B(s-s")YO(s' - b) - DPI(W) ~-C a, + Aﬁ(l - 2a2) =0 (26)
and -
- 2(C<+ 2A1)_ = 0,

The reQuirement that the second derivatives are nonpositive is

(C+21) 2 0.

Let us first examine region O. In this region the term involving h(s') is not

present in the equation for a,. It is easy to see that there are no £ € I since if

2
}‘1 = 0, ¢ > 0, and there is no positive solution for a. Therefore all the {'s are
on the boundary. In the class Bl’ the multiplier is
‘A =-C - ->
Ay=-C- DPyw) 2 0
and in B

0’

Ay= DPy(w) 2 0.
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However, if C + 2\, vanishes, which demands that A = DP,, then the equations do

[ L g

not determine a, and r, Values of £ in this class will be denoted by B. Since all

large £'s must be in Boz. D > 0, and in order to have any nonzero valileé of a,, the

equality mulfiplier C(s') must be negative in region O. The solution is that all

£ € B1 for £ < Ll’ £ € B for £=AL1, and £ € B0 for ¢ > Ll’ where the iriteger L1
is déterminéd fromA .
L,-1
"N 2 2
Ee!l(s )= }(_; 20+ 1) + (2L1 +1) <3L1 + rL1>

2
= L] + (2L, + 1) L,

Thus the existence of the class B allows a fit to any value of Eel for an integer
value of Ll(s'). As in Section ]i.A, this equation uniquely determines both L1

< <
andO_aLl_ 1.

In region R, the presence of the h(s') term in Eq. (26) allows some of the 2

and r, to lie in the interior I of the unitarity circle. For this class one has r,= 0

and

a

o 1 ' - ]
(I C(S') [h(S ) PE(Z) D(S) PE(W) .
The multiplier C(s') must evidently be positive in region R as expected. For
values of £ for which this expression yields an ) which is greater than oné, the
correct value lies in Bl and 7\2 is easily seen to be positive. If this expression
is negative then it is éasily'seen that the correct £'s lie in BO' Therefore, one
has
¥ 1= Z (20+ 1) +_Z(212 + 1) [hPﬁ(z) - DPh(w)]z/Cz(s')
& B, B . )
which determines the parameter C(s').

The multiplier 'D( s) is determined by requiring that the scattering length d

be given correctly. 'Fina]ly, now that all the parameters are determined,' the
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value of the maximum possible value of A/(s - 4) can be evaluated in terms of
o (s') and d. In order to illustrate the geheral fo_rm of the result, the various
quantities will be evaluated in the limit of large s and large Eel' It will be
assumed that d is such that the class B, is empty.

1

For large values of Eel’ one has

\ 2 ~
Ll-" Z:el

and hence using the results of the appendix,

L, 1/2 1 271/2
)aj(zu 1) Pyw) = (Z’ '25) [efm ] 11<[——-——e; ] >

m

The contribution of region O to d will be denoted by d o and it is given by

ol [ sz ] ([22]7)

In evaluating the contributiqn of region R to d, it is necessary to know the

sums (see appendix)
L

1
; _ .2
20;(22 +1) [Pl(z) - ng(w)] P(w) = L“P (W) Gy

and
L
AR [Pﬂ(z) -gpw)]* =17E;
where
= D(s)/h(s") = K(s") D{s)/a(s") = P (2)/Py (W)
Therefore, .

_ e 1/2
d-d,= j: ds' K(s )[Zel/EL] L P (W) G
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or

D(s)(d-dg) = _8-1!}'1 . ds' q(s")(s' - 4) [o-el(s')/47r EL]l/z Py (2) [ yGL]

where [ yGy ] is given in the appendix. This equation determined D(s). The

maximum value of A/(s - 4) is therefore

8
Al(s - 4) < EFHI—Q'./;) ds' q(s")(s' - 4) [('él(s') EL/47T]1/2' y(s')

where y is determined from

Io(y) = Jo(x) (s")/K(s") Ds),

and D is given in terms of (d - do). For r~s',, the limit bccomes

Als - 4) < 5_15 [%1/4”]1/2 [Jf)(x) + Ji(x):ll/z . y(s)
where
y(8) = ln[4ms(d - do)(n + 2)/(0'e1/47r)1/2] ,

and terms of order unity have been dropped in the argument of the logarithm.

In the forward direction, this expression yields an asymptotic bound on the

total cross section

op % [""él/mz]l/z' y(s)
Thus it is seen that d and %1 set the energy scale in the log. Also, since the
amplitudes have been constrained to yield a given total elastic cross section at
all energies, this improves the bound given in the previous section by decrecasing
d by the minimum amount do that can come from region O. The presence of o

el
under the square root is also an improvement on the previous result.

VI. CONCLUSION

In conclusion, let us reflect on the mathematical machinery used here and

its potential usefﬁlness.» First, one should note that the mathematical theory
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presented in Section II gavebonly necessary conditions on local extrema. Onec may
then wonder why, in the subsequent applications, the solution to cach problem
was almost always unique. The answer [23] is that we were dealing with convex
functionals with convex ;:onstraints. This choice of problems was duc less to
design than to luck.

Secondly, we should stress our hope that the mathematical tools developed
here, in addition to unifying the treatment of these diverse types of bounds, will
allow more physical input to be injected into similar problems. If it should be
the case that scattering amplitudes grow logarithmically vﬁth energy, then the
asymptotic bounds may be of more than just academic interest and may have

. phenomenological applications.

Roy and Singh 20 have used bounds on reaction amplitudes to discuss the
Pomeranchuk theorem and to bound the difference between particle and anti-
particle total cross sections at large energies. Unfortunately, their very im-
portant results hold only at infinite energies. It is possible to derive an integral
form of the very important bound on reaction amplitudes. These integral forms
will hold at finite energies and may prove to be very interesting. This problem
will be discussed elsewhere.

No paper on bounds would be complete without mentioning the tremendous
impetus given to the subject by A. Martin [24] and collaborators. The recent
revival of interest in the subject is due, we believe, to the Serpukhov data [25]
suggesting a violation of the Pomeranchuk theorem [26] and to the very interesting

results by S. M. Roy and V. Singh [15, 18, 20].
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APPENDIX

Reluctantly, we must now turn to some rather tomentosc calculations. The
basic formula used to perform the sums in the text is

L

%(22 + ) Py(z) Py(w) = (L+ D[P (2) Py (W) = P (W) Py (2)]/(w-2)
and its limiting forms when w =1, and w = z. After performing the sums, ap-
proximations have been used to simplify the final formulas. The most useful
approximations are

P (2) = J(x)

P (W) = Iy(y)
1/2
-4t
x=L [s - 4:]

1/2
y = L[ 164]

An approximate formula used many times in the text which follows from the

where

and

above relations is
L

2. (20+ 1) 'Pﬂ(z)z ~ (L + 1)° [J%(x) + Ji(x):l
0 .

In many applications it is necessary to perform sums of the form
Zaﬂbﬂ

where a, is a slowly varying function of £ for £< L and for £ > L and rapidly

varying for {~L. 1Itis convement in such cases to perform a summatlon by parts

by introducing

)
B, = %bj
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so that

p = By~ By g

Inserting this into S and redefining summation variables achieves the form
8= 202y 2,9) By
Since the a change most rapidly for ¢ ~L, the expansion of BQ about this value
yields
S=ag By + Z(aIZ - a,.4) (B, - B)
This will be a useful procedure if the second term can be shown to be small in
comparison with the first. This will be the case under the conditions stated.

In Section III. C, it is necessary to perform sums over positive functions
of the form (Pﬂ(z) - gPE(w)) and its square. Since Pﬂ(z) oscillates, for sim-
plicity, it will be assumed that the momentum transfer is small enough so that
only the first cycle of Pﬂ(z) need be considered. The second term Pﬁ(w) grows
monotonically with £ and the sum must terminate. Define L to be the last value
of £ to contribute, then it follows that

2, Pra®
PL(w) = - PL+1(W)

In the equation that determines g it is clear that for g~ 0, or L.~ e, the
ratio of sums on the right-hand side vanisheé. As g~1, this ratié also goes
to one. It is straightforward to prove using Schwartz's inequality that the deri-
vation of the ratio with respect to g is positive definite for 0 < g < 1. Hence
the ratio is monotonic and g is un'ique. Using the summation formulas and the
asymptotic behavior of IO(y), the solution for Amax’ Eq. (15), is easily derived.
The condition that only the first cycle of Pﬂ(z) contribute is the requircment that

x be less than the first zero of Jo(x).
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The summations required for Rmax in Section IV. A are easily performed
by using summation by parts and the usual summation formulas.

In Section IV. D, sdi;ne care must be taken in evaluating the sum over -EI
which yields the connection between y and p. It is convenient to divide the sum
over { into three regions. Assuming thaty and p are small, the regions are
defined by \ :

1, 'yP1<1-p .

2. 1—p<'yP£<1+p
3. '1+p<'yP£ :

Expansions in p can be made in each of these regions, and there are important
cancellations between region 1 and 3 which must be treated carefully.
In Section V, the summations are of the canonical form and one finds
Ep % Tix) + I(x)

s [YLW | . H®)
IO(Y) , Jo(x) + x Jl(x) - qo(x) -

G, =
1‘?,(3')

L~ y2+x2

Assuming that y >> 1, GL becomes

vy~ [0F - ) a + 2xy 1y00] 57 + 5
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Fig. 1

Maximizing f(x) on the set g(x) > 0.
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Fig. 2

Argand diagram. The unitarity circle is ai + ri =a,. The heavy line
indicates the values of the partial wave amplitudes; inelastic for { <L,

elastic for £> L.
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Figure (3) Expansion of figure (2) for the region near the Li1t
edge, showing the-oscillations in f'' and f' through

the edge.



