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1. Introduction

Perturbative gravity is related to perturbative gauge theory.
Since the pioneering work in [1] this relation is being called the
double copy. Although nowadays the term double copy goes far be-
yond reproducing pure graviton amplitudes from gauge boson ones
(see [2] for a recent review), at this moment the field of physical
applications of the double copy is certainly gravity. In fact, there
have already been results of interest that come from the double
copy in gravitational wave physics (see, for example, Refs. [3-6]),
which has become a very active field of research since the direct
detection of gravitational waves in the LIGO and VIRGO experi-
ments [7,8].

In its most simple form, at tree level, by complementing the
double copy construction with color/kinematics duality [9], it may
be proved that it reproduces the well known Kawai-Lewellen-Tye
(KLT) relations for graviton amplitudes [10-12]. These relations not
only link but state that a graviton amplitude is explicitly given as
a sum of products of color ordered Yang-Mills (YM) amplitudes. In
this format the diffeomorphism invariance of a graviton amplitude
is automatically guaranteed by the gauge invariance of the Yang-
Mills amplitudes. But the opposite is a quite a non trivial thing to
prove, that is, given that a graviton amplitude is diffeomorphism
invariant then it should be possible to write it as a sum of prod-
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ucts of gauge theory amplitudes. This is something that we address
in the present paper, finding the origin of the KLT relations from
a pure Quantum Field Theory (QFT) perspective, although we do
not need at any moment to consider a lagrangian. First of all, the
original derivation of the KLT relations was done in the context of
string theory [10]. Within that context its explicit generalization
to the N-point case was later done in [11,12] and recently it has
been found a mathematical explanation for them in intersection
theory [13]. Second, non string theory derivations of the KLT re-
lations (which do not rely on Feynman diagram calculations) have
been found in the recent decade. One is peculiar to D =4 [14],
based on a Britto-Cachazo-Feng-Witten (BCFW) analysis [15], and
the other one is the Cachazo-He-Yuan (CHY) construction, valid for
arbitrary spacetime dimensions [16]. Third, although these deriva-
tions succeed in reproducing the graviton amplitudes, the same as
the double copy construction does [11], non of them explain what
is the origin of the decomposition of the graviton amplitude as a
sum of products of gauge theory ones, from first principles.

In this Letter our first result consists in proving that the ori-
gin of the sum over products of gauge theory amplitudes in the
KLT relations is on-shell gauge invariance and unitarity. We apply
our approach to scattering processes which also consider interac-
tions of a massless antisymmetric field and a massless scalar (the
dilaton), arriving to the KLT relations involving all three fields [10]
(which have the same format as the ones for gravitons).

Our second result of this paper consists in proving that,
for more than four legs, there exists a set of nonlinear rela-
tions obeyed by YM color ordered amplitudes. Nonlinear relations
obeyed by YM amplitudes found in the literature [17] are only
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valid in D = 4, while the ones we find here are valid in arbitrary
spacetime dimensions. The existence of these relations for two dif-
ferent given sets of BC] basis implies that there is not a unique
momentum kernel which could be used in the explicit form of the
KLT relations [11].

Our procedure is based on a kinematic space approach first
considered in [18] to find a kinematic derivation of the Bern-
Carrasco-Johansson (BC]) relations [9], then generalized in [19]
to scattering processes involving only gravitons and only gluons,
and then extended to scattering processes which consider different
massless bosons, in [20]. This is different from other approaches
which deal with gauge invariance and BC] relations [21-24].

All our results have been found through six points.

2. Graviton amplitudes in General Relativity
2.1. General kinematic structure and physical requirements

Let My denote the N graviton on-shell amplitude in General
Relativity, computed with respect to Minkowski spacetime.

My is a Lorenz invariant kinematic expression which is mul-
tilinear in the N polarization tensors Z/" and depends on the N
momentum vectors kﬁ.‘ .I We demand My to obey the following
conditions:

1. k? =0 (on-shell condition),
2. Z;” = Z})“, Zﬁ‘”n,w =0 (symmetry and traceless condi-
tion),

3. Zﬁ.”kfv' =0 (transversality or on-shell gauge condition),
4., My should remain invariant under momentum conserva-
; wo_ H
tion, ki" = —Z#i k]. .
5. My should be on-shell gauge invariant,
MN|Z?V—>a#k'j+ot"k? =0,
where a* is arbitrary, except for the condition & - k; = 0.
(1)
We further demand My to depend on a unique coupling con-
stant ¥ and, for N > 4, to obey unitarity (in the form of factoriza-
tion):

MN|S]2—>O ~
MEY(Z1 ke Za ko K)MN-1 o (—k; Z3,k3; .5 Zn, k) )
S12 '
where k=—ki; —ky, =k3z + ... +ky and
d

M5V (Z1 ks 2o, kas k) = ———Ms(Z1 ks Zakas Zk) - (3)
0Z,y
where an expression similar to (3) holds for My_1 ,, in (2).

Although not necessarily manifest, the resulting expression of
M should be Bose invariant.

In arbitrary spacetime dimension My can only be built from
products of scalar terms like {Tr(Z; - Z;), Tr(Zi - Zj - Zy), ..., (km -
Zn-kp), (km-Zn-Zp-kg), ...}, where “Tr” is the trace over spacetime
indices.

2.2. The three point amplitude
A simple example of the construction of a graviton amplitude,

following the prescriptions of the previous subsection, is the three
point case:

1 By demanding momentum conservation My may be written in terms of only
(N=1) l<§.* s,

Table 1
Number of independent coefficients in the N-point graviton amplitude.

N Number of independent
coefficients before demanding
gauge invariance

Number of independent
coefficients after demanding
gauge invariance

3 7 1
4 336 1
5 27.922 3
6 5.577.852 21

Ms =ik [Tr(Z1 - Zo)(ki - Z3 - k1) +Te(Zs - Z3) (ko - Z1 - ko) +
Tr(Z3-Z1)(k3 - Z3 -k3) +2(ka - Z1 - Z2 - Z3 - k1) +
2k Zo-Z3- 21 ko) +2(ky - Z3- Z1 - Z3 -k3)] . (4)

In principle, this amplitude should have been constructed using
all independent Tr(Z - Z)(k-Z -k), k-Z-Z-Z -k), Tt(Z-Z - Z),
(k-Z-k)(k-Z-Z-k) and (k-Z-k)> terms. But a dimensional analysis
tells us that these last two sort of terms should go with a different
coupling constant than the first three ones (they would come in
a higher derivative theory of gravity), so their coefficient should
be zero.” Then, demanding on-shell gauge invariance in the three
legs, all coefficients can be determined up to a global factor, which
in (4) we have chosen to be ix.

For N > 4 the coefficients of the kinematic terms of My de-
pend on the Mandelstam variables, s;j = (k; +kj)2, siji = (ki +kj +
k)2, etc.

2.3. Two important kinematic constraints obeyed by My

In the next lines we argue that the following two constraints
hold:

the (k-Z - k)N and (k- Z - k)N"2(k - Z - Z - k) terms
are absent in My. (5)

First of all, in (4) we see that M3 obeys them. Next, for N > 4,
using iteratively the unitarity relation (2) it can be inferred that the
maximum power of momenta in the numerator of My is 2N — 4
[19]. This implies, precisely, that the two kinematic constraints in
(5) should be obeyed.

2.4. Gauge invariance and unitarity as the origin of the decomposition
OfMN

The first step towards finding the expression of My, along our
approach, is to write it as a linear combination of all possible inde-
pendent kinematic terms respecting (except for gauge invariance)
the requirements in (1) and the two constraints that come from
unitarity, in (5). This leads to an expression which contains the
number of independent coefficients shown in the second column
of Table 1.

Next, after demanding on-shell gauge invariance in all external
legs, many relations arise for the previous initial coefficients, enor-
mously reducing the number of them which are still independent,
according to the third column of Table 1.3 We call Wy the result-
ing vector space of kinematic gravitational expressions, to which
My belongs after demanding the aforementioned requirements.

An extremely important result that is hidden behind the data
in Table 1 is that, after demanding gauge invariance,

2 The scalar dimensionful combination k; -kj cannot be used in massless 3-point
scattering since it is zero on-shell.
3 For N =6 we have arrived at those results only working numerically.
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terms containing Tr(product of an odd number of Z’s)
are absent in My.

(6)

A simple example of this can be seen in eq. (4), in which the
Tr(Z - Z - Z) terms are not present in the 3-point amplitude.

In order to understand the relevance of the statement in (6) let
us be more concrete and consider the factorization procedure for
a given a kinematic term of My. Let it be, Ty =Tr(Zy - Z3) (k1 -
Z3 - Z4 - k2). We define the decomposition rule of each graviton
polarization tensor as

7 ot esty (7)

where, in order to keep a traceless polarization tensor, the polar-
ization vectors ¢; and ¢; must obey ¢; - ¢j =0 and, also, in order
to satisfy the transversality (third) condition in (1) they should
obey ¢; - kj = Ej -kj =0, for each light-like momenta k;. Notice
that the tensor product ®s introduced in (7) is symmetric in the
spacetime indices. Following the rule (7) we have that Tr(Z; - Z3)
may be written as (&1 - &) Qs (£1 - &) and (k1 - Z3 - Z4 - ky) may
be written as (z3 - k1)(¢4 - k2) ®s (3 - Z4).* Therefore, T; can be
written as a tensor product of gauge boson Lorenz invariants, as
(€1 82)(&3 - k1)(Ca - k2) ®s (51 - £2)(L3 - Ca).

The factorization procedure mentioned above can be done with
all the kinematic terms of M4, except for the Tr(Z-Z - Z)(k- Z -
k) ones. In that case we have, for example, that Tp =Tr(Z - Z; -
Z3)(k1 - Z4 - kp) can at best be written as (g -{2);“;(4“4 -ky) ®s
$1u(C2 - £3)(Ca - ko), that is, with left and right factors which are no
longer Lorenz invariant (which is the spirit of the factorization in
the KLT relations).

It is not difficult to see that in the general case of My the only
kinematic terms which cannot be factorized in terms of Lorenz in-
variants are the ones which contain the trace of a product of an
odd number of polarization tensors (precisely the ones mentioned
in (6)). Only for them it will happen that the left and right factors
will have an odd number of ¢;'s and Ej‘s and it is not possible to
contract their indices in such a way that these factors are Lorenz
invariants, as it happened in the previous paragraph with the T,
term.

So, the important consequence of the result in (6) is that, af-
ter demanding on-shell gauge invariance, My can be written as a
sum of factorizable terms:

dn
My=>"b Y U @ ®s VP (@ k) ®)
r=1 S

where, due to the constraints in (5), the Ugr)(g,k)’s and the
Vs(r)(g:, k)’s are gauge boson Lorenz invariant kinematic expressions
which do not contain (¢ - k)Y and (Z - k)N terms, respectively.’ In
(8) dy corresponds to the number in the third column of Table 1
and it is given by

dN:%(N—3)![(N—3)!+1]. (9)

In the beginning of the next section we explain why is dy given,
not by chance, by the expression above.

Also in (8) the dy sums in s are linearized diffeomorphism
invariant expressions (where the cgr)'s are specific known coeffi-
cients) and the b,’s are free parameters.

4 (ky-Z3-Z4-ky) could have equivalently been written as (¢3 - £4) ®s (£3 - k1)(Z4 -
k2).

5 At this moment the U (¢, k)’s and V{(Z,k)’s need not necessarily be Yang-
Mills amplitudes. See the beginning of section 3 for their appearance in the expres-
sion of My.

3. The KLT relations

Let us consider the BCJ basis {An(1, p,(vl), N —1, N)}, where p,(\;)
denotes the (N — 3)! permutations of indices {2,3,...,N — 2} [9].
Based on the fact that the BC] set is a basis of the gauge in-
variant gluon kinematic expressions which do not contain (¢ - k)N
terms [18], in [25] we prove that the set {A; ®s ;\j} is a basis for
the vector space Wy, introduced in subsection 2.4, where i < j =
1,2,..., (N —3)! and where A, denotes An(1, p\”, N —1, N). No-
tice that this set is dy-dimensional. So in (8) a change of basis of
Wh can be done, allowing to write My as

(N=3)! '
My= 3" o) AN, o, N =1,N) ®s

i<j=1

AN o N=1,N). (10)

3.1. Finding the KLT relations by demanding unitarity in eq. (10)

The N = 3 case is the most simple one and its proof does
not require the use of unitarity. For this case My is known (see
(4)) and in (9) we have d3 =1, so there is only one term in the
right hand-side of (10). By using the well known expression of
A3(1,2,3), and expanding the right hand-side of (10), it is quite
direct to check that the « coefficient is given by ix /2°:

K -
/\/l3:i§A3(1,2,3)®5A3(2,1,3). (11)

Next, we consider N > 4. For this case we use the result in
eq. (10) and determine the ozi(_’j.) coefficients by requiring ap-
propriately unitarity. The procedure consists in dealing with the
Tr(Z1- Za) (k- Z - k)N =2 and the {(¢1-02) (¢ - kN2, (21 - 22) (£ - N2}
terms, of My and {Ay, An}, respectively. The coefficients of the
first terms can be determined recursively (in N) by demanding
the unitarity requirement in (2) and also the analog relations for
the remaining s;; Mandelstam variables (j = 3,4,...,N). There
are similar unitarity relations which allow to determine the co-
efficients of the second terms as well. Then, substituting the
(&1-02)(¢ -k)N=2 and the (1 -22)(Z -k)N~2 terms in the right hand-
side of eq. (10), and doing their tensor product to arrive at the
Tr(Z1 - Z)(k - Z - k)N=2 terms, these last ones can be compared
with the ones from the left hand-side of that equation allowing to
determine all the ozi(’N)’s. The subtlety at this point is that the ex-
pression found for My in (10) is an unconventional KLT relation.
The conventional ones use a different BC] basis in both gauge sec-
tors of My. Then, the only thing which is left to do is to change
one of the BC] basis of a gauge sector by another one by using
the appropriate B(] relations for the amplitudes [9]. It is then that
we arrive at the known KLT relations. For example, for N =4 and
N =5 our procedure leads to

K\2 _
M4=—i(5) 512 A4(1,2,3,4) ®s As(2.1,3,4) , (12)

K3 -
Ms =i (5) [ 512534 As(1,2,3,4,5) ®s As(2,1,4,3,5) +
513524 As(l, 3, 2,4, 5) ®s A5(3, 1,4, 2, 5) ] , (13)

in agreement with [10,26]. For N =6 we also arrive to the known
KLT relations, which is in agreement with those references. The
subtlety is that, for these cases, the expressions are too big and

6 In (11) we have used that A3(1,2,3) = —A3(2, 1, 3).
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the analytic form of the KLT relations can only be checked numer-
ically.’

The details of all these calculations will be presented elsewhere
[25].

3.2. The KLT relations involving also the b, and ¢ fields

We define the theory that describes the interactions of the
graviton (hy,), the antisymmetric field (b,,) and the dilaton (¢)
by requiring a unique coupling constant ¥ and by demanding the
unitarity requirement (2) for the interaction of all sort of states.

The whole procedure considered for the self interactions of a
graviton is also applicable now, with the only subtlety that the
polarization tensor of a by, particle obey Z{,M = —Z,Jw and the

polarization tensor of the dilaton is given by Z},, = Z/n,,,, where
ZJ is a scalar. For these cases the tensor product ®s introduced in
(7) has now to be substituted by another tensor product ® which
takes into account the antisymmetry of the corresponding states of
the specific scattering process. Notice that the two constraints in
eq. (5) are still valid, taking into account the previous polarization
tensors. In [25] we give the details of these calculations but here
we mention that the final result is that the KLT relations, involving
all interactions of the three fields, still hold with the same format
(11)-(13) as it is well known [10]. We have verified this through
six points.

4. Nonlinear relations obeyed by YM amplitudes

Since in the usual format of the KLT relations different BCJ basis
are used for the left and right sectors of My, instead of (10) let
us write this amplitude, right from the beginning, with a different
BCJ basis for the Ay's, as

(N=3)! ‘
My= Y 8 An(1, oy ,N=1,N) ®s
i,j=1
3 () . ) .
AN(oy{2,...,kn —1},1,N =1, p5'{kn, ..., N = 2},N),
(14)

where p,(\,’){z,...,kN — 1} and p,(\,’){kN,...,N — 2} denote the first
kn — 2 and the last N — 1 — ky indices of the permutation ,01(\,1),
respectively, and where ky =[N/2 + 1].

If we had done a change of BCJ basis in the An’s of (10), we
would have arrived at a similar expression to (14), but consisting
of a sum over dy terms only. Given that the sum in (14) is done
over (N —3)1? terms (N — 3)!2 > dy for N > 5) this means that
My has been now expanded in a set of amplitude bilinears which
is linearly dependent. Therefore there is not a unique solution for
the 61.{'\].) coefficients, so the kernel of (14) is different from zero
and this leads to linear relations obeyed by the amplitude bilin-
ears, or stated in another way, this leads to nonlinear identities
obeyed by YM color ordered amplitudes. The number of indepen-
dent identities which arise (which is equal to the dimension of the
kernel of (14)) is the difference between (N — 3)!2 and dy, which
gives

N*=1(N=3)![(N-3)1-1]. (15)

Notice that N* is different from O only for N > 5.
For N =5 in (15) we have N* =1 and the only nonlinear rela-
tion that arises from solving the kernel of (14)) is given by

7 Assuming (10) to be valid for N =7 we have also been able to check numeri-
cally the KLT relation for this case [25].

As(1,2,3,4,5) ®s
(nAs(2,1,4,3,5) + 15 45 (3,1,4,2,5)) +
As(1,3,2,4,5) ®s

() As5(3,1,4,2,5) + v,V A5(2,1,4,3,5)) =0, (16)
where

V1> = s12534 (15 + Sa5) .

)/2(5) = —515523(S24 + S45) — S13(515524 + (523 + S24)S45) , (17)

5
)’3( ) = —513524 (515 + Sa5) ,
5
Vi ) = 515523(534 + Sa5) + 512(515534 + (523 + 534)545) .

The expression of the yj(s)’s in (17) has been found using the

N =5 B(J relations to write {As(2,1,4,3,5),As5(3,1,4,2,5)} in
terms of {A(1,2,3,4,5), A(1,3, 2,4,5)} in (16).

Writing our relation (16) in terms of the same BC] basis used in
eq. (10) of Ref. [17] we see that they do not match, although we
have checked that this last relation is indeed valid. The reason for
this mismatch is that in D =4 the set of YM 5-point amplitudes
of a given helicity configuration has a 1-dimensional basis (instead
of a 2-dimensional BCJ one, in arbitrary spacetime dimension) [27]
and this would allow to still rewrite eq. (10) of Ref. [17] in our
format (16), valid in any spacetime dimension.

Both approaches to arrive at the nonlinear relations obeyed by
YM amplitudes, ours and the one in Ref. [17], have in common that
when the gravitational theory is extended to one which is super-
symmetric, the supersymmetry requirement implies restrictions in
the bosonic sector alone which are responsible for the relations. In
our case these requirements are the ones in (5) while in the case
of Ref. [17] they are the forbidden combination of helicity config-
urations which appear in the identities.

For N =6 in (15) we have N* =15 and we have verified these
relations numerically by considering the Tr(Z; - Z2)(k - Z - k)N—2
terms in both sides of (16). The yj(s) coefficients of these nonlinear
relations are simply too big. Working numerically we have seen
that the degree of homogeneity of them is at least 20 (in contrast
to degree 3, found in the N =5 case in (17)).

The fact that for two given different sets of BCJ basis for YM
amplitudes there exist nonlinear relations which they should obey
implies that when writing a graviton amplitude in terms of them
there is not a unique momentum kernel [11] for that relation.

5. Final remarks

In this Letter we have seen that unitarity and on-shell gauge in-
variance are so strong constraints that, when applied to a graviton
and a gluon amplitude, allow to prove the KLT relations (at least
through six points). The key ingredient has been to work in kine-
matic space, where unitarity immediately implies the constraints
(5) while on-shell gauge invariance then reduces drastically the
number of kinematic invariants to a basis (see Table 1), formed
by factorized kinematic terms. The KLT relations proceed, then, by
considering a basis for the gauge boson amplitudes [18], unitarity
once again and the B(] relations.

As a by-product of our kinematic analysis we have found non-
linear relations obeyed by YM amplitudes which are valid in arbi-
trary spacetime dimensions.

It would be interesting to apply the sort of kinematic study
we have considered here to the case of loop amplitudes in some
gravitational theory, especially a supersymmetric one, in which the
constraints in (5) still hold, in order to see if it is possible to find
a proof of the double copy construction [1], for which evidences
exist [1,28].
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