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1. Introduction

Perturbative gravity is related to perturbative gauge theory. 
Since the pioneering work in [1] this relation is being called the 
double copy. Although nowadays the term double copy goes far be-
yond reproducing pure graviton amplitudes from gauge boson ones 
(see [2] for a recent review), at this moment the field of physical 
applications of the double copy is certainly gravity. In fact, there 
have already been results of interest that come from the double 
copy in gravitational wave physics (see, for example, Refs. [3–6]), 
which has become a very active field of research since the direct 
detection of gravitational waves in the LIGO and VIRGO experi-
ments [7,8].

In its most simple form, at tree level, by complementing the 
double copy construction with color/kinematics duality [9], it may 
be proved that it reproduces the well known Kawai-Lewellen-Tye 
(KLT) relations for graviton amplitudes [10–12]. These relations not 
only link but state that a graviton amplitude is explicitly given as 
a sum of products of color ordered Yang-Mills (YM) amplitudes. In 
this format the diffeomorphism invariance of a graviton amplitude 
is automatically guaranteed by the gauge invariance of the Yang-
Mills amplitudes. But the opposite is a quite a non trivial thing to 
prove, that is, given that a graviton amplitude is diffeomorphism 
invariant then it should be possible to write it as a sum of prod-
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ucts of gauge theory amplitudes. This is something that we address 
in the present paper, finding the origin of the KLT relations from 
a pure Quantum Field Theory (QFT) perspective, although we do 
not need at any moment to consider a lagrangian. First of all, the 
original derivation of the KLT relations was done in the context of 
string theory [10]. Within that context its explicit generalization 
to the N-point case was later done in [11,12] and recently it has 
been found a mathematical explanation for them in intersection 
theory [13]. Second, non string theory derivations of the KLT re-
lations (which do not rely on Feynman diagram calculations) have 
been found in the recent decade. One is peculiar to D = 4 [14], 
based on a Britto-Cachazo-Feng-Witten (BCFW) analysis [15], and 
the other one is the Cachazo-He-Yuan (CHY) construction, valid for 
arbitrary spacetime dimensions [16]. Third, although these deriva-
tions succeed in reproducing the graviton amplitudes, the same as 
the double copy construction does [11], non of them explain what 
is the origin of the decomposition of the graviton amplitude as a 
sum of products of gauge theory ones, from first principles.

In this Letter our first result consists in proving that the ori-
gin of the sum over products of gauge theory amplitudes in the 
KLT relations is on-shell gauge invariance and unitarity. We apply 
our approach to scattering processes which also consider interac-
tions of a massless antisymmetric field and a massless scalar (the 
dilaton), arriving to the KLT relations involving all three fields [10]
(which have the same format as the ones for gravitons).

Our second result of this paper consists in proving that, 
for more than four legs, there exists a set of nonlinear rela-
tions obeyed by YM color ordered amplitudes. Nonlinear relations 
obeyed by YM amplitudes found in the literature [17] are only 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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valid in D = 4, while the ones we find here are valid in arbitrary 
spacetime dimensions. The existence of these relations for two dif-
ferent given sets of BCJ basis implies that there is not a unique 
momentum kernel which could be used in the explicit form of the 
KLT relations [11].

Our procedure is based on a kinematic space approach first 
considered in [18] to find a kinematic derivation of the Bern-
Carrasco-Johansson (BCJ) relations [9], then generalized in [19]
to scattering processes involving only gravitons and only gluons, 
and then extended to scattering processes which consider different 
massless bosons, in [20]. This is different from other approaches 
which deal with gauge invariance and BCJ relations [21–24].

All our results have been found through six points.

2. Graviton amplitudes in General Relativity

2.1. General kinematic structure and physical requirements

Let MN denote the N graviton on-shell amplitude in General 
Relativity, computed with respect to Minkowski spacetime.

MN is a Lorenz invariant kinematic expression which is mul-
tilinear in the N polarization tensors Zμν

j and depends on the N

momentum vectors kμ
j .1 We demand MN to obey the following 

conditions:

1. k2
j = 0 (on-shell condition),

2. Zμν
j = Zνμ

j , Zμν
j ημν = 0 (symmetry and traceless condi-

tion),

3. Zμν
j k j

ν = 0 (transversality or on-shell gauge condition),

4. MN should remain invariant under momentum conserva-
tion, kμ

i = −∑
j �=i kμ

j .

5. MN should be on-shell gauge invariant,
MN

∣∣
Zμν

j →αμkν
j +ανkμ

j
= 0 ,

where αμ is arbitrary, except for the condition α · k j = 0.

(1)

We further demand MN to depend on a unique coupling con-
stant κ and, for N ≥ 4, to obey unitarity (in the form of factoriza-
tion):

MN
∣∣
s12→0 ∼

Mμν
3 (Z1,k1; Z2,k2;k)MN−1 μν(−k; Z3,k3; . . . ; Z N ,kN)

s12
, (2)

where k = −k1 − k2 = k3 + . . . + kN and

Mμν
3 (Z1,k1; Z2,k2;k) = ∂

∂ Zμν
M3(Z1,k1; Z2,k2; Z ,k) , (3)

where an expression similar to (3) holds for MN−1 μν in (2).
Although not necessarily manifest, the resulting expression of 

MN should be Bose invariant.
In arbitrary spacetime dimension MN can only be built from 

products of scalar terms like {Tr(Zi · Z j), Tr(Zi · Z j · Zk), . . . , (km ·
Zn ·kp), (km · Zn · Z p ·kq), . . .}, where “Tr” is the trace over spacetime 
indices.

2.2. The three point amplitude

A simple example of the construction of a graviton amplitude, 
following the prescriptions of the previous subsection, is the three 
point case:

1 By demanding momentum conservation MN may be written in terms of only 
(N − 1) kμ

j ’s.
Table 1
Number of independent coefficients in the N-point graviton amplitude.

N Number of independent 
coefficients before demanding 
gauge invariance

Number of independent 
coefficients after demanding 
gauge invariance

3 7 1
4 336 1
5 27.922 3
6 5.577.852 21

M3 = i κ
{

Tr(Z1 · Z2)(k1 · Z3 · k1) + Tr(Z2 · Z3)(k2 · Z1 · k2) +
Tr(Z3 · Z1)(k3 · Z2 · k3) + 2(k2 · Z1 · Z2 · Z3 · k1) +
2(k3 · Z2 · Z3 · Z1 · k2) + 2(k1 · Z3 · Z1 · Z2 · k3)

}
. (4)

In principle, this amplitude should have been constructed using 
all independent Tr(Z · Z)(k · Z · k), (k · Z · Z · Z · k), Tr(Z · Z · Z), 
(k · Z ·k)(k · Z · Z ·k) and (k · Z ·k)3 terms. But a dimensional analysis 
tells us that these last two sort of terms should go with a different 
coupling constant than the first three ones (they would come in 
a higher derivative theory of gravity), so their coefficient should 
be zero.2 Then, demanding on-shell gauge invariance in the three 
legs, all coefficients can be determined up to a global factor, which 
in (4) we have chosen to be iκ .

For N ≥ 4 the coefficients of the kinematic terms of MN de-
pend on the Mandelstam variables, si j = (ki + k j)

2, si jl = (ki + k j +
kl)

2, etc.

2.3. Two important kinematic constraints obeyed by MN

In the next lines we argue that the following two constraints 
hold:

the (k · Z · k)N and (k · Z · k)N−2(k · Z · Z · k) terms

are absent in MN . (5)

First of all, in (4) we see that M3 obeys them. Next, for N ≥ 4, 
using iteratively the unitarity relation (2) it can be inferred that the 
maximum power of momenta in the numerator of MN is 2N − 4
[19]. This implies, precisely, that the two kinematic constraints in 
(5) should be obeyed.

2.4. Gauge invariance and unitarity as the origin of the decomposition 
of MN

The first step towards finding the expression of MN , along our 
approach, is to write it as a linear combination of all possible inde-
pendent kinematic terms respecting (except for gauge invariance) 
the requirements in (1) and the two constraints that come from 
unitarity, in (5). This leads to an expression which contains the 
number of independent coefficients shown in the second column 
of Table 1.

Next, after demanding on-shell gauge invariance in all external 
legs, many relations arise for the previous initial coefficients, enor-
mously reducing the number of them which are still independent, 
according to the third column of Table 1.3 We call WN the result-
ing vector space of kinematic gravitational expressions, to which 
MN belongs after demanding the aforementioned requirements.

An extremely important result that is hidden behind the data 
in Table 1 is that, after demanding gauge invariance,

2 The scalar dimensionful combination ki · k j cannot be used in massless 3-point 
scattering since it is zero on-shell.

3 For N = 6 we have arrived at those results only working numerically.
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terms containing Tr(product of an odd number of Z ′s)
are absent in MN .

(6)

A simple example of this can be seen in eq. (4), in which the 
Tr(Z · Z · Z) terms are not present in the 3-point amplitude.

In order to understand the relevance of the statement in (6) let 
us be more concrete and consider the factorization procedure for 
a given a kinematic term of M4. Let it be, T1 = Tr(Z1 · Z2)(k1 ·
Z3 · Z4 · k2). We define the decomposition rule of each graviton 
polarization tensor as

Zμν
j ↔ ζ

μ
j ⊗S ζ̄ ν

j , (7)

where, in order to keep a traceless polarization tensor, the polar-
ization vectors ζ j and ζ̄ j must obey ζ j · ζ̄ j = 0 and, also, in order 
to satisfy the transversality (third) condition in (1) they should 
obey ζ j · k j = ζ̄ j · k j = 0, for each light-like momenta k j . Notice 
that the tensor product ⊗S introduced in (7) is symmetric in the 
spacetime indices. Following the rule (7) we have that Tr(Z1 · Z2)

may be written as (ζ1 · ζ2) ⊗S (ζ̄1 · ζ̄2) and (k1 · Z3 · Z4 · k2) may 
be written as (ζ3 · k1)(ζ4 · k2) ⊗S (ζ̄3 · ζ̄4).4 Therefore, T1 can be 
written as a tensor product of gauge boson Lorenz invariants, as 
(ζ1 · ζ2)(ζ3 · k1)(ζ4 · k2) ⊗S (ζ̄1 · ζ̄2)(ζ̄3 · ζ̄4).

The factorization procedure mentioned above can be done with 
all the kinematic terms of M4, except for the Tr(Z · Z · Z)(k · Z ·
k) ones. In that case we have, for example, that T2 = Tr(Z1 · Z2 ·
Z3)(k1 · Z4 · k2) can at best be written as (ζ1 · ζ2)ζ

μ
3 (ζ4 · k1) ⊗S

ζ̄1μ(ζ̄2 · ζ̄3)(ζ̄4 · k2), that is, with left and right factors which are no 
longer Lorenz invariant (which is the spirit of the factorization in 
the KLT relations).

It is not difficult to see that in the general case of MN the only 
kinematic terms which cannot be factorized in terms of Lorenz in-
variants are the ones which contain the trace of a product of an 
odd number of polarization tensors (precisely the ones mentioned 
in (6)). Only for them it will happen that the left and right factors 
will have an odd number of ζ j ’s and ζ̄ j ’s and it is not possible to 
contract their indices in such a way that these factors are Lorenz 
invariants, as it happened in the previous paragraph with the T2
term.

So, the important consequence of the result in (6) is that, af-
ter demanding on-shell gauge invariance, MN can be written as a 
sum of factorizable terms:

MN =
dN∑

r=1

br

∑
s

c(r)
s U (r)

s (ζ,k) ⊗S V (r)
s (ζ̄ ,k) , (8)

where, due to the constraints in (5), the U (r)
s (ζ, k)’s and the 

V (r)
s (ζ̄ , k)’s are gauge boson Lorenz invariant kinematic expressions 

which do not contain (ζ · k)N and (ζ̄ · k)N terms, respectively.5 In 
(8) dN corresponds to the number in the third column of Table 1
and it is given by

dN = 1

2
(N − 3)! [

(N − 3)! + 1
]
. (9)

In the beginning of the next section we explain why is dN given, 
not by chance, by the expression above.

Also in (8) the dN sums in s are linearized diffeomorphism 
invariant expressions (where the c(r)

s ’s are specific known coeffi-
cients) and the br ’s are free parameters.

4 (k1 · Z3 · Z4 · k2) could have equivalently been written as (ζ3 · ζ4) ⊗S (ζ̄3 · k1)(ζ̄4 ·
k2).

5 At this moment the U (r)
s (ζ, k)’s and V (r)

s (ζ̄ , k)’s need not necessarily be Yang-
Mills amplitudes. See the beginning of section 3 for their appearance in the expres-
sion of MN .
3. The KLT relations

Let us consider the BCJ basis {AN (1, ρ(i)
N , N − 1, N)}, where ρ(i)

N
denotes the (N − 3)! permutations of indices {2, 3, . . . , N − 2} [9]. 
Based on the fact that the BCJ set is a basis of the gauge in-
variant gluon kinematic expressions which do not contain (ζ · k)N

terms [18], in [25] we prove that the set {Ai ⊗S Ā j} is a basis for 
the vector space WN , introduced in subsection 2.4, where i ≤ j =
1, 2, . . . , (N −3)! and where Am denotes AN (1, ρ(m)

N , N −1, N). No-
tice that this set is dN -dimensional. So in (8) a change of basis of 
WN can be done, allowing to write MN as

MN =
(N−3)!∑
i≤ j=1

α
(N)
i, j AN(1,ρ

(i)
N , N − 1, N) ⊗S

ĀN(1,ρ
( j)
N , N − 1, N) . (10)

3.1. Finding the KLT relations by demanding unitarity in eq. (10)

The N = 3 case is the most simple one and its proof does 
not require the use of unitarity. For this case MN is known (see 
(4)) and in (9) we have d3 = 1, so there is only one term in the 
right hand-side of (10). By using the well known expression of 
A3(1, 2, 3), and expanding the right hand-side of (10), it is quite 
direct to check that the α coefficient is given by iκ/26:

M3 = i
κ

2
A3(1,2,3) ⊗S Ā3(2,1,3) . (11)

Next, we consider N ≥ 4. For this case we use the result in 
eq. (10) and determine the α

(N)
i, j coefficients by requiring ap-

propriately unitarity. The procedure consists in dealing with the 
Tr(Z1 · Z2)(k · Z ·k)N−2 and the {(ζ1 · ζ2)(ζ ·k)N−2, (ζ̄1 · ζ̄2)(ζ̄ ·k)N−2}
terms, of MN and {AN , ĀN}, respectively. The coefficients of the 
first terms can be determined recursively (in N) by demanding 
the unitarity requirement in (2) and also the analog relations for 
the remaining s1 j Mandelstam variables ( j = 3, 4, . . . , N). There 
are similar unitarity relations which allow to determine the co-
efficients of the second terms as well. Then, substituting the 
(ζ1 · ζ2)(ζ ·k)N−2 and the (ζ̄1 · ζ̄2)(ζ̄ ·k)N−2 terms in the right hand-
side of eq. (10), and doing their tensor product to arrive at the 
Tr(Z1 · Z2)(k · Z · k)N−2 terms, these last ones can be compared 
with the ones from the left hand-side of that equation allowing to 
determine all the α(N)

i, j ’s. The subtlety at this point is that the ex-
pression found for MN in (10) is an unconventional KLT relation. 
The conventional ones use a different BCJ basis in both gauge sec-
tors of MN . Then, the only thing which is left to do is to change 
one of the BCJ basis of a gauge sector by another one by using 
the appropriate BCJ relations for the amplitudes [9]. It is then that 
we arrive at the known KLT relations. For example, for N = 4 and 
N = 5 our procedure leads to

M4 = − i
(κ

2

)2
s12 A4(1,2,3,4) ⊗S Ā4(2,1,3,4) , (12)

M5 = i
(κ

2

)3[
s12s34 A5(1,2,3,4,5) ⊗S Ā5(2,1,4,3,5) +

s13s24 A5(1,3,2,4,5) ⊗S Ā5(3,1,4,2,5)
]
, (13)

in agreement with [10,26]. For N = 6 we also arrive to the known 
KLT relations, which is in agreement with those references. The 
subtlety is that, for these cases, the expressions are too big and 

6 In (11) we have used that Ā3(1, 2, 3) = − Ā3(2, 1, 3).
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the analytic form of the KLT relations can only be checked numer-
ically.7

The details of all these calculations will be presented elsewhere 
[25].

3.2. The KLT relations involving also the bμν and φ fields

We define the theory that describes the interactions of the 
graviton (hμν ), the antisymmetric field (bμν ) and the dilaton (φ) 
by requiring a unique coupling constant κ and by demanding the 
unitarity requirement (2) for the interaction of all sort of states.

The whole procedure considered for the self interactions of a 
graviton is also applicable now, with the only subtlety that the 
polarization tensor of a bμν particle obey Z j

νμ = −Z j
μν and the 

polarization tensor of the dilaton is given by Z j
μν = Z jημν , where 

Z j is a scalar. For these cases the tensor product ⊗S introduced in 
(7) has now to be substituted by another tensor product ⊗ which 
takes into account the antisymmetry of the corresponding states of 
the specific scattering process. Notice that the two constraints in 
eq. (5) are still valid, taking into account the previous polarization 
tensors. In [25] we give the details of these calculations but here 
we mention that the final result is that the KLT relations, involving 
all interactions of the three fields, still hold with the same format 
(11)-(13) as it is well known [10]. We have verified this through 
six points.

4. Nonlinear relations obeyed by YM amplitudes

Since in the usual format of the KLT relations different BCJ basis 
are used for the left and right sectors of MN , instead of (10) let 
us write this amplitude, right from the beginning, with a different 
BCJ basis for the ĀN ’s, as

MN =
(N−3)!∑
i, j=1

δ
(N)
i, j AN(1,ρ

(i)
N , N − 1, N) ⊗S

ĀN(ρ
( j)
N {2, . . . ,kN − 1},1, N − 1,ρ

( j)
N {kN , . . . , N − 2},N) ,

(14)

where ρ( j)
N {2, . . . , kN − 1} and ρ( j)

N {kN , . . . , N − 2} denote the first 
kN − 2 and the last N − 1 − kN indices of the permutation ρ( j)

N , 
respectively, and where kN = [N/2 + 1].

If we had done a change of BCJ basis in the ĀN ’s of (10), we 
would have arrived at a similar expression to (14), but consisting 
of a sum over dN terms only. Given that the sum in (14) is done 
over (N − 3)!2 terms ((N − 3)!2 > dN for N ≥ 5) this means that 
MN has been now expanded in a set of amplitude bilinears which 
is linearly dependent. Therefore there is not a unique solution for 
the δ(N)

i, j coefficients, so the kernel of (14) is different from zero 
and this leads to linear relations obeyed by the amplitude bilin-
ears, or stated in another way, this leads to nonlinear identities 
obeyed by YM color ordered amplitudes. The number of indepen-
dent identities which arise (which is equal to the dimension of the 
kernel of (14)) is the difference between (N − 3)!2 and dN , which 
gives

N∗ = 1
2 (N − 3)! [

(N − 3)! − 1
]
. (15)

Notice that N∗ is different from 0 only for N ≥ 5.
For N = 5 in (15) we have N∗ = 1 and the only nonlinear rela-

tion that arises from solving the kernel of (14)) is given by

7 Assuming (10) to be valid for N = 7 we have also been able to check numeri-
cally the KLT relation for this case [25].
A5(1,2,3,4,5) ⊗S(
γ

(5)
1 Ā5(2,1,4,3,5) + γ

(5)
2 Ā5(3,1,4,2,5)

) +
A5(1,3,2,4,5) ⊗S(
γ

(5)
3 Ā5(3,1,4,2,5) + γ

(5)
4 Ā5(2,1,4,3,5)

) = 0 , (16)

where

γ
(5)

1 = s12s34 (s15 + s45) ,

γ
(5)

2 = −s15s23(s24 + s45) − s13(s15s24 + (s23 + s24)s45) ,

γ
(5)

3 = −s13s24 (s15 + s45) ,

γ
(5)

4 = s15s23(s34 + s45) + s12(s15s34 + (s23 + s34)s45) .

(17)

The expression of the γ (5)
j ’s in (17) has been found using the 

N = 5 BCJ relations to write { Ā5(2, 1, 4, 3, 5), Ā5(3, 1, 4, 2, 5)} in 
terms of { Ā(1, 2, 3, 4, 5), Ā(1, 3, 2, 4, 5)} in (16).

Writing our relation (16) in terms of the same BCJ basis used in 
eq. (10) of Ref. [17] we see that they do not match, although we 
have checked that this last relation is indeed valid. The reason for 
this mismatch is that in D = 4 the set of YM 5-point amplitudes 
of a given helicity configuration has a 1-dimensional basis (instead 
of a 2-dimensional BCJ one, in arbitrary spacetime dimension) [27]
and this would allow to still rewrite eq. (10) of Ref. [17] in our 
format (16), valid in any spacetime dimension.

Both approaches to arrive at the nonlinear relations obeyed by 
YM amplitudes, ours and the one in Ref. [17], have in common that 
when the gravitational theory is extended to one which is super-
symmetric, the supersymmetry requirement implies restrictions in 
the bosonic sector alone which are responsible for the relations. In 
our case these requirements are the ones in (5) while in the case 
of Ref. [17] they are the forbidden combination of helicity config-
urations which appear in the identities.

For N = 6 in (15) we have N∗ = 15 and we have verified these 
relations numerically by considering the Tr(Z1 · Z2)(k · Z · k)N−2

terms in both sides of (16). The γ (6)
j coefficients of these nonlinear 

relations are simply too big. Working numerically we have seen 
that the degree of homogeneity of them is at least 20 (in contrast 
to degree 3, found in the N = 5 case in (17)).

The fact that for two given different sets of BCJ basis for YM 
amplitudes there exist nonlinear relations which they should obey 
implies that when writing a graviton amplitude in terms of them 
there is not a unique momentum kernel [11] for that relation.

5. Final remarks

In this Letter we have seen that unitarity and on-shell gauge in-
variance are so strong constraints that, when applied to a graviton 
and a gluon amplitude, allow to prove the KLT relations (at least 
through six points). The key ingredient has been to work in kine-
matic space, where unitarity immediately implies the constraints 
(5) while on-shell gauge invariance then reduces drastically the 
number of kinematic invariants to a basis (see Table 1), formed 
by factorized kinematic terms. The KLT relations proceed, then, by 
considering a basis for the gauge boson amplitudes [18], unitarity 
once again and the BCJ relations.

As a by-product of our kinematic analysis we have found non-
linear relations obeyed by YM amplitudes which are valid in arbi-
trary spacetime dimensions.

It would be interesting to apply the sort of kinematic study 
we have considered here to the case of loop amplitudes in some 
gravitational theory, especially a supersymmetric one, in which the 
constraints in (5) still hold, in order to see if it is possible to find 
a proof of the double copy construction [1], for which evidences 
exist [1,28].
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