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garbės vadinti močiute.
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Abstract
TUM School of Natural Sciences

Doctor of Philosophy

Novel technique to access the strong interaction in three-body systems
and

Re-evaluated cosmic ray antinuclei fluxes

by Laura Šerkšnytė

Two studies have been performed in this thesis: the measurement of strong interac-
tion in three-body systems using the femtoscopy technique, and the estimations of
cosmic ray antinuclei fluxes resulting from collisions between ordinary cosmic rays
and the interstellar medium.

In the past decade, the femtoscopy technique has been utilized to measure
hadronic interactions between particles that were previously difficult to access
through experiments, including hadron pairs with multi-strangeness or charm. The
distances between particles in pp collisions at the LHC are of the order of 1 fm pro-
viding perfect conditions to measure the strong interaction. The natural next step
is to extend this technique to the three-hadron case. Three-baryon interactions, es-
pecially p–p–p and p–p–Λ, are of great interest to nuclear and astrophysics, as they
provide relevant input to better understand (hyper-)nuclei and the equation of state
of dense systems. The latter is required to solve the hyperon puzzle, which aims to
answer the question of which constituents make up the inner core of neutron stars.
This thesis presents the first measurements of three-baryon correlations in non-
bound systems. To achieve this goal, the femtoscopic technique was extended for
the first time to the three-baryon case. The correlation functions of p–p–p and p–p–Λ
were studied in high-multiplicity pp collisions at

√
s = 13 TeV, which were recorded

with the ALICE detector at the LHC. The genuine three-body effects were studied
using the Kubo’s cumulant technique. A negative three-particle cumulant was mea-
sured for p–p–p triplets. The p-value extracted from the χ2 test corresponds to a
deviation of 6.7σ from the assumption that only two-body correlations are present
in the system. It was evaluated in the kinematic region corresponding to the low rel-
ative momenta of three particles in center-of-mass system, at values of the hypermo-
mentum Q3 < 0.4 GeV/c. This result indicates the presence of genuine three-body
effects. The measured p–p–p correlation function was also compared to the first pre-
liminary calculations, which suggest that the observed cumulant is partially related
to the antisymmetrization of the three-particle wave function. For the p–p–Λ system,
a positive cumulant was observed at low Q3. The deviation from zero at Q3 < 0.4
GeV/c is 0.8 σ, suggesting that the data can be sufficiently well explained by assum-
ing only two-body correlations in the system, within the current uncertainties. More
conclusive results for both p–p–p and p–p–Λ systems require a larger data sample,
which is expected from the Run 3 data taking. To ensure that all events which in-
clude a collimated triplet are stored, a three-body software trigger was developed in
this thesis.

HTTP://WWW.TUM.DE
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Cosmic ray antinuclei fluxes are an important channel for indirect dark matter
searches. Some dark matter models, such as weakly interacting massive particles,
are expected to annihilate into ordinary matter, including antinuclei. The produced
antinuclei then propagate in the Galaxy and can reach detectors at Earth. Measur-
ing cosmic ray antinuclei also includes a background component stemming from
ordinary cosmic ray collisions with interstellar medium. Nevertheless, the fluxes
from different origins are expected to have different energy distributions, leading
to a signal-to-background ratio that can reach several orders of magnitude at low
antinuclei energies.
This thesis presents estimates of secondary cosmic ray antideuteron and antihelium-
3 fluxes. The antinuclei source functions and inelastic cross-sections based on data-
driven methods were implemented in GALPOP. The secondary antideuteron fluxes
were studied in detail by employing different production models and propagation
parameters to estimate relevant uncertainties in the field. The results showed that
the dominant uncertainty at kinetic energies above 1 GeV/A is due to production,
as different production models provide significantly different results. In the lower
energy regime, the choice of propagation parameters in GALPROP also contributes
significantly to the flux uncertainty. The antideuteron inelastic cross section with
matter, based on recent ALICE measurements, was implemented for the first time in
GALPROP, and the experimental uncertainty was propagated to the flux predictions.
The results showed that this uncertainty is only 25% at low kinetic energies, consti-
tuting the smallest contribution to the total uncertainty. The obtained results were
also used to estimate the Galaxy’s transparency to the propagation of secondary cos-
mic ray antideuterons. It was found to increase from around 35% to 90%, depending
on the kinetic energy per nucleon. Similar studies were performed for the secondary
cosmic ray antihelium-3 nuclei. The transparency increases from around 20% to 90%
with increasing energy. The results show that the Galaxy is very transparent to the
cosmic ray antinuclei and thus such fluxes could indeed be measured by the dedi-
cated detectors in the future. Additionally, the secondary fluxes obtained from this
thesis were compared to those expected from dark matter annihilation, revealing a
signal-to-background ratio of several orders of magnitude for both cosmic ray an-
tideuterons and antihelium-3 if a dark matter mass assumption of mχ = 100 GeV is
made.
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Zusammenfassung
In dieser Dissertation wurden zwei Studien durchgeführt: Die Messung von
starken Wechselwirkungen in Drei-Körper-Systemen mithilfe der Femtoskopie-
Technik und die Abschätzungen von Antinukleonen-Flüssen aus kosmischer
Strahlung, die aus Kollisionen zwischen gewöhnlichen kosmischen Strahlen
und dem interstellaren Medium resultieren. In den letzten zehn Jahren wurde
die Femtoskopie-Technik genutzt, um hadronische Wechselwirkungen zwis-
chen Teilchen zu messen, die experimentell schwer zugänglich waren, darunter
Hadronenpaare mit Multi-Strangeness oder Charm. Die Abstände zwischen den
Teilchen in pp-Kollisionen am LHC betragen etwa 1 fm und bieten somit perfekte
Bedingungen, um die starke Wechselwirkung zu untersuchen. Der natürliche
nächste Schritt besteht darin, diese Technik auf Systeme mit drei Hadronen
auszuweiten. Drei-Baryonen-Wechselwirkungen, insbesondere p-p-p und Λ-p-p,
sind von großem Interesse für die Kern- und Astrophysik, da sie wesentlich zum
besseren Verständnis von (Hyper-)Kernen und der Zustandsgleichung von dichten
Systemen beitragen. Letztere ist erforderlich, um das Hyperonen-Rätsel zu lösen
und damit die Frage zu beantworten, aus welchen Bestandteilen der innere Kern
von Neutronensternen besteht. Diese Dissertation präsentiert die ersten Messungen
von Drei-Baryonen-Korrelationen in nicht-gebundenen Systemen. Um dieses
Ziel zu erreichen, wurde die Femtoskopie-Technik erstmals auf Systeme mit drei
Baryonen erweitert. Die Korrelationsfunktionen von p-p-p und Λ-p-p wurden in
pp-Kollisionen mit hoher Multiplizität bei

√
s = 13 TeV untersucht, die mit dem

ALICE-Detektor am LHC aufgezeichnet wurden. Die echten Drei-Körper-Effekte
wurden mithilfe der Kubo-Kumulanten-Technik untersucht. Es wurde ein neg-
ativer Drei-Teilchen-Kumulant für p–p–p-Tripletts gemessen. Der p-Wert, der
aus dem χ2-Test extrahiert wurde, entspricht einer Abweichung von 6,7σ von
der Annahme, dass nur Zwei-Teilchen-Korrelationen im System vorhanden sind.
Hierfür wurde der kinematische Bereich betrachtet, der niedrigen Relativimpulsen
für die drei Teilchen im System entspricht, also Werten des Hyperimpulses Q3 <
0,4 GeV/c. Dieses Ergebnis zeigt das Auftreten von echten Drei-Teilchen-Effekten.
Die gemessene p–p–p-Korrelationsfunktion wurde zudem mit ersten vorläufigen
Berechnungen verglichen, die nahelegen, dass der beobachtete Kumulant teilweise
mit der Antisymmetrisierung der Drei-Teilchen-Wellenfunktion zusammenhängt.
Für das p–p–Λ-System wurde bei niedrigem Q3 ein positiver Kumulant beobachtet.
Die Abweichung von Null bei Q3 < 0,4 GeV/c beträgt 0,8 σ, was darauf hindeutet,
dass die Daten innerhalb der aktuellen Unsicherheiten ausreichend gut durch
die Annahme von reinen Zwei-Teilchen-Korrelationen im System erklärt werden
können. Aussagekräftigere Ergebnisse für beide Systeme, p–p–p und p–p–Λ,
erfordern eine größere Menge Daten, die im Rahmen der Run-3-Datenaufnahme
erwartet wird. Um sicherzustellen, dass alle Ereignisse, welche ein kollimiertes
Triplett beinhalten, gespeichert werden, wurde in dieser Arbeit ein Drei-Teilchen-
Software-Trigger entwickelt.

Der Fluss von Antinukleonen in kosmischer Strahlung stellt einen wichtigen
Kanal für die indirekte Suche nach Dunkler Materie dar. Durch einige Modelle
der Dunklen Materie, wie zum Beispiel schwach wechselwirkender massereicher
Teilchen, erwartet man, dass sie in gewöhnliche Materie, einschließlich Antinukleo-
nen, zerfallen. Die produzierten Antinukleonen verbreiten sich dann in der Galaxie
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und können Detektoren auf der Erde erreichen. Die Messung von kosmischen
Antinukleonen beinhaltet auch eine Hintergrundkomponente, die aus Kollisionen
gewöhnlicher kosmischer Strahlung mit dem interstellaren Medium stammt. Die
Flüsse aus verschiedenen Quellen haben jedoch unterschiedliche Energieverteilun-
gen, was zu einem Signal-Hintergrund-Verhältnis führt, das bei niedrigen Antinuk-
leonenenergien mehrere Größenordnungen erreichen kann.
Diese Arbeit präsentiert Abschätzungen der Flüsse von sekundären Antideutero-
nen und Antihelium-3 in kosmischen Strahlen. Die Antinukleonen-Quellfunktionen
und inelastischen Wirkungsquerschnitte, basierend auf datengetriebenen Methoden
wurden in GALPROP implementiert. Die sekundären Antideuteron-Flüsse wur-
den eingehend untersucht, indem verschiedene Produktionsmodelle und Propaga-
tionsparameter verwendet wurden, um relevante Unsicherheiten in diesem Bere-
ich abzuschätzen. Die Ergebnisse zeigen, dass die dominante Unsicherheit bei
kinetischen Energien über 1 GeV/A auf die Produktion zurückzuführen ist, da ver-
schiedene Produktionsmodelle signifikant unterschiedliche Ergebnisse liefern. Im
niedrigen Energiebereich trägt auch die Wahl der Propagationsparameter in GAL-
PROP wesentlich zur Unsicherheit der Flüsse bei. Der inelastische Wirkungsquer-
schnitt von Antideuteronen mit Materie, basierend auf jüngsten ALICE-Messungen,
wurde erstmals in GALPROP implementiert, und die experimentelle Unsicherheit
wurde auf die Flussvorhersagen übertragen. Die Ergebnisse zeigten, dass diese
Unsicherheit bei niedrigen kinetischen Energien nur 25% beträgt und somit den
geringsten Beitrag zur Gesamtunsicherheit darstellt. Die erhaltenen Ergebnisse
wurden auch verwendet, um die Transparenz der Galaxie für die Propagation
von sekundären kosmischen Antideuteronen abzuschätzen. Es wurde festgestellt,
dass die Durchlässigkeit der Galaxie für Antideuteronen in sekundärer kosmischer
Strahlung je nach kinetischer Energie pro Nukleon von etwa 35% auf 90% steigt.
Ähnliche Studien wurden für Antihelium-3 in sekundärer kosmischer Strahlung
durchgeführt. Die Durchlässigkeit nimmt mit steigender Energie von etwa 20% auf
90% zu. Die Ergebnisse zeigen, dass die Galaxie sehr durchlässig für Antinukleonen
in kosmischer Strahlung ist und dass solche Flüsse in Zukunft tatsächlich von dedi-
zierten Detektoren gemessen werden können. Zusätzlich wurden die sekundären
Flüsse, die aus dieser Arbeit gewonnen wurden, mit denjenigen verglichen, die
bei der Annihilation dunkler Materie erwartet werden. Dabei wurde ein Signal-
Hintergrund-Verhältnis von mehreren Größenordnungen gefunden, sowohl für An-
tideuteronen als auch für Antihelium-3. Hierbei wurde eine Annahme für die dun-
kle Materie-Masse von mχ = 100 GeV getroffen.
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Preface

While modern physics manages to explain many phenomena, there are still many
unresolved mysteries. Observing our Galaxy and its constituents has been provid-
ing valuable input for the development of physics for centuries. However, it also
poses some puzzles. This thesis tackles two of those by providing valuable input
- the measurements of strong force between three baryons necessary to study the
composition of neutron stars and the cosmic ray antinuclei flux calculations, which
can be employed for indirect dark matter searches.

Neutron stars are some of the densest objects observed in the universe. They
provide a unique environment, which cannot be obtained in laboratories on Earth.
The measured mass to radii relation of neutron stars is directly related to the
equation of state of dense matter. The densities in the inner core can be several times
larger than the nuclear saturation density. Thus, the nucleon chemical potential
can increase enough that it becomes energetically favourable to turn nucleons
into hyperons. However, the plausibility of such a scenario is determined by
the equation of state, which requires precise knowledge of the strong interaction
between different hadron pairs and triplets at large densities. The first part of this
thesis consists of developing a novel experimental technique to access three-body
systems via femtoscopic measurements employing the pp collision data recorded
by ALICE at the LHC. The triplets studied in this work are p–p–p and p–p–Λ.
While the method was successfully developed, a statistical sample larger than from
the Run 2 data-taking period is needed to provide quantitative constraints on the
three-body dynamics. For this purpose, a software trigger for Run 3 was developed
in the scope of this thesis, ensuring that all collisions, which contain at least one
triplet of interest, will be saved.
Neutron stars are born in supernova explosions of massive stars. The resulting
supernova remnants are bound by the expanding shock wave. The shock waves are
believed to accelerate the surrounding interstellar gas and thus produce cosmic rays
in galaxies. Such cosmic rays are called primary and consist mainly of protons and
helium-4, as these are the main constituents of interstellar gas. However, there also
exist much rarer antimatter cosmic rays which are produced in ordinary cosmic ray
collisions with the interstellar medium. Indeed, such secondary cosmic ray antinu-
clei are expected to be so rare that they provide an almost background-free probe
for unknown physics processes, resulting in antinuclei production in our Galaxy.
The second part of this thesis explores the cosmic ray antinuclei fluxes which can
be employed for indirect dark matter searches. Some dark matter candidates, such
as the weakly interacting massive particles, are expected to annihilate producing
ordinary matter, including antinuclei. If the resulting cosmic ray antinuclei fluxes
are much larger than the expected secondary fluxes, they can be employed as
smoking gun signatures of dark matter. In this thesis, we study the secondary
antideuteron and antihelium-3 fluxes and the related uncertainties. We included in
the calculations, for the first time, data-driven estimates of the antinuclei inelastic
cross sections with matter and obtained the transparency of our Galaxy to the
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antinuclei cosmic rays.

This thesis consists of two different topics. It is structured in the following
way - the introduction of each topic is followed by the analysis and results. The
first chapter introduces the strong interaction, its relation to the equation of state of
neutron stars and the femtoscopic technique employed in this work. The second
chapter presents the ALICE detector and how the recorded data was used to select
and identify hadrons of interest. The third chapter describes the analysis and results
of the three-particle correlation studies. The fourth chapter discusses the develop-
ment of the three-body trigger for the Run 3 data-taking period. The fifth chapter
introduces the second topic - dark matter and cosmic ray antinuclei. The sixth chap-
ter describes the corresponding work and results on cosmic ray antideuteron and
antihelium-3 fluxes. Finally, the last chapter provides the summary and outlook for
the work performed in this thesis.
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Chapter 1

Introduction: particles, interactions
and very dense systems

One of the remaining questions in nuclear physics is the dynamics of many-body
systems. The first scattering experiments opened a new possibility to study the
nucleon-nucleon interactions, and multiple theories were developed to evaluate the
corresponding two-particle potentials. However, later studies of bound many body
systems - such as nuclei and hypernuclei - resulted in disappointment. The binding
energies of observed (hyper)nuclei could not be explained by employing only the
well-constrained two-body potentials. There was an observed underbinding in
nuclei [1] and overbinding in hypernuclei [2]. Furthermore, measurements of the
neutron-rich nuclei showed that the existing two-body interaction potentials could
not explain the position of the neutron drip line. This motivated the increasing
theoretical interest in the many-body problem. From the theory side, Fujita and
Miyazawa already proposed the genuine three-body interactions in 1956 [3]. They
suggested that two pion exchange in the three-nucleon system can result in a
∆(1956) resonance excitation. Nowadays, multiple phenomenological three-body
potentials exist, as well as calculations from the χEFT and first attempts by lattice
QCD. The available potentials could reproduce most experimental observables once
fitted to the data. However, it has been shown that the existing data is insufficient
to constrain the three-body interactions as the resulting potentials are strongly
dependent on assumed two-body interactions and many-body effects in the nuclei.
New experimental approaches are necessary to further the field of three-body
interaction studies.

Such interactions are even more relevant for very dense systems, where dis-
tances between particles are very small. One such system in our universe is neutron
stars. The densities at the inner core of neutron stars are expected to be several times
higher than the nuclear saturation densities. At such high densities, depending on
the interaction potentials of different particle species, it might become energetically
favourable to introduce new degrees of freedom, such as strangeness. Indeed, there
is an ongoing discussion on whether hyperons are present in neutron stars. The
Equation of State must be calculated to answer this question, which can be directly
related to the mass-to-radius relation of neutron stars. The latter can be measured
for the observed neutron stars [4]. If the Equation of State is obtained assuming
only two-body interactions and includes hyperons, only low-mass neutron stars
could exist in our universe. However, the available measurements contradict this. A
possible solution to such a problem is genuine three-body interactions which should
play an important role at such high densities. Thus, the many-body problem in
nuclear physics is interesting not only to describe such small systems as nuclei but
also to such fascinating objects as neutron stars. The most interesting interactions
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for both cases are the N–N–N and N–N–Λ systems, where N is a nucleon.

In this thesis, we developed a method to measure the three-body interactions
employing the femtoscopy technique. This Chapter introduces the available mod-
els and experimental data for the two- and three-baryon interactions. The neutron
stars are discussed, and current state-of-the-art results on the Equation of State are
presented. Finally, the two-body femtoscopy is introduced, and the extension to the
three-baryon system is shown together with the first available calculations of the
three-proton femtoscopic correlation function.

1.1 The Standard Model of Particle Physics and Quantum
Chromodynamics

What is the world made of? The ancient Greek philosopher Empedocles suggested
that the world is made of four primordial elements: fire, earth, air, and water.
Now we know that all ordinary matter is made of elementary particles. The Stan-
dard Model is the state-of-the-art particle physics model describing the fundamental
structure of matter, including the elementary particles and the interactions between
them. The so-called fermions make up the matter, while bosons are the interaction
carriers, as shown in Fig. 1.1. Fermions have a half-integer spin and are separated
into two groups of six particles (and their six antiparticles): leptons and quarks,
which manifest three generations. The lightest and most stable particles belong to
the first generation. The second and third-generation particles are heavier and less
stable but have the same charge and spin quantum numbers.
Leptons can interact via electromagnetic and weak forces. The lightest charged lep-
ton is an electron with a mass of 0.511 MeV/c2, and thus it is stable. The second and
third-generation charged leptons are muon (µ) and tau (τ), respectively. The lightest
neutral lepton is the electron neutrino, while the second and third-generation are
muon and tau neutrinos. As these leptons are not electrically charged, they inter-
act only weakly. Quarks, differently from the leptons, cannot be observed directly.
They interact not only electromagnetically and weakly but also strongly. Each of the
six quark flavours can come in three colours relevant to the strong interaction: red,
green and blue. The antiparticles carry "anti-colours". Due to colour confinement,
a property of the strong interaction explained in the next sub-Chapter, only colour-
less particles can be observed. The most common colourless objects consist either of
three quarks with three different colours (baryons) or a quark-antiquark pair with
a specific colour and its’ anti-colour (mesons). The two most common and lightest
baryons are protons and neutrons. A proton consists of uud quarks and a neutron
of udd, where u corresponds to the up quark and d to the down quark. The lightest
mesons - neutral pions - are made of uu or dd pairs. Indeed, the u and d quarks
are the lightest quarks with masses 2.2 MeV/c2 and 4.7 MeV/c2, respectively, and
belong to the first generation. The second generation quark called strange (s) has a
mass of 96 MeV/c2, comparable to the first generation quarks. Baryons with at least
one strange quark are called hyperons, and the lightest of them is the Λ hadron.
Another second-generation quark is the charm with a mass of 1.28 GeV/c2. It is
much heavier than the already mentioned up, down and strange quarks. Finally,
the third-generation quarks top (t) and bottom (b) are the heaviest with the masses
4.18 GeV/c2 and 173.1 GeV/c2, respectively. In this thesis, we will restrict ourselves
to the particles made of up, down and strange quarks - protons and Λ hyperons.
Bosons do not make up the matter but carry the interactions between the fermions.
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FIGURE 1.1: Representation of the Standard Model [5].

The heavy W and Z bosons, with masses of 80.43 GeV/c2 and 91.19 GeV/c2, are
responsible for the weak interaction which couples to all left-handed particles and
right-handed antiparticles. The weak interaction also includes cross-generational
quark coupling, such as s→u+W+ vertex allowing Λ →p+π− decay. The photon
carries the electromagnetic interaction and is mass-less. It couples only to electri-
cally charged particles. The mass-less gluon is an exchange particle of the strong
interaction, affecting only quarks as they carry the colour charge. There are, in to-
tal, eight gluons carrying different colour charges. The latest addition to the known
bosons - the Higgs boson - was recently discovered by ATLAS and CMS experiments
at the LHC [6, 7] with a mass of around 125 GeV/c2 providing one more successful
test of the Standard Model.
The main interest of this thesis is the residual strong interaction between baryons;
thus, it is helpful to introduce in more detail the strong interaction between elemen-
tary particles.

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a theory describing the strong interaction be-
tween elementary particles. In QCD, colour plays the charge role; thus, quarks are
the only fermions experiencing strong interaction. The mediators of the strong in-
teraction are gluons, and the fundamental quark-gluon vertex is shown in the left
panel of Fig. 1.2, corresponding to a process quark→quark+gluon. The colour
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FIGURE 1.2: Fundamental vertices of strong interaction. Adapted
from [8].

is conserved in the strong interaction; however, as shown in the Feynman dia-
gram, the colour of the quark might change. A blue quark can become red if the
gluon carries away the colour difference (blue and anti-red colours). Indeed, the
gluons carry a combination of colour and anti-colour. This also means that they
can couple with each other. The QCD allows two primitive gluon-gluon vertices:
three-gluon and four-gluon, as shown in the middle and right panels of Fig. 1.2.

qq

qq

g 

FIGURE 1.3: Quark-quark
interaction mediated by
an exchange of a gluon.
Adapted from [8].

These primitive vertices can be combined to represent
more complicated processes. For example, the force be-
tween two quarks (responsible for binding quarks to
form hadrons) can be described in the lowest order by
the Feynman diagram shown in Fig. 1.3 and is mediated
by the exchange of a gluon. The interaction strength de-
pends on the number of vertices, as every vertex intro-
duces a factor α in the calculation of the scattering am-
plitude. In the case of the electrodynamics, the fine struc-
ture "constant" α is ≈1/137 which very slightly increases
when charges get closer1. This is a consequence of the
vacuum polarisation, which partially screens the charge
(like a charge is screened in a dielectric medium) and cor-
responds to loop diagrams. In the case of QCD, this is
even more complicated as the "screening of the colour
charge" includes simple loop diagrams and virtual gluon
bubbles (based on three-gluon vertices). The former con-
tribution results in "anti-screening" of the colour and is the dominant component -
the coupling constant increases with the distance between the colour charges! The
dependence of the so-called running coupling constant on the momentum transfer
can be expressed in QCD as [9]

αs
(∣∣q2∣∣) = αs

(
µ2)

1 + (αs (µ2) /12π) (11n − 2 f ) ln (|q2| /µ2)
,
(∣∣q2∣∣ > µ2) , (1.1)

where q is the momentum transfer of the interaction, n is the number of colours, f
is the number of flavours and µ is energy scale at which the αs

(
µ2) is evaluated. In

the Standard Model, the numbers of colours and flavours are n = 3 and f = 6, re-
spectively, and the experimentally evaluated αs(mZ) value at the Z boson mass scale
is ≈0.1179 [10]. The αs dependence on the energy scale is shown in Fig. 1.4. The αs

1The variation is tiny; however, it results in a detectable contribution to the Lamb shift in the hy-
drogen atom.
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at large energy scales, corresponding to small distances, is very small, and particles
are almost non-interacting. This phenomenon is known as asymptotic freedom. At
such energy scales, perturbation theory can be employed to describe QCD processes
and provide predictions. Due to very weak coupling at large densities, a transition
to a deconfined state of matter is possible. Such a state is called quark-gluon plasma
(QGP) and is actively studied at multiple accelerator facilities, including ALICE at
the LHC [11, 12] and STAR at RHIC [13, 14]. On the other hand, the αs at low energy
scales becomes larger and larger. If two quarks are being separated spatially, pro-
ducing a qq̄ pair becomes more energetically favourable as the energy of the gluon
field in between the interacting quarks becomes too large. Such an effect is known as
confinement. Consequently, free quarks and gluons are not observed in nature, and
only the colour singlets, corresponding to hadrons2, can be observed. As the quarks
and gluons are strongly coupled in such a regime, the perturbation theory cannot be
applied anymore. More quantitatively, such a regime starts at energy scales smaller
than the so-called QCD scale ΛQCD, around 200 MeV/c.

FIGURE 1.4: Summary of αs measurements as a function of the energy
scale Q [10].

The strong interaction at the level of elementary particles can be described by
a Lagrangian, which incorporates the fields of quarks and gluons. The Standard
Model Lagrangian has global U(3) = U(1)

⊗
SU(3) symmetry. Requiring the La-

grangian to be locally invariant under U(1) results in the derivation of electromag-
netism. The requirement of local SU(3) symmetry is of interest for the strong inter-
action and results in the complete Lagrangian of chromodynamics

L =
[
ih̄cψ̄γµ∂µψ − mc2ψ̄ψ

]
− 1

16π
Fµν · Fµν − (qψ̄γµλψ) · Aµ, (1.2)

2The self-interaction between gluons also allows colour singlet gluon balls.
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where ψ corresponds to a three-component vector of Dirac spinors for the three
colour quarks, Aµ - vector gauge fields corresponding to the eight gluons and Fµν

is also related to the gluon fields. The first component in Eq. 1.2 is the Lagrangian
of free quarks. The second component accounts for the free gluon Lagrangian, in-
cluding the gluon-gluon interaction via three and four gluon vertices. The third
component describes the interaction of quarks and gluons, where λ has Gell-Mann
matrices as components λ1, λ2, ...λ8.
At high energy scales, the perturbative approaches can describe an interacting sys-
tem. However, an analytical approach to the QCD has yet to be proposed at low
energy scales. Numerical solutions of the QCD Lagrangians and effective field theo-
ries are applied to study processes at such energy regime. Describing the observable
colour singlet states in nature - hadrons - from the principles of the QCD as bound
states of quarks is a highly complicated task, but some efforts have been made to-
wards this direction [15]. In this work, we are interested in the strong interaction
between hadrons, for example, the p-p system. In the QCD, this corresponds to an
interaction of six quarks which is a much too complicated task to solve analytically
from the first principles. However, in the next Chapter, it will be shown that several
methods exist to approach this problem. For example, nucleon-nucleon interactions
are well understood and constrained by experiments.

1.2 Baryon-baryon interaction

The studies of the hadron-hadron residual strong interactions, especially nucleon-
nucleon interactions, present one of the main problems in nuclear physics and pro-
vide a probe for the low-energy QCD. Effective models that describe such residual
interactions consider nucleons as degrees of freedom. Indeed, the oldest nuclear
force theory was proposed in 1935 [16] by Yukawa, which was long before the dis-
covery that nucleons are made of quarks3. Yukawa described the strong interaction
between nucleons as being mediated by a charged meson obeying Bose’s statistics
with a mass around 200 times the electron mass. While no such particle had yet been
detected at the time, it has the same characteristics as charged pions. Several modern
models are still based on the meson exchange principle, even though the potentials
have become much more sophisticated.

1.2.1 Theory

The distance dependence of baryon-baryon interactions is generally divided into the
so-called short, medium and long-range regions. A schematic view of the nucleon-
nucleon potential is shown in Fig. 1.5. The long-range part is described in most
models by One-Pion-Exchange potentials, as pions are the relevant degrees of free-
dom to describe the strong interaction between nucleons at such small energy scales.
The medium-range part corresponds to the two-pion exchange and heavier meson
exchanges. The short-range part is the most complicated, as quarks and gluons be-
come relevant degrees of freedom. The repulsive core in nucleon-nucleon potential
can be modelled, for example, by vector meson exchange [17]. The conventional
phenomenological potentials are constructed based on these short-, medium- and
large-range components and provide an excellent fit to the available data. One such

3The quantum field theory was already under development, used to describe electrodynamics.
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potential for two-nucleon interaction is the Argonne ν18 [18]. It models the long-
range region as a one-pion exchange, and the contributions relevant to the interme-
diate and short-range regions are included via phenomenological parametrisations.

FIGURE 1.5: Sketch of nucleon-nucleon poten-
tial [19].

This potential has 40 adjustable param-
eters and has χ2 per datum of 1.09
for 4301 pp and np data in the range
0—350 MeV. However, such potentials
are not very fundamental in the view
of the QCD, as they do not use glu-
ons and quarks as degrees of freedom.
In general, there are several different
quantitative approaches to obtain the
baryon-baryon potentials. An extensive
list and overview of available potentials
for nucleon-nucleon interactions can be
found in Ref. [19]. A good review of
hyperon-nucleon systems is available in
Ref. [20]. Here, we will discuss two ap-
proaches incorporating the knowledge
from QCD: chiral effective field theory
and lattice QCD.

Chiral effective field theory

Chiral Perturbation Theory is the effective theory of QCD introduced by Wein-
berg [21, 22] and we refer to it as chiral effective field theory (χEFT). Effective field
theories exploit the separation of scales in a system. At a low energy scale, the rel-
evant degrees of freedom are pions and nucleons, not quarks and gluons. Besides
the pion exchange terms, the χEFT potentials include so-called contact terms, which
parameterise the unresolved short-range nuclear interaction. The χEFT potentials
are fitted to reproduce available scattering and (hyper)nuclei binding energy data
for particle systems of interest.
The first step of the χEFT is to formulate the most general effective Lagrangian,
which includes all possible terms and incorporates all symmetries and symmetry
breakings, particularly the (broken) chiral symmetry, of the underlying theory. This
is a significant difference from simple phenomenological models, where this strict
relation to the underlying theory (in this case, QCD) is lost. In the second step, the
obtained Lagrangian terms are ordered by their importance; thus, the process of
interest can be calculated to the desired accuracy. The hierarchy of relevant contri-
butions for nuclear forces is shown in Fig. 1.6. χEFT calculations naturally extend to
the few-body systems (3N Force and 4N Force in Fig. 1.6). The effect of three-body
interactions becomes evident only starting from the next-to-next-to-leading order
(NNLO) accuracy. Such genuine three-body effects are necessary to reproduce ob-
served binding energies of (hyper-)nuclei. They are also essential to the physics of
neutron stars, as explained in the following Chapters. An excellent review with an
introduction to χEFT can be found in Ref. [23]. For the state-of-the-art χEFT ap-
proach to describe p-Λ interaction, refer to Refs. [24, 25].
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FIGURE 1.6: Hierarchy of interaction diagrams contributing to the
nuclear force based on the Weinberg’s power counting [23].

Lattice QCD

Lattice QCD (LQCD) is a numerical approach to describe a quantum chromo-
dynamical system from first principles with quarks and gluons as degrees of
freedom using the Feynman path integral approach [26, 27]. It is a gauge invariant
and non-perturbative calculation of QCD. The space and time are described as a
four-dimensional lattice with spacing a and Euclidean time t. Same as in the case
of the QCD, the only input parameters of LQCD are the coupling and the masses
of the quarks. The state-of-the-art approaches can already perform the calculations
at nearly physical quark masses (mπ=146 GeV/c2) with lattice spacing a of the
order of 0.1 fm and t/a of the order of 10 [28]. The LQCD can correctly predict
masses of baryons [15], decay constants of Ds and D∗

s mesons [29], nucleon-hyperon
correlation functions [30] and many other observables. The integrals in the LQCD
are estimated employing Monte Carlo integration with the importance sampling,
as the problem is too complicated for standard numerical integration methods.
Two kinds of uncertainties contribute to the LQCD simulations: systematical and
statistical. The latter is related to the importance sampling. The continuum limit (a
size), infinite volume limit (number of points in the lattice) and the quark masses
are some of the main systematic uncertainties. The latter arises because lattice
calculations converge faster for heavy masses. Indeed, the LQCD simulations are
usually performed with higher than physical masses of the light quarks, and final
results are obtained by extrapolation.

1.2.2 Available data

As explained previously, most baryon-baryon potentials are at least partially phe-
nomenological and must be fitted to data. In this thesis, we are interested in p-p
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and p-Λ interactions. Traditionally, the interaction potentials for such baryon pairs
have been fitted to scattering data, for example, to the phase shifts obtained via par-
tial wave analysis. While the database for p-p scattering results is vast [31], the p-Λ
system is much less explored. A representative compilation of available scattering
data in the Λ–p→ Λ–p channel is shown in Fig. 1.7, where it is compared to two
versions of χEFT potentials (red and blue bands) and phenomenological potentials
(lines) [25]. The scattering data were obtained employing K− meson beams which
interacted with a thin target [32] or hydrogen gas [33] resulting in Λ hyperon pro-
duction in direct (K−+p→ Λ+X) and secondary reactions, for example, Σ0 hyperon
is produced in direct reaction K−+p→ Σ0+X which then decays as Σ0 → Λ + γ. The
produced Λ hadrons then interacted with the hydrogen gas in the bubble chamber,
where the reactions were reconstructed. The data is very scarce, has significant un-
certainties and is available only down to relative momentum of 130 GeV/c. At the
high momentum part, a predicted coupling ΛN − ΣN is observed in the shown cal-
culation. However, the available data could not resolve it (right panel).

The measurement of femtoscopic correlation functions improved the experimen-

FIGURE 1.7: Scattering experiment cross sections for the Λ–p→ Λ–p
channel as a function of the momentum. The red and blue bands
represent χEFT calculations, while the lines correspond to different
phenomenological potentials. Figures taken from Ref. [25].

tal situation immensely. The goal of femtoscopy is to measure a particle pair cor-
relation as a function of relative momentum in a pair rest frame which depends
on the interaction potential between the two particles (for an extensive descrip-
tion, refer to Chapter 1.5). This method allowed the studies not only of p-p [34]
and p-Λ [35] systems, but also of many other hadrons pairs (p–K+ and p–K− [36],
p–Σ0 [37], Λ–Λ [38], p–Ξ− [39], p–Ω− [30], p–ϕ [40] and baryon–antibaryon [41]).
Some of these systems have never been measured before with traditional methods.
The correlation functions of p-p, p-p and p-Λ pairs are shown and discussed in de-
tail in Chapter 3.5. Most importantly, these measurements provided unprecedented
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precision data for these two systems down to relative momentum close to 0 MeV/c.
In the case of the p-Λ pair, even the ΛN − ΣN coupling has been observed!
Finally, the interaction potentials can also be constrained to (hyper)nuclei data.
However, the calculations of (hyper)nuclei properties require to account for many-
body effects, including the genuine three-body interactions. Indeed, it has been
shown that if only the two-particle interactions are included, it results in underbind-
ing of the nuclei [1] and overbinding of the hypernuclei [2]. Thus the description of
many-body systems requires the inclusion of the genuine three-body forces. The the-
oretical and experimental parts of the genuine three-body interactions are discussed
in the next Chapter.

1.3 Three-baryon interactions

The first ideas of the three-body forces in atomic nuclei are almost 100
years old [42]. The long-range three-nucleon interaction was pioneered
in 1956 by Fujita and Miyazawa [3], who described it as two pion ex-
change by extending the idea of Yukawa from two to three-body systems.

Δ

FIGURE 1.8: Fujita-Miyazawa three-nucleon
force (left) and corresponding two pion ex-
change term in N-N-Λ system. Adapted from
Refs. [43] and [2].

Fujita and Miyazawa described the
main contribution to this interaction
coming from the excitation of ∆(1232)
resonance in the P33 partial wave of
the pion-nucleon scattering amplitude,
as shown in the left panel of Fig. 1.8.
The contribution from S-wave also ex-
ists, but it is expected to be small [43].
The two-pion exchange results in attrac-
tive interaction at long distances [44].
However, as in the two-body case, the
long-range part of the interaction is
not enough to fully represent the three-
body interactions. Thus often, a re-
pulsive component was introduced for
short-range interactions. For the three-body forces in the N-N-Λ system, the cor-
responding interaction component to the ∆ resonance in the three-nucleon system
is the formation of virtual Σ hyperon as shown in the right panel of Fig. 1.8. A
short review of some currently available studies of the three-baryon interactions
and comparisons to available data is provided below. The main problem for phe-
nomenological and χEFT approaches is that the extracted three-body potentials are
constrained mainly to the hyper(nuclei) properties, which are significantly model-
dependent observables and depend on the assumed two-body force. In the case of
the three-nucleon system, the vast database from scattering experiments constrains
the N-N potential rather precisely. However, for the hypernuclei description, the
nucleon-hyperon potential is not that well constrained as, up to now, only the scarce
scattering data have been used.

1.3.1 Three-nucleon interactions

The calculations of nuclei binding energies, based on two-body potentials only, re-
sult in underbinding of the nuclei [1]. Another intriguing effect which cannot be
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explained with the inclusion of only the two-body forces is the position of the neu-
tron drip line. From light to medium mass nuclei, the limit of neutron-rich nuclei
regularly evolves except for the anomaly in the oxygen isotopes. This thesis does
not discuss this in detail; however, the newest results can be found in Ref. [45]. The
way to resolve these issues is to account for the three-body interactions. The studies
of nucleon-deuteron scattering experiments also showed that the three-body inter-
actions are necessary to explain the data, which is also not discussed in detail here
but can be found in Refs. [46, 47]. In the following, we discuss the status of the
three-nucleon potentials from different approaches.

Argonne ν18 (NN) + Illinois (NNN)

The Argonne ν18 potential describes two-nucleon forces, as explained in the previous
Chapter, and provides accurate fits to the scattering data. However, if used to de-
termine the binding energies of nuclei in Quantum Monte Carlo (QMC) calculations
(without additional NNN potential), they result in underbinding of nuclei [48]. This
is shown in Fig. 1.9, where the binding energies for different nuclei are plotted for
experimental values (green) and obtained using only Argonne ν18 potential (blue).
For all light nuclei, the calculations predict smaller binding energy than measured.
The three-nucleon interaction can be described with several different potentials, for
example, Urbana [49] and Illinois [50] series potentials. The Urbana series poten-
tials include two-pion P-wave exchange (as shown in the left panel of Fig. 1.8) and
a shorter-range phenomenological term. However, if the QMC calculations are per-
formed using the Argonne ν18 and Urbana IX potentials, only the binding energies
of s-shell nuclei can be reproduced well, but not the p-shell light nuclei [48]. To ad-
dress this problem, Illinois potentials were developed. In addition to the two Urbana

FIGURE 1.9: Binding energies for different nuclei [48]. The green line
corresponds to the experimental value, the blue line to the result ob-
tained using only Argonne ν18 potential and the red line to the case
where Illinois potential for three-body forces is included.

terms, it includes the S-wave contribution of the pion-nucleon scattering amplitude
and a contribution from the three-pion exchange. The latter is implemented in a
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simplified way in Illinois potentials, where only terms with the most significant con-
tributions to this diagram are accounted for. The latter term is small and repulsive
in s-shell nuclei but attractive in p-shell nuclei, which have isospin 3/2 triplets. This
term is responsible for solving the p-shell problem observed with Urbana potential.
All diagrams included in the Illinois potentials are shown in Fig. 1.10. The combina-
tion of Argonne ν18 and Illinois II potentials in the QMC calculations (red box) results
in a very good agreement with experimental values (green box) for both s-shell and
p-shell nuclei as shown in Fig. 1.9.

FIGURE 1.10: Three nucleon interactions included in Illinois poten-
tials [48].

Chiral effective field theories

The χEFT generates all interaction terms simultaneously, as explained in the pre-
vious Chapter on two-body interactions. This means that many-body interaction
terms arise naturally, as shown in Fig. 1.6 at NNLO and higher orders for the ∆-less
χEFT. The ∆-full χEFT includes an explicit ∆ isobar, and in such theory, the three-
nucleon forces start already at the NLO term. It also changes the ordering of the
two-body forces. Including ∆ isobar helps with the convergence of two-body and
three-body forces at orders beyond NNNLO in χEFTs [23]. However, both versions
of the theory lead to similar results if calculations up to NNLO are performed [51],
as in the ∆-less χEFT the effects due to the ∆ isobar are accounted for implicitly.
The χEFT with the inclusion of three-nucleon forces has been successfully applied in
studies of light and medium-mass nuclei [1, 52–54]. It has been shown, for example,
that to correctly describe the 7Li nuclei ground-state binding energy with ab initio
no-core shell model, the inclusion of three-body forces in χEFT is necessary [1]. The
same is observed for phenomenological models. The results obtained in Ref. [1] are
summarised in Table 1.1. The second and third entries in the table correspond to the
same model, but two different parameter sets describing the strength of the contact
term for the three-nucleon force in the χEFT potential. These so-called strength con-
stants were obtained in Ref. [1] by fitting the model to reproduce 3H, and 4He bind-
ing energies and two sets of parameters performed equally well. However, as shown
in Table 1.1, they result in different values of the binding energy for 7Li nuclei. This
is one example showing that determining three-body forces requires precise data, as
different combinations of parameters might fit available data equally well. This has
also been seen in studies of N-N-Λ interactions, which will be discussed below.

Lattice QCD

There are also first efforts towards the three-nucleon forces in LQCD. However, lat-
tice simulations for nuclei are not yet realistic as they can be performed only for
larger pion masses than the physical ones, and thus, we will not discuss these in de-
tail. The state-of-the-art study of the three-nucleon forces on the lattice is published
in Ref. [55].
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Model Egs

NN only 34.6
w/ 3NF-A 38.0
w/ 3NF-B 36.7
AV18 only 31.6
AV18+Urbana IX 37.5
AV18+IL2 38.9
Expt. 39.2

TABLE 1.1: Ground-state binding energy of 7Li nuclei obtained using
different interaction potentials. Table adapted from [1].

1.3.2 N-N-Λ interactions

The measurements of hypernuclei, similarly to nuclei, showed that their binding
energies could not be satisfactorily reproduced by the inclusion of two-body forces
only, and it requires to account for the three-baryon N-N–Λ interaction. However, in
the case of hypernuclei, overbinding is observed [2]. Several approaches are avail-
able to describe the N-N–Λ three-baryon potential.

Phenomenological approach

Similarly to the three-nucleon case, the N-N–Λ interaction can be described by
a two-pion exchange and an additional phenomenological term describing short-
range contribution. Such potential was first introduced by Bodmer, Usmani, and

FIGURE 1.11: Hypernuclei separation energies as a function of the
baryon number A [2]. The green points represent the available data,
the red points - the separation energies obtained including only two-
body interactions, and the blue points - with the inclusion of N-N–Λ
forces.

Carlson [56]. Usmani provided an updated version of phenomenological N-N-Λ
potential in 1995, where he also provided a parametrisation of parameters fitted to
reproduce the 5

ΛHe and 17
Λ O nuclei separation energies (BΛ = Bnuc − Bhyp) [57]. The
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most modern version of the Usmani potential can be found in Ref. [58]. The effects
of such three-body interactions on the hypernuclei description have been studied up
to 91

Λ Zr nuclei in Ref. [2], where the auxiliary field diffusion Monte Carlo (AFDMC)
model was used to solve many-body Schrödinger equation. The results of this study
are shown in Fig. 1.11, where Argonne ν′4 potential was used for the N-N interaction
(which corresponds to a simplified version of Argonne ν18) and for nucleon-hyperon
and nucleon-nucleon-hyperon interactions, the Usmani potential is employed. The
red points correspond to the calculation, where only two-body interactions are in-
cluded. The obtained separation energies are too large compared to the data (green
points). Including the three-body forces partially resolves this disagreement (blue
curve). In a later study, Lonardoni et al. compare the equations of state4 obtained
using the Usmani potential discussed above [57] and a re-fitted parameterisation of
this potential to reproduce better the binding energies of heavier hypernuclei [2].
Their study shows that although both potentials reproduce the data well, they result
in entirely different Equations of State. Thus, again, more precise data is required.

Other approaches

The χEFT has also progressed in the N-N–Λ interactions by constructing effective
density-dependent two-body potentials [59]. Also, a pionless EFT has been used to
describe hypertriton [60]5 (actually, such calculations are available also for nuclei [62,
63]). The lattice QCD also provides the first calculations for this channel; however,
similarly to the nuclei case, they are performed at nonphysically high light quark
masses [64].

1.4 Dense matter: neutron stars

The relevance of three-body forces increases with the increasing density of the
system. Some of the densest objects in the universe are neutron stars which provide
a bridge between nuclear physics and astrophysics. Neutron stars have been
observed in a mass range of 1-2 M⊙, where M⊙ is the solar mass, and have a radius
of around 10-12 km [4]. The structure of a neutron star consists of an atmosphere,
outer crust, inner crust, outer core and inner core going from the outer part of
the neutron star to its centre with an increasing density. While the composition
of outer layers is rather well known [65], the inner core remains a mystery. In
the following, we refer to the physics of the inner core of neutron stars as the
physics of neutron stars. It was originally thought that neutron stars consist mainly
of neutrons and are stable because the gravitational collapse is counteracted by
the neutron degeneracy pressure, as neutrons are spin-1/2 particles. However,
the fermionic nature of neutrons also means that the neutron chemical potential
increases drastically with the increasing density of the system. Indeed, the densities
of neutron stars might reach a few ρ0 (nuclear saturation density), and introducing
new degrees of freedom might become energetically favourable. The chemical
potential can be expressed as µi(ρ) = Mi + Ui(ρ), where Mi and Ui are the mass
and the single-particle potential in nuclear matter composed of particle species i. It
was proposed in 1960 that hyperons might appear in highly degenerate baryon gas
at very high densities [66]. The microscopic and macroscopic properties of neutron

4More details in Chapter 1.4.
5We do not discuss pionless EFT in this thesis; however, a good review of both EFTs with and

without explicit pions can be found in Ref. [61]
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stars are related by the Tolman-Oppenheimer-Volkoff (TOV) [67–69] equations,
which take as input the density dependence on the pressure of the system, also
known as the nuclear Equation of State (EoS). The EoS depends on the neutron
star’s composition and the interactions between its constituents. Every EoS thus
results in a specific mass-to-radius relation of a neutron star. Thus EoSs, estimated
by nuclear physicists, can be tested by comparing the result to the observed neutron
star masses and radii. The assumption of pure neutron matter composition results
in EoS, which could explain the observed very heavy neutron stars; however,
hyperons are expected to appear in the system at high densities, as mentioned
before. This would result in the softening of the EoS, and in some models, the
predicted maximum possible mass of a neutron star is smaller than the observed
2 M⊙ [70]. This is known as hyperon puzzle. The problem is very delicate, as
to describe realistic EoS, the two and three-body interactions must be included,
and the potentials constrained at nuclear densities must be extrapolated to the
densities of neutron stars. The hyperon puzzle initiated decades lasting conquest
for theorists to describe nucleon-hyperon potentials from first principles and
for experimentalists to measure the nucleon-hyperon interactions, especially the
three-body component. Enormous advancement in the experimental knowledge of
nucleon-hyperon and hyperon-hyperon interactions was achieved in the last years
by the femtoscopy technique [71]. Using nucleon-hyperon potentials, which agree
with the femtoscopy measurements, a new EoS was obtained, and a corresponding
mass-to-radius relation was estimated as shown in Fig. 1.12. The left panel shows
particle number per baryon as a function of the energy density, where different lines
correspond to different particle species. The right panel shows the mass-to-radius
relation obtained for such EoS. Indeed, the heaviest neutron stars observed so far
could be explained by such EoS.

FIGURE 1.12: Left: Particle number per baryon as a function of en-
ergy density. Different lines correspond to different particle species.
Right: Mass-to-radius relation corresponding to EoS used to obtain
the result on the left panel. Figures taken from Ref. [71].

While this is an impressive result, some interaction potentials still need to be
added to the EoSs estimated nowadays, and the problem of not well-constrained
three-body forces still needs to be solved. Additionally, the uncertainties related
to the measurements of interactions were not included in the discussed EoS study,
which must be done to understand better the missing pieces required to solve the
hyperon puzzle.
The effects of N-N-Λ three-body forces on the EoS and mass-to-radius relation of
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neutron stars have been studied in Ref. [72]. The authors used Argonne ν′8 poten-
tial for N-N interactions, Urbana IX potential for N-N-N and a phenomenological
potential adapted from [56] for N-Λ. They tested two parameterizations of the phe-
nomenological N-N-Λ potential discussed in Chapter 1.3.2: the Usmani potential
from 1995 fitted to reproduce 5

ΛHe and 17
Λ O separation energies [57] (model I) and

the updated parameterization of the Usmani potential studied by the authors ex-
plicitly in Ref. [73] which reproduces heavier hypernuclei better (model II).
The comparison of the hypernuclei separation energies obtained with the two pa-
rameterizations is shown in Fig. 1.13. The details of the study can be found in
Ref. [73]. The green points correspond to the available data for separation ener-
gies of hypernuclei with nucleon number A. The blue diamonds show the results

FIGURE 1.13: Separation energies obtained with two
different parameterizations of the three-body poten-
tial [73]. The green circles correspond to the avail-
able data for hypernuclei separation energies. The
empty blue circles correspond to the calculations in-
cluding only the two-body p-Λ potential. The red di-
amonds and black triangles correspond to the calcula-
tions including the three-body p-p-Λ potential employ-
ing models I and II, respectively.

of calculations obtained, in-
cluding only the two-body p-
Λ potential. The red dia-
monds correspond to the calcu-
lations including three-body in-
teractions employing model I.
These results are closely related
to the study by the same au-
thors in Ref. [2] and described
in Chapter 1.3.2. The black
triangles show results obtained
using the updated parameters
of the three-body potential re-
ferred to as model II. The lat-
ter reproduces better the sepa-
ration energies for the shown
hypernuclei; however, the pre-
dicted separation energies for
A<5 hypernuclei are underes-
timated [73]. The values ob-
tained employing model I for
such nuclei agree with the data.
The EoS with the three-body
potential model I is shown as
the blue band on the left panel of Fig. 1.14. The green band represents the EoS ob-
tained for pure neutron matter, while the EoS for neutron-hyperon matter, including
only two-body N-Λ forces, is shown as a red band. Indeed, as mentioned before, the
EoS for pure neutron matter is rather steep, and the inclusion of the Λ hyperons soft-
ens it. The EoS, including the N-N-Λ interaction, is stiffer than if only N-Λ forces
are accounted for, which suggests the repulsive nature of the included three-body
potentials at high densities. The inset shows the densities at which the Λ hyperon
appears in the system for the two models. The right panel of Fig. 1.14 shows mass-
to-radius relations corresponding to the discussed EoSs. The pure neutron matter
could explain the 2 M⊙ neutron stars; however, the EoS including Λ hyperons but
obtained using only N-Λ interactions could explain only very light neutron stars. In-
cluding the N-N-Λ interaction via model I results in heavier possible neutron stars;
however, the maximum possible mass reaches only 1.36 M⊙. The dashed-dotted
black curve represents the mass-to-radius relation obtained with EoS with N-N-Λ
included via model II. In this model, the repulsion of N-N-Λ interaction would be
so high that the Λ hyperon would not appear in the system at all, at tested densities.
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FIGURE 1.14: Left: Equation of state as a function of system density
for pure neutron matter (green band), neutron-hyperon matter with
only two-body interactions (red band) and including N-N-Λ potential
(blue band). Right: Mass-to-radius relations corresponding to these
EoS. Figures taken from Ref. [72].

Thus, EoS based on model II could explain the 2 M⊙ neutron stars, as shown in the
figure. These results are significant, as employing two different parameterizations
of the phenomenological three-body N-N-Λ potential results in completely different
EoSs, even though both models can explain the available hypernuclei data6. This
is a prime example that fully understanding N-N-Λ interaction requires additional
data. The hyperon puzzle also requires an understanding of the interactions at high
densities. Thus experimental constraints from high-density or small inter-particle
distance systems are in high demand.
The first attempt to address the hyperon puzzle and three-body interactions using
χEFT was recently published [59]. The authors showed that within χEFT frame-
work, it is, indeed, possible for the three-body N-N-Λ interactions to develop suffi-
cient repulsion to suppress the appearance of Λ hyperons in the system. However,
in this study, the three-body potential is also not well constrained, allowing a wide
parameter set range. The results were obtained by choosing parameter set, which is
compatible with hypernuclei data but could also result in enough repulsion to re-
solve the hyperon puzzle. This again proves the necessity for the new experimental
constraints for the three body N-N-Λ systems.
The first part of this thesis aims to develop a new method to access three-body sys-
tems down to small inter-particle distances of around 1 fm based on the femtoscopy
technique.

1.5 Two-particle femtoscopy

The setup of scattering experiments to study the two-particle interactions requires a
beam or a target made of particles of interest. Such setup can be easily achievable for
a p-p system and a vast database is available. However, even for such strangeness
S=-1 system as p-Λ this becomes complicated, and not so many data points are avail-
able as shown in Chapter 1.2.2. An alternative experimental approach was necessary
to advance the field of nuclear physics.
Femtoscopy is a technique which relates the two-particle correlation in momentum-
space to the Final State Interaction (FSI) and the particle emission region. In the early

6Model I reproduces well light hypernuclei (A<5) and model II reproduces well heavier hypernu-
clei, as explained in the text.
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days, the femtoscopy technique was used to measure hadron pairs, for which inter-
action is very well known, aiming to constrain the particle emission source in ultra-
relativistic heavy ion collisions. An excellent review concerning such application of
femtoscopy can be found in Ref. [74]. However, in the last decade, the paradigm of
femtoscopy was inverted. The femtoscopic correlations are now being measured in
systems of known size7 to access the information about the FSI. Such an approach is
also known as non-traditional femtoscopy. A fantastic chronological overview of the
evolution of femtoscopic studies can be found in the thesis of my colleague Dimi-
tar [75], which also serves as a very educationally written introduction to the two-
particle femtoscopy. While the method of non-traditional femtoscopy is relatively
new, it is very well established [71], and I will refer to it just as femtoscopy in the
following.

The idea of femtoscopy is that if particles are produced in a collision close in
phase-space, they might experience the FSI, and their momenta become correlated
as shown in Fig. 1.15. The two-particle momentum correlation function [74, 76] is

r*
p1

p2

FIGURE 1.15: Femtoscopic picture of analysed particle pair.

defined as the probability of simultaneously finding two particles with momenta p1
and p2 divided by the single particle probabilities

C(p1, p2) ≡
P(p1, p2)

P(p1)P(p2)
, (1.3)

where these probabilities are proportional to the inclusive Lorentz-invariant spec-
tra P(p1, p2) ∝ E1E2

d6 N
d3p1d3p2

and P(pi) ∝ Ei
d3 Ni
d3pi

. Experimentally, the femtoscopic
correlation function is described as

C(p1, p2) = C(k∗) = N Ns(k∗)
Nm(k∗)

, (1.4)

where pi is the momentum of ith particle, Ns and Nm are the same and mixed event
distribution, k∗ is the relative momentum in pair rest frame k∗ = |p∗

1 − p∗
2 |/2 and N

is a normalisation constant. The same event distribution is obtained by creating all
possible combinations of two particles in one event. In comparison, the mixed event
distribution is obtained by taking the two particles from two different effects. While
the mixed event does not include FSI effects, it accounts for the phase space available
in the collision. From the theory side, the correlation function can be expressed via
the Koonin-Pratt relation as [77, 78]

C(k∗) =
∫

d3r∗S(r∗)|ψ(r∗, k∗)|2, (1.5)

7This will be explained in Chapter 1.5.1.
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where S(r∗) corresponds to the distribution of the relative distances of particle pairs
in the pair rest frame (PRF, denoted by the ∗) — the so-called source function and
ψ(r∗, k∗) is the wave function of the particle pair relative motion. The wave func-
tion generally depends on all possible interaction terms: the quantum statistics, the
Coulomb interaction, and the residual strong interaction between hadrons. If no
FSI is present for the given particle pair, the correlation function would be equal
to unity. If particles of interest are fermions, their relative wave function must be
antisymmetrised, resulting in depletion of the correlation function. The opposite is
true for a boson pair. Such an effect strongly depends on the relative distance be-
tween the particles. The Coulomb interaction for the opposite-charged particle pair
is attractive and thus results in a correlation function above unity, and the oppo-
site effect is observed for the same-charged particle pair. As Coulomb interaction
is long-range, its effects on the correlation functions are not strongly dependent on
the relative distance between the particles. Finally, how the correlation function is
affected by the strong interaction depends on its potential. The goal of femtoscopic
studies is constraining the relative wave function of the pair and, thus, the poten-
tial between the two particles. One needs a method to calculate the relative wave
function for a given potential to model a correlation function. A simplification to
such a task was proposed by Lednický and Lyuboshits [76]. Their model provides
an analytical form of correlation function related to the asymptotic solution of the
wave function for elastic interaction obtained employing effective range expansion
from scattering theory. Such wave function solution can be written as a sum of the
incoming free wave and a modified outgoing spherical wave as

ψ (k∗, r∗) = eik∗·r∗ + f (k∗)
eik∗r∗

r∗
, (1.6)

where the scattering amplitude for S-wave is given as

fS (k∗) ≈
(

1
f0

+
1
2

d0k∗2 − ik∗
)−1

. (1.7)

Here, f0 is the scattering length, and d0 is the effective range. Using this approxi-
mation, Eq. 1.5 can be solved, assuming a static and spherically symmetric source
function described by a Gaussian function of width r0. This would result in the
Lednický and Lyuboshits formula. However, in this thesis, we will talk about p-p
collisions, which have source sizes of around 1-2 fm, and an entirely asymptotic ap-
proximation would not satisfactorily describe the data. For this purpose, Lednický

provided an improved formula with a correction factor
(

1 − dS
0

2
√

πr0

)
C (k∗) = 1+

1
2

∣∣∣∣ fS (k∗)
r0

∣∣∣∣2
(

1 − dS
0

2
√

πr0

)

+
2ℜ fS (k∗)√

πr0
F1 (2k∗r0)−

ℑ fS (k∗)
r0

F2 (2k∗r0) ,

(1.8)

where F1 (2k∗r0) and F2 (2k∗r0) are analytical functions of the form

F1(z) =
e−z2

z

∫ z

0
ex2

dx (1.9)

and
F2(z) =

1
z

(
1 − e−z2

)
. (1.10)
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However, this approximation is not precise for very small distances, accounts only
for s-wave, and assumes that interacting particles are point-like and thus could not
be employed for such correlations as p-d.
An approach to estimate the integral shown in Eq. 1.5 without an asymp-
totic approximation would be preferred for small collision systems. Such
a tool, called the "Correlation Analysis Tool using the Schrödinger equation"
(CATS) [79], was developed by the previously mentioned colleague of mine,
Dimitar. The CATS framework numerically solves this integral for a given
source and wave functions. CATS also includes a Schrödinger solver for the
cases when the wave function is unavailable, but interaction can be expressed
as a real local potential V(r). In such a case, the wave function is obtained
by solving the Schrödinger equation, and then the correlation function can be
computed. The in detail description of CATS is provided in Refs. [75, 79].

FIGURE 1.16: p-p correlation function estimated with
CATS [80]. Details provided in text.

An exemplary correlation func-
tion obtained with CATS is
shown in Fig. 1.16 for a p-p pair
for a Gaussian source with r0
value of 1.25 fm. The differ-
ent dashed and dashed-dotted
lines represent contributions
from the effect of the quantum
statistics (bellow unity, as pro-
tons are fermions and the cor-
relation function thus goes to
0.5 at k∗ = 0 MeV/c), Coulomb
interaction (bellow unity and
goes towards 0) and strong in-
teraction (goes above unity).
The solid line represents the
correlation function when all
the interactions are included in
the calculation. Here, the Ar-
gonne ν18 potential is used for the strong interaction.
Some of the already measured two-body correlation functions are shown and dis-
cussed in Chapter 3.5. Before moving to the three-particle correlations, the source
function must be discussed.

1.5.1 Source function

The particle pair emission source for different baryon pairs has been shown to be
universal in high-energy pp collisions at ALICE [79]. It was achieved by modelling
the source as a sum of a Gaussian core, the same for all baryons pairs, and a contri-
bution from strong resonance decays. The Gaussian core is parametrised as

S(r) =
1

(4πr2
core)

3/2 exp
(
− r2

4r2
core

)
, (1.11)

where rcore is the so-called source size and r is the relative distance between particles.
The short-lived strong resonance contribution is estimated by employing the statis-
tical hadronisation model for resonance yields and the EPOS event generator for
the kinematics of produced resonances. Thus the only free parameter in the model
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FIGURE 1.17: Source size as a function of transverse
mass [79].

is rcore. The resonance contri-
bution is added to the Gaus-
sian core. It has been shown
that the obtained source func-
tion can be fitted with another
Gaussian function resulting in
an effective source radius r0.
Such source model was fitted
to the measured p-p and p-Λ
correlation functions. Both sys-
tems have the same rcore value,
as shown in Fig. 1.17, suggest-
ing a universal source. Indeed,
this source was successfully ap-
plied in later studies to estimate
correlation functions for differ-
ent hadron pairs.

1.6 Extension to three-particle femtoscopy

The natural next step in the femtoscopic studies is extending it to the three-body
case. Pairwise interactions and genuine three-body effects can induce momentum
correlations in a three-body system. In this Chapter, we discuss the basis of the
three-particle correlation functions and how we can use the cumulant method to
subtract the lower-order contributions and inspect if any genuine three-body effects
are present in the system. We will also present the projector method to calculate
lower-order contributions to the three-body system for known two-body correlation
functions.

1.6.1 Three-particle correlation function

The two-body correlation function can be generalised to obtain the three-body cor-
relation function. The Eq. 1.3 then becomes

C(p1, p2, p3) ≡
P(p1, p2, p3)

P(p1)P(p2)P(p3)
, (1.12)

and the experimental expression is

C(p1, p2, p3) = C(Q3) = N Ns(Q3)

Nm(Q3)
. (1.13)

In analogy to the two-body case, the numerator is obtained by building all possible
combinations of three particles of interest (triplets) in an event. In contrast, the de-
nominator is obtained by combining three particles from three different events. The
Lorentz-invariant variable Q3 is defined in [81] as

Q3 =
√
−q2

12 − q2
23 − q2

31 , (1.14)
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where qij is the norm of the four-vector [74]

qµ
ij =

(
pi − pj

)µ −
(

pi − pj
)
· Pij

P2
ij

Pµ
ij , Pij ≡ pi + pj, (1.15)

which can be rewritten as

qµ
ij =

2 mj

mi + mj
pµ

i −
2 mi

mi + mj
pµ

j . (1.16)

Here mi and mj are the particle i and j masses, pµ
i and pµ

j are the particle four
momenta, while qµ

ij is the relative four-momentum of the pair ij. In the case of

same mass particles, the term (pi−pj)·Pij

P2
ij

Pµ
ij becomes 0. In the non-relativistic case

q2
ij = −4k∗ij

2, where k∗ij is the relative momentum of the ij pair in the PRF.
The theoretical correlation function is introduced in the next Chapter, together with
one specific theoretical prediction by Alejandro Kievsky.

1.6.2 Theory of three-particle correlation functions

The most general form of the relation between the three-body correlation function
and the source and the wave function can be written following Eq. 1.5 as

C3(p1, p2, p3) =
∫ ∫ ∫

S3(r1, r2, r3) |Ψ(r1, r2, r3, p1, p2, p3)|2 d3r1d3r2d3r3 , (1.17)

where r1, r2 and r3 are the coordinates of the three particles, p1, p2 and
p3 are the corresponding conjugate momenta, S3(r1, r2, r3) is the three-body
source function and Ψ(r1, r2, r3, p1, p2, p3) is the three-body wave function.

1

2

3

⃗x1⃗x2

FIGURE 1.18: The Jacobi coordinates for a
three-particle system. One possible particle
permutation is shown.

The calculations of two-body and
many-body systems are often per-
formed in the centre-of-mass of the
A-body reference frame, and the spatial
configuration of the A-body system
can be sufficiently described by N=A-1
vectors. The latter can be constructed
using a linear combination of the ri
vectors. One possible choice is the
Jacobi coordinates that are defined
such that the total kinetic energy of the
system can be separated into two parts:
the centre-of-mass movement and the
relative movement between particles.
The general form of Jacobi vectors for a system of N+1 particles of different masses
is the following

xN−j+1 =

√
2mj+1Mj(

mj+1 + Mj
)

m
[
rj+1 − Xj

]
, j = 1, . . . , N, (1.18)

where

Mj =
j

∑
i=1

mi, Xj =
1

Mj

j

∑
i=1

miri, (1.19)
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and mi is the mass of the ith particle. For a system of three identical mass particles,
this results in {

x2 = rj − ri,
x1 = 2√

3

(
rk − ri+rj

2

)
.

(1.20)

The ordering of i, j, k indices corresponds to different particle permutations. The
case of the permutation i,j,k → 1,2,3 is shown in Fig. 1.18. The Hamiltonian for such
a system can be written as

H = T + V = TCM − h̄2

m
(
∇2

x1
+∇2

x2

)
+ ∑

i<j
V(i, j) + ∑

i<j<k
W(i, j, k), (1.21)

where TCM corresponds to the kinetic energy associated with the centre-of-mass
movement, h̄2

m

(
∇2

x1
+∇2

x2

)
is the kinetic energy operator for the relative particle

movement and ∑i<j V(i, j) and ∑i<j<k W(i, j, k) are the two- and three-body interac-
tion potentials.

Different methods have been applied to study the few-body bound and scat-
tering states. For example, Fadeev equations [82, 83], quantum Monte-Carlo
methods [84] or the Kohn variational principle [85] can be used to study three-body
systems. However, these methods have yet to be applied to study correlation
functions. Recently, a new development towards this direction has been carried
out by Alejandro Kievsky, who employed the Hyperspherical Harmonics (HH)
method [86] to obtain the preliminary results for the p-p-p wave function and the
corresponding correlation function. The calculations introduced in this Chapter and
corresponding figures show preliminary results from Alejandro’s calculations.

The three-nucleon wave function can be expressed as a sum of Faddeev-like am-
plitudes [86]

Ψ =
3

∑
p=1

ψ
(

x(p)
1 , x(p)

2

)
, (1.22)

where the index (p) indicates the pth even permutation and ψ
(

x(p)
1 , x(p)

2

)
ampli-

tudes are antisymmetric, by construction, to the exchange of ith and jth particles.
The three-body plane wave can be expanded employing the HH orthogonal basis as
follows

Ψ0
s =

(2π)3

(Qρ)2 ∑
J Jz

∑
[K]

iK JK+2(Qρ)Y LSJ Jz
[K] (Ω)Y LSJ Jz,∗

[K] (Q̂), (1.23)

where ρ =
(
x2

1 + x2
2
)1/2 is the hyperradius and Q =

(
k2

1 + k2
2
)1/2 is the hypermo-

mentum with k1 and k2 being the conjugate momenta of x1 and x2, respectively.
The full set of hyperspherical coordinates consists of ρ and Ω, where Ω is the set of
angular variables ϕ, x̂, ŷ. The hyperradius and hypermomentum do not depend on
the specific particle permutation used to construct the Jacobi vectors. The hypermo-
mentum Q is related to the experimental observable Q3 by a constant

√
6 for three

identical mass particles. The JK+2(Qρ) are the Bessel functions of the first kind and
the Y LSJ Jz

[K] (Ω) correspond to the HH functions Y[K](Ω) coupled to the spin functions

χS12
SSz

for a given total angular momentum J, spin S and orbital angular momentum
L. The HH functions Y[K](Ω) of order K are the generalisation of spherical harmonic
functions to the three-body problem. The symbol [K] stands for a specific set of
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quantum numbers [K] ≡ {ℓ1, ℓ2, m1, m1, n2}, where ℓ1 and m1 are the angular mo-
mentum and projection of the angular momentum on the z-axis associated with the
spherical harmonic functions and correspond to the pair of particles 1 and 2, while
ℓ2 and m2 are related to the particle 3 and the centre of mass of particles 1 and 2. The
quantum number n2 defines the degree of the hyperspherical polynomial included
in Y LSJ Jz

[K] (Ω). A specific grand angular quantum number involved in the calculations
is K = ℓ1 + ℓ2 + 2n2. One grand angular quantum number K case may include more
than one specific set of quantum numbers [K]. To obtain the correlation function, the
norm of the wave function is of interest which has a much simpler form due to the
properties of the HH functions. The norm of the shown free plane wave is

∣∣Ψ0
s
∣∣2 =

c
NS

26

(Qρ)4 ∑
K

J2
K+2(Qρ)NST(K), (1.24)

where c is chosen such that
∣∣Ψ0

s
∣∣2 → 1 as x = Qρ → ∞, NS is the number of spin

states and finally the NST(K) is the number of states depending on the grand angu-
lar quantum number K. For the three-nucleon case, there are eight spin states. For
each value of the [K], the HH functions can be symmetric, mixed or antisymmetric,
while the final three-proton wave function must be antisymmetric. As introduced
previously, the wave function is represented by the HH functions coupled to spin
functions. The spin vector of the three-proton system can be either of mixed symme-
try (S=1/2) or symmetric (S=3/2). Thus, only mixed and antisymmetric HH func-
tions can be included to obtain the antisymmetric wave function. The two mixed
symmetry spin states combined with two mixed HH functions result in an antisym-
metric state. Also, the symmetric spin state, in combination with the antisymmetric
HH function, provides an antisymmetric state. The final number of NST(K) states
for generic [K] values can be estimated using a numerical algorithm, taking into
account these considerations for antisymmetrisation. For the specific case of the
three-proton system, the normalisation constant c equals 6. Finally, to estimate a
correlation function, the source must also be expressed as a function of hyperradius.
The hyperspherical source for three particles used in the calculation is defined as

S123 =
1

π3ρ6
0

e−(ρ/ρ0)
2
, (1.25)

with ρ0 being a free parameter which must be defined experimentally and corre-
sponds to the rcore parameter in two-particle femtoscopy shown in Eq. 1.11. As men-
tioned before, the hyperradius is defined as ρ =

(
x2

1 + x2
2
)1/2. The visual representa-

tion of xi is shown in Fig. 1.18, and x2 corresponds to the relative distance between
one of the pairs in the triplet and thus is related to the r in Eq. 1.11 of the two-particle
source. The latter is obtained if single particle sources are assumed to be Gaussian.
While the motivation for a Gaussian source for the three-particle system is the same,
it remains to be confirmed to be valid.
The source function must be normalised such that∫

S123ρ5dρdΩ = 1. (1.26)

Then the correlation function can be defined as

C123(Q) =
∫

ρ5dρdΩS123 |Ψs|2 . (1.27)
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For the previously discussed free wave function, this becomes

C123(Q) =
∫

ρ5dρdΩS123
∣∣Ψ0

s
∣∣2 =

6
8

26

(Qρ)4
1
ρ6

0

∫
ρ5dρe−(ρ/ρ0)

2

∑
K

J2
K+2(Qρ)NST(K),

(1.28)
which is the final result after integration on hyperangles. The resulting correlation
function for different values of ρ0 is shown in the upper panel of Fig. 1.19. A correla-
tion function of a nucleon triplet is shown considering only the antisymmetrisation
of the wave function. The smaller the assumed particle source size, the further the
correlation function is from unity. This is expected, as a small source size implies
that more particle triplets are produced at small relative distances. Therefore, the ef-
fect of the antisymmetrisation in the calculation becomes dominant. The next step is
to introduce interactions between particles. The inclusion of the strong interaction in
the lowest partial waves modifies the wave function, which results in the following
norm

|Ψs|2 =
∣∣Ψ0

s
∣∣2 + 6

8
26

(Qρ)4

[K]max

∑
[K]

[
u2
[K](Qρ)− J2

K+2(Qρ)
]

NST(K), (1.29)

where u[K] corresponds to the reduced wave function with asymptotic behaviour

u[K] → JK+2(Qρ) + T[K]O[K](Qρ), (1.30)

where T[K] is the T-matrix for quantum number set [K] and the outgoing wave func-
tion O[K](Qρ). The T-matrix in the following calculations is obtained by employing
a Gaussian potential in spin S = 0 state with a parametrisation chosen to reproduce
the known p-p interaction scattering parameters. Thus these calculations do not yet
include the three-body potential. The Eq. 1.27 can be used to calculate the correla-
tion function corresponding to the different contributions. The resulting correlation
functions are shown in the lower panel of Fig. 1.19 for a source hyperradius ρ0 of
2 fm. The red curve shows the correlation function calculated using a three-particle
properly antisymmetrised free plane wave; the black curve - using the free wave
function but including only the grand angular quantum number K=1 case; the green
curve - using a wave function with the strong interaction but including only K=1
case and, finally, the blue curve represents the total correlation function if the inter-
action is included for K=1 case and the rest of the states are included as free waves.
In the specific case of three protons, the K=1 grand angular quantum number in-
cludes several configurations of quantum numbers. The HH functions for K=1 have
only mixed symmetry; thus, only the mixed symmetry spin state S=1/2 is allowed to
obtain antisymmetric final wave function. 8 As K = ℓ1 + ℓ2 + 2n2, the only allowed
configurations of the quantum numbers [ℓ1, ℓ2, n2] are [1,0,0] and [0,1,0], which result
in the allowed orbital angular momentum L = 1 and the total angular momentum
states J=1/2 and J=3/2. In the following, such states will be referred to as K=1 chan-
nel. These results still need to include the Coulomb interaction, which is necessary
to describe a three-proton system. The Coulomb potential for a many-body system
is expressed as

VCoul = ∑
i<j

e2

rij
. (1.31)

The asymptotic solution of the Schrödinger equation for three charged particles

8However, the antisymmetric HH functions start to exist at K=2 and thus for such channel the
symmetric spin state S=3/2 would be allowed.
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FIGURE 1.19: Upper panel: Three-nucleon correlation function for
an antisymmetrised free plane wave for different source parameter
values ρ0. Lower panel: Correlation functions obtained considering
only the ρ0=2 fm. The red curve corresponds to the total correlation
function obtained using free plane waves; the black line - correlation
function only for K=1 channel obtained using free plane waves; the
green line - correlation function only for K=1 channel obtained in-
cluding the strong interaction, as explained in the text; blue line - total
correlation function obtained including the strong interaction in K=1
channel and using free plane wave for the rest of the contributions.
Provided by Alejandro Kievsky in private communication.

is not known, but the effect of Coulomb interaction on the correlation function can
be approximately studied by employing an average force over the hyperangles as-
suming hyperradial form as

VC(ρ) =
1

π3

∫
dΩ ∑

i<j

e2

rij
=

16
π

e2

ρ
. (1.32)

For such case, the norm of the free scattering wave function, including Coulomb
interaction, becomes∣∣Ψ0

s
∣∣2 =

1
C2

3/2

1
(Qρ)5 ∑

K
F2

K+3/2(η, Qρ)NST(K), (1.33)

where C3/2 is a Coulomb factor equal to
√

8π/32 and FK+3/2 is a regular Coulomb
function. Here, as previously, NST(K) is the number of states. The upper panel of
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Fig. 1.20 shows the correlation function calculated using different wave functions
for a source radius of 2 fm. The red curve represents the correlation function ob-

; free plane wave (with antisymm.)


; Coulomb only, no antisymm.

; Coulomb with antisymm.


C(Q) free
total

C(Q)Coulomb

C(Q)Coulomb;Antisymm
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; free plane wave
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; free plane wave with the strong 
interaction in K=1 channel


 =   -  + 
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C(Q)total

C(Q)total C(Q) free
total C(Q) free

K=1 C(Q)strong
K=1

Without Coulomb 

With Coulomb

FIGURE 1.20: Correlation functions calculated using different wave
function assumptions. Details are provided in the text. Upper panel:
Study of the effects of antisymmetrisation and Coulomb interaction.
Lower: Final results for correlation function if antisymmetrised wave
function is used accounting for Coulomb interaction (dashed line)
and not (solid line). Both figures show results for a source parameter
ρ0=2 fm. Provided by Alejandro Kievsky in private communication.

tained using the antisymmetrised free plane wave. The green curve shows the cor-
relation function calculated using a wave function without antisymmetrisation (all
HH functions are allowed, thus resulting in a different number of states NST(K)) but
including Coulomb interaction. The blue curve represents the correlation function
calculated using the antisymmetrised wave function and including the Coulomb
force. The Coulomb interaction provides more repulsion between the protons and
thus brings the correlation function to lower values. Finally, the norm of an antisym-
metrised wave function, including both the strong and Coulomb interactions, can be
written as a combination of the above-shown expressions

|Ψs|2 =
∣∣Ψ0

s
∣∣2 + 1

C2
3/2(0)

6
8

1
(Qρ)5

[K]max

∑
[K]

[
u2
[K](Qρ)− F2

K+3/2(Qρ)
]

NST(K). (1.34)

The resulting correlation function is shown in the lower panel of Fig. 1.20 together
with different contributions. The solid lines correspond to results shown in the
lower panel of Fig. 1.19, while the dashed line shows how such correlation func-
tions change if the Coulomb interaction is taken into account. Thus the blue dashed
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line represents the preliminary calculation of how the correlation function of a three-
proton system should look when the interaction is included only in the K = 1 chan-
nel and only the two-body nuclear interaction potential is included. Finally, the
upper and lower panels in Fig. 1.21 show the result if the interaction is also included
in K=2 channel for a source radius of 1.5 fm (upper) and 2 fm (lower). As mentioned
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FIGURE 1.21: Correlation functions calculated for a hypersource ra-
dius ρ0=1.5 fm (upper panel) and ρ0=2 fm (lower panel) shown as a
function of Q3. The green curve represents the total correlation func-
tion calculated using an antisymmetrised wave function, including
the Coulomb interaction and the strong interaction in K=1,2 channels.
Black and red curves correspond to the correlation functions obtained
specifically for K=1 and K=2 channels, respectively. Provided by Ale-
jandro Kievsky in private communication.

before, these calculations are only preliminary. The parts requiring improvement are
the inclusion of the interaction for higher grand angular quantum number states,
calculation of the T-matrix assuming realistic two-body potential and inclusion of
the three-body potential, and improvement in Coulomb interaction, which is now
approximated by hyperradial form. These results are the first-ever attempt to cal-
culate a three-body correlation function, and we thank Alejandro Kievsky again for
providing the calculations and collaborating with us.

1.6.3 Cumulant method

The three-particle correlation function C(p1, p2, p3) includes all possible contribu-
tions as shown in Fig. 1.22: the three pairwise correlations and a genuine three-body
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correlation. As the calculations are still preliminary and require further improve-
ments, we exploited the Kubo’s cumulant method [87] to study the sensitivity of
the measured correlation functions to possible three-body effects. Kubo’s cumulant
method is widely used in flow analyses, which helps better understand the quark-
gluon plasma produced in heavy ion collisions [88–91].
Given random variables Xi, the cumulant for a triplet is defined as

⟨X1X2X3⟩c = ⟨X1X2X3⟩
− {⟨X1X2⟩ ⟨X3⟩+ ⟨X2X3⟩ ⟨X1⟩+ ⟨X3X1⟩ ⟨X2⟩}
+ 2 ⟨X1⟩ ⟨X2⟩ ⟨X3⟩ ,

(1.35)

where ⟨Xi⟩ is the expectation value of the variable Xi and
〈

XiXj
〉
,
〈

XiXjXk
〉

are
the two- and three-variable joint moments. The Theorem I from [87] is the most

= + + + - 2

Genuine 
three-body 
correlations

Measured 
three-body 
correlation

Two-body 
correlations

FIGURE 1.22: Sketch of all correlations contributing to the three-
particle correlation function following femtoscopic cumulant formal-
ism.

important for our femtoscopic studies:

A cumulant,
κ
(
XiXj · · ·

)
≡
〈

XiXj · · ·
〉

c

is zero if the elements Xi, Xj, · · · are divided into two or more statistically inde-
pendent groups.

The cumulant method can be applied to the Eq. 1.13 numerator, which contains the
correlated particles. The three-particle femtoscopic cumulant c3 is defined as such
expression normalised to the uncorrelated triplet distribution as

c3 (p1, p2, p3) = [N3 (p1, p2, p3)

− N2 (p1, p2) N1 (p3)− N2 (p2, p3) N1 (p1)− N2 (p3, p1) N1 (p2)

+ 2N1 (p1) N1 (p2) N1 (p3) ] /N1 (p1) N1 (p2) N1 (p3) ,
(1.36)

where N3 (p1, p2, p3) and N2(pi, pj) are the same-event three- and two-particle mo-
mentum distributions; N1 (pi) is the single-particle momentum distribution; the
product terms N2(pi, pj)N1 (pk) and N1 (pi) N1(pj)N1 (pk) indicate the mixed event
distributions. This can be further rewritten as

c3 (p1, p2, p3) = C(p1, p2, p3)− C([p1, p2], p3)− C([p2, p3], p1)− C([p3, p1], p2) + 2.
(1.37)

This method has already been successfully applied within the ALICE Collabo-
ration to study the possibility of coherent pion production by measuring three-pion
femtoscopic cumulants in Refs. [81, 92]. Following Theorem I, the observation of
c3 (p1, p2, p3) = 0 indicates the absence of genuine three-body correlations. The non-
vanishing values of c3 can be obtained only in the presence of the genuine three-body
effects.
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The three-particle correlation function can be expressed using only lower-order con-
tributions in the absence of the genuine three-body effects as follows

Ctwo-body(p1, p2, p3) = C([p1, p2], p3) + C([p2, p3], p1) + C([p3, p1], p2)− 2. (1.38)

In Eq. 1.38, C([pi, pj], pk) term corresponds to two interacting particles and one spec-
tator. Such contribution can be evaluated with a data-driven or newly developed
projector method. Based on the data-driven method, the lower order contributions
are built by combining particles i and j from the same event with particle k from
another event to obtain the numerator N2(pi, pj)N1(pk) of the correlation function
while the denominator N1(p1)N1(p2)N1(p3) is estimated using three particles from
three different events. The shortcoming of the data-driven method is the statistical
uncertainty which depends on how many mixed events are used to obtain the nu-
merator. Computation expenses limit this number of events. Luckily, the projector
method, described in the next Chapter, does not have such limitations.

1.6.4 Projector method

The projector method was developed in our group by Raffaele Del Grande; I con-
tributed mostly to the initial calculation codes and simulations. The performed
study was published in EPJC [93], showing an in-detail derivation of the method.
The goal of the projector method is to estimate the correlation function C([pi, pj], pk),
where only particles i and j are interacting and this interaction is known either from
theory or from experiments. In the case of only two interacting particles, the three-
body Hamiltonian, shown in Eq. 1.21, becomes much simpler and reads as

H = HCM + H1 + H2 = TCM − h̄2

m
∇2

x1
+

(
−h̄2

m
∇2

x2
+ V(i, j)

)
, (1.39)

where all three Hamiltonian operators commute. In such a case, the total wave func-
tion of the system can be factorised. The wave functions can be obtained by solving
stationary Schrödinger equations for HCM, H1 and H2 Hamiltonians. The solution
for both HCM and H1 cases are free plane waves, while the solution for H2 depends
on the assumed two-body interaction. This leads to a correlation function which
depends only on the wave function for the particles i and j. Such wave function is
directly related to the correlation function between interacting particles, and thus
the total correlation function of the three-particle system can be expressed as

C3(Q3) =
∫ √

γ

αγ−β2 Q3

0
C2(k1)W(k1, Q3)dk1. (1.40)

This relation projects the two-body correlation function C2(k1) between particles
1 and 2 on the three-body hyper-momentum Q3. The coefficients are expressed as

α =
4 m2

3
(m1 + m3)2 +

4 m2
3

(m2 + m3)2 + 4, (1.41)

β =
4 m3(m1 + m2 + m3)

m1 + m2

[
m2

(m2 + m3)2 − m1

(m1 + m3)2

]
, (1.42)

γ =
4 (m1 + m2 + m3)2

(m1 + m2)2

[
m2

1
(m1 + m3)2 +

m2
2

(m2 + m3)2

]
, (1.43)
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where mi corresponds to the mass of ith particle. The analytical form of projector
function W(k1, Q3) then is

W(k1, Q3) =
16(αγ − β2)3/2k2

1

πQ4
3γ2

√
γQ2

3 − (αγ − β2)k2
1 (1.44)

The projector method essentially takes the known two interacting particle correla-
tion function and projects it from k∗ space to Q3 by accounting for the allowed phase
space of the third particle, depending on its mass.
We tested the projector method using a Toy MC [93]. We simulated p–p–Λ triplets
by sampling the components of the single hadron momentum from uniform dis-
tributions U(p) = U (px)U

(
py
)

U (pz) for free hadrons. To validate the projector
method, we assumed that one pair in the triplet might interact, specifically one of
the p–Λ pairs, while the second proton remains a spectator. A joint distribution
was used to account for the possible interaction resulting in total probability density
function f (p1, p2, p3) = qU (p1)U (p2)U (p3) + p f2 (p1, p2)U (p3), were the first
term corresponds to a three free hadron system and the second term corresponds
to the two interacting hadrons and one spectator. Here, f2 (p1, p2) is a Gaussian
distribution with a standard deviation σ and the parameters q and p corresponds
to the weights of the two sub-samples. The values of σ, q, p were fitted so that the

FIGURE 1.23: Projector method validation with Toy MC model [93].
Left: Two-particle p–Λ correlation function for the simulated sample
as a function of the relative momentum in the centre-of-mass system
of the interacting pair. Right: Three-particle correlation function for
the simulated sample obtained with the data-driven method (black
squares) and the projector method (pink line). The vertical lines on
the black squares correspond to the statistical uncertainty dependent
on the simulated sample size.

p–Λ correlation function obtained from the simulated sample would reproduce the
correlation function estimated for a spin-0 p–Λ interaction calculated within χEFT
framework at NLO given in Ref. [24]. The correlation function obtained for the inter-
acting p–Λ pair from the simulated sample is shown in the left panel of Fig. 1.23 as a
function of the relative momentum between the two baryons in the pair rest frame.
The three-body correlation function from the simulated triplet sample can also be
estimated using the data-driven method, shown as the black squares in the right
panel of Fig. 1.23. Finally, the projector method was used to estimate the three-body
correlation function by employing the Eq. 1.40 and using the two-particle correlation
function shown in the left panel of Fig. 1.23 as C2 (k1) term in Eq. 1.40. The correla-
tion function obtained with the projector method reproduces well the one obtained
with the data-driven approach. While the projector method was validated with the
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Toy MC studies, it must also be validated with data. In this thesis, we will show
the first comparison of the projector method to the data-driven approach based on
experimental data, which was included in our paper accepted by EPJA [94].
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Chapter 2

ALICE - A Large Ion Collider
Experiment

The European Organization for Nuclear Research, also known as CERN, was estab-
lished in 1954 and has since been one of the leading scientific centres in the world.
Some of the most significant achievements made by the experiments at CERN are the
discoveries of the W and Z bosons [95], the direct CP violation [96–99], and many
others, including the recent discovery of the Higgs boson [6, 7]. As of 2022, CERN
hosts 11 active machines, including the Large-Hadron-Collider (LHC) - the world’s
largest and most powerful particle collider. The LHC aims to tackle fundamental
questions such as the origin of mass, dark matter, and dark energy, why there is
a matter-antimatter asymmetry in the universe, and the properties of QGP. During
the two data-taking campaigns so far, the LHC experiments managed not only to an-
swer some of these questions (and are still investigating the others) but also found
new ways of using the data to study physics questions that were not in the original
scope.
The four biggest experiments at the LHC are ALICE (A Large Ion Collider Exper-
iment), ATLAS (formerly known as A Toroidal LHC Apparatus), CMS (Compact
Muon Solenoid), and LHCb (The Large Hadron Collider beauty). This thesis fo-
cuses on the ALICE detector, initially built to tackle the questions regarding QGP
created in ultra-relativistic heavy-ion collisions and the following hadronisation pro-
cesses. The QGP is a new state of matter composed only of deconfined quarks and
gluons. The evolution of the QGP can be described with relativistic viscous hydro-
dynamic simulations, which predict that it will expand due to its pressure [100].
To test the current understanding of the QGP and the available models for ini-
tial conditions, the hydrodynamic expansion and hadronisation, probes such as
flow [11, 12, 101, 102], tagged and un-tagged jets [103–105], the production of dif-
ferent particle species [106–108], and others are studied. Accessing the properties
of the matter created in ion-ion (A–A) collisions requires a good understanding of
the underlying dynamics of collisions. The data of proton-proton (pp) and proton-
ion (p-A) collisions provides both such reference and an environment to study fun-
damental physics. All these measurements require excellent particle identification
(PID) capabilities, which is one of the main advantages of the ALICE detector. The
ability to identify different hadrons and (anti-)nuclei was also used for a large num-
ber of measurements unrelated to studies of the QGP: the inelastic cross section mea-
surements of antinuclei using the detector material as a target [109, 110], the lifetime
and separation energy of hypertriton [111], measurements of the strong interaction
between different hadron pairs [30, 34, 36–41], and others.
The LHC accelerator and the ALICE detector are described in the following Chapter,
together with the selections for events and single particles applied in this thesis.
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2.1 Large Hadron Collider

The CERN accelerator complex consists of several accelerator rings and linear
accelerators, as shown in Fig. 2.1. The largest accelerator is the LHC, a two-
ring-superconducting-hadron accelerator and collider installed in the existing 26.7
km tunnel originally constructed for CERN’s Large Electron-Positron (LEP) ma-
chine [112]. It was designed to reach maximum centre-of-mass collision energy√

s=14 TeV in pp collisions. However, the maximum energy reached in Run 1 was√
s=8 TeV because of safety precautions after an incident in one of the main dipole

circuits during the first commissioning in 2008 [113]. During the first LHC Long
Shutdown after Run 1, the accelerator was upgraded to ensure it could operate at
higher energies, and indeed, the maximum operating centre-of-mass collision en-
ergy was increased to

√
s=13 TeV during Run 2.

Protons injected in the LHC ring are already accelerated to an energy of 450 GeV by
the LHC injector chain, consisting of the linear accelerator called LINAC 2, Proton
Synchrotron Booster (PSB), Proton Synchrotron (PS) and Super Proton Synchrotron
(SPS) [114]. When the bunches finally collide at the LHC interaction points (IP), the
detectors measure the produced particles at these IPs.

FIGURE 2.1: CERN accelerator complex [115].

2.2 ALICE

The ALICE detector, located at the interaction point IP2 of the LHC, has dimen-
sions of 16 × 16 × 26 m3 and weighs around 10000 tons. Besides excellent particle
identification capabilities, the detector has a low transverse momentum threshold
pmin

T ≈ 0.15 GeV/c to identify particles and high detector granularity [116], which
makes ALICE the perfect detector to perform measurements of small relative mo-
menta below 100 MeV/c. In Run 2, this is achieved by the 19 ALICE sub-detector
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systems, which can be separated into three main categories: central-barrel detectors,
forward detectors, and the MUON spectrometer. A schematic view of the ALICE
machine is shown in Fig. 2.2. The in-detail description of the detector can be found
in Refs. [116–119].
The central-barrel detectors are embedded in the L3 solenoid magnet and thus im-
mersed in a homogeneous 0.5 T magnetic field parallel to the beam direction. The
Inner Tracking System (ITS), Time Projection Chamber (TPC), Transition Radiation
Detector (TRD), Time Of Flight (TOF), Photon Spectrometer (PHOS), Electromag-
netic Calorimeter (EMCal), Di-jet Calorimeter (DCal) and High Momentum Particle
Identification Detector (HMPID) belong to this category.

FIGURE 2.2: ALICE detector system during the LHC Run 2 pe-
riod [120]. The inset shows a zoomed view of the sub-systems located
around the nominal interaction point.

The ITS and TPC are the main detectors used for charged particle tracking,
while particle identification can be achieved using TPC information at low mo-
menta (around p < 1 GeV/c for protons) and TOF at intermediate momenta (around
p < 4 GeV/c for protons). ITS is also responsible for primary and secondary vertex
reconstruction and can be used for particle identification. The rest of the central-
barrel detectors have a specific purpose as well: the TRD allows for pion/electron
separation, the EMCal and the DCal are optimised for the studies of jet physics,
the PHOS - for soft photon studies, and the HMPID extends the PID capabilities to
larger pT values. The relatively low magnetic field inside the detector results in the
possibility of measuring very low pmin

T particles.
The Photon Multiplicity Detector (PMD), Forward Multiplicity Detector (FMD), V0
detector, T0 detector, and Zero Degree Calorimeter (ZDC) belong to the forward de-
tector category. The PMD and FMD measure photons and charged particles in the
forward direction, respectively, while the ZDC counts spectator nucleons. The V0
and T0 detectors are responsible for the triggering and event characterisation. The
muon spectrometer measures heavy-quark vector-meson resonances and light vec-
tor mesons via µ+µ− decay.
The detector systems relevant to this work will be described in the following Chap-
ters.
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2.2.1 Triggering system

ALICE had a two-layer trigger system in Run 2 [121]: a low-level hardware trigger
called Central Trigger Processor (CTP) and a purely software-based trigger called
High-Level Trigger (HLT). The CTP has three main trigger levels, classified by the
time needed to receive trigger signals from the detectors. The first two trigger levels
decide the start of the event data buffering in the detector front-end electronics.
The last level decision is responsible for triggering the sending of the recorded data
to the HLT and the Data Acquisition (DAQ) systems or, if an event is rejected, the
discarding of the obtained digital and analogue information [116].
The CTP trigger logic can receive a total of up to 60 detector signals which are
combined to obtain multiple trigger classes [116]. The simplest triggers - the
Minimum-Bias (MB) triggers - aim to trigger on all inelastic interactions occurring
in the detector. Thus MB triggers are expected to introduce the most negligible
bias to the physics of recorded event samples and have high rates. The so-called
rare triggers have much lower rates as they look for rare signals, such as High-
Multiplicity (HM) events for pp collisions, charged or neutral jets in an event, and
other signals. Usually, all triggers - minimum bias and rare - are recorded. However,
there is a limit on the total allowed rate imposed by the maximum data bandwidth
(ALICE was designed to have 1.25 GB/s bandwidth to data archiving for heavy-ion
collisions, and this was further improved during Long Shutdown 1 [121]), which
can be recorded on the disk and tape. Only rare triggers are accepted if temporary
memory and disk buffers use increases over a predefined limit. If the usage goes
down - all triggers are accepted again. Such prioritisation prevents a situation in
which rare events are triggered but cannot be stored and thus are lost. This inspired
Run 3 to have specific offline software triggers for different physics purposes. The
development of such a trigger for the three-particle femtoscopy is part of this thesis
and is described in Chapter 4.
Returning to Run 2, the femtoscopic studies performed in this work
require either 3 protons (or their antiparticle triplet) or two protons

ALI-PERF-131164

FIGURE 2.3: Distribution of the event multiplicity, es-
timated as the multiples of average V0M amplitude in
MB events [120]. The legend indicates that the shaded
red area shows the HM-triggered data.

and one Λ hyperon (or their
antiparticle triplet), which are
more likely to be found in
HM events. Another reason
to use the HM data is the
observed strangeness enhance-
ment in such collisions com-
pared to MB [122] as it in-
creases the probability of ob-
serving p–p–Λ and p –p –Λ
triplets. The HM trigger used
in this analysis is called kHigh-
MultV0, and the decision is
made accordingly to the sig-
nal received from the V0 detec-
tor, which works as a proxy for
the charged particle multiplic-
ity traversing the detector.
The V0 detector consists of two
plastic scintillator arrays. The so-called V0A detector is located 3.4 m from the in-
teraction point and covers the pseudorapidity range of 2.8 < η < 5.1 while V0C is
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on the opposite side, located -0.9 m from the interaction point and covers the pseu-
dorapidity region −3.75 < η < −1.7.1 The V0 detector provides a trigger signal
input required for HM and MB triggers. The commonly used MB trigger is V0AND
which requires coincidental hits in both V0A and V0C synchronous with the LHC
bunch crossing time. The sum of the measured signal amplitudes in the two detec-
tors is V0M. Additionally to the MB conditions, the HM trigger requires the V0M to
be larger than a threshold, defined as multiples of the average V0M measured in MB
events N<V0M>, where N typically was set to around 5. The selected HM events
correspond to the highest 0.17% multiplicity interval with respect to all inelastic col-
lisions with at least one measured charged particle within |η| < 1 (INEL> 0) as
shown in Fig. 2.3.

2.2.2 Inner Tracking System

The ITS is the innermost central-barrel detector of the ALICE, as shown in Fig. 2.2,
designed for high-precision tracking and vertex reconstruction close to the inter-
action point. The ITS can measure low-momentum particles with transverse mo-
menta down to 0.1 GeV/c and, in general, improve the resolution of position, an-
gle, and momentum estimation for tracks reconstructed using TPC information.

z axis

SPD

SDD

SSD

FIGURE 2.4: Schematics of the Inner Tracking
System. The figure adapted from [123].

The ITS consists of six cylindrical lay-
ers of lightweight silicon detectors sur-
rounding the beam pipe at radii of 3.9
to 43 cm [124]. The schematic view of
these layers is shown in Fig. 2.4. The
two inner layers hold high-granularity
Silicon Pixel Detectors (SPD) and reach
a spatial resolution of 12 µm and 100
µm in rϕ and z directions, respec-
tively [123]. The two intermediate lay-
ers consist of Silicon Drift Detectors
(SDD) and achieve a precision of 35 µm
in rϕ and 25 µm in z directions. The
two outer layers of the ITS are crucial
for ITS-TPC matching. They are com-
posed of Silicon Strip Detectors (SSDs)
and provide a resolution of 27 µm in rϕ
and 830 µm in z directions. The high
spatial resolution of all layers results in the possibility of localising the position of
the collision, the so-called Primary Vertex (PV), with a precision of less than 100 µm
and in identifying the secondary vertices of heavy flavour and hyperon decays.

2.2.3 Time Projection Chamber

The TPC is one of the main particle tracking and identification systems in ALICE. As
it surrounds the ITS and is aligned with the LHC beams, the TPC sits parallel to the
magnetic field provided by the L3 solenoidal magnet, as shown on the right panel
in Fig. 2.5. The TPC is a large hollow cylinder with an inner radius of the active
volume of 0.85 m, an outer radius of 2.5 m, and a length of 5 m. The cylinder was

1Pseudorapidity (η) expresses angles with respect to the beam axis and is defined as η =

− ln
(

tan θ
2

)
. η = 0 describes the direction perpendicular to the beam axis.
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filled with a mixture of Ar-CO2 (90:10) gas at atmospheric pressure in 2016 and 2018,
while in 2017, it was filled with Ne-CO2-N2 (90:10:5) mixture. The drift volume of
TPC is divided into two parts by the conducting high voltage electrode placed in the
centre of the detector, as shown in both panels of Fig. 2.5. Together with the inner
and outer field cages, it provides a uniform electric field parallel to the axis of the
cylinder. The charged particles traversing the detector ionise the gas in the active
volume, creating ionisation electrons and ions. The latter drift in the electric field
towards the central electrode, while the electrons go to the two endplates, where the
readout chambers are installed. However, the total yield of ionisation electrons is
too low to obtain a detectable signal. Thus the charge amplification is achieved, and
the signal is detected by employing the Multi-Wire Proportional Chambers (MWPC)
combined with cathode pad readout [125].

FIGURE 2.5: Left: Schematics of the Time Projection Chamber
cage [126]. Right: TPC position in the L3 Magnet is shown together
with the direction of electric and magnetic fields [127].

The precisely measured positions where the electrons hit the detector are used
to reconstruct the particle trajectory projected on the transverse plane. If combined
with additional information about when the electrons reached the endplate, the z
position can be reconstructed and a three-dimensional track defined. The maximum
number of measured space points for a track is 159. The measured amplitude of
the signal is also used to estimate how much energy the ionising particle lost in
the TPC, allowing us to perform particle identification. The reconstructed tracks are
used to calculate the momentum of the particle employing the fact that the curvature
radius r of the particle trajectory in a magnetic field depends on the magnetic field
B, the electric charge of the particle ze (where e is the elementary charge) and the
momentum of the particle p as r = p/(Bze). Once the momentum is known, the
particle’s specific energy loss per unit distance (dE/dx) in the TPC gas is used for
particle identification. The average dE/dx can be calculated using the Bethe-Bloch
equation 〈

dE
dx

〉
=

4πNe4

mc2
z2

β2

[
ln
(

2mc2

I
β2

1 − β2

)
− β2 − δ(β)

2

]
. (2.1)

The energy loss depends on the traversed material (N is the number density of elec-
trons, mc2 is the rest energy of the electron, I is the mean excitation energy of an
atom) and, most importantly, the charge z (in multiples of elementary charge) and
velocity β of the particle. A density effect that leads to the shielding of the electric
field of the incident particle by the electric polarisation of the medium is accounted
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for in the term δ(β). The variables of the particle of interest are shown in Eq. 2.1
in pink. As mentioned before, the TPC tracking provides the particle’s momentum.
The Bethe-Bloch equation does not depend on the mass, only on the velocity of the
traversing particle, which means that different particle species with the same mo-
menta will lose a different amount of energy in the TPC gas as they have different
velocities. The energy loss is more significant for slower particles, and thus for the
same momenta, the heavier of the two particles will lose more energy, as shown in
Fig. 2.6. The bands correspond to different particle species, and the width of the
band depends on the resolution of the TPC. The lines shown in the figure corre-
spond not directly to the Bethe-Bloch calculation but to a parametrisation function
proposed by the ALEPH collaboration [128]

f (βγ) =
P1

βP4
·
{

P2 − βP4 − ln
[

P3 +
1

(βγ)P5

]}
. (2.2)

The parameters P1−5, shown in pink, are fitted to the data. The particle

FIGURE 2.6: Specific energy loss in the TPC measured
as a function of the momentum over charge in pp colli-
sions at

√
s=13 TeV [120].

identification is performed by
comparing measured particle
energy loss to the expecta-
tion value for different parti-
cle species. The agreement
with the hypothesis for specific
species is expressed in multi-
ples of standard deviations nσ.
As seen in Fig. 2.6, the TPC is
good at PID for low momen-
tum particles, where the differ-
ent species bands are well sep-
arated. However, the bands
merge with increasing momen-
tum. The PID is performed by
combining the TPC and TOF in-
formation for higher momen-
tum particles to achieve good
particle purity. The selection
criteria applied in our analysis are shown in detail in Chapter 2.5.

2.2.4 Time-of-Flight detector

The Time-of-Flight detector [129] provides a complementary way to identify
particles and extends the PID capabilities of ALICE to the intermediate momentum
range. TOF measures the time the particle hits the detector and provides the velocity
if combined with the known time of the collision and the distance travelled. If
particle velocity and momentum are known, one can estimate the particle’s mass
using the equation m = p

√
β−2 − 1. However, the particle momentum must be

known from another detector.
To identify the different particle species, one can plot the measured
particle velocity as a function of the momentum, and various parti-
cle species will fall into different bands, as shown in Fig. 2.7. Com-
pared to the TPC, the TOF detector can identify higher momentum par-
ticles as the different species bands are separated up to high momentum.
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FIGURE 2.7: Velocity measured by TOF as a function of
the momentum in pp collisions at

√
s=13 TeV [120].

TOF is the outer detector in
the central barrel, positioned
at radii between 370 cm and
399 cm from the beam axis.
Very low momentum parti-
cles might get absorbed on
their way from the interac-
tion point to the active detec-
tor region as they have to tra-
verse rather large transverse
distances. This, together with
the bending of the particles in-
duced by the magnetic field,
causes a rigidity cut-off at
about 300 MeV/c. Thus, our
analysis uses only the TPC to
identify particles with momentum p < 0.75 GeV/c.

2.3 ALICE Upgrade: Run 3

As shown in Chapter 3.8, the three-baryon femtoscopic analysis of Run 2 data
demonstrates that the three-particle correlations are accessible with ALICE mea-
surement. However, a much higher statistical sample is required to provide
quantitative information on the genuine three-baryon interactions. One of the main
objectives of LS2 was to improve the readout rate to accommodate the increased
interaction rate during the Run 3 of the LHC, which will result in a much higher
number of recorded events. In the following, the main ALICE upgrades done
during LS2 are presented and the motivation for offline software triggers to record
all events with triplets of interest is introduced.

The collision rates read out by the ALICE detector during LHC Runs 1 and 2
were up to 8 and 200 kHz for Pb-Pb and pp collisions, respectively. During the LS2
at the LHC, the ALICE detector received upgrades to record the data at collision
rates of 50 kHz for Pb-Pb and 0.5 to 1.0 MHz for pp collisions.
In Run 2, the ITS consisted of silicon detectors and had a limitation of 1 kHz read-
out rate. It has been replaced by ITS2 based on seven layers of ALPIDE monolithic
active pixel sensors (MAPS) representing the largest-scale application of MAPS in
a high-energy physics experiment. The main goals of the ITS upgrade were the in-
creased readout rate and the improved precision of the reconstruction of the PV and
the decay vertices. The improved precision has been achieved by moving the inner-
most detector layer closer to the interaction point from 39 mm to 22.4 mm, which
was possible due to an implementation of a new beam pipe with a reduced outer
radius. Also, the pixel granularity for all ITS layers was increased and an additional
layer was added in the inner barrel. The material budget was significantly reduced
for the innermost layers to improve the detection of low-pT particles. The ALPIDE
technology also allows for readout rates of 50 and 400 kHz for Pb-Pb and pp colli-
sions, respectively. The development and main test results related to the ALPIDE
technology can be found in Ref. [130].
The TPC detector was based on MWPC in Run 2, as described in the previous Chap-
ter and shown in Fig. 2.5. One of the shortcomings of such a system was the active
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gating required to deal with the ion backflow into the drift region, which limited
the readout rate for Pb-Pb collisions to about 700 Hz. Due to the increased inter-
action rate and the requirements of the ALICE physics program for Runs 3 and 4,
the TPC had to be upgraded to operate in continuous readout. This was achieved
by employing readout chambers based on the Gas Electron Multiplier (GEM) foils.
Such technology reduces the ion backflow so that the space charge distortions can
be corrected for the required interaction rate of 50 kHz for Pb-Pb collisions. This
is extremely impressive as the expected number of events contributing to the space
charge distortions at such interaction rate is around 104 [131] (estimated for the ion
drift time of 214 ms required to travel from the readout plane to the central elec-
trode). The TPC upgrade is described in detail in Refs. [126, 132]. During my PhD, I
contributed to the development of the online quality control system for TPC.
Besides these two major ITS and TPC upgrades, the readout electronics of most of
the other sub-detector systems were improved. Several other detectors were further
upgraded and installed; however, they are not used in the analysis reported in this
thesis and thus are not mentioned. The full LS2 upgrade is in detail described in a
recent ALICE publication [131].
The increased interaction and readout rates also require a new way of processing and
storing the data. For Runs 3 and 4, the ALICE computing model is oriented at maxi-
mal compression of the data volume, which is read from the detector synchronously
with the data taking. The upgraded system supports both continuous and triggered
(by hardware) readouts. The latter is required for commissioning and calibration
runs and legacy sub-systems that were not upgraded for the continuous readout.
The reconstruction of the events consists of synchronous and asynchronous steps.
The first runs at the time of data taking, while the second takes place afterwards and
can be performed several times until the required quality of reconstructed data is
achieved. The main goals of synchronous reconstruction are reducing the data rate
from the TPC and extracting the calibration data. The full TPC reconstruction is re-
quired to compress the data to be stored, as the TPC makes up most of the raw data
volume in ALICE. The compression is performed by rejecting clusters associated
with or in the proximity of the background tracks, storing the cluster information
in integer and floating point formats with a number of bits corresponding to the
intrinsic TPC resolution, and storing raw coordinates of hits in respect to the extrap-
olated tracks. The reconstruction of data from other sub-detector systems runs in
parallel to the TPC reconstruction. The calibration algorithms also run during the
synchronous reconstruction and the acquired information is stored; however, the fi-
nal calibration constants are obtained in four to six weeks during the asynchronous
reconstruction passes. The calibrations are extremely relevant for the TPC, where
the space charge distortions can reach up to 10 cm. During the asynchronous re-
construction, the tracks are obtained by combining information from all available
detectors; primary vertices are located; secondary vertices and cascades are identi-
fied. The general algorithms to obtain such reconstructed entities are introduced in
the next Chapter.
While all Pb-Pb events will be stored, the number of pp collisions at the

√
s = 13.6

TeV must be reduced by a factor of 1000 because of storage space limitations. Offline
software triggers, which run after the asynchronous reconstruction and select events
relevant to physics analyses, achieve this. Every physics working group in ALICE is
allowed to have several triggers for which the total rejection factor is 10000. We de-
veloped four three-body triggers for the three-baryon interaction studies (ppp, ppΛ,
pΛΛ, ΛΛΛ) and two two-body triggers, including deuteron in the pair (pd and
Λd). The three-body triggers I developed and relevant to this analysis are presented
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in Chapter 4.

2.4 Data reconstruction

While the detector system is the most crucial component of any experiment, the
measured data must also be reconstructed and calibrated, for which specific pro-
cedures and software must be developed. The data preparation flow in AL-
ICE is shown in Fig. 2.8. The calibration process is required for all steps be-
fore and including the tracking. The final reconstructed data is stored in so-
called Event Summary Data (ESD) files which are the largest of the available data
formats in ALICE and store the most detailed information about the collisions.

Raw 
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Cluster finders
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Tracking

Primary vertex 
using tracks
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s 
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FIGURE 2.8: Data recon-
struction flow in ALICE.

The first step of the reconstruction is clusterisation which
is performed for all detectors separately. When a particle
crosses a specific detector, it fires multiple cells, and this
information corresponds to raw data. However, for data
reconstruction, one such particle hit is interesting as an
entity; thus, the fired cells are combined into a cluster
for each hit. Such clusters are characterised by position,
signal amplitude, shape, and other quantities. They are
used as input for tracking algorithms for ITS, TPC, and
TRD, but other detectors also use clustering.
The initial point of the collision is required as an an-
chor point to use the clusters for the track reconstruction.
Thus, the primary vertex reconstruction occurs next. At
this stage, it is based solely on the SPD information. First,
tracklets are formed from pairs of clusters, as shown in
the left panel of Fig. 2.9. The primary vertex is then
reconstructed by searching for the overlap region of all
tracklets. The tracklets not pointing to this vertex are as-
sumed to be pile-up and rejected (grey dotted lines). As a
default approach, a 3D vertex is reconstructed in pp col-
lisions. However, in the case of low multiplicity events,
a z-vertex-only reconstruction algorithm can be used.
Once the primary vertex is known, the tracking algo-
rithms can be employed. The tracking is performed by
combining all available detector information, and the re-
construction method, based on the Kalman filter, is de-
scribed in detail in Ref. [133]. In the first phase, the track
is reconstructed starting from the outer TPC layer in-
wards until the inner radius of the TPC is reached. The
tracks can be reconstructed without the ITS clusters but still constrained to SPD ver-
tex, which results in so-called TPC-only tracks. However, the complete reconstruc-
tion procedure propagates the track further using the ITS clusters. In the second
phase, the backpropagation is performed, starting with the reconstructed primary
vertex at the ITS to the outer layer of TPC using the clusters found in the previ-
ous phase but extending the track to include the outer detectors such as TRD, TOF,
HMPID, EMCAL, PHOS. In the final phase, the re-fit employs inwards propaga-
tion, including clusters from all detectors associated with the track in the previous
step. Tracks reconstructed in the TPC and prolonged to the ITS with successful re-fit
are called global tracks. Such tracks are used to constrain again the primary vertex,



2.4. Data reconstruction 45

which provides better resolution than the SPD method but has lower efficiency at
low multiplicities. Additionally, pile-up tagging via multiple reconstructed vertices
is possible.
Once the event and the tracks are reconstructed, the secondary vertices from weak
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Tracks 
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Primary vertex 
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DCA1

DCA2
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DCAπp

ITS 
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ITS 
layer 3

FIGURE 2.9: Left: Illustration of the primary vertex finding algorithm
using SPD clusters. Right: An explanatory sketch of V0 Reconstruc-
tion and selection. A detailed explanation is provided in the text.

decays of long-lived hadrons and photon conversions are identified. The recon-
structed decay, when two un-like sign particles are produced, is called V0 candi-
date (K0

s → π+ + π−; Λ → p + π−; γ → e+ + e−). Reconstructed decay into an un-
charged particle which decays further into un-like sign particle pair is called cascade
candidates (Ξ− → Λ + π− → p + π− + π−). The reconstruction of cascades is based
on first reconstructing the V0 candidate and then creating combinations with track
candidates. However, in this thesis, only the Λ particles are of interest, and thus only
the V0 reconstruction is discussed in detail.
The secondary (daughter) tracks are produced at the decay vertex. They do not
point to the primary vertex as shown in the right panel of Fig. 2.9 by the extrapo-
lated tracks (grey dotted lines). The distance of the closest approach (DCA, shown as
grey dotted arrows) of a track to the primary vertex is thus used to select secondary
tracks. The combinations of such un-like sign secondary tracks provide the V0 can-
didates (denoted as a yellow dot). However, such simple requirements significantly
contaminate the reconstructed V0 sample. Additional topological selections are thus
required. As the secondary tracks are produced in the decay, the distance of the clos-
est approach between them is expected to be small, and the DCApπ (solid green line)
of the tracks at the secondary vertex is used as one of the selection criteria. The re-
constructed V0 candidate is expected to point to the primary vertex where it was
produced. This can be imposed by requiring a large cosinus-pointing-angle (red θ
angle in the right panel of Fig. 2.9) defined as the cosinus of the angle between the
reconstructed momentum vector of V0 and the vector pointing from V0 vertex to the
primary vertex. The best invariant mass resolution of V0 candidates is achieved dur-
ing so-called on-the-fly reconstruction as the cluster information is used. However,
it is performed only once during the reconstruction of events and cannot be re-run
at the analysis level if different selection criteria are required. For this purpose, the
offline reconstruction is available, where the track information stored in the ESD files
is used. This work employs the second method. However, not using the raw cluster
information results in a worse resolution of reconstructed candidates.
As shown in Fig. 2.8, only the information about reconstructed entities is stored in
ESD (no raw cluster information). Nevertheless, the ESD files are still extensive and



46 Chapter 2. ALICE - A Large Ion Collider Experiment

resource intensive. The physics analyses are performed on so-called Analysis Object
Data (AOD) files instead, which store only observables relevant for physics (mo-
mentum, charge, etc.), the topological information about tracks (for example, DCA)
and the quantities relevant to estimate track quality (number of clusters in TPC,
etc.). Further filtering can reduce the file size and the time needed for analysis by
storing only information relevant to specific analysis. The resulting files are called
NanoAODs, and in this work, we use NanoAODs filtered specifically for femtoscopic
analysis.

Simulations

The Monte-Carlo (MC) simulations are needed to understand better the detector,
the possible detector effects on specific analyses, and even the final results. Full-
scale MC simulations start with an event generator that simulates collisions and
creates a list of produced particles and their kinematic information. The ALICE MC
framework is modular and thus allows one to choose among many different event
generators depending on the collision system and physics required. Some of the
possibilities include PYTHIA [134], DPMJET [135] and HIJING [136]. For pp colli-
sions analysed in this work, the PYTHIA 8 event generator is used (Monash 2013
Tune). The PYTHIA 8 simulation starts from a hard scattering of two partons, one
from each of the colliding protons, resulting in a few particles and possible pro-
duction of short-lived resonances which decay to normal particles [137]. The initial
and final state radiation of additional particles (partons, photons, and others) is in-
cluded in further steps. The interactions between partons from initial protons (not
considered in the first step) can also occur. Such a process is called multiple-parton
interactions. After, the produced QCD partons are confined by the strong interaction
to colour-singlet systems, called strings, while the leftover partons from initial col-
liding particles are combined to beam remnants. The strings fragment into hadrons
following the Lund model [138]. At the level of produced hadrons, the quantum
statistics rules are applied to the identical close in phase-space particles resulting
in enhancements (for hadrons following Bose-Einstein statistics - integer-spin parti-
cles) or suppressions (for hadrons following Fermi-Dirac statistics - half-integer-spin
particles). Finally, the unstable hadrons decay until only stable particles remain. In
these stages, the rescattering, reannihilation, or recombination processes might oc-
cur in densely populated regions of the phase space. Summarising, PYTHIA 8 takes
care of the underlying event physics, however, it does not include any final state
interactions for final produced particles. This is relevant for femtoscopic studies, as
such simulations can be used to study non-femtoscopic correlations resulting from
the hard scattering at the parton level and energy and momentum conservation for
hadrons. Such effects in the underlying event go under the name of minijets [41],
which are the consequence of the hard scatterings at the parton level.
The produced particles employing any event generator must be propagated in an
ALICE detector simulation which is done by employing the GEANT 3 [139] code. It
simulates how the traversing particles interact with the detector material and the
corresponding deposit energy. The customised version of the GEANT 3 for the AL-
ICE experiment provides a very detailed description of the sub-detectors, where
the material budget calibrated by electromagnetic and hadronic probes [116, 140] is
known within uncertainty of 5%. Additionally, the ALICE offline framework Ali-
ROOT, based on the ROOT software, is employed. The latter provides simulations
of the signal formation and processing, allowing us to infer the expected output
of the detector’s front-end electronics. Finally, when all these steps are performed,
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the resulting MC data is processed and reconstructed precisely like the real data.
The simulation also includes a dedicated high-multiplicity selection to mimic the V0
high-multiplicity trigger in the real data. Such detailed simulations of events and
the resulting particle propagation in the detector are used to determine the detec-
tor’s resolution and the purity of identified charged particles and can even be used
for template fits to obtain the fractions of secondary and primary particles. The
procedures of estimating the purity and performing template fits are described in
Chapter 2.5.

2.5 Event, track and V0 selection

The goal of femtoscopic correlation measurements is to study the strong short-range
interaction among hadrons with different quark content. As shown in Fig. 1.17, we
are primarily interested in hadron pairs with inter-particle distance below 2 fm as
this is the region where the strong interaction strength is more pronounced. While
ALICE measures pp, p–Pb, and Pb–Pb colliding systems, pp collisions are the most
interesting for this kind of study as the resulting particle source has the smallest size
and thus provides a data sample with an enhanced number of strongly interacting
pairs and triplets. As explained in Chapter 2.2.1, we use the pp collisions with a
centre-of-mass energy

√
s=13 TeV selected with the HM trigger as high-multiplicity

events have enhanced strangeness production and higher probability to find triplets
of interest. To further ensure the quality of the selected events, some standard selec-
tion criteria are applied, as shown in Table 2.1. The default physics selection rejects
poor-quality events and background events from the proton beam collisions with
either the beam pipe material or the residual gas. Additionally, the events must pass
some essential quality assessment criteria, which is enforced by requiring check flag
for incomplete data acquisition (DAQ) in AliRoot.

Selection criterion Value
Trigger kHighMultV0
Physics selection default
Incomplete DAQ check
z vertex |vtxz| < 10 cm
Contributors to track vertex Ncontrib,track > 1
Contributors to SPD vertex Ncontrib,SPD > 0
Distance between track and SPD vertex dvtx,track−SPD < 0.5 cm
SPD vertex z resolution σSPD, z < 0.25 cm
Pile-up rejection AliVEvent::IsPileUpFromSPD()

AliEventUtils::
IsSPDClusterVsTrackletBG()

TABLE 2.1: Event selection criteria.

If the selected events have the primary vertex reconstructed using SPD track-
lets and a vertex obtained using reconstructed global tracks, the distance between
the two vertices in the z-axis must be less than 5 mm. Pile-up events are rejected
by requiring only one primary vertex to be reconstructed in the SPD. To ensure the
detector coverage is uniform, the primary vertex position from the centre of the de-
tector in the z-axis must be less than 10 cm.
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Reconstructed proton candidates

Once the event is selected, protons and Λ hyperons are selected. The particle and
antiparticle selection is identical; thus, we explicitly refer only to particles in the
following. The selection criteria are summarised in Table 2.2. In this analysis, the
TPC-only tracks are used for kinematic information. The topological information
is obtained from the corresponding global tracks because they have a better
spatial resolution. This results in a requirement that only TPC-only tracks with
a corresponding global track are selected. Only protons in the pseudorapidity

Selection criterion Value
Pseudorapidity |η| < 0.8
Transverse momentum 0.5 ≤ pT ≤ 4.05 GeV/c
TPC cluster nTPC > 80
Crossed TPC pad rows ncrossed > 70 (out of 159)
Findable TPC clusters ncrossed/nfindable > 0.83
Tracks with shared TPC clusters rejected
Distance of closest approach xy |DCAxy| < 0.1 cm
Distance of closest approach z |DCAz| < 0.2 cm

Particle identification
|nσ,TPC| < 3 for p < 0.75 GeV/c
nσ,combined < 3 for p ≥ 0.75 GeV/c

TABLE 2.2: Proton selection criteria.

region |η| < 0.8 are analysed. To ensure a high track quality, a sufficiently large
number of TPC clusters per track nTPC, crossed TPC pad rows ncrossed and the
fraction of findable TPC clusters ncrossed/nfindable are required, and tracks with
shared clusters are rejected. Only primary protons are of interest in femtoscopic
studies. Thus secondary protons from weakly decaying particles are rejected by
requiring the extrapolated trajectory to be close to the primary vertex (small DCAXY
and DCAZ values). Finally, the low-momentum proton sample is contaminated
with the particles resulting from interactions with the detector material. Only
tracks with transverse momentum higher than 0.5 GeV/c are selected to minimise
this contribution. As described in previous Chapters, particle identification is
performed using TPC and TOF information. At low momentum p<0.75 GeV/c,
where particles have a small probability of reaching the TOF detector, and the TPC
detector provides excellent PID, only the requirement of the nσ,TPC smaller than
3 is applied. However, at a momentum larger than 0.75 GeV/c, the TPC cannot
efficiently separate protons from other particle species as the specific energy loss
in the TPC gas becomes very similar (as shown in Fig 2.6). Within this momentum
range, the combined PID from the TPC and the TOF detectors is used, and the

condition nσ,combined =
√

n2
σ,TPC + n2

σ,TOF < 3 is required. This results in a sharp
decrease of the number of candidates at the threshold momentum visible in the left
panel of Fig. 2.10, where the distribution of nσTPC as a function of the candidate
momentum is depicted. A very clean peak centred at nσ = 0 is observed for protons.
The absence of additional peak structures means misidentified particles do not
contaminate the sample.
The purity of candidates is studied employing Monte Carlo (MC) simulations. As
explained in Chapter 2.4, the MC simulations that we use are based on PHYTIA 8
for event generation and GEANT 3 for the simulation of the detector response. The
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FIGURE 2.10: nσTPC (left) and nσTOF (right) distributions as a function
of the transverse momentum of selected proton candidates.

purity is defined as the ratio of the number of reconstructed true protons produced
by the generator and the number of all candidates identified as protons as a function
of the reconstructed transverse momentum. The purity obtained for the selected
proton candidates is shown in the left panel of Fig. 2.11 as a function of transverse
momentum. It decreases with increasing transverse momentum. Thus only tracks
with transverse momentum less than 4.05 GeV/c, which is the limit at which the
purity becomes smaller than 80%, pass the selections. The right panel of Fig. 2.11
shows the proton distribution as a function of transverse momentum. The number
of selected tracks decreases with increasing pT value, meaning that most of the
selected sample is in a very high purity region of pT. Indeed, the weighted average
purity of the identified protons is 0.98. The same purity is obtained for antiprotons.
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FIGURE 2.11: Left: Proton purity as a function of transverse momen-
tum obtained using MC. Right: Track distribution as a function of
transverse momentum for data.

While the proton sample has high purity, it includes primary and secondary pro-
tons stemming from weak decays of strange baryons and interactions in the detector
material. The latter are produced far away from the interaction point and can not un-
dergo final state interactions, which act up to distances of 100 fm, with other hadrons
produced in the collision. Thus particle pairs formed with at least one such proton
do not carry information about the strong interaction and result in a decrease of the
correlation signal in femtoscopic studies. In contrast, the secondary protons from
weak decays may induce additional correlation signals as they carry the informa-
tion about the interactions of their mother particle with the other hadron building a
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pair. All these effects must be considered, and the genuine correlation among cor-
rectly identified primary particles must be extracted. The detailed description of the
required procedure is in Chapter 3.7. At this point, it is essential to know that to
account for such effects, we need to know not only the proton purity but also the
fractions of protons from different origins.
To estimate the contributions of the different sources, an observable with sensitivity
to the origin of the protons is required. The protons from weak decays are formed
at distances of several centimetres w.r.t the collision point. The protons from the
material are produced even further from the primary vertex. This results in dif-
ferent DCA distributions for the different protons. While the proton origin cannot
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FIGURE 2.12: Upper panel: Proton template fits for one pT bin. Lower
panel: Fractions as a function of pT. Solid lines represent the resulting
primary, secondary, and material proton origin fractions.

be told on a particle-by-particle basis, the fractions of primary, secondary, and so-
called material protons can be estimated. The shapes of the DCA distributions for
different protons are obtained from simulations because in MC one can select par-
ticles from specific origins. Such MC distributions can be used as templates to fit
the recorded experimental distributions, assuming that the total data sample is the
sum of all DCA templates weighted by the fraction of how many such protons are
in the sample. Such template fit is shown in the upper panel of Fig. 2.12. The differ-
ent coloured squares represent the templates obtained from MC, the empty circles
corresponds to the data, and the green line shows the total fit. This procedure is
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done separately for all transverse momentum bins, and the extracted fractions are
shown in the lower panel of Fig. 2.12 as a function of pT by solid lines. The fractions
shown here are obtained not from the entire sample shown in the upper panel but
only for the |DCAxy| < 0.1 cm, as this is the applied selection criteria in the analysis.
The dash-dotted lines represent the pT weighted averages. The final average frac-
tions for protons and antiprotons are around 86.8 % of primaries, 9.3 % secondaries
from Λ decay, 4 % secondaries from Σ+ decays, and a negligible amount of material
protons.

Reconstructed Λ hyperon candidates

Finally, we need to select the Λ candidates. A detailed explanation of most of the
topological variables used for the V0 selection was provided in Chapter 2.4 while
the values specific for this analysis are shown in Table 2.3. However, additional
selection criteria are needed to improve the purity of the Λ candidate sample. Sim-
ilarly to primary protons, the requirements on the pseudorapidity region and the
number of TPC clusters are applied for the daughter tracks. The daughters are iden-
tified using only TPC information and with a much looser nσ,TPC limit of 5. Tracks
selected as secondary do not point to the primary vertex. Thus no higher DCA limit
is applied, which introduces particles stemming from out-of-bunch pile-up events
(further pp collisions that occur within the integration time of the detector) to the
sample. The requirement to have an associated hit in the ITS SPD or SSD or the
TOF timing is imposed to prevent this. These fast detectors allow us to differentiate
tracks produced at different times. To enhance the purity of resulting reconstructed
Λ candidates, a selection on the radial distance of the secondary vertex to the pri-
mary vertex is applied together with the requirement of Λ transverse momentum
to be higher than 0.3 GeV/c. Finally, only V0 candidates with a reconstructed in-

Selection criterion Value
Daughter track selection criteria
Pseudorapidity |η| < 0.8
TPC cluster nTPC > 70
Distance of closest approach DCA > 0.05 cm
Particle identification |nσ,TPC| < 5
Out-of-bunch pile-up removal Hit in ITS SPD or SSD

or TOF timing

V0 selection criteria
Transverse momentum pT > 0.3 GeV/c
decay vertex |ivertexΛ | < 100 cm, i=x,y,z
Transverse radius of the decay vertex rxy 0.2< rxy <100 cm
DCA of the daughter tracks at the decay vertex DCA(|p, π|) <1.5 cm
Pointing angle α cos α > 0.99
K0 rejection 0.48 < Mπ+π− < 0.515 GeV/c2

selection |Mpπ − MΛ,PDG| < 4 MeV/c2

TABLE 2.3: Λ selection criteria.

variant mass corresponding to the nominal Λ mass 1115.66 MeV/c2 are selected,
allowing a spread of ± 4 MeV/c2. As the daughter particle PID requirement is
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loose, the Λ sample is contaminated by the K0
s mesons. V0s with the invariant mass

0.48 GeV/c2 < Mπ+π− < 0.515 GeV/c2 under the hypothesis of a π+π− are rejected
to reduce such background.
The purity of Λ candidates can be estimated directly from the data by looking at the
invariant mass distributions and fitting them with two functions, one correspond-
ing to the signal and one to the background. The invariant mass distribution of
the reconstructed Λ candidates strongly depends on the detector resolution and can
usually be described with a Gaussian function. However, the shape of the Λ peak
might be more complicated as the resolution of the reconstructed candidates de-
pends on several factors. It has been observed experimentally that it can be better
fitted with a sum of two Gaussian functions [35]. The background contribution can
be described sufficiently well with a second-order polynomial. The purity is esti-
mated separately for all pT bins, and the resulting fits are shown in Fig. 2.13. The
upper panels in Fig. 2.14 show the obtained purities for Λ (left panel) and Λ (right
panel) candidates. While the invariant mass fits work perfectly well in the pT bins,
it is unclear which of these transverse momentum regions contributes the most to
the actual p–p–Λ correlation function. To test this, we performed the same invari-
ant mass fitting procedure in Q3 bins. As the data sample of triplets at low Q3 is
extremely small, the mixed-event sample was fitted. The lowest Q3 bins still have
extremely small counts, and the fits in the first few bins are not of high quality.
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FIGURE 2.13: Λ invariant mass fits used to extract the purity. The
different panels show fits for different pT bins.

However, the purities obtained as a function of Q3 are very similar to the purities
extracted for different pT bins, as is shown in the lower panel of Fig. 2.14.
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FIGURE 2.14: Upper panels: Λ (left) and Λ (right) candidate purity
as a function of the transverse momentum. Lower panels: Λ (left)
and Λ (right) candidate purity as a function of the Lorentz invariant
hyper-momentum.

The Λ purity seems to be, on average lower than Λ purity which the contami-
nation can partially explain from secondaries (also visible in the first pT bin for the
Λ candidates). The weighted average purity of Λ is around 94.27%, while for the
antihyperon, it is 96.87%.
As in the case of the protons, the Λ candidate sample is pure, but not all particles
are primaries. The fractions of primary, secondary, and material Λ candidates can
be obtained similarly as for protons by performing template fits of topological ob-
servable. The CPA can differentiate the Λ candidates as this observable depends on
where the particle was produced - whether the reconstructed momentum points to
the primary vertex. The MC simulations are again employed to obtain the template
distributions of the CPA for Λ particles from different origins and then fitted to the
data to obtain the fractions. The obtained results are shown in Fig. 2.15. The possible
feed-down to Λ hyperons consists of Σ0 → Λγ, Ξ− → Λπ− and Ξ0 → Λπ0 decays.
Because of the very short lifetime of the Σ0, the Λ coming from its decay can not be
experimentally differentiated from the sample of primaries. The expected ratio of
produced Σ0 and Λ particles in high energy collisions is 1/3 based on predictions
from the isospin symmetry and a measurement of the corresponding production ra-
tios [141]. Thus, the primary Λ particles contribute on average to about 58.5% of the
total yield, while about 19.5% of the sample is Λ hyperons from the electromagnetic
decays of Σ0. The secondaries which can be differentiated by CPA are from weak
Ξ decays: Ξ− and Ξ0 contribute about 11 % each to the yield of Λ hyperons. The
contributions of fakes and material particles are negligible.
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Chapter 3

Three-baryon correlations

The final state interactions are imprinted in the measured particle momenta correla-
tions among three particles produced in the same event (Ns(Q3)). To obtain a corre-
lation function C(Q3), also a reference sample of non-interacting particles (Nm(Q3))
is required

C(Q3) = N Ns(Q3)

Nm(Q3)
, (3.1)

where N is a normalisation constant chosen such that in the region of large Q3, the
correlation function is equal to 1 since for large Q3 no signal from final state in-
teractions is observed. In this work, all correlation functions are normalised at the
region 1.0 GeV/c<Q3<1.2 GeV/c. The same event sample is built by considering
all possible combinations of particle triplets in a single event. The most common
method used to estimate the reference sample where no interaction occurs is the
mixed event technique, and it consists of considering particles taken from different
collisions. This technique has been successfully applied in femtoscopy [74] and other
studies such as angular correlation measurements [142]. Particles combined to form
a mixed event triplet should be produced in similar events. To ensure this, particles
are mixed only if the parent collisions have similar multiplicity and vertex position
on the z-axis. The first condition is required to have similar track acceptance in the
detector, while the second condition helps to constrain event shapes and produced
particle momentum spectra. The obtained mixed event triplets undergo identical
triplet selections as the same event triplets. Once the same and mixed event sam-
ples are obtained, the correlation function can be evaluated, and the systematic and
statistical uncertainties can be studied. At the moment of this analysis, no theoret-
ical predictions for three-particle correlation functions were available. Thus, as ex-
plained in Chapter 1.6.3, the Kubo’s cumulant method was employed, which allows
us to study if any three-body effects are present in the system - may it be the gen-
uine three-body strong interaction or Quantum Statistics effects for three identical
particles or other. The cumulant method requires the measured three-body correla-
tion function and lower-order correlation functions, which describe a system of two
interacting particles and one spectator. A data-driven method based on event mix-
ing has been previously used in the field [81], where two particles in the numerator
of Eq. 3.1 are taken from the same event and one from another event. A projector
method has been developed to ensure that such a technique reasonably describes
the lower-order contributions. In this thesis, both methods are employed. The cor-
relation functions were measured for p-p-p, (p-p)-p, p-p-Λ, (p-p)-Λ, p-(p-Λ), p-p-p̄,
(p-p)-p̄, p-(p-p̄) triplets. The notation (X-Y)-Z, where X, Y, and Z are particle species,
is used for correlation function where X and Y interact, but Z is only a spectator. We
are primarily interested in p-p-p and p-p-Λ systems, while the p-p-p̄ measurements
were performed as a mixed proton charge cross-check. Finally, Alejandro Kievsky
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performed preliminary calculations of the p-p-p correlation functions employing the
Hyperspherical Harmonics method [86], which will be compared to the obtained re-
sults in the next Chapter and was introduced in Chapter 1.6.2.

3.1 Correlation functions

The selections of particle triplets and the re-weighting procedure to account for dif-
ferent multiplicity distributions in same and mixed event triplets are discussed first.
The raw correlation functions before and after these steps will be presented. Finally,
the correlation functions obtained with all selections and multiplicity re-weighting
will be shown.

Triplet selections

The experimentally measured correlation function can be contaminated by non-
femtoscopic correlations resulting from the particle candidate reconstruction and
detector effects.
If one compares Tables 2.2 and 2.3, it is obvious that the requirements for primary
and secondary tracks have some overlap. This can lead to a situation where the same
track is reconstructed as a primary proton but also is used in a V0 reconstruction as
a daughter particle. If the same event distribution is built by combining such pro-
ton and Λ hyperons, self-correlations appear in the measured correlation function.
The pair cleaning is performed before creating the triplets to suppress such cases.
All possible combinations of a primary proton and a Λ hyperon are created on an
event-by-event basis. If the same track is used as a primary and secondary particle,
the corresponding Λ particle is deleted from the list. Only ∼0.6 % of all events have
one such pair, and the penalty factor for every other pair is ∼100. All combinations
of Λ hyperons in an event are also created. If two Λs are reconstructed using the
same daughter track, only the Λ with the smaller pointing angle to the primary ver-
tex is used for the triplet creation. Only ∼0.065 % of all events are affected. Every
additional pair in the event has a penalty factor ∼100.
The limited tracking resolution can also induce unwanted correlations in the rela-
tive momentum of particle triplets. If two particles are produced close to each other,
they might be reconstructed as a single track, which results in a depletion of parti-
cle pairs in a ∆ϕ-∆η plane at small values as it is visible in the left panel of Fig. 3.1.
However, this does not affect the mixed event sample, as shown in the right panel
of Fig. 3.1. The effect is present not only in cases when two primary protons are
produced (which is shown in Fig. 3.1) but also if a proton is produced together with
a Λ hyperon where the primary proton and a secondary proton coming from Λ de-
cay can be indistinguishable to the tracking algorithm. To avoid this, the triplets in
which at least one p–p pair, either composed of two primary protons or a primary
combined with a secondary proton, fulfils the following condition are not used(

η1 − η2
)2

+
(
ϕ1 − ϕ2

)2
< (0.017)2. (3.2)

The cut is applied on the ∆ϕ − ∆η distribution obtained as an average over nine
different radii in the TPC (rTPC = 85 cm, 105 cm, 125 cm, 145 cm, 165 cm, 185 cm,
205 cm, 225 cm and 245 cm) in case of both same and mixed event samples. This
selection criterion is included in the systematic variations defined in Chapter 3.3 by
increasing the radius of the circumference if Fig. 3.1 from 0.017 to 0.019.
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FIGURE 3.1: ∆ϕ-∆η distributions of p-p pairs for the same event (left)
and mixed event (right) samples obtained using MC data. The black
circle shows the performed selection.
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FIGURE 3.2: Raw correlation functions obtained with and without the
close pair rejection (CPR).

The correlation functions were estimated with and without the selection to
test if there are any unexpected effects in the case of three-body femtoscopy. The
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comparison is shown in Fig. 3.21. Here, the particle and antiparticle samples are
added to obtain the total correlation functions as explained later in Chapter 3.5. It
is clear that the selection does not change the underlying shape of the correlation
functions and shows only slight variation in the bin-by-bin values as previously
observed in two-particle femtoscopic studies by ALICE.

Multiplicity re-weighting

The underlying event shape affects the particle momenta and thus can influence the
correlation function. As mentioned, this implies that the event mixing must be per-
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FIGURE 3.3: Upper figures: Same (blue) and mixed (red) event distri-
butions as a function of multiplicity for p-p-p (left panel) and p-p-Λ
(right panel) triplets. The green data points show the re-weighted
mixed event distribution. Lower figures: Correlation functions ob-
tained with (red) and without (black) re-weighting of mixed event
sample for p-p-p (left figure) and p-p-Λ (right figure) triplets (upper
panel) and their ratio (lower panel).

formed only between events with similar multiplicity. It is also essential to check if
the same and mixed event triplets have identical multiplicity distributions. Indeed,
as shown in the upper panels of Fig. 3.3, the same event (blue) and mixed event (red)
triplet distributions as a function of multiplicity are not the same. A re-weighting of

1The shown correlation functions are not the final result of this work but just a check and were
obtained using a small number of events for event mixing (10). This is also true for the other figures,
where different effects are analysed. The final results are shown in Chapter 3.4.
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the mixed event sample is performed to avoid such bias in the final result. First, the
mixed event triplets are measured as a function of Q3 and multiplicity. Then every
multiplicity bin is re-weighted to have the same statistical weight as in the case of
the same event. After this procedure, the same and mixed event triplet distribu-
tions are identical as a function of multiplicity as shown in upper panels of Fig. 3.3
(re-weighted distribution is depicted in green symbols). The results here are shown
only for p-p-p and p-p-Λ triplets. However, the same procedure is performed on
all measured systems. The effect of the mixed event re-weighting for correlation
functions is shown in the lower panels of Fig. 3.3. In two-body femtoscopy, it was
observed that the multiplicity re-weighting only slightly affects the low relative mo-
menta region and mainly changes the correlation shape at high relative momenta.
In the case of three-body femtoscopy, the effect is also most predominant at high Q3.

Particle and antiparticle triplets

Finally, we can look in detail at the obtained triplet distributions and the correlation
functions. The number of triplets in the nominator of Eq. 3.1 for p–p–p and p–p–Λ
systems does not depend on the number of events used for event mixing, as all
three particles are taken from the same event. However, for (p–p)–p, (p–p)–Λ and
p–(p–Λ) triplets, the numerator sample is obtained by taking two particles from the
same event and the third particle from a different event. In such a case, the statisti-
cal uncertainty of the correlation functions strongly depends on the chosen number
of events used for mixing. This number also cannot be chosen to be large because
it becomes computationally too expensive to perform the analysis. All correlation
functions, except p–(p–Λ), were obtained using 30 events for event mixing in this
work. Forming p–(p–Λ) triplet requires having p-Λ pairs in the same event, which
is less probable than the p–p pair requiring a higher number of events for mixing,
which was chosen to be 100. The same is true for the antiparticle triplets. The re-
sulting numbers of triplets in the low Q3<0.4 GeV/c region, which is expected to
be sensitive to the two- and three-particle interactions, are shown in Table 3.1. The
denominator for all triplets is obtained using the same number of events for mixing
as for the numerator. The number of triplets for three-correlated particles is small.
The counts of the same event triplets for particle and antiparticle systems as a func-
tion of Q3 are shown in Fig. 3.4. On the left panel, the distributions are shown for
p–p–p (blue) and p –p –p (red) systems. Five triplets are obtained for both particles
and antiparticles in the first bin. The second bin has only two entries for particles
and three for antiparticles. The third bin has 13 entries for particles and 16 entries
for antiparticles. In the case of p-p-Λ triplets, the first four bins have less than ten
entries each for particles and antiparticles.
The final state interactions in the case of particle and antiparticle triplets are expected
to be the same. It was also shown in Chapter 2.5, that proton and antiproton purities
are the same, while for Λ particle and antiparticle, they are very similar. Thus it is
convenient to add the two samples to obtain the final correlation function, as it in-
creases the statistical significance of the result. However, it must be first confirmed
that the measured particle and antiparticle correlation functions are in good agree-
ment, as expected.
The particle and antiparticle correlation functions are compared in Fig. 3.3. In all
five cases, the overall shape is in good agreement between particle and antiparticle
correlation functions. More considerable disagreements on a bin-by-bin basis are
visible at the low Q3 region. However, as mentioned above, the low Q3 bins have a
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very small number of entries, and the differences between particles and antiparticles
can be interpreted as statistical fluctuation.

Pair Number of triplets at Q3<0.4 GeV/c
p–p–p 600
p –p –p 378
(p–p)–p 1.46 × 105

(p –p)–p 1.04 × 105

p–p–Λ 296
p –p –Λ 177
(p–p)–Λ 7.19 × 104

(p –p)–Λ 5.07 × 104

p–(p–Λ) 1.057 × 105

p –(p –Λ) 7.7 × 104

TABLE 3.1: Number of triplets for Q3 < 0.4 GeV/c.
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FIGURE 3.4: The number of counts in the same event distribution for
particles (blue) and antiparticles (red).

In order to build the final three-particle correlation functions, particle and an-
tiparticle distributions are combined as

C(Q3) =
Nsame,total(Q3)

Nmixed,total(Q3)
=

Nsame,particles(Q3) + Nsame,antiparticles(Q3)

Nmixed,particles(Q3) + Nmixed,antiparticles(Q3)
.

In the following, p–p–p refers to p–p–p ⊕ p –p –p and p–p–Λ refers to p–p–Λ ⊕ p
–p –Λ and so on.

3.2 Statistical uncertainties

The probability of recording a particular number of counts in an experiment for a
given mean expected number of counts follows a Poisson distribution [143]. In the
case of a large number of counts, the Poisson distribution can be approximated us-
ing a Gaussian distribution. The statistical uncertainty then can be assumed to be
symmetrical and equal to the

√
N, where N is the number of counts. However, in

the case of small counts per bin, it is more accurate to evaluate the error by consider-
ing the asymmetry of the distribution. In such a case, using alternative methods to
estimate statistical uncertainties becomes useful. In this work, we chose to estimate
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the statistical uncertainties of the correlation functions by employing a bootstrap
procedure. The following steps were taken to obtain the final uncertainties:

1. The same and mixed event triplet counts are sampled accordingly to a Poisson
distribution using the measured triplet count as the expectation value. Here,
the measured triplet counts are the sum of particle and antiparticle triplets.

2. The correlation function is calculated as C(Q3) = N (Q3)NSE(Q3)/NME(Q3),
where the counts are sampled in the previous step and N (Q3) is a normalisa-
tion function which includes the standard correlation function normalisation
to 1 and the re-weighting due to the different multiplicity distribution in the
same and mixed event (explanation in Chapter 3.1). This normalisation is ob-
tained from the standard analysis, where correlation functions are estimated as
described in previous Chapters. After repeating this step for all bins 106 times,
the 2D distribution shown in Fig. 3.6 is obtained for the p-p-p triplet. The same
bootstrap method was employed for all correlation functions.

3. The final correlation function is then obtained by using the mean of the sam-
pled C(Q3) distribution at one Q3 bin as the correlation function value, and
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the 68% central confidence interval is shown as the statistical uncertainty. The
correlation function estimated in such a way perfectly agrees with the corre-
lation function obtained using measured yields with differences smaller than
0.5% per bin.

4. The cumulants are calculated using the mean and uncertainty values men-
tioned above.
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FIGURE 3.6: Sampled correlation function as a function of Q3.

The distribution shown in Figure 3.6 shows the result obtained using the de-
scribed bootstrap method for p–p–p triplets. Figure 3.7 shows results for the sec-
ond (left panel) and the seventh (right panel) bins. The total distribution consists of
many Gaussian-looking distributions. The C(Q3) value, at which the distributions
are centred, correspond to a specific value of same event counts as these are discrete
numbers. The width of these distributions depends on the mixed event counts.
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FIGURE 3.7: The number of sampled entries as a function of Q3. The
left panel shows results for the second bin and the right panel for the
seventh bin.
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3.3 Systematic uncertainties

Systematic uncertainties should account for all uncertainties not included in the sta-
tistical uncertainties. For example, a measurement with a ruler can depend on the
room temperature, as the ruler might contract or expand at different temperatures.
In experimental particle physics, treating the systematic uncertainties can pose a
challenge as there is no single correct approach. The systematic effects in high-
energy physics include integrated luminosity, geometrical acceptance, reconstruc-
tion efficiency, trigger efficiency, etc. However, the correlation function does not
depend on luminosity. Acceptance and efficiency effects for single particles mostly
cancel out in the same and mixed event triplet ratio. The high-multiplicity trigger
used in this analysis biases the event selections, which should affect only the source
size of the produced particles, which is usually accounted for in the modelling of
the correlation function. Additional biases might be introduced by the selection cri-
teria applied to the tracks and V0s. Such systematic uncertainties of experimental
data can be estimated by varying the selection criteria. It resembles the situation
of making multiple measurements with slightly different setups. In this work, we
evaluated the systematic uncertainties of correlation functions by performing simul-
taneous variations of the selection criteria for tracks, V0s and the close pair rejection
requirement. The latter is defined in Eq. 3.2. The standard value 0.017 is varied by
+10 %. As changing the default rejection value by -10 % would accept the triplets
affected by the track merging, such variation is not performed. The track and V0
selection variations for systematic uncertainties are shown in Table 3.2 and are stan-
dard in femtoscopic studies of protons and Λ hyperons [35]. To account for the
correlations between the systematic uncertainties, the described variations are com-
bined to form 44 sets in which at least one selection criteria is varied. The same and
mixed event triplet distributions are obtained for all 44 sets of varied selection crite-
ria. However, only sets for which the obtained number of the same event triplets in
the kinematic region Q3 < 0.4 GeV/c is varied by less than 10% with respect to the
standard selection are used to estimate systematic uncertainties.

Variable Default Variation
pT proton (GeV c0

−1) 0.5 0.4, 0.6
|η| proton 0.8 0.77, 0.85
nσ proton 3 2.5, 3.5
nCluster proton 80 70, 90
cos (α) V0 0.99 0.995
nσ V0 daughter 5 4
nCluster V0 daughter 70 80
|η| V0 0.8 0.77, 0.83
DCA(|p, π|) (cm) 1.5 1.2
DCA (cm) 0.05 0.06

TABLE 3.2: Variations of different selection criteria on the correlation
functions.

The normalisation region of the correlation function is also considered a sys-
tematic uncertainty in the femtoscopic analysis. The standard normalisation region
is 1.0 GeV/c<Q3<1.2 GeV/c. Varying the normalisation region by ±0.1 GeV/c does
not strongly affect the measured correlation functions (maximum obtained variation
was 1% per bin); thus, this variation is not included in the systematic uncertainties.
The mixing procedure was performed using all events. However, the events with
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at least one triplet of interest might have a different underlying event that could
cause unwanted changes in the momentum spectrum of single particles. A test was
performed by estimating correlation functions where only events with at least one
triplet of interest were used for the event mixing. The obtained correlation func-
tions have a maximum of a few percent differences, but no systematic behaviour
was observed. It is impossible to differentiate if any effect is present within the cur-
rent statistical uncertainties. The different selection of the mixed event sample is not
considered in the final systematics.

3.4 Measured correlation functions and Monte Carlo results

The final correlation function results for the p–p–p, p–p–Λ, (p–p)–p, (p–p)–Λ and
p–(p–Λ) triplets are shown in Fig. 3.8 as green markers together with statistical (ver-
tical lines) and systematic (boxes) uncertainties. These results were submitted to
EPJA and are already accepted, yet not published. However, the final version of the
paper can be found in Ref. [144]. The in-depth discussion of the measured correla-
tion functions will follow in the next Chapters, where the correlation functions are
compared to the lower-order contributions. Before drawing any conclusions about
the final state interactions, we must ensure that no other correlations are involved
in the three-particle system and that no detector effects remain. This can be done by
performing the same analysis described in this work but on MC data. As explained
in Chapter 2.4, the MC data used in this work is based on generating the events in
PYTHIA 8 and then propagating the resulting particles in GEANT 3 which describes
the ALICE detector. PYTHIA 8 accounts for effects such as minijets while GEANT 3
accounts for the possible detector effects. Neither two- nor three-particle FSIs are
included in the event generator. Thus, the correlation functions at low Q3 region
are expected to be equal to unity in MC if no minijet or detector effects are present.
The obtained correlation functions for analysed MC are shown as black squares in
Fig. 3.8. The statistical sample of triplets in MC is considerably smaller than in the
measured data, as is visible from the statistical uncertainties. In the case of p–p–Λ,
the second bin has no entries in the same event sample, and thus the correlation
function is shown as equal to 0 with no uncertainty.
All simulated correlation functions are consistent within the uncertainties with unity
for the entire Q3 < 0.8 GeV/c range. This shows that no additional correlations
caused by the minijets or detector effect are present in the measured systems.
The measured correlation functions are discussed in the next Chapters.

3.5 Lower-order contributions

At the time of this analysis, no theoretical predictions were available for the three-
particle correlation functions. Thus, to conclude on three-body effects in the mea-
sured correlation functions, we employed Kubo’s cumulant method [145]. As ex-
plained in Chapter 1.6.3, it allows us to estimate the lower-order contributions which
account for the two-particle interactions in the three-particle system as

Ctwo-body(Q3) = C12(Q3) + C23(Q3) + C31(Q3)− 2 , (3.3)



3.5. Lower-order contributions 65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

)c (GeV/3Q

0.5

1

1.5

2

2.5

3

3.5

4

4.5
) 3

Q(
C

ALICE
 = 13 TeVspp 

0.17% INEL)−High Mult. (0

 Datap−p−p⊕p−p−p
 PYTHIAp−p−p⊕p−p−p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

)c (GeV/3Q

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6) 3
Q( p−

p)−
(p

C

 Datap−)p−p(⊕p−p)−(p
 PYTHIAp−)p−p(⊕p−p)−(p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

)c (GeV/3Q

0

5

10

15

20

25

30

35

) 3
Q(

C

 DataΛ−p−p⊕Λ−p−p
 PYTHIAΛ−p−p⊕Λ−p−p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

)c (GeV/3Q

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

) 3
Q(

Λ−
p)−

(p
C

 DataΛ−)p−p(⊕Λ−p)−(p
 PYTHIAΛ−)p−p(⊕Λ−p)−(p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

)c (GeV/3Q

0.8

1

1.2

1.4

1.6

) 3
Q( )

Λ−
(p−p

C

) DataΛ−p(−p⊕)Λ−(p−p
) PYTHIAΛ−p(−p⊕)Λ−(p−p

FIGURE 3.8: Comparison between the measured correlation functions
(green) and obtained with the PYTHIA 8 event generator (black).

where Cij(Q3) is the correlation function between particles i and j projected in the
three-particle system. Such a lower-order estimate does not include any three-
body effects. In case of p–p–p system, the Eq. 3.3 can be rewritten as

Ctwo-body
p−p−p (Q3) = 3 C(p−p)−p(Q3)− 2 , (3.4)

and in the case of p–p–Λ, we have

Ctwo-body
p−p−Λ (Q3) = C(p−p)−Λ(Q3) + 2 Cp−(p−Λ)(Q3)− 2 . (3.5)

The correlation functions on the right-hand side of these equations can either be ob-
tained with the data-driven method or the projector method, as explained in Chap-
ter 1.6.3. These correlation functions, obtained using the data-driven method, were
already shown in Fig. 3.8. The projector method allows estimating these functions
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by calculating the following integral

Cij(Q3) =
∫

C(k∗ij) Wijl(k∗ij, Q3) dk∗ij, (3.6)

where Wijl(k∗ij, Q3) is the projector function, described in detail in Chapter 1.6.4,
which depends on the masses of the i, j, l particles, and C(k∗ij) is the correlation func-
tion for i − j particle pair.
To estimate the (p–p)–p and (p–p)–Λ correlation functions, the p–p correla-
tion function is required, and it can be evaluated theoretically or experimentally.

FIGURE 3.9: Two-body correlation functions
for p–p [37] and p–Λ [35] system.

However, we aim to subtract the
projected correlation functions from
the measured three-body correlation
function. This requires the projector
method to account for the momen-
tum resolution of the ALICE detector
and to have the same feed-down and
misidentification contributions. The
most straightforward way is to use
the measured two-body correlation
functions, which already include all
possible effects. In this work, we use the
correlation function published by AL-
ICE in Ref. [37] and shown in the upper
sub-figure of Fig. 3.9. This p–p study
used the same data set analysed in this
thesis. The measured p–p correlation
function was modelled using CATS
taking into account the Coulomb and
the strong interactions and the quan-
tum statistics. The Argonne ν18 [18]
potential in S, P and D waves was
used as input for the strong interaction
component. The Argonne ν18 potential
is well constrained by the abundant
N–N scattering data; thus, it is expected
that the modelled correlation function
should also reproduce the femtoscopic
data well. The measured correlation
function shows the attractive nature
of the p–p strong interaction with a
repulsive core visible in the inset of the
discussed figure. At a low k∗ region, the
Coulomb repulsion and Pauli blocking
become apparent. Indeed, a good
agreement between the data and the
model was observed, as expected.
To estimate the p–(p–Λ) correlation
function using the projector method,
the measured p–Λ correlation function is required. In this work, we use the corre-
lation function published by ALICE in Ref. [35] and shown in the lower sub-figure
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of Fig. 3.9. The p–Λ system was modelled employing CATS, and the NLO19 χEFT
potential [25] obtained with a cut-off parameter of 600 MeV.2 Such a state-of-the-art
p–Λ potential has been successfully used to reproduce the available scattering data
and the hypernuclei measurements. The measured correlation function shows the
attractive nature of the strong interaction of the p–Λ. As Λ hyperon has no electric
charge, the Coulomb interaction is absent in the system. This correlation function
represents the first experimental observation of the NΣ →NΛ coupled channel in
p–Λ system and is the most precise data of p–Λ system down to zero momentum.
The theoretical correlation function, shown in the lower sub-figure of Fig. 3.9 as a
cyan band, was obtained by employing the χEFT to describe also the p–Σ0 strong
interaction. The total agreement between the modelled correlation function and the
data was estimated to be 3.7 σ. If negligible FSI are assumed for the p–Σ0 system,
the agreement improves to 1.6 σ.

Once these measured two-body correlation functions are inserted in
Eqs. 3.4 and 3.5, the lower-order contributions Cij(Q3) can be evaluated. The
obtained results are shown in Fig. 3.10 (grey band) together with the lower order
contributions obtained using the data-driven method (green points), which were
already shown in Fig. 3.8. The width of the grey band includes systematic and
statistical uncertainties summed in quadrature. The lower panels of sub-figures a,
b and c show the deviations between the data-driven approach and the projector
method, expressed as a number of standard deviations nσ. In the case of all three
correlation functions (p–p)–p, (p–p)–Λ and p–(p–Λ), an excellent agreement is
observed between the two methods. To provide a statistical significance of the
agreement in terms of Gaussian standard deviations σ, the p-value probability pval
is required as

nσ =
√

2 erfc−1(pval) . (3.7)

Here, the p-value probability corresponds to the integral of the Gaussian distribu-
tion’s right and left side tails. The p-value for a specific χ2

N is calculated from the χ2

distribution with N degrees of freedom, where χ2
N is obtained using the standard χ2

method

χ2
N =

N

∑
i=1

(Cdata−driven
i − Cprojector

i )2

σ2
i

. (3.8)

Here, Cdata−driven
i and Cprojector

i are the correlation function values in the i-th bin
obtained using the data-driven and the projector methods, respectively. The total
combined uncertainty is denoted as σ2

i .
We evaluated the agreement of the data-driven and the projector methods in the
region Q3 < 0.8 GeV/c and expressed it as the number n of standard deviations σ. It
results in 0.167, 0.0006 and 2.75 for (p–p)–p, (p–p)–Λ and p–(p–Λ), respectively. For
the first time, the projector method was validated with data. While both methods
are valid, the projector method provides smaller statistical uncertainties. The
data-driven method requires the usage of the third particle in the triplet from the
mixed-event data sample. Thus, the obtained statistical uncertainty depends on the
number of events used for mixing, which is limited due to the needed computational
resources. The projector method does not have this limitation as the projection to a
three-body system is performed by evaluating the density of states in phase space

2Cut-off value in χEFT [25] is a parameter in an exponential regulator function used to remove
high-momentum components in the calculation of the potential.
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within the volume (kij, kij + dkij) for a fixed value of Q3 (for more details see Eq. 1.44).
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FIGURE 3.10: Comparison of lower-order correlation functions ob-
tained using the data-driven method (green markers) and the projec-
tor method (grey band). For details, refer to the text.

Finally, Eq. 3.3 can be used to obtain the total lower-order contributions to the
p–p–p and p–p–Λ correlations functions. The obtained results are shown in Fig. 3.11.
The projector prediction agrees with the data-driven method within nσ = 0.167 and
nσ = 0.0014 for the p–p–p and p–p–Λ lower-order contributions, respectively.
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Lower-order contributions for p–p–p system

As a cross-check to the p–p–p system, the p–p–p triplets were studied by perform-
ing identical analysis steps as in the case of p–p–p. However, to interpret the
data, the lower-order contributions (p–p)–p and p–(p–p) must also be estimated.
This was done with both the data-driven and the projector methods. In the case
of the projector method for (p–p)–p triplets, the same two-body correlation func-
tion is used as for (p–p)–p and (p–p)–Λ [37]. To evaluate the p–(p–p) contribu-
tion, the two-body p–p correlation function measured by ALICE [41] and shown
in Fig. 3.12 was used. The measured baryon-antibaryon correlation function is dif-
ferent with respect to the before-presented baryon-baryon correlation functions, as
the minijet effect dominates the background component. As mentioned in Chap-
ter 2.4, such minijet effects can be accounted for using event generators as they
model the underlying event. In the case of the p–p correlation function, an improved
data-driven approach to describe this background has been developed in Ref. [41]
employing event generator predictions as templates for the mini-jets background.
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FIGURE 3.12: Two-body correlation function
for p–p [41] system.

The resulting background is shown as
a grey band in Fig. 3.12. The correlation
function was evaluated by employ-
ing CATS with χEFT N3LO potential
accounting for Coulomb interaction
and including explicitly the coupled-
channel process n − n → p − p [146].
The obtained correlation function is
shown as a blue band in Fig. 3.12.
The disagreement with data at low k∗

suggests that part of the annihilation
dynamics is not properly accounted for
in the model. This is not unexpected
as there was no data at the low relative
momentum before the femtoscopic
measurement to constrain these in-
teractions. Indeed, by considering in
an effective way also the multi-meson
annihilation channels produced as an
initial state and forming p − p pairs
(red band) significantly reduces the disagreement.
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FIGURE 3.13: p–p correlation function using
only pairs which were produced in p–p–p
triplets at Q3<1 GeV/c (black markers) and all
pairs (red markers).

The p–(p–p) correlation function
was evaluated using the projector
method, and the abovementioned
p–p correlation function, however, an
apparent disagreement with the data-
driven method was observed. This
leads us to believe that the minijets are
causing some deformations of the phase
space that are not correctly accounted
for in the projector method. To solve
this problem, we re-evaluated the p–p
correlation function and required that
only particle pairs emitted in p–p–p
triplets with Q3 < 1 GeV/c are used,
which is shown in Fig. 3.13 as black
markers. The shape is slightly different
compared to the correlation function
obtained without the special require-
ment (red markers). The systematic
uncertainties were evaluated following
the procedure described in Chapter 3.3
and additionally including the varia-
tion of the Q3 cut-off value by ±10 %.
Coming back to the three-body femtoscopy, the lower-order contributions in p–p–p
system estimate with the data-driven method are shown in Fig. 3.14 as green
markers. The grey band represents the correlation function evaluated employing
the projector method. The left panel shows results for the (p–p)–p triplets. As
the projector function depends only on the mass of the third particle, it produces
the same result for (p–p)–p and (p–p)–p correlation functions which are as well
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in agreement with observations from the data. This is the case because the third
particle is only a spectator. On the right panel, the correlation functions for p–(p–p)
triplet are shown. The interesting shape of the p–(p–p) correlation function is
caused by the interplay of the FSIs and the minijet effects.
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FIGURE 3.14: Comparison of lower-order (p–p)–p (left) and p–(p–p)
(right) correlation functions obtained using the data-driven method
(green markers) and the projector method (grey band). For details,
refer to the text.

3.6 Three-particle correlation functions and the total lower
order contributions

The measured three-particle correlation functions (green markers) are compared to
the lower order contributions (grey band) in Fig. 3.15. The grey band corresponds
to the statistical and systematic uncertainties added in the quadrature. The green
boxes correspond to the systematic uncertainty of measured correlation functions,
while the green vertical lines correspond to the statistical uncertainty. The p–p–p
correlation function, shown in the upper panel, can be well explained by the lower
order contributions down to Q3 ≈ 0.25 GeV/c. The lower-order contributions keep
increasing at the lower kinematic region while the measured three-particle correla-
tion function drops. In the case of the p–p–Λ system (middle panel), only the first
two bins deviate from the lower-order contributions. However, the statistical uncer-
tainties are too significant to draw any conclusion on the genuine three-body effects.
Even though the p–p–p correlation function depicted in the lower panel of Fig. 3.15
has systematically smaller values than the estimated lower-order contributions, they
agree within uncertainties. The difference between the measured correlation func-
tion and the lower-order contributions results in the cumulant. Thus the deviation
between the three-body correlations and the lower-order contributions for all three
measured systems are discussed more quantitatively in Chapter 3.8.1, where the cu-
mulants are presented.
The results shown here for both the projector and the data are not corrected for the
misidentified particles and feed-down. It is shown in the next Chapter that this cor-
rection can be done on the level of cumulants. However, if the three-particle correla-
tion function has to be compared to models, then either the theoretical calculations
or the data must be corrected.
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and p–p–p (lower panel) three-particle correlation functions.
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3.7 Correction for misidentified particles and feed-down

The misidentified and non-primary particles are present in the sample and affect the
correlation shape. Thus before comparing the measured correlation functions to the-
ory, the corrections for such effects must be performed. The tagging of misidentified
particles and feed-down correction are well-understood procedures in femtoscopy.
The employed methods were suggested for the first time in Ref. [34]. Inspired by this
work, we derived the corresponding procedure for three-particle correlation func-
tions and cumulants [144].
The particle sample X used to form triplets consists of correctly identified primary
particles X0, misidentified particles XM and feed-down particles XF originating from
weakly decaying hadrons. The latter two can originate from different channels as

XF =
NF

∑
i=1

Xi, (3.9)

XM =
NF+NM

∑
i=NF+1

Xi, (3.10)

where NF and NM are the numbers of feed-down and misidentification contribu-
tions. The fraction of correctly identified particles in the total sample of recon-
structed particles is called purity and is defined as

P(X) = (X0 + XF) /X. (3.11)

The correctly identified particles can be either primary or secondary particles pro-
duced in weak decays of different hyperons. For this purpose we define the channel
fraction f (Xi) as

f (Xi) = Xi/ (X0 + XF) . (3.12)

The fraction of particles from origin i in the whole data sample can then be written
as

P(Xi) = P(Xi) f (Xi) =
Xi

X
. (3.13)

The correlation function for three particles can then be expressed as

C(XYZ) =
N(XYZ)
M(XYZ)

, (3.14)

where N and M denotes the yields of XYZ triplets in same and mixed events, re-
spectively. These yields can be written as

N(XYZ) = N

(
∑
i,j,k

XiYjZk

)
= ∑

i,j,k
N
(
XiYjZk

)
, (3.15)

M(XYZ) = M

(
∑
i,j,k

XiYjYk

)
= ∑

i,j,k
M
(
XiYjZk

)
, (3.16)
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where i, j, k denotes the channel of origin of the particles. The correlation function
thus becomes

C(XYZ) =
∑i,j,k N

(
XiYjZk

)
M(XYZ)

= ∑
i,j,k

N
(
XiYjZk

)
M(XYZ)

M
(
XiYjZk

)
M
(
XiYjZk

) =

= ∑
i,j,k

N
(
XiYjZk

)
M
(
XiYjZk

)︸ ︷︷ ︸
Ci,j,k(XYZ)

M
(
XiYjZk

)
M(XYZ)︸ ︷︷ ︸
λi,j,k(XYZ)

= ∑
i,j,k

λi,j,k(XYZ)Ci,j,k(XYZ),
(3.17)

where Ci,j,k(XYZ) is the correlation function of particles X, Y, Z stemming from i, j, k
channels, accordingly, and the λi,j,k(XYZ) is the weight for such contribution. Be-
cause this parameter depends only on the mixed event sample, it can be related to
previously introduced single-particle quantities, channel fraction and purity, as fol-
lows

λi,j,k(XYZ) =
M
(
XiYjZk

)
M(XYZ)

=
M (Xi)

M(X)

M
(
Yj
)

M(Y)
M (Zk)

M(Z)
= P (Xi) P

(
Yj
)

P (Zk)

= P(Xi) f (Xi)P(Yj) f (Yj)P(Zk) f (Zk) .

(3.18)

The Λ parameters have been estimated for the triplets of interest from the single
particle quantities provided in Chapter 2.5 and are shown in Table 3.3. In the case of
the correlation function C(XY, Z), where only particles X and Y interact and particle
Z is just a spectator, the latter’s origin is irrelevant. Thus, similarly to Eq. 3.17, such
correlation function can be expressed as

C(XY, Z) =
∑i,j N

(
XiYj, Z

)
M(XY, Z)

= ∑
i,j

N
(
XiYj, Z

)
M(XY, Z)

M
(
XiYj, Z

)
M
(
XiYj, Z

) =

= ∑
i,j

N
(
XiYj, Z

)
M
(
XiYj, Z

)︸ ︷︷ ︸
Ci,j(XY,Z)

M
(
XiYj, Z

)
M(XY, Z)︸ ︷︷ ︸

λi,j(XY,Z)

= ∑
i,j

λi,j(XY, Z)Ci,j(XY, Z),
(3.19)

where Ci,j(XY, Z) is the correlation function of two correlated particles X and Y from
origins i and j, respectively, and an uncorrelated particle Z from any origin. Here
λi,j(XY, Z) is

λi,j(XY, Z) =
M
(
XiYj, Z

)
M(XY, Z)

=
M (Xi)

M(X)

M
(
Yj
)

M(Y)
M (Z)
M(Z)

= P (Xi) P
(
Yj
)
· 1

= P(Xi) f (Xi)P(Yj) f (Yj) .

(3.20)

The cumulant is obtained by subtracting the lower-order correlations, such as
C(XY, Z), from the three-particle correlation C(XYZ). For this purpose, the Eq. 3.19
must be rewritten to account for the origin of particle Z, even though C(XY, Zl) =
C(XY, Zm), where Zl and Zm are from a different origin. Using the property 1 =

∑k λk(Z) of the λ parameters, one can write
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Triplet λ parameter
p-p-p 61.8%

3·p-p-pΛ 19.6%
3·p-p-pΣ+ 8.5%
3·p-pΛ-pΛ 0.69%
3·p-pΛ-pΣ+ 0.3%
3·p-pΣ+-pΣ+ 0.13%

Triplet λ parameter
p-p-Λ 40.5%

p-p-ΛΣ0 13.5%
p-p-ΛΞ0 7.56%
p-p-ΛΞ− 7.56%
2·p-pΛ-Λ 8.56%
2·p-pΣ+-Λ 3.7%

TABLE 3.3: λ parameter values for the triplets which contribute the
most to the correlation function.

λi,j(XY, Z) = λi,j(XY, Z)∑
k

λk(Z) = ∑
k

λi,j(XY, Z)λk(Z) = ∑
k

λi,j,k(XYZ) , (3.21)

and Eq. 3.19 can be rewritten as

C(XY, Z) = ∑
i,j

λi,j(XY, Z)Ci,j(XY, Z)

= ∑
i,j

λi,j(XY, Z)∑
k

λk(Z)Ci,j(XY, Z)

= ∑
i,j

∑
k

λi,j(XY, Z)λk(Z)Ci,j(XY, Z)

= ∑
i,j,k

λi,j,k(XYZ)Ci,j(XY, Z).

(3.22)

Employing the above-defined formalism, one can express cumulant as

c(XYZ) = C(XYZ)− C(XY, Z)− C(XZ, Y)− C(ZY, X) + 2

= ∑
i,j,k

λi,j,k(XYZ)Ci,j,k(XYZ)− ∑
i,j,k

λi,j,k(XYZ)Ci,j(XY, Z)

− ∑
i,j,k

λi,j,k(XYZ)Ci,k(XZ, Y)− ∑
i,j,k

λi,j,k(XYZ)Ck,j(ZY, X) + 2,

(3.23)

the correctly identified primary particle correlations can be isolated from the rest as
follows

c(XYZ) =

λX0Y0Z0(XYZ)CX0Y0Z0(XYZ) + ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ci,j,k(XYZ)


−
λX0Y0Z0(XY, Z)CX0Y0(XY, Z) + ∑

i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ci,j(XY, Z)


−
λX0Y0Z0(XZ, Y)CX0Z0(XZ, Y) + ∑

i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ci,k(XZ, Y)


−
λX0Y0Z0(ZY, X)CZ0Y0(ZY, X) + ∑

i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ck,j(ZY, X)

+ 2 .

(3.24)
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One can rewrite the Eq. 3.24 to group the correlation functions of the correctly iden-
tified primary particles and the rest as

c(XYZ) = λX0Y0Z0(XYZ)CX0Y0Z0(XYZ)− λX0Y0Z0(XY, Z)CX0Y0(XY, Z)
− λX0Y0Z0(XZ, Y)CX0Z0(XZ, Y)− λX0Y0Z0(ZY, X)CZ0Y0(ZY, X)

+ ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ci,j,k(XYZ)− ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ci,j(XY, Z)

− ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ci,k(XZ, Y)− ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)Ck,j(ZY, X) + 2

= λX0Y0Z0(XYZ) (CX0Y0Z0(XYZ)− CX0Y0(XY, Z)− CX0Z0(XZ, Y)− CZ0Y0(ZY, X))

+ ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)
(
Ci,j,k(XYZ)− Ci,j(XY, Z)− Ci,k(XZ, Y)− Ck,j(ZY, X)

)
+ 2 .

(3.25)
The terms inside the brackets resemble a cumulant and the expression becomes

c(XYZ) = λX0Y0Z0(XYZ)c(X0Y0Z0) + ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)c(XiYjZk)

− 2λX0Y0Z0(XYZ)− 2 ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ) + 2

= λX0Y0Z0(XYZ)c(X0Y0Z0) + ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)c(XiYjZk)

− 2 ∑
i,j,k

λi,j,k(XYZ) + 2

= λX0Y0Z0(XYZ)c(X0Y0Z0) + ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)c(XiYjZk).

(3.26)

The experimentally obtained cumulant consists of the correctly identified pri-
mary particle cumulant and the cumulant, which consists of the rest of the possible
contributions. Finally, the correctly identified primary particle cumulant can be ob-
tained as

c(X0Y0Z0) =
1

λX0Y0Z0(XYZ)

c(XYZ)− ∑
i,j,k ̸=(X0Y0Z0)

λi,j,k(XYZ)c(XiYjZk)

 .

(3.27)

3.8 Three-baryon Correlation Results

3.8.1 Results: Cumulants

The cumulants are estimated by subtracting the lower order contributions from the
measured three-particle correlation functions as explained in Chapter 1.6.3. The re-
sults are shown in Figs. 3.16 and 3.17. The p–p–p cumulant shown in Fig. 3.16 is
represented by the blue square symbols, while the red open circles correspond to
the p–p–p triplets. Both cumulants are corrected for misidentification and feed-
down effects following the procedure explained in the previous Chapter. In the case
of p–p–p triplets, the most significant feed-down contribution of 19.6% comes from
the p-p-pΛ triplets. The procedure of estimating the p-p-pΛ cumulant required in
Eq. 3.27 consists of the following steps
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1. measuring the p–p–Λ cumulant, or estimating it from theory,

2. obtaining a decay matrix from MC, which relates the Q3 of p–p–Λ triplet and
the Q3 of a triplet consisting of the same two primary protons, but the third
particle is the Λ daughter p-p-pΛ,

3. performing the convolution of p–p–Λ cumulant and the decay matrix to obtain
the p–p–Λ cumulant projection onto p-p-pΛ phase space.

Once this is done, the obtained p-p-pΛ cumulant is used in Eq. 3.27, where it is scaled
by the corresponding λ parameters, which in this case is 0.196. The same procedure
is also required for the other feed-down contributions. The convolution with the
decay matrix and the scaling by λ parameter results in a smearing of the original
p–p–Λ cumulant (such a procedure is described in detail in the next Chapter and
the effect of the decay kinematics and λ parameters to the correlation functions are
shown in the right panel of Fig. 3.20). While the p–p–Λ cumulant was measured
in this thesis, other cumulants required for p–p–p background are unknown. The
only other cumulant contributing more than 1% is the p-p-pΣ+ ; thus, the rest of the
contributions can be safely assumed to be flat. In the case of the p-p-pΣ+ cumulant,
the flat shape assumption is the only reasonable choice in the current status of the
field. It is also well justified because, as mentioned before, after the correction for
the decay kinematics and the λ parameter, which in this case is 0.085, the cumulant
would be strongly smeared. Such effect would be even larger than in p-p-pΛ case as
the smearing depends on the accessible momentum phase space of the decay prod-
ucts and Σ+ particle is heavier. Regarding the p–p–Λ cumulant, our measurement
is compatible with zero. Thus in the results shown in Fig. 3.16, the p-p-pΛ cumulant
is also assumed to be flat and equal to zero. The cumulant is negative in the range
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FIGURE 3.16: p–p–p cumulant (blue square symbols), corrected for
particle misidentifications and feed-down contributions. The red
open circles represent the cumulant for p–p–p triplets.

0.16 < Q3 < 0.22 GeV/c. Due to the large statistical uncertainty in the first bin,
the sign for Q3 < 0.16 GeV/c cannot be determined. The agreement between the
measured cumulant and the assumption of no genuine three-body effects is evalu-
ated following the same procedure as in Chapter 3.4, but the numerator of Eq. 3.8
is the difference of the measured cumulant with respect to zero. It is not known,
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FIGURE 3.17: Measured p–p–Λ cumulant, not corrected for particle
misidentifications and feed-down contributions.

theoretically or experimentally, in which Q3 range the three-body effects are rele-
vant; however, they are expected to contribute at lower or equal Q3 values as the
two-body interactions. Thus, the statistical significance is estimated in the region
Q3 < 0.4 GeV/c (where the two-body interactions are prominent) and is equal to
6.7 standard deviations. We also performed a test assuming that p–p–Λ cumulant
is not flat and employed a fit function to describe our measured cumulant shown in
Fig. 3.17. The genuine p–p–p cumulant was estimated using a bootstrap procedure
and the obtained statistical significance is not reduced compared to the flat p–p–Λ
feed-down assumption. The results do not change if the lower order contribu-
tions were estimated with the data-driven method instead of the projector method.
The comparison of cumulants obtained with the two different methods is shown in
Fig. 3.18, where the results are depicted before the misidentification and feed-down
corrections. If the cumulant is obtained using the data-driven method, the statistical
significance equals 6.0 standard deviations. The significant deviation hints at the
presence of effects beyond the two-body interactions that could be related to Pauli
blocking (theoretically accounted for as antisymmetrisation of the wave function ex-
plained in Chapter 1.6.2 and the effect for p–p–p system is shown in the upper panel
of Fig. 1.19) or to the contribution of the three-body strong repulsive interaction.
Long-range Coulomb interactions may also lead to significant contributions [147]. A
more quantitative interpretation of the data requires sophisticated calculations for
the three-body system. The comparison of the measured correlation function to the
preliminary theoretical prediction by Alejandro Kievsky is shown in the next Chap-
ter.
The p–p–p cumulant is also compared to the p–p–p cumulant in Fig. 3.16, which
is represented by red open circles. For p–p–p system, all feed-down cumulants are
also assumed to be flat and equal to zero. As shown in Chapter 3.5, two-body p–p
and p–p interactions are known, and their correlation functions are measured. The
p–p interaction contains both elastic and inelastic components. The three-body ef-
fects in the p–p–p triplet are expected to be small. For example, the system does
not consist of three identical particles; thus, Pauli blocking is not acting on the three-
particle level. The measurement is extended to lower Q3 values compared to the
p–p–p case since the number of the mixed-charge triplets is a factor four higher than
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that of the same-charge triplets. The p–p–p cumulant evaluated using the projec-
tor method agrees with the assumption of only two-body correlations present in the
system within 2.1 standard deviations in the range Q3 < 0.4 GeV/c. The agreement
changes to 2.2 standard deviations if the data-driven approach is employed. If the
agreement is tested at Q3 < 0.2 GeV/c, 0.9 standard deviations are obtained for both
data-driven and projector methods, suggesting that genuine three-body effects are
not statistically significant.

FIGURE 3.18: Comparison of p–p–p cumulants estimated subtracting
lower order contributions obtained employing data-driven (blue) and
projector (red) methods.

Finally, Fig. 3.17 shows the p–p–Λ cumulant obtained employing the projector
method. The misidentification and feed-down correction is not applied because the
feed-down cumulants are unknown and the statistical uncertainties are too large
to provide any sensitivity to the three particle correlations. A positive cumulant
is measured at Q3 < 0.16 GeV/c. The comparison to the cumulant obtained
using the data-driven approach is shown in Fig. 3.19. For both approaches, the
p-value obtained from the χ2 test in the region Q3 < 0.4 GeV/c corresponds to a
deviation of 0.8 σ from the assumption of no genuine three-body correlations. The
current measurement does not provide any firm conclusion yet on the three-body
interaction in the p–p–Λ system. However, this system is of extreme interest. A
non-zero cumulant can be directly linked to a strong three-body interaction, as only
two particles in the triplet are identical and charged.

Further developments in this field require a larger statistical sample as the events
containing three collimated baryons are extremely rare. For this purpose, we devel-
oped a dedicated software trigger for the Run 3 data-taking period to ensure that all
events containing triplets of interest are triggered and stored for analysis. Chapter 4
introduces the trigger software and shows the performance on Run 3 data acquired
in 2022.
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FIGURE 3.19: Comparison of p–p–Λ cumulants estimated subtracting
lower order contributions obtained employing data-driven (blue) and
projector (red) methods.

3.8.2 Results: p-p-p correlation function and first theoretical predictions

The negative p–p–p cumulant shows a significant deviation from the assumption
of no genuine three-body effect. Comparing our measured correlation function to
the theoretical predictions is exciting to see if such an effect could be expected. The
preliminary calculations by Alejandro Kievsky were introduced in Chapter 1.6.2.
However, before comparing the theoretical correlation function to the experimental
one, we must account for the misidentification and feed-down effects in the cor-
relation function. This can be done by employing Eq. 3.17. As the only known
three-body correlation function contributing to the feed-down is the p–p–Λ, we as-
sume the rest of the contributions to be flat and compatible with one. Similarly to
the cumulants, one also needs to estimate a decay matrix which provides informa-
tion on how to map the Q3 of the initial p–p–Λ to the Q3 of p–p–pΛ where pΛ is
the daughter from Λ decay. The TGenPhaseSpace is used in the ROOT package to
estimate the decay phase space. In a Toy Monte Carlo, particles are simulated with
the correct mass and momentum sampled from a Gaussian distribution (any distri-
bution can be used here, as it changes only how many particles are generated for
specific Q3 value of p–p–Λ triplet, not how the Q3 transforms after the decay). The
Q3 of p–p–Λ triplet is calculated and then the Λ particle is used in TGenPhaseSpace
to obtain the momentum of a proton from the decay and, finally, the Q3 is recal-
culated using the two initial primary protons and the proton from decay as a third
particle. The resulting decay matrix is shown in the left panel of Fig. 3.20. The x-
axis shows Q3 for the p–p–Λ triplet and the y-axis - Q3 of the p–p–pΛ. The final
p–p–pΛ correlation function is obtained by performing a convolution of the p–p–Λ
correlation function and the shown decay matrix. Due to the significant uncertain-
ties of the measured p–p–Λ correlation function and the fact that the cumulant is
compatible with zero, for this study, we take advantage of the projector method and
use the lower-order contributions instead of the measured p–p–Λ correlation func-
tion. The right panel of Fig. 3.20 shows the assumed p–p–Λ correlation function as
a grey band. The red line shows the resulting p–p–pΛ correlation function once the
p–p–Λ correlation function is convoluted with the decay matrix. The uncertainties
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FIGURE 3.20: Left: Decay matrix for Λ particle decaying into pπ−.
Right: preliminary p–p–pΛ correlation function (red) obtained by per-
forming a convolution of p–p–Λ correlation function (grey) and the
decay matrix. The blue line depicts the p–p–pΛ correlation function
scaled by the corresponding λ parameter.

from the p–p–Λ correlation function are not propagated here, as they are negligi-
ble compared to the p–p–p correlation function uncertainties. Finally, the blue line
corresponds to the p–p–pΛ correlation function scaled by the corresponding λ pa-
rameter. As mentioned, the correlation function becomes strongly smeared as we
account for the decay kinematics and scale it by the corresponding λ parameter. The
obtained p–p–pΛ correlation function is then used to correct the theoretical p–p–p
correlation function shown in Chapter 1.6.2 to include the feed-down contributions
following Eq. 3.17. This is necessary, as the measured correlation function always
includes such feed-down effects. The corrected theoretical correlation functions are
shown in Fig. 3.21 as a black line for a source size of 1.5 fm (left panel) and 2.0 fm
(right panel) together with measurement results (green squares) and lower-order
contributions estimated employing projector method (grey band).
The most crucial difference between the lower-order contributions and the theoret-
ical prediction is that the latter accounts for the antisymmetrisation required to de-
scribe a wave function of a three-fermion system correctly.

FIGURE 3.21: Measured p–p–p correlation function (green squares)
compared to theoretical predictions (black line) assuming a source
size of 1.5 fm (left panel) and 2.0 fm (right panel). The grey
band shows lower-order contributions estimated with the projector
method.
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This results in the correlation function values decreasing at a low Q3 region com-
pared to the steep increase suggested by the projector method. However, there is still
a non-negligible difference between data and the theoretical prediction at the low
Q3<0.2 GeV/c region (also at larger Q3). As mentioned in Chapter 1.6.2, these theo-
retical correlation functions are preliminary and have the following short-comings:
approximate three-body Coulomb interaction, the strong two-body interaction is in-
cluded only in the lowest channels and the assumed potential is not realistic (but it is
fitted to reproduce the known p-p scattering length and effective range), the three-
body potential is not included. However, these are the state-of-the-art predictions
currently available in the field. Although they cannot yet be compared quantita-
tively, it provides a qualitative description of the three-proton correlation function.
The statistical significance of the deviation between the theoretical and measured
correlation functions at Q3<0.4 GeV/c is larger than for the projector method as the
theoretical curve cannot precisely describe the correlation function at Q3 larger than
0.3 GeV/c. The statistical significance for source size 1.5 fm is 16 standard devia-
tions and for 2 fm - 14 standard deviations. The sizeable statistical significance of
the deviation comes from the higher Q3 bins, where the measured correlation func-
tion has small uncertainties, but the PISA model cannot reproduce the shape well.
Further improvements in the theoretical calculations are required for a quantitative
interpretation of the data.



83

Chapter 4

Offline three-body triggers for
Run 3

The successful upgrades of the LHC and the ALICE detector resulted in the max-
imum 1 MHz interaction rate and 500 kHz readout rate for the pp collisions at√

s = 13.6 TeV. As the total recorded data sample of Pb-Pb and pp collisions will
exceed the available storage size, the number of pp collisions to be stored must be
reduced by a factor of 1000 [148]. The pp events will be selected based on fully re-
constructed data by so-called offline software triggers, which will look for events
containing specific physics case - high-pT jets, multi-strangeness hyperons, high-
multiplicity events and others. The triggers for different physics observables must
lead to a reduction factor of 10000. As shown in the previous Chapter, finding three
collimated baryons in a collision is extremely rare. Thus the measurements of three-
baryon correlation functions require a very large statistical sample which can be
achieved in Run 3 by such custom triggers. The three-baryon interactions can also
be studied in baryon-deuteron systems as a deuteron is a composite object made of
proton and neutron. Indeed, it has been shown recently that a proton-deuteron cor-
relation function can be described theoretically only if a three-nucleon wave function
is used. Thus, to study the three-baryon interactions with Run 3 data, we developed
four three-body triggers (ppp, ppΛ, pΛΛ, ΛΛΛ) and two two-body triggers, in-
cluding deuteron in the pair (pd and Λd). Only the three-body triggers are shown
in this thesis, as they were developed by me and are directly related to the analysis
presented in this thesis. Moreover, the results are concentrated on the ppp trigger,
which serves as a benchmark, and the ppΛ trigger, as the three-body ppΛ interac-
tions are highly relevant for the hyperon puzzle in neutron stars.

4.1 Number of triplets expected in Run 3

All triggers will run on the events recorded during the continuous data-taking, cor-
responding to a minimum bias sample. Around 1.25·1013 events are expected to
be stored for the asynchronous reconstruction and triggering. The initial plan is to
run several asynchronous reconstruction passes and once good quality is reached,
the triggering takes place. Events which are not triggered as interesting are then
deleted. Thus the full 1.25·1013 event data sample will never be accessible at once.

The HM trigger in Run 3 will reduce the number of events by a factor of 10000
which corresponds to a 200 pb−1 data sample (≈ 2 · 109 events). This trigger is
a good candidate for the three-body analysis, as in Run 2, there was an enhance-
ment of around a factor 20 observed in the number of triplets per event in HM
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events compared to MB events (at Q3<0.6 GeV/c). However, developing a cus-
tom three-body trigger that would analyse the entire 1.25·1013 event data sam-
ple and select all events with triplets at low Q3 region might be more efficient.

FIGURE 4.1: Extrapolated multiplicity distri-
bution in Run 3 for |η| < 1.5 [148].

Thus we estimate the number of ex-
pected triplets in Run 3 for both trig-
gers. The estimations are approximate
and assume that acceptance and effi-
ciency of the detector remain the same
in Run 3 as they were in Run 2.
The number of triplets in the HM sam-
ple expected in Run 3 can be estimated
based on Run 2 data. Figure 4.1 shows
an extrapolated charged particle multi-
plicity distribution for Run 3 based on
Run 2 data. As noted in Ref. [148], this
is an extrapolation and thus should be
seen only as an educated guess. The
HM trigger in Run 3 is going to accept
only events with multiplicity higher
than 7<Nch>, where <Nch> is the aver-
age charged-particle multiplicity of a pp
event. The estimated number of events for different multiplicity classes for pp colli-
sions at

√
s = 14 TeV are shown in Table 4.1. To estimate how many triplets can be

expected in these events, the number of p–p–Λ triplets per event was estimated in
Run 2 data as a function of multiplicity. This is shown by the black circles in Fig. 4.2.
Only triplets fulfilling Q3<0.6 GeV/c requirement are included. The vertical line cor-

Range Events in 200pb−1

7 − 10 ⟨Nch ⟩ 2.0 × 109

10 − 12 ⟨Nch ⟩ 1.8 × 107

12 − 14 ⟨Nch ⟩ 7.3 × 105

14 − 16 ⟨Nch ⟩ 2.8 × 104

TABLE 4.1: High-multiplicity event bins with the expected number of
events in Run 3. Taken from Ref. [149]

responds to statistical uncertainty. The red line corresponds to a second-order poly-
nomial function fitted to the data, which allows us to estimate the expected number
of triplets per event at multiplicities which will be reached at Run 3. Here, the Nch is
set to 11.5. The number of triplets is obtained by taking the expected number from
the polynomial fit and multiplying it by the expected number of events. This results
in 24261 triplets at region Q3<0.6 GeV/c. In the Run 2 HM data sample, only 3558
triplets were found at the same Q3 region. Thus an increase by a factor of 6.8 is ex-
pected in the number of p–p–Λ triplets at this low Q3 region. An improvement of
around a factor of 7 is also expected in the case of p–p–p and p–Λ–Λ triplets. These
estimates are obtained assuming the ALICE detector in Run 3 will have the same
acceptance and efficiency. Estimating the number of triplets for the case of the three-
body trigger is simpler. The idea of the trigger is to select all events with triplets at
low Q3 region, which for this estimate is selected to be Q3<0.6 GeV/c. The trigger
will run on data which would correspond to the MB sample. Thus we take the num-
ber of triplets we have in the Run 2 MB sample and scale it by the total number of
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events expected in Run 3. There were 263 triplets measured at Q3<0.6 GeV/c in the
Run 2 MB sample, which consists of 1.5·109 events. As mentioned, the expected total
number of events the triggers will analyse is 1.25·1013. Thus the expected number
of triplets is 2.19·106, corresponding to a factor 615 larger triplet count than in Run 2
HM. A similar factor is obtained for p–p–p and p–Λ–Λ triplets.
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FIGURE 4.2: Triplets per event as a function of multiplicity in Run 2
(black circles) obtained using the same data which was analysed in
the three-baryon femtoscopic analysis presented in this thesis.

As shown above, the expected increase in the number of p–p–Λ triplets at region
Q3<0.6 GeV/c is 6.8 times for the HM trigger, while for the specific three-body trig-
ger, it is a factor 615. In both cases, the ALICE detector is assumed to have the same
efficiency and acceptance in Run 3 as in Run 2. This shows that the development of
the three-body trigger is of extreme relevance.

4.2 Trigger results

The triggering scheme for Run 3 is shown in Fig. 4.3. As explained in Chapter 2.3,
the synchronous reconstruction occurs during the data taking. Once the data is

Synchronous 
reconstruction

Asynchronous 
reconstruction

(after several 

passes)

Particle 
selection and 
identification

Search for 
collimated 

triplets in events

<1.5 GeV/cQ3

Reconstruction, best case scenario 
calibration is included Three-body trigger

Three-body 
triggered 

data

FIGURE 4.3: Scheme for the three-body triggers in Run 3.

recorded, the calibrations are performed, followed by several asynchronous recon-
struction passes. Once the required quality of reconstructed data is achieved, the
triggering takes place.

It consists of two steps - track selection to have proper particle candidates and
the search for triplets at low Q3 in the region Q3<1.5 GeV/c. As shown later, such a
range results in the required reduction factor. In Run 2, the normalisation region of
the measured correlation function was at 1.0-1.2 GeV/c which sets the lower bound
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for the trigger, while the interactions were observed at Q3<0.4 GeV/c. The complete
calibration of the data might not be available before the triggering is carried out, de-
pending on the time frame between the data taking and the requirement to delete
the non-triggered events. There were 600 billion events recorded during the 2022
pp collision campaign. The triggering should have been performed before Pb-Pb
data-taking at the end of 2022; however, due to the electricity price crises, the Pb-Pb
campaign was postponed to April 2023. This allowed a more in-depth analysis of the
asynchronous reconstruction, resulting in three asynchronous reconstruction passes.
This thesis presents only the results obtained with pass3 data, as this pass will be
used for the final triggering. The trigger had to be developed in the O2Physics anal-
ysis framework, completely newly developed software for Run 3 analysis. The data
format also changed in Run 3 and is now based on tables. There are separate tables
for collisions, tracks, V0s and other information. These tables are related by collision
ID so that, for example, the tracks of specific collision can be easily retrieved from the
tables. As the analysis framework is new, the trigger code had to be validated using
converted data. Converted data is Run 2 MB data which was converted from AOD
format (introduced in Chapter 2.4) used by AliPhysics (Run 2 software) to AO2D for-
mat used in O2Physics. Before the first Run 3 data was obtained, general-purpose
MC data was released, which was also investigated in detail to inspect which selec-
tion criteria provided the best acceptance without significantly reducing the purity.
While the final selections we apply are tested with MC, we do not show any specific
results as it was not anchored to actual data. It was just a playground to test triggers
before the first real Run 3 data became available.

4.2.1 Benchmark: converted data

The benchmark results were obtained with converted Run 2 data and are shown
in this Chapter for p–p–p triplet. The results employing O2Physics were obtained
on February 2022 with a specific configuration of the framework and calibration
objects uploaded to CCDB (Calibration and Constants Data Base) available on that
day. After this date, the results for proton pT spectra changed, which was most
probably caused by the updated TPC and TOF calibrations. The results obtained
with the O2Physics framework analysing the converted data will be compared to
those obtained with AliPhysics and the original Run 2 data for runs LHC18b and
LHC18m. For this, we had to develop the trigger code in both frameworks. The
resulting distributions are not normalised as the converted data corresponds to the
same runs in both cases.

Table 4.2 shows the track selection criteria used for the benchmark results. They
were selected such that it fully covers the systematic variation ranges applied in the
Run 2 analysis shown in Chapter 3.3. The event selection is the same as in the Run
2 analysis except for the primary vertex position along the z-axis, which is required
to be |vtxz| < 12 cm instead of |vtxz| < 10 cm. The multiplicity distributions are
shown in the left panel of Fig. 4.4, where the red line corresponds to the O2Physics
result and the black line to the AliPhysics results. The statistical uncertainties are
not shown here; however, they are negligible and would not be visible in this figure.
The ratio of the two distributions is shown on the right panel of Fig. 4.4. The ratio
is flat except for a sharp dip when multiplicity approaches 0. The ratio decreases
from 1.22 to 1.15 with the increasing multiplicity, which can also be an artefact of a
different number of failed train jobs.
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Selection criteria O2 Value
Pseudorapidity |n| < 0.85

Transverse momentum pT < 0.35GeV/c
TPC cluster nTPC > 65

Crossed TPC pad rows ncrossed > 70 (out of 159)
Findable TPC clusters ncrossed /nfindable > 0.83

Tracks with shared TPC clusters rejected
Distance of closest approach xy

∣∣DCAxy
∣∣ < 0.15 cm

Distance of closest approach z |DCAz| < 0.3 cm
Particle identification |nσ,TPC| < 4 for p < 0.75GeV/c

nσ,combined < 4 for p > 0.75GeV/c

TABLE 4.2: The trigger selection criteria applied in the benchmark.
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FIGURE 4.4: Multiplicity distribution obtained with O2Physics (red
line) and with AliPhysics (black line), employing trigger selection cri-
teria shown in Table 4.2.

The transverse momentum distributions for particles identified as protons are
shown in the left panel of Fig. 4.5, where the red line corresponds to the O2Physics
result and the black line to the AliPhysics results. The right panel shows the ratio
of the two distributions. The ratio at low pT is around 1.15, which is expected since
we also have fewer collisions, as shown in Fig. 4.4. However, the ratio, in this case,
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FIGURE 4.5: Proton transverse momentum distribution obtained with
O2Physics (red line) and with AliPhysics (black line), employing trig-
ger selection criteria shown in Table 4.2.
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is not uniform in the shown pT range as it has a peak structure at low momentum,
and also, the ratio quickly decreases at pT>2.5 GeV/c. The shapes are similar at the
transverse momentum, where most of the protons are distributed.
The ultimate benchmark is the comparison of the same event distributions. In this
case, we compare the distributions obtained with standard analysis cuts presented
in Chapter 2.5. It is important here to compare the shape of the distribution, and thus
the two distributions are normalised at the region Q3<3 GeV/c, where they are in
good agreement. At larger Q3 values, a disagreement is observed. However, it was
shown that there are more large pT particles in the results obtained using O2Physics
than AliPhysics. Thus also, the larger tail at the higher Q3 is expected.
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FIGURE 4.6: Same event distribution for p–p–p triplets obtained with
O2Physics (red line) and with AliPhysics (black line), employing stan-
dard analysis selection criteria.

Table 4.3 compares analysed events, selected protons and antiprotons and the
final rejection factor obtained with the O2Physics and the AliPhysics. Only events
with at least one p–p–p triplet with Q3<1.5 GeV/c are accepted. The rejection factors
are almost identical for the two cases. This check is a benchmark for the three-body
trigger code in O2Physics.

Events
Selected

Protons
Anti-

protons
Accepted

events
Rejection

factor
AliPhysics 3.348 × 108 4.8 × 107 4.1 × 107 24398 13722
O2Physics 2.848 × 108 4.37 × 107 3.8 × 107 20994 13566

Ratio 1.18 1.1 1.08 1.16 1.012

TABLE 4.3: Comparison of the trigger results obtained with Ali-
Physics and O2Physics.

4.2.2 Results: Run 3 data

There were 600 billion events collected during the pp campaign in 2022. Most of the
events were collected during the high interaction (HI) rate (500 kHz) periods (>99%).
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Table 4.4 shows the available data-taking periods with relevant information such as
the interaction rate (IR), the number of runs in the period and the dataset size. As the
pass3 reconstruction is ongoing, the storage size is given for pass2 files. However,
all results will be shown for the available pass3 data. All collisions are taken at√

s = 13.6 TeV and a magnetic field of 0.5 T. The two smallest periods correspond
to the low interaction rate data sets. The low interaction rate results in reduced
space charge distortions in the TPC, and also such conditions are easier for other
detectors. Thus after the second asynchronous reconstruction pass, a good quality
of the data was reached. However, the calibration is much more complicated for the
high interaction rate runs for which three asynchronous reconstruction passes were
required. The triggering will be performed on the pass3 data when available.

Period IR Number of runs AO2D Storage
LHC22f 5-20 kHz 5 0.56 TB

LHC22m 500 kHz 29 340.5 TB
LHC22o 500 kHz 117 2.19 PB
LHC22p 500 kHz 9 94.5 TB
LHC22q 6-15 kHz 12 9.5 TB
LHC22r 500 kHz (100 kHz) 29 299.7 TB
LHC22t 500 kHz 14 169.4 TB

TABLE 4.4: Available Run 3 data. The LHC22r period has two runs
out of 28, collected at a 100 kHz interaction rate.

In this thesis, we will show results only for the LHC22m period (Run 523308),
which provides the best reconstruction quality so far. For example, the standard
particle identification based on the TPC measurement is best compared to other HI
periods. The total number of analysed collisions is 1.73 × 109.
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FIGURE 4.7: Primary vertex position in the z-axis in Run 3 data.

Figure 4.7 shows the primary vertex position along the z-axis. No collision se-
lection criteria are performed at the trigger level, as the collision reconstruction
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could still improve in the future asynchronous passes performed after the trigger-
ing. However, this does not change the final selected event sample much once the
track and V0 selection and triplet requirements are applied.

This Chapter will show the results for both ppp and ppΛ triggers. The track
selection criteria used for triggers are shown in Table 4.5. The nσ distributions for

Selection criterion Value
Pseudorapidity |η| < 0.85
Transverse momentum 0.35 ≤ pT ≤ 6 GeV/c
TPC cluster nTPC > 60
Crossed TPC pad rows ncrossed > 50 (out of 159)
Findable TPC clusters ncrossed/nfindable > 0.83
Distance of closest approach xy |DCAxy| < 0.15 cm
Distance of closest approach z |DCAz| < 0.3 cm

Particle identification
|nσ,TPC| < 5 for p < 0.75 GeV/c
nσ,combined < 5 for p ≥ 0.75 GeV/c

TABLE 4.5: Proton selection criteria.

selected proton (left) and antiproton (right) candidates are shown in Figs. 4.8 and 4.9.
The first figure shows nσ distributions for the TPC detector evaluated using the
Bethe Bloch parametrisations provided by the TPC group. The distributions are
shown as a function of the momentum reconstructed at the inner wall of the TPC.
The distribution is slightly shifted towards negative values for protons and posi-
tive values for antiprotons. This is an artefact of space charge distortions which
are not yet completely corrected. The corrections will appear available after the
triggering. At higher momentum, the requirement is set for the combined value√

n2
σ,TPC + n2
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FIGURE 4.8: nσ distributions for protons (left) and antiprotons (right)
for the TPC detector.

The upper panels in Fig 4.9 show the nσ distribution for the TOF detector. The
distributions for protons and antiprotons are not centred around zero and are a mir-
ror image around zero. The second shape, which peaks at around 2 GeV/c, stems
from contamination. The lower panels show the combined nσ,combined results. The
shape centred at 1-2 GeV/c corresponds to the (anti)proton signal. The second shape
at around 2.5 GeV/c corresponds to contamination.
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FIGURE 4.9: nσ distributions for protons (left) and antiprotons (right)
for TOF (upper panels) and combined TPC and TOF (lower panels).
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FIGURE 4.10: nσ distributions for protons (left) and antipro-
tons (right) employing the TPC detector and default Bethe-Bloch
parametrisation values (upper panels) and customised parametrisa-
tion values as explained in the text (lower panels).
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The acceptance threshold is set to relatively high nσ,combined values; however,
in such a way, we ensure that the lower momentum particles which correspond to
the (anti)proton signal but have higher nσ,combined are not lost. After the triggering,
there will be new asynchronous reconstruction passes and the PID for both TPC
and TOF detectors is expected to improve.

The particle identification can also be performed by fitting the TPC signal man-
ually and using obtained parameters of the fit function (Eq. 2.2) in the trigger. Such
an option was implemented and results in more centred nσ,TPC distributions as the
fits are performed on a run-by-run basis as shown in Fig. 4.10. The upper panels
show the same results as in Fig. 4.8 but for smaller momentum and nσ,TPC range.
The lower panels show the nσ,TPC distribution obtained by employing the manually
obtained parameterisation of the function describing the TPC signal for the different
particle species. While the nσ,TPC distribution is not very well centred for the de-
fault approach, the manual fit provides much better results. However, as the default
parametrisation provides rather good results, there is no large difference in the final
selection. The manual PID becomes relevant when the shift in the mean nσ,TPC is
large for a specific run as the central PID is such that it simultaneously fits all runs
and thus is not run-dependent. The manually obtained PID will be employed in the
final trigger selections, performed on multiple good runs from all available periods.
The kinematic variable distributions for the selected protons (red line) and antipro-
tons (black line) are shown in Fig. 4.11.
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FIGURE 4.11: pT, pseudorapidity, ϕ angle and number of TPC clus-
ters associated to the track distributions for the selected (anti)proton
sample in Run 3.

The upper left panel shows the pT distributions. The first peak at pT around
0.6 GeV/c is expected as pTPC=0.75 GeV/c is the threshold for the switch between
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nσ,TPC and nσ,combined. However, the second peak at pT=2 GeV/c is a signature of
the contamination. The upper right panel shows the pseudorapidity distribution
and the lower left panel represents the ϕ distribution. The number of TPC clusters
associated with the track is shown in the lower right panel. The distance of closest
approach distributions for x − y plane and z axis are shown in the left and right
panels of Fig. 4.12, respectively.
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FIGURE 4.12: Distance of closest approach distributions for the se-
lected (anti)proton sample in Run 3.

The selection criteria applied to Λ candidates are shown in Table 4.6. An ex-
tensive invariant mass window is allowed so that the selected sample also includes
background contributions which can be employed in future analysis to correct the
measured correlation function for misidentified particles. Figure 4.13 shows the

Selection criterion Value
Daughter track selection criteria
Pseudorapidity |η| < 0.85
TPC cluster nTPC > 50
Distance of closest approach DCA > 0.04 cm
Particle identification |nσ,TPC| < 6

V0 selection criteria
Transverse momentum pT > 0.3 GeV/c
decay vertex |ivertexΛ | < 100 cm, i=x,y,z
Transverse radius of the decay vertex rxy 0.2< rxy <100 cm
DCA of the daughter tracks at the decay vertex DCA(|p, π|) <1.8 cm
Pointing angle α cos α > 0.96
K0 rejection 0.49 < Mπ+π− < 0.504 GeV/c2

selection 1.05 < Mpπ < 1.2 GeV/c2

TABLE 4.6: Λ selection criteria.

kinematic and topological distributions for selected Λ candidates. The upper left
panel shows the invariant mass distribution with a distinctive peak of the Λ can-
didates for particles (red line) and antiparticles (black line). The upper right panel
shows the pT distributions, the middle left - the cosine pointing angle, the middle
right - a distance of closest approach between the daughter tracks and the lower
panel - the transverse radius distributions.
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FIGURE 4.13: Invariant mass, pT, CPA, DCA between the daughter
tracks and transverse radius of the V0 distributions for the selected
(anti)Λ candidates in Run 3.

After the track and V0 selections, the trigger rejects events that do not contain
particle candidates of interest. The last step of the trigger is checking if the surviving
events have at least one triplet at the Q3<1.5 GeV/c. The resulting particle (red line)
and antiparticle (black line) same event triplet distributions are shown in Fig. 4.14
as a function of Q3. The left panel shows results for the ppp trigger and the right
panel - for the ppΛ trigger. In both cases, much more particle triplets are found than
antiparticles. Figure 4.15 shows the same result, but at a low Q3 region, the y axis is
shown in logarithmic scale. In the case of both triggers, the number of triplets at the
first bins is very small - few entries per bin.
The rejection factors can be calculated by taking the ratio of accepted events and the
total number of events. As introduced earlier, the complete set of triggers, for which
the total rejection factor must be 1 × 10−4, includes the ppp, ppΛ, pΛΛ, ΛΛΛ, pd
and Λd triggers. Thus the results for the rejection factor will be shown for all these
triggers, even though some of them are not introduced explicitly. The important part
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is to reach the total rejection factor of 1 × 10−4. The results for all triggers and the
total rejection factor are shown in Fig. 4.16. All single triggers are below the 1× 10−4

limit. The total rejection factor corresponds to the bin named accepted, precisely at
the 1 × 10−4 limit. Thus the trigger is validated and achieves the required rejection
factor.
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FIGURE 4.14: Same event triplet distributions as a function of Q3 for
(anti)p–p–p and (anti)p–p–Λ triplets in Run 3.
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(anti)p–p–p and (anti)p–p–Λ triplets in Run 3.
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All events selected by the triggers will be kept, while the rest will be deleted. It
is interesting to estimate how many triplets we expect from the entire 2022 Run 3
data set. To compare the result to the previous estimations, we include only triplet
at Q3<0.6 GeV/c. There are 4474 p–p–p and 228 p–p–Λ triplets, including particles
and antiparticles. As mentioned, the total number of analysed events is 1.73 × 107.
This results in 32324650 p–p–p and 1647300 p–p–Λ triplets in total Run 3 dataset
consisting of 1.25 × 1013 events. The number of p–p–Λ triplets can be compared to
our estimate from Run 3 data presented at the beginning of this Chapter and it is 75%
of the predicted value. However, the estimate provided from Run 3 data is based on
results obtained with trigger selections. As the reconstruction and calibration are
not finalised for the data, the strict analysis cuts cannot yet be applied reasonably,
and the trigger selections are the only viable option. Finally, we can expect around
136800 p–p–Λ triplets in the already collected 600 billion collisions, which is 38 times
more than in Run 2 HM.
The triggers allow us to take advantage of all 1.25 × 1013 events and specify which
events should be kept once the deletion process to release storage space starts. It
should result in an almost 100 times larger data sample of triplets at low Q3 com-
pared to a simple HM trigger which will be applied in Run 3. The development of
this trigger ensures that the three-baryon interactions will be measured with Run 3
data for the p–p–p and p–p–Λ triplets. The p–Λ–Λ and Λ–Λ–Λ triplets will also be
measured, but it is clear from the rejection factor values that it is yet to see if Run 3
will have enough statistics to constrain the interactions.
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Chapter 5

Introduction to dark matter and
cosmic ray antinuclei

Many particles and hadrons were discovered by measuring cosmic rays. Paul
Dirac predicted the existence of a positively charged electron; however, this was
not widely accepted in the field as no such particle has been observed at the time.
Five years later, a particle of the right mass and charge was found by Carl D.
Anderson in measured cosmic rays, confirming Dirac’s prediction [150]. Similarly,
pions were proposed first by Yukawa and discovered ten years later in cosmic ray
studies performed by C. F. Powell [151]. Nowadays, new particles and hadrons
are mainly discovered at accelerator facilities such as the LHC. However, some of
the most searched particles currently are the dark matter candidates which remain
undetected. Once again, cosmic rays might play a significant role and serve as an
indirect probe in dark matter searches.

The amount of visible matter cannot explain the velocity dispersion measure-
ments of the galaxies in the galaxy clusters. Fritz Zwicky made such an observation
for the first time in 1933 [152]. He called the missing mass required to explain
the measurement dunkle Materie - the dark matter. Since then, a lot more evidence
for the dark matter existence in our Universe has been found - galactic rotational
curves [153], gravitational lensing [154], the distribution of the anisotropy in
the cosmic microwave background [155] and mass distribution during galaxy
collisions [156]. Despite the immense observations of its gravitational effects, dark
matter remains one of the least understood constituents of our Universe, as no
dark matter particles have been detected yet. Many theories suggest the competing
different nature of the dark matter particles [157], out of which some propose that
such particles could be weakly coupled to the ordinary matter. This would result in
dark matter annihilating in ordinary matter, such as neutrinos, photons, hadrons or
even antinuclei. Such an annihilation process also would take place in our Galaxy.
Its products would contribute to the cosmic ray, neutrino and gamma-ray fluxes
measured at Earth, providing an indirect probe for dark matter annihilation.
Cosmic ray antinuclei constitute the most promising channel for indirect dark
matter searches in the scope of cosmic ray measurements. Protons and light nuclei
are abundant in our Galaxy because of their production mechanism related to the
supernova explosions and thus are not optimal probes for indirect dark matter
searches [158]. The situation for antinuclei is entirely different. The main confirmed
production mechanism for antinuclei in the Galaxy is ordinary cosmic ray collisions
with interstellar gas (such as p+p collisions) as shown in the upper part of Fig. 5.1.
This results in relatively small cosmic ray antinuclei fluxes with a kinetic energy per
nucleon distribution that peaks at around 10 GeV/A and constitute the background
for indirect dark matter searches. The cosmic ray antinuclei flux stemming from
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χ + χ → bb → A + X

AMS-02

Voyager

p + p → A + X

A, A, p
GAPS

p+4He → A + X
A + p → Y

FIGURE 5.1: Sketch of cosmic rays in the Galaxy. Antinuclei (A) pro-
duction, propagation and inelastic interaction are shown.

dark matter annihilation (shown in the lower part of Fig. 5.1) is expected to be of a
similar order of magnitude and peak at around 1 GeV/A [159], providing a signal to
background ratio at low energies reaching up to several orders of magnitude. While
no confirmed observation of cosmic ray antideuteron or antihelium-3 exists, several
experiments are working towards it [160–162]. Once the antinuclei are detected,
exact estimations of the expected cosmic ray fluxes will be needed for the signal and
background components to provide any constraints on dark matter.

Predictions of the antideuteron and antihelium fluxes were performed in the
scope of this thesis together with systematic studies of the most relevant uncertain-
ties. Such studies require knowledge about the antinuclei production mechanism,
cosmic ray propagation in the Galaxy and the antinuclei interactions with the mat-
ter in the interstellar medium (as shown in the middle part of Fig. 5.1). This Chapter
will discuss the following subjects in the following order: the current status of dark
matter models and experimental searches, the production and propagation mecha-
nisms of cosmic rays, the GALPROP transport model, which was used in this work
to perform the calculations of cosmic ray fluxes, and light (anti)nuclei production
mechanisms.

5.1 Dark matter

The work presented in this thesis contains estimates of cosmic ray antideuteron and
antihelium-3 fluxes stemming from the matter cosmic ray collisions with the inter-
stellar medium. Such fluxes are relevant for indirect dark matter searches as they
are the only known background contribution.

5.1.1 Evidence for dark matter

From the mentioned evidence of dark matter existence, only two are further dis-
cussed here. First, the cosmic microwave background radiation measurement shows
evidence of dark matter and provides information on how much of such matter ex-
ists in our Universe. Second, the rotation curve measurement of the Milky Way
Galaxy allows us to access information on the dark matter distribution in our own
Galaxy.
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Cosmic Microwave Background radiation

The Cosmic Microwave Background (CMB) was discovered accidentally in 1965.
Two astronomers, Arno Penzias and Robert Wilson, measured a persistent excess
noise with their antenna and could not find a source for measured microwave radia-
tion [163]. At the time of the measurement, there was already a theoretical prediction
of low-temperature radiation from the early universe [164]. During the recombina-
tion epoch after the Big Bang, the electrons and protons became bound to form elec-
trically neutral hydrogen atoms. Before recombination, the Universe existed in the
form of hot and dense plasma which was opaque as the photons were scattered off
electrons. Once neutral hydrogen atoms were formed, the Universe became trans-
parent. The photons decoupled from the matter at that time are now observed as
CMB radiation; however, they are strongly red-shifted due to the expansion of the
Universe. The CMB was first observed to high precision by the Cosmic Background
Explorer (COBE) satellite, which confirmed that CMB has a near-perfect black-body
spectrum [165]. It also showed only slight anisotropies in the CMB sky map, sug-
gesting that our Universe is homogeneous.

The most accurate measurement of CMB was performed during the Planck mis-
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FIGURE 5.2: Upper panel: Temperature map of Planck CMB sky.
Lower panel: Resulting temperature power spectrum. Figures taken
from Ref. [166].

sion [166]. The temperature map of the CMB sky measured by Planck is shown in
the upper panel of Fig. 5.2. The observed temperature fluctuations in the CMB can
be decomposed as a two-dimensional function into a sum of spherical harmonics,
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where every spherical harmonic function has its’ amplitude and order (multipole).
The set of such parameters can be represented as a power spectrum of temperature
fluctuations, as shown in the lower panel of Fig. 5.2. Cosmological models can pre-
dict such a spectrum. The standard model of Big Bang cosmology is the Λ Cold Dark
Matter (ΛCDM) model which assumes three main components of the Universe: dark
energy, dark matter and baryonic matter. The best-fit prediction of such a model is
shown as the blue line in the lower panel of Fig. 5.2 and, besides other cosmological
parameters, provides information about the amount of the different components in
the Galaxy. The position of the first peak in the power spectrum is related to the
geometry of the Universe. The ratio of the second to the first peak provides infor-
mation about the baryonic component. The peaks’ overall value and especially the
third peak’s height are related to the dark matter density. The Planck collaboration
reached the following conclusions: the Universe is flat, and dark matter must be
dark, cold and "nearly" stable. If dark matter is thermally produced, the particles
should be massive. Finally, the best-fit parameters provide the percentages of the
different components in the Universe; around 69% of the Universe is dark energy,
5% of ordinary matter and 26% of dark matter [167].

Galactic rotation curves

The rotation curve measurement is the best evidence of the dark matter’s pres-
ence in our Galaxy (and other galaxies). The rotation curve shows the veloc-
ity of visible stars or gas in the galaxy as a function of distance from the galac-
tic centre. A compilation of available observations is shown in Fig. 5.3. The
velocity of stars and gas in the Galaxy depends on the gravitational poten-
tial. If it is calculated accounting for all visible matter in the Galaxy, the mea-
sured rotation curve cannot be reproduced as obtained velocities are too small.

bulge

DM

disk

FIGURE 5.3: Modelled rotation curve (lines) of the
Milky Way with a compilation of the available data
shown as different shape markers [168].

This suggests that there is addi-
tional matter in our Galaxy that
we cannot observe electromag-
netically, but we see its grav-
itational effects. In Fig. 5.3,
the blue line represents a model
rotation curve obtained by So-
fue et al. including three
main components of the galac-
tic matter - the bulge, the disk
with arms and the dark mat-
ter. The galactic bulge is the
group of stars located at the spi-
ral Galaxy’s centre. As shown
in Fig. 5.3, it results in the rota-
tion curve that peaks at around 0 kpc. The galactic disk is mainly made of gas and
results in the highest contribution to the rotation curve at around 10 kpc. The avail-
able measurements of interstellar gas and stars in the Galaxy can constrain the latter
two components. Finally, the dark matter halo is extracted as the missing mass distri-
bution required to fit the data at large distances. An isothermal dark matter density
profile was used for the fit. There are several proposed dark matter profiles which
can well explain not only the observations of the Milky Way but also other galaxies.
The isothermal-density profile was proposed to explain the first observed rotation
curves of distant galaxies [153]. In later studies, the shape of the dark matter profile
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was determined by performing cosmological N-body simulations of structure for-
mation which resulted in numerical data for the dark matter halo shape [169]. The
obtained dark matter density could be well described with the following formula:

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 , (5.1)

called the Navarro-Frenk-White (NFW) profile. Here, ρ0 is an overall normalisation
and Rs is a scale radius that must be obtained from the fits to rotation curves.

FIGURE 5.4: Compilation of available dark matter pro-
files for Milky Way galaxy [170].

There are also several more
empirical and simulation-
based dark matter pro-
files [170]. The overview
of available density profiles is
shown in Fig. 5.4. The dark
matter density is constrained
the least at low distances from
the galactic centre, where all
dark matter profiles have a
different shape. They converge
at the solar system’s location,
denoted by the dashed vertical
line in Fig. 5.4, where they
are set to reproduce the local
dark matter density of 0.3
GeV/cm3 [171]. The limited knowledge about the dark matter density profile in our
Galaxy affects both the direct and indirect dark matter searches, and thus several
different dark matter profiles are usually tested [172].

5.1.2 Dark matter candidates

The non-observation of dark matter particles leads to a large variety of proposed
dark matter candidates. Most of the theories are motivated by open questions
in modern physics: some of the Weakly Interacting Massive Particles are devel-
oped following the hierarchy problem and are related to the supersymmetry; ax-
ions are described in a framework which would help to solve the strong CP prob-
lem, and sterile neutrinos are related to the problem of neutrino masses and mix-
ing [10]. Such theories suggest a wildly different nature of the dark matter, re-
sulting in different predictions of dark matter masses, interaction cross sections
with ordinary matter, annihilation cross sections and decay probabilities. Several
of the well-motivated dark matter candidates are shown in Fig. 5.5. We will not
describe all models in detail; however, it is essential to note that the predicted
dark matter particle mass ranges over 30 orders of magnitude. A similar range
is also observed for the case of the interaction cross section with ordinary mat-
ter. The indirect dark matter searches via cosmic ray antinuclei fluxes can be em-
ployed if the dark matter particles couple to Standard Model particles and thus
can produce ordinary matter when annihilating. One such candidate is the men-
tioned Weakly Interacting Massive Particles (WIMPs). WIMPs are a broad class
of dark matter candidates with two characteristics - they are relatively heavy and
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interact only weakly (any interaction with cross sections not higher than the elec-
troweak scale). Many such models assume that the WIMPs were produced ther-
mally in the early Universe, just as the Standard Model particles. To obtain the ob-
served dark matter abundance in the Universe today, any thermally produced dark
matter candidate must have annihilation cross section ⟨σv⟩ ≃ 3 × 10−26 cm3 s−1.

FIGURE 5.5: Several dark matter candidates are shown
in the log-log plane of the DM mass and cross section
of interaction with ordinary matter [173].

Such interaction cross section is
expected for particles that in-
teract at electroweak scale and
have a mass of the order of
100 GeV. 1 This is exactly the
expectation for the WIMP can-
didates. Thus such a coinci-
dence is called the "WIMP mir-
acle". Constraints provided by
direct and indirect dark mat-
ter searches already reduced
the available parameter space
of interaction cross section and
mass compatible with WIMPs
predictions; however, more ex-
perimental limits are needed
to rule out WIMP candidates
completely [174].
WIMPs are expected to consti-
tute Cold Dark Matter, which,
as already mentioned, is also
the preferred scenario by the
CMB observations. There are
many WIMP candidates, but
here we introduce only two
with very different underlying theories. One of the popular WIMP candidates are
the neutralinos. In supersymmetry, all standard model particles have partners which
have the same gauge interactions and quantum numbers except for the spin, which
differs by 1/2 [175]. This results in a zoo of new, yet undiscovered, supersymmetric
particles, including four neutralinos. The lightest neutralino constitutes a dark mat-
ter candidate. Another very different WIMP candidate is the Kaluza-Klein dark mat-
ter. The Universal Extra Dimensions theory includes new dimensions with which
an infinite number of partner particles of the Standard Model particles are intro-
duced [175]. Differently from the supersymmetry, the partners also have the same
spin as the Standard Model particles.
WIMP particles are usually believed to annihilate or decay to ordinary matter par-
ticles. We will take here the example of neutralino. The neutralino annihilation
can be studied employing perturbation theory, accordingly to which the most rel-
evant final states contributing to the total annihilation cross section are two-body
states, such as fermion-antifermion (Standard Model neutrinos, leptons and quarks),
W+W− or Z0Z0 [176]. The Feynman diagrams contributing to neutralino annihila-
tion to W+W− state are shown in the left panel of Fig. 5.6. The possible mediators of
the interaction are the Z0 boson, light scalar and heavy scalar Higgs (h, H) or super-
symmetric partner of W boson - chargino χ+

n . The production of W boson pairs is

1Natural units are usually used in the community to describe the dark matter particles masses
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followed by the hadronization which can result in fermions, hadrons or even nuclei,
as shown in the right panel of Fig. 5.6. The momentum distribution of annihilation
products depends on the dark matter mass. Cosmic ray antinuclei studies usually
consider the dark matter mass from a few GeV to a TeV scale. As it will be shown
later, the expected cosmic ray antinuclei fluxes decrease with the increasing dark
matter mass assumption. On the other hand, if dark matter mass is too low, the an-
nihilation would not result in the production of antinuclei.

FIGURE 5.6: Left: Feynman diagrams contributing to the neutralino
annihilation to W+W− state [176]. Right: Example of possible hadro-
nisation process after the dark matter annihilation [177].

5.1.3 Searches for dark matter

There are three experimental approaches to look for dark matter candidates, as
shown in Fig 5.7. DM stands for the dark matter candidate, and SM for the Standard
Model particle. The colliders search for the DM production in ordinary matter
collisions. Direct detection experiments try to observe dark matter and ordinary
matter scattering events. Finally, the indirect searches look for the Standard Model
particles produced in dark matter decays and annihilations.

DM

DM

SM

SM

Colliders

Indirect detection
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FIGURE 5.7: Different approaches to
look for dark matter.

The collider searches have been performed
at such high-energy colliders as the Tevatron at
Fermilab [178] and LEP and LHC at CERN [179].
The latter provided the most stringent limits
for dark matter [180]. The dark matter particles
do not leave a track in the detector and thus
cannot be reconstructed directly. Instead, the
observables of missing transverse momentum
and energy are introduced. The distribution
of the number of events as a function of the
missing transverse energy can be modelled for
the Standard Model employing event generators
and perturbative QCD calculations. The differ-
ence between expected and observed distributions provides limits for the number
of events which could be related to dark matter and constitute a model-independent
measurement [181]. However, further constraints on specific dark matter candi-
dates and comparisons to the results from direct detection experiments also require
calculating the dark matter interactions, which is strongly model dependent. More
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details about the search for dark matter by the ATLAS Collaboration can be found
in Ref. [181] and by the CMS Collaboration in Ref. [182].

Both direct and indirect dark matter searches take advantage of the ex-
pected dark matter halo of the Milky Way. The direct detection experiments

FIGURE 5.8: Dark matter exclusion plot based on direct
detections experiments [10].

try to detect dark matter par-
ticles via the nuclear recoils
caused by elastic dark mat-
ter scattering [183]. Such ex-
periments quantify the effect
by measuring the rate and
the energies of the nuclear re-
coils. The recoil energies for
an assumed dark matter parti-
cle with a mass of 10-1000 GeV
are expected to be around 1 -
100 keV [184]. Thus detectors
sensitive to keV signals are re-
quired. The event rate depends
on the local dark matter den-
sity, dark matter mass, dark matter - nucleus elastic scattering cross section and dark
matter speed distribution in the detector frame. The direct detection experiments
usually provide the exclusion limits in the interaction cross section - dark matter
mass plane, while the rest of the components are constrained by astrophysical ob-
servations (which introduce large uncertainties) [184]. Such studies are susceptible
to background events related to cosmic rays, environmental gamma-ray radiation,
cosmogenic neutrons, neutrinos, and traces of radioactive materials in the detectors
themselves. Current state-of-the-art detectors manage to measure these keV scale
signals and reduce the background effects enough to provide very stringent limits
on the dark matter mass and interaction cross section with nucleons, as shown in
Fig. 5.8. In this example, the exclusion limits are provided for WIMP particles. The
most recent measurement, published by XENONnT, improved the sensitivity with
respect to XENON1T (red line in Fig. 5.8) by a factor of 1.7 at a WIMP mass of 100
GeV and brought the limit on WIMP-nucleon cross section even lower [185].

FIGURE 5.9: Compilation of constraints on the
dark matter particles from some gamma-ray experi-
ments [186].

The indirect dark matter
searches look for the Standard
Model particles produced in
dark matter decays and annihi-
lations in our Galaxy, especially
gamma-rays, neutrinos and
antimatter. Such experiments
provide the constraints in dark
matter annihilation cross sec-
tion - dark matter mass plane.
The gamma-rays and neutrinos
traverse the Galaxy unaffected
by the galactic magnetic field
and thus can be traced back
to the origin. The gamma-ray
searches are usually directed
to the nearby dwarf spheroidal
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galaxies, which contain a tiny amount of gas and generally do not have any
significant astrophysical background in the relevant frequencies [186]. Another
good observation point is the inner region of the Milky Way, as it should host a large
amount of dark matter and is nearby; however, the galactic centre is very bright
and limits precise signal extraction [187]. Also, other targets for the gamma-ray
observations are used for indirect dark matter searches [10]. A compilation of the
provided constraints on the dark matter annihilation via some of the gamma-ray
data is shown in Fig. 5.9; however, such measurements can be used to constrain
both annihilation [188] and decay [189] processes.
The neutrino signals are interesting as they are the only messenger to look for
dark matter accumulated in dense objects such as the Sun or the Earth. However,
neutrino detection poses a significant technological challenge as they interact
very weakly with matter and thus are hard to detect. Also, the neutrinos from
other galaxies constitute a possible channel for dark matter searches. More about
neutrinos as a probe for dark matter searches can be found in Ref. [170].

FIGURE 5.10: Positron flux measured by AMS-02. Fig-
ure adapted from Ref. [190].

The antimatter cosmic rays
are strongly affected by the
magnetic fields in the Galaxy
and interactions with the
interstellar gas. Thus they
cannot be traced to their ori-
gin. The possible probes, in
this case, are the positrons,
antiprotons and antinuclei.
So far, only positron and
antiproton fluxes have been
measured. In the case of
the positrons, an excess was
observed by PAMELA [191],
which was later confirmed by
Fermi-LAT [192] and AMS-02
experiments [193]. The positron flux observed by AMS-02 is shown in Fig. 5.10
as red points. The positron flux expected from cosmic ray collisions with the
interstellar medium is shown as the grey region. The purple area corresponds to
an additional source required to explain the data. Such an additional source has
been initially interpreted as a dark matter signal; however, astrophysical sources,
such as nearby and young pulsars or supernova remnants, have also been shown to
reproduce the measured positron spectra [194]. The interpretation of the source at
high positron energies as a dark matter component is also challenged by the missing
signal in the measured antiproton spectrum. Indeed, if the positrons stem from dark
matter, a similar signal would also be expected for other antimatter cosmic rays.
Thus the interpretation of positron data requires the dark matter to be leptophilic
and decay or annihilate predominantly into leptons. However, the list of proposed
solutions to explain the measured flux is long [195–198] and thus the excess does
not provide conclusive evidence for dark matter searches. While the measured
antiproton flux did not include the significant signal expected from the positron
observation, it also invoked extensive discussions in the field. State-of-the-art mod-
elling suggests that a slight excess in the antiproton-to-proton flux ratio at around
10 GV rigidity is observed, as shown on the left panel of Fig. 5.11 [199]. The purple
points represent the antiproton-to-proton flux ratio measured by AMS-02 [200], the



106 Chapter 5. Introduction to dark matter and cosmic ray antinuclei

solid line corresponds to the state-of-the-art modelling of the expected ratio from
ordinary processes in the Galaxy and the dark and light grey bands show the 1 and
2σ uncertainty bands. The lower panel shows the ratio of data versus the model.
The excess observed at around 10 GV is small compared to the model uncertainties.
The authors of Ref. [199] also evaluated the limits for the thermally averaged dark
matter annihilation cross section and the dark matter mass, as shown on the right
panel of Fig. 5.11. The upper limit is shown as the solid black line, while the most
preferred parameter space if the excess is interpreted as dark matter, is shown by the
red regions. The dashed blue and green lines correspond to the limits obtained from

FIGURE 5.11: Left: Antiproton-to-proton cosmic ray flux ratio mea-
sured by AMS-02 (pink points), ratio expected from antiproton pro-
duction in cosmic ray collisions with the interstellar medium (dashed
line), the tertiary component of the ratio (dotted-dashed line) and the
total expected ratio from ordinary processes in the Galaxy (solid line).
Right: Extracted limits on the dark matter masses and annihilation
cross sections. Both figures are taken from Ref. [199].

gamma-ray measurements of dwarf galaxies, and the black dashed lines correspond
to the mentioned thermal value of the annihilation cross section expected from the
current abundances of dark matter in the Universe. While such a study is relevant
to constrain dark matter parameters, the observed excess in antiproton-to-proton
ratio cannot be seen as a ultimate dark matter signal. It becomes apparent that
a cosmic ray probe with a much higher signal-to-background ratio is required to
provide a "smoking-gun" signal.

The cosmic ray antinuclei have yet to be measured; however, there are a lot
of ongoing studies to estimate the expected fluxes. The state-of-the-art predic-
tions for cosmic ray antideuteron and antihelium fluxes suggest that such measure-
ments would have a very high signal-to-background ratio at low energies. The
following Chapters will explain how the antinuclei flux from dark matter anni-
hilations and the cosmic ray collisions with the interstellar medium can be esti-
mated. In the last decades, there have been numerous efforts to predict antinu-
clei fluxes, for example, Refs. [201–205]. One such study is shown in Fig. 5.12.
The black dashed line depicts the predicted background flux, while the three red
lines represent the fluxes expected from dark matter annihilation, assuming dark
matter masses of 50, 100 and 500 GeV (ordered by decreasing flux). Indeed,
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the signal-to-background ratio reaches even several orders of magnitude for the
lower dark matter mass assumptions. In the shown study, no uncertainties have
been provided. However, such studies have significant uncertainties as they re-
quire experimental constraints on antinuclei production mechanism, antinuclei in-
teraction with matter, propagation of cosmic rays in the Galaxy, information on
dark matter distributions, annihilation cross section, and so on. The available
predictions so far use different antinuclei production cross sections, propagation
models, and different values for describing parameters related to dark matter.

FIGURE 5.12: Cosmic ray antideuteron flux
predicted for dark matter annihilation (red
lines) and from the cosmic ray collisions
with the interstellar medium (black dashed
line) [201].

It is hard to compare the predicted
fluxes and influence of the different
models, as most of the time, for ex-
ample, both the employed production
cross section and the propagation mod-
els are different. Also, none of the ex-
isting predictions uses data-driven es-
timates for the antinuclei interactions
with the interstellar medium, as no
measurements of inelastic antinuclei-
matter cross sections were available. In
this thesis, we revise the predictions
of antideuteron and antihelium-3 fluxes
stemming from cosmic ray collisions
with the interstellar medium by includ-
ing, for the first time, data-driven es-
timates of the antinuclei inelastic cross
sections. For this purpose, we im-
plemented the antinuclei propagation
in GALPROP. In the case of the an-
tideuteron studies, we also used a unified propagation scheme to test several dif-
ferent production models, allowing us to provide a realistic estimate of the uncer-
tainty on the cosmic ray fluxes. The propagation uncertainties were also estimated
using different propagation parameter sets in GALPROP. We also obtained the sec-
ondary antihelium-3 flux. For both antinuclei secondary fluxes, we estimated the
transparency of the Galaxy to the propagation of such cosmic rays.

Experiments searching for cosmic ray antinuclei

As the signal-to-background ratio for antinuclei fluxes is expected to be at least a
few orders of magnitude at low energies, even detecting one or a few cosmic an-
tideuterons and antihelium would be a potential breakthrough. However, as the
cosmic ray antinuclei fluxes are tiny, such experiments require detectors with large
acceptance, long measurement time, and high particle identification power. The
BESS experiment collaboration [206] provided so far the best exclusion limits for
cosmic ray antideuterons.
The AMS-02 experiment on the International Space Station is also trying to measure
antinuclei; however, already recorded data analysis is ongoing. Interestingly, sev-
eral antihelium candidate events were reported by AMS-02 Collaboration with an
approximate rate of around one antihelium event per year. 2 Such a rate is higher
than expected, especially due to the relatively high energies of detected candidates.

2Presented preliminary results by AMS-02 in MIAPP workshop 2022.

https://indico.ph.tum.de/event/6990/contributions/4988/attachments/3947/4992/Zuccon_miapp.pdf
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While these results are not yet published and undergoing analysis checks, the men-
tioned candidates spiked theoretical interests in the possible origin of such antinu-
clei, ranging from dark matter to anti-clouds [207, 208].
Another candidate to measure the antinuclei fluxes is the upcoming balloon-borne
experiment GAPS dedicated to low-energy cosmic antinuclei search and is expected
to have its first flight by the end of 2023 [162, 209, 210]. GAPS has a specific ap-
proach to identifying the low-energy antinuclei by employing an exotic atom tech-
nique which should result in high-precision particle identification capabilities. Fi-
nally, there is a new generation magnetic spectrometer experiment proposed, called
AMS-100. 3 If the experiment is funded and developed, it will result in a 40 t detector
system which will require to be launched by a rocket and reside in Lagrange Point 2.
The projected sensitivities suggest that such an experiment would be able to not only
detect the few antinuclei candidates but also provide high precision measurements
of antideuteron and antihelium fluxes.
As shown by the above examples, experimental indirect dark matter searches using
cosmic ray antinuclei are very active. Thus the theoretical and phenomenological
studies of the cosmic ray fluxes are very timely.

5.2 Cosmic rays

Cosmic rays are charged particles traversing the Galaxy. They mainly com-
prise protons (around 90%), helium (around 9%) and heavier elements. The cos-
mic ray energies span a range up to 1011 GeV as shown in Fig. 5.13. Here
a compilation of available data on all cosmic ray species is shown. The spec-
tral shape of observed cosmic rays has two breaks, so-called knee at around
106 GeV and ankle at around 109 GeV. It is generally believed that cos-
mic rays up to the knee energy are produced in the Galaxy. In contrast,
the cosmic rays above the ankle energies are expected to be extra-galactic.

Knee

Ankle

FIGURE 5.13: Overview of energy spectra of
all cosmic ray particle species. Adapted from
Ref. [211].

The most convincing origin of galactic
cosmic rays are shock waves associated
with supernova remnants (SNR). The
hypothesis that cosmic rays originate
from shock waves propagating through
the interstellar medium was proposed
already in 1978 [212, 213], based on the
first-order Fermi acceleration mecha-
nism. Such a mechanism for cosmic ray
production would lead to several sig-
natures, for example, the synchrotron
radio emission of accelerated electrons,
which has already been detected at SNR
shock fronts [214]. However, the rate
of supernovae in our Galaxy is around
2 per century, and, to obtain the ob-
served spectra, the SNRs should trans-
fer around 10-20% of their energy to cos-
mic rays [215]. Recently it was shown
that one of the observed supernovae
could be such an efficient accelerator for

3Motivation and technical design of AMS-100 has been presented in CERN detector seminar.

 https://indico.cern.ch/event/1210735/
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cosmic rays [215]. Pulsars and pulsar wind nebulae have also been considered pos-
sible cosmic ray accelerators [216].
Cosmic rays produced in such astrophysical processes are referred to as primary.
There is also a relevant secondary cosmic ray component, consisting of cosmic rays
produced in heavier cosmic ray fragmentation events or collisions with the inter-
stellar medium. The tertiary component - cosmic rays inelastically scattered in inter-
stellar medium without annihilating but that can lose a fraction of their energy - are
more relevant at low energies.
In the case of the indirect dark matter searches, kinetic energies of around 0.1-
100 GeV are of interest. As mentioned, the secondary cosmic ray antinuclei con-
stitute the background to such studies and thus must be understood well. Their
production in the Galaxy depends on the number of collisions of cosmic rays with
the interstellar medium and at what energies those collisions happen. Thus, under-
standing also primary cosmic rays and their transport in the Galaxy is necessary.

5.2.1 Cosmic ray transport

The galactic magnetic fields mainly drive the cosmic ray propagation in the Galaxy;
however, effects from possible galactic winds are usually also considered [217]. For
particular particle species, the cosmic ray flux can be described by the Fokker-Planck
transport equation

∂ψ

∂t
=Q(r, p) + div (Dxxgradψ − Vψ) +

∂

∂p
p2Dpp

∂

∂p
ψ

p2

− ∂

∂p

[
ψ

dp
dt

− p
3
(div · V)ψ

]
− ψ

τ
,

(5.2)

where ψ = ψ(r, p, t) is the time-dependent cosmic-ray density per unit of the total
particle momentum at position r. The source term of the cosmic rays is denoted
as Q(r, p) and can include primary particles injected by SNRs, secondaries com-
ing from spallation and cosmic-ray collisions with the interstellar medium but also
dark-matter annihilation and other exotic sources. Dxx, V, and Dpp are the spatial
diffusion coefficient, the convection velocity, and the diffusive re-acceleration coef-
ficient, respectively. The last term ψ/τ accounts for processes that result in a parti-
cle loss: decay, fragmentation and inelastic interactions in the interstellar medium.
The transport equation is time-dependent, and the steady-state solution is usually
needed. The propagation describes changes in momentum and coordinate space
and is defined by the propagation parameters shown in pink in Eq. 5.2. The pro-
cesses involved in propagation are diffusion, convection, diffusive re-acceleration
and energy losses in the medium. Only continuous momentum losses are treated
with this equation, and thus if catastrophic momentum losses must be included, it
has to be done via the ψ/τ term [217]. The previous Chapter mentioned such a case
as a tertiary component of cosmic rays. In the following, we introduce all relevant
terms in the transport equation.

Source functions

The source function for primary particles depends on the source distribution in the
Galaxy (which usually follows SNRs), the momentum injection spectrum of the spe-
cific cosmic ray species, and their abundance. Astrophysical and cosmic ray mea-
surements can constrain the source distributions and abundances. The injection
spectrum can be parametrised as power-law in momentum p−α, and usually, few
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regions in momentum with different spectral index α are assumed. The spectral in-
dexes are also considered as a fit parameter in cosmic ray models.
The source of secondary cosmic rays, such as antinuclei, is defined as

Qsec
N

(
r, EN

kin

)
= ∑

i
∑

j
4πnj(r)×

∫ ∞

Ei
kin, min

dEi
kin

(
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ij
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(
r, Ei

kin

)
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where N denotes the antinuclei, i stands for the cosmic ray species which collide
with the interstellar medium gas j. The most relevant systems for antinuclei produc-
tion in cosmic ray collisions are p–H, He–H, p–He, He–He. p–p and p–He collisions
are also relevant to some extent [202]. The gas distributions are denoted as nj(r).
The cosmic ray act as a projectile of kinetic energy Ei

kin with the flux ψi
(
r, Ei

kin

)
.

The number of gas and cosmic ray particles determine the number of collisions.
dσprod/dEN

kin denotes the differential production cross section for antinuclei. In
principle, all components required to estimate the secondary cosmic ray flux can be
constrained using experimental data. However, light (anti)nuclei production is a
poorly understood process and thus extrapolation of the available data to required
collision energies for cosmic ray studies results in large uncertainties. The work
presented in this thesis will evaluate realistic uncertainties depending on the chosen
production model. The light (anti)nuclei production models are introduced in
Chapter 5.3.

Also, more exotic sources such as dark-matter annihilation [172] or anti-
stars [207, 218] can be considered. In this work, we focus on indirect dark matter
searches and will consider only the dark-matter scenario. The secondary antinuclei
fluxes obtained in this thesis will be compared to antinuclei fluxes stemming from
dark matter annihilation presented in Ref. [159].
The source function for antinuclei produced in dark matter annihilation is

QDM,ann
N
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r, EN

kin

)
=

1
2

(
ρ(r)
mDM

)2

⟨σv⟩ f
dNN

f

dEN
kin

, (5.4)

where ρ(r) is the dark matter density as shown in Fig. 5.4, mDM - the dark matter
mass, ⟨σv⟩ f - the thermally averaged dark matter annihilation cross section and
dNN

f /dEN
kin is the antinuclei production spectra in one dark matter annihilation

event.

Diffusion

The diffusion of cosmic rays is driven by their interaction with turbulent mag-
netic fields in the interstellar medium, which is sufficiently ionised to behave as
plasma [219]. The magnetohydrodynamic (MHD) theory can describe such a process
mathematically. Most authors studying cosmic ray propagation consider the Alfvén
waves, low-frequency oscillation of ions and magnetic field traversing the plasma.
It was proposed in 1968 that the cosmic ray scattering by resonant Alfvén waves and
discontinuities is responsible for the cosmic ray confinement in the galaxy [220]. The
spacial diffusion parameter Dxx in the transport equations can be related to the total
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magnetic field and also the properties of the formed MHD waves. Dxx is propor-
tional to a power law of the cosmic ray particle rigidity R = p/c as Dxx ∼ Rδ. The ex-
ponent δ depends on what turbulence of the galactic magnetic field is assumed. For
example, δ equals 1/3 under the Alfvén wave assumption; however, more isotropic
waves could result in 1/2 [217]. Determining the actual diffusion coefficient for our
Galaxy has to be done employing an empirical model fitted to the available cosmic
ray flux measurements. The secondary-to-primary ratio is, in general, an essential
probe for propagation models. As shown in the following Chapters, the primary
cosmic ray spectra have been measured to high precision. Also, the gas distribution
in the Galaxy is relatively well known, and the secondary particle production cross
sections can be measured in accelerator facilities. All these components are required
to constrain the secondary particle production in the Galaxy. Thus the resulting
secondary-to-primary flux ratio is determined only by the propagation model.

Convection

Another possible mechanism for cosmic ray propagation is the convection due to
galactic winds. Galactic winds have been observed in many other galaxies; how-
ever, their existence in Milky Way is partially questioned. The total thermal pressure
in the spiral galaxies, such as the Milky Way, is expected to be not high enough to
form galactic winds. Nevertheless, it has been shown that cosmic rays can also con-
tribute to the formation of galactic winds via their coupling to the thermal plasma
and essentially pushing the plasma against the gravitational pull [221]. Thus, the
cosmic ray propagation might be driven by diffusion in the galactic disk, but the ad-
vective component dominates in the galactic halo. The strength of the convection is
determined in the transport equation by the convection velocity V, which is usually
considered as a fit parameter in cosmic ray models. The term div · V accounts for
the adiabatic momentum gain or loss related to the scattering off inhomogeneities in
the galactic magnetic field during the movement caused by convection.
Such a transport component has been shown to help explaining the observed energy
dependence of the secondary-to-primary flux ratios and radioactive isotopes [217].

Re-acceleration

The cosmic ray scattering off the randomly moving MHD waves can also result in
stochastic acceleration. While the cosmic rays would gain energy in such a process,
the MHD turbulence would lose energy. The rigidity dependence of the diffusion
coefficient thus would also be affected by such a process at low rigidities. The re-
acceleration effects are expected to be relevant at energies of around 1 GeV [217]. The
effect of re-acceleration in the transport equation is expressed via the diffusive re-
acceleration coefficient Dpp which is quadratically proportional to so-called Alfvén
velocity, which is the characteristic velocity of disturbances traversing in the mag-
netic field. The Alfvén velocity is usually treated as a free fit parameter in cosmic ray
propagation models. It has also been shown that the re-acceleration component of
transport can help to explain the energy dependence of secondary nuclei in cosmic
rays [217].

Energy loss

Possible energy losses are included via dp/ dt term to account for ionisation and
Coulomb interactions in the case of nucleons [222]. Bremsstrahlung, inverse Comp-
ton, and synchrotron radiation play a crucial role for electrons.
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Particle loss

The particle losses of generic cosmic ray nuclei can occur via decay, fragmentation
and inelastic interactions in the interstellar medium. The particle loss is determined
by the 1/τ term in the transport equation and depends on fragmentation and decay
rates, the inelastic cross section and the gas distribution in the Galaxy. In the case
of the studied cosmic ray antinuclei, this component includes only the inelastic in-
teraction term. Including the data-driven inelastic cross section for interactions of
antinuclei with the interstellar medium is a core part of the work presented in this
thesis. The value of 1/τ for antinuclei can be determined as

1
τ
= βc

(
nH(r)σ

Np
inel (p) + nHe(r)σN4He

inel (p)
)

, (5.5)

where βc is the velocity of cosmic ray particles, nH(r) and nHe(r) are the densities of

hydrogen and helium gas, and σ
Np
inel (p) and σN4He

inel (p) are the inelastic cross sections
for corresponding interactions. The distribution of the gas can also be determined
by experimental data, as shown in the next Chapters.

The cosmic ray transport equation can be solved analytically or numerically.
Usually, the numerical solvers are tested by reproducing the simple case scenar-
ios, which are solvable with an analytical approach. There are three main codes
which are available to solve the cosmic ray propagation: GALPROP[222, 223],
DRAGON [224] and PISCARD [225]. In this thesis, we chose to use the GALPROP
code; thus, only this model will be discussed in details.

5.2.2 GALPROP

GALPROP is a numerical code which solves the transport equation and provides
cosmic ray fluxes for different particle species. The code is publicly available. 4 The
GALPROP version 56 was used in this work. GALPROP uses available astrophysi-
cal and nuclear physics data to incorporate as much realistic physics as possible, for
example, the distributions of the gas or cosmic ray sources in the Galaxy. In the fol-
lowing, we will describe how different components necessary to solve the transport
equation are included in GALPROP.

Galaxy and cosmic ray halo

z

r

FIGURE 5.14: Sketch of the Galaxy
approximation in GALPROP as a
cylinder.

Cosmic rays propagate in the galactic disk and,
eventually, they leave the Galaxy, filling a region
known as the cosmic ray halo. This halo also acts
as a boundary, where cosmic rays escape into in-
tergalactic space. It has a vertical extent of a few
kpc, and cosmic rays are expected to reside there
for around 10-100 Myr [159]. In GALPROP, our
Galaxy is approximated as a cylinder, as shown
in Fig. 5.14. Where the inner cylinder depicts the
galactic disk, and the pink cylinder corresponds
to the cosmic ray halo. We used the 2D solver in
GALPROP, which defined the Galaxy in z and r
coordinate system, as shown in Fig. 5.14, and assumes the galaxy to be rotationally

4https://galprop.stanford.edu/
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symmetric around the galactic centre. The halo height zh and radius of such halo
R are parameters of the model. The halo height must be fitted such that GALPROP
could reproduce measured cosmic ray fluxes while R does not have a huge influ-
ence on the secondary fluxes and is assumed to be around 20 kpc. As mentioned,
the propagation parameters are best constrained by the secondary-to-primary ra-
tio. However, such observable is sensitive only to the ratio zh/Dxx and thus is not
sufficient to constrain the zh and Dxx values separately. For antinuclei fluxes stem-
ming from cosmic ray collisions with the interstellar medium, this parametrisation
is sufficient since those are also secondary and thus sensitive only to the grammage
- column of matter traversed [159]. However, the halo height zh becomes relevant
for studying radioactive species or fluxes stemming from dark matter annihilation.

Gas distribution

FIGURE 5.15: Ionised (HII), molecular (H2)
and neutral (HI) hydrogen gas distributions
implemented in GALPROP [226]. The three
lines, shown for every form of gas, represent
distributions at different z values in decreas-
ing order: 0.0, 0.1, and 0.2 kpc.

Around 90% of the gas is hydrogen, 9%
helium and 1% heavier elements [211].
Hydrogen contributes in three forms -
neutral, molecular and ionised. Neutral
hydrogen can be mapped in the Galaxy
by detecting the 21 cm hyperfine line.
The molecular hydrogen in the Galaxy
is cold, and there are no emission lines
in optical and radio bands. Thus direct
detection of such gas is complicated;
however, the molecular hydrogen can
be traced by CO molecules. Finally, the
ionised hydrogen can recapture an elec-
tron and become again neutral, emit-
ting a photon. The gas distributions
implemented in GALPROP are based
on such measurements and shown in
Fig. 5.15 [226]. Most gas is in molecular
(H2) and neutral (HI) forms. Both dis-
tributions peak nearby the solar system
(around 8.5 kpc), meaning that many
antinuclei are produced in the local en-
vironment.

Primary cosmic ray source distribution

As introduced earlier, SN explosions are believed to be the leading primary cosmic
ray source via the acceleration by shock waves. Thus the source distribution should
follow the distribution of SNRs in the Galaxy. In GALPROP, it is implemented ac-
cordingly to the measured pulsar distribution in the Galaxy, which is used as a tracer
for the SNRs [227]. It is done so because there are more available observations of pul-
sars, and their distances are measured more precisely.

Solar modulation

GALPROP provides cosmic ray fluxes outside the solar system, which are called in-
terstellar flux. However, most of the cosmic ray experiments are conducted inside
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the heliosphere, where cosmic rays get affected by the solar winds and the magnetic
field of Sun. These are not constant and have an 11-year cycle, with the polarity
reversing every 22 years. Solar activity can be measured and followed in time in
two anticorrelated ways - sunspot number and neutron monitoring. However, in a
perfect case scenario, the experiments searching for antinuclei would have their mis-
sions during the solar minimum, when solar magnetic field is the weakest. Thus, for
the cosmic ray antinuclei predictions, minimum solar modulation is usually applied.
Solar modulation can be represented by a random walk, a Markov process that
can be described employing Fokker-Planck equations. Parker first proposed such
treatment in 1965, introducing the so-called Parker transport equation [228]. The
most sophisticated numerical way to solve the Parker equation is the HELMOD
code [229]; however, the public version does not include antinuclei. Another ap-
proach to account for solar modulation is the so-called Force-Field approximation
suggested by Gleeson and Axford [230]. It works only under certain assumptions,
cannot be trusted at very low energies and is charge-sign and polarity independent.
While more sophisticated models are required, for example, to explain the very pre-
cise AMS-02 data, the solar modulation effect is sufficiently mimicked for the pre-
dictions of cosmic ray antinuclei studies, where many other significant modelling
uncertainties are involved. The Force-Field approximation has only one parame-
ter, the so-called Fisk potential ϕ, and the modulated flux can be obtained from the
interstellar flux as

ψ (Ekin, ϕ) = ψLIS
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)
Ekin (Ekin + 2m)(
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) (
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Ze
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) , (5.6)

where ψ denotes the modulated flux and ψLIS corresponds to the local interstellar
flux (LIS), which in our case is obtained from GALPROP; Ze is the charge of the
particle. Regarding the solar minimum, the Fisk potential value is around 0.4-0.5 GV.
This work will use the Force-Field approximation to compare the obtained antinuclei
fluxes to the sensitivity limits of experiments that plan to measure antinuclei.

Antinuclei

Antinuclei are not implemented in the official GALPROP version 56. Thus we had
to implement them ourselves. The propagation part is the same for all cosmic ray
species and thus does not require any modification. However, the source functions
had to be implemented, including production cross sections and the inelastic cross
section of antinuclei interaction with the interstellar medium. The experimental con-
straints on the cross sections are presented in the next Chapter.

Benchmarks and GALPROP parameters

The GALPROP model has many parameters which have to be fitted. Such fits are
not part of the work presented in this thesis; instead, we used and compared the
state-of-the-art parameter sets available in the field. In this Chapter, we present the
relevant data to constrain propagation models together with the available studies
which provide the best estimates of GALPROP parameters.
Cosmic ray experiments can be separated into two main sectors: detectors outside
and inside the heliosphere. The Voyager program is the only experiment to date
with detectors outside the solar system - the twin spacecrafts Voyager 1 and Voyager
2, launched in 1977. Decades later, they provided the only measurements of low en-
ergy LIS fluxes of several species, including proton, helium, carbon and boron [231].
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This data is extremely relevant, as it is not affected by solar modulation and thus
allows to disentangle effects from the galactic and solar propagation. All other
experiments are inside the solar system and thus are affected by solar modulation
at low energies. The most precise data of cosmic ray fluxes at wide energy ranges
were provided by the Alpha Magnetic Spectrometer Experiment (AMS-02), which
resides on the International Space Station [232–237]. The AMS-02 Collaboration
is also trying to measure antinuclei fluxes. Another spacecraft, relevant for low

FIGURE 5.16: GALPROP fit to the available data performed by Bos-
chini et al. [238]. Dashed curves represent LIS flux, solid red lines - so-
lar modulated fluxes, blue and green points - data. Upper left panel:
Modelled boron-to-carbon ratio compared to AMS-02 data. Upper
right panel: Modelled proton flux compared to AMS-02 data. Lower
panel: Modelled cosmic ray fluxes for a range of nuclei compared to
Voyager 1 data.

energy cosmic rays, is called Advanced Composition Explorer (ACE) and has an
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onboard Cosmic-Ray Isotope Spectrometer (CRIS). 5 It operates in an orbit close to
the L1 Lagrange point between Sun and Earth. At high energies, the High Energy
Astronomy Observatory Program (HEAO) provided precise data for different nuclei
species [239]. Also, more experiments provide cosmic ray fluxes used to constrain
propagation parameters: CREAM-I [240], PAMELA [241] and others.

The fits of GALPROP parameters to the available data have been performed by
Boschini et al. [238] and Cuoco et al. [199]. While Boschini et al. used HELMOD
for solar propagation, Cuoco et al. used the Force-Field approximation. Another
difference between the two studies is the data used to perform the fit and validate
the results. Boschini et al. included all nuclei up to Z≤28 in the fit. We show their
obtained results, as a benchmark of the GALPROP model, in Fig. 5.16. The up-
per left panel shows the boron-to-carbon ratio measured by AMS-02 (green points),
the LIS flux obtained with best-fit GALRPOP parameters (dashed black line) and
solar modulated flux employing HELMOD (red line). As mentioned before, the
secondary-to-primary ratio is the most sensitive observable to propagation parame-
ters and as shown in the figure, GALPROP can reproduce the shape very well. The
upper right panel shows results for proton flux, where blue points represent the
AMS-02 data. An excellent agreement between the measured and modelled fluxes
is observed. Finally, the lower panel shows cosmic ray fluxes measured for different
nuclei by Voyager 1 as blue and green points, while dashed lines represent the best-
fit results using GALPROP. These fluxes are measured outside the solar system, and
thus, good agreement between GALPROP and data ensures that the LIS fluxes are
modelled correctly. GALPROP has been show to also well reproduce the antiproton
fluxes with such propagation parameter values [242]. In our work, we use the re-
sulting parameter set from Boschini et al. [238] referred to as P-scenario.
Cuoco et al. had a different approach and fitted only the proton and helium fluxes
measured by AMS-02, CREAM and Voyager and the antiproton-to-proton ratio mea-
sured by AMS-02. They also performed the fits, including and excluding the dark
matter component; however, such studies would provide propagation parameters
specific to the employed dark matter model. Thus, our study uses their best-fit val-
ues without the dark matter component. The authors published only the antiproton-
to-proton ratio results, already shown in the left panel of Fig. 5.11.

Parameter Units Boschini et al. Cuoco et al.
zh kpc 4 6.78
D0 cm2 s−1 4.3×1028 7.48×1028

δa 0.415 0.361
Valf km s−1 30 23.8
Vconv(z= 0 kpc) km s−1 0 26.9
dVconv/dz km s−1 kpc−1 9.8 0

TABLE 5.1: Propagation parameter values from Boschini et al. [238]
and Cuoco et al. [199].

The comparison of propagation parameters from the two studies is shown in
Table 5.1. The differences between the two sets will be discussed in detail in the next
Chapter, together with our results for cosmic ray antideuterons.

5Data is publicly accessible on https://izw1.caltech.edu/ACE/ASC/level2/new/intro.html.
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5.3 Antinuclei studies at accelerators

The cosmic ray antinuclei studies require experimental constraints on the antinuclei
production cross sections and the inelastic cross section with matter. The state-of-
the-art models and available experimental data are presented in this Chapter.

5.3.1 Light (anti)nuclei production

No first-principle calculations of light (anti)nuclei production following hadron col-
lisions exist, and the production mechanism is studied at the accelerator facilities
and usually interpreted utilising statistical hadronisation or coalescence models.
The thermal model assumes that particles are produced from a fireball, which is
described as hadron resonance gas in global chemical equilibrium. The abundances
of the final state hadrons are fixed at a sharp chemical freeze-out phase when all
interactions changing the hadrons yields cease [243]. The statistical hadronisation
model can successfully predict the yields of different hadrons and even light nuclei
for nucleus-nucleus collision from SIS18 [244] and AGS [245] to ALICE [243] ener-
gies. The chemical freeze-out temperature is a fit parameter in such models, and it
has been shown that the chemical freeze-out temperature is the same for hadrons
and light nuclei [246]. This is somewhat surprising, as it would mean that such
loosely bound objects as deuterons (with a binding energy of 2.2 MeV) would sur-
vive the hot fireball environment created at the high collision energies. Such a model
can also successfully predict some of the observables in pp collisions [247]. How-
ever, the thermal model provides only yields, while differential production cross
section as a function of the antinuclei energy or momentum is required in cosmic
ray studies. The transverse momentum distribution can be obtained employing the
blast-wave model, which is in agreement with Pb-Pb collision data [248]; however, it
fails for the p-Pb system [249]. In cosmic ray studies, the antinuclei production cross
section is also required at different collision energies, ranging from the production
threshold energy to a few TeV. The statistical hadronisation models have several pa-
rameters defining the system, for example, the chemical freeze-out temperature and
volume, which must be fitted to data for every collision system. So far, there is no
easy way to extract these parameters as a function of the collision energy. The last
two issues limit the usage of statistical hadronisation for cosmic ray studies. On the
other hand, the coalescence model provides the produced antinuclei spectra "natu-
rally". The coalescence model assumes that the nucleons are produced as degrees of
freedom, which coalesce to form a bound nucleus if the nucleons are close enough
in phase space. There are so-called simple coalescence models and advanced coales-
cence models. The latter has been shown to reproduce the antideuteron transverse
momentum spectra in pp collisions at the LHC without fitting it to the spectra [250].
There are ongoing debates if one of the models - statistical hadronisation or coa-
lescence - describes the fundamental antideuteron production mechanism. Several
studies are trying to compare the two models employing different observables, and
in many cases, both models perform similarly well [251]. However, new experi-
mental observables are also being suggested, which are more sensitive to the two
production mechanism assumptions [252]. In the following, only the coalescence
models are discussed further as they are used in our work.
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Simple coalescence model

The simple coalescence model implies that if an antiproton and an antineutron are
produced in a collision with relative momentum smaller than the so-called coales-
cence momentum p0, they form an antideuteron. The same principle holds for heav-
ier antinuclei, but the relative momentum between all nucleon pairs must be smaller
than the p0 value. Due to a lack of underlying physics, this parameter must be ob-
tained from fits to data. What accelerator experiments usually measure are the mo-
mentum spectra of the particles. Within the coalescence picture, the nucleon spectra
(d3Np/ dP3

p , d3Nn/ dP3
n) can be related to the nuclei spectrum (d3NA/ dP3

A) by the
following relation [202]

EA
d3NA

dP3
A

= BA

(
Ep

d3Np

dP3
p

)Z (
En

d3Nn

dP3
n

)N
∣∣∣∣∣∣

Pp=Pn=PA/A

, (5.7)

where EA, Ep, En are the energies of nuclei, proton and neutron with corresponding
momentum PA, Pp, Pn; A is the mass number for nuclei of interest, while Z and
A are the proton and neutron numbers, respectively. Finally, BA is the so-called
coalescence parameter, which can be related to the p0 parameter, assuming isotropic
nucleon yields, as

BA = A
(

4π

3
p3

0
mN

)A−1

. (5.8)

The nucleon spectra in Eq. 5.7 must be known to model the nuclei spectra. As in
cosmic ray studies, we are interested in antinuclei production within a wide range
of collision energies; such nucleon spectra could not be possibly measured at all
collision energies of interest. Thus, the event generators are employed to infer nu-
cleon spectra at energies without available data. However, such a model is extremely
simplistic, not including the momentum correlations. Thus, the event-by-event coa-
lescence is employed instead of using the factorised coalescence model and Eq. 5.7.
In such a case, an event generator simulates collisions and nucleons are produced.
Then a coalescence afterburner is implemented, which checks on an event-by-event
basis if the relative momentum between nucleons is smaller than p0. However, one
must ensure the particle production and momentum correlations are correctly im-
plemented in the employed event generator. In some studies, the relative distance
between nucleons is also checked in the event-by-event coalescence.
The event-by-event coalescence, checking only for the relative momentum, has
been implemented by Shukla et al. [204] and employed to predict antideuteron and
antihelium-3 cosmic ray fluxes stemming from cosmic ray collisions with the in-
terstellar medium. In Shukla et al., the EPOS-LHC [253] event generator was em-
ployed, which has been proven to reproduce the available measured nucleon spectra
the best [254]. The authors found that to reproduce the best available antideuteron
data, the coalescence momentum p0 must be parametrised as a function of collision
energy. While the p0 value should not be energy dependent, the different collision
energies result in different collision system sizes, which can impact the probability
for nucleons to coalesce [202]. The function used for antideuterons in Refs. [204, 254]

p0 =
A

1 + exp(B − ln(Ekin/GeV)/C)
, (5.9)
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where A, B, C are parameters. The best-fit result showed that the p0 value saturates
at high energies and equals 179.2 MeV. Once Shukla et al. constrained their coales-
cence model to the available antideuteron data from lower energy collisions, they
validated it employing ALICE data. Their obtained results are shown in Fig. 5.17.

FIGURE 5.17: Left: Number density of antideuterons as a function
of transverse momentum measured by ALICE in pp collisions at

√
s

= 13 TeV (black circles) and prediction of coalescence model (blue
band). Right: Number density of antihelium-3 as a function of trans-
verse momentum measured by ALICE in pp collisions at

√
s = 7 TeV

(black circles) and prediction of coalescence model (blue band). The
bands are obtained by varying the coalescence parameter by plus
30%. Figures taken from Ref. [204].
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FIGURE 5.18: Differential antideuteron (left) and antihelium-3 (right)
production cross sections for different pp collision energies, shown as
different colour lines. Figures adapted from Ref. [204].
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The left panel compares the antideuteron number density, while the right panel
present the antihelium-3 case. The blue band corresponds to the Shukla et al. coales-
cence model predictions, with the coalescence momentum varied from the best-fit
value up to plus 30%. The model reproduces the ALICE data shown as black circles;
however, the chosen uncertainty is large. Once the model was validated, the au-
thors produced what is necessary for cosmic ray studies - the differential antinuclei
production cross section as a function of the kinetic energy per nucleon for different
pp collision energies. The obtained results are shown in Fig. 5.18. The antideuteron
results are shown in the left panel, while the antihelium-3 case is presented in the
right panel. The different colour lines represent different collision energies. We im-
plemented these differential production cross sections in GALPROP to predict the
cosmic ray antinuclei fluxes, following Eq. 5.3, as shown in Chapter 6.

Advanced coalescence model

Advanced coalescence models take into account the antinuclei wave function. The
antinuclei production spectra for deuterons can be expressed as [255]

d3Nd

dP3
d

=
S

(2π)6

∫
d3q

∫
d3rp d3rnD(r, q)Wnp

(
Pd/2 + q, Pd/2 − q, rn, rp

)
, (5.10)

where S is a statistical factor to take care of spin and isospin values of the two-
nucleon state and for deuteron equals to 3/8; D(r, q) is the Wigner function of the
internal deuteron wave function; Wnp

(
Pd/2 + q, Pd/2 − q, rn, rp

)
is the two-body

Wigner function of proton and neutron; Pd corresponds to the deuteron momen-
tum; rn, rp are the average positions of neutron and proton and q is half the relative
momentum between neutron and proton. In such formalism, the Wigner function
of neutron and proton depends simultaneously on relative momentum and distance
between the nucleons. However, usually, the factorisation of momentum and coor-
dinate space is assumed as

Wnp
(
Pd/2 + q, Pd/2 − q, rn, rp

)
= Hnp

(
rn, rp

)
Gnp (Pd/2 + q, Pd/2 − q) , (5.11)

where the coordinate-space component Hnp
(
rn, rp

)
is approximated to be a Gaus-

sian source, which, as explained in Chapter 1.5.1, is a valid assumption following the
femtoscopic studies. The momentum-space component Gnp (Pd/2 + q, Pd/2 − q) in
such models is obtained from Monte Carlo generators which also account for possi-
ble momentum correlations between neutrons and protons.
Kachelriess et al. described such a formalism in their recent publication [255]. The
coordinate-space component can be rewritten as Hnp

(
rn, rp

)
= h (rn) h

(
rp
)
, where

h(r) =
(
2πσ2)−3/2

exp
{
− r2

2σ2

}
, (5.12)

with σ being the only free parameter in the entire model. This parameter was es-
timated to be around 1 fm [255] but is used as a fit parameter. Kachelriess et al.
also used this model to study cosmic ray antinuclei fluxes [202]. They employed
two event generators, Pythia and QGSJET II, and fitted their model to available
antideuteron data, including ALICE measurements. The obtained best-fit results
compared to ALICE data are shown in Fig. 5.19. The blue circles correspond to the
differential antideuteron spectra measured by ALICE; the solid orange line - coa-
lescence prediction employing QGSJET II event generator; the red dotted-dashed
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line - results obtained with QGSJET II but including a weight applied on the an-
tiproton spectrum to improve agreement with the antiproton measurements; green
dashed line, shown only for

√
s=7 TeV energy collisions, shows prediction employ-

ing Pythia 8.23 event generator. QGSJET II results in a good agreement with data for
the lowest collision energy. As the collision energy increases, the QGSJET II can no
longer reproduce the antideuteron spectra at a high transverse momentum region.

FIGURE 5.19: Best-fit coalescence model results com-
pared to ALICE data. [202]. The details are provided in
the text.

However, as the authors show,
the discrepancy disappears
if the antiproton momentum
obtained from QGSJET II is
weighted to be in better agree-
ment with the antiproton data.
This shows that the coales-
cence model itself is not the
issue. The main improvement
of such an advanced model,
compared to the simplistic one,
is that only one σ parameter
value can explain data at dif-
ferent collision energies, the
model takes into account the
deuteron wave function and
the coordinate-space distribu-
tion of the produced nucleons.
Kachelriess et al. also calculated the differential antideuteron production cross
section for different collision energies. We employ their obtained results to estimate
the cosmic ray antideuteron fluxes, as shown in Chapter 6. A more detailed
comparison of the simplistic and advanced coalescence models will be provided
there.

5.3.2 Inelastic interactions of antinuclei with matter

The antinuclei produced in the galaxy might collide with the interstellar gas and dis-
appear. Such disappearance probability can be quantified by measuring the inelastic
cross section. Such measurements are usually performed in a fixed target experi-
ment with a beam of particles of interest. However, producing and manipulating a
beam of antinuclei is extremely complicated. There was a successful attempt in 1970,
where a 70 GeV accelerator was used to collide protons with an aluminium target to
produce antideuterons which were then directed to a target of interest [256]. How-
ever, the experiment measured only antideuterons with a momentum of 13.3 GeV/c.
The newest antideuteron inelastic cross section measurement was performed by the
ALICE Collaboration, using the detector itself as a target material [109]. ALICE also
measured the antihelium-3 inelastic cross sections, which have never been measured
before [110]. ALICE uses the antimatter-to-matter ratio method and the TOF-to-
TPC matching method. The former takes advantage of the primordial antimatter-to-
matter ratio reaching unity at the LHC energies [257], while the reconstructed raw
ratio is below unity, as the antinuclei and nuclei interact differently with the material.
The measured ratio can be used with Monte Carlo simulating the nuclei and antinu-
clei interactions with the detector to extract the antinuclei inelastic cross section. The
second method, TOF-to-TPC matching, is similar to a fixed target experiment. The
number of antinuclei is counted by the TPC detector, which is closer to the antinuclei
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production point. Then the antinuclei are counted by the TOF detector and some of
the antinuclei are lost in the TRD detector material, which is installed between the
TPC and TOF. The ratio of reconstructed antinuclei in both detectors can be again
used with the Monte Carlo simulations to extract the relevant inelastic cross section.
The antideuteron and antihelium-3 measured inelastic cross sections are shown in
Figs. 5.20 and 5.21, respectively.

FIGURE 5.20: Antideuteron inelastic cross sections measured by the
ALICE Collaboration [109]. The dashed and grey lines correspond
to the GEANT4 prediction. The black circles show the data while the
green and yellow bands represent 1σ and 2σ total uncertainty. Left
panel shows low momentum antidueteron measurements obtained
employing the ITS and TPC detectors, while the right panel shows re-
sults for higher momentum range obtained employing ITS, TPC and
TOF detectors.

Antideuterons can be identified employing the TPC only at low momentum (be-
low ∼2 GeV) while the TOF detector has high enough efficiency only at larger mo-
mentum range, see Figs. 2.6 and 2.7. The missing overlap between the momentum
range at which antideuterons can be identified with either of the two detectors pre-
vents one from using the TOF-to-TPC method. Thus, the antideuteron inelastic cross
section was measured only employing the antimatter-to-matter ratio method in pp
collisions. At large momentum, the antideuterons are reconstructed by requiring a
hit in the TOF detector, ensuring that all measured particles traversed the entire de-
tector up to TOF. The more material particles traverse, the more sensitive the mea-
surement to the inelastic interactions is. The result is shown in the right panel of
Fig. 5.20. The average traversed material was estimated to have charge and mass
numbers ⟨Z⟩ = 14.8, ⟨A⟩ = 31.8, respectively. However, the low-momentum parti-
cles usually do not reach TOF because of their curvature in the magnetic field and
the more significant probability of interacting inelastically. For the low momentum
particles, the antideuteron inelastic cross section was measured without the specific
requirement in the TOF, resulting in average material with ⟨Z⟩ = 8.5, ⟨A⟩ = 17.4,
as shown in the left panel of Fig. 5.20. In both cases, the solid and dashed lines
show the ratio expected from the Monte Carlo simulation, obtained employing the
GEANT4 simulations with full implementation of the ALICE detector (except the line
connecting the data points).

The antihelium-3 inelastic cross section was measured with both methods, as
such antinuclei can be very well identified employing the TPC at full momentum
range because of their double charge. The result published by ALICE for the inelas-
tic antihelium-3 cross section employing the antimatter-to-matter method is shown
in the left panel of Fig. 5.21. The low momentum region was measured without the
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FIGURE 5.21: Antihelium-3 inelastic cross sections measured by the
ALICE Collaboration [110]. The lines represent GEANT4 predictions,
black circles show the data, while yellow and pink bands corre-
spond to 1σ total uncertainty. Left: Results obtained employing the
antimatter-to-matter ratio method in pp collisions. Right: Results ob-
tained employing the TOF-to-TPC matching method in Pb-Pb colli-
sions.

TOF hit requirement (empty circle and arrow, averaged target material ⟨A⟩ = 17.4).
In contrast, results for the high momentum region were obtained with the TOF hit
requirement (average material ⟨A⟩ = 31.8). The right panel of the Fig. 5.21 repre-
sents the inelastic antihelium-3 cross section obtained with the TOF-to-TPC match-
ing method (average material ⟨A⟩ = 34.7).
The presented ALICE measurements employ the detector as a target material, result-
ing in a relatively heavy average target material. However, hydrogen and helium-4
are the primary targets in the interstellar medium. Thus the results obtained by
ALICE will have to be extrapolated to the lighter targets before implementing them
in GALPROP. Such procedure is described in Chapter 6.
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Chapter 6

Secondary cosmic ray antideuteron
and antihelium fluxes

A precise and data-driven estimation of expected secondary cosmic ray antinuclei
fluxes is necessary for indirect dark matter searches. While some ingredients can
be constrained by astrophysicists, such as the interstellar gas or supernova distri-
butions in our Galaxy, others must be measured in accelerator facilities on Earth.
The crucial ingredients for the secondary antinuclei fluxes are the propagation
model, the production cross section and the inelastic interaction cross section. The
propagation of cosmic rays in the Galaxy is a long-studied problem, and many
available models exist to solve the necessary transport equation. However, even
for the same codes, several different parameter sets can be obtained by fitting the
model to different selections of measured cosmic ray fluxes [199, 238, 258]. The
propagation parameters are related to the underlying processes thus the obtained
parameter values are related to different physics assumptions - is re-acceleration or
convection relevant for our Galaxy? Another relevant question is the production
cross section of light (anti)nuclei - there is no agreed-upon process for how the light
nuclei are formed. This results in many different models, ranging from statistical
hadronization to coalescence, which try to interpret the data from accelerator
experiments. While the models might explain the data equally well, they are
used in cosmic ray studies to extrapolate and interpolate the available data. Thus
it is essential to compare the uncertainties on the fluxes not only related to the
uncertainty of a specific model but also between the different models. Finally, the
inelastic cross section is required to know how many of the produced antinuclei
can reach the detectors at Earth without disappearing in the interstellar medium.
Up to recently, there were only very limited measurements for antideuterons and
no data at all for antihelium-3. Usually, a proton-antiproton inelastic cross section
scaling was used for the cosmic ray antinuclei predictions. However, evaluating the
uncertainty of the flux stemming from the inelastic cross section measurement is
essential, which is possible only if data is available. While the expected uncertainty
for the inelastic component is much smaller than the uncertainty stemming from
the production mechanism, it is a pivotal part of future cosmic ray studies once
precise measurements of antinuclei fluxes become available. In this work, we study
how the antideuteron fluxes are affected by the points mentioned above - how
does the flux change if we use different propagation parameters in GALPROP?
How different are the predicted fluxes if two different coalescence models are
used for the antinuclei production? Moreover, finally - what are the effect and
the uncertainty on the flux from the recently measured antinuclei inelastic cross
sections by ALICE? For the first time, we performed these studies in a unified
framework, which allowed us to pinpoint the realistic uncertainties in the field.
Finally, we estimated the secondary cosmic ray antihelium-3 flux. We quantified the
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effect of inelastic interactions in the Galaxy by defining the so-called transparency
observable for both antideuteron and antihelium-3 nuclei. Such observable allows
us to estimate how many produced particles that could reach dedicated detectors
would survive the trip. In the following, we discuss the source functions obtained
with different coalescence models, show how we estimated the inelastic cross
section for light targets employing ALICE data, and finally show the resulting
fluxes and uncertainties.

The secondary flux results will be compared to a specific prediction of cosmic
ray antinuclei fluxes stemming from dark matter annihilations obtained by my
colleague Stephan Königstorfer, employing the same GALPROP setup [259].

The results obtained in this thesis on cosmic ray antideuterons were published in
PRD [159] and antihelium-3 in Nature Physics [110]. The Nature Physics publication
also has a related public ALICE note [260].

6.1 Source functions

The source function (Eq. 5.3) for secondary antinuclei was shown and explained in
Chapter 5.2.1. This equation can also be used to estimate the local source function
at the Solar System location. In such a case, the gas distribution is assumed to be
uniform, and the gas number densities are set to np = 0.9 cm−3 and nHe = 0.1 cm−3.
The AMS-02 data serves as an input cosmic ray flux in Eq. 5.3. The authors of
Ref. [159] estimated such source functions for antideuterons employing the two coa-
lescence models introduced in Chapter 5.3. The left panel of Fig. 6.1 shows the total
antideuteron production cross sections as a function of the projectile energy. The
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FIGURE 6.1: Left: Antideuteron production cross section in pp colli-
sions as a function of the projectile kinetic energy. Right: Local source
function (see Eq. 5.3) as a function of the antideuteron kinetic energy.
The included collisions systems are p−H, p−He, He− p, p− p, and
p − He. Figures taken from Ref. [159].

red band corresponds to the Shukla et al. coalescence model [204], while the peach
colour band corresponds to the Kachelriess et al. model [202]. In the case of the
latter, we used their production cross sections obtained with the QGSJET II model.
The cross section is shown for the pp collision system. The two approaches consider
slightly different data sets and employ different event generators. The cross sections
predicted by Kachelriess et al. have up to several orders of magnitude higher
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values at lowest projectile energies Ep
kin <100 GeV. At this energy range, Shukla et al.

included deuteron and antideuteron production cross section at p-p and p-Be colli-
sions with projectile proton momentum of 70 GeV/c measured at Serpukhov [261]
in their fits, while Kachelriess et al. did not. It has already been observed that this
dataset suggests lower antideuteron yields than was expected from observations at
higher energies [254]. At Ep

kin >200 GeV, the antideuteron production cross section
from Kachelriess et al. becomes lower than the Shukla et al. The effect can be related
to the underproduction of antinucleons in QGSJET-II at such high energies, with
associated uncertainties that are not quantified yet [202]. The observed differences
between the predictions by the two coalescence models suggest that more high
precision data of antideuteron and antiproton production in p − p collisions is
necessary to both fine-tune the employed event generators and better fit the free
parameters of the coalescence model. Additionally, the antinuclei production mea-
surements in other relevant collision systems, such as p−He, He−He, are required.

The local source functions obtained employing these production cross sections
are shown on the right panel of Fig. 6.1 as a function of the antideuteron kinetic
energy per nucleon. The p − H, p − He, He − p, p − p, and p − He collision systems
are included in these results. Kachelriess et al. estimated the production cross
sections for all collision systems employing their coalescence model, while Shukla
et al. studied only the pp system explicitly and obtained the rest of the collision
systems by applying scaling factor (AT AP)

2.2/3 [204]. The source function, in simple
words, corresponds to the convolution of the projectile cosmic ray flux and the
production cross section. At low antideuteron energies, the local source function for
Kachelriess et al. production cross section is higher than that for Shukla et al. At
high energies, the opposite is observed. The shown uncertainty corresponds to the
uncertainty from coalescence models.

While such studies are interesting to compare the two models, the main goal of
this work is to obtain the secondary cosmic ray fluxes within the GALPROP frame-
work. Thus, we implemented the Eq. 5.3 in GALPROP. The default gas distribution,
presented in Chapter 5.2.2, was used. GALPROP solves the transport equation si-
multaneously for all particle species, following the nuclear reaction network [262].
The cosmic ray distributions are first calculated for the ordinary cosmic rays, and
the obtained results are used to estimate the secondary fluxes. The antideuteron and
antihelium-3 production cross sections were implemented in GALPROP as read-
only tables. In the case of the production cross sections from Shukla et al., an inter-
polation had to be used to obtain the logarithmic energy grid in both the projectile
kinetic energy and produced antideuteron kinetic energy per nucleon as required in
GALPROP. An interpolation as a function of collision energy had to be performed.
Figure 6.2 shows the result of such an interpolation for antihelium-3 nuclei. The
black circles depict the Shukla et al. results, while the red crosses correspond to the
values obtained employing the cubic interpolation function in Python. The left panel
shows results for the antihelium-3 production cross section with Ekin = 4.71 GeV/A,
while the right panel represents the case of Ekin = 134.25 GeV/A. More details can
also be found in the ALICE public note [260]. The source function was implemented
for antideuterons employing both Kachelriess et al. and Shukla et al. cross sections,
while only the latter was implemented for the antihelium-3 case.
We investigated the 2D source for antideuterons in p–H collisions as a function of
the kinetic projectile energy and the produced antideuteron kinetic energy per nu-
cleon. The source function was extracted from GALPROP and estimated at the
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FIGURE 6.2: Production cross section as a function of projectile ki-
netic energy for antihelium-3 with kinetic energy per nucleon of
4.71 GeV/A (left) and 134.25 GeV/A (right). The black circles cor-
respond to the Shukla et al. cross sections, and the red crosses show
the interpolated values.

Solar System location. Fig. 6.3 shows that the most significant contribution to the
antideuteron yield comes from cosmic-ray energies around 300 GeV, suggesting
that centre-of-mass energies around

√
s =20 GeV are the most relevant for the an-

tideuteron production in our Galaxy and that the coalescence models should be pre-
cisely tuned in this energy regime. Most importantly, both panels of Figure 6.1 show
that the uncertainties of specific coalescence models are smaller than the difference
between them.

102 103 104

 (GeV/nucleon)

100

101

102

103

 (G
eV

/n
uc

le
on

)

 [(
/

)
]

10 35

10 33

10 31

10 29

FIGURE 6.3: Antideuteron source as a function of the kinetic projectile
energy and the produced antideuteron kinetic energy per nucleon.
Only the p–H collision system is included.
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6.2 Inelastic cross sections

Inelastic cross sections shown in Chapter 5.3 are measured employing the ALICE
detector as a target material, which corresponds to target nuclei with relatively high
mass number ⟨A⟩ = 17.4 − 34.7. In the Galaxy, hydrogen and helium gases consti-
tute the main targets. Thus the results published by ALICE must be extrapolated to
lighter targets. There are no first-principle calculations that can predict the inelastic
interactions and could thus be constrained by the ALICE data. However, nuclear
models allow scaling the measured inelastic cross sections to different targets. The
GEANT4 toolkit includes predictions for antinucleus–nucleus inelastic cross sections
based on Glauber modelling [263–265]. The Glauber model describes antinucleus–
nucleus interactions by scaling antinucleon–nucleon cross sections accordingly to
the overlap of the antinucleus and nucleus wave functions [264].
The cross sections in GEANT4 are described by a parametrization which depends
on the projectile and target nuclei radii and nucleon number because performing
Glauber calculations during the GEANT4 run is too computationally expensive. Such
parametrization is then fitted to available experimental data and Glauber calculation
results and shown to agree within 8% for the different nuclei targets [264]. Thus, the
authors of Ref. [159] used GEANT4 to extrapolate the ALICE results to lighter nu-
clei. A correction factor for the GEANT4 was obtained as a ratio of the ALICE data
and the GEANT4 prediction for the corresponding target nuclei with mass number
⟨A⟩ = 17.4 at low momentum and ⟨A⟩ = 31.8 at large momentum [110, 259]. The
inelastic cross sections on relevant targets were then estimated by taking the default
GEANT4 values of antideuteron inelastic cross sections on proton and helium-4 nu-
clei and scaling it by the corresponding correction factors.
In addition to the experimental uncertainty from the ALICE collaboration, such an
estimate includes 8% uncertainty on the target nuclei scaling. The same procedure
was followed by ALICE Collaboration to extrapolate the measured antihelium-3 in-
elastic cross section for targets with mass numbers ⟨A⟩ = 17.4, 31.8, 34.7 to lighter
targets [110]. The inelastic cross sections obtained for antideuteron (left) and antihe-
lium (right) nuclei on proton targets are shown in Fig. 6.4.
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FIGURE 6.4: Antideuteron [159] (left) and antihelium-3 [110] inelastic
cross section on a proton target. The red (left panel) and green (right
panel) bands correspond to the inelastic cross section estimated based
on ALICE data. The green (left) and red (right) lines correspond to
the default GEANT4 values. The rest of the lines represent different
parametrizations employed so far in the cosmic ray field.

The green line in the left panel represents the default antideuteron inelastic
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cross section values in GEANT4. These values are scaled by a correction factor
from ALICE data, and the result is shown as the red band. The band includes the
experimental 1σ uncertainty and the 8% uncertainty from the target A scaling in
GEANT4. The red and blue lines show inelastic cross sections used in cosmic ray
studies by Korsmeier et al. [205] and Ibarra et al. [172]. The results for antihelium-3
are shown in the right panel. The red line corresponds to the GEANT4 prediction;
the green band shows the obtained inelastic cross section corrected by ALICE
measurement, and the black line shows a parametrization used by Korsmeier et
al. [205].

We implemented antideuteron and antihelium-3 inelastic cross sections from
GEANT4 and the new estimates based on ALICE data in GALPROP for proton and
helium-4 targets.

6.3 Resulting antideuteron fluxes and transparency

The main results for cosmic ray antideuterons were obtained employing the
Boschini et al. propagation parameters discussed in Chapter 5.2.2. The resulting
LIS flux is shown on the upper panel of Fig. 6.5. The secondary fluxes (red
bands and lines) were obtained in this thesis. They are compared to a prediction
of cosmic ray antideuteron flux stemming from dark matter particle annihila-
tion. The latter is obtained using the same propagation scheme with the same
implementation of inelastic cross sections [159, 259]. The dark matter particle
is assumed to annihilate via the W+W− channel and the mass hypothesis of
mDM,WW = 94, 100, 1000 GeV were tested based on the production spectra published
in Refs. [172, 203]. Indeed, the obtained results show that cosmic ray antideuterons
provide an almost background-free probe for dark matter annihilations at low
kinetic energies for low mass assumption of mDM,WW = 100 GeV. However, for the
higher mDM,WW = 1000 GeV mass case, the background flux is much higher than the
signal. Same conclusion was reached for other dark matter annihilation channels,
such as χ + χ → bb̄ → d + X or the production of antideuterons via the dark matter
annihilation to Λb and its subsequent decay [159].
The bands in Fig. 6.5 correspond to the result obtained using the inelastic cross
section constrained by ALICE data. The line shows results obtained with the default
GEANT4 values. The band width represents uncertainty stemming only from the
inelastic cross section evaluation. The red band shows results obtained employing
Shukla et al. production cross sections, while the peach colour band represents
results obtained with the Kachelriess et al. production cross sections. Even though
the shapes of the total production cross section and the source function were
relatively different (Fig. 6.1), the shapes of resulting fluxes are somewhat similar.
However, the flux obtained with Shukla et al. cross section is higher.
The lower panel of Fig. 6.5 shows results after solar modulation. The solar mod-
ulation was performed employing the Force-Field approximation, and the Fisk
potential value is 0.5 GV. Such a value corresponds to a solar minimum, providing
the best conditions for cosmic antinuclei detection. The solar-modulated flux can
also be called top-of-the-atmosphere (TOA) flux. There are only slight changes in
contrast to the LIS flux. The TOA fluxes can be compared to the existing experi-
mental upper limits, corresponding to the BESS measurement depicted as a black
horizontal line [206].



6.3. Resulting antideuteron fluxes and transparency 131

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/A)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/A

)°
1 ) DM

Bck

m¬ = 94 GeV

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/A)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/A

)°
1 ) DM

Bck

m¬ = 94 GeV

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )
BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/A)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/A

)°
1 ) DM

Bck

m¬ = 94 GeV

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/A)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/A

)°
1 ) DM

Bck

m¬ = 94 GeV

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )
BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )
BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )
BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

10°1 100 101 102

Ekin (GeV/nucleon)
10°10

10°8

10°6

10°4

10°2

Fl
ux

(m
°

2 s
r°

1 s
°

1 (
G

eV
/n

uc
le

on
)°

1 )

BESS97-00

DM

Bck

Kachelriess et al.
Shukla et al.

¬ + ¬!W+W° ! d + X

m¬ = 94 GeV

m¬ = 101 GeV

m¬ = 1000 GeV

æGeant4

æALICE
inel

FIGURE 6.5: Upper panel: Antideuteron local interstellar flux from
the secondary origin (red bands and lines) obtained in this thesis. The
result is compared to prediction of cosmic ray antideuteron fluxes
stemming from dark matter annihilation (blue bands and lines) for
different dark matter mass assumptions from Ref. [159]. Lower panel:
Same results but after the solar propagation. The BESS97-00 line
shows exclusion limits obtained by the BESS experiment [206].

The top panel of Fig. 6.6 shows the comparison of the LIS fluxes obtained em-
ploying different inelastic cross section parametrizations used in the field (shown in
Fig. 6.4). The obtained cosmic ray fluxes are in good agreement. The relative uncer-
tainty on the flux, stemming from inelastic cross section estimation with ALICE data,
is shown in the lower panel of Fig. 6.6. The relative uncertainty reaches a maximum
of 25%, which is small compared to the uncertainties observed from the different
production models.
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FIGURE 6.6: Upper panel: Secondary antideuteron LIS fluxes ob-
tained employing different inelastic cross section parametrizations,
as explained in the text. Lower panel: The relative uncertainty on the
flux stemming from inelastic cross section estimation.

The obtained fluxes were used to estimate the transparency of the Galaxy to the
cosmic ray antideuteron flux propagation. The transparency is defined as the ratio of
the flux obtained with inelastic interactions and the flux obtained without inelastic
interactions in the Galaxy. The results are shown in Fig. 6.7 for the LIS fluxes (left)
and for TOA fluxes (right). The transparencies for secondary fluxes obtained in this
thesis (red and peach colours) are compared to the transparency expected for cos-
mic ray antideuterons from dark matter annihilation (blue colour) from Ref. [159].
The transparency expected for the dark matter component is around 50%. For the
secondary LIS fluxes, it increases from 20% to 90% with increasing energy; while for
the TOA fluxes, it increases from 40% to 90%.
The transparency is different for the antideuteron cosmic rays stemming from dark
matter annihilation and from cosmic ray collisions with the interstellar medium even
though the inelastic cross section is not sensitive to the origin of the antideuteron.
However, transparency depends not only on the inelastic cross section but also on
the initially produced antideuteron spectra, the location of the production which
determines the amount of traversed gas in the interstellar medium and also the
propagation as it changes the momentum of the antinuclei. The transparency for
secondary flux was estimated employing both introduced antideuteron production
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cross sections. The results are almost identical; thus, the lines and the band corre-
sponding to different production cross sections are on top of each other in Fig. 6.7.
Such an agreement shows that transparency is indeed the same if the antinuclei
source functions have a similar shape (see right panel of Fig. 6.1) and the produc-
tion location and propagation are the same.
Our results show that the Galaxy is transparent to the cosmic ray antideuterons and
that future experiments have a chance at measuring such antideuteron fluxes stem-
ming from both dark matter annihilation and from cosmic ray collisions with the
interstellar medium.
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FIGURE 6.7: Transparency of the Galaxy to the cosmic ray an-
tideuteron propagation. Red bands and lines show results for the
secondary fluxes obtained in this thesis. The results are compared to
transparencies expected for cosmic ray antideuteron fluxes stemming
from dark matter annihilation from Ref. [159]. The transparencies are
shown for LIS (left) and TOA (right) fluxes.

Finally, we also tested how the secondary cosmic ray antideuteron flux depends on
the propagation parameters used in GALPROP. The two parameter sets presented
in Chapter 5.2.2 were employed. The comparison of the LIS fluxes obtained with
the two different propagation parameter sets is shown in Fig. 6.8. The dotted-
dashed line corresponds to the flux obtained with Boschini et al. parameters, and
the dashed line with Cuoco et al. While propagation parameters are rather differ-
ent, the obtained fluxes are in good agreement at kinetic energies above 1 GeV/A.
This is expected since both sets were obtained by fitting GALPROP to the available
AMS-02 data, which constrains this energy regime very well. At lower energies, the
Boschini et al. parameters result in flux up to one order of magnitude larger than
predicted employing Cuoco et al. parameters. The difference at low energies can be
attributed to the stronger convection effects assumed by Cuoco et al., as the galactic
wind forces the particles to move away from the galactic disk and halo. This hypoth-
esis was tested by running GALPROP with Cuoco propagation parameters except
the convection parameters Vconv and dVconv/dz set to Boschini et al. values. Indeed,
the discrepancy at low energies disappeared. A good agreement at large energies
is also observed because the secondary fluxes are most sensitive to the ratio of the
spatial diffusion parameter and the halo height (which for both parametrizations is
similar), not the single values.



134 Chapter 6. Secondary cosmic ray antideuteron and antihelium fluxes

10−1 100 101 102

Ekin (GeV/nucleon)
10−10

10−8

10−6

Fl
ux

(m
−

2 sr
−

1 s−
1 (G

eV
/n

uc
le

on
)−

1 )

background

σALICE Shukla, Boschini 2019
σALICE Shukla, Cuoco 2017

FIGURE 6.8: Comparison of antideuteron LIS fluxes obtained em-
ploying different propagation parameters. The dotted-dashed line
corresponds to the flux obtained with Boschini et al. parameters and
the dashed line with Cuoco et al.

6.3.1 Discussion on the uncertainties

There are some uncertainties on the cosmic ray antinuclei which are generic and
influence both signal and background fluxes, and there are some which are an-
tideuteron origin-specific. The uncertainties specific to dark matter have been dis-
cussed in Ref. [159] and include the unknown dark matter properties such as mass,
self-annihilation cross section, and dominant annihilation channel. Also, the dark
matter density distribution in the Galaxy is not very well known as different profiles
can be used to describe the available data. In the case of the antideuterons produced
in cosmic ray collisions with interstellar gas, the gas distributions can be mapped as
explained in Chapter 5.2.2.
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FIGURE 6.9: Comparison of systematic uncertainties stemming
from the choice of the production and propagation models of an-
tideuterons. The red band shows the uncertainty related to the prop-
agation while the green band corresponds to the uncertainty coming
from the choice of the production model (the model-specific uncer-
tainty is not included).
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The main uncertainties for the secondary cosmic ray antideuteron fluxes thus are,
as mentioned, the production, propagation, and inelastic cross section with matter.
The latter constitutes maximally a 25% uncertainty, as shown in Fig. 6.6. The dom-
inating uncertainties coming from the choice of propagation parameters and pro-
duction mechanism are compared in Fig. 6.9. The red band shows the difference
between LIS obtained with Boschini et al. and Cuoco et al. propagation param-
eters, while the green band represents the difference between fluxes obtained em-
ploying two different production descriptions by Shukla et al. and Kachelriess et
al. Here, the band does not include the model-specific uncertainties. The system-
atic uncertainty coming from the choice of production mechanism dominates the
higher kinetic energy regime above 1 GeV/A. At lower energies, both systematic
uncertainties are significant but the propagation uncertainty dominates.

6.4 Resulting antihelium fluxes and transparencies

The same procedure was performed to estimate the secondary cosmic ray
antihelium-3 fluxes and the transparency of the Galaxy to the antihelium-3 prop-
agation. The antihelium-3 production cross section was taken from Shukla et al.
The secondary fluxes obtained in this thesis are again compared to the prediction
of cosmic ray antihelium-3 flux stemming from dark matter annihilations from
Ref. [159]. The assumed dark matter mass is 100 GeV. The obtained LIS (upper
figure) and TOA (lower figure) fluxes are shown in the upper panels of Fig. 6.10.
The dashed lines represent antihelium-3 fluxes if it is assumed that antihelium-3
does not interact with the interstellar gas at all. The solid lines and the bands
correspond to the fluxes obtained with the default inelastic cross section values
in GEANT4 and corrected by ALICE data, respectively. The signal-to-background
ratio at low energies reaches up to four orders of magnitude, providing essentially
background-free probe for dark matter annihilation. The band represent the
uncertainty stemming from inelastic cross section estimation. The right panel also
includes the sensitivity limits from the GAPS [210] and AMS-02 [205] experiments.
Neither signal nor background fluxes reach either of the experimental sensitivities.
This is expected for the background flux. It is important to remember that only one
specific prediction for the antihelium-3 flux stemming from dark matter annihilation
is shown here. One promising antihelium-3 production channel is the dark matter
annihilation to Λb hadron and its subsequent decay to antinuclei. Such production
was proposed in Ref. [208] and it was shown employing event generators that
the resulting antihelium-3 cosmic rays would have an enhancement in flux at
around 10 GeV/A kinetic energy. However, such a hypothesis must be validated by
accelerator experiments measuring the antihelium-3 production from Λb decays.

The transparencies are depicted in the lower panels of Fig. 6.10. In the case of
the dark matter component, the transparency is around 40-50%. For the background
flux, the transparency ranges from around 20% to 90%. The transparencies are simi-
lar for both LIS (upper figure) and TOA (lower figure) fluxes. Such high transparen-
cies for antihelium-3 propagation show that such fluxes can be potentially measured
in the future.
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FIGURE 6.10: Top panels: Antihelium-3 LIS (upper figure) and TOA
(lower figure) fluxes. Lower panels: The corresponding transparen-
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Chapter 7

Summary and outlook

This work investigated two topics - the strong interaction measurement in three-
body systems and the cosmic ray antinuclei flux predictions for indirect dark matter
searches.

The first measurements of the three-body interaction in non-bound systems were
presented in the first part of this thesis. The strong interaction can be accessed via
femtoscopic correlations. The measured correlation functions are affected by two-
and three-body effects, as well as quantum statistics, Coulomb and strong interac-
tions. The genuine three-body effects were studied employing Kubo’s cumulant
method, which allows us to subtract the correlations induced only by two particles
interacting in the triplet. The correlation functions and corresponding cumulants
were measured for p–p–p and p–p–Λ triplets in pp collisions at

√
s=13 TeV. The

high-multiplicity data sample recorded by ALICE was analysed in which hadrons
are emitted at average relative distances of about 1 fm. This provides a unique
environment to test three-body interactions at scales shorter than inter-particle ones
in nuclei, mimicking a high-density environment. The lower-order contributions
in Kubo’s cumulant method were estimated using a data-driven approach and a
newly developed projector method. Both methods are in good agreement, which
constitutes the first experimental validation of the projector method. A deviation
from zero in the low Q3 region was observed in both p–p–p and p–p–Λ cumulants,
suggesting genuine three-body effects.
A negative three-particle cumulant was measured for p–p–p triplets. The p-value
extracted from the χ2 test corresponds to a deviation of 6.7σ from the assumption of
only two-body correlations present in the system for Q3 < 0.4 GeV/c, suggesting
genuine three-body effects present in the system. The measured p–p–p correlation
function was also compared to the first preliminary calculations performed employ-
ing the hyperspherical harmonic technique, which provides a hint that the decrease
of correlation function at low Q3 is partially related to the antisymmetrisation of
the three-particle wave function. More qualitative conclusions require a larger data
sample which is expected from the Run 3 data taking. For this purpose, a three-body
software trigger was also developed in this thesis, ensuring that all events, which
include a collimated triplet, are stored.
While the p–p–p triplet is affected by the Pauli blocking at three particle level and
the long-range Coulomb interaction, the p–p–Λ system is free of such effects and
thus provides a unique opportunity to test genuine strong three-body interaction.
The three-body effects have been studied only employing the Kubo’s cumulant
method, as no calculations are currently available. A positive cumulant was
observed at low Q3. However, the deviation from zero at Q3 < 0.4 GeV/c is 0.8 σ,
which suggests that data can be sufficiently well explained by the assumption of
only two-body correlations present in the system within the current uncertainties.
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While a larger statistical sample is required to constrain the quantitative three-body
effects in the p–p–Λ system, such a result is already very intriguing. The currently
accepted hypothesis on solving the hyperon puzzle for neutron stars is a repulsive
genuine strong three-body interaction in the p–p–Λ system. However, the result
obtained in this thesis does not show any evidence for this, in fact the measured
cumulant suggests the absence of three-body repulsion. However, further studies
are required, and for this purpose, a three-body software trigger for p–p–Λ triplets
was also developed.
The development of the three-body trigger and studies of the expected number of
triplets in the total Run 3 data sample suggests that we can expect up to two orders
of magnitude increase in statistics. Such a number of triplets would be sufficient
to measure high-precision three-body correlation functions. However, once the
problem of recorded statistics is resolved with the Run 3 data, the challenge of
constraining a three-body source will remain. The good news is that the preliminary
calculations of the correlation function for p–p–p system suggests that the three
nucleons never get close enough to have relevant effects from the genuine three-
body strong interaction because of the Pauli blocking. Thus, once the preliminary
p–p–p calculation employing the hyperspherical harmonics is improved, the p–p–p
correlation function can be used as a benchmark to constrain the three-body source
as the relevant two-body strong interaction is very well known. Once this is done,
the measurement of p–p–Λ correlation function with Run 3 data will provide the
ultimate result towards which the work of this thesis was performed.
Another exciting way to study the three-body system employing femtoscopy are
the measurements of hadron-nucleus correlations. My colleague Bhawani Singh
performed such a study with Run 2 data. It was shown that the p-d correlation
function could only be described satisfactorily if the calculations use the individual
nucleons as degrees of freedom. While the Run 2 data was not sensitive enough
to study the genuine three-body strong interaction in the p-d system, there is
hope for Run 3. To summarise, there is a bright future coming for the studies
of three-body systems employing the femtoscopic technique which will provide
relevant input for theoretical nuclear physicists and related interdisciplinary fields,
such as astrophysics.

The secondary cosmic ray antinuclei flux calculations were performed for
antideuterons and antihelium-3 in the second part of the thesis. The antinuclei
source functions and inelastic cross sections based on data-driven methods were
implemented in GALPROP. In the case of the antideuteron studies, different prop-
agation and production models were employed. It was shown that the systematic
uncertainty coming from the choice of the production model is the main contributor
to the total uncertainty at larger kinetic energies above 1 GeV/A. The lower energy
is also characterized by a significant systematic uncertainty stemming from the
choice of the propagation parameters in GALPROP. The uncertainty stemming from
the inelastic cross section evaluation based on ALICE measurements is 25% at low
energies, constituting the smallest contribution to the total uncertainty budget for
the secondary antideuteron flux. However, this study was the first to implement the
data-driven estimation of the inelastic cross sections. Thus, it was used to estimate
how transparent our Galaxy is to the propagation of antideuteron cosmic rays.
The transparency for secondary cosmic ray antideuteron propagation was found
to increase from around 35% to 90%, depending on the kinetic energy per nucleon.
The transparency for the propagation of antideuterons stemming from dark matter
annihilation, obtained in Ref. [259], is around 50% with an increase up to almost



Chapter 7. Summary and outlook 139

80% at 10 GeV/A kinetic energy per nucleon. Our Galaxy is very transparent to
the antideuteron propagation, which suggests that the measurements of such fluxes
will be feasible in the future. Finally, a similar study was performed for cosmic
ray antihelium-3. The transparency of the Galaxy to the propagation of secondary
antihelium-3 increases from around 20% to 90% with increasing energy. It is around
50% for the dark matter component, as shown in Ref. [110].
It was shown that the inelastic cross section measurements provided by the ALICE
Collaboration are sufficiently precise for the cosmic ray antinuclei studies. The
next challenge for the accelerator experiments and theorists is to find out the
production mechanism of antinuclei and provide measurements at the relevant
collision energies to constrain the models. The production mechanisms should be
studied not only in pp collisions, which are relevant for the secondary cosmic ray
antinuclei flux, but also in elementary (point-like) particle collisions, such as e+e−

at Belle. As the dark matter particles are assumed to be elementary, studies of e+e−

collisions would better constrain antinuclei production in dark matter annihilations.
Measuring femtoscopic correlation functions of well-known pairs, such as p–p,
is important to constrain the source size in e+e− collisions. This would provide
relevant input for the advanced coalescence models, which require information on
the distances between the produced nucleons.

The work presented in this thesis is only the first footstep in much larger efforts
required to solve some of the mysteries of our universe. However, it provides one
more piece of the puzzle related to the underlying physics.
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Appendix A

Relevant Publications

The author has contributed to the following publications, with the highlighted ones
being subject of this work.

• Šerkšnytė, L., Königstorfer, S. et al. (2022). Reevaluation of the cosmic an-
tideuteron flux from cosmic-ray interactions and from exotic sources. Physical
Review D, 105(8), 083021

• Del Grande, R., Šerkšnytė, L., Fabbietti, L., Mantovani Sarti, V., Mihaylov,
D. (2022). A method to remove lower order contributions in multi-particle
femtoscopic correlation functions. The European Physical Journal C, 82(3)

• ALICE Collaboration. (2022). Towards the understanding of the genuine three-
body interaction for p − p − p and p − p −Λ. arXiv preprint arXiv:2206.03344
(Accepted by EPJA)

• ALICE Collaboration. (2023). Measurement of anti-3He nuclei absorption in
matter and impact on their propagation in the Galaxy. Nature Physics 19 (1)

• ALICE Collaboration. (2023). Study of the p − p − K + and p − p − K −

dynamics using the femtoscopy technique. arXiv preprint arXiv:2303.13448
(Submitted to EPJA)
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