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Chapter 1
Introdu
tion

The problems of quantum gravity have been in the 
ore of resear
h in theoreti
al highenergy physi
s for last 50 years. During the 
ourse of time various approa
hes and meth-ods were developed. These developments resulted in in
rease of understanding, not onlyproblems in quantum gravity, but also in gauge theory and quantum �eld theory in gen-eral. Despite any dire
t experimental proof of quantum gravity predi
tion, resear
h inthis �eld have been intense and fo
used mainly on theoreti
al aspe
ts. One of the earli-est noti
ed problem of quantum gravity was the observation that in a simplest version itis a nonrenormalizable theory (due to the dimensionful 
oupling 
onstant). Namely notall divergen
es in Einstein-Hilbert gravitation quantized perturbatively and 
ovariantlyaround �at Minkowski spa
etime 
an be absorbed in the rede�nion of 
ouplings presentin the a
tion. Therefore quantum gravity needs nontrivial UV 
ompletion. To �nd aself-
onsistent UV-
omplete theory of quantum gravity is a very di�
ult task. This isthe reason, why in the meantime many simpli�ed toy-models have been analyzed, whi
hsupposed to 
apture some of the important features of quantized gravity. However per-turbative problems of quantum gravity in deep UV didn't pose an obsta
le in analysisand appli
ation of low-energeti
 version of the theory. At low energy (mu
h lower thanthe Plan
k s
ale) a marriage of quantum me
hani
s and general relativity was su

essful,espe
ially if understood in terms of e�e
tive �eld theory of gravitational intera
tions.7



In analysis of the UV behaviour of quantum gravity, one of the most useful tool re-vealed to be Renormalization Group methods. Understanding that 
ouplings in quantum�eld theory exhibit dependen
e on the momentum s
ale of the pro
ess was one of themajor a
hievements in �eld theory. Generi
ally in any quantum �eld theory whi
h is not
onformal, 
oupling parameters are not 
onstants and are running fun
tions of energies.The same 
on
erns quantum gravity, where the running of gravitational 
ouplings was not
ommonly established even till re
ently. When speaking about RG �ows we 
an distin-guish various types, di�ering slightly in the underlying physi
al ideas. The simplest RG�ow is given by perturbative analysis around gaussian �xed point, where the values of the
ouplings vanish. This is given by Callan-Symanzik �ow in standard perturbative QFT.Another type of the RG �ow we obtain by analyzing 
hange of the average e�e
tive a
tionwith RG s
ale. This last e�e
tive a
tion interpolates between bare a
tion in UV and quan-tum e�e
tive a
tion in IR. In this approa
h, whi
h was termed �fun
tional� or �exa
t� RG,we don't rely on perturbativity of 
oupling parameters. Therefore one of the advantagesis that we 
an des
ribe RG running of 
ouplings around nontrivial FP of RG. This bringsthe 
onne
tion with 
onformal �eld theories, whi
h des
ribe physi
s at FP. Brand newtype of RG �ow derives from holography. Although it is motivated by famous AdS/CFT
orresponden
e, the appli
ation of holographi
 ideas go far beyond the original domain. Itis remarkable that d+1-dimensional holographi
 spa
etime 
an possess a knowledge aboutRG running of 
ouplings in d-dimensional �eld theory living on boundary or a brane. Onthe other hand this bulk spa
etime 
an be understood as a geometrization of RG �ow. Allthese three types of RG �ows are 
losely related. The eviden
e 
ome from nongravitationalquantum �eld theories as well as from �eld theories with dynami
al gravitation.There are basi
ally two main ways, how the theory of quantum gravitational pertur-bations around �at spa
etime 
an be 
ompleted in UV. First is that the problems ofperturbatively nonrenormalizable quantum �eld theories are solved by in
lusion of newheavy degrees of freedom. These new quanta do not appear in low-energeti
 spe
trumand only high energeti
 perturbations 
an ex
ite them. Moreover their intera
tions (withknown degrees of freedom and between themselves) are tightly 
onstrained. In the result8



the theory enjoys new dynami
s at high energy, whi
h solves the renormalizability andunitarity issues. The best studied example of su
h version of UV 
ompletion is given by
W bosons model for 4-fermion intera
tions and for quantum gravity by string theory. Inthe latter example to the low energy spe
trum of quantum gravity with massless graviton,is added whole in�nite tower of heavy higher spin �elds. The other possibility opens upwhen in the UV theory �ows to a nontrivial FP of RG. If additionally the 
riti
al surfa
e,on whi
h this FP exists, is �nite dimensional, then the theory doesn't lose its predi
tivepower. In this 
ase we have the notion of nonperturbative renormalizability. If the pa-rameters of the theory are 
hosen in su
h a way, that e�e
tive a
tion lies on an RG safetraje
tory, then during the RG evolution, the theory and quantum divergen
es are under
ontrol. There is a strong hope, that su
h asymptoti
ally safe in UV theory, 
an heal itselffrom the perturbative problems present at low energy. A third hypotheti
al option for UV
ompletion is one of the non-Wilsonian type. Some spe
ial theories may avoid perturbativeproblems of quantized versions by invoking produ
tion of spe
ial 
lassi
al 
on�gurationsat high energy. This is the most re
ent proposal and it was dubbed as 
lassi
alization. Itwas 
onje
tured that Einstein gravity is self-
omplete and in this way 
lassi
alization isimplemented there via produ
tion of bla
k holes at trans-Plan
kian energy. It might betrue, that there is some relation between all these three me
hanisms of UV 
ompletion.Independently of the UV 
ompletion, quantum gravity gives some unambiguous pre-di
tions at low energy. To some extent it is a unique, universal and predi
tive theory ofmassless quanta of gravitational intera
tions. This is the best understood in the frame-work of e�e
tive �eld theories. The low energeti
 a
tion 
ontains only terms with thesmallest number of derivatives, so only the simplest Einstein-Hilbert Lagrangian is used.In this e�e
tive theory there exist observables, whi
h do not depend on the parti
ularway of UV 
ompletion. Although their experimental 
on�rmation is still very far, theyare genuine predi
tions of quantum gravity. There are di�erent ways, by whi
h, one 
anobtain quantum e�e
tive a
tion in infrared limit. However it is without any doubt thatlow-energeti
 predi
tions of quantum gravity are 
al
ulable and solid, regardless of any
ompli
ated dynami
s whi
h saves the theory in UV.9



The plan for this thesis is as follows. In the �rst part we dis
uss the relation between twodi�erent RG �ows: fun
tional and holographi
 one. The bigger emphasis is put on the novelholographi
 RG �ow and we devote full third 
hapter for studying holographi
 RG �owgeometries. We are not only interested in �ows for gravitational 
ouplings, we also 
onsiderstandard RG �ows from �eld theories with matter. The se
ond part of this work is dividedinto two 
hapters. In the fourth 
hapter we study 
lassi
alization for nonlinear sigma modelunderstood as a toy example before atta
king more di�
ult problems of full quantumgravity. We also point there possible relations between 
lassi
alization and asymptoti
safety as between two similar in some 
onditions me
hanisms for UV 
ompletion. Inthe �fth 
hapter we 
onsider universal 1-loop e�e
tive a
tion in system of gravitatings
alar �eld. We use new methods to derive its IR limit and we 
ompute few low-energeti
observables in su
h e�e
tive �eld theory of gravitational intera
tions. Finally in the sixth
hapter we shortly 
olle
t main obtained results and 
on
lude. The material presented inthis work is partially based on two s
ienti�
 arti
les [42℄ and [63℄, I published during myPhD studies.
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Part I
Holographi
 vs. Exa
t RG Flows
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Chapter 2
Plan
k mass and Higgs VEV inHolographi
 vs. Exa
t 4D RG
2.1 MotivationIn this 
hapter we des
ribe in details the 
omputation of the s
ale-dependen
e of thePlan
k mass and of the va
uum expe
tation value of the Higgs �eld using two very di�erentrenormalization group methods: a �holographi
� pro
edure based on Einstein's equationsin �ve dimensions with matter 
on�ned to a 3-brane, and a �fun
tional� pro
edure in fourdimensions based on a Wilsonian momentum 
uto�. Both 
al
ulations lead to very similarresults, suggesting that the 
oupled theory approa
hes a non-trivial �xed point in theultraviolet.One of the most remarkable re
ent developments in quantum �eld theory is the real-ization that the 
oupling of a theory to gravity in d+ 1 dimensions 
an yield informationabout the renormalization group (RG) running of 
ouplings in that parti
ular theory in ddimensions. This idea is 
ontained in the famous 
onstru
tion by Randall and Sundrum [1℄,and has been sharpened in a number of subsequent publi
ations [3, 4, 5, 6, 7, 8℄. While thenotion of �holography� has 
ome to have a rather spe
i�
 meaning 
losely related to Quan-tum Gravitation and the famous AdS/CFT 
orresponden
e [9, 10℄, here we will generi
ally13




all �holographi
 RG� the �ow of 
ouplings of a d-dimensional theory, whi
h is obtainedby viewing it as living on a (d − 1)-brane 
oupled to gravity in (d + 1) dimensions, andidentifying the transverse 
oordinate with the RG s
ale.In a di�erent vein, there have been various signi�
ant developments in the use of �fun
-tional RG equations�, i.e. equations whi
h des
ribe in a single stroke the running of in-�nitely many 
ouplings [11, 12℄. This method has proved parti
ularly helpful in the studyof perturbatively nonrenormalizable theories with the aim of establishing (or refuting) theexisten
e of non-trivial UV �xed points (FPs) of Renormalization Group, that 
ould beused for a fundamental (and not depending on perturbative s
heme) de�nition of the the-ory [13℄, a property that has be
ome known as �asymptoti
 safety� (AS) [14℄. Su

essfulattempts to �renormalize the nonrenormalizable� quantum �eld theories have been �rstreported in [15℄, with subsequent works using the fun
tional RG largely fo
using on grav-ity [16, 17, 18℄ and more re
ently also on ele
troweak physi
s [19, 20, 21℄; see [22℄ for anoverview. It must be added here, that theory of strong intera
tions - QCD is asymptoti-
ally safe, be
ause asymptoti
 freedom is a spe
ial 
ase of AS with vanishing FP values ofthe 
ouplings. Fun
tional RG methods have been su

essfully applied also to this theoryin the infrared limit giving one of its nonperturbative des
ription [24℄. It still remains a
hallenge to solve fun
tional RG �ows equations exa
tly as this is equivalent to solvingthe full intera
ting quantum theory. But a parti
ular strength of the exa
t RG is its �exi-bility allowing for a variety of systemati
 approximations and trun
ations adapted to theproblem at hand, whi
h has led to new insights [23℄.To the extent that holographi
 and fun
tional RG are equivalent des
riptions of thesame physi
s, they must be related in some way. There has been some work in this dire
tion[25, 26, 27℄, but 
learly mu
h remains to be done. In this 
hapter, instead of exploring thisrelation from �rst prin
iples, we evaluate similarities and di�eren
es of the two methodsfor a sample theory, whi
h still in
orporates some basi
 features of Nature and has somephenomenologi
al signi�
an
e in parti
le physi
s. The toy model to be 
onsidered is a
SO(N) non-linear sigma model 
oupled to gravity with an Eu
lidean a
tion of the form
S = Sg + Sm, where the gravitational a
tion is in the form of Einstein-Hilbert:14



Sg = m2
P

∫

d4x
√
g R (2.1)with m2

P = 1/(16πG) and Sm is the matter a
tion minimally 
oupled to gravitationalba
kground. The matter a
tion, for the SO(N) non-linear sigma model 
an be obtainedby a limiting pro
edure from the 
orresponding linear theory, whi
h 
ontains a multipletof N real s
alars φa with an a
tion
Sm =

∫

d4x
√
g

(

1

2

N
∑

a=1

gµν∂µφ
a∂νφ

a + V (ρ2)

)

, (2.2)where the square of the radius equals ρ2 =
∑N

a=1 φ
aφa, and the potential is in the form ofHiggs potential V = λ(ρ2 − υ2)2 with υ2 = 〈ρ2〉. The a
tion (2.2) represents Higgs modelin linear representation, whi
h is invariant under global spe
ial orthogonal transformationsfrom SO(N) group. In a phase with spontaneous symmetry breaking, we have υ2 > 0.Without loss of generality we 
an assume that the ba
kground �eld is φα = 0 for α =

1 . . .N − 1 and φN = υ. (Therefore we 
hoose Higgs vev pointing exa
tly in the last N-thdire
tion in the �eld spa
e and with su
h pattern the model possesses only SO(N − 1)as the remaining symmetry group.) Then the N − 1 �elds φα are the Goldstone bosons,while the radial mode δρ = φN − υ 
orresponds to the physi
al Higgs �eld. The squareof the mass of the radial mode is given by m2 = 8λυ2, whereas N − 1 Goldstone modesremain massless. Note that the potential is always zero at the minimum; here we will notdis
uss the running of the 
osmologi
al 
onstant. The non-linear sigma model is a
hievedin the limit λ → ∞ with υ kept 
onstant. Then the potential be
omes a 
onstraint for ρ:
ρ2 = υ2, whi
h 
an be solved to eliminate one s
alar �eld and des
ribe the theory in termsof the remaining dynami
al N − 1 �elds ϕα transforming non-linearly under SO(N) - the
oordinates on the sphere SN−1. (In parti
ular there exist 
oordinate 
hoi
es for whi
hone 
an identify ϕα = φα.) In this limit physi
al Higgs �eld be
omes in�nitely heavy, sode
ouples from the system of intera
ting Goldstone bosons and the theory is perturbativelynon-unitary. Later we will see, how this 
an be healed. In an arbitrary 
oordinate system,the a
tion be
omes 15



Sm =
1

2
υ2

∫

d4x
√
g gµν∂µϕ

α∂νϕ
βhαβ(ϕ) , (2.3)where hαβ denotes the general, positive de�nite metri
 on the target spa
e of nonlinearsigma model. Our toy model 
ontains two dimensionful 
ouplings m2

P and υ2, whi
h weidentify with the square of the Plan
k mass and of the Higgs VEV. They appear in a verysimilar manner as prefa
tors of the respe
tive terms in the Lagrangian. From here on wewill 
onsider their inverses as the 
ouplings in our model.There are two main motivations for 
hoosing this model as opposed to gravitation
oupled to linearly transforming s
alars. Firstly, in the absen
e of gravity and in fourdimensions, the linear s
alar theory displays a unique Gaussian FP, and it is perturbativelyrenormalizable and trivial. On the other hand the non-linear model has a 
oupling 
onstantwith inverse mass dimension and is power-
ounting nonrenormalizable, similar to gravityitself. It also su�ers from violation of unitarity at high energy. Re
ent studies showedthat it displays an UV FP [19, 28℄, with, in
identally, identi
al 
riti
al exponents as foundwithin pure Einstein gravity [17℄. It has therefore been suggested that, quite independentlyof gravity, a strongly intera
ting Goldstone boson se
tor may exist, able to over
ome itsperturbative issues in a dynami
al way [19, 20, 21℄.Se
ondly, given the existing eviden
es for asymptoti
 safety of the non-linear s
alartheory and gravity separately, one may expe
t to �nd a non-trivially intera
ting FP alsofor the 
oupled theory. This would provide an alternative to the s
enario dis
ussed in[29, 30℄, where a �Gaussian matter FP� was found, with asymptoti
ally free s
alar matterbut non-trivial gravitational 
ouplings. This s
enario has been used to put new boundson the mass of the Higgs parti
le [31℄, whi
h agree remarkably well with the experimentalmeasurements of re
ently dis
overed parti
le. Although now 
olle
ted eviden
es showundeniably the existen
e of Higgs parti
le in the Standard Model, still usage of the non-linear theory may be 
onsidered for explanation, how in a gauge-invariant way the massesare provided for the W and Z bosons. We 
an also treat it as a simple toy model.16



2.2 Holographi
 RG in pure AdSIn this se
tion we evaluate the running of the two dimensionful 
ouplings m2
P and υ2 ofthe four-dimensional toy model using a holographi
 te
hnique. Following [1℄, we 
onsidera 5-dimensional spa
etime with 
oordinates ym = (xµ, t), µ = 1, 2, 3, 4 and metri
 Gmn.Set of 
oordinates xµ will des
ribe 4-dimensional leaves with usual Minkowskian metri
'ssignature (+ −−−), while the t 
oordinate is a transverse dire
tion to this foliation. Thegravitational part of the a
tion is

Sgrav =

∫

d5y
√
−G(2M3R− Λ) , (2.4)where M is the 5-dimensional Plan
k mass and Λ < 0 is the bulk 
osmologi
al 
onstant.These parameters of the 5-dimensional theory are not dynami
al and they do not undergoRG evolution. We make a parti
ular ansatz for the metri
 of the form

ds2 = e2tḡµν(x)dx
µdxν + r2

cdt
2 . (2.5)Using the 5-dimensional Einstein equations we get the AdS solution with ḡµν = ηµν , wherewe have identi�ed the arbitrary length s
ale rc with the AdS radius √24M3/|Λ|. We 
anmake the 
oordinate transformation t = − log (z/rc), whi
h brings the metri
 to the form

ds2 =
r2
c

z2
(ηµνdx

µdxν + dz2) . (2.6)This is the AdS metri
 in the so 
alled Poin
arè pat
h, as mostly used in 
osmology. Fromits form we easily read out information about 
onformal stru
ture of the AdS spa
etime.We note that the hypersurfa
e z = 0 
orresponds to a 
onformal boundary at t = ∞.In the holographi
 interpretation of the 5-dimensional metri
 su
h as the RS model, the5-th dimension is identi�ed with the (logarithm of the) RG s
ale k [25℄ of the quantum4-dimensional theory living on a 3-brane. Following [6, 5, 33℄, we make the identi�
ation
z = 1/k, whi
h implies t = log(krc), independently of the number of dimension of AdSspa
etime. This provides a pre
ise mapping between 5d 
al
ulations and 4d interpretations17



in terms of RG �ow. We 
hoose the origin of t 
oordinate to 
orrespond to the ele
troweaks
ale k0 = υ0 = 246GeV, whi
h implies rc = 1/υ0 for the AdS radius. It is 
onvenient, forfuture purposes, to introdu
e also dimensionful radial 
oordinate r = rct.To read o� the β-fun
tions of matter 
ouplings we imagine putting a test brane at agiven value of t. As noti
ed in [4℄, the use of a brane provides information on the quantumbehaviour of the matter 
ouplings themselves, as well as on gravity 
oupled to matter.Dimensionless 
ouplings in general run logarithmi
ally. All masses in the 4-dimensionalmatter theory are proportional to υ, whose running is governed by the formula
υ(t) = υ0 e

t . (2.7)In other words the s
ale-dependen
e is given by the exponential warping fa
tor et, whi
hwas present in the AdS metri
 (2.5). This result is 
ompletely general: any mass parameteron the 3-brane, in the fundamental higher-dimensional theory will 
orrespond to a RGres
aled mass a

ording to the formula above, when measured with the metri
 ḡµν [2℄.This is the metri
 that appears in the e�e
tive Einstein a
tion. All operators on theboundary get res
aled a

ording to their four-dimensional energy dimensions. Note that,there is a freedom in 
hoosing normalization of t. The 
hoi
e, we made in (2.5) for theAdS metri
, is su
h that all dimensionful 
ouplings (ex
ept gravitational ones) s
ale like atFP of RG. This 
hoi
e doesn't depend on the dimension of spa
etime. In this way we setthe normalization of distan
es in transverse dire
tion to the brane. The AdS solution thus
orresponds to linear running of υ with RG momentum s
ale k, whi
h is a manifestationof the quadrati
 divergen
es in the running (mass)2 in the underlying �eld theory.Next we 
an obtain holographi
 RG running of the gravitational 
oupling 
onstant
mP . To do this we 
onsider small metri
 perturbations ḡµν = ηµν + h̄µν on the 3-braneand 
ouple them to energy-momentum tensor of the matter living there. These are themassless gravitational �u
tuations about our 
lassi
al AdS solution and they will providethe gravitational �elds for our e�e
tive theory. They are the zero-modes of our 
lassi
alsolution, and take the form 18



ds2 = e2t
(

ηµν + h̄µν
)

dxµdxν + r2
cdt

2 . (2.8)The four-dimensional e�e
tive theory now follows by inserting the ansatz (2.5) in the a
tion(2.4) and we �nd that the a
tion for the metri
 ḡµν(x) is equal to
Sgrav = 2M3 rc

∫ t

dt′e2t
′

∫

d4x
√
−ḡR̄ . (2.9)Here the warping fa
tor enters in the form as it is originally in the metri
 ansatz (2.5),regardless of the dimensionality of the e�e
tive gravitational 
oupling 
onstant. We denoteby R̄ 
urvature s
alar of the metri
 ḡµν in 
ontrast to the �ve-dimensional Ri

i s
alar,

R, made out of metri
 Gmn. The relation 
onne
ting the 4-dimensional Plan
k mass mPand the 5-dimensional parameter M is obtained by performing in (2.9) the integral over
t′ expli
itly and then 
omparing with the e�e
tive 4-dimensional a
tion in the form (2.1).This leads to

m2
P (t) = m2

P (0) +
M3 rc

2

[

e2t − 1
]

, (2.10)independent of the lower end of integration in (2.9).The requirement that m2
P (t) be positive for all t implies m2

P (0) > M3rc/2. Equation(2.10) 
ontains the unobservable �ve-dimensional Plan
k mass. We 
an rewrite it in termsof four-dimensional measurable quantities as follows. We assume that the Plan
k mass atthe TeV s
ale is not so di�erent from the measured value at ma
ros
opi
 s
ales (deep IRlimit) mP (0) ≈ mP (−∞). Then, knowing the empiri
al values of υ0 and mP (0) we have
tP = t(k = mP (0)) ≈ 38. Furthermore we de�ne the 
oe�
ient cP =

(

mP (tP )
mP (0)

)2

− 1, whi
hmeasures the relative 
hange of the e�e
tive Plan
k mass between the TeV and (the initial)Plan
k s
ale mP (0). We expe
t the value of cP to be of order one. Sin
e M3 rc > 0 wemust have cP > 0. We note, that sin
e the AdS 
urvature υ2
0 is mu
h smaller than the�ve-dimensional Plan
k s
ale M2, it is justi�ed to treat the �ve-dimensional gravitational�eld 
lassi
ally. From the de�nition of cP and the assumption that mP (0) ≫ υ0 we get therelation M3 rc = 2 cP υ

2
0 with the help of whi
h we 
an rewrite formula (2.10) as19



m2
P (t) = m2

P (0) + cP υ
2
0

[

e2t − 1
]

, (2.11)where we have repla
ed the 5-dimensional parameters M and rc by the Higgs VEV υ andthe parameter cP .We observe that equation (2.7) des
ribes a mass that s
ales with the 
uto� exa
tly asdi
tated by dimensional analysis m ∼ k. Therefore, when the mass is measured in unitsof the 
uto� k, it is 
onstant. If we regard this mass as the (inverse) 
oupling 
onstant ofthe non-linear sigma model (2.3), we are at a FP. Likewise, when t → ∞, also the Plan
kmass s
ales asymptoti
ally in the same way, so if we regard it as the (inverse) gravitational
oupling, (2.11) des
ribes an RG traje
tory where gravity (
oupled to matter) approa
hesa non-trivial FP. Interestingly, in this limit the de
oupling of gravity G→ 0 
an be viewedas a 
onsequen
e of a non-trivial FP. It is worthy to emphasize that only in four spa
etimedimension equation for RG running of a power of the e�e
tive Plan
k s
ale (2.11) des
ribesin the UV limit FP for this dimensionful 
oupling. In 
omplete generality in equation (2.10)we have always e2t fa
tor appearing from our AdS metri
 ansatz, however the power of thee�e
tive Plan
k mass on the left hand side of this equation is given by d−2, where d is thedimensionality of the brane. In higher dimensions the a
tion for gravitation 
ontains higherpowers of the Plan
k mass in 
ontrast to the se
ond power of 
uto� momenta originatedfrom the warping fa
tor, so in su
h 
ir
umstan
es holographi
 method doesn't 
on�rm theexisten
e of nontrivial FP of RG for dimensionful gravitational 
onstant. This �nishes thedis
ussion of RG running of dimensionful 
ouplings (of matter and gravitational 
hara
ter)from the holographi
 perspe
tive in pure AdS spa
etime.2.3 Fun
tional RGIn this se
tion we evaluate the s
ale-dependen
e of m2
P and υ2 dire
tly in the four-dimensional theory. To do this we will use te
hniques of fun
tional (also known as exa
t)Renormalization Group. Our starting point is the �average e�e
tive a
tion� Γk, a 
oarse-20



grained version of the e�e
tive a
tion, whi
h interpolates between some mi
ros
opi
 a
tionat k = k0 and the full quantum e�e
tive a
tion at k = 0. The RG momentum s
ale kis introdu
ed at the level of the fun
tional path integral by adding suitable momentum-dependent kernels Rk(q
2) to the inverse propagators of all propagating �elds, whi
h forbosoni
 �elds take the standard q2 form at high energy. These kernels must de
reasemonotoni
ally with k2, tend to 0 for k2/q2 → 0 (in order to leave the propagation of largemomentum modes inta
t), and tend to k2 for q2/k2 → 0 (in order to suppress the lowmomentum modes). The 
hange of Γk with logarithmi
 RG �time� t = log(k/k0) is givenby a fun
tional di�erential equation [12℄

∂tΓk =
1

2
STr

(

Γ
(2)
k +Rk

)−1

∂tRk . (2.12)Here, Γ
(2)
k denotes the matrix of se
ond fun
tional derivatives with respe
t to all propagat-ing �elds, and the supertra
e stands for a sum over all modes in
luding a minus sign for�elds of fermioni
 type. The RG �ow (2.12) is an exa
t fun
tional identity, whi
h derivesfrom the path-integral representation of the theory in the vi
inity of a gaussian �xed point.The �ow redu
es to the Callan-Symanzik equation in the spe
ial limit where Rk be
omesa simple mass term k2, and is related to the Wilson-Pol
hinski RG [11℄ by a Legendretransform. Most importantly, the fun
tional �ow is �nite and well-de�ned for all �eldsin
luding the UV and IR ends of integration, whi
h makes it a useful tool for our purposes.The requirements of di�eomorphism or gauge invarian
e of the average e�e
tive a
tion areimplemented with the help of the ba
kground �eld te
hnique [34℄. For optimized 
hoi
es ofthe momentum 
uto� all the operator tra
es 
an be performed analyti
ally [35℄, also usingthe heat kernel methods.We want to 
al
ulate the RG �ow of Γk for the system des
ribed by the 
lassi
al a
tion,whose two pie
es were given in (2.1) and (2.3). This type of 
al
ulation for pure gravitywas �rst des
ribed in [36, 37, 17℄ and in [19℄ for the non-linear sigma model. Here weapply the same te
hnique to the 
oupled system starting with Γk = Sg + Sm + Sgf + Sgh,where it is understood that the 
ouplings in the RHS are repla
ed by running 
ouplings21



(k-dependent), evolving under the RG �ow (2.12). Sin
e the 
lassi
al a
tion is invariantunder di�eomorphisms, we have introdu
ed a gauge-�xing term Sgf and a ghost term Sghin addition to the gravitational a
tion (2.1) (for vanishing 
osmologi
al 
onstant) and thematter a
tion (2.2). Using the split of the metri
 and the s
alar �elds into ba
kground�elds gµν , φa and quantum �elds hµν , ηa, the gauge �xing term reads
Sgf =

m2
P

2α

∫

d4x
√
gχµg

µνχν (2.13)with χµ = ∇νhνµ + 1
2
∇µh. The tra
e of the metri
 perturbations 
omputed using ba
k-ground value of metri
 gµνhµν we denoted by h. The 
orresponding Faddeev-Popov ghosta
tion is

Sgh =

∫

d4x
√
gC̄µ(−∇2δνµ −Rν

µ)Cν . (2.14)Below we work in Feynman gauge (α = 1) for simpli
ity, but this is not essential. In orderto �nd terms in (2.12) we have to invert the matrix (Γ
(2)
k + Rk) in �eld spa
e. For theEinstein-Hilbert a
tion we 
an follow the pro
edure of [38℄, Se
tion IV B. Expanding thematter a
tion up to quadrati
 order in the �u
tuation �elds δφa = ηa and hµν , the se
ondvariation S(2)

m reads
1

2

∫

d4x
√
g

[

V

(

1

4
h2 − 1

2
hµνhµν

)

+ 2V ′φaδφah+ δφa
(

−∇2δab + 2V ′δab + 4V ′′φaφb
)

δφb
]

.(2.15)Separating the radial mode ρ from the Goldstone modes, and splitting the graviton�eld into tra
eless, transverse part and other �elds ξ and σ as hµν = hTTµν +∇µξν +∇νξµ +

∇µ∇νσ − 1
4
gµν∇2σ + 1

4
gµνh, where ∇µhTTµν = 0, ∇µξµ = 0, the expansion of the averagee�e
tive a
tion Γk to quadrati
 order in the �u
tuations be
omes

Γk|quad =
1

2

∫

d4x
√
g
[1

2
m2
Ph

TTµν

(

−∇2 +
2

3
R− V

m2
P

)

hTTµν +m2
P ξ̂

(

−∇2 +
1

4
R− V

m2
P

)

ξ̂

+
3

8
m2
P σ̂

(

−∇2 − V

m2
P

)

σ̂ − 1

8
m2
Ph

(

−∇2 − V

m2
P

)

h+ δρ
(

−∇2 + 2V ′ + 4υ2V ′′) δρ22



+2V ′υ hδρ+ δϕα
(

−∇2 + 2V ′) δϕα
]

+ Sgh|quad , (2.16)where we have de�ned hatted variables by �eld rede�nitions a

ording to the formulas
ξ̂µ =

√

−∇2 − R
4
ξµ, σ̂ =

√
−∇2

√

−∇2 − R
3
σ. We observe that the radial mode δρ = ρ−υmixes with the tra
e h, whereas the Goldstone bosons do not. However, it is easy to seethat this mixing is absent on
e the ba
kground s
alar is at the minimum of its potential.Then (2.16) is already diagonal in �eld spa
e and the inversion of the matrix (Γ

(2)
k + Rk)be
omes straightforward. De�ning the graviton �anomalous dimension� η = ∂tm

2
P/m

2
P , the�ow equation (2.12) reads

∂tΓk =
1

2
Tr(2)

∂tRk + ηRk

Pk + 2
3
R

+
1

2
Tr′(1)

∂tRk + ηRk

Pk + 1
4
R

+
1

2
Tr(0)

∂tRk + ηRk

Pk

+
1

2
Tr′′(0)

∂tRk + ηRk

Pk
− Tr(1)

∂tRk

Pk − 1
4
R

− Tr′(0)
∂tRk

Pk − 1
2
R

+
N − 1

2
Tr(0)

∂tRk

Pk
+

1

2
Tr(0)

∂tRk

Pk + 8λυ2
, (2.17)where Pk ≡ −∇2 + Rk(−∇2). For a de�nition of the remaining (primed and unprimed)tra
es over the various tensor, ve
tor and s
alar modes, we refer to [38℄. The �rst six termsoriginate from the gravitational se
tor and the ghosts while the last two terms 
ome fromthe Goldstone bosons and the radial mode, respe
tively.We make an ansatz for Γk of the form Sg + Sm + Sgf + Sgh, where Gk, λk and υkare k-dependent 
oupling 
onstants in our model. The β-fun
tions for the 
ouplings areobtained from (2.17) by proje
tion onto the trun
ation ansatz for the a
tion as given in

Γk. To that end we polynomially expand the fun
tional �ow on both sides about R = 0and ρ2 = υ2. The �ow for the inverse gravitational 
oupling m2
P , the quarti
 
oupling

λ, and for the va
uum expe
tation value υ2 are then given by d
dR

(∂tΓk), 1
2
( d
dρ2

)2∂tΓk and
− d
dρ2
∂tΓk/(2λ) at R = 0 and ρ2 = υ2, respe
tively. For 
ompleteness we have listedhere also the RG �ow for 
oupling λ, although it doesn't appear in the �nal formulationof nonlinear sigma model. In the following we will negle
t the terms linear in η on theRHS of (2.17). Moreover we work on one-loop level (if we were to refer to perturbative23




omputations in QFT), therefore as a �rst approximation we forget about the e�e
ts drivenby the graviton anomalous dimension. Using the heat kernel expansion together with anoptimized 
uto� fun
tion [35℄ Rk(z) = (k2 − z)θ(k2 − z) with Heaviside θ step fun
tion,the β-fun
tion for λ reads
∂tλ =

λ2

2π2

(

N − 1 +
9

(1 + m̃2)3

)

+ G̃ λ
5 + 6m̃2 + 3m̃4

(1 + m̃2)2
, (2.18)where we have introdu
ed the square of the Higgs mass in units of the RG s
ale, m̃2 =

8λυ2/k2 and G̃ = Gk2. The terms proportional to λ2 
ontains the 
ontributions of the
N − 1 Goldstone modes and the Higgs �eld. Noti
e the threshold behaviour of the Higgs
ontribution at the Higgs mass m2 ≈ k2. The last term is the leading gravitational 
orre
-tion. The β-fun
tion of υ2 is

∂tυ
2 =

k2

16π2

(

N − 1 +
3

(1 + m̃2)2

)

. (2.19)It re
eives 
ontributions from the Higgs and the Goldstone bosons, but, remarkably, notfrom the �u
tuations of the metri
 �eld. Now we take the non-linear limit λ → ∞ (or
m̃2 → ∞) with υ2 held 
onstant. In this limit (2.18) be
omes useless, the Higgs �eldbe
omes in�nitely massive and the radial mode 
ontribution to (2.19) drops out. TheGoldstone bosons remain fully dynami
al, in fa
t their a
tion is 
ompletely una�e
ted bythe limit. We end up with

∂tυ
2 = BHk

2 ; BH =
N − 1

16π2
, (2.20)

∂tm
2
P = BPk

2 ; BP =
Nc −N

96π2
, (2.21)where we have just de�ned the 
riti
al number of �elds in SO(N) model equal to Nc =

109/4. The dependen
e of the result on the number of Goldstone modes is simple tounderstand. In (2.20), only the Goldstone modes 
ontribute to the running of the VEV. Inthe running for e�e
tive 4-dimensional Plan
k mass (equation (2.21)), the 
ontribution from24



the Goldstone modes 
ompete with this originating from the graviton self-intera
tion. For
N < Nc, the gravitons keep the lead and the 
ombined e�e
t is to in
rease mP (BP > 0)with in
reasing RG time t. In the opposite regime the Goldstone modes take over and
hange the sign of the 
oe�
ient BP . More generally, matter �eld 
an 
ontribute to (2.21)with either sign and hen
e the global sign of RG running will depend on the number ofs
alars, spinor, or ve
tor �elds 
oupled to gravity [29℄. This pattern is similar to s
ale-dependen
e of strong 
oupling in QCD (where we have asymptoti
 freedom for su�
ientlysmall number of fermions) and its dependen
e on the number of fermioni
 quark spe
ies.We will later 
ome ba
k to the issue of results' dependen
e on the number of �elds N .For a better understanding of the system of our nonlinear sigma model 
oupled toEinstein-Hilbert gravitation it is 
onvenient to use the inverses G = 1/(16πm2

P ), f 2 = 1/υ2,and to introdu
e dimensionless 
ouplings υ̃2 = υ2/k2, f̃ 2 = f 2k2, m̃2
P = m2

P/k
2, G̃ = Gk2.This is be
ause the perturbative analysis of the sigma model and gravitational theory isan expansion in the 
ouplings f̃ 2 and G̃, respe
tively. Their β-fun
tions are given by

∂tG̃ = 2G̃−BP G̃
2 (2.22)

∂tf̃
2 = 2f̃ 2 − BH f̃

4 . (2.23)Also on this level we observe a lot of similarities. Ea
h one of these β-fun
tions admitstwo FPs: an IR FP at zero 
oupling and an UV FP at �nite 
oupling f̃ 2 = 2/BH and
G̃ = 2/BP respe
tively. The gravitational FP is in the physi
al domain provided thenumber of Goldstone modes is small enough, or else the FP turns negative and 
annot berea
hed, be
ause in the RG evolution we 
annot 
ross zero value of the 
oupling.The two 
ouplings have 
ompletely independent but very similar behaviour. For k ≪ υ(so in the deep infrared limit of energies), υ̃ is 
lose to the Gaussian FP. This is the domain,where the dimensionful 
oupling υ is nearly 
onstant, the dimensionless υ̃ has an inverselylinear �
lassi
al� running with energy (derived from the 
anoni
al energy dimension of υ),and perturbation theory is rigorously appli
able. Then for higher energies there is a regimewhere υ̃ is nearly 
onstant and 
lose to the non-trivial FP, while the dimensionful υ s
ales25



linearly with energy. Note that on su
h traje
tories it never happens that k ≫ υ. Thetransition between the two regimes alluded before is near the s
ale determined by υ, sothis is way below in energies than the Plan
k s
ale. These 
onsiderations 
an be repeatedverbatim for mP , the sole di�eren
e being that the RG s
ale, where the transition from�
lassi
al running� to non-
lassi
al behaviour driven by quantum e�e
ts o

urs, will benear the Plan
k s
ale. Thus, there are three regimes: the low energy regime k ≪ υ ≪ mP ,where both G and f are 
onstant, the intermediate regime where f̃ has rea
hed its FPvalue but G is still 
onstant and the FP (high energy) regime, where both dimensionless
ouplings have rea
hed the FP.2.4 Comparison between holographi
 and fun
tional RGresultsIn the previous two se
tions we obtained results for the RG running for 
oupling param-eters in the nonlinear sigma model and in the gravitation 
omputed using two 
on
eptually
ompletely di�erent methods. In this se
tion we try to draw a 
omparison between theseresults. To �nd a relation between them is the main goal of this 
hapter. For the sakeof 
omparison with the results of the holographi
 pro
edure, we 
an write the generalsolutions of equations (2.20), (2.21) from the previous se
tion as:
υ2(t) = υ2

0 +
1

2
BH(k2 − k2

0) = υ2
0

[

1 +
1

2
BH(e2t − 1)

]

, (2.24)
m2
P (t) = m2

P0 +
1

2
BP (k2 − k2

0) = m2
P0 +

1

2
BPυ

2
0(e

2t − 1) , (2.25)where we have de�ned, in a

ordan
e with the de�nitions in Se
tion 2.3, k(t) = υ0e
t,

k0 = k(0) = υ0, and υ0, mP0 are the values of the respe
tive 
ouplings at k0. Stri
tlyspeaking, when all dimensionful parameters of the theory undergo RG running, the onlyphysi
al and measurable parameter of the theory is the ratio of the mass s
ales, whi
h arepresent, 26



α(t) ≡ mP (t)

υ(t)
. (2.26)The plot of its natural logarithm logα(t) is shown on Fig. 2.1 and illustrates the threeregimes of the theory alluded to in the end of the pre
eding se
tion. We may already analyzethe behaviour of this ratio 
omputed on the basis of exa
t (fun
tional) RG. Namely for

t → ∞ the square of the ratio tends, for all traje
tories, to the 
onstant value BP/BH ,while for t→ −∞ it tends to a number that depends on the initial 
onditions and is equalto
lim
t→−∞

α(t) =
m2
P0 − 1

2
BPυ

2
0

υ2
0

(

1 − 1
2
BH

) . (2.27)After negle
ting BPυ
2
0 with respe
t to m2

P0 we 
an 
on
lude that this number is of order
m2
P0/υ

2
0, so roughly of 1038 magnitude. We must be however 
areful here, be
ause thepre
ise value of the limit depends strongly on the value of the 
oe�
ient BH and is singularfor it equal 2.Returning to equations (2.24) and (2.25), we see that if we 
ould set BH = 2 and

BP = 2cP , they would agree with the �ow obtained by the holographi
 method as en
odedin formulas (2.7) and (2.11). There is a di�eren
e here between the holographi
 RG �owsof υ and mP : whereas cP is a free parameter in the holographi
 model for the running ofthe gravitational 
oupling, whi
h 
an be adjusted to mat
h the result of the fun
tional RG,there is no 
orresponding free parameter for υ. One is thus left with a predi
tion for theparameter BH , that does not seem to mat
h the result of the fun
tional RG, whi
h showsexpli
itly dependen
e on N . One 
ould try to exploit the fa
t that the parameter BH iss
heme-dependent, to try and for
e a mat
h, however this 
ould not hide the importantdi�eren
e that whereas in the fun
tional RG there are in�nitely many traje
tories for both
υ and mP , parametrized by their values at k0, in the holographi
 RG there is a singletraje
tory for υ 
hara
terized by the initial value υ0 and the �xed value of the 
oe�
ient
BH = 2.To 
larify this di�eren
e further, we observe that if we set BH = 2, as the pure AdS27
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Figure 2.1: The running of the mass ratio α(t) de�ned in (2.26), forN = 4, on a logarithmi
s
ale as a fun
tion of t. Solid 
urve: solution of the fun
tional RG; dashed 
urve: solutionof the holographi
 RG. For large t the 
urves tend to the value 0.13.holographi
 RG seems to demand, υ tends not to �nite value υ0

√

1 − BH/2, but to zeroin the IR and therefore α diverges. The ratio α in the far IR grows linearly to +∞.This is shown by the dashed line in Fig. 2.1. Thus, the holographi
 des
ription of thepre
eding se
tion agrees well with fun
tional RG in the se
ond and third regime, but failsto reprodu
e even at a qualitative level the generi
 low-energy regime of the theory. Thisis due to the fa
t, that the holographi
 RG traje
tory is su
h that υ tends to zero in theIR, whi
h is just one amongst in�nitely many RG traje
tories allowed in (2.24), that wouldtend to di�erent �nite limits in the IR. In 
ontrast, m2
P 
an have an arbitrary limit in the IR

m2
P0− cPυ2

0: this is due to the freedom of 
hoosing the parameter cP . The di�eren
e in thebehaviour of the two 
ouplings 
an be tra
ed ba
k to the fa
t, that in the �ve-dimensionaldes
ription, gravity is free to propagate in all dire
tions, whereas all the other matter �eldsare 
on�ned to the 3-brane. 28



Here we also want to tou
h on the issue, whi
h is of great importan
e for the questionof UV 
ompletion of quantum gravity. Namely we will shortly dis
uss the running of thePlan
k s
ale. We know, from ma
ros
opi
 physi
s, that IR (
lassi
al) value of parametersetting the strength of gravitational intera
tions is �nite. We 
all it here Plan
k 
onstantand denote by mP IR. Due to quantum e�e
ts this parameter, as any other in the La-grangian, exhibits s
ale-dependen
e. From the energy range explored so far in parti
lephysi
s (up to TeV s
ale), we 
on
lude that this running Plan
k s
ale runs very weaklyand that it is justi�ed there to negle
t gravitational e�e
ts. However still we 
an 
onsiderfun
tion mP (t) giving us the RG running of Plan
k s
ale at di�erent energies k = υ0 exp t.Let us 
all the energy s
ale, at whi
h gravitational intera
tions are be
oming importantfor quantum physi
s of elementary parti
les, a proper Plan
k s
ale. This is a s
ale, whi
h
an be determined quite uniquely. It is very important that the proper Plan
k s
ale mP∗doesn't run under RG transformation of s
ales. It is an RG-invariant in the same way asmasses of the physi
al parti
les (the latter are determined from poles of the exa
t quantumpropagators). The fa
t, that the Plan
k s
ale, des
ribing the strength of gravitation, mea-sured by a dimensionless produ
t k2m−2
P , undergoes RG running in an e�e
tive �eld theoryapproa
h, means in this 
ontext only that an IR estimation for the proper Plan
k s
ale

(mP∗ ≈ mP IR) must be 
orre
ted. Quantum e�e
ts in gravity make it antis
reening, so the
orre
tion is positive. This means that at k = mP IR we don't meet an outset of quantumgravity for elementary parti
les. The energy s
ale must be raised. At new in
reased energy
k we 
he
k for the running value of Plan
k s
ale and 
ompare it with k - by this way wede
ide, whether the energy must be raised again and so on. The non-iterative solutionto this problem 
omes after noti
ing that the proper Plan
k s
ale is a mathemati
al �xedpoint of the fun
tion mP (k), this is

mP∗ = mP (k = mP∗) . (2.28)If we know, the running of Plan
k s
ale (analyti
ally or numeri
ally mP (k)) over someenergy s
ale range, then it is easy to �nd su
h �xed point. It is at the se
tion of a 
urve29



mP (k) with a line showing relation mP = k. For monotoni
 RG runnings su
h �xedpoint is determined uniquely. All this 
onsiderations are in perfe
t analogy to the issueof determining masses of W and Z bosons. Their masses 
an be tra
ed ba
k from thelow-energeti
 intera
tions of weak and neutral 
urrents. However their IR value mustbe renormalized at higher energy s
ale to give the proper values at physi
al poles in the
orresponding propagators. Here we may interpret the proper Plan
k s
ale as a masspresent in the denominator of some exa
t quantum 2-point fun
tion. This is really likethat, be
ause in some theories physi
al masses of heavy parti
les, whi
h appear in UV
ompletions, are proportional to the proper Plan
k s
ale. Parameters determining thestrengths of intera
tions do run, masses of related parti
les do not, however these two fa
tsdo not 
ontradi
t for the existen
e of 
onne
ting the two relation.In our 
ase from equation (2.25) we see that the unique answer for the square of theproper Plan
k s
ale is given by
m2
P∗ =

m2
P0

1 − 1
2
BP

=
m2
P0

1 − cP
, (2.29)when we negle
ted a 
onstant term 1

2
BPυ

2
0 as smaller 
ompared to m2

P0. We easily seethat the sensible solution exists only for cP < 1. The best pi
ture we get, when we plot
m2
P versus k2. Then the RG running of Plan
k s
ale and mP = k are given by straightlines. For cP > 1 two straight lines 
ross for negative value of energy s
ale k. This result isnonsensi
al on physi
al grounds and means that simply mP∗ doesn't exist. For higher andhigher energies two lines diverge and this is means that iterative 
orre
tion to the properPlan
k s
ale are bigger and bigger, when the energy is raised. In that 
ase quantum gravitynever be
omes signi�
ant in the intera
tion of elementary parti
les and there is no new
hara
teristi
 quantum gravity s
ale. When cP = 1 exa
tly, then the lines meet at in�nity(are parallel) and indeed mP∗ = +∞ is a limiting solution for the mathemati
al �xedpoint of the fun
tion mP (k). In the remaining 
ase cP < 1 lines 
ross for �nite positive kand there exists a �nite solution for the proper Plan
k s
ale (2.29). Summarizing, when

cP < 1, proper s
ale of quantum gravity exists and in some theories of quantum gravity30



one 
an expe
t there appearing of new physi
s (i.e. new degrees of freedom). Howeverfor cP ≥ 1 UV 
ompletion 
an be a
hieved only by requiring existen
e of nontrivial FP ofRG. Moreover in the RG �ow of 
ouplings we demand to remain on the RG safe traje
torytowards this FP. With other small te
hni
al details this is the idea of asymptoti
 safetyfor quantum gravitation. We remind here that value of the 
oe�
ient cP is equal to theinverse UV FP value of the dimensionless gravitational 
onstant G̃∗. This means that theabove given 
onditions 
an be phrased equivalently in terms of the details of the FP inUV and in this way we 
an avoid studying the RG �ow at intermediate energies (around
k = mP0), where we are not sure about full dynami
s of the gravitational system.Whole asymptoti
 safety program 
on
erns UV limit of energies and as su
h is notsensitive to the parti
ular behaviour of 
ouplings in a range between υ0 and mP0 s
ales(as in original de�nition of cP ). We give as a partial eviden
e for asymptoti
 safety thefa
t, that for Einstein-Hilbert system the values of G̃∗ at UV FP are smaller than unity(in type II and III 
uto� s
heme). When running of 
osmologi
al 
onstant is also in
luded,then G̃∗ < 1 in all types of 
uto� (beyond 1-loop approximations) [38℄. This reinfor
esasymptoti
 safety 
onje
ture, be
ause running of Plan
k s
ale in the vi
inity of hypotheti
alUV FP is 
onsistent with the absen
e of any new energy s
ale for quantum gravity. Whenextrapolating RG running equations from UV to intermediate energy s
ale, we don't meetany new s
ale, so the existen
e of nontrivial FP of RG in UV is inevitable, if our theory isto be fully 
onsistent. When in asymptoti
 safety s
enario, RG safe traje
tory rea
hes FPin UV, then there exists an energy s
ale, at whi
h RG �ows enters into FP regime. Fromequation (2.25) we see that this s
ale is set by mP0

cP
, whi
h is smaller than mP0 for cP > 1.However this is not a new mass s
ale in the sense explained above. We must add here,that asymptoti
 safety s
enario as a possible UV 
ompletion for quantum gravity worksalso for cP < 1, however the eviden
es for it are not so strong in this 
ase.The behaviour of the proper Plan
k s
ale with 
hanges of the 
oe�
ient cP 
an beunderstood very intuitively. We re
all that this 
oe�
ient measure the 
hanges in therunning Plan
k s
ale between υ0 and mP0 s
ales. When this 
hange is small cP < 1, thenwe expe
t 
orre
tion to mP0 to be small and soon we should 
onverge with the �nite value31



of mP∗. In opposite 
ase, when the 
hange is bigger than the initial estimate for properPlan
k s
ale (mP∗ ≈ mP0), then our pro
edure gives a divergent result and there is no a
rossing point. We want also to remark here, that the above presented analysis for theproper Plan
k s
ale is insensitive to any IR modi�
ation of the �ows, be
ause our iterativepro
edure starts at k = mP0, whi
h is very high energy 
ompared to k = υ0. If cP > 1,then above the s
ale k = mP0, we are with big 
on�den
e in a �xed point regime of the�ow, when our �ow equation (2.24), (2.25) hold true. When cP < 1, then probably moredetailed analysis is required espe
ially in the intermediate region of energies.In the des
ription of Fig. 2.1 we said, that it was prepared for value N = 4 for thesolution of the fun
tional as well as holographi
 RG. Solid 
urve (from exa
t RG) wasindeed obtained for su
h input data, however the dashed one symbolizing the results ofholography was obtained for cP ≈ 1.292. There is no any N-dependen
e in holographi
running of υ or mP , the only parameter governing RG �ow of mP is cP and we 
an adjustonly its value. Later we 
onsidered the possibility of having the agreement of two RG�ows, from whi
h one of the �rst impli
ations is that the 
oe�
ient cP as a fun
tion of Nis given by the formula cP = Nc−N
6(N−1)

and this evaluated for N = 4 gives mentioned abovenumeri
al value of it. To get this 
on
lusion we must have used formulas (2.20) and (2.21).For these values of the parameters (N and cP ), des
ribing the two 
urves, we get that bothat +∞ tend to the same value 1
2
log cP , whi
h is numeri
ally, what we found as 0.13.Lastly, the se
ond impli
ation of our mat
hing holography with fun
tional RG methodsis that we are for
ed to admit, that BH = 2. With this, from formula (2.20) we 
an �ndthat N ≈ 316.8. This is the value for whi
h problems des
ribed above arise (N > Nc,so cP is negative!) and this is a determined �nite number of matter �avors, whi
h 
ouldbe present in our theory. We wouldn't expe
t, that by for
ing mat
hing of two RG �ows,we 
ould �nd the unique value of N (whi
h is by the way wrong, be
ause for it cP < 0).We share the opinion, that it shall remain free, not determined, parameter of our model.Formulas (2.20) and (2.21) were used to determine cP , for some value of N , knowing thatit must be equal from the mat
hing to the ratio BP

BH
. But in the same moment we were ablein prin
iple to use the full 
onditions of mat
hing (BH = 2 and BP = 2cP ) to determine32



the value of N from (2.20). The only 
ure for all these issues are the modi�
ations for bothRG �ows, whi
h we will des
ribe further in this and next 
hapter.We 
an modify the holographi
 RG to resemble more 
losely the fun
tional one bystopping the �ow of υ at k = υ0. From Fig. 2.1 we noti
e, that without su
h modi�
ation,holographi
 RG �ow is good only for energy s
ales mu
h bigger than masses. This 
an bea
hieved by putting a sour
e brane at t = 0 with a
tion
√

6M3 |Λ|
∫

d5y δ(t) . (2.30)Therefore we generalise the ansatz (2.5) by repla
ing e2t with more general warping fa
tor
e2A(t). Then solving the �ve-dimensional Einstein equations with this sour
e gives a se
ondorder di�erential equation for the warp fa
tor A′′ = − V rc

12M3 δ(t). Sin
e we want to have
A(t) = t for t > 0, we get from the equation above that A(t) = 0 for t < 0. Thus,we have a solution where the brane at the origin joins 
ontinuously a �at spa
etime for
k rc < 1 with AdS spa
etime for k rc > 1, where we re
all that t = log(k rc). By doing thiswe have modi�ed signi�
antly only the IR part of holographi
 geometry, so we 
hangedthe RG running for 
ouplings only in this regime. Sin
e the Higgs VEV s
ales in generalas υ0e

A(t), we �nd that it be
omes 
onstant for t < 0. For the Plan
k mass the above
onstru
tion implies a weak, logarithmi
 running for t < 0, whi
h would redu
e it to zeroon
e tIR ∼ −1032. This is so far in the infrared that we 
an disregard this e�e
t for allpra
ti
al purposes.The behaviour of the 
ouplings for t < 0 is not exa
tly the same as the solution that wefound from the fun
tional RG, but it is qualitatively very similar. The 
omparison 
ouldbe improved further by making the model more realisti
. Equations (2.24) and (2.25) showthat the running of the 
ouplings 
ontinues all the way down to k = 0 without thresholds.This is due to the fa
t that all degrees of freedom of the theory (gravitons and Goldstonebosons) are massless. In the real world, the Goldstone bosons are 
oupled to gauge �eldsand are not physi
al degrees of freedom. Instead, they be
ome the longitudinal 
omponentsof the W and Z bosons. These gauge �elds are massive and their 
ontributions to the β-33



fun
tions will exhibit threshold phenomena, whose e�e
t is to swit
h o� the running of υbelow k0 = υ0 [20℄. It appears therefore that branes 
an be naturally asso
iated to thepresen
e of thresholds.We 
on
lude that with the addition of the sour
e brane at t = 0 the �ve-dimensionalspa
e has be
ome very similar to the Randall�Sundrum one [1℄. This 
an be generalised:one 
an modify the holographi
 �ow by introdu
ing branes at spe
i�
 lo
ations and withspe
i�
 
osmologi
al 
onstants, or more generally a 
ontinuous distribution of branes witha given density. With pla
ing a sour
e brane at t = 0 and stopping the fun
tional RG �owdue to threshold phenomena, we 
an obtain a situation in whi
h both �ows are qualitativelyvery similar, but in the same time N -dependen
e in formulas (2.20) and (2.21) is not rig-orously 
orre
t. The mat
hing 
onditions and UV behaviour of RG runnings for parti
ular
ouplings are fortunately insensitive to these 
hanges. Moreover in the next 
hapter wewill 
on
entrate on the other distin
t possible deformation of the RG �ow geometries, withwhi
h most of the problems, we mentioned here, will �nd its �eld-theoreti
al solutions.2.5 Dis
ussionIn this se
tion we would like to dis
uss some aspe
ts of the 
onsidered model in thelight of found relation between holographi
 and fun
tional Renormalization Group Flows.The �rst issue 
on
erns the physi
al meaning of a non-trivial FP for gravitation 
oupledto a non-linear sigma model.We have shown that in the simplest approximation, retaining only terms with twoderivatives of the �elds, the non-linear sigma model minimally 
oupled to gravity exhibits anon-trivial, UV attra
tive FP, whi
h 
ould be used to de�ne this theory nonperturbativelya

ording to Asymptoti
 Safety proposal. Therefore we 
an hope that its perturbativeproblems (like apparent violation of unitarity at high energy) 
an be solved if the theory ison the RG safe traje
tory. The fun
tional RG 
al
ulation presented here 
an be easily ex-tended beyond the one-loop level by keeping the ba
k-
oupling of the graviton �anomalousdimension� η, whi
h we negle
ted, and its analog for the non-linear sigma model. Similarly,34



the in
lusion of a 
osmologi
al 
onstant term in this framework is straightforward. Theseextensions bring only relatively minor 
hanges to the pi
ture we have found here. In
lusionof higher derivative terms would require a more signi�
ant 
al
ulational e�ort but the ex-isting results for gravity and the sigma model separately suggest that the non-trivial �xedpoint should persist.The physi
al appli
ation of our results is in the 
onstru
tion of an asymptoti
ally safequantum �eld theory of all matter and gravitational intera
tions. Mu
h work has goneinto trying to prove that gravity is asymptoti
ally safe, but in order to be appli
able tothe real world one would have to extend this result also to the other intera
tions. Strongintera
tions are already asymptoti
ally safe (as a parti
ular 
ase - they are asymptoti
allyfree in UV) on their own, so presumably they pose the least problem. The main issues seemto be in the ele
troweak se
tor, and in parti
ular in the abelian and s
alar subse
tors. Thereare mainly two ways in whi
h these issues 
ould be over
ome. In the �rst, asymptoti
 safetywould be an essentially gravitational phenomenon: the standard model (or a grand uni�edextension thereof) 
oupled to gravity would not be UV 
omplete and gravity would �x theUV behaviour of all 
ouplings, in
luding the matter ones. In this 
ase the matter theorywould be an e�e
tive �eld theory that need only hold up to the Plan
k s
ale; thereafter all
ouplings would approa
h a FP together. This is probably the most preferred s
enario dueto the la
k of experimental hints beyond Standard Model of elementary parti
e physi
s.This is the point of view that is impli
it in [29, 39, 40℄. Re
ent dis
overy of Higgs-likeparti
le in LHC at CERN reinfor
es the 
laim that se
tor of ele
troweak intera
tions isperturbatively renormalizable, however really important issue be
ome UV behaviours ofrunning ele
tri
 
harge and quarti
 
oupling in the Higgs potential. One of the possibilityof se
uring UV limit of su
h theory is to require that these two 
ouplings rea
h FP. Thisis the se
ond 
ase, when ea
h intera
tion would be asymptoti
ally safe by itself, and ea
h
oupling would rea
h the FP at a di�erent energy s
ale: the TeV s
ale for ele
troweakintera
tions and the Plan
k s
ale for the gravitational intera
tions. This is the point ofview that we tried to propose by 
onsideration of our model.Taking this seriously, one is led to a non-standard pi
ture of all intera
tions, where both35



ele
troweak and gravitational intera
tions would be in their respe
tive �broken� phases,
hara
terized by non-vanishing VEVs, and 
arrying non-linear realizations of the respe
tivelo
al symmetries. Gravitation is in broken phase due to nonvanishing value of spa
etimemetri
, when we are way from the topologi
al phase. The theory as formulated does notadmit the possibility of symmetry restoration at high energy. In fa
t, rather than going tozero, the Higgs VEV goes to in�nity asymptoti
ally for t→ ∞. At high energy, when theFP of RG is rea
hed, symmetry of the theory is enhan
ed, be
ause we have s
ale-invarian
e,whi
h 
an be enhan
ed even more to the full 
onformal symmetry. We 
an see it from thebehaviour of the ratio α, illustrated in Fig. 2.1, whi
h 
hara
terizes the three regimes ofthe theory, with the ele
troweak and gravitational intera
tions be
oming s
ale-invariantabove their 
hara
teristi
 mass s
ales. The approa
h to the FP would �x the behaviour ofthe ele
troweak Goldstone se
tor, in a way that is still to be understood in detail, but hasnothing to do with gravity. For the abelian gauge intera
tion one would have to invokeuni�
ation into a simple group, or gravity, as in [40℄.We now 
ome to the striking 
orresponden
e between the RG �ows 
omputed by holo-graphi
 and fun
tional methods. Working examples of holography are hard to 
ome byoutside the original domain of superstring theory, but in spite of this there seems to bea trend towards viewing holography as a �eld-theoreti
 phenomenon [27℄. In the famousgauge/gravity duality the 
orresponden
e is 
onje
tured between any quantum gravity the-ory in the bulk and the boundary theory with some lo
al symmetries. In some sense the
orresponden
e is surprising, be
ause it is not a priori 
lear why the dynami
s of gravityin �ve dimensions should have anything to do with the RG in four dimensions understoodon the level of �eld theories. The idea of holography is often thought to be a fundamentalingredient of the 
onstru
tion of 
onsistent quantum gravity theory and it has a strongsupport from open/
losed string modes duality in string theory. On the other hand, ourunderstanding of holographi
 RG is based to a large extent on the AdS5 solution interpretedin the framework of Randall-Sundrum model. Given that the isometry group of AdS5 isthe group SO(3, 2), whi
h 
an be interpreted as the 
onformal group in four dimensionswith standard Minkowskian signature, it is not so surprising that this spa
e 
an be used36



to des
ribe in geometri
 terms a theory at a FP. Our view here is therefore to interpretthe �ve-dimensional metri
 as a geometrization of the four-dimensional RG �ow at or nearFP. In opposite dire
tion we read out here, from spa
etime geometry, RG runnings for
ouplings of four-dimensional theory following RS pres
ription, whi
h is very similar togeneral AdS/CFT re
ipes. In RS pres
ription running of matter dimensionful 
oupling isderived from warping fa
tor of the spa
etime metri
. Gravitational 
oupling on a 3-braneis of di�erent nature and we obtain its s
aling with energy by doing an integral over someinterval of radial 
oordinate in AdS-like spa
etime. The brane introdu
ed in se
tion �2.2,devoted for holographi
 RG, 
an be regarded as a true boundary of AdS lo
ated at somesmall but �nite positive z. 1In this 
hapter we have negle
ted 
ompletely holographi
 RG running for the 
osmolog-i
al 
onstant on the brane. The reason for this is quite te
hni
al. Despite the presen
e ofthe bulk 
osmologi
al 
onstant (giving the ba
kground AdS spa
etime), on our �at probebrane observer doesn't see any 4d-gravitational e�e
t originating from va
uum energy. We
hose to foliate 5-dimensional spa
etime using �at Minkowski sli
es. That's why the bulk
annot indu
e any e�e
t on the brane va
uum energy. Possible solutions would be to foliate5-dimensional AdS using 
urved sli
es with maximal symmetry (dS4 and AdS4 for posi-tive and negative 4-dimensional 
osmologi
al 
onstant respe
tively), however this is notalways an option. Moreover another additional di�
ulty appears in su
h setup, be
ausethen the value and the impa
t of the 
osmologi
al 
onstant on the physi
s on the braneis nonvanishing and �nite. In the true gravitational intera
tions (mediated by gravitons)the strength of intera
tions 
an be tuned to be in�nitesimal, even for �nite value of the
oupling m2
P , if only the energy ex
itations on the brane 
arry in�nitesimal energy. Thisis be
ause the produ
t m2

Pk
2, where k is the 
hara
teristi
 energy s
ale for matter pertur-bations, measures that strength. This means that, the impa
t of su
h perturbations onthe ba
kground geometry of the brane 
an be safely negle
ted. Without ba
k-rea
tion in1For AdS to be a solution in the presen
e of su
h a boundary one has to add to the a
tion the Gibbons-Hawking boundary term [41℄, whi
h in the present 
ase just redu
es to a 
osmologi
al 
onstant on thebrane. 37



this 
ase we 
an study the linearized theory of gravitons (metri
 perturbations) and derivetheir s
aling with the radial dimension of AdS spa
etime hµν = e2th̄µν . This was in the
ore of our derivation of the holographi
 RG �ow for Plan
k mass. In the 
ase of inter-a
tion with the brane 
osmologi
al 
onstant, we don't have the possibility to turn o� this
oupling smoothly to zero and its e�e
t on the ba
kground brane geometry is non negligi-ble. It is in
orre
t to 
onsider here the linearization around �at Minkowski ba
kground ofthe 3-brane. 4-dimensional gravitation here must be treated nonperturbatively in order todetermine the 
orre
t ba
kground and the response for brane va
uum energy. Additionallyon the �eld theory side we would have to work in the quantum �eld theory on the 
urvedba
kground. Nontrivial s
aling with t of brane 
osmologi
al 
onstant would 
orrespond toa foliation of bulk spa
etime by leaves with 
hanging internal 
urvature. This is mu
h more
ompli
ated setup for analyzing holographi
 RG �ows. Fortunately this problem doesn'tarise for holographi
 RG �ow of 
ouplings in front of gravitational higher derivative terms.From the four-dimensional perspe
tive, the 
orresponding large but �nite value of tde�nes a UV 
uto�. Due to this boundary, �ve-dimensional graviton modes are normaliz-able in the 
ut out region of AdS, and this setup des
ribes gravity 
oupled to a 
onformal�eld theory with a UV 
uto� [7, 4℄. This is exa
tly the 
onstru
tion as presented in [1℄.In this 
onne
tion, it is important to 
larify the following point, whi
h 
ould be 
ause ofmisunderstanding. In the limit z → 0 (
onformal boundary of AdS) we have seen that
G→ 0, and for this reason it is usually said that gravity de
ouples. However, the strengthof gravitation in a 
ertain pro
ess is measured by the dimensionless produ
t Gp2, where
p2 is the 
hara
teristi
 momentum. In the vi
inity of UV FP the following quantity If weidentify the 
uto� k with the momentum p, the strength of gravity is given by G̃ = Gk2,whi
h in the limit z → 0 tends to a �nite 
onstant (nb. this is the FP value of dimension-less gravitational 
oupling). It is in this sense that the de
oupling of gravity 
an be seenas the 
onsequen
e of a nontrivial FP for gravity.It is not obvious at all that this �ve-dimensional theory has a dual CFT des
ription.If it exists, it must 
orrespond to the putative nontrivial �xed point of the O(N) non-linear sigma model 
oupled to gravitation. Note that the non-linear sigma model has a38



dimensionful 
oupling and therefore, for �xed 
oupling it is 
ertainly far from 
onformal. Itis the quantum running of the 
oupling that would make it s
ale-invariant at the nontrivial�xed point. It should be possible to des
ribe this �xed point also in terms of an e�e
tiveLagrangian 
ontaining only dimensionless 
ouplings and also in terms of �elds suitable forUV degrees of freedom. We will 
omment on this issue also in the next 
hapter.
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Chapter 3
Holographi
 RG �ow geometries forgravitational 
oupling
3.1 Holographi
 setupIn this 
hapter we fo
us on the pre
ise realisation of RG �ow geometries, whi
h aredi�erent from pure AdS spa
etime. Mainly we will 
onsider �ow for the gravitational
oupling (whi
h stands in front of the 
urvature s
alar in Einstein-Hilbert a
tion), but wewill say few words about RG �ow for ordinary matter 
ouplings too. We will read RG �owsfrom geometry following Randall-Sundrum pres
ription [1, 2℄, but in general geometries,whi
h admit foliation by 4-dimensional �at Poin
arè sli
es. Moreover we demand that thesespa
etimes asymptoti
ally tend to AdS spa
etime, so we will work with asymptoti
allyAnti-de Sitter (AAdS).The main problem, we would like to address in this 
hapter is how to �nd holographi
geometries des
ribing RG �ows of gravitational 
oupling, whi
h we found primarily usingother methods (like fun
tional RG).For a s
alar �eld with standard kineti
 term and minimally 
oupled to gravitation,the only pla
e, where the di�eren
e between di�erent RG �ows originates, is a s
alarpotential. Its shape V (Φ) determines the �ow 
ompletely. However the opposite is not41



always true, be
ause the same 
on�gurations (s
alar pro�les) 
an be solutions of variouspotentials. We have only the equivalen
e between RG �ows and s
alar pro�les. Givingthe potential 
ompletes the ingredients ne
essary for building the holographi
 des
riptionof �ows. Hen
e the task of this 
hapter will be to �nd expli
it 5-dimensional potentialsfor expli
it gravitational RG �ows. We will also des
ribe qui
kly its impa
t on matter RG�ows.We will des
ribe holographi
 geometries 
orresponding to RG �ows as solutions ofEinstein-Hilbert system with minimally 
oupled s
alar �eld with a potential. For generalitywe will study (d+1)-dimensional theory, of whi
h our 5-dimensional des
ription is a spe
ial
ase, with the a
tion of the form
S =

∫

dd+1x
√
gMd−1 (R + L) =

∫

dd+1x
√
gMd−1

(

R ∓ 1

2
(∂Φ)2 − V (Φ)

)

, (3.1)where M is the (d + 1)-dimensional Plan
k mass (
onstant gravitational 
oupling in thebulk). We emphasise that the s
alar �eld Φ is 
hosen to be dimensionless and also thes
alar potential V (Φ) has energy dimension equal to two, independent of d . Su
h 
hoi
eenables us for simultaneous studying of holo-duals in any bulk spa
etime dimension d+ 1.In Lagrangian L for s
alar �eld we admit also the possibility, that s
alar �eld has negativesign of the kineti
 term. Later we will de
ide and 
omment about it. We use the followingansatz for the metri
, whi
h preserves full d-dimensional Poin
arè symmetry of 
onstant
r, �at Minkowski sli
es:

ds2 = e2A(r) ηij dx
idxj + dr2 i, j = 1, . . . , d . (3.2)It means that spa
etimes of our interest are warped (
onformally s
aled) d-dimensional�at Minkowski sli
es with original metri
 ηij. We set all 
oordinates to have inverse energydimension, this establishes the proportionality relation between radial r 
oordinate in thebulk of AdS and logarithmi
 RG time t. For de�niteness we assume that r = rc t, where

rc = 1/υ = (246 GeV)−1 is the length asso
iated to the ele
troweak s
ale. It is also equalto the AdS radius in far UV as 
hosen in [42℄. The requirement that our holographi
42



spa
etimes are asymptoti
ally AdS, when the radius r tends to plus or minus in�nity, issatis�ed in situations, in whi
h we have that A(r) → r/rc± in respe
tive asymptoti
s in r.
rc± denotes here the radii of AdS in asymptoti
 region of spa
etime, they must be di�erentfrom ea
h other, when we ask for nontrivial RG �ow. The dire
tion of r 
oordinate, takingvalues on whole real line, is su
h that de
reasing its value 
orresponds to following RG �owfrom UV to IR FP's.Now we are going to present the method, whi
h allows us to �nd a s
alar potential V (Φ)for a given RG �ow. From our 
oupled system of 
lassi
al equations of motion, we �rstderive the s
alar EOM in a fully generally 
ovariant form ±∇2Φ − δV

δΦ
= 0, where ∇2Φ =

√
g−1 ∂µ

(√
g ∂µΦ

). For our spa
etime metri
 ansatz (3.2) we have that √
g = exp(dA).We assume that our s
alar pro�les vary only along the radial dire
tion, being 
onstant onMinkowski se
tions. With this simpli�
ation we have the s
alar equation of motion givenby

± (Φ′′ + dA′ Φ′) − δV

δΦ
= 0, (3.3)where by prime we denote radial derivatives ∂

∂r
= 1

rc
∂
∂t
. Our equations of motion take theform of ordinary di�erential equation, where r is the independent variable. Warp fun
tion

A(r) 
ontains all RG �ow data. However we don't want to solve (3.3) for s
alar pro�le
Φ(r), but rather to �nd a potential V (Φsol) on a 
onsistent solution Φsol(r) of the fullgravitating system, provided some boundary 
onditions are satis�ed in UV and IR limit of
r 
oordinate. To do this we need at least one equation of gravitational 
hara
ter, be
ausewe don't know expli
itly the s
alar solution Φsol(r). If we knew this expli
itly we 
ouldinvert the relation and plug r(Φsol) in the right side of the formula for the �rst derivative ofthe s
alar potential δV

δΦ
= ± (Φ′′(r) + dA′(r) Φ′(r)). Now integrating the RHS (understoodas a fun
tion of independent variable Φsol) over Φsol in some limits, we would get sear
hedpotential V (Φsol). We will use a di�erent method, whi
h doesn't use the expli
it s
alarpro�le solution. Gravitational equations of motion must be exploited to rea
h this goal.The Einstein tensor, of satisfying our metri
 ansatz spa
etimes, 
ontains only two43



interesting 
omponents Gr
r and Gi

j . We 
ompute a mixed 
ovariant-
ontravariant form(to get rid of warping fa
tor). We have expli
itly interesting tensors: Rrr = −d(A′′ +A′2),
Rij = −e2A ηij(A′′ + dA′2) and R = −d (2A′′ + (d+ 1)A′2). With this we get two diagonal
omponents of Einstein tensor as

Gr
r =

d(d− 1)

2
A′2 and Gi

j =
d− 1

2
δij
(

2A′′ + dA′2) . (3.4)For a pair of equal transverse spa
etime indi
es (i.e. i, j = tM d-dimensional Minkowskitime), we see that it holds
GtM

tM −Gr
r = (d− 1)A′′ (3.5)ni
ely relating geometri
al stru
ture on the manifold with the se
ond derivative of thewarp fa
tor. On the other side of Einstein equations of motion Gµν = M−(d−1) T̃µν , wehave energy-momentum tensor T̃µν of matter, whi
h here is only in a form of s
alar �eld Φ.We are going to simplify the notation by res
aling energy-momentum tensor by M−(d−1),whi
h now has energy dimension equal to two and this is the most 
onvenient 
hoi
e fordimensionless s
alars. We denote it by Tµν . Then we have gravitational equations in thesimple form

Gµ
ν = T µν . (3.6)From the a
tion fun
tional (3.1) we derive the energy-momentum tensor for the s
alar �eld

Φ:
T µν = ±(∂µΦ)(∂νΦ) − δµνL, (3.7)where the stru
ture of the s
alar Lagrangian L is not as 
ru
ial as the sign in front of thekineti
 term. Combining all three last numbered equations we arrive at the one, we reallyneed for our method, namely

(d− 1)A′′ = ∓Φ′2. (3.8)44



This last equation tells an interesting thing, that the 
onvexity of warp fa
tor is entirelydetermined by the sign of the kineti
 term for the s
alar �eld. For RG �ows, whi
h
orresponds to 
on
ave warp fa
tor, we have standard positively de�ned kineti
 term.Those, for whi
h A(r) is 
onvex, may be des
ribed holographi
ally by phantom s
alar�eld.Now we parallel the derivation of a s
alar potential V (Φ) based on the method of fakesuperpotential. We must remark that the presen
e of supersymmetry in the bulk is byno means a ne
essary assumption. We only borrow the method for �nding spe
ial s
alarpotential from supergravity written in terms of superpotential. This is not 
ompletelygeneral potential, but one, whi
h is a representative in a wider 
lass of potentials solvingour issue. In this derivation we try to follow [46, 48, 47℄, where su
h potential was derivedin general Einstein-Hilbert system with standard sign of the kineti
 term for the s
alar�eld, without at all invoking supersymmetry and for arbitrary dimension d+1. However wemust also modify the form of this derivation for 
ase of the s
alar �eld with negative kineti
term. In the 
ase of a single s
alar �eld, when the target spa
e metri
 is di�eomorphi
 toa 
onstant and V be
omes a fun
tion of a single real variable we 
an write
V = −2(d− 1)2

(

δW

δΦ

)2

− 2d(d− 1)W 2. (3.9)The 
orresponding form of the s
alar potential for standard (not phantomi
) s
alar �eldwould satisfy the requirement of nonperturbative gravitational stability of AdS va
ua (asfound in [56, 57℄). This would easily translate itself into a 
ondition of positive energy so-lutions in the gravitational framework and preservation of null energy 
ondition for matter
ontent of the bulk theory. The situation with phantomi
 s
alar �eld is however di�erentand this is why the sign is �ipped of the �rst term in (3.9). Next we note that
δV

δΦ
= 4(d− 1)

[

−(d− 1)
δ2W

δΦ2
− dW

]

δW

δΦ
, (3.10)whi
h tells us that AdS va
ua are at points, where δ2W

δΦ2 = − d
d−1

W . In addition to su
hwould-be supersymmetri
 va
ua in our theory we have also domain wall solutions. We45



will mainly fo
us on would-be BPS domain walls, whi
h interpolate between two would-be supersymmetri
 AdS va
ua. The reason is that for them we are able to easily solveresulting equations of motion.Let us turn ba
k to the integral (3.1) giving us the 
lassi
al a
tion of the whole system.We plug there our ansatz for the metri
 (3.2) and the form of the gravitational Lagrangiangiven by the 
urvature s
alar. We already properly integrated it by parts from the initialform R ∼= −d(d− 1)A′2 with total derivative term (

2edAA′)′ abandoned. After negle
tingthe integration over transverse d-dimensional spa
e we 
an rewrite the a
tion integral asthe following energy fun
tional in only one integration variable r as
E[A,Φ] = −

∫ ∞

−∞
dr edA

[

−1

2
Φ′2 − d(d− 1)A′2 + V

]

. (3.11)With the use of (3.9) and Bogomol'nyi method this fun
tional 
an be presented in thefollowing form
E = −

∫ ∞

−∞
dr edA

[

−1

2

(

Φ′ ∓ 2(d− 1)
δW

δΦ

)2

− d(d− 1) (A′ ∓ 2W )
2

]

±2(d−1)
[

edAW
]∞
−∞ .(3.12)We obtain so 
alled BPS equations by requiring for extremisation of this expression withrespe
t to all A and Φ. In the result a pair of �rst-order di�erential equations is derived:

A′ = ±2W (3.13)
Φ′ = ±2(d− 1)

δW

δΦ
. (3.14)A posteriori we 
he
k that solutions of these BPS equations indeed solve the full systemof equations of motion, given expli
itly by:

d(d− 1)A′2 + Φ′2 + 2V = 0 (3.15)
2(d− 1)A′′ + d(d− 1)A′2 − Φ′2 + 2V = 0 (3.16)

−Φ′′ − dA′ Φ′ − δV

δΦ
= 0 . (3.17)46



Although in the BPS equations (3.14) we have two signs allowed, this ambiguity 
an
els,when we go to the formula for the s
alar potential representative written entirely usingderivatives of the warping fa
tor:
V = −1

2
d(d− 1)A′2 − 1

2
(d− 1)A′′, (3.18)where we also used the relation A′′ = 4(d− 1)

(

δW
δΦ

)2. This is valid for both signs in (3.14)and was derived from (3.8). The formula (3.18) is a 
ru
ial step in our method for �nding as
alar potential valid for given s
alar 
on�gurations. By knowing spa
etime dependen
e ofwarping fa
tor A(r) in this way we 
an �nd exa
t radial dependen
e of the s
alar potential
V (r) understood as evaluated on parti
ular solution Φsol(r), though we don't know it yet.To �nd a unique fun
tion V (Φ) we must determine this s
alar 
on�guration solutionand invert it:

V (Φ) = V (r(Φ)) for r(Φ) = (Φsol(r))
−1 . (3.19)In this method one integration (over Φ variable) is avoided 
ompared to the method pre-viously suggested. We must note however, that these two methods are equivalent, be
ausethey give the same answer for the potential. We must still �nd a solution Φsol(r). This 
anbe a
hieved by integration of equation (3.8) over radial 
oordinate. With obvious notationwe get that

Φ(r) = ΦUV −
∫ ∞

r

dr̃Φ′(r̃) = ΦUV −
∫ ∞

r

dr̃
√

(d− 1)A′′(r̃). (3.20)If this integral 
an be done analyti
ally and resulting fun
tion inverted, then equation(3.19) will yield an analyti
 expression for the desired potential V (Φ).3.2 Gravitational RG �owsMain part of this se
tion we will devote for the des
ription of gravitational RG �owgeometries in the holographi
 perspe
tive. But before this, let us des
ribe brie�y the47



RG runnning of ordinary matter 
ouplings from the boundary theory. As it is 
ommon inAdS/CFT we will des
ribe the RG running of a s
alar operator O, whi
h triggers nontrivial�ow and hen
e expli
itly breaks the 
onformal invarian
e. A

ording to the di
tionary itis dual to some s
alar �eld in the bulk φ. Nontrivial radial dependen
e of this bulk �eld
φ(r) means that we have non
onformal RG �ow for our deformation O in the boundarytheory. Of 
ourse the �ow of su
h operator in the boundary theory 
an be interpreted asthe RG �ow of a 
oupling parameter g, whi
h is used to 
ouple it. This 
oupling possessessu
h an energy dimension that the produ
t gO has dimension d proper for the Lagrangianin the boundary theory. Although to di�erent operators we have 
orresponding di�erentbulk s
alars, the RG running of those is read not from their 
orresponding pro�les, butfrom the universal warp fa
tor. Dynami
s of all bulk �elds have the impa
t on the a
tualform of the warping fa
tor A(r) due to the gravitational sour
ing. Following [58℄ and [42℄we a

ept the following identi�
ation

k(r) = k0 e
A(r) (3.21)between radial bulk dire
tion and the momentum s
ale in the boundary theory. This isthe generalisation of the relation k(r) = k0 e

r
rc to bulk spa
etimes di�erent from AdS,but still having the appropriate properties in the transverse dire
tions. We may write theexpression for the beta fun
tion of the 
oupling g:

βg = k
dg

dk
↔ 1

A′φ
′(r), (3.22)where the �rst equality gives the �eld theory de�nition of su
h obje
t, while the se
ondrelation gives a holographi
 interpretation in the bulk spa
etime. The most RHS of theabove equation 
an be rewritten further using equations of motion in the bulk and putin a form, where there is only dependen
e on the bulk s
alar φ. This 
orresponden
e 
anbe viewed as another fundamental formula in AdS/CFT duality relating boundary to bulkquantities.Now we 
ome to dis
uss the s
aling properties of dimensionful 
ouplings in boundary48



theory. If in boundary �eld theory we are in FP regime, then this s
aling is in the form ofa power law
gIR,UV(k) = g0

(

k

k0

)αUV,IR

. (3.23)Conformal s
aling dimensions αIR and αUV need not be identi
al, but they rea
h �xedvalues at CFT FP's in IR and UV respe
tively. There we have valid the simple expressionfor the beta fun
tion βg = αg. This agrees pre
isely with the way, how we have read thes
ale-dependen
e in �2.2, when we assumed that our 
onsidered 
ouplings 
ome with somede�ned s
aling dimension α. Be
ause in our model in infrared limit gaussian FP exists,then the s
aling dimensions αIR are given by 
lassi
al energy dimension of 
ouplings. Toleading order we 
ontinued with the assumption that they are not 
hanged signi�
antlyin UV, in other words we negle
ted anomalous dimensions of these 
ouplings. Namely westu
k with UV dimensions 1 for Higgs vev and 2 for the square of the 4-dimensional Plan
kmass. With this we were able to read 
orre
tly in �2.2 the RG running in holographi
method. In full generality we have running dimension α = α(k) interpolating between twos
aling dimensions of the same operator O in two CFTs. They do not have to 
orrespondto 
lassi
al dimension of this operator. We use the following de�nition for varying α,
g(k) = g0

(

k
k0

)α. In the intermediate region between two FPs of RG, we have an expressionfor the beta fun
tion βg = g
(

α + βα log k
k0

). We see that it was 
orre
ted by the betafun
tion of α itself multiplied by a logarithm of the energy s
ale. It often appears, whenwe res
ale a dimensionful 
oupling by power of energy s
ale with the 
lassi
al dimensionin the exponent g̃ = g k−αcl . This removes powers of momentum from RG running and the
orresponding beta fun
tion equals βg̃ = g̃
(

α− αcl + βα log k
k0

).Now we are in position to apply method, des
ribed in the previous se
tion, for �ndings
alar potential for given RG �ows. We will 
onsider a �ow of the gravitational 
ouplingin 4-dimensional boundary theory, whose tree level a
tion (and also our trun
ation) isEinstein-Hilbert for gravitation. We will 
onsider an RG �ow of mP 
aused by quantume�e
ts. From here on we work expli
itly in d = 4. The reason is that only in this dimension49



we have the 
orre
t des
ription from holographi
 RG �ow as it was elu
idated in the previ-ous 
hapter. We adopt the following 
onventions for dimensionless gravitational 
ouplings:
G̃ = Gk2 = k2(m2

P )−1, where k is the RG energy s
ale related to radial 
oordinate by(3.21) [52℄. Let us pay attention to the fa
t that dimensionful Newton's 
onstant is givenby GN = (8πm2
P )

−1, so it is o� by numeri
al fa
tors from the 
oupling G. In [45℄ wasderived a one-loop equation governing the RG �ow of G̃. This is in the form
dG̃

dt
= ˙̃G(t) = (d− 2)G̃+B1 G̃

2. (3.24)The solution of this equation is given by
G̃(t) =

2G̃(0)e2t

2 +B1 G̃(0)(1 − e2t)
. (3.25)It is 
onvenient (in four dimension) to analyse the RG running of the square of the e�e
tivePlan
k mass. From (3.25) it is given by

m2
P (t) = m2

P (0) +
B1

2
r−2
c

(

1 − e2t
)

. (3.26)It is very important that all investigated types of 
uto�s give negative values of the 
o-e�
ient B1. This signi�es that the e�e
tive 4-dimensional Plan
k mass grows, when theenergy s
ale in
reases. This means that quantum gravity perturbed around �at Minkowskispa
etime shows its antis
reening nature.To �nd a holographi
 geometry, whi
h gives rise to a valid des
ription of su
h a �ow, were
all how the running of e�e
tive 
ouplings in gravitational theory living on hypotheti
albrane of 
odimension 1 in the bulk, is seen from 5-dimensional perspe
tive. This is basi
allythe argument presented by Randall and Sundrum in [1℄, whi
h we showed already in �2.2.Here it is generalised to a t-dependent 
onformal fa
tor A(t). We have the a
tion on aprobe brane, lo
ated at some position given by the RG time t,
Sgrav = m2

P (t)

∫

d4x
√−ḡ R̄, (3.27)50



where barred geometri
 quantities are indu
ed on a brane from the bulk. An observer inthe bulk sees this a
tion as resulting from integration of the gravitational a
tion in the bulkover some interval of radial 
oordinate (equivalently RG time t) a

ording to the formula
Sgrav = M3 rc

∫ t

0

dt′ e2A(t′)

∫

d4x
√
−ḡ R̄. (3.28)From two above formula we derive that the holographi
 running of 4-dimensional m2

P isexpressed by
m2
P (t) = m2

P (0) +M3 rc

∫ t

0

dt′ e2A(t′). (3.29)It means that roughly, when going in dire
tion from IR to UV, the square of the Plan
kmass gets in
reased by integrating always positive warping fun
tion eA(t). This is another,holographi
 proof, of the 
hara
ter of running of this gravitational 
oupling parameter - itis bigger at higher energy s
ales. By di�erentiating (3.29) we get
d

dt
m2
P (t) = M3 rc e

2A(t) (3.30)and an expli
it expression for the warping fa
tor
A(t =

r

rc
) =

1

2
log

(

d
dt
m2
P (t)

M3 rc

)

. (3.31)We see, that the whole 
onstru
tion of the holographi
 RG geometry is derived not from thes
ale dependen
e of 
oupling itself, but from the beta fun
tion of the gravitational 
oupling.This means, that holography is insensitive to any additive 
onstant, whi
h might be presentin expli
it running m2
P (t). In order to read lo
al 
urvature of AdS part of spa
etime wehave to 
ompute A′(r) with the help of

A′ =
m̈2
P

2rc ṁ
2
P

. (3.32)Constan
y of the above quantity over some range of radial 
oordinate values means thatthis region of spa
etime is exa
tly a pie
e of AdS with given radius. However for a typi
al51



RG �ow su
h good situation does not happen and only in asymptoti
 limits r → ±∞ weobtain 
onstant value of lo
al radius (A′)−1. Therefore we work only with asymptoti
allyAdS spa
etimes.It is easy to 
onvin
e ourselves that the RG �ow as given by (3.26) is des
ribed by anexa
tly a�ne fun
tion of the radial 
oordinate r: 2A(r) = 2 r
rc

+ log
(

−B1

(M rc)3

). Howeverre
alling from [42℄ that −B1 = 2cP = (M rc)
3 we obtain linear radial dependen
e of thewarp fa
tor A(r) = r

rc
, exa
tly like in AdS spa
etime all the way along this RG �ow.The AdS radius equals always to rc. We state this fa
t as that the one-loop perturbativeEinstein-Hilbert �ow is des
ribed by the pure AdS holographi
 spa
etime. We are notalready at a 
onformal �xed point, be
ause only at high energy we 
an negle
t any ad-ditive 
onstant in the solution (3.26). In FP regime dimensionful Plan
k 
onstant s
alesa

ording to m2

P (t) = G−1
∗ r−2

c e2t. That we are in pure AdS spa
etime is not a surprise,be
ause in holographi
 
onstru
tion in �2.2 this was exa
tly our initial assumption aboutthe bulk spa
etime. We must 
onsider this kind of �ow deeper. We have for it, that
∆A′ = 0, be
ause A′ = r−1

c . This �ow (3.26) is valid for small (perturbative) values ofthe dimensionless gravitational 
oupling G̃ and signi�
ant 
orre
tions appear only, whenrunning G̃(t) is of order 1. So this happens for t around tP = −1
2
log G̃(0). (Knowing theapproximate experimental value of G at ele
troweak s
ale t = 0, we �nd that G̃(0) ≈ 10−33and −1

2
log G̃(0) ≈ 38) As it stands this �ow of 
oupling possesses a nontrivial UV FPwith the �xed value of the 
oupling G̃∗ = − 2

B1
. Nevertheless we expe
t some 
hanges todetails of this pi
ture due to higher loops and nonperturbative 
orre
tions. This is be
ause
lose to this FP we are away from the regime of validity, where this �ow was derived. Itis important to analyse the limiting behaviours of this �ow in the UV and IR. Namely inthe UV regime we have that the �ow is approximated by

G̃(t) ≈ − 2

B1

(

1 +
2e−2t

B1 G̃(0)

)

, (3.33)so we 
on
lude, that the �xed limiting value of the 
oupling G̃∗ is rea
hed exponentiallyfast for t > tP . In the IR regime the �ow asymptoti
ally 
oin
ides with the �ow from a52



gaussian (trivial) FP G̃(t) = G̃(0)e2t and is given by an approximate formula
G̃(t) ≈ 2G̃(0)

2 +B1 G̃(0)
e2t

(

1 +
B1 G̃(0)

2
e2t

) (3.34)and again we have the 
on
lusion of exponentially fast rea
hing of IR FP regime in neg-ative t variable. Of 
ourse in infrared the dimensionless 
onstant has vanishing limit. Inthe very far IR regime this �ow as well as gaussian one is a solution of a simpli�ed dif-ferential equation ˙̃G = 2G̃. This equation just governs the behaviour at trivial FP, wherethe dimensionless values of the 
ouplings vanish. At this FP the dimensionful Plan
kmass is exa
tly 
onstant and this naively means the breakdown of holographi
 des
rip-tion, be
ause the warping fa
tor blows up (A = −∞) and we 
annot de�ne the radius of
urvature. Indeed strong-weak duality arguments suggest that to in�nitesimally weakly
oupled boundary theory (as when originating from gaussian FP) 
orresponds in�nitelyhigh 
urved holographi
ally dual spa
etime. And su
h spa
etime without in
luding quan-tum 5d gravitational 
orre
tions to bulk theory doesn't make mu
h sense. This is one ofthe problems we want to address by later modi�
ation of the �ow given in (3.26).It is not ne
essary to modify the RG �ow in the UV, be
ause for general �ows ending atnontrivial UV FP, we have the s
ale invarian
e of the gravitational 
oupling, whi
h meansthat m2
P (k) ∼ k2 and hen
e A′ = r−1

c . The exponent 2 in the formula (3.33) 
omes be
auseof su
h dimensionality of Newton's 
onstant in four dimensions (negative to 
lassi
al energydimension). We remind that here we have 
ompletely negle
ted the anomalous gravitondimension. That the lo
al radius of 
urvature equals to parameter rc, is a very robustfeature for all approximations to gravitational �ows near UV FP. For example for a �owobtained from the exa
t RG di�erential equation
dG̃

dt
= 2G̃+

B1 G̃
2

1 +B2 G̃
(3.35)with 
onstant 
oe�
ients B1 and B2, we �nd the following high energy behaviour of thewarping fa
tor 53



A(r) =
r

rc
+

1

2
log

(−B1

2cP

(

1 +B2 G̃
)

)

. (3.36)
This expression near UV FP redu
es to A(r) = r

rc
− 1

2
log
(

cP G̃∗

), be
ause the �xedpoint value of the 
oupling is given by the relation G̃∗ = − 2
B1+2B2

. This exa
t �ow,although pre
isely is not as the �ow governed by the FP in formula (3.25), returns ba
kto it in the deep IR and UV. In IR it 
oin
ides pre
isely, be
ause the e�e
tive valueof G̃ is small and we 
an negle
t the denominator in (3.35). Hen
e we arrive at �owequation (3.24). In deep UV we have however only a quantitative di�eren
e between thetwo �ows showing itself up in the presen
e of free term in the 
onformal fa
tor for the latter�ow in formula (3.36). Additionally there is a di�eren
e between values of the 
ouplingat �xed points. For our purposes improvement given by fun
tional RG doesn't 
hangethe qualitative 
hara
teristi
s of running of gravitational 
oupling with an energy s
ale.Nevertheless we must note that the �ow, whi
h is a solution of (3.35) (not existing in a
losed form) is truly an interpolating �ow between two almost identi
al CFT's. The onlydi�eren
e between them is in the �xed values of dimensionless 
ouplings (between G̃∗ = 0and G̃∗ = − 2
B1+2B2

in UV). This is be
ause in the limit r → ±∞ the inverse AdS radiustends to the same value A′ → r−1
c . Moreover it seems, that their 
orresponding 
entral
harges are the same! In global sense we have pre
isely that ∆A′ = 0 for the whole �ow.But this and the 
ontinuity of the �ow implies that the sign of the se
ond derivative A′′is undetermined. So we arrive at the 
on
lusion, that the lo
al version of the c-theoremdoesn't hold here. And moreover in the holographi
 des
ription of this �ow the sign of thekineti
 term for interpolating s
alar �eld is undetermined too. It is fair to say that fromholographi
 perspe
tive �ows given by (3.25) and solving (3.35) are 
loser to being at UVFP (where A′ = r−1

c ) than at IR gaussian FP (with A = −∞). The 
on
lusion might beopposite, when looking naively for running of dimensionful gravitational 
oupling m2
P (t).54



3.3 Holographi
 des
ription of the interpolating gravi-tational �ow
To solve above mentioned problems with holographi
 interpretations, we may try tomodify the RG �ow only in the IR, not spoiling therefore ni
e properties of asymptoti
safety s
enario holding in UV. We 
annot allow the warping fa
tor to be or to tend to minusin�nity limit in the far IR region. We must in
lude threshold e�e
ts and stop or betterneutralise the running in this low energeti
 regime. We obtain the most harmless runningderived from (3.29), when we put to zero the warping fa
tor asymptoti
ally for t → −∞.If we put it to a negative value, then the running would be even smaller, but then we wouldenter another nontrivial inverse FP regime. Namely in the deep IR Plan
k mass wouldtend to zero value exponentially fast. And there wouldn't be a remnant non-zero valuefor the e�e
tive Plan
k mass at IR limit - we want however opposite. Both these 
hoi
esof �ow's modi�
ation lead to di�erent geometries in IR region of holographi
 spa
etime.But regardless of them we are for
ed to a

ept the global 
hange of the inverse lo
al AdSradius to be positive ∆A′ > 0. This is a ne
essary 
onsequen
e, when we want to softenthe �ow in the IR. The problem with the c-theorem 
an not be solved by this method. We
an a
hieve su
h a smooth 
hange of warp fa
tor that always A′′ > 0 and asymptoti
ally

A′′ → 0. This means that in the holographi
 5-dimensional des
ription in the middle of ourinterpolating geometry we ex
ite a phantomi
 s
alar �eld Φ (from formula (3.8)). With the
hoi
e that A = A′ = 0 for deep IR we get the following �ow of the gravitational 
oupling
m2
P (t) = m2

P (0) + 2cP r
−2
c t. This is also a solution of an unautonomous �ow equation

dG̃
dt

= 2G̃
(

1 − cP G̃ e
−2t
). We obtain the interpolating �ow between IR and UV by simplyadding and adjusting two limiting behaviours in the IR and UV. This is possible, be
ausein opposite limits ea
h of these �ows is negligible with respe
t to the other one. In UVlimiting behaviour of the �ow is m2

P (t) = m2
P (0) + cP r

−2
c (e2t − 1) (
ompare with (3.26)).The interpolating �ow has the expli
it form55



m2
P (t) = cP r

−2
c

(

e2t + 2t− 1
)

+m2
P (0). (3.37)This is the �ow, whi
h we are going to analyse in this se
tion looking for its fully-�edgedholographi
 des
ription. We treat this parti
ular �ow as an example, for whi
h we areable to bring the expli
it 
omputation of s
alar potential to the very end. Our method for�nding holographi
 RG geometries is however general and works also for other examplesof gravitational RG �ows. The ne
essary ingredient is the expli
it form of the fun
tion

mP (t).We now 
ome to the 
onstru
tion of a holographi
 RG �ow spa
etime, whi
h may beunderstood as a geometrization of the above �ow. Equation (3.37) governs the running ofthe dimensionful gravitational 
oupling: Plan
k mass square. In terms of dimensionless
oupling G̃ (
onvenient for des
ribing physi
s from nontrivial UV FP perspe
tive) the �owis expressed as
G̃(t) =

G̃(0) e2t

G̃(0) cP (e2t + 2t− 1) + 1
. (3.38)For very small values of G̃(0) this �ow has a big variability around t = tP and this lastsfor around 5 units in logarithmi
 RG time t. Before this transition region the value of

G̃(t) almost vanishes and after it attains c−1
P equal to the �xed point value. Warping fa
torfun
tion, be
ause it gives the holographi
 des
ription, is quite universal and doesn't dependon spe
i�
 parameters of the �ow expressed by its initial value G̃(0) and the res
alingparameter cP . Hen
e, regardless of these parameters, for this type of �ow warping fa
torequals to

A(t) =
1

2
log
(

1 + e2t
)

. (3.39)It has required properties, whi
h we des
ribed in the previous se
tion, and this is easilyvisible from the plot of A(t) shown on the left panel of Fig. 3.1. The value at the origin isgiven by A(0) = 1
2
log 2 ≈ 0.35. The origin is also a point, where the two asymptoti
 limitof A(t) are joined smoothly. The �rst derivative of A(t) with respe
t to radial 
oordinate56
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Figure 3.1: On the left: Warping fa
tor A(t) as a fun
tion of t. On the right: First (inblue) and se
ond (in red) derivative with respe
t to radial 
oordinate t of the warpingfa
tor A(t).
r is a symmetri
 fun
tion interpolating between values of zero (in IR) and two (in UV).The se
ond derivative given by

A′′(t) =
2e2t

r2
c (1 + e2t)2 (3.40)is an even and positive fun
tion (as we demanded) and its maximal value 1

2
r−2
c is rea
hedat the origin. In in�nity this fun
tion attains vanishing limits. Plots of the res
aled to bedimensionless, �rst and se
ond derivative are shown on the right panel of Fig. 3.1.Now using formula (3.18) we have the expli
it radial dependen
e of the s
alar potential

V (t) = −3e2t (1 + 2e2t)

r2
c (1 + e2t)2 . (3.41)This potential has vanishing IR limit VIR = 0. From more 
loser look we also see thatvalue of it at t = 0 equals to −9/4 = −2.25 and that UV limit is -6 in inverse square unitsof radius of AdS rc. Plot of the radial dependen
e of the s
alar potential (3.41) we presenton the left panel of Fig. 3.2 using blue 
urve.Fortunately enough for this simple form of warp fa
tor (3.39) we 
an integrate asin equation (3.20) and the resulting s
alar pro�le of a solution has the following radial57



dependen
e
Φsol(t) =

√
6 arctan et. (3.42)Inverting this relation for �nding t as a fun
tion of Φ is an easy task equivalent to solvingthis simple trans
endental equation for t. We may do this analyti
ally or in the lastpart of the analysis we may resort to numeri
al results. Here we only want to add, thatmonotoni
ally in
reasing fun
tion (3.42) takes values between 0 (whi
h we have 
hosen asvalue of ΦIR) and Φmax =

√
6

2
π ≈ 3.85 (whi
h must be the value of the s
alar �eld rea
hedat UV FP) in a symmetri
 way around the origin. The red 
urve on the left panel of Fig.3.2 shows, how this s
alar pro�le 
hanges, when we move in radial dire
tion. From lastrelation (3.42) we get that

et = tan

(√
6Φsol

6

)

. (3.43)Plugging this to the formula (3.41), we obtain an analyti
al shape of the s
alar potentialas the fun
tion of Φ given by the following 
ombination of trigonometri
 fun
tions:
V (Φ) = − 3

2r2
c

sin2

(√
6 Φ

6

)(

3 − cos

(√
6Φ

3

))

. (3.44)Using some trigonometri
 identities we rewrite this to the following simple form:
V (Φ) =

3

8r2
c

[

−7 + 8 cos

(√
6 Φ

3

)

− cos

(

2
√

6Φ

3

)]

. (3.45)This fun
tion is shown on the plot pla
ed on the right panel of Fig. 3.2 at least overthe range of the s
alar �eld values 
overed in the holographi
 �ow, i.e. from ΦIR = 0to ΦUV = Φmax. Therefore we have produ
ed an analyti
al result for the s
alar potentialne
essary to produ
e bulk geometry with 
onformal fa
tor A(r) given by (3.39) as a solutionof the system 
onsisted of Einstein gravity and bulk s
alar �elds.We 
an des
ribe quantitatively few features of this potential. Firstly despite that itis de�ned only for region of Φ between 0 and Φmax we 
an make it periodi
. The proper58
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Figure 3.2: On the left: Radial dependen
e of the s
alar potential V (t) in blue and of thes
alar pro�le Φsol, whi
h is a solution of EOM, in red. On the right: S
alar potential V asa fun
tion of Φ. S
alar potentials are shown in units of r−2
c .period in this 
ase is exa
tly equal to 2Φmax as we 
an read from expli
it analyti
 formula(3.45). We 
hose the biggest proper period out of periods for trigonometri
 fun
tions, whi
happeared there. As a result this was the period of the se
ond term in the square bra
ketin this formula. Moreover we 
an extend potential's domain in su
h a way that the fullpotential would be symmetri
 around points with values of ordinates ΦUV and ΦIR. To dothis we must re�e
t the plot valid for the holographi
 RG �ow with respe
t to verti
al axesat its 
riti
al points or simply extend naturally the domain of the trigonometri
 fun
tions.We easily observe that the period of two trigonometri
 fa
tors in (3.44) is identi
al and thisis the result for the period of the whole potential, whi
h is equal to √6π ≈ 7.70. Obviouslyfrom the equation (3.20) we have the shift symmetry Φ → Φ + Φ0 enjoyed by the s
alarEOM related to the free 
hoi
e of initial value of the �eld for IR region. For holographi
purposes we 
hose ΦIR = 0, nevertheless we 
ould equally well shift it by integer multipleof the period. Se
ondly we don't have the possibility of adjusting the 
onstant in thepotential, this is pre
isely determined by formula (3.18). This additive 
onstant in thepotential is related to the already determined by the properties of FP in UV, value of the
osmologi
al 
onstant in the bulk region Vcrit. Therefore we have monotoni
ally de
reasingpotential from value zero at ΦIR = 0 to the value VUV = −6r−2

c at the edge of RG �ow in59



UV for Φ = Φmax. Despite the fa
t that we were able to produ
e an analyti
 results for thefull form of the potential, it is still interesting and possible to 
onsider limiting behavioursaround the IR and UV 
riti
al points. We will obtain these by a perturbative expansionaround these 
riti
al points. We de�ne deviations of the s
alar �eld value from its 
riti
alones by δΦUV,IR = Φ − ΦUV,IR respe
tively for IR and UV FP's. We easily verify that inexpansions around the 
orresponding points odd powers of these deviations do not appear.We 
an 
ast potential in the vi
inity thereof into the following form given by a series
V (δΦ) = Vcrit +

1

2
m2(δΦ)2 +

1

24
λ(δΦ)4 + . . . , (3.46)where formally in�nite set of parameters Vcrit, m2, λ, . . . parametrises dynami
s of thes
alar pro�le near the 
orresponding 
riti
al points of CFT's. We have obviously that Vcritis the value of the 
osmologi
al 
onstant in the 
orresponding to FP of RG AdS va
uum.The mass parameter 
an be 
al
ulated from

m2 =
δ2V

δΦ2

∣

∣

∣

∣

Φ=ΦUV,IR

=
1

Φ′
d

dr

(

1

Φ′
dV

dr

)∣

∣

∣

∣

r→±∞
(3.47)and similarly with the fourth power of the operator 1

Φ′

d
dr

for the quarti
 
oupling λ. Here
Φ′ denotes the radial derivative of the s
alar, whi
h from (3.8) equals to √(d− 1)A′′,where all fun
tions are understood as fun
tions of the independent variable r. As theresults of 
al
ulations we obtained for the masses m2

IR = −r−2
c , m2

UV = 3r−2
c and for thequarti
 
ouplings λIR = −4

3
, λUV = −4. We are not afraid of negative values of the quarti

ouplings here, be
ause the standard problem of unboundedness of the potential doesn'tshow up here. S
alar potential, whi
h we found, is de�ned only on �nite interval of Φ, whereit is bounded fun
tion and never rea
hes large negative values. This remains obviously true,if it is extended to be periodi
. These negative values of quarti
 
ouplings are valid onlyin the neighbourhoods of 
riti
al points of the potential and must be understood as the�rst terms in series for the exa
t potential. We obviously see from the plot (and this also
on�rmed by the 
al
ulation of mass parameters), that the 
riti
al point in IR is unstable,whereas the other in UV exhibits stability. 60



3.4 Interpretation and dis
ussionHolographi
 interpretation of the �ndings from the last se
tion is as follows. Standardreason for start of a nontrivial RG �ow is that the boundary CFT is perturbed by somerelevant operator with respe
t to UV 
riti
al point. It has a 
onformal dimension ∆ < d inorder to be a relevant deformation. In holographi
ally dual gravity des
ription this operatoris dual to some bulk �eld. In the 
ase of s
alar deformation in CFT, this is pre
isely Φ,and the 
onformal dimension of the operator is related to the mass of the bulk s
alar bythe famous relation ∆(∆ − d) = m2 (in units of r−2
c ). For asymptoti
 behaviour near UVwe have two solutions for 
onformal dimension of deformation δΦ, namely ∆± = 2 ±

√
7.The s
alar �eld near boundary will have two independent solutions

δΦ = et∆− Φ−(x) + et∆+ Φ+(x). (3.48)Now be
ause ∆UV are of opposite signs (as always for positive mass square parameter),we have one normalizable and one nonnormalizable mode of the s
alar near UV boundary.Moreover we have that the standard 
hoi
e ∆ = ∆+ of nonnormalizable mode 
orrespondsto an irrelevant operator, whi
h is implied by the fa
t that ∆+ ≈ 4.65 > d = 4. This meansthat the vev for the dual operator in the boundary theory is represented by not vanishing
oe�
ient Φ+ ∼ 〈Φ〉bdy. However for normalizable mode et∆− we have de
aying solutionwith the 
oe�
ient Φ− proportional to the vanishing 
oupling for the dual operator in theboundary theory. For this mode we easily see that the 
onformal dimension −∆− ≈ 0.65is pre
isely the exponent 
ontrolling asymptoti
 de
ay of this mode of δΦ. In this spiritthe operator, whi
h triggers nontrivial RG �ow from UV FP to a 
riti
al point in the IRis irrelevant from the viewpoint of UV FP and only its nonzero expe
tation value 
ausesthe �ow.Note that in the infrared limit we have m2
IR < 0 and hen
e the dual operator is alwaysirrelevant there (0 < ∆ < d) from the perspe
tive of IR FP. We have expli
itly that

∆± = 2±
√

3 and both modes in IR regime are normalizable and 
orrespond to irrelevantoperators. The standard 
hoi
e for a surviving mode is ∆ = ∆−, whi
h signi�es, that the61



dual operator is relevant. The leading 
ontribution in the asymptoti
 de
ay of deviations
δΦ means that the 
orresponding 
oupling is nonvanishing in the boundary theory. This isa standard holographi
 interpretation of the �ow. From the boundary viewpoint we agree,that the deformation in IR is relevant, be
ause the in
lusion of threshold phenomenamodi�es the �ow signi�
antly by softening it. In UV we see, as noti
ed previously, thatwith running (3.38) we are already at FP and the deformation turning the �ow into thedire
tion of new IR FP is only irrelevant.We 
an now 
ome ba
k shortly to the issue of a running of mass parameters in theboundary theory, whi
h are not of the gravitational type. Using equations (3.23) and(3.39) we derive that all energy dependen
e is given by the root fa
tor √1 + e2t =

√

1 + k2

υ2
0
.Running of the Higgs vev is parti
ularly simple here (be
ause k0 = υ0) and is expressedby formula υ(k) =

√

υ2
0 + k2. It is important to �nd UV limit of this formula. Hereis the result υ(k) = k
(

1 +
υ2
0

2k2

). We see expli
itly that it s
ales asymptoti
ally in UVlike in a nontrivial FP regime. For 
omparison we 
an mention here the running of othermass parameter in a theory. It is given by M = M0 e
A(r), so in terms of energy s
ale

k it is expressed by the equation M(k) = M0

υ0

√

1 + k2

υ2
0
. In the UV regime this simpli�esto kM0

υ0

(

1 +
υ2
0

2k2

). We derive the 
on
lusion, that the running of all dimensionful matter
ouplings, no matter what is their initial value, enters UV FP regime around the sameenergy s
ale. This s
ale is given by the IR value of the Higgs vev υ0. These observationsmay harmonise with re
ent �ndings in [83℄. There authors pointed out, that the only s
aleat whi
h new physi
s beyond SM 
an rea
h nontrivial UV FP regime is the ele
troweaks
ale.Here we dis
uss some issues related to the proposed modi�ed RG �ow of gravitational
oupling in 4-dimensional theory and its holographi
 interpretation. Firstly in the holo-graphi
 model with bulk phantomi
 s
alar we were able to des
ribe the dual RG �owgeometry. We a
hieved softening of the �ow in IR, by in
luding relevant deformations
aused by threshold phenomena. They hide some strongly intera
ting physi
s, be
ausethis IR part of the spa
etime is dual to a �at holographi
 spa
etime. To do this softening62



of the �ow in IR, we had to use warp fa
tor, whi
h was 
onvex as a fun
tion of radialvariable. Next the 
onvexity of warp fa
tor for
ed us to use the s
alar �eld with wrongsign of the kineti
 term. However the formal 
al
ulation in the holographi
 framework 
anstill be 
arried on, even in this 
ase. In the standard approa
h 
on
avity of the warp fa
toris 
losely related to the famous c-theorem. This originates from the duality between lo
alradius of 
urvature and the 
entral 
harge of CFT. In holographi
 des
ription of matter
ouplings we have always that A′′ < 0, hen
e ∆A′ < 0 [47℄ and this perfe
tly agrees withthe lo
al and global version respe
tively, of c-theorem ∆c < 0 between UV and IR, forreferen
es look at [59, 60℄. For those holographi
 gravitational �ows, whi
h we 
onsideredin previous se
tions, we found disagreement with the standard c-theorem. Maybe the ex-planation for this is that gravitational intera
tions must be properly in
luded and mustmodify somehow standard CFT from �at spa
etime.This holographi
 
onstru
tion is only one, indeed very interesting and enlightening,way of des
ribing e�e
tively RG �ows in real 4-dimensional spa
etime. We do not haveto atta
h physi
al reality to su
h holograms - they are good des
riptions extending ourinsights for the physi
s of the boundary theory. We do not 
laim, that 5-dimensional bulkspa
etime with phantomi
 s
alar �eld is a real physi
al obje
t, amenable to observations.This 
onstru
tion should be understood merely as a geometrization of the RG �ow from 4-dimensional boundary theory. It happens that we a
hieved this mathemati
al 
onstru
tionby adding only one additional holographi
 dimension and this resembles very mu
h ideas,whi
h are present in AdS/CFT 
onje
ture. Our phantom �eld has a nontrivial potentialwith two 
riti
al points (in the holographi
 domain) and the nontrivial RG �ow 
orrespondsto interpolating BPS domain wall solution for this potential. In our setup, where allfun
tions depend on only one variable - radial 
oordinate, our model of phantom dynami
sin su
h potential admits a ni
e 
lassi
al me
hani
s analogy. A similar analogy o

urs in the
osmologi
al in�ation, when the similar motion of a s
alar �eld (in�aton) in the potentialresembles mu
h rolling down the potential by a material point with fri
tion given by theHubble parameter. In our 
ase, from equation (3.3) in the phantom 
ase, we see that whenwe interpret negative to radial 
oordinate as the time parameter and value of the s
alar63



�eld as the position 
oordinate, we obtain motion in the potential for a material point witha negative inertial mass. This means that the a

eleration is in opposite dire
tion to theapplied for
e and the material point rolls up from Φ = Φmax to Φ = 0 during the timeevolution. We also have a velo
ity-dependent fri
tion term 
aused by the 
urvature of bulkspa
etime. In this situation we 
an reverse dire
tion of time and end up with perfe
tlyreasonable dynami
s of normal material point starting its evolution in the 
riti
al point inIR, rolling down and ending in UV with Φ = Φmax. This is one interpretation of our RG�ow and its holographi
ally dual des
ription in terms of gravitation and phantomi
 s
alarin 5-dimensional bulk. We saw in the previous se
tion, that thanks to the holographi
interpretation, we 
ould �nd some interesting features of the gravitational RG �ows. Theexamples here are the dimensionalities and 
hara
ters of the operators, whi
h 
aused thenon-trivial RG �ows from UV to IR and whi
h deformed IR gaussian FP.At the end we talk about some 
omments regarding asymptoti
 safety and its holo-graphi
 interpretation in the light of just presented 
onstru
tion. A gaussian FP of RG�ow of gravitational 
oupling in IR is to be understood as nonintera
ting free CFT on �atspa
etime, so it satis�es the des
ription given above. At this FP Newton's 
onstant Gres
aled by the square of the typi
al momenta tends to zero, gravity is de
oupled, how-ever in the holo-dual AdS-spa
elike 
urvature is in�nite (there 5-dimensional Plan
k mass
M doesn't run). This CFT in IR FP is deformed by adding irrelevant operator (fromthe IR FP perspe
tive) m2

PR to the free a
tion and therefore the gravitational 
ouplingsare turned on. The nontrivial RG running for them starts. The holo-dual is no longerAdS spa
etime, but more 
ompli
ated holographi
 RG geometry. Going towards UV weintegrate in intera
ting degrees of freedom - higher energeti
 gravitational modes, so the
orresponding c-fun
tion (if possible to 
onstru
t) should grow monotoni
ally. Howeveras we saw from holographi
 approa
h, this doesn't happen in the gravitational 
ase, butpresumably usual arguments don't apply here. In UV limit we enter another FP region ofRG �ow, di�erent from one in (3.25). However there is an important di�eren
e, be
ause4-dimensional Newton's 
onstant in units of momenta tends to a 
onstant and Plan
k
onstant grows without a bound. The UV theory is s
ale invariant; if at FP, it may be64




onformally invariant, but surely it is not a standard CFT on �at spa
etime.
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Part II
Classi
alization and Quantum E�e
tiveA
tion
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Chapter 4
Classi
alization in nonlinear sigmamodel
4.1 Introdu
tionThe nonlinear sigma model and Einstein's theory of gravity have many similar features.At the kinemati
al level, both theories have nonlinear 
on�guration spa
es, whi
h maketheir dynami
s ne
essarily nonlinear too. There is no �zero �eld� limit and the quantizationpro
edure 
an be based on the use of the ba
kground �eld method. In both 
ases the degreesof freedom 
an be viewed as Goldstone bosons 1 and their intera
tions involve derivatives.Due to the nonpolynomial nature of the a
tion, it is natural to think of the fundamental�elds as being dimensionless. Aside from a va
uum term, the Lagrangian 
an be expandedas

S =
∑

k

∑

n

ḡk,nOk,n , (4.1)where Ok,n is an operator 
ontaining k derivatives and n powers of the �elds. 2 This1In the 
ase of gravity this is explained for example in [64℄.2Usually k must be even. 69



operator 
an be naturally a sum of �nitely many monomial terms in fundamental �eldsof the theory. In four spa
etime dimensions and in natural units the 
oe�
ients ḡ2,n havedimension of mass squared and ḡ4,n are dimensionless. In order to de�ne a perturbativeexpansion with a 
anoni
ally normalized kineti
 term, one usually rede�nes the �u
tuation�eld by a fa
tor √g2,2 = m. Then one �nds that the role of the perturbative 
oupling isplayed by 1/m. It has dimension of length, so these theories are power 
ounting nonrenor-malizable. Perhaps more urgently, perturbative s
attering amplitudes grow like powers ofmomentum and ex
eed the unitarity bound for momenta 
omparable to m. In fa
t, it ismore 
orre
t to say that the perturbative expansion parameter is the dimensionless ratio
p/m, where p is a typi
al momentum of the pro
ess under study, so that the perturbativetreatment is useful up to momenta of order m. The standard view is then to regard thesetheories as e�e
tive �eld theories, valid at energy and momentum s
ales below m.In prin
iple, however, it is possible that some of these theories may heal themselves oftheir perturbative problems. By in
luding true quantum dynami
al e�e
ts these theoriesmay somehow over
ome problems of violation of unitarity and nonrenormalizability [82℄.One possibility is that the growth of the e�e
tive 
ouplings su
h as p/m terminates in theultraviolet limit. In �eld theory a growth of a relevant 
oupling without an upper bounddoesn't make mu
h sense. This is not the 
ase, if the theory approa
hes a �xed pointin the UV [65℄. In parti
le physi
s and gravity this behaviour is also 
alled �asymptoti
safety� [14℄. There is by now signi�
ant eviden
e for the existen
e of asymptoti
ally safeRG traje
tories in gravity, see for example [66℄; some work has also been done for thenonlinear sigma models [67, 68℄ and in parti
ular for the ele
troweak 
hiral model [69℄.One expe
ts that in su
h asymptoti
ally safe theories the s
attering amplitudes also stopgrowing and respe
t the unitarity bounds, although no 
omplete 
al
ulation of this typehas been performed so far.More re
ently, a di�erent idea has been proposed, namely that the growth of the s
at-tering amplitudes is 
ontrolled by the formation of 
lassi
al intermediate states. In thispi
ture, whi
h has been 
alled �
lassi
alization�, a high energy quantum state with lowo

upation number would evolve into a 
lassi
al state (
alled a �
lassi
alon�) with large70



o

upation number. This is 
onje
tured to happen, when the radius of the 
on�guration,during pro
ess like a 
ollapse, be
omes 
omparable to a 
hara
teristi
 radius r∗ 
alled �
las-si
alization radius�. The 
lassi
alization radius is a new length s
ale in the theory emergingfrom nonlinear dynami
s. The important point is that r∗ does not de
rease with energyas one might naively think, but rather grows with it or at least tends to a 
onstant. Wewill 
all these 
ases strong and weak 
lassi
alization, respe
tively. Therefore the standardparadigm of high energy physi
s, that with the in
rease of energy of 
olliding wavepa
ketswe de
rease the probing s
ale given by the 
orresponding Compton wavelength, breaksdown here. As a result, when the energy of the in
oming states be
omes greater thanthe 
hara
teristi
 s
ale m, s
attering is dominated by the formation of 
lassi
alons andthe 
ross se
tion tends to the 
lassi
al geometri
al value r2
∗. In su
h 
onditions quantumCompton wavelength 
eases to be a resolving s
ale, instead its 
hara
ter is taken by the
lassi
alization radius. One of the ne
essary prerequisite for 
lassi
alization in �eld theoryis the high level of nonlinearity and 
orresponding self-sour
ing. The idea of 
lassi
aliza-tion emerged �rst in the 
ase of gravity, where the 
lassi
alons would 
orrespond to bla
kholes [70℄, but subsequently it has been re
ognized as a possible behaviour also in Gold-stone bosons models [71, 72, 73, 74℄. Other aspe
ts of 
lassi
alization proposal have been
onsidered in [75, 76, 77, 78℄.In spite of the evident di�eren
es between asymptoti
 safety and 
lassi
alization, onewonders whether they might not be two ways of looking at the same phenomenon. If, forexample, the amplitude for Goldstone boson s
attering unitarizes at high energy withouthaving to introdu
e new weakly 
oupled degrees of freedom, it would be surprising, if thereexisted two independent me
hanisms by whi
h Nature 
ould a
hieve this. If two expla-nations are available, they might just be di�erent des
riptions of the same phenomenon.This is only a hypothesis, but still we believe, that in a fully 
onsistent theory, Nature has
hosen de�nitively one unique me
hanism, at whose two fa
es maybe we are looking now.Motivated in part by this question, in this 
hapter we dis
uss aspe
ts of 
lassi
alizationin the nonlinear sigma models. We extend previous analyses, done for s
alar �elds, by
onsidering in some more detail the e�e
t of the 
urvature of the target spa
e. Mu
h of the71



work, that had been done previously, had 
on
entrated on a simple model of a single s
alar,and sin
e a one dimensional spa
e is �at, nontrivial intera
tions ne
essarily involve termswith more than two derivatives. When the target spa
e is 
urved, there are in�nitely manyintera
tion terms already at the two derivative level. We analyse the e�e
t of these terms�rst by themselves, and then in the presen
e of higher derivative intera
tions. In order tobe able to dis
riminate the e�e
t of positive and negative 
urvature we shall 
onsider bothspheri
al and hyperboli
 target spa
es. In a di�erent vein for nonlinear sigma model withtwo derivatives and with positively 
urved target spa
e, eviden
es in favour of nontrivialFP of RG have been found re
ently [19℄. This is why, exa
tly this model is under ourinvestigation in this 
hapter.If one wants to 
ompare 
lassi
alization to asymptoti
 safety, the �rst obvious di�eren
eis the fa
t that asymptoti
 safety is based on renormalization group running, whi
h is atruly quantum e�e
t. However 
lassi
alization, as the name may suggest, is related to theformation of 
lassi
al states and a

ording to the 
lassi
al dynami
al evolution equations.In order to disentangle 
lassi
al from quantum e�e
ts we will work throughout in unitswhere ~ is not set equal to one.Various signatures of the 
lassi
alization were outlined in the literature [73, 74, 77℄.The phenomenon of 
lassi
alization is of highly nonperturbative nature and hen
e various
he
ks are useful to de
ide a priori about o

uren
e or not of it. One of su
h 
he
k relieson a 
hange of the 
hara
teristi
 of the nonlinear PDE. If the 
lassi
al equations of mo-tion are put in the quasi-linear form and the 
hara
teristi
 of them 
hanges sign at somelo
ation, then this lo
ation is expe
ted to be an onset of the 
lassi
alization. This way ofUV 
ompletion is strongly based on the 
lassi
al states. Hen
e another requirement is theexisten
e and single-valuedness of the solutions in 
lassi
al �eld theory, whi
h must be de-�ned on a whole spa
etime. In this respe
t su
h 
lassi
alons are analogs to solitons, knownin nonlinear physi
s. In this 
hapter we will use another method for de
iding about theo

uren
e of 
lassi
alization in our models. This method 
he
ks, whether the asymptoti
behaviour of the solutions is 
hanged and whether there is a signi�
ant deformations of thewave pro�le of the in
oming pa
ket in the s
attering pro
ess. This approa
h was pioneered72



in [72℄ and in the next se
tions we will follow 
losely these derivations.In this 
hapter we 
onsider the phenomenon of 
lassi
alization in nonlinear sigma mod-els with both positive and negative target spa
e 
urvature and with any number of deriva-tives. We will introdu
e and des
ribe a weak form of 
lassi
alization, putting spe
ialattention to the dependen
e on the sign of the 
urvature. Nonlinear sigma models withhigher derivatives a
tions are also analyzed, where a strong form of this phenomenon o
-
urs and whi
h is moreover independent of the sign of 
urvature. Finally we will arguethat weak 
lassi
alization may a
tually be equivalent to asymptoti
 safety, whereas strong
lassi
alization seems to be a genuinely di�erent phenomenon. We also dis
uss possibleambiguities in the de�nition of the 
lassi
al limit, whi
h is in the very 
ore of understandingphysi
al me
hanisms lying behind 
lassi
alization.We 
on
lude this introdu
tion by outlining the 
ontent of the following se
tions. Inse
tion 2 we review the notion of 
lassi
alization in the 
ase of a simple theory of a singleGoldstone boson with arbitrary derivative intera
tions. In se
tion 3 we dis
uss nonlinearsigma models with values in maximally symmetri
 spa
es with both positive and negative
urvature, and with two derivatives only. We �nd that a weak form of �
lassi
alization�happens. In se
tion 4 we extend the analysis to in
lude higher derivative terms. There we�nd, that the 
lassi
alization radius grows with energy, regardless of the sign of the internalspa
e's 
urvature. In se
tion 5 we return to the 
omparison between 
lassi
alization andasymptoti
 safety and we draw our 
on
lusions.4.2 A single self-intera
ting Goldstone bosonIn this se
tion we begin by 
onsidering a model of a single Goldstone boson with higherderivative intera
tion lagrangian of the form:
L =

1

2
(∂φ)2 +

α4(m−1)

2m

(

(∂φ)2)m . (4.2)Here m is an index 
ounting the derivatives. The �eld has the 
anoni
al dimension73



M1/2 L−1/2 and the 
oupling α (whi
h was 
alled L∗ in [71, 72, 73, 74℄) has dimension
L3/4 M−1/4. Later we will 
omment on the e�e
t on 
lassi
alization of the presen
e ofterms with lower or higher number of derivatives, but for the moment we assume that(4.2), with a �xed m, is the only intera
tion. Despite that we are mostly interested in
lassi
alization, whi
h may o

ur in quantum dynami
s of �elds, here we will analyze itusing methods and equations of 
lassi
al �eld theory. The a
tion given by (4.2) we view asthe bare a
tion of our model subje
t to quantization pro
edure. Performing the full non-perturbative 
al
ulation in quantum �eld theory is a very formidable task. Here we willonly in
orporate quantum ideas about Compton wavelength and the quantum resolutions
ale.The equation of motion 
oming from the lagrangian (4.2) is

�φ+ α4(m−1) ∂µ
[

∂µφ
(

(∂φ)2
)m−1

]

= 0 . (4.3)In our setup we have wave in
oming from in�nity and approa
hing the 
entre of our 
oordi-nate frame. Assuming that free asymptoti
 states solving the equation �φ0 = 0 exist, thesolution of the nonlinear equation (4.3) 
an be 
onstru
ted perturbatively. We 
onsider so-lutions with spheri
al symmetry. Then the divergen
e of a one-form vµ is ∂0v0− 1
r2
∂r(r

2 vr)and the d'Alembertian is � = ∂2
t − 1

r2
∂r(r

2 ∂r).The initial ingoing unperturbed free wave has the form φ0(t, r) =
√

~ψ(ω(t + r))/r,where ψ(z) = A sin(z) + B cos(z) is a dimensionless harmoni
 fun
tion in one dimension.The general solution for the free massless wave equations of motion (without intera
tions)we obtain by superposing waves with di�erent real 
oe�
ients A and B as well as withdi�erent frequen
ies ω. (We threw away other solutions of free equations due to boundary
onditions at spatial in�nity). However in further analysis, for simpli
ity, we will sti
k toa mono
hromati
 wave. We will assume that the wavelength ω−1 is small 
ompared to theradius r, so that we 
an think of this solution as a harmoni
 fun
tion with a slowly-varying
r-dependent amplitude. At large distan
es the e�e
t of the intera
tion is negligible (be
auseof higher 1/r dependen
e of the intera
tion terms). This is why there the free wave solution74



well approximates a solution of full theory and 
onstitutes well-de�ned asymptoti
al stateof the theory. When 
onsidering solutions with spheri
al symmetry approa
hing 
entralregion from radial in�nity, it is natural to assume that the 
hara
teristi
 
lassi
al lengthof the 
on�guration is given by radius r.Our equations of motion are nonlinear, this means that even free initial wave, whenapproa
hing the 
entre develops a s
attered 
omponent. We treat this s
attering pro
essperturbatively. The equation for the �rst order perturbation φ1 is
(

1 + α4(m−1)((∂φ0)
2)m−1

)

�φ1

+2(m− 1)α4(m−1)((∂φ0)
2)m−2 (∂µφ0 ∂

νφ0 ∂µ∂νφ1 + 2∂νφ0 ∂
ν∂µφ0 ∂µφ1)

= −2(m− 1)α4(m−1)((∂φ0)
2)m−2 ∂µφ0 ∂

νφ0 ∂µ∂νφ0 . (4.4)We have written on the left hand side of the equation all the terms that 
ontain derivativesof φ1 and on the right a sour
e term 
ontaining only φ0. This equation is still quite
ompli
ated. However, we will see a posteriori that for the values of r, that we are interestedin (r ≫ ω−1 and r → ∞), the terms on the l.h.s. that 
ome from the intera
tion are smallrelative to �φ1. For our purposes it will therefore be su�
ient to retain in the l.h.s. onlythe term �φ1. 3We make an ansatz for the form of the �rst perturbation:
φ1(t, r) =

√
~ f(r) η(ω(t+ r)) . (4.5)This ansatz preserves spheri
al symmetry of the 
on�guration, and similarly to φ0 we 
hoseit in a separated form: os
illating fun
tion η(z) and radially dependent amplitude f(r). Inthe approximation ωr ≫ 1 we have that

�φ1 ≃ −2ω
√

~

r
η′ (fr)′ , (4.6)3Alternatively one 
ould observe that as long as φ1 is a small perturbation relative to φ0, the terms onthe l.h.s. 
oming from the intera
tions must be small relative to the sour
e term on the r.h.s. .75



where a prime denotes derivative of a fun
tion with respe
t to its argument. Then theequation for φ1 in the leading order of our approximation is
− 2ω

√
~

r
η′ (fr)′ = −2m−1(m− 1)α4(m−1) ωm(

√
~)2m−1

r3m−1
ψm−1 ψ′m−2

[

ψψ′′ + 4ψ′2] . (4.7)We easily see, that two fun
tions f and η of independent variables r and z in aboveequation separate thmeselves into two independent ordinary di�erential equations. Thefull solution of this equation 
an be expressed as
φ1 = −2m−1 α4(m−1)Em−1

√
~

6r3m−2
η(ω(t+ r)), (4.8)where E = ~ω and η(z) =

∫ z
ψm−1 ψ′m−2 [ψψ′′ + 4ψ′2] dz′. Note that for any m the inte-grand is an odd and periodi
 fun
tion with period 2π and su
h that the integral over oneperiod is zero. Therefore the fun
tion η is again dimensionless and periodi
 with period

2π, whi
h means that the s
attered wave φ1 has the same frequen
y as the in
oming one.In the solution for η(z) fun
tion we negle
t the 
onstant of integration. In the solution ofradial equation for the fun
tion f(r) we do the same, be
ause su
h 
onstant only renor-malizes the amplitude of the initial wave. In solving (4.7) we have restri
ted ourselves toour ansatz (4.5) and a posteriori we 
on�rm its validity. Invoking uniqueness theorems,well motivated by physi
al situation we are in, the form of the s
attered 
omponent is toleading order of our approximations given by (4.8). This is the deformation of the in
omingwave pro�le, that we were looking for. Now we will analyze it further.Sin
e η ∼ ψ ∼ 1, the ratio of the amplitudes of the �rst perturbation to the initial wave
an be expressed as
|f(r)r| ≃ α4(m−1) 2m−1Em−1

r3(m−1)
=
(r∗
r

)3(m−1)

, (4.9)where in the last step we de�ned the �
lassi
alization radius� r∗ =
3
√

2α4E. Noti
e thatit does not depend on m. To obtain the ratio of amplitudes in our 
ase, it is enough to
onsider only radial dependen
e of initial and perturbed wave. Another useful quantity76




ould be the ratio of energies stored in respe
tive waves averaged in time to leading orderin our approximations. It happens, that the squares of the os
illating parts averaged overone period are of the same order. This implies, that the ratio of energies is basi
ally thesquare of the ratio (4.9). We 
an now see, that the intera
tion terms on the l.h.s. of(4.4) are indeed negligible. For example the se
ond term in the �rst bra
ket is of order
(E α4/r3)m−1, and when r ≫ r∗ we have (E α4/r3) ≪ 1. Similar 
onsiderations apply tothe other terms.We thus �nd that the s
attering pro
ess be
omes important at distan
es of order r∗,where the ratio (4.9) is of order one. This behaviour must be put in 
ontrast with the onein λφ4 theory, where the 
hara
teristi
 radius is given roughly by λ/ω [72℄. Normally onewould expe
t, with quantum intuition, that a s
attering pro
ess involving parti
les withenergy E probes distan
es of order ω−1 = ~/E. When 
ollapsing wave approa
hes radial
oordinate r = r∗, then the nonlinear modi�
ations of the wave pro�le are so strong, thatthe information about stru
tures resolved by Compton wavelength is 
ompletely unavail-able. We 
an only read out the stru
tures at the 
hara
teristi
 s
ale r∗. The radius r∗ playsthe role of the resolution s
ale and determines the 
hara
teristi
 momentum of the pro
essas well as its 
ross se
tion. This behaviour has been 
alled �
lassi
alization� in [71, 72, 73℄.The meaning of the 
lassi
alization radius 
an be understood also as follows. First letus de�ne a 
hara
teristi
 energy s
ale E∗ = 4

√
2 ~

3/4 α−1, for whi
h 
lassi
alization radiusequals to the Compton wavelenght ~/E. At low energy (i.e. E ≪ E∗) the theory 
an betreated as an e�e
tive �eld theory. Due to the un
ertainty relations, an in
oming wave withenergy E 
an only probe distan
es of order ~/E. When one gets 
lose to the 
hara
teristi
energy s
ale E∗ one would normally expe
t the e�e
tive �eld theory to break down. Whatone sees here is that the s
attered wave be
omes signi�
ant at radius of order r∗, andtherefore 
annot resolve smaller distan
es. Sin
e r∗ grows with energy, there is a turnoverenergy where this bound be
omes stronger than the one set by the un
ertainty prin
iple.At E > E∗ the resolving power de
reases with energy. In this regime the s
attering isdominated by the produ
tion of 
lassi
al states with high o

upation number, whi
h willtypi
ally de
ay into many low energy parti
les [78℄. The hard s
attering of few parti
les into77



few parti
les will be exponentially suppressed and unitarity will be restored [71, 72, 73, 74℄.In this way 
lassi
alization may provide a form of UV 
ompletion of an e�e
tive �eld theory,that does not ne
essitate the introdu
tion of new weakly 
oupled degrees of freedom.The non-spheri
ally symmetri
 
ase has been dis
ussed in [76℄. For mild deformations,it was found that the 
lassi
alization radius be
omes smaller (larger) in regions where the
urvature of the in
oming wave is smaller (larger). Sin
e the pre
eding arguments wereorder-of-magnitude estimates anyway, this does not 
hange the 
on
lusions. In the limiting
ase, when the in
oming wavefronts are �at, the 
lassi
alization radius goes to zero andhen
e no 
lassi
alization o

urs.Let us now allow for the simultaneous presen
e of the intera
tion terms with di�erentvalues of m. Motivated by e�e
tive �eld theory, we assume that all intera
tions are of theform
Lint =

∑

m

cm α
4(m−1)

(

(∂φ)2)m (4.10)
To ea
h intera
tion there 
orresponds a 
lassi
alization radius given by r3

∗ = 2E α4 m−1
√

2mcm.Whi
h one of these s
ales plays the dominant role depends on the dimensionless 
oe�-
ients cm. If cm ∼ 1/m, as we assumed earlier, they are all of the same magnitude andtherefore in prin
iple all terms in the Lagrangian are equally important. On the otherhand if 4c2 >
√

6c3 >
3
√

8c4 > . . . , then the 
orresponding r∗ de
reases with m, and thefour-derivative term is the most important one. For large m one 
ould assume that the
oe�
ients cm do not grow faster than exponentials of m (cm < am/2m for some a > 1).(This 
ondition is quite reasonable for e�e
tive �eld theories.) Under these 
onditions thesystem will 
lassi
alize, when its size rea
hes the largest of all these possible 
lassi
alizationradii and the higher derivative intera
tions will not play any signi�
ant role.78



4.3 Nonlinear sigma model with 2 derivativesNow we start the analysis of nonlinear sigma models, whi
h is the main task of this
hapter. When there is more than one Goldstone boson, the internal spa
e of them 
anbe 
urved and moreover the theory admits intera
tion terms with just two derivatives. Astandard way of des
ribing the dynami
s is to pa
kage the kineti
 and the two-derivativeintera
tion terms in the geometri
al form
L =

1

2
hab ∂µφ

a∂µφb, (4.11)where hab is a metri
 in the target spa
e. In full generality this metri
 is a fun
tion of
oordinates on the internal spa
e, here this role is played by �eld 
omponents φa. The
oe�
ients of the Taylor expansion of the metri
 around a 
onstant φ 
an be viewed as anin�nite set of 
oupling 
onstants. From this expansion we re
over 2-derivative nonlinearintera
tion terms. We will 
onsider real, maximally symmetri
 target spa
es, for whi
h all
ouplings are related and only the overall s
ale of the metri
 remains as a free parameterof the theory. In su
h 
ase there exist 
oordinates su
h that
hab = δab ±

φaφb

f 2
φ ∓

−→
φ

2 , (4.12)where the + and − signs 
orrespond to positive and negative 
urvature of the targetspa
e (sphere and hyperboloid) respe
tively. In the above formula fφ, whi
h has the samedimensions as the �eld, has the meaning of radius of the sphere or hyperboloid in �eldspa
e and −→
φ

2
=

−→
φ · −→φ = δab φ

aφb is the usual �at Eu
lidean produ
t. Moreover we used�elds φa with 
ovariant position of indi
es obtained by lowering them using the Krone
kerdelta symbol. Later we will work only with this de�nition and we will never use the truemetri
 in the target spa
e hab to lower indi
es on �elds. In following derivation Lorentzindi
es will be suppressed, when this doesn't lead to 
onfusion. We will use ve
tor notationfor denoting the 
omponents in the �eld spa
e and the 
enterdot for a s
alar produ
t inthis spa
e. Exploiting the expli
it form of the metri
, the lagrangian (4.11) 
an be put in79



the form
L =

1

2



(∂
−→
φ )2 ± (

−→
φ · ∂−→φ )2

f 2
φ ∓

−→
φ

2



 (4.13)The 
orresponding equations of motion are
�φa ±

φa ∂
(−→
φ · ∂−→φ

)

f 2
φ ∓

−→
φ

2 ±
φa
(−→
φ · ∂−→φ

)2

(

f 2
φ ∓

−→
φ

2
)2 = 0 (4.14)We obtained them in a 
ontravariant form as viewed from the �at internal spa
e perspe
tive.Therefore we treat the nonlinear stru
ture in the kineti
 term as the intera
tion, not as ageometry in the target spa
e. Due to this paradigm our equations of motion in (4.14) arein a non-
ovariant form in a 
urved target spa
e.As in the pre
eding se
tion, we are going to look for perturbative solution in the form

−→
φ =

−→
φ 0 +

−→
φ 1 + . . ., where −→

φ 0 is a solution of the free wave equation: �
−→
φ 0 = 0. Wewill study to whi
h extent in spa
etime evolution we 
an treat −→φ 1 as a small perturbationsolving approximately the nonlinear �eld equations with intera
tions. We will follow 
loselythe analysis of the pre
eding se
tion in a very mu
h the same set-up with spheri
al in
omingand s
attered waves. In order to this, it is tempting to try and redu
e the problem to asingle-�eld problem by assuming that only one 
omponent of the �eld is nonzero. Theequations of motion seem to retain mu
h of their nonlinearity even in this 
ase. This,however, is an illusion that 
an be easily undone by a �eld rede�nition. For example, witha single-�eld ansatz (φ1 = φ and φ2,3,... = 0) the Lagrangian (4.13) be
omes

1

2
(∂φ)2 f 2

φ

f 2
φ ∓ φ2

(4.15)and this 
an be re
ast as a free �eld Lagrangian for ϕ by the rede�nition φ = fφ sinϕ(for the upper sign) or φ = fφ sinhϕ (for the lower sign). This means that, if we make asingle-�eld ansatz we will not be able to dete
t e�e
ts due to 
urvature, whi
h is one ofour purposes. One-dimensional �eld spa
e is di�eomorphi
 to a straight line and as su
his not 
hara
terized by any 
urvature. We must 
onsider multi-�eld ansatz, possibly with80



isotropy in a target spa
e. This is an additional di�
ulty, we must over
ome, when workingwith �elds taking their values in the nontrivial internal spa
e (nonlinear sigma model).Without mu
h loss of generality we will work with a general spheri
ally symmetri
unperturbed in
oming wave φa0(r, t) =
√

~ψa(ω(t+ r))/r, where we assume, that all 
om-ponents have the same frequen
y ω (mono
hromati
 waves), and we assume ωr ≫ 1, asbefore. The �rst order perturbation will be written using the following form of the ansatz:
φa1(r, t) =

√
~ ηa(ω(t + r)) f(r). Later we will see, that it is 
onsistent to assume thatall 
omponents of φa1 have the same radial dependen
e. However we allow for di�erentos
illating fun
tions ηa(z) for di�erent 
omponents in �eld spa
e.Linearizing the �eld equation around −→

φ 0 we �nd
δab hbc �φ

c
1 ±

2φa0

f 2
φ −

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
1 ±

φa1

f 2
φ −

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
0

+
2φa0

(

f 2
φ −

−→
φ

2

0

)2







(

∂
−→
φ 0

)2

φb0 +
(−→
φ 0 · ∂µ

−→
φ 0

)

∂µφ
b
0 ± 2

(−→
φ 0 · ∂

−→
φ 0

)2

f 2
φ ∓

−→
φ

2

0

φb0






φ1 b

= ∓ φa0

f 2
φ −

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
0 . (4.16)Here the metri
 hab has to be regarded as a fun
tion of −→φ 0. We presented last equation ina mixed form, where we used 
ovariant metri
 in the target spa
e as well as non
ovariantEu
lidean produ
ts of �elds. The reason for this is that su
h form of the linearized equationsof motion emerges from fully 
ovariant formalism in target spa
e, when only the derivativesof the target metri
 are expressed in terms of �elds. As we will see later it is useful to keepthe metri
 �eld unexpanded. As in the pre
eding se
tion, higher intera
tion terms on thel.h.s. 
an be negle
ted. We are left with the following form of the simpli�ed equation forthe �rst perturbation:

δab hbc �φ
c
1 = ∓ φa0

f 2
φ −

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
0 . (4.17)To leading order in 1/rω we �nd equation in the target spa
e 
ovariant form:81



− 2ω
√

~

r
(fr)′ηa ′ = ∓2ω~

3/2

f 2
φ r

4

ψa
(−→
ψ · −→ψ ′) (

hbc ψ
bψc
)2

(−→
ψ

2
)2 , (4.18)whi
h is equivalent to the following equation, when we expli
itly expand the target spa
emetri


− 2ω
√

~

r
(fr)′ηa ′ = ∓2ω~

3/2

f 2
φ r

4

ψa
(−→
ψ · −→ψ ′)

(

1 ∓ ~

−→
ψ

2

f2
φ r

2

)2 . (4.19)We note right away that in 
ontrast to equation (4.7) the ω-dependen
e will 
an
el out.Instead, the behaviour of the solution is governed by the new dimensionless parameter
fφr/

√
~. As long as fφr/√~ ≫ 1, the denominator in the r.h.s. 
an be approximated byone and the equation 
an be solved by separation of variables. Now we 
an noti
e that inthis 
ase, after separation the radial equation for f is the same for all 
omponents of φa1,therefore the 
hoi
e fa(r) = f(r) is justi�ed. The solution 
an be written in the form

φa1 = ∓
√

~
~

2f 2
φ r

3
ηa(ω(t+ r)) , (4.20)where ηa(z) =

∫ z
ψa

−→
ψ · −→ψ ′

dz′. This �rst perturbation is again an os
illating fun
tionwith r-dependent amplitude, but in 
ontrast to the 
ase of the pre
eding se
tion (4.8), theamplitude of the os
illations of the s
attered wave is independent of ω. The ratio betweenthe amplitude of the �rst perturbation and the in
oming wave is
|f(r)r| =

~

2f 2
φ r

2
=
(r∗
r

)2

. (4.21)From the above expression we see that we 
an de�ne a �
lassi
alization radius� by
r∗ =

√
~√

2fφ
(4.22)independent of the frequen
y or energy of the in
oming wave pa
ket. Again, in
omingwaves with arbitrarily high frequen
y are unable to probe distan
es shorter than r∗, but in82




ontrast to the pre
eding 
ase r∗ does not in
rease with frequen
y. We thus have a weakerform of 
lassi
alization (
ompare [74℄).Let us now 
onsider the e�e
t of 
urvature, whi
h (aside from the immaterial overallsign) is 
ontained in the denominator of the r.h.s. of (4.19). We observe that sin
e 0 ≤
−→
ψ

2 ≤ C, for some 
onstant C of order one, the e�e
t of the denominator is to enhan
ethe amplitude of the s
attered wave for positive 
urvature (upper sign) and to de
reaseit for negative 
urvature (lower sign). In fa
t, with the positive 
urvature the amplituderea
hes a pole for some r ≈
√

~/fφ, strengthening the 
ase for 
lassi
alization of thepre
eding analysis. In the 
ase of negative 
urvature, rhe r.h.s. of (4.19) in
reases forde
reasing radius, but tends to a 
onstant for r → 0. The argument for 
lassi
alization is
onsiderably weaker in this 
ase.This 
an also be seen in another way. The approximation leading to solution in aform (4.20) 
orresponds to 
onsidering the theory with standard kineti
 term and withintera
tion Lagrangian
Lint = ±(

−→
φ · ∂−→φ )2

2f 2
φ

. (4.23)Let us 
onsider, what happens if we take as an intera
tion the next term in the expansionof the denominator of Lagrangian in equation (4.13)
Lint = −

−→
φ

2
(
−→
φ · ∂−→φ )2

2f 4
φ

. (4.24)From here one �nds instead of (4.19) the following approximate form of the equation ofmotion for the �rst perturbation:
− 2ω

√
~

r
(fr)′ηa ′ = −2ω ~

5/2

f 4
φ r

6
ψa

−→
ψ

2 −→
ψ · −→ψ ′

, (4.25)whose solution has a radial dependen
e su
h that
|f(r)r| =

~
2

2f 4
φ r

4
. (4.26)83



This 
orresponds again to a 
lassi
alization radius of order √~/fφ. It is easy to see thatthis is true for all the terms in the expansion, but when one takes them all into a

ountsimultaneously, they appear all with negative sign, when the 
urvature is positive, butwith alternating signs, when the 
urvature is negative. Therefore in the 
ase of positive
urvature of the target spa
e, we have enhan
ed behaviour of the s
attered wave amplitudesignalizing the o

uren
e of the 
lassi
alization. For sigma models with negatively 
urvedinternal spa
e, these higher intera
tion terms are of the same order, but with alternatingsigns. In the e�e
t there are no eviden
es for strong deformation of initial wave pro�le and
lassi
alization does not o

ur. This dependen
e on the overall sign of intera
tion term in(4.23) is in agreement with general 
on
lusions derived in [72, 73℄. Nonlinear sigma modelswith these two di�erent signs are very di�erent also on the level of 
lassi
al �eld theorysolutions.For nonlinear sigma model with two derivatives we showed, that only in a 
ase ofpositive internal spa
e 
urvature, 
lassi
alization happens. We must emphasize howeverthat it happens not in a strong form (where 
lassi
alization radius depends and growswith the energy of the pa
ket). In the 
ase of two derivatives a
tion, energy dependen
eis removed and 
lassi
alization radius is a �xed length s
ale. In this aspe
t situation 
anbe similar to a linear sigma model with standard kineti
 term written for a dimensionless�elds. Then 
onstant √
~ f−1

φ plays very similar role like r∗ and is a �xed length s
ale.But we know that in this �at 
ase theory is free, without intera
tions, and that there is nos
attering. When target spa
e is with positive 
urvature, then this length s
ale sets alsothe 
hara
teristi
 length of the 
lassi
alization phenomenon.In the 
ase of an in
oming plane wave, the ratio of the �rst perturbation to the initialamplitude is independent both of ω and r. This gives no 
lue about 
lassi
alization. These
onsiderations in the planar wave 
ase 
on�rms previous statement, that if 
lassi
alizationholds for NSM with 2 derivatives, it is in the weak form.84



4.4 Nonlinear sigma model with 2 and 4 derivativesNow we want to add higher derivative terms to a
tion of nonlinear sigma model and
he
k their impa
t on the analysis of s
attering pro
esses. In a maximally symmetri
nonlinear sigma model with a two-derivative Lagrangian (4.13), a general four derivativeintera
tion has the form
L(4)

int = g4(ℓ1 habhcd + ℓ2 hachbd)∂µφ
a ∂µφb ∂νφ

c ∂νφd , (4.27)where ℓ1 and ℓ2 are dimensionless 
onstants. In e�e
tive �eld theory framework we expe
tthem to be of order one. Expanding the metri
s hab in Taylor series would yield in�nitelymany monomial operators with 
oe�
ients g4,n. For the sake of 
omparison to se
tion �4.2we 
ould write g4 = α4. In e�e
tive �eld theory one expe
ts the 
oe�
ients of operatorswith di�erent number of derivatives to be all proportional to powers of the same masss
ale fφ in natural units. Then we would write alternatively g4 = ~/f 4
φ. We will follow thisnotation here, but one 
an revert to α at any moment.When this intera
tion is added to the two-derivative Lagrangian (4.13), applying thesame ansatz for the �elds as in the pre
eding se
tion, negle
ting −→
φ 1 on the l.h.s. andexpanding in inverse powers of ωr we get to the leading order the following linear equationfor the �rst perturbation:

�φa1 = ∓2ω~
3/2

f 2
φ r

4

ψa
−→
ψ · −→ψ ′

(

1 ∓ ~

−→
ψ

2

f2
φ r

2

)2 (4.28)
−2ω2

~
5/2

f 4
φ r

5

[

(ℓ1 + 3ℓ2)ψ
a−→ψ ′2

+ (3ℓ1 + 5ℓ2)ψ
a ′−→ψ ′ · −→ψ + (ℓ1 + ℓ2)ψ

a−→ψ ′′ · −→ψ + ℓ2ψ
a ′′−→ψ 2

]Note that in the four-derivative terms the φ-dependent part of the metri
 gives subleading
ontributions, so hab was already repla
ed by δab in (4.28).This equation 
an only be solved by separation of variables, if one of the two terms onthe r.h.s of (4.28) 
an be negle
ted. However, we 
an get a reasonably good estimate of85



the terms involved by simply setting equal to one all the fastly os
illating fa
tors η in thel.h.s. and the terms involving ψ on the r.h.s.. The resulting equation for f(r)r 
an thenbe easily integrated to yield
|f(r)r| = ∓ ~

2f 2
φr

2
− E~

3f 4
φr

3
− ~

2

4f 4
φr

4
+ . . . = ∓

(r2∗
r

)2

−
(r4∗
r

)3

−
(r2∗
r

)4

+ . . . (4.29)where the �rst and third term 
ome from the expansion of the two-derivative term and these
ond 
omes from the four-derivative term. Dots at the end of the formula 
orrespondto higher powers of dimensionless ratios, whi
h give subleading 
ontributions. We havede�ned two 
lassi
alization radii by
r2∗ =

√

~

2f 2
φ

and r4∗ = 3

√

E~

3f 4
φ

. (4.30)All the terms in the expansion of the two-derivative term 
orrespond to the same
lassi
alization radius r2∗. These terms are dominant for E <
√

~fφ. For higher energythe four-derivative terms dominate and the system behaves like some number of 
opiesof the single Goldstone boson model of se
tion �4.2, in the spe
ial 
ase with 2m = 4derivatives. Note that if we use the notation α4 = ~/f 4
φ, we �nd that r4∗ = 3

√

Eα4/3,whi
h is the same formula that we found in se
tion �4.2. Strong 
lassi
alization o

urs for
ω > r−1

4∗ regardless of the sign of the 
urvature. This means, that adding four-derivativeintera
tion terms to the a
tion of nonlinear sigma model makes it resembling very mu
hat high energy the ordinary sigma model with four-derivative intera
tions. The featureof nonlinearity of kineti
 term is not important in the 
ontext of high energy, when thehighest order derivative intera
tion terms dominate. Therefore our system exhibits exa
tlythe same properties as the system of single Goldston boson with higher derivatives studiedin �4.2.In the 
ase of a plane in
oming wave we also have to distinguish two regimes. Whenthe two-derivative terms in (4.28) dominate, no 
lues of 
lassi
alization 
an be found, asin se
tion �4.3. When the four-derivative term dominates 
lassi
alization does not o

ur,in agreement with the dis
ussion in se
tion �4.2 and with [76℄.86



4.5 Classi
alization vs. asymptoti
 safetyIn the pre
eding se
tions we have analyzed a hypotheti
al s
attering pro
ess in nonlinearsigma models with any number of derivatives and with positive, negative or zero targetspa
e 
urvature. We have found that quite generally, an in
oming spheri
al wave satisfyingthe free wave equation will generate a strong s
attered wave, when it rea
hes a size r∗, thatdepends in general on the 
ouplings of the theory and on the initial energy. Contrary tonaive expe
tation, this radius r∗ either in
reases with energy or is independent of it. Asdis
ussed in [72℄, this is in sharp 
ontrast to other �eld theories, su
h as a s
alar witha potential intera
tion, where the s
attered wave only be
omes important at a radius oforder ~/E. Following [71, 72, 73, 74℄, we 
all this phenomenon �
lassi
alization�, and forour purposes we distinguish a �weak 
lassi
alization�, when r∗ is independent of E, from�strong 
lassi
alization� when r∗ grows with E. In both 
ases s
attering pro
esses 
annota
tually probe distan
es shorter than r∗. The s
attering pro
ess is softened and there isa 
han
e that, though perturbatively nonrenormalizable, the theory may a
tually be wellbehaved at high energy.As already mentioned in the introdu
tion, this sounds su�
iently similar to the programof asymptoti
 safety, that one may legitimately ask whether there is a relation betweenthe two phenomena. To further motivate this expe
tation, let us re
all that in order toavoid the 
ompli
ations due to redundant (or �inessential�) 
ouplings, in the dis
ussion ofasymptoti
 safety, it would be desirable to de�ne the 
ouplings dire
tly in terms of physi
alobservables [14℄. Due to the di�
ulty of nonperturbatively 
omputing observables in thesetheories, so far e�orts have 
on
entrated on the running of 
ouplings de�ned as 
oe�
ientsof operators in an e�e
tive Lagrangian. However, if there was a way of showing, forexample, that 
ertain amplitudes have the right behaviour as fun
tions of energy, thenone 
ould show, that the 
ouplings de�ned in terms of the 
orresponding ex
lusive 
rossse
tions would rea
h a �xed point. This would give truly operational de�nition of 
ouplings,measured from experiment, not derived from some theoreti
al 
onsiderations. In this way
lassi
alization 
ould turn out to be a valuable alternative tool for studying some issues87



about asymptoti
 safety.Sin
e asymptoti
 safety, if realized in nature, is 
learly a quantum phenomenon, the�rst priority is to understand, whether there is a way of viewing also 
lassi
alization as aquantum phenomenon, in spite of its name. We believe, that the distin
tion between 
las-si
al and quantum phenomena is not as 
lear 
ut as it seems. The real world is quantum innature and 
lassi
al behaviour 
an only emerge in 
ertain limits, but there are ambiguitiesin the way these limits are taken. We refer to [84℄ for a re
ent dis
ussion of this issue inthe 
ontext of QED. In order to introdu
e the issue in the 
ontext of the nonlinear sigmamodel, let us go ba
k to the parametrization where the �elds ϕa are dimensionless (whi
his natural in view of the fa
t that they appear as arguments in nonpolynomial metri
 fun
-tions hab, whi
h has a geometri
al meaning). The a
tion 
an be expanded s
hemati
allyas in (4.1), where Ok,n ∼
∫

∂kϕn 
ontains k derivatives and n powers of the �eld ϕ. Thedimensions of the 
ouplings ḡk,n areM Lk−3, independent of n. For the sake of perturbationtheory, one has to separate the kineti
 term from the intera
tions. De�ning a 
anoni
allynormalized �eld φa = ϕa
√
g2,2, of dimension √M/L, the a
tion be
omes
S =

∫

[

(∂φ)2 +
∑

k

∑

n>2

gk,n∂
kφn

] (4.31)where gk,n = ḡk,n(
√
g2,2)

n have dimensionM1−n/2 Lk−3+n/2. There is a theorem to the e�e
tthat higher derivative 
orre
tions to the propagator 
an be eliminated by �eld rede�nitions,order by order in perturbation theory [85℄, so we may assume, without loss of generality,that gk,2 = 0 for k > 2. Assuming that a Z2 symmetry forbids the appearan
e of oddpowers of the �eld, the lowest intera
tion would be of the form g2,4φ
2(∂φ)2. Let us de�ne

g2,4 = f−2
φ , where fφ has the same dimensions as the �eld (it 
an be viewed as a kind ofVEV). Global symmetry then implies that g2,n ∼ f 2−n

φ (see for example (4.13)). In e�e
tive�eld theory it seems reasonable to assume that all dimensionful 
ouplings are proportionalto powers of fφ. (This is parti
ularly 
lear in natural units, where fφ 
an be viewed as anatural mass s
ale, and all 
ouplings are proportional to powers of this mass.) Then wewould write gk,n = ck,nf
4−k−n
φ ~

k/2−1, where ck,n are dimensionless.88



One 
an de�ne di�erent notions of 
lassi
al limit, depending on whi
h 
ouplings arebeing kept �xed. If one takes ~ → 0 keeping gk,n �xed, one obtains a 
lassi
al �eld theorywith all the higher derivative terms; if one takes ~ → 0 keeping fφ and the ck,n �xedone gets a 
lassi
al �eld theory with the two-derivative terms only. How one de�nes the
lassi
al limit obviously a�e
ts the interpretation of 
lassi
alization. In the former limitthe 
lassi
alization radius, when k > 2, is (gk,n)
2

n+2k−6E
n−2

n+2k−6 independent of ~ and istherefore a truly 
lassi
al notion [71℄. In the latter limit, reexpressing gk,n in terms of
fφ and ~, the 
lassi
alization radius goes to zero and should therefore be regarded as aquantum e�e
t. The 
lassi
alization radius found in se
tion �4.3, for the 
ase k = 2, istruly of quantum nature regardless whi
h limit is taken. However as pointed out in [80, 81℄the emergen
e of the 
lassi
alization radius has to be understood as the ma
ros
opi
 e�e
tof a quantum nonlinear dynami
s of mi
ros
opi
 
onstituents of the system under question.Hen
e a

ording to authors of [80, 81℄ it has quantum origin.Another potential sour
e of ambiguity in the de�nition of the 
lassi
al limit is the ques-tion whether E or ω is to be held �xed [84℄. In the latter 
ase again the 
lassi
alizationradius 3

√
α4~ω vanishes in the 
lassi
al limit. Sin
e in this paper we are mainly interested ins
attering experiments, where the momenta of the external parti
les are known and �xed,it seems more appropriate to sti
k to the 
ase when E is kept �xed in the 
lassi
al limit.Furthermore, writing the 
ouplings in terms of powers of a single 
oupling fφ is motivatedby perturbative arguments. Sin
e both asymptoti
 safety and 
lassi
alization are nonper-turbative notions, it is perhaps more appropriate to sti
k to the generi
 parameterization(4.31) and to 
onsider all 
ouplings gk,n as truly independent. This is the notion of 
lassi
allimit whi
h is impli
itly assumed in [71, 72, 73, 74℄.We now restri
t ourselves to this parti
ular notion of 
lassi
al limit, and we try toextra
t some 
on
lusions from the results of the pre
eding se
tions. From the given ex-pressions for r∗ we see that the weak 
lassi
alization, that was found in the two-derivativemodels of se
tion �4.3 is a quantum phenomenon, whereas the strong 
lassi
alization of thehigher derivative models of se
tions �4.2 and �4.4 are genuinely 
lassi
al e�e
ts. There istherefore a 
han
e that weak 
lassi
alization has something to do with asymptoti
 safety,89



whereas strong 
lassi
alization seems to be a genuinely di�erent e�e
t. There are thensome other suggestive fa
ts. It was found in [67℄ that in the two-derivative trun
ation ofthe nonlinear sigma model a non-trivial �xed point exists for positive 
urvature, but not fornegative 
urvature. This seems to agree with the result in se
tion �4.3, a

ording to whi
hthe argument for (weak) 
lassi
alization is mu
h more robust in the positive 
urvature 
asethan in the negative 
urvature 
ase. On the other hand, no non-trivial �xed point seemsto exist in the S1-valued nonlinear sigma model, whi
h 
orresponds to the single Gold-stone boson model of se
tion �4.2 [68℄. And furthermore, we have found in se
tion �4.4that strong 
lassi
alization is 
ompletely insensitive to the sign of the 
urvature. Finally,returning to natural units, the amplitude for s
attering of two parti
les into two parti
lesin the two-derivative model with positive 
urvature behaves like p2/f 2
φ, where p is the mo-mentum transfer. Sin
e the latter is asymptoti
ally of order r−1

∗ ∼ fφ, the amplitude tendsto a 
onstant, as one would expe
t in an asymptoti
ally safe theory.In the 
ase of gravity, it has been argued that 
lassi
alization is intimately related tothe notion of a minimal length [70℄. This seems to be in 
ontrast to the notion of a �eldtheoreti
 UV 
ompletion, where one talks of �arbitrarily high energy s
ales�. In fa
t ithad already been noted that in a 
ertain sense a notion of minimal length is present in anasymptoti
ally safe theory of gravity [86℄. We refer to [87℄ for further dis
ussion of thispoint.We may 
omment here on the importan
e of weak and strong version of 
lassi
alization.In [81℄ authors noti
ed, that the self-
ompletion of a nonrenormalizable theory by 
lassi-
alization manifests itself as the in
rease of number of degrees of freedom with energy in a
lassi
al 
on�guration. It is this in
rease that repla
es the notion of the usual Wilsonianrenormalization standard viewed as integration in some new weakly intera
ting degrees offreedom. Moreover only in the 
ase of strong 
lassi
alization r∗ = r∗(E), we get a growingwith energy number of degrees of freedom present in the 
on�guration and the portrait ofthe 
lassi
alon as a soliton 
an be 
orre
t. The 
on
lusion is again, that weak and strong
lassi
alization are very di�erent and that way of UV 
ompletion by strong 
lassi
alizationdoesn't have features similar with those present in asymptoti
ally safe s
enario.90



All these fa
ts reinfor
e the hypothesis, that weak 
lassi
alization may be a dire
t man-ifestation of asymptoti
 safety in the s
attering amplitudes whereas strong 
lassi
alization,if true, would be a di�erent kind of e�e
t. We also observe that, if we assume equivalen
ebetween weak 
lassi
alization and asymptoti
 safety, the absen
e of 
lassi
alization in the
ase of plane waves suggests that momentum transfer is more important than total energyin these matters. In order to substantiate the pre
eding 
on
lusions one would need todire
tly 
al
ulate some amplitudes in an asymptoti
ally safe theory.

91



92



Chapter 5
1-loop e�e
tive a
tion in system ofgravitating s
alar
5.1 Trun
ation ansatz and 'inverse propagator'In this 
hapter we will 
ompute 1-loop e�e
tive a
tion in a system, where we havestandard Einstein-Hilbert gravitation and minimally 
oupled s
alar �eld. Standard 
om-putation, known in the literature, are mainly based on perturbative quantization methodsand they exploit Feynman diagrams te
hniques. Here we will follow a di�erent route.Namely we will obtain 1-loop quantum e�e
tive a
tion as the e�e
t of integrating averagee�e
tive a
tion along the �ow traje
tory from UV down to IR limit. Moreover in the 
oreof our 
al
ulation we will use non-lo
al heat kernel te
hniques to evaluate some fun
tionaltra
es. We will pay spe
ial attention to the appearan
e of nonlo
al terms in the quantume�e
tive a
tion.Now we want to introdu
e the notion of the average e�e
tive a
tion (EAA). The EAA isa s
ale-dependent generalisation of the standard e�e
tive a
tion that interpolates smoothlybetween the bare a
tion for k → ∞ and the standard quantum e�e
tive a
tion for k → 0.In this way, we avoid the problems of performing the fun
tional integral. Instead theyare 
onverted into the problem of integrating the exa
t �ow of the EAA from the UV to93



the IR. The EAA formalism deals naturally with several di�erent aspe
ts of quantum �eldtheories. One aspe
t is related to the dis
overy of non-Gaussian �xed points of the RG�ow. In parti
ular, the EAA framework is a useful setting to sear
h for Asymptoti
allySafe theories, i.e. theories valid up to arbitrarily high energy s
ales. A se
ond aspe
t, inwhi
h the EAA reveals its big usefulness, is the domain of nonperturbative 
al
ulations.In fa
t, the exa
t �ow that EAA satis�es is a valuable starting point for inventing newapproximation s
hemes.In EAA the 
ru
ial point is the separation between high and small energy modes ofquantum �elds. The elimination of higher energy modes is performed by separating thelow energy modes, to be integrated out, from the high modes in a 
ovariant way. To do thiswe introdu
e a 
uto� a
tion 
onstru
ted using the 
ovariant d'Alambertian, that respe
tsthe symmetries of the underlying theory. In full generality in order to 
onstru
t EAA weadd to the bare a
tion S an infrared (IR) �
uto�� or regulator term ∆Sk of the form:
∆Sk =

1

2

∫

ddx
√
gφRk(�)φ . (5.1)In above formula the operator kernel Rk is 
hosen in su
h a way to suppress the �eld modes

φn, eigenfun
tions of the 
ovariant se
ond di�erential operator �, with eigenvalues smallerthan the 
uto� s
ale νn < k2. Generi
 �elds of our quantum �eld theory are denotedhere by φ. We will 
all ∆Sk the 
uto� a
tion. The fun
tional form of the 
uto� kernels
Rk(z) is arbitrary ex
ept for the requirements that they should be monotoni
ally de
reasingfun
tions in both z and k arguments, i.e. rigorously that Rk(z) → 0 for z ≫ k2 and that
Rk(z) → k2 for z ≪ k2. It is important to 
onsider two limits of EAA. First in the IRlimit (k = 0) quantum e�e
tive a
tion is obtained. On the other hand, when k → ∞, thenEAA equals to the bare a
tion of 
onsidered quantum theory. In this way we obtain thes
ale dependent generalisation of the standard e�e
tive a
tion, whi
h interpolates betweenthe two.Quantum gravity gives unambiguous predi
tions at low energy in the framework ofe�e
tive �eld theories. The low energeti
 a
tion 
ontains only the simplest Einstein-Hilbert94



term (with a possibility of adding a 
osmologi
al 
onstant, whi
h we however negle
t here).In this e�e
tive theory there exist observables, whi
h do not depend on the parti
ularway of UV 
ompletion. They are genuine predi
tions of quantum gravity. The quantumdivergen
es, whi
h must be absorbed in the renormalization pro
edure, are 
ontained inlo
al, but not universal terms in the quantum e�e
tive a
tion. We are mainly interested innonlo
al term in quantum e�e
tive a
tion. The reason for this is that they are universalterms in low-energeti
 e�e
tive �eld theory of quantum gravity [95, 91℄. They do notdepend on any spe
i�
 way of UV 
ompletion of gravity. There are di�erent ways, bywhi
h, one 
an obtain quantum e�e
tive a
tion in infrared limit. However it is withoutany doubt that low- energeti
 predi
tions of quantum gravity are 
al
ulable and solid,regardless of any 
ompli
ated dynami
s, whi
h saves the theory in UV. In our methodfor integration the RG �ow we will use exa
t (also known as fun
tional) RenormalizationGroup equations. In integration of RG �ow of average e�e
tive a
tion su
h nonlo
al termsoriginate from the part of integration done for the lowest momentum s
ales.At the end of this 
hapter we will try to draw a 
omparison with a similar 
omputationdone in the perturbative framework [96℄. Our 
omputation we will �nally perform entirelyin four spa
etime dimension, however in the �rst se
tions we will be more general, workingwith spa
etime of any dimensionality.We will use the following ansatz for the form of the a
tion of our system
S =

∫

ddx
√
g

[

1

K2
R − 1

2
(∂φ)2 − V (φ)

]

− 1

2K2α

∫

ddx
√
gχ2 (5.2)

+

∫

ddx
√
g C̄µ (−�δµν − Rµ

ν )C
ν .where d'Alambertian is given by � = ∇µ∇µ. Due to the gauge di�eomorphism symmetrypresent in the system we are for
ed to introdu
e gauge �xing 
onditions ne
essary forperturbative quantization of the system: 95



χµ = ∇νhµν −
1

2
∇µh . (5.3)Moreover another 
onsequen
e of this gauge redundan
y in the system is that for 
onsis-ten
y, we also had to add ve
tor ghosts denoted by Cµ in the third line of (5.2). In our
omputation we use the ba
kground �eld method and we take the metri
 perturbationsin the form hµν = δgµν and in 
ontra
ted version h = gµνhµν . All 
ovariant derivativesare with respe
t to the ba
kground metri
. As we 
an see in the a
tion (5.2) we in
ludedminimally 
oupled s
alar �eld φ and we allow for the existen
e of potential V (φ) for it.Gravitational 
oupling appears there as K, whi
h has the inverse energy dimension. In thegravitational part of the a
tion R is a 
urvature invariant built out of the full metri
 gµνand Rµ

ν 
orresponding Ri

i tensor. Additionally 
onstant α is a gauge parameter in ourgauge �xing 
ondition.Now we are going to 
ompute the bilinear part in �u
tuations of a
tion S, be
ause this isthe main ingredient if we target on �nding the expli
it form of the 
ovariant d'Alambertianoperator. The bilinear part in the metri
 �eld of the gravitational part Sg of the e�e
tivea
tion is given by:
1

2
δ2Sg =

∫

d4x
√
g

1

K2

{

1

4
hαβ�hαβ +

(

−1

4
+

1

8α

)

h�h+

+
1

2

(

−1 +
1

α

)

(

hµν∇µ∇αhνα − hαβ∇α∇βh
)

+

(

1

8
h2 − 1

4
hµνh

µν

)

R (5.4)
−1

2
hµνR

µνh +
1

2
hµρR

µνhρν +
1

2
hµνR

µανβhαβ

}We are not interested in the ghost part here and we will not report 
orresponding resultsfor this part of the a
tion. However we present the ghost fun
tional derivative, whi
h isequal to
δ2S

δCµ(x)δC̄ν(x′)
= −�δµν − Rµ

ν . (5.5)Fixing α = 1 the se
ond fun
tional derivative of the gravitational part of the e�e
tivea
tion takes the following minimal form (summarised in pairs of indi
es (µ, ν) and (α, β)):96



δ2Sg
δhµν(x)δhαβ(x′)

=
1

K2

{

Cµν,αβ
� − Rα(µν)β − 1

2
gµνRαβ − 1

2
gαβRµν+

+
1

4
gαβgµνR + g(µ(αRβ)ν) − 1

2
gµ(αgβ)νR

}

, (5.6)where Cµν,αβ = −1
2

(

1
2
gµνgαβ − gµ(αgβ)ν

) is the 
ontravariant DeWitt metri
 tensor.In what follows, we will derive the operator of se
ond variation needed for 
omputationof S
hwinger-DeWitt te
hnique, simultaneously 
orre
ting the misprints, whi
h appearedin [98℄. This 
omputation we will keep in general dimensionality, only later we will restri
tourselves to d = 4. This is the novel feature of this work. The variation of the s
alar �eldaway from the ba
kground �eld φ we denote by f . We note here the se
ond variation ofthe matter a
tion Sm = −
∫

ddx
√
g
[

1
2
(∂φ)2 + V (φ)

] with respe
t to all �u
tuating �elds
ψA = (hµν , f) given by

δ2Sm
δf 2

= � − V ′′ , (5.7)
δ2Sm
δhµνδf

= −1

4
gµν (∇αφ)∇α +

1

2

(

∇(µφ
)

∇ν) − 1

2
gµνV ′, (5.8)

δ2Sm
δfδhµν

= +
1

4
gµν (∇αφ)∇α −

1

2

(

∇(µφ
)

∇ν) +
1

4
gµν�φ− 1

2
∇µ∇νφ− 1

2
gµνV ′(5.9)

δ2Sm
δhµνδhρσ

= V Cµν,ρσ +
1

2

[

Cµν,ρσ (∇φ)2 +
1

2
gµν (∇ρφ) (∇σφ)+

+
1

2
gρσ (∇µφ) (∇νφ) − 2g(µ(ρ

(

∇σ)φ
) (

∇ν)φ
)

]

. (5.10)The linear matrix-di�erential operator FAB(∇) de�ned by the relation
δ2S = 1

2

∫

d4x
√
gψAFABψ

B is given by
FAB(∇) = CAB� + 2ΓσAB∇σ +WAB , (5.11)where we order terms by number of 
ovariant derivatives. Operator FAB is obviously equalto the se
ond variation δ2S

δψAδψB . The indi
es A, B take only two value 1 (for graviton) or2 (for s
alar) and all matri
es with su
h indi
es have tensorial 
hara
ter with respe
t to97



di�eomorphism transformations. Due to the di�erent dimensionality of 
onsidered �u
-tuations the energy dimensions of entries of matrix FAB(∇) are di�erent. The a
tion ofthe operator FAB(∇) on �u
tuations is s
hemati
ally depi
ted by (hµν , f)F





hαβ

f



. Byexpli
it 
al
ulation, we get expressions for all tensors appearing in (5.11):
CAB =





1
K2C

µν,αβ 0

0 1



 , ΓσAB =





0 Cµν,σρ∇ρφ

−Cαβ,σρ∇ρφ 0



 and (5.12)
WAB =





Cµν,ρσHρσ
αβ −1

2
gµνV ′

−2Cαβ,ρσ∇ρ∇σφ− 1
2
gαβV ′ −V ′′



 . (5.13)We want to emphasise that the matrixW is not symmetri
 in indi
es (A,B). The tensorialexpression Hρσ
αβ (whi
h in [98℄ was 
alled Pρσαβ) equals to

1
K2

[

−2R(ρ
αβ
σ) + 2δ

(α
(ρR

β)
σ) − δαβρσR− 2

d−2
gρσR

αβ − gαβRρσ + 1
d−2

gρσg
αβR

]

+

+1
2
δαβρσ (∇φ)2 − 2δ

(α
(ρ

(

∇σ)φ
) (

∇β)φ
)

+ V δαβρσ + 1
d−2

gρσ (∇αφ)
(

∇βφ
)

+ (5.14)
+1

2
gαβ (∇ρφ) (∇σφ) − 1

2(d−2)
gαβgρσ (∇φ)2 ,and therefore in the result of 
ontra
tion we have that

Cµν,ρσHρσ
αβ =

1

K2

[

−Rα(µν)β − 1

2
gµνRαβ − 1

2
gαβRµν +

1

4
gαβgµνR + g(µ(αRβ)ν) − 1

2
gµ(αgβ)νR

]

+

+
1

2

[

Cµν,αβ (∇φ)2 +
1

2
gµν (∇αφ)

(

∇βφ
)

+
1

2
gαβ (∇µφ) (∇νφ)− (5.15)

−2g(µ(α
(

∇β)φ
) (

∇ν)φ
)]

+ V Cµν,αβ .Later we will need fun
tional determinant of the operator F and su
h quantity is well-de�ned (independent of 
hosen ve
tor basis), if it has mixed position of indi
es. In orderto a
hieve this we multiply FAB(∇) by the inverse matrix CDA (CDACAB = δDB ), whi
h isequal to 98



CDA =





K2Cκλ,µν 0

0 1



 (5.16)with Cκλ,µν = gκµgλν + gκνgλµ − 2
d−2

gκλgµν (this is not the version of Cκλ,µν with 
ovariantindi
es lowered by 
ovariant metri
 tensor g, even for d = 4). The matrix CDA plays the roleof the 
ontravariant metri
 in the ve
tor spa
e of �u
tuations. Additionally we de�ne a setof hatted quantities: Î = δAB, Γ̂σ = ΓσDB = CDAΓσAB, F̂ (∇) = F (∇)DB = CDAF (∇)ABand Ŵ = WD
B = CDAWAB. With these de�nitions we have that

F̂ (∇) = Î� + 2Γ̂σ∇σ + Ŵ . (5.17)It is mu
h easier to 
ompute determinants of the di�erential operators, whi
h are inthe minimal form (no pie
e with one 
ovariant derivative). We 
an use a new 
ovariantderivativeDµ = ∇µ+Γ̂µ, whi
h is the old one∇µ shifted by the 
ovariant ve
tor Γ̂µ = gµν Γ̂
ν .With this tri
k we absorb the part linear in derivative operators in F̂ (∇). Then our operatortakes the following minimal form

F̂ (D) = ÎgµνDµDν + P̂ − 1

6
ÎR , (5.18)where the s
alar 
urvature R of the metri
 g was extra
ted for reasons of 
onvenien
e. Nownewly de�ned operator P̂ is expressed by the relation P̂ = Ŵ −

(

∇σΓ̂
σ
)

− Γ̂σΓ̂
σ + 1

6
ÎR.The energy dimensions of diagonal elements of P̂ are equal to E2, while for P12 it is Eand for P21 is E3. The matri
es of Γ̂σ and Ŵ a
t on �u
tuations as given s
hemati
ally by

(

h̃κλ, f
)

F̂





hαβ

f



 with h̃κλ = K−2hµνC
µν,κλ. And they look as follows

Γ̂σ =





0 K2δσρκλ∇ρφ

−Cαβ,σρ∇ρφ 0



 and (5.19)
Ŵ =





K2Hκλ
αβ 2

d−2
K2gκλV

′

−2Cαβ,ρσ∇ρ∇σφ− 1
2
gαβV ′ −V ′′



 . (5.20)We have interesting expressions for ∇σΓ̂
σ and Γ̂σΓ̂

σ expli
itly equal to99



∇σΓ̂
σ =





0 K2∇κ∇λφ

−Cαβ,σρ∇σ∇ρφ 0



 and (5.21)
Γ̂σΓ̂

σ =





−1
4
K2
(

2δ
(α
(κ

(

∇β)φ
) (

∇λ)φ
)

− gαβ (∇κφ) (∇λφ)
)

0

0 −K2 (∇φ)2



 . (5.22)With this in mind we obtain the following matrix form of the P̂ operator (we 
hange theindi
es pair (κ, λ) to (µ, ν)):
P̂ =





Aµν
αβ + 1/6Rδαβµν Bµν

Eαβ D + 1/6R



 . (5.23)The 
oe�
ient fun
tions are given below
Aµν

αβ = K2Hµν
αβ +

1

2
K2δ

(α
(µ

(

∇β)φ
) (

∇ν)φ
)

− 1

4
K2gαβ (∇µφ) (∇νφ) , (5.24)

Bµν =
2

d− 2
K2gµνV

′ −K2∇µ∇νφ , (5.25)
Eαβ = −1

2
∇α∇βφ+

1

4
gαβ�φ− 1

2
gαβV ′ and (5.26)

D = −V ′′ +K2 (∇φ)2 . (5.27)Note that the 
oe�
ient 1
2
in front of the se
ond derivative of the s
alar potential in
oe�
ient D was in
orre
t in [98℄.Now we 
an 
ompute the generalised 
urvature de�ned as the 
ommutator of shifted
ovariant derivatives [Dα,Dβ]ψ = R̂αβ ψ, where R̂αβ = Rαβ

A
B is understood as a 2x2matrix. Using the de�nitions of Dα, we get the relation R̂αβ = R̂0

αβ + 2∇[αΓ̂β] + 2Γ̂[αΓ̂β],where R̂0
αβ is the 
urvature for the ordinary spa
etime 
ovariant derivatives ∇α in thematrix form. Only the (1, 1) element of the latter matrix is nonvanishing (when a
ting on100



a tensor of metri
 �u
tuations hρτ ) and equals to [∇α,∇β] hρτ = Oρτ
µν
αβhµν . An operator

O is expressed by the Riemann tensor a

ording to the formula Oρτ
µν
αβ = Rαβρ

(µδ
ν)
τ +

Rαβτ
(µδ

ν)
ρ . Covariant derivative 
ommute when a
ting on a s
alar, so all other 
omponentsof R̂0

αβ are zero. The generalised 
urvature a
ts in the following way on the �u
tuations
(

h̃ρτ , f
)

R̂αβ





hµν

f



. Now we write expli
itly expressions appearing in the expansion ofthe generalised 
urvature. We have that
∇[αΓ̂β] =





0 K2δσλρτ gσ[β∇α]∇λφ

−Cµν,σλgσ[β∇α]∇λφ 0



 and (5.28)
Γ̂[αΓ̂β] = Γ[α

A
BΓβ]

B
C =





−K2δσλρτ C
µν,εκgσ[αgβ]κ (∇λφ) (∇εφ) 0

0 −K2Cεκ,σλgσ[αgβ]κ (∇λφ) (∇εφ)



(5.29)The last low entry in Γ̂[αΓ̂β] is equal to zero, be
ause after doing the 
hange of names ofdummy indi
es (ε, κ) ↔ (σ, λ) we get this term equal to −K2Cεκ,σλgσ[βgα]κ (∇λφ) (∇εφ).And this means that this expression is symmetri
 in α, β indi
es. Adopting the following
onvention for writing the matrix operator R̂αβ :
R̂αβ =





Xρτ
µν
αβ Yρτ,αβ

Zµν
αβ 0



 (5.30)we 
an read out the expression for X, Y and Z fun
tions. Namely we have
Xρτ

µν
αβ = −2δ

(µ
(ρR

ν)
τ)αβ + 2k2δεκρτC

µν,σλgσ[αgβ]κ (∇λφ) (∇εφ) , (5.31)
Yρτ,αβ = −2k2δσλρτ gσ[α∇β]∇λφ and (5.32)
Zµν

αβ = −2Cµν,σλgσ[β∇α]∇λφ. (5.33)101



(In formulas (2.39-2.41) of [98℄ the overall sign was in
orre
t!). The energy dimensions ofthese entries are respe
tively: E2, E and E3. Up to this moment every 
omputation wasdone under the assumption of the general dimensionality d of spa
etime.5.2 Lo
al terms of one-loop e�e
tive a
tionFirst we will look for lo
al terms in 1-loop e�e
tive a
tion for our system. They arerelated to UV divergen
es of the theory. In general these divergen
es give rise to therenormalization of 
ouplings in front of lo
al terms. They are not universal and depend onthe pre
ise way of UV 
ompletion. However we assume, that the bare a
tion is given by(5.2). At one loop order the quantum e�e
tive a
tion is given by the integral
Γ[φ, g] = −1

2

∫ ∞

0

ds

s
Tr e−sŜ

(2)

, (5.34)where Tr e−sŜ
(2) is the fun
tional tra
e of some di�erential operator, whi
h we are goingto 
ompute with the heat kernel te
hniques. For our appli
ations in the exponent ofheat kernel we use inverse propagator, found in the previous se
tion, denoted here by

Ŝ(2) (se
ond variational derivative of the a
tion S with respe
t to all �u
tuating �elds).This operator, as other quantities with a hat over, is a matrix in �eld spa
e of gravitonsand s
alar �eld perturbations. In order to �nd logarithmi
ally divergent part of one-loope�e
tive a
tion to se
ond order in 
urvature we 
an use the S
hwinger-DeWitt method forquadrati
 operators:
Tr e−sŜ

(2)

=
1

(4πs)d/2

∫

ddx
√
gtr

{

1̂ + sP̂ + s2

[

1

2
P̂ 2 +

1

12
R̂µνR̂µν+

+
1

180
Riem21̂ − 1

180
RµνR

µν 1̂

]}

. (5.35)We will restri
t ourselves to se
ond order 
ontribution in operators P̂ , R̂µν and gravi-tational 
urvatures. (We don't 
onsider here appli
ation of this method to the ghost partof the a
tion, be
ause we are mainly interested in nonminimally 
oupled matter terms.)102



Using S
hwinger-DeWitt te
hnique we redu
ed the fun
tional tra
e to matrix tra
es. Inwhat follows, small tra
es denote the tra
es done in �eld spa
e (of 2x2 matri
es). One�nds parti
ular tra
es in forms given below. For a tra
e of quadrati
 s
alar operator P̂ 2we �nd:
1

2
trP̂ 2 =

3

2
Riem2 − 3Ri
2 +

119

72
R2

+
11

8
K4∇αφ∇αφ∇βφ∇βφ− 1

4
K2∇2φ∇2φ+

1

2
K2∇β∇αφ∇β∇αφ

+K2

(

K2V (φ) − 5

12
R− V ′′(φ)

)

∇αφ∇αφ (5.36)
+K2V ′(φ)∇2φ+ 5k4V 2(φ) − 13

3
K2RV (φ)

−2k2V ′(φ)2 − R

6
V ′′(φ) +

(V ′′(φ))2

2
.The tra
e of the 
ontra
ted square of the generalised 
urvature R̂µνR̂µν amounts to:

1

12
trR̂µνR̂µν = −1

2
Riem2 +

1

6
K2Rαβ∇αφ∇βφ

−1

8
K4∇αφ∇αφ∇βφ∇βφ+

1

12
K2∇2φ∇2φ (5.37)

−1

3
K2∇β∇αφ∇β∇αφ+

1

12
K2R∇αφ∇αφFinally we report here for 
ompleteness the tra
e of the unity matrix 1̂ in �eld spa
e:

tr1̂ =
d(d+ 1)

2
+ 1 = 11 for d = 4 . (5.38)The last result is equal to the sum of the dimensionality of spa
e of symmetri
 tensors, i.e.metri
 perturbations and one-dimensional s
alar perturbation.Now we are going to 
ompute tra
es of the various matrix-valued operators appearingin the se
ond variation of the a
tion Γk. We have after summation that

trb4 =
11

180

(Riem2 − Ri
2)+
1

2
trP 2 +

1

12
R̂µνR̂µν

=
191

180
Riem2 − 551

180
Ri
2 +

119

72
R2103



+5K4V 2(φ) − 2K2V ′(φ)2 − 13

3
K2RV (φ) − R

6
V ′′(φ) +

(V ′′(φ))2

2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ (5.39)

−1

6
K2∇2φ∇2φ+

1

6
K2∇β∇αφ∇β∇αφ+

1

6
K2Rαβ∇αφ∇βφ

+K2

(

K2V (φ) − 1

3
R− V ′′(φ)

)

∇αφ∇αφ

+K2V ′(φ)∇2φ ,where by b4 we denoted traditionally the expansion 
oe�
ients of matrix tra
e in frontof the se
ond power of s parameter. For any s
alar �eld we have the following identityoriginating from the 
ommutation of the se
ond 
ovariant derivatives a
ting upon it:
1

6
Rαβ∇αφ∇βφ− 1

6
∇2φ∇2φ+

1

6
∇β∇αφ∇β∇αφ = 0 , (5.40)Next we use the s
alar equation of motion derived from the standard a
tion. Here it isgiven by

∇2φ− V ′(φ) = 0 . (5.41)Then one is able to derive the following identity valid onshell (For the moment we puts
alar perturbations onshell, while keeping graviton perturbations 
ompletely general).
K2V ′(φ)∇2φ− 2k2V ′(φ)2 = −K2V ′(φ)2 . (5.42)Exploiting this in our formula for tr b4 leads to the simpli�
ation:

trb4 =
191

180
Riem2 − 551

180
Ri
2 +

119

72
R2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ

+K2

(

−1

3
R +K2V (φ) − 2V ′′(φ)

)

∇αφ∇αφ (5.43)
−13

3
K2RV (φ) − R

6
V ′′(φ) + 5k4V 2(φ) − 2k2V ′(φ)2 +

(V ′′(φ))2

2
.104



Now we de
ide about the form of the s
alar potential V (φ). If we set it to 
ontain onlythe mass term V (φ) = m2

2
φ2, then we have:

trb4 =
191

180
Riem2 − 551

180
Ri
2 +

119

72
R2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ

+K2

(

−1

3
R +

1

2
K2m2φ2 − 2m2

)

∇αφ∇αφ (5.44)
−13

6
K2Rm2φ2 − 1

6
m2R +

5

4
K4m4φ4 − 2k2m4φ2 +

1

2
m4 .In the last step we 
an put gravitational ex
itations on shell. For our result this means,that we 
an use Euler identity relating squares of Riemann, Ri

i and s
alar 
urvaturesa

ording to the formula Riem2 = 4Ri
2 − R2 + E. We negle
t the di�eren
e term E,be
ause it is a total derivative. After doing this, we arrive at a �nal result for the tra
e of

b4 
oe�
ient:
trb4 =

213

180
Ri
2 +

213

360
R2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ

+K2

(

−1

3
R +

1

2
K2m2φ2 − 2m2

)

∇αφ∇αφ (5.45)
−13

6
K2Rm2φ2 − 1

6
m2R +

5

4
K4m4φ4 − 2k2m4φ2 +

1

2
m4 .This is the form of one-loop lo
al terms for s
alar �eld with mass (non self-intera
ting)minimally 
oupled to Einstein-Hilbert gravitation in four spa
etime dimensions. We ob-tained an agreement with previous results found by others for lo
al part of divergent partof one-loop e�e
tive a
tion [98, 99℄. The 
ontribution from the ghost part of the a
tion hasthe impa
t only on the �rst two 
oe�
ients (in front of the quadrati
 
urvature invariants).This is so, be
ause of the initial gauge 
hoi
e we adopted, where the s
alars do not appear.However in this and in the later derivations we fo
us on the monomials from the matterpart, where the s
alar �eld φ is present. 105



5.3 Nonlo
al terms and exa
t RG �ow equationsIn order to go beyond S
hwinger-DeWitt te
hnique and �nd form of nonlo
al part ofone-loop a
tion we insert nonlo
al stru
ture fun
tions. They are fun
tions of s parameterand box operator � = ∇µ∇µ (a
ting under the integral) appearing in the 
ombination
−s�. We insert these stru
ture fun
tions between two matrix operators present at these
ond order as in the detailed formula below

1

(4πs)d/2

∫

ddx
√
gs2tr

{[

P̂ fP (−s�) P̂ + R̂µνfR (−s�) R̂µν+

+P̂ fPR (−s�)R +RfR (−s�)R 1̂ +RµνfRic (−s�)Rµν 1̂
]

+ ...
}

. (5.46)It must be emphasised, that the leading order in s 
ontribution is equal to 
onstants aswritten in the formulas (5.35) in se
tion above (for P̂R operator this 
onstant vanishes).Moreover we have used the Euler identity relating 
ontribution of the square of Riemanntensor to quadrati
 expression in Ri

i tensor and s
alar a

ording to the formula E =Riem2 −4Ri
2 +R2. By E we denote Euler 
hara
teristi
s of the spa
etime manifold - thisis a topologi
al quantity and doesn't in�uen
e lo
al dynami
s in the bulk of spa
etime. Thetra
es of matrix terms of order 
urvature square are modi�ed with respe
t to expressionsgiven in previous se
tion by the appearan
e of stru
ture fun
tions fP , fR, fPR, fR and
fRic. We have the results for the tra
e of the quadrati
 s
alar operator P̂ 2:
trP̂ fP P̂ = 3Rµν fPR

µν +
11

72
RfPR

+
11

8
K4(∇αφ∇αφ)fP (∇βφ∇βφ) − 1

4
K2(∇2φ)fP (∇2φ) +

1

2
K2(∇β∇αφ)fP (∇β∇αφ)

+K4V (φ)fP (∇αφ∇αφ) − 5

12
K2RfP (∇αφ∇αφ) −K2V ′′(φ)fP (∇αφ∇αφ) (5.47)

+K2V ′(φ)fP (∇2φ) + 5k4V (φ)fPV (φ) − 13

3
K2RfPV (φ)

−2k2V ′(φ)fPV
′(φ) − R

6
fPV

′′(φ) +
1

2
V ′′(φ)fPV

′′(φ) .The tra
e of the 
ontra
ted square of the generalised 
urvature R̂µνR̂µν amounts to:106



trR̂µνfRR̂µν = −2Rµν fRR
µν +

1

2
RfRR +

1

6
K2RαβfR(∇αφ∇βφ)

−1

8
K4(∇αφ∇αφ)fR(∇βφ∇βφ) +

1

12
K2(∇2φ)fR(∇2φ) (5.48)

−1

3
K2(∇β∇αφ)fR(∇β∇αφ) +

1

12
K2RfR(∇αφ∇αφ) .At the end we report here for 
ompleteness the tra
e of the new operator P̂R equal to:

trP̂ fPRR = 2k2RfPR(∇αφ∇αφ) + 10k2RfPRV (φ)

−RfPRV ′′(φ) − 25

6
RfPRR . (5.49)We pro
eed in a very similar way like in the last se
tion. This time the only di�eren
eis that we have to take 
are of nonlo
al stru
ture fun
tions. Our previous results are stillvalid, when we restri
t ourselves to �rst terms in the expansion of these formfa
tors. Aftersumming all the terms we �nd the nonlo
al equivalent of tr b4:

11

180
(3Rµν fRicR

µν −RfRR) + trP̂ fP P̂ + trP̂ fPRR + trR̂µνfRR̂µν =

= Rµν

[

33

180
fRic + 6fP − 24fR

]

Rµν

+R

[

− 11

180
fR +

11

36
fP + 6fR − 25

6
fPR

]

R

+K4(∇αφ∇αφ)

[

11

4
fP − 3

2
fR

]

(∇βφ∇βφ)

+K2(∇2φ)

[

−1

2
fP + fR

]

(∇2φ)

+K2(∇β∇αφ) [fP − 4fR] (∇β∇αφ)

+K2R

[

−5

6
fP + fR + 2fPR

]

(∇αφ∇αφ) (5.50)
+K2Rαβ [2fR] (∇αφ∇βφ)

+K4V (φ) [2fP ] (∇αφ∇αφ) −K2V ′′(φ) [2fP ] (∇αφ∇αφ)

+K2V ′(φ) [2fP ] (∇2φ) +K4V (φ) [10fP ]V (φ)107



K2R

[

−26

3
fP + 10fPR

]

V (φ) −K2V ′(φ) [4fP ]V ′(φ)

R

[

−1

3
fP − fPR

]

V ′′(φ) + V ′′(φ) [fP ]V ′′(φ) .If we set the s
alar potential to V (φ) = m2

2
φ2 and use s
alar equations of motion in this
ase, then we have some 
an
ellations. We have even more 
an
ellations and simpli�
ations,be
ause obviously we have, that �m2 = 0 and this means, that the stru
ture fun
tionswith nonlo
al pie
es 
annot be inserted between mass powers in mass terms. When weexploit this fa
t, we arrive at the following �nal expression:

11

180
(3Rµν fRicR

µν − RfRR) + trP̂ fP P̂ + trP̂ fPRR + trR̂µνfRR̂µν =

= Rµν

[

33

180
fRic + 6fP − 24fR

]

Rµν +R

[

− 11

180
fR +

11

36
fP + 6fR − 25

6
fPR

]

R

+K4(∇αφ∇αφ)

[

11

4
fP − 3

2
fR

]

(∇βφ∇βφ) +K4m2φ2 [fP ] (∇αφ∇αφ)

+K4m4φ2

[

5

2
fP

]

φ2 +K2m4φ

[

−5

2
fP + fR

]

φ (5.51)
+K2(∇β∇αφ) [fP − 4fR] (∇β∇αφ) +K2R

[

−5

6
fP + fR + 2fPR

]

(∇αφ∇αφ)

+K2Rαβ [2fR] (∇αφ∇βφ) +K2m2R

[

−13

3
fP + 5fPR

]

φ2 .Now we want to 
onsider the exa
t RG �ow of EAA, whi
h will be denoted here by
Γ̄k. As the ansatz for it we 
hoose the expression above, understood that all the 
ouplingsand stru
ture fun
tions now a
quire dependen
e on the momentum s
ale k. The exa
t RG�ow equation for the ba
kground e�e
tive average a
tion (bEAA) is the following

∂tΓ̄k[φ, g] =
1

2
Tr
∂tRk(−D2) − ηkR(−D2)

−D2 +Rk(−D2)
− Tr

∂tRk(∆gh)

∆gh +Rk(∆gh)
. (5.52)In the above formula D is a general operator of the 
ovariant derivative and Rk are 
uto�kernels (suitably 
hosen fun
tions of momenta to suppress the 
ontributions from highenergy modes in the path integral). We expli
itly split the graviton and s
alar part fromthe ghost part in this equation. Our exa
t RG �ow equation des
ribes the 
hange of the108



bEAA under the in�nitesimal 
hange of the RG logarithmi
 s
ale t = log k. The r.h.s. ofthis equation expresses itself by fun
tional tra
es of some di�erential operators and the RGtime derivatives of 
uto� kernels. We note that in the denominator we have di�erentialpart D2 of our inverse propagator operator (se
ond variation) (5.18), . The r.h.s. of the�ow equation is then (negle
ting the ghost 
ontribution) and writing all terms
∂tΓ̄k[φ, g] =

1

(4π)d/2

∫

ddx
√
g

{

Rµν

[
∫ ∞

0

ds h̃(s) s2− d
2 f̃a(s�)

]

Rµν+

+R

[
∫ ∞

0

ds h̃(s) s2− d
2 f̃b(s�)

]

R +K4(∇αφ∇αφ)

[
∫ ∞

0

ds h̃(s) s2− d
2 f̃c(s�)

]

(∇βφ∇βφ) +

+K4m2φ2

[∫ ∞

0

ds h̃(s) s2− d
2 f̃d(s�)

]

(∇αφ∇αφ) +K4m4φ2

[∫ ∞

0

ds h̃(s) s2− d
2 f̃e(s�)

]

φ2 +

+K2m4φ

[
∫ ∞

0

ds h̃(s) s2− d
2 f̃f(s�)

]

φ+K2(∇β∇αφ)

[
∫ ∞

0

ds h̃(s) s2− d
2 f̃g(s�)

]

(∇β∇αφ)(5.53)
+K2R

[
∫ ∞

0

ds h̃(s) s2− d
2 f̃h(s�)

]

(∇αφ∇αφ) +K2Rαβ

[
∫ ∞

0

ds h̃(s) s2− d
2 f̃j(s�)

]

(∇αφ∇βφ) +

+K2m2R

[∫ ∞

0

ds h̃(s) s2− d
2 f̃l(s�)

]

φ2

}

.where the fun
tions f̃a(x), f̃b(x), ..., f̃l(x) were derived 
ombining non-lo
al heat kernelstru
ture fun
tions. In the above equation we enlisted all monomial terms, whi
h appearedin (5.51). In the {RµνR
µν , R2, K4(∇αφ∇αφ)2, K4m2φ2(∇αφ∇αφ), K4m4φ4, K2m4φ2,

K2(∇β∇αφ)2, K2R(∇αφ∇αφ), K2Rαβ(∇αφ∇βφ), K2m2Rφ2} basis as in (5.51), the 
or-responding fun
tions for ea
h monomial read expli
itly:
f̃a =

33

180
fRic + 6fP − 24fR (5.54)

f̃b = − 11

180
fR +

11

36
fP + 6fR − 25

6
fPR (5.55)

f̃c =
11

4
fP − 3

2
fR (5.56)

f̃d = fP (5.57)
f̃e =

5

2
fP (5.58)

f̃f = −5

2
fP + fR (5.59)109



f̃g = fP − 4fR (5.60)
f̃h = −5

6
fP + fR + 2fPR (5.61)

f̃j = 2fR (5.62)
f̃l = −13

3
fP + 5fPR (5.63)In [90℄ another basis for stru
ture fun
tions was used. The transformation between themare linear and are given below:
fP = φ4 (5.64)
fR = φ5 (5.65)
fPR = φ3 (5.66)
fR = −180φ2 (5.67)
fRic = 60φ1 (5.68)(5.69)Above stru
ture fun
tions for Lagrangian monomials 
an be rewritten using φ1, . . . , φ5stru
tural fun
tions 
oe�
ients (being linear 
ombination of fP , fR, fPR, fR and fRic).Moreover we apply identity (5.40) to redu
e one term. Then the form of the quadrati
part of the e�e
tive a
tion is given by

11

180
(3Rµν fRicR

µν −RfRR) + trP̂ fP P̂ + trP̂ fPRR + trR̂µνfRR̂µν =

= (11φ1 + 6φ4 − 24φ5) Ric2 +

(

11φ2 −
25

6
φ3 +

11

36
φ4 + 6φ5

)

R2 +

+
5

2
φ4K

4m4φ4 −
(

5

2
φ4 − 3φ5

)

K2m4φ2 +

(

5φ3 −
13

3
φ4

)

K2m2Rφ2 − (5.70)
−
(

φ3 +
1

3
φ4

)

m2R + φ4m
4 +

(

11

4
φ4 −

3

2
φ5

)

K4
(

(∇φ)2)2 +

+ (φ4 − 6φ5)K
2 (∇α∇βφ)2 +K2

(

φ4K
2m2φ2 +

(

2φ3 −
5

6
φ4 + φ5

)

R− 2m2

)

(∇φ)2 .110



(If we use modi�ed version of the operator P̂ , where the mass for the s
alar �eld is treatedexa
tly, not perturbatively, then instead of the last numeri
al 
oe�
ient 2 in the last linewe have 
oe�
ient equal to twi
e the fourth stru
ture fun
tions 2φ4.)Sin
e now we are already in d = 4. From formula (5.70) we read the 
oe�
ients ofLagrangian monomials in the di�erent (extended) basis for formfa
tors. We have themexpli
itly:
fa = 11φ1 + 6φ4 − 24φ5 (5.71)
fb = 11φ2 −

25

6
φ3 +

11

36
φ4 + 6φ5 (5.72)

fc =
5

2
φ4 (5.73)

fd = −
(

5

2
φ4 − 3φ5

) (5.74)
fe = 5φ3 −

13

3
φ4 (5.75)

[ff = −
(

φ3 +
1

3
φ4

)] (5.76)
[fg = φ4] (5.77)
fh =

11

4
φ4 −

3

2
φ5 (5.78)

fj = φ4 − 6φ5 (5.79)
fl = φ4 (5.80)
fm = 2φ3 −

5

6
φ4 + φ5 (5.81)

[fn = 2(−2φ4)] (5.82)Inside square bra
kets were written formfa
tors, for whi
h only the 
onstant term matters.This is, be
ause, when d'Alambertian operator a
ts on su
h expression, where the stru
turefun
tions are inserted in, it gives zero (presen
e of mass terms). Stru
ture fun
tions for su
hmonomials do not 
ontain any non-lo
al part. Now we are working in the following basis of12 Lagrangian monomials {RµνR
µν , R2, K4m4φ4, K2m4φ2, K2m2Rφ2, m2R, m4, K4((∇φ)2)2,

K2(∇α∇βφ)2, K4m2φ2(∇φ)2, K2R(∇φ)2, K2m2(∇φ)2}. Out of these monomials only 9allow for the nonlo
al form-fa
tors fun
tions depending on the operator �.111



With the de�nition of the basi
 heat kernel non-lo
al form fa
tor f(x)

f(x) =

∫ 1

0

dξe−ξ(1−ξ)x (5.83)and re
alling the relations between stru
ture fun
tions and f(x)

φ1(x) =
f(x) − 1 + 1/6x

x2
(5.84)

φ2(x) =
1

8

[

1

36
f(x) +

f(x) − 1

3x
− f(x) − 1 + 1/6x

x2

] (5.85)
φ3(x) =

1

12
f(x) +

1

2

f(x) − 1

x
(5.86)

φ4(x) =
1

2
f(x) (5.87)

φ5(x) = −1

2

f(x) − 1

x
(5.88)we 
an extra
t the running of the stru
ture fun
tions (k is the momentum s
ale here!)given by the following equation

∂tfI, k(−�) =
1

(4π)d/2

∫ ∞

0

ds h̃(s) s2− d
2 fI(sx)

∣

∣

∣

∣

x=−�

, (5.89)for I = a, b, ..., l(n). Index I 
ounts the number of possible monomials present in (5.51).We reserve letter k for momentum s
ale here and therefore it is ex
luded from the possiblevalues of the index I. The letter i is also ex
luded, in order not to 
onfuse with othernotation.Firstly our 9 non-lo
al stru
ture fun
tions written in terms of f(x) fun
tion are givenbelow:
fa = 3f(x) +

−61 + 72f(x)

6x
+

11(f(x) − 1)

x2
(5.90)

fb = − 5

32
f(x) +

211 − 222f(x)

48x
− 11(f(x) − 1)

8x2
(5.91)

fc =
5

4
f(x) (5.92)112



fd = −5

4
f(x) − 3(f(x) − 1)

2x
(5.93)

fe = −7

4
f(x) +

5(f(x) − 1)

2x
(5.94)

fh =
11

8
f(x) +

3(f(x) − 1)

4x
(5.95)

fi =
1

2
f(x) +

3(f(x) − 1)

x
(5.96)

fl =
1

2
f(x) (5.97)

fm = −1

4
f(x) +

f(x) − 1

2x
. (5.98)For ea
h value of index I, above 
orresponding expression (5.89) 
an be rewritten interms of a 
ombination of Q-fun
tionals inside parametri
 integrals. We have for example

(4π)2 ∂tFb, k(x) = − 5

32

∫ 1

0

dξ Q0 [hk (z + xξ(1 − ξ))] − 37

8x

∫ 1

0

dξ Q1 [hk (z + xξ(1 − ξ))] +

+
211

48x
Q1 [hk (z)] − 11

8x2

{
∫ 1

0

dξ Q2 [hk (z + xξ(1 − ξ))] −Q2 [hk (z)]

}(5.99)The arguments of Q-fun
tionals are given by the expression hk(z) = ∂tRk(z)
z+Rk(z)

. Now it is themoment, we have to spe
ify the 
uto� fun
tion Rk(z). We use the optimised 
uto� shapefun
tion Rk(z) = (k2 − z)θ(k2 − z), as proposed in [35℄. Next we use expli
itly the valuesof the Q-fun
tionals as 
omputed below
Q0 [hk(z)] = 2 (5.100)
Q1 [hk(z)] = 2k2 (5.101)
Q2 [hk(z)] = k4 (5.102)and their integrals over ξ variable inside the hk(z) fun
tions:

∫ 1

0

dξ Q0 [hk (z + xξ(1 − ξ))] = 2

[

1 −
√

1 − 4

u
θ(u− 4)

] (5.103)113



∫ 1

0

dξ Q1 [hk (z + xξ(1 − ξ))] = 2k2

[

1 − u

6
+
u

6

√

1 − 4

u

3

θ(u− 4)

] (5.104)
∫ 1

0

dξ Q2 [hk (z + xξ(1 − ξ))] = 2k4

[

1

2
− u

6
+
u2

60
− u2

60

√

1 − 4

u

5

θ(u− 4)

]

, (5.105)where u = x
k2 . We have now, after the integration, a set of equations, whi
h 
an begenerally put in the following general form

∂tfI, k(x) =
1

(4π)2
gI

( x

k2

)

, (5.106)where the fun
tions gI(u) are given for ea
h monomial term respe
tively by
ga(u) =

71

30
+

(

−71

30
− 196

15u
− 88

15u2

)

√

1 − 4

u
θ(u− 4) (5.107)

gb(u) =
71

60
+

(

−71

60
+

29

5u
+

11

15u2

)

√

1 − 4

u
θ(u− 4) (5.108)

gc(u) =
5

2
− 5

2

√

1 − 4

u
θ(u− 4) (5.109)

gd(u) = −2 +

(

2 +
2

u

)

√

1 − 4

u
θ(u− 4) (5.110)

ge(u) = −13

3
+

(

13

3
− 10

3u

)

√

1 − 4

u
θ(u− 4) (5.111)

gh(u) =
5

2
+

(

−5

2
− 1

u

)

√

1 − 4

u
θ(u− 4) (5.112)

gi(u) = −4

u

√

1 − 4

u
θ(u− 4) (5.113)

gl(u) = 1 −
√

1 − 4

u
θ(u− 4) (5.114)114



gm(u) = −2

3
+

(

2

3
− 2

3u

)

√

1 − 4

u
θ(u− 4) . (5.115)We now integrate the �ow equations from a UV s
ale Λ down to a generi
 IR s
ale k.We have s
hemati
ally that

fI,Λ(x) − fI, k(x) =
1

(4π)2

∫ Λ

k

dk′

k′
gI

( x

k′2

) (5.116)and after going to u variable we get
fI,Λ(x) − fI, k(x) =

1

(4π)2

∫ x/k2

x/Λ2

du

2u
gI (u) . (5.117)In fun
tions gI(u) we 
an isolate 
onstant part gI,0 in perturbative expansion in uaround u = 0, by the relation gI(u) = gI,0 + g̃I(u). The 
onstants gI,0 are equal to

ga,0 = 71
30
, gb,0 = 71

60
, gc,0 = 5

2
, gd,0 = −2, ge,0 = −13

3
, gh,0 = 5

2
, gl,0 = 1, gm,0 = −2

3
.(Only those nonvanishing were listed here). We isolate the logarithmi
 divergen
es in thefollowing s
hemati
 way

fI,Λ(x) − fI, k(x) =
1

(4π)2gI,0

(

log
Λ

k0

+ log
k0

k

)

+
1

(4π)2

∫ x/k2

x/Λ2

du

2u
g̃I (u) . (5.118)We 
an renormalize the theory, imposing the following UV boundary 
onditions for the�ow of formfa
tors:

fI,Λ(x) =
1

(4π)2gI,0 log
Λ

k0
+ cI , (5.119)where cI 's are possible �nite renormalizations. The general form of the g̃I (u) fun
tion isas follows:

g̃I (u) =

(

AI +
BI

u
+
CI
u2

)

√

1 − 4

u
θ(u− 4). (5.120)Therefore the integral ∫ x/k2

x/Λ2
du
u
g̃I (u) amounts to ∫ x/k2

4

(

AI

u
+ BI

u2 + CI

u3

)

√

1 − 4
u
du. This in-tegral solved equals to 115



2AI log





1 +
√

1 − 4
u

2



 +

(

−2AI +
BI

6
+
CI
60

)

√

1 − 4

u
+

+

(

−2BI

3
+
CI
30

)

√

1 − 4
u

u
− 2CI

5u2

√

1 − 4

u
+ AI log u

∣

∣

∣

∣

∣

∣

u=x/k2

. (5.121)It always happens, that the 
oe�
ient AI is the negative of gI,0. With this simpli�
ationin mind we have the following answer for the stru
ture fun
tions fI, k(x) at momentum s
ale
k:

fI, k(x) =
1

32π2









−2AI log





1 +
√

1 − 4k2

x

2



+

(

2AI −
BI

6
− CI

60

)

√

1 − 4k2

x

+

(

2BI

3
− CI

30

) k2
√

1 − 4k2

x

x
+

2CIk
4

5x2

√

1 − 4k2

x
(5.122)

−AI log

(

x

k2
0

)]

θ(x− 4k2) − AI log

(

k2

k2
0

)

θ(4k2 − x)

}

+ cI .The �nite renormalization 
onstants cI 
an be 
hosen to be equal pre
isely to− 1
32π2

(

2AI − BI

6
− CI

60

),hen
e we don't get any 
osmologi
al 
onstant. We skip here the expli
it form of the stru
-ture fun
tions for ea
h nine 
ases. They 
an be easily re
overed from the general expressionabove, after plugging 
orresponding values of 
oe�
ients AI , BI and CI for ea
h value ofthe index I.We are interested in the e�e
tive a
tion Γ = Γ|k=0. In general form the limits ofform-fa
tors in one-loop quantum e�e
tive a
tion (k → 0) are equal to
fI,0(x) = − Ai

32π2
log

(

x

k2
0

)

=
gI,0
32π2

log

(

x

k2
0

)

, (5.123)therefore the expli
it form of this a
tion is
Γ̄0

∣

∣

R2 =
1

32π2

∫

d4x
√
g

{

71

30
Rµν log

(−�

k2
0

)

Rµν +
71

60
R log

(−�

k2
0

)
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+
5

2
K4m4φ2 log

(−�

k2
0

)

φ2 − 2K2m4φ log

(−�

k2
0

)

φ (5.124)
−13

3
K2m2R log

(−�

k2
0

)

φ2 − 1

6
m2R +

1

2
m4 +

5

2
K4 (∇φ)2 log

(−�

k2
0

)

(∇φ)2

+K4m2φ2 log

(−�

k2
0

)

(∇φ)2 − 2

3
K2R log

(−�

k2
0

)

(∇φ)2 −K2m2 (∇φ)2

}

,where we have also added the nonlogarithmi
 
ontributions 
oming from 
onstant termsproportional to mass.We note that the 
oe�
ients in equation (5.70) are related to those in (5.124) in analgebrai
 way. Finally we give the short
uts assignments, whi
h 
ould give us the form ofthe quantum e�e
tive a
tion just from the form of trb4 with non-lo
al heat kernel for thisparti
ular 
hoi
e of the 
uto�. Therefore they are not universal. We saw that only gI,0terms 
ontribute to quantum e�e
tive a
tion. If knowing all of them, we don't have to doany integral over momentum. On the other hand the 
ontributions to gI,0 
ome entirelyfrom ξ-integrals a

ording to the following assignments:
∫ 1

0

dξ Q0 [hk (z + xξ(1 − ξ))] → 2 (5.125)
∫ 1

0

dξ Q1 [hk (z + xξ(1 − ξ))] → −1

3
(5.126)

∫ 1

0

dξ Q2 [hk (z + xξ(1 − ξ))] → 1

30
. (5.127)On the level of expressions with fun
tions f(x) the nonvanishing 
ontributions 
ome onlyfrom:

f(x) → 2 (5.128)
f(x)

x
→ −1

3
(5.129)

f(x)

x2
→ 1

30
(5.130)and this originates from the following assignments in terms of φ1,...,5 fun
tions:117



φ1 → 1

30
(5.131)

φ2 → − 1

90
(5.132)

φ3 → 0 (5.133)
φ4 → 1 (5.134)
φ5 → 1

6
. (5.135)If we have the expression for tr b4 with non-lo
al stru
ture fun
tions φi in monomials, theshortest way to get quantum e�e
tive a
tion is to use the above short
ut assignments.5.4 Flat spa
e limit and formfa
torsThe goal of this se
tion is to 
ompute one-loop 
orre
tions to three-point vertex fromquantum e�e
tive a
tion. In the last se
tion we 
omputed it to the se
ond order in operatorsof heat kernel and we arrived at a nonanalyti
 expression with low-energeti
 logarithms.We want to 
onsider the simplest vertex of intera
tion within our theory. This is a vertexwith one gravitons and two s
alar �eld. That's why we shall 
ompute the third variationalderivative with respe
t to mentioned �u
tuations. At the end we spe
ify �at gravitationalba
kground and vanishing ba
kground s
alar �eld. Su
h third variational derivative equalsto double derivative of the matter energy-momentum tensor over s
alar. We also prefer towrite the expression for the vertex in the momentum spa
e.The tree-level a
tion on the general spa
etime is:

S[φ, g] =

∫

ddx
√
g

[

1

2
gµν∂µφ∂νφ+ V (φ)

] (5.136)We 
al
ulate the energy momentum tensor by varying the a
tion with respe
t to the metri
and we �nd
δS[φ, g] =

∫

ddx
√
g

[

1

4
gαβ (∂φ)2 − 1

2
∂αφ∂βφ+

1

2
V (φ)gαβ

]

hαβ . (5.137)118



Hen
e the expression for the energy-momentum tensor is
T µν = gµν

[

1

2
(∂φ)2 + V (φ)

]

− ∂µφ∂νφ . (5.138)On �at Eu
lidean spa
e (φ = 0, gµν = δµν) and in momentum representation we have:
δ2T µνx
δφx1δφx2

∣

∣

∣

∣

φ=0, gµν=δµν

→ −pµ1pν2 − pν1p
µ
2 − δµν [−p1 · p2 − V ′′(φ)] . (5.139)In the above formula we used the following substitutions for the derivatives of delta fun
-tions in momentum spa
e. We assume that parti
les 1 and 3 are ingoing, while 2 is theonly one outgoing out of the 
onsidered vertex. For ingoing parti
les' momentum we take

∂x,αδx,x1 → ip1,α and ∂x,αδx,x3 → ip3,α and for outgoing ∂x,αδx,x2 → −ip2,α .Besides this in the lo
al part of the e�e
tive a
tion, we have the following three typesof operators
O0 =

∫

ddx
√
g φ2 (5.140)

O2 =

∫

ddx
√
g R φ2 (5.141)

O3 =

∫

ddx
√
g R gµν∂µφ∂νφ (5.142)and 
orresponding verti
es in momentum spa
e amount to

δ3O0,x

δφx1δφx2δgµν,x3

= δµν , (5.143)
δ3O2,x

δφx1δφx2δgµν,x3

→ 2
[

p2
3δ
µν − pµ3p

ν
3

]

and (5.144)
δ3O3,x

δφx1δφx2δgµν,x3

→ 2
[

p2
3δ
µν − pµ3p

ν
3

]

(p1 · p2) . (5.145)119



We used various kinemati
al relations between momenta (two ingoing ones and one foroutgoing graviton) to put the formulas in the above �nal forms.In our quantum e�e
tive a
tion, 
al
ulated using non-lo
al heat kernel te
hnique, weare interested in operators, whi
h give nonvanishing 
ontribution to the vertex of ourinterest. Su
h monomials must 
ontain pre
isely two powers of s
alar �elds (may be under
ovariant derivatives) and not more than two gravitational 
urvatures. We easily see, thatfrom (5.124), three operators satisfy this 
riterion. They are listed below.
Õ1 = −2

∫

d4x
√
gK2m4φ log

(−�

k2
0

)

φ (5.146)
Õ2 = −13

3

∫

d4x
√
gK2m2R log

(−�

k2
0

)

φ2 (5.147)
Õ3 = −2

3

∫

d4x
√
gK2R log

(−�

k2
0

)

(∇φ)2 (5.148)The 
omputation of 3-rd variational derivative for Õ1 gives as follows:
δ3Õ1,x

δφx1δφx2δgµν,x3

→ (−2)K2m4

[

δµν

2
log

(

p2
1p

2
2

k4
0

)

− pµ2p
ν
2

p2
1

− pµ1p
ν
1

p2
2

+
pµ3p

ν
2

2p2
1

− pµ3p
ν
1

2p2
2

+

+
pµ2p

ν
3

2p2
1

− pµ1p
ν
3

2p2
2

− δµν (p3 · p2)

2p2
1

+
δµν (p3 · p1)

2p2
2

]

. (5.149)We used the fa
t that
δ log

(−�

k2
0

)

=
δ�

�
=

1

�

(

−hµν∇µ∇ν − (∇µhµν)∇ν +
1

2
(∇αh)∇α

)

, (5.150)where the last two terms 
ome from the variation of the se
ond 
ovariant derivative a
tingon the s
alar. To other two verti
es (
oming from operators Õ2 and Õ3) part with thevariation of the logarithm doesn't 
ontribute, be
ause it is multiplied by s
alar 
urvature
R and so vanishes in �at spa
etime limit. We have respe
tively on �at spa
etime that

δ3Õ2,x

δφx1δφx2δgµν,x3

→ −26

3
K2m2δx,x1δx,x2 log

(−�

k2
0

)

(

−δµν∂2δx,x3 + ∂µ∂νδx,x3

)

and(5.151)120



δ3Õ3,x

δφx1δφx2δgµν,x3

→ −4

3
K2∂αδx,x1∂

αδx,x2 log

(−�

k2
0

)

(

−δµν∂2δx,x3 + ∂µ∂νδx,x3

) (5.152)We integrate by parts in the above two expressions to �ip the logarithm of box operatorto a
t only on δx,x3 (third parti
le). This is justi�ed by the 
onservation of momentum forthe vertex and we perturb around �at spa
etime, where ordinary momentum is 
onserved.Corresponding verti
es exhibit similar stru
ture to (5.144) and (5.145) multiplied by two
hara
teristi
 logarithms. Namely we �nd that
Õ2 → −26

3
K2m2

[

p2
3δ
µν − pµ3p

ν
3

]

log

(

p2
3

k2
0

) (5.153)
Õ3 → −4

3
K2
[

p2
3δ
µν − pµ3p

ν
3

]

(p1 · p2) log

(

p2
3

k2
0

)

. (5.154)There is also a lo
al nonlogarithmi
 term in the quantum e�e
tive a
tion− ∫ d4x
√
gK2m2 (∇φ)2,whi
h is of our interest. Corresponding to it vertex has the following stru
ture:

−K2m2
[

δµν(p1 · p2) − 2p
(µ
1 p

ν)
2

]

= −K2m2

[

−2P µP ν +m2δµν − 1

2

(

q2δµν − qµqν
)

](5.155)Summing all these 
ontributions we 
an write the form of three-point vertex 
omingfrom our form of quantum nonlo
al e�e
tive a
tion to one loop.
Γ(2,1)
p1,p2,p3[0, δ]

µν = − K2

32π2

{

δµνm4

[

1 + 4 log

(

m

k0

)]

− 6m2P µP ν

+
[

q2δµν − qµqν
]

(

−3

2
m2 +

(

10m2 − 2

3
q2

)

log

(

q2

k2
0

)}

, (5.156)where we de�ned a momentum transfer fourve
tor q = p3 = p2 − p1 and a 
hara
teristi
momentum of the pro
ess P = 1
2
(p1 + p2). Moreover we used on-shell 
onditions for s
alarlines.The most general form of the three-point vertex with two s
alars and one graviton ison the �at spa
etime tightly 
onstrained by Poin
arè symmetry. Additional requirement121



is put by the transversality of the vertex fun
tion, when one 
ontra
ts with one index onthe graviton �eld. This leads to the expression
Γ(2,1)
p1,p2,p3

[0, δ]µν = − K2

32π2

{

2P µP νF1(q
2) +

[

q2δµν − qµqν
]

F2(q
2)
}

, (5.157)where the formfa
tors F1(q
2) and F2(q

2) appeared as fun
tions of only invariant quantity
q2. Now 
omparing above formula with (5.156) we get the expli
it form of the gravitationalform-fa
tors F1(q

2) and F2(q
2):

F1(q
2) = −3m2 (5.158)

F2(q
2) = −3

2
m2 +

(

10m2 − 2

3
q2

)

log

(

q2

m2

) (5.159)We also set the referen
e s
ale equal to the mass of the s
alar k0 = m and negle
t the
onstant term proportional to δµν .It is ne
essary to 
ontinue the same 
omputation, but for the third order in gener-alised heat kernel 
urvatures. The reason for this is that the simplest vertex in intera
tingtheory must 
ontain three lines and hen
e it 
orresponds to the third variational deriva-tive. When we set the ba
kground �elds to vanishing values, the 
ontribution from thethird order doesn't vanish. Only for the order of derivatives higher than three, we havebasi
ally no 
ontribution to three-point vertex. Additionally the mass parameter of thes
alar parti
le must be treated exa
tly to all orders. However it seems, that the se
ondorder 
omputation is not enough to 
apture the full result and this is only a part of the�nal result. Here for 
ompleteness we show the results for form-fa
tors 
omputed by othermethods in perturbative e�e
tive �eld theory of gravity.
F1(q

2) = 1 +
K2

32π2
q2

(

−3

4
log(−q2) +

1

16

π2m
√

−q2

) (5.160)
F2(q

2) =
K2

32π2
m2

(

−4

3
log(−q2) +

7

8

π2m
√

−q2

) (5.161)122



This was the result of one-loop 
omputation 
arried out using Feynman diagram te
hniqueand �rst reported in [95℄.
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Part III
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Chapter 6
Con
lusions and summary

In this thesis we tou
hed on many issues. These topi
s may seem to be unrelated, how-ever the 
ommon point is their relation to Quantum Gravity and Renormalization Groupmethods. Despite the fa
t, that Quantum Gravity is very vast �eld of resear
h, we tried to
on
entrate on this approa
h to it, whi
h uses RG methods. We also attempted to showthis parti
ular approa
h as seen from di�erent perspe
tives. This is the reason, why westudied holography, 
lassi
alization and e�e
tive �eld theory of gravitational intera
tions.This opens up the possibility that these powerful ma
hineries 
ould be brought to bearon the issue of asymptoti
 safety. Here we want to summarise, what was obtained in thisresear
h program and des
ribed in this thesis.In the �rst part we 
on
entrated on relations between holographi
 and exa
t fun
tionalRG �ows. By 
onsidering simple Randall-Sundrum setup, with AdS5 spa
etime in the bulk,we were able to �nd agreement between two �ows. The 
ommon similarities of the �owswere noti
ed for matter as well as for gravitational 
ouplings. We found, that the bestagreement was at high energy in 4 dimensions, where holographi
 AdS spa
etime 
orre-sponded to our theory under RG �ow in the vi
inity of the nontrivial �xed point. Howeverto a

ount for threshold phenomena in the infrared limit, we had to modify holographi
�ow by introdu
ing some sour
es. Then we went on 
onstru
ting a 5-dimensional holo-graphi
 model, whi
h must be understood as a geometrization of the 4-dimensional RG127



�ow in the theory living on a brane. We a
hieved this by adding minimally 
oupled s
alar�eld to Einstein-Hilbert gravitation in the holographi
 bulk and solving resulting systemof 
lassi
al 
oupled equation of motion. We found impli
itly s
alar pro�le for every RG�ow of gravitational 
oupling and for parti
ular interpolating RG �ow expli
itly. Due tothe nature of running of 4-dimensional Plan
k mass, we had to 
hoose a s
alar �eld withnegative kineti
 term in 5d a
tion. In this way we dis
over a fully-�edged 5-dimensionaldes
ription of the physi
s des
ribed in di�erent language by 4d theory, where also gravi-tation was present and dynami
al. This was the novelty of this work. In a sense we usedholography in a very similar way like it is done for matter 
ouplings in the framework ofAdS/CFT 
orresponden
e. Next using ideas from this 
onje
ture we were able to derivesome interesting fa
ts about gravitational RG �ows and asymptoti
 safety in the ultravioletlimit.We devoted the fourth 
hapter for studying the phenomenon of 
lassi
alization. Ourtarget model was a nonlinear sigma model, whi
h shares a lot of 
ommon features with4-dimensional gravity, but at the same time is mu
h simpler. We studied maximally sym-metri
 target spa
es with positive and negative 
urvatures. The results for 
lassi
alizationdepended strongly on the sign of the 
urvature and also on the number of derivativespresent in the a
tion. For 2-derivatives (only nonlinear kineti
 term) and model on asphere, we presented eviden
es in favour of weak 
lassi
alization. Our analysis of model ona hyperboloid was in
on
lusive. In the 
ase of four derivatives, we noti
ed the o

urren
eof strong (standard) 
lassi
alization in similarity with model of single Goldstone bosons.At the end we motivated the 
onje
ture that weak 
lassi
alization is related to asymptoti
safety, be
ause both have quantum origin.In the last main 
hapter the issue of low-energeti
 quantum gravitational theory wasdis
ussed. We re
alled the signi�
an
e and origin of the lo
al and non-lo
al terms presentin the quantum e�e
tive a
tion. We 
on
entrated on the latter, be
ause they are univer-sal genuine predi
tion at low energy. We obtained the �rst few terms in an expansion inpowers of 
urvature of the quantum e�e
tive a
tion for the system of minimally gravita-tionally 
oupled s
alar �eld in four spa
etime dimension using a novel method. Namely128



we integrated the �ow of the e�e
tive average a
tion over RG traje
tory from UV down toIR. Hen
e we derived the equations for non-lo
al formfa
tors in quantum e�e
tive a
tion.The last step 
onsisted of taking the �at spa
etime limit in obtained 
ovariant quantuma
tion and deriving the form of the simplest vertex with the in
lusion of one-loop quantum
orre
tions. In this way we got �at spa
etime formfa
tors of the gravitational intera
tionswith s
alars and were able to 
ompare them with perturbative 
omputation, whi
h usedFeynman diagrams te
hniques.
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