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Chapter 1

Introduction

The problems of quantum gravity have been in the core of research in theoretical high
energy physics for last 50 years. During the course of time various approaches and meth-
ods were developed. These developments resulted in increase of understanding, not only
problems in quantum gravity, but also in gauge theory and quantum field theory in gen-
eral. Despite any direct experimental proof of quantum gravity prediction, research in
this field have been intense and focused mainly on theoretical aspects. One of the earli-
est noticed problem of quantum gravity was the observation that in a simplest version it
is a nonrenormalizable theory (due to the dimensionful coupling constant). Namely not
all divergences in Einstein-Hilbert gravitation quantized perturbatively and covariantly
around flat Minkowski spacetime can be absorbed in the redefinion of couplings present
in the action. Therefore quantum gravity needs nontrivial UV completion. To find a
self-consistent UV-complete theory of quantum gravity is a very difficult task. This is
the reason, why in the meantime many simplified toy-models have been analyzed, which
supposed to capture some of the important features of quantized gravity. However per-
turbative problems of quantum gravity in deep UV didn’t pose an obstacle in analysis
and application of low-energetic version of the theory. At low energy (much lower than
the Planck scale) a marriage of quantum mechanics and general relativity was successful,

especially if understood in terms of effective field theory of gravitational interactions.
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In analysis of the UV behaviour of quantum gravity, one of the most useful tool re-
vealed to be Renormalization Group methods. Understanding that couplings in quantum
field theory exhibit dependence on the momentum scale of the process was one of the
major achievements in field theory. Generically in any quantum field theory which is not
conformal, coupling parameters are not constants and are running functions of energies.
The same concerns quantum gravity, where the running of gravitational couplings was not
commonly established even till recently. When speaking about RG flows we can distin-
guish various types, differing slightly in the underlying physical ideas. The simplest RG
flow is given by perturbative analysis around gaussian fixed point, where the values of the
couplings vanish. This is given by Callan-Symanzik flow in standard perturbative QFT.
Another type of the RG flow we obtain by analyzing change of the average effective action
with RG scale. This last effective action interpolates between bare action in UV and quan-
tum effective action in IR. In this approach, which was termed “functional” or “exact” RG,
we don’t rely on perturbativity of coupling parameters. Therefore one of the advantages
is that we can describe RG running of couplings around nontrivial FP of RG. This brings
the connection with conformal field theories, which describe physics at FP. Brand new
type of RG flow derives from holography. Although it is motivated by famous AdS/CFT
correspondence, the application of holographic ideas go far beyond the original domain. It
is remarkable that d + 1-dimensional holographic spacetime can possess a knowledge about
RG running of couplings in d-dimensional field theory living on boundary or a brane. On
the other hand this bulk spacetime can be understood as a geometrization of RG flow. All
these three types of RG flows are closely related. The evidence come from nongravitational
quantum field theories as well as from field theories with dynamical gravitation.

There are basically two main ways, how the theory of quantum gravitational pertur-
bations around flat spacetime can be completed in UV. First is that the problems of
perturbatively nonrenormalizable quantum field theories are solved by inclusion of new
heavy degrees of freedom. These new quanta do not appear in low-energetic spectrum
and only high energetic perturbations can excite them. Moreover their interactions (with

known degrees of freedom and between themselves) are tightly constrained. In the result
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the theory enjoys new dynamics at high energy, which solves the renormalizability and
unitarity issues. The best studied example of such version of UV completion is given by
W bosons model for 4-fermion interactions and for quantum gravity by string theory. In
the latter example to the low energy spectrum of quantum gravity with massless graviton,
is added whole infinite tower of heavy higher spin fields. The other possibility opens up
when in the UV theory flows to a nontrivial FP of RG. If additionally the critical surface,
on which this FP exists, is finite dimensional, then the theory doesn’t lose its predictive
power. In this case we have the notion of nonperturbative renormalizability. If the pa-
rameters of the theory are chosen in such a way, that effective action lies on an RG safe
trajectory, then during the RG evolution, the theory and quantum divergences are under
control. There is a strong hope, that such asymptotically safe in UV theory, can heal itself
from the perturbative problems present at low energy. A third hypothetical option for UV
completion is one of the non-Wilsonian type. Some special theories may avoid perturbative
problems of quantized versions by invoking production of special classical configurations
at high energy. This is the most recent proposal and it was dubbed as classicalization. It
was conjectured that Einstein gravity is self-complete and in this way classicalization is
implemented there via production of black holes at trans-Planckian energy. It might be
true, that there is some relation between all these three mechanisms of UV completion.
Independently of the UV completion, quantum gravity gives some unambiguous pre-
dictions at low energy. To some extent it is a unique, universal and predictive theory of
massless quanta of gravitational interactions. This is the best understood in the frame-
work of effective field theories. The low energetic action contains only terms with the
smallest number of derivatives, so only the simplest Einstein-Hilbert Lagrangian is used.
In this effective theory there exist observables, which do not depend on the particular
way of UV completion. Although their experimental confirmation is still very far, they
are genuine predictions of quantum gravity. There are different ways, by which, one can
obtain quantum effective action in infrared limit. However it is without any doubt that
low-energetic predictions of quantum gravity are calculable and solid, regardless of any

complicated dynamics which saves the theory in UV.



The plan for this thesis is as follows. In the first part we discuss the relation between two
different RG flows: functional and holographic one. The bigger emphasis is put on the novel
holographic RG flow and we devote full third chapter for studying holographic RG flow
geometries. We are not only interested in flows for gravitational couplings, we also consider
standard RG flows from field theories with matter. The second part of this work is divided
into two chapters. In the fourth chapter we study classicalization for nonlinear sigma model
understood as a toy example before attacking more difficult problems of full quantum
gravity. We also point there possible relations between classicalization and asymptotic
safety as between two similar in some conditions mechanisms for UV completion. In
the fifth chapter we consider universal 1-loop effective action in system of gravitating
scalar field. We use new methods to derive its IR limit and we compute few low-energetic
observables in such effective field theory of gravitational interactions. Finally in the sixth
chapter we shortly collect main obtained results and conclude. The material presented in
this work is partially based on two scientific articles [A2] and [63], I published during my
PhD studies.
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Part 1

Holographic vs. Exact RG Flows
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Chapter 2

Planck mass and Higgs VEV in
Holographic vs. Exact 4D RG

2.1 Motivation

In this chapter we describe in details the computation of the scale-dependence of the
Planck mass and of the vacuum expectation value of the Higgs field using two very different
renormalization group methods: a “holographic” procedure based on Einstein’s equations
in five dimensions with matter confined to a 3-brane, and a “functional” procedure in four
dimensions based on a Wilsonian momentum cutoff. Both calculations lead to very similar
results, suggesting that the coupled theory approaches a non-trivial fixed point in the

ultraviolet.

One of the most remarkable recent developments in quantum field theory is the real-
ization that the coupling of a theory to gravity in d 4+ 1 dimensions can yield information
about the renormalization group (RG) running of couplings in that particular theory in d
dimensions. This idea is contained in the famous construction by Randall and Sundrum [IJ,
and has been sharpened in a number of subsequent publications [3], 4, B, |6, [, 8]. While the
notion of “holography” has come to have a rather specific meaning closely related to Quan-

tum Gravitation and the famous AdS/CFT correspondence [, [[0], here we will generically
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call “holographic RG” the flow of couplings of a d-dimensional theory, which is obtained
by viewing it as living on a (d — 1)-brane coupled to gravity in (d + 1) dimensions, and
identifying the transverse coordinate with the RG scale.

In a different vein, there have been various significant developments in the use of “func-
tional RG equations”, i.e. equations which describe in a single stroke the running of in-
finitely many couplings [IT, [[2]. This method has proved particularly helpful in the study
of perturbatively nonrenormalizable theories with the aim of establishing (or refuting) the
existence of non-trivial UV fixed points (FPs) of Renormalization Group, that could be
used for a fundamental (and not depending on perturbative scheme) definition of the the-
ory [I3], a property that has become known as “asymptotic safety” (AS) [I4]. Successful
attempts to “renormalize the nonrenormalizable” quantum field theories have been first
reported in [I5], with subsequent works using the functional RG largely focusing on grav-
ity [T6l, 7, 8] and more recently also on electroweak physics [T9, 20, 21]; see [22] for an
overview. It must be added here, that theory of strong interactions - QCD is asymptoti-
cally safe, because asymptotic freedom is a special case of AS with vanishing FP values of
the couplings. Functional RG methods have been successfully applied also to this theory
in the infrared limit giving one of its nonperturbative description [24]. It still remains a
challenge to solve functional RG flows equations exactly as this is equivalent to solving
the full interacting quantum theory. But a particular strength of the exact RG is its flexi-
bility allowing for a variety of systematic approximations and truncations adapted to the
problem at hand, which has led to new insights [23].

To the extent that holographic and functional RG are equivalent descriptions of the
same physics, they must be related in some way. There has been some work in this direction
[25, 26, 27, but clearly much remains to be done. In this chapter, instead of exploring this
relation from first principles, we evaluate similarities and differences of the two methods
for a sample theory, which still incorporates some basic features of Nature and has some
phenomenological significance in particle physics. The toy model to be considered is a
SO(N) non-linear sigma model coupled to gravity with an Euclidean action of the form

S = Sy + Sm, where the gravitational action is in the form of Einstein-Hilbert:
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Sy = m%/d4x\/§R (2.1)
with m% = 1/(167G) and S,, is the matter action minimally coupled to gravitational
background. The matter action, for the SO(N) non-linear sigma model can be obtained

by a limiting procedure from the corresponding linear theory, which contains a multiplet

of N real scalars ¢* with an action

N
S = / d'z /g (% S 99,00, + v<p2>) , (2.2)
a=1

where the square of the radius equals p? = Zivzl ¢*¢”, and the potential is in the form of
Higgs potential V = \(p? — v?)? with v? = (p?). The action (22Z)) represents Higgs model
in linear representation, which is invariant under global special orthogonal transformations
from SO(N) group. In a phase with spontaneous symmetry breaking, we have v? > 0.
Without loss of generality we can assume that the background field is ¢¢ = 0 for a =
1...N —1and ¢" = v. (Therefore we choose Higgs vev pointing exactly in the last N-th
direction in the field space and with such pattern the model possesses only SO(N — 1)
as the remaining symmetry group.) Then the N — 1 fields ¢® are the Goldstone bosons,
while the radial mode 6p = ¢" — v corresponds to the physical Higgs field. The square
of the mass of the radial mode is given by m? = 8\v?, whereas N — 1 Goldstone modes
remain massless. Note that the potential is always zero at the minimum; here we will not
discuss the running of the cosmological constant. The non-linear sigma model is achieved
in the limit A — oo with v kept constant. Then the potential becomes a constraint for p:
p? = v?, which can be solved to eliminate one scalar field and describe the theory in terms
of the remaining dynamical N — 1 fields ¢ transforming non-linearly under SO(N) - the
coordinates on the sphere SV~1. (In particular there exist coordinate choices for which
one can identify ¢* = ¢*.) In this limit physical Higgs field becomes infinitely heavy, so
decouples from the system of interacting Goldstone bosons and the theory is perturbatively
non-unitary. Later we will see, how this can be healed. In an arbitrary coordinate system,

the action becomes
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1
S = §v2 / d*z /9 9" 0,0° 00  hap () | (2.3)

where h,3 denotes the general, positive definite metric on the target space of nonlinear
sigma model. Our toy model contains two dimensionful couplings m? and v?, which we
identify with the square of the Planck mass and of the Higgs VEV. They appear in a very
similar manner as prefactors of the respective terms in the Lagrangian. From here on we

will consider their inverses as the couplings in our model.

There are two main motivations for choosing this model as opposed to gravitation
coupled to linearly transforming scalars. Firstly, in the absence of gravity and in four
dimensions, the linear scalar theory displays a unique Gaussian FP, and it is perturbatively
renormalizable and trivial. On the other hand the non-linear model has a coupling constant
with inverse mass dimension and is power-counting nonrenormalizable, similar to gravity
itself. It also suffers from violation of unitarity at high energy. Recent studies showed
that it displays an UV FP [19, 28], with, incidentally, identical critical exponents as found
within pure Einstein gravity [I7]. It has therefore been suggested that, quite independently
of gravity, a strongly interacting Goldstone boson sector may exist, able to overcome its

perturbative issues in a dynamical way |19, 20) 2T].

Secondly, given the existing evidences for asymptotic safety of the non-linear scalar
theory and gravity separately, one may expect to find a non-trivially interacting FP also
for the coupled theory. This would provide an alternative to the scenario discussed in
[29, B0|, where a “Gaussian matter FP” was found, with asymptotically free scalar matter
but non-trivial gravitational couplings. This scenario has been used to put new bounds
on the mass of the Higgs particle [31], which agree remarkably well with the experimental
measurements of recently discovered particle. Although now collected evidences show
undeniably the existence of Higgs particle in the Standard Model, still usage of the non-
linear theory may be considered for explanation, how in a gauge-invariant way the masses

are provided for the W and Z bosons. We can also treat it as a simple toy model.
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2.2 Holographic RG in pure AdS

In this section we evaluate the running of the two dimensionful couplings m?% and v? of
the four-dimensional toy model using a holographic technique. Following [I], we consider
a 5-dimensional spacetime with coordinates y™ = (z#,t), p = 1,2,3,4 and metric G,,.
Set of coordinates x* will describe 4-dimensional leaves with usual Minkowskian metric’s
signature (+ — ——), while the ¢ coordinate is a transverse direction to this foliation. The

gravitational part of the action is

Syray = / &y v/ ~G(2M?R - A) , (2.4)

where M is the 5-dimensional Planck mass and A < 0 is the bulk cosmological constant.
These parameters of the 5-dimensional theory are not dynamical and they do not undergo

RG evolution. We make a particular ansatz for the metric of the form

ds® = e g, (v)dz"dz” + r2dt* . (2.5)

Using the 5-dimensional Einstein equations we get the AdS solution with g,, = 7,,, where

we have identified the arbitrary length scale r. with the AdS radius /24M?3/|A|. We can

make the coordinate transformation ¢t = —log (z/7..), which brings the metric to the form
) T2 2
ds® = Z—;(nu,,dx“dx” +dz*) . (2.6)

This is the AdS metric in the so called Poincaré patch, as mostly used in cosmology. From
its form we easily read out information about conformal structure of the AdS spacetime.
We note that the hypersurface z = 0 corresponds to a conformal boundary at ¢ = oo.
In the holographic interpretation of the 5-dimensional metric such as the RS model, the
5-th dimension is identified with the (logarithm of the) RG scale k [25] of the quantum
4-dimensional theory living on a 3-brane. Following [6, B, B3|, we make the identification
z = 1/k, which implies t = log(kr.), independently of the number of dimension of AdS

spacetime. This provides a precise mapping between 5d calculations and 4d interpretations
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in terms of RG flow. We choose the origin of ¢ coordinate to correspond to the electroweak
scale kg = vy = 246GeV, which implies r. = 1/vg for the AdS radius. It is convenient, for
future purposes, to introduce also dimensionful radial coordinate r = r.t.

To read off the (-functions of matter couplings we imagine putting a test brane at a
given value of . As noticed in [4], the use of a brane provides information on the quantum
behaviour of the matter couplings themselves, as well as on gravity coupled to matter.
Dimensionless couplings in general run logarithmically. All masses in the 4-dimensional

matter theory are proportional to v, whose running is governed by the formula

v(t) =vge' . (2.7)

In other words the scale-dependence is given by the exponential warping factor e’, which
was present in the AdS metric (ZZH). This result is completely general: any mass parameter
on the 3-brane, in the fundamental higher-dimensional theory will correspond to a RG
rescaled mass according to the formula above, when measured with the metric g, [2.
This is the metric that appears in the effective Einstein action. All operators on the
boundary get rescaled according to their four-dimensional energy dimensions. Note that,
there is a freedom in choosing normalization of . The choice, we made in (Z3) for the
AdS metric, is such that all dimensionful couplings (except gravitational ones) scale like at
FP of RG. This choice doesn’t depend on the dimension of spacetime. In this way we set
the normalization of distances in transverse direction to the brane. The AdS solution thus
corresponds to linear running of v with RG momentum scale k, which is a manifestation
of the quadratic divergences in the running (mass)? in the underlying field theory.

Next we can obtain holographic RG running of the gravitational coupling constant
mp. To do this we consider small metric perturbations g,, = 7., + B,W on the 3-brane
and couple them to energy-momentum tensor of the matter living there. These are the
massless gravitational fluctuations about our classical AdS solution and they will provide
the gravitational fields for our effective theory. They are the zero-modes of our classical

solution, and take the form
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ds* = €* (u + hyy) datde” + r2dt* . (2.8)

The four-dimensional effective theory now follows by inserting the ansatz (Z3) in the action

([Z4) and we find that the action for the metric g, (z) is equal to

Sgray = 2M? 1, /t dt' e /d4x\/—_gR ) (2.9)
Here the warping factor enters in the form as it is originally in the metric ansatz (1),
regardless of the dimensionality of the effective gravitational coupling constant. We denote
by R curvature scalar of the metric G in contrast to the five-dimensional Ricci scalar,
R, made out of metric GG,,,. The relation connecting the 4-dimensional Planck mass mp
and the 5-dimensional parameter M is obtained by performing in (229) the integral over

t" explicitly and then comparing with the effective 4-dimensional action in the form (EII).

This leads to

3
M?r,

[ —1] , (2.10)

independent of the lower end of integration in (2Z9).

The requirement that m%(t) be positive for all ¢ implies m%(0) > M?3r./2. Equation
(ZT0) contains the unobservable five-dimensional Planck mass. We can rewrite it in terms
of four-dimensional measurable quantities as follows. We assume that the Planck mass at
the TeV scale is not so different from the measured value at macroscopic scales (deep IR
limit) mp(0) =~ mp(—o00). Then, knowing the empirical values of vy and mp(0) we have
tp = t(k =mp(0)) = 38. Furthermore we define the coefficient cp = <mP(tP)>2 — 1, which

mp(0)

measures the relative change of the effective Planck mass between the TeV and (the initial)

Planck scale mp(0). We expect the value of cp to be of order one. Since M3r, > 0 we
must have cp > 0. We note, that since the AdS curvature v? is much smaller than the
five-dimensional Planck scale M?, it is justified to treat the five-dimensional gravitational
field classically. From the definition of c¢p and the assumption that mp(0) > vy we get the

relation M3 7. = 2 cp v} with the help of which we can rewrite formula ([I0) as
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mp(t) = mp(0) + cpuvg [ — 1] | (2.11)

where we have replaced the 5-dimensional parameters M and r. by the Higgs VEV v and
the parameter cp.

We observe that equation (27) describes a mass that scales with the cutoff exactly as
dictated by dimensional analysis m ~ k. Therefore, when the mass is measured in units
of the cutoff k, it is constant. If we regard this mass as the (inverse) coupling constant of
the non-linear sigma model ([3)), we are at a FP. Likewise, when ¢ — oo, also the Planck
mass scales asymptotically in the same way, so if we regard it as the (inverse) gravitational
coupling, (ZZTT]) describes an RG trajectory where gravity (coupled to matter) approaches
a non-trivial FP. Interestingly, in this limit the decoupling of gravity G — 0 can be viewed
as a consequence of a non-trivial FP. It is worthy to emphasize that only in four spacetime
dimension equation for RG running of a power of the effective Planck scale ([ZI1]) describes
in the UV limit FP for this dimensionful coupling. In complete generality in equation (2I0)
we have always e?' factor appearing from our AdS metric ansatz, however the power of the
effective Planck mass on the left hand side of this equation is given by d — 2, where d is the
dimensionality of the brane. In higher dimensions the action for gravitation contains higher
powers of the Planck mass in contrast to the second power of cutoff momenta originated
from the warping factor, so in such circumstances holographic method doesn’t confirm the
existence of nontrivial FP of RG for dimensionful gravitational constant. This finishes the
discussion of RG running of dimensionful couplings (of matter and gravitational character)

from the holographic perspective in pure AdS spacetime.

2.3 Functional RG

In this section we evaluate the scale-dependence of m? and v? directly in the four-
dimensional theory. To do this we will use techniques of functional (also known as exact)

Renormalization Group. Our starting point is the “average effective action” I'y, a coarse-
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grained version of the effective action, which interpolates between some microscopic action
at k = ko and the full quantum effective action at £ = 0. The RG momentum scale k
is introduced at the level of the functional path integral by adding suitable momentum-
dependent kernels Rjy(q*) to the inverse propagators of all propagating fields, which for
bosonic fields take the standard ¢® form at high energy. These kernels must decrease
monotonically with &%, tend to 0 for £%/¢*> — 0 (in order to leave the propagation of large
momentum modes intact), and tend to k% for ¢*/k* — 0 (in order to suppress the low
momentum modes). The change of I'y, with logarithmic RG “time” t = log(k/k¢) is given

by a functional differential equation [12]

1 —1
Oy = 5STr (P,@ + Rk> O, Ry . (2.12)

Here, F,(f) denotes the matrix of second functional derivatives with respect to all propagat-
ing fields, and the supertrace stands for a sum over all modes including a minus sign for
fields of fermionic type. The RG flow [ZI2) is an exact functional identity, which derives
from the path-integral representation of the theory in the vicinity of a gaussian fixed point.
The flow reduces to the Callan-Symanzik equation in the special limit where Ry becomes
a simple mass term k2, and is related to the Wilson-Polchinski RG [IT] by a Legendre
transform. Most importantly, the functional flow is finite and well-defined for all fields
including the UV and IR ends of integration, which makes it a useful tool for our purposes.
The requirements of diffeomorphism or gauge invariance of the average effective action are
implemented with the help of the background field technique [34]. For optimized choices of
the momentum cutoff all the operator traces can be performed analytically [35], also using
the heat kernel methods.

We want to calculate the RG flow of I';, for the system described by the classical action,
whose two pieces were given in ([ZIl) and [23). This type of calculation for pure gravity
was first described in [36, B7, 7] and in [T9] for the non-linear sigma model. Here we
apply the same technique to the coupled system starting with I'y = S, + S, + Sgr + Sgn,

where it is understood that the couplings in the RHS are replaced by running couplings
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(k-dependent), evolving under the RG flow ([ZIZ). Since the classical action is invariant
under diffeomorphisms, we have introduced a gauge-fixing term Sy¢ and a ghost term S,
in addition to the gravitational action () (for vanishing cosmological constant) and the
matter action (Z2). Using the split of the metric and the scalar fields into background
fields ¢,., ¢* and quantum fields h,,, n®, the gauge fixing term reads

2
mp

Sor =5, /d4$ VIXu9" Xo (2.13)

with x, = V”h,, + %Vuh. The trace of the metric perturbations computed using back-
ground value of metric g"”h,, we denoted by h. The corresponding Faddeev-Popov ghost

action 1is

Sgn = /d4x \/EC_'“(—V2(5Z - R)C, . (2.14)
Below we work in Feynman gauge (a = 1) for simplicity, but this is not essential. In order
to find terms in (ZI2) we have to invert the matrix (F,(f) + Ry) in field space. For the
Einstein-Hilbert action we can follow the procedure of [38], Section IV B. Expanding the

matter action up to quadratic order in the fluctuation fields 0¢* = n® and h,,,, the second

)

variation S,(qf) reads

% / d'z/g {v Gh? —~ %h“”h,“,) + 2V h + 69 (V2% 4 2V'6% 4 4V"¢%¢") 5¢b]
(2.15)
Separating the radial mode p from the Goldstone modes, and splitting the graviton
field into traceless, transverse part and other fields £ and o as h,, = hgf +V,.5 +V.E, +
V,.V,o— igu,,V% + ig,wh, where V“hEZ,T = 0, V¥, = 0, the expansion of the average

effective action I'y, to quadratic order in the fluctuations becomes

1 1 2 1% . 1 Vo -
Pilauaa = 5 /d‘*az\@bm%hﬂw <—V2 + 3R - m—%) hiw +mpé (—v2 + R - m—%) ¢

1
+gm§3& (—v2 — %) o — ém?gh (—V2 — %) h+6p (=V? +2V' +40*V") 6p
P
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+2V'0 hép + 5o (—V2 + 2V’) 5goa] + Sghlquad s (2.16)

where we have defined hatted variables by field redefinitions according to the formulas
éu =/-V2 8¢, 6=V /-V2— Lo. We observe that the radial mode 6p = p—wv
mixes with the trace h, whereas the Goldstone bosons do not. However, it is easy to see
that this mixing is absent once the background scalar is at the minimum of its potential.
Then (ZI6) is already diagonal in field space and the inversion of the matrix (I' ,({32) + Ry)
becomes straightforward. Defining the graviton “anomalous dimension” n = d;m% /m%, the

flow equation (212 reads

Oy = =Tro——r 4 —qy A -k oy 2 R
(A 5 I'(2) P, + %R 5 ') P+ iR + 5 (o) P,
1 ” @Rk -+ ’T]Rk atRk ’ @Rk
+§Tr(0) P, — Trp) P, — iR - Tl"(0) P, — %R
N - 1 atRk 1 atRk
T — _ 2.17
2 0T T ORI (2.17)

where P, = —V? + Rp(—V?). For a definition of the remaining (primed and unprimed)
traces over the various tensor, vector and scalar modes, we refer to [38]. The first six terms
originate from the gravitational sector and the ghosts while the last two terms come from
the Goldstone bosons and the radial mode, respectively.

We make an ansatz for I'y of the form S, + Sy, + S5 + Sgn, where Gy, A\p and vy
are k-dependent coupling constants in our model. The (-functions for the couplings are
obtained from (I7) by projection onto the truncation ansatz for the action as given in
['y. To that end we polynomially expand the functional flow on both sides about R = 0

and p? = 0%

The flow for the inverse gravitational coupling m%, the quartic coupling
A, and for the vacuum expectation value v? are then given by %(@Fk), %(%)2@1} and
—d%z(?tfk/@)\) at R = 0 and p? = v?, respectively. For completeness we have listed
here also the RG flow for coupling A, although it doesn’t appear in the final formulation

of nonlinear sigma model. In the following we will neglect the terms linear in 7 on the

RHS of [ZID). Moreover we work on one-loop level (if we were to refer to perturbative
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computations in QFT), therefore as a first approximation we forget about the effects driven
by the graviton anomalous dimension. Using the heat kernel expansion together with an
optimized cutoff function [35] Ry(z) = (k* — 2)0(k? — 2) with Heaviside 6 step function,
the g-function for A reads

2

272

9 - 5+ 6m?+3mt
— |+ G\ — ,
(1+m2)3 (1+m2)2

where we have introduced the square of the Higgs mass in units of the RG scale, m? =

D\ (N 1+ (2.18)

8A\v?/k? and G = G k2. The terms proportional to A2 contains the contributions of the
N — 1 Goldstone modes and the Higgs field. Notice the threshold behaviour of the Higgs
contribution at the Higgs mass m? ~ k2. The last term is the leading gravitational correc-
tion. The S-function of v? is

@02:————<N¥—1+ (2.19)

)

(1+m2)2)
It receives contributions from the Higgs and the Goldstone bosons, but, remarkably, not
from the fluctuations of the metric field. Now we take the non-linear limit A — oo (or
m? — oo) with v? held constant. In this limit (ZI8) becomes useless, the Higgs field
becomes infinitely massive and the radial mode contribution to (ZIJ) drops out. The

Goldstone bosons remain fully dynamical, in fact their action is completely unaffected by

the limit. We end up with

N -1
2 = Byk*; By = —— 2.2
v k™ ; H 16722 (2.20)
N.— N
atm% = Bpk2 i BP == W, (221)

where we have just defined the critical number of fields in SO(N) model equal to N. =
109/4. The dependence of the result on the number of Goldstone modes is simple to
understand. In (220), only the Goldstone modes contribute to the running of the VEV. In

the running for effective 4-dimensional Planck mass (equation (2221])), the contribution from
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the Goldstone modes compete with this originating from the graviton self-interaction. For
N < N, the gravitons keep the lead and the combined effect is to increase mp (Bp > 0)
with increasing RG time ¢. In the opposite regime the Goldstone modes take over and
change the sign of the coefficient Bp. More generally, matter field can contribute to (2221])
with either sign and hence the global sign of RG running will depend on the number of
scalars, spinor, or vector fields coupled to gravity [29]. This pattern is similar to scale-
dependence of strong coupling in QCD (where we have asymptotic freedom for sufficiently
small number of fermions) and its dependence on the number of fermionic quark species.
We will later come back to the issue of results’ dependence on the number of fields V.
For a better understanding of the system of our nonlinear sigma model coupled to
Einstein-Hilbert gravitation it is convenient to use the inverses G = 1/(16mm%), f? = 1/v?,
and to introduce dimensionless couplings 02 = v2/k?, 2 = f2k2, m% = m%/k%, G = G k.
This is because the perturbative analysis of the sigma model and gravitational theory is

an expansion in the couplings fz and G, respectively. Their S-functions are given by

9,G = 2G — Bp(G* (2.22)
of* = 2f>— By f*. (2.23)

Also on this level we observe a lot of similarities. Each one of these [-functions admits
two FPs: an IR FP at zero coupling and an UV FP at finite coupling f2 = 2/By and
G = 2/Bp respectively. The gravitational FP is in the physical domain provided the
number of Goldstone modes is small enough, or else the FP turns negative and cannot be
reached, because in the RG evolution we cannot cross zero value of the coupling.

The two couplings have completely independent but very similar behaviour. For k£ < v
(so in the deep infrared limit of energies), U is close to the Gaussian FP. This is the domain,
where the dimensionful coupling v is nearly constant, the dimensionless © has an inversely
linear “classical” running with energy (derived from the canonical energy dimension of v),
and perturbation theory is rigorously applicable. Then for higher energies there is a regime

where © is nearly constant and close to the non-trivial FP, while the dimensionful v scales
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linearly with energy. Note that on such trajectories it never happens that k£ > v. The
transition between the two regimes alluded before is near the scale determined by v, so
this is way below in energies than the Planck scale. These considerations can be repeated
verbatim for mp, the sole difference being that the RG scale, where the transition from
“classical running” to non-classical behaviour driven by quantum effects occurs, will be
near the Planck scale. Thus, there are three regimes: the low energy regime k < v < mp,
where both G and f are constant, the intermediate regime where f has reached its FP
value but G is still constant and the FP (high energy) regime, where both dimensionless

couplings have reached the FP.

2.4 Comparison between holographic and functional RG
results

In the previous two sections we obtained results for the RG running for coupling param-
eters in the nonlinear sigma model and in the gravitation computed using two conceptually
completely different methods. In this section we try to draw a comparison between these
results. To find a relation between them is the main goal of this chapter. For the sake
of comparison with the results of the holographic procedure, we can write the general

solutions of equations (Z20), (Z21) from the previous section as:

1 1
Vi) = v+ 5BH(k:2 — k) = 1+ §BH(e2t -1, (2.24)
1 1
mh(t) = mhby+ 5Bp(k2 —k2) =mby + §prg(e2t -1), (2.25)

where we have defined, in accordance with the definitions in Section 3 k(t) = wvgel,
ko = k(0) = vy, and vy, mpg are the values of the respective couplings at kq. Strictly
speaking, when all dimensionful parameters of the theory undergo RG running, the only
physical and measurable parameter of the theory is the ratio of the mass scales, which are

present,
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mp(t) ‘

v(t)

The plot of its natural logarithm log (¢) is shown on Fig. Bl and illustrates the three

at) = (2.26)

regimes of the theory alluded to in the end of the preceding section. We may already analyze
the behaviour of this ratio computed on the basis of exact (functional) RG. Namely for
t — oo the square of the ratio tends, for all trajectories, to the constant value Bp/By,
while for ¢ — —o0 it tends to a number that depends on the initial conditions and is equal

to

2 1 2
o v (1 - 5Bn)

(2.27)
After neglecting Bpu2 with respect to m%, we can conclude that this number is of order
m%,/vi, so roughly of 10%® magnitude. We must be however careful here, because the
precise value of the limit depends strongly on the value of the coefficient By and is singular
for it equal 2.

Returning to equations ([Z24)) and {ZH), we see that if we could set By = 2 and
Bp = 2¢p, they would agree with the flow obtained by the holographic method as encoded
in formulas (277) and (ZZI0). There is a difference here between the holographic RG flows
of v and mp: whereas cp is a free parameter in the holographic model for the running of
the gravitational coupling, which can be adjusted to match the result of the functional RG,
there is no corresponding free parameter for v. One is thus left with a prediction for the
parameter By, that does not seem to match the result of the functional RG, which shows
explicitly dependence on N. One could try to exploit the fact that the parameter By is
scheme-dependent, to try and force a match, however this could not hide the important
difference that whereas in the functional RG there are infinitely many trajectories for both
v and mp, parametrized by their values at kg, in the holographic RG there is a single
trajectory for v characterized by the initial value vy and the fixed value of the coefficient
By =2.

To clarify this difference further, we observe that if we set By = 2, as the pure AdS
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Figure 2.1: The running of the mass ratio a(t) defined in (28)), for N = 4, on a logarithmic
scale as a function of ¢. Solid curve: solution of the functional RG; dashed curve: solution

of the holographic RG. For large ¢ the curves tend to the value 0.13.

holographic RG seems to demand, v tends not to finite value Uom, but to zero
in the IR and therefore o diverges. The ratio « in the far IR grows linearly to +oo.
This is shown by the dashed line in Fig. EZIl Thus, the holographic description of the
preceding section agrees well with functional RG in the second and third regime, but fails
to reproduce even at a qualitative level the generic low-energy regime of the theory. This
is due to the fact, that the holographic RG trajectory is such that v tends to zero in the
IR, which is just one amongst infinitely many RG trajectories allowed in (2224), that would
tend to different finite limits in the IR. In contrast, m% can have an arbitrary limit in the IR
m%, — cpug: this is due to the freedom of choosing the parameter cp. The difference in the
behaviour of the two couplings can be traced back to the fact, that in the five-dimensional
description, gravity is free to propagate in all directions, whereas all the other matter fields

are confined to the 3-brane.
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Here we also want to touch on the issue, which is of great importance for the question
of UV completion of quantum gravity. Namely we will shortly discuss the running of the
Planck scale. We know, from macroscopic physics, that IR (classical) value of parameter
setting the strength of gravitational interactions is finite. We call it here Planck constant
and denote by mpr. Due to quantum effects this parameter, as any other in the La-
grangian, exhibits scale-dependence. From the energy range explored so far in particle
physics (up to TeV scale), we conclude that this running Planck scale runs very weakly
and that it is justified there to neglect gravitational effects. However still we can consider
function mp(t) giving us the RG running of Planck scale at different energies k = vgexpt.
Let us call the energy scale, at which gravitational interactions are becoming important
for quantum physics of elementary particles, a proper Planck scale. This is a scale, which
can be determined quite uniquely. It is very important that the proper Planck scale mp.,
doesn’t run under RG transformation of scales. It is an RG-invariant in the same way as
masses of the physical particles (the latter are determined from poles of the exact quantum
propagators). The fact, that the Planck scale, describing the strength of gravitation, mea-
sured by a dimensionless product k*mp*, undergoes RG running in an effective field theory
approach, means in this context only that an IR estimation for the proper Planck scale
(mps &~ mpr) must be corrected. Quantum effects in gravity make it antiscreening, so the
correction is positive. This means that at k = mpr we don’t meet an outset of quantum
gravity for elementary particles. The energy scale must be raised. At new increased energy
k we check for the running value of Planck scale and compare it with k - by this way we
decide, whether the energy must be raised again and so on. The non-iterative solution
to this problem comes after noticing that the proper Planck scale is a mathematical fixed

point of the function mp(k), this is

mpy = mp(k‘ = mp*) . (228)

If we know, the running of Planck scale (analytically or numerically mp(k)) over some

energy scale range, then it is easy to find such fixed point. It is at the section of a curve
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mp(k) with a line showing relation mp = k. For monotonic RG runnings such fixed
point is determined uniquely. All this considerations are in perfect analogy to the issue
of determining masses of W and Z bosons. Their masses can be traced back from the
low-energetic interactions of weak and neutral currents. However their IR value must
be renormalized at higher energy scale to give the proper values at physical poles in the
corresponding propagators. Here we may interpret the proper Planck scale as a mass
present in the denominator of some exact quantum 2-point function. This is really like
that, because in some theories physical masses of heavy particles, which appear in UV
completions, are proportional to the proper Planck scale. Parameters determining the
strengths of interactions do run, masses of related particles do not, however these two facts
do not contradict for the existence of connecting the two relation.

In our case from equation ([ZZO) we see that the unique answer for the square of the
proper Planck scale is given by

2 m2P0 . m2P0 (229)

m = =
Px 1 )
—1Bp  1-cp

when we neglected a constant term Bpuf as smaller compared to m?,. We easily see
that the sensible solution exists only for cp < 1. The best picture we get, when we plot
m% versus k*. Then the RG running of Planck scale and mp = k are given by straight
lines. For cp > 1 two straight lines cross for negative value of energy scale k. This result is
nonsensical on physical grounds and means that simply mp, doesn’t exist. For higher and
higher energies two lines diverge and this is means that iterative correction to the proper
Planck scale are bigger and bigger, when the energy is raised. In that case quantum gravity
never becomes significant in the interaction of elementary particles and there is no new
characteristic quantum gravity scale. When cp = 1 exactly, then the lines meet at infinity
(are parallel) and indeed mp, = 400 is a limiting solution for the mathematical fixed
point of the function mp(k). In the remaining case cp < 1 lines cross for finite positive &
and there exists a finite solution for the proper Planck scale (ZZ2Z9). Summarizing, when

cp < 1, proper scale of quantum gravity exists and in some theories of quantum gravity
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one can expect there appearing of new physics (i.e. new degrees of freedom). However
for cp > 1 UV completion can be achieved only by requiring existence of nontrivial FP of
RG. Moreover in the RG flow of couplings we demand to remain on the RG safe trajectory
towards this FP. With other small technical details this is the idea of asymptotic safety
for quantum gravitation. We remind here that value of the coefficient cp is equal to the
inverse UV FP value of the dimensionless gravitational constant @* This means that the
above given conditions can be phrased equivalently in terms of the details of the FP in
UV and in this way we can avoid studying the RG flow at intermediate energies (around
k = mpy), where we are not sure about full dynamics of the gravitational system.

Whole asymptotic safety program concerns UV limit of energies and as such is not
sensitive to the particular behaviour of couplings in a range between vy and mp, scales
(as in original definition of c¢p). We give as a partial evidence for asymptotic safety the
fact, that for Einstein-Hilbert system the values of G, at UV FP are smaller than unity
(in type IT and III cutoff scheme). When running of cosmological constant is also included,
then G, < 1 in all types of cutoff (beyond 1-loop approximations) [38]. This reinforces
asymptotic safety conjecture, because running of Planck scale in the vicinity of hypothetical
UV FP is consistent with the absence of any new energy scale for quantum gravity. When
extrapolating RG running equations from UV to intermediate energy scale, we don’t meet
any new scale, so the existence of nontrivial FP of RG in UV is inevitable, if our theory is
to be fully consistent. When in asymptotic safety scenario, RG safe trajectory reaches FP
in UV, then there exists an energy scale, at which RG flows enters into FP regime. From
equation ([ZZH) we see that this scale is set by "é—}‘jo, which is smaller than mpg for cp > 1.
However this is not a new mass scale in the sense explained above. We must add here,
that asymptotic safety scenario as a possible UV completion for quantum gravity works
also for cp < 1, however the evidences for it are not so strong in this case.

The behaviour of the proper Planck scale with changes of the coefficient cp can be
understood very intuitively. We recall that this coefficient measure the changes in the
running Planck scale between vy and mpg scales. When this change is small cp < 1, then

we expect correction to mpy to be small and soon we should converge with the finite value
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of mp,. In opposite case, when the change is bigger than the initial estimate for proper
Planck scale (mp, &~ mpyg), then our procedure gives a divergent result and there is no a
crossing point. We want also to remark here, that the above presented analysis for the
proper Planck scale is insensitive to any IR modification of the flows, because our iterative
procedure starts at & = mpg, which is very high energy compared to k = vy. If cp > 1,
then above the scale & = mpg, we are with big confidence in a fixed point regime of the
flow, when our flow equation (224)), (Z23)) hold true. When ¢p < 1, then probably more
detailed analysis is required especially in the intermediate region of energies.

In the description of Fig. EZTl we said, that it was prepared for value N = 4 for the
solution of the functional as well as holographic RG. Solid curve (from exact RG) was
indeed obtained for such input data, however the dashed one symbolizing the results of
holography was obtained for cp ~ 1.292. There is no any N-dependence in holographic
running of v or mp, the only parameter governing RG flow of mp is cp and we can adjust
only its value. Later we considered the possibility of having the agreement of two RG
flows, from which one of the first implications is that the coefficient cp as a function of N
is given by the formula cp = % and this evaluated for N = 4 gives mentioned above
numerical value of it. To get this conclusion we must have used formulas (Z20) and EZ1]).
For these values of the parameters (N and cp), describing the two curves, we get that both
at 400 tend to the same value %log cp, which is numerically, what we found as 0.13.

Lastly, the second implication of our matching holography with functional RG methods
is that we are forced to admit, that By = 2. With this, from formula [220) we can find
that N ~ 316.8. This is the value for which problems described above arise (N > N,
so cp is negative!) and this is a determined finite number of matter flavors, which could
be present in our theory. We wouldn’t expect, that by forcing matching of two RG flows,
we could find the unique value of N (which is by the way wrong, because for it cp < 0).
We share the opinion, that it shall remain free, not determined, parameter of our model.
Formulas (2200) and EZI]) were used to determine cp, for some value of N, knowing that

it must be equal from the matching to the ratio g—g. But in the same moment we were able

in principle to use the full conditions of matching (By = 2 and Bp = 2¢p) to determine
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the value of N from ([Z20). The only cure for all these issues are the modifications for both
RG flows, which we will describe further in this and next chapter.

We can modify the holographic RG to resemble more closely the functional one by
stopping the flow of v at &k = vy. From Fig. EZT] we notice, that without such modification,
holographic RG flow is good only for energy scales much bigger than masses. This can be

achieved by putting a source brane at ¢ = 0 with action

JEI[A] / Py o(t) | (2.30)

Therefore we generalise the ansatz ([Z3) by replacing e** with more general warping factor

e?A® Then solving the five-dimensional Einstein equations with this source gives a second
order differential equation for the warp factor A” = —2X&4(t). Since we want to have

A(t) =t for t > 0, we get from the equation above that A(t) = 0 for ¢ < 0. Thus,
we have a solution where the brane at the origin joins continuously a flat spacetime for
kr. <1 with AdS spacetime for kr. > 1, where we recall that ¢ = log(kr.). By doing this
we have modified significantly only the IR part of holographic geometry, so we changed
the RG running for couplings only in this regime. Since the Higgs VEV scales in general

A we find that it becomes constant for ¢ < 0. For the Planck mass the above

as vpe
construction implies a weak, logarithmic running for ¢ < 0, which would reduce it to zero
once tig ~ —1032. This is so far in the infrared that we can disregard this effect for all
practical purposes.

The behaviour of the couplings for ¢t < 0 is not exactly the same as the solution that we
found from the functional RG, but it is qualitatively very similar. The comparison could
be improved further by making the model more realistic. Equations (224]) and ([Z2Z3) show
that the running of the couplings continues all the way down to & = 0 without thresholds.
This is due to the fact that all degrees of freedom of the theory (gravitons and Goldstone
bosons) are massless. In the real world, the Goldstone bosons are coupled to gauge fields

and are not physical degrees of freedom. Instead, they become the longitudinal components

of the W and Z bosons. These gauge fields are massive and their contributions to the (-

33



functions will exhibit threshold phenomena, whose effect is to switch off the running of v
below ky = vo [20]. It appears therefore that branes can be naturally associated to the
presence of thresholds.

We conclude that with the addition of the source brane at ¢ = 0 the five-dimensional
space has become very similar to the Randall-Sundrum one [T]. This can be generalised:
one can modify the holographic flow by introducing branes at specific locations and with
specific cosmological constants, or more generally a continuous distribution of branes with
a given density. With placing a source brane at ¢ = 0 and stopping the functional RG flow
due to threshold phenomena, we can obtain a situation in which both flows are qualitatively
very similar, but in the same time N-dependence in formulas (Z20) and [ZI]) is not rig-
orously correct. The matching conditions and UV behaviour of RG runnings for particular
couplings are fortunately insensitive to these changes. Moreover in the next chapter we
will concentrate on the other distinct possible deformation of the RG flow geometries, with

which most of the problems, we mentioned here, will find its field-theoretical solutions.

2.5 Discussion

In this section we would like to discuss some aspects of the considered model in the
light of found relation between holographic and functional Renormalization Group Flows.
The first issue concerns the physical meaning of a non-trivial FP for gravitation coupled
to a non-linear sigma model.

We have shown that in the simplest approximation, retaining only terms with two
derivatives of the fields, the non-linear sigma model minimally coupled to gravity exhibits a
non-trivial, UV attractive FP, which could be used to define this theory nonperturbatively
according to Asymptotic Safety proposal. Therefore we can hope that its perturbative
problems (like apparent violation of unitarity at high energy) can be solved if the theory is
on the RG safe trajectory. The functional RG calculation presented here can be easily ex-
tended beyond the one-loop level by keeping the back-coupling of the graviton “anomalous

dimension” 7, which we neglected, and its analog for the non-linear sigma model. Similarly,
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the inclusion of a cosmological constant term in this framework is straightforward. These
extensions bring only relatively minor changes to the picture we have found here. Inclusion
of higher derivative terms would require a more significant calculational effort but the ex-
isting results for gravity and the sigma model separately suggest that the non-trivial fixed
point should persist.

The physical application of our results is in the construction of an asymptotically safe
quantum field theory of all matter and gravitational interactions. Much work has gone
into trying to prove that gravity is asymptotically safe, but in order to be applicable to
the real world one would have to extend this result also to the other interactions. Strong
interactions are already asymptotically safe (as a particular case - they are asymptotically
free in UV) on their own, so presumably they pose the least problem. The main issues seem
to be in the electroweak sector, and in particular in the abelian and scalar subsectors. There
are mainly two ways in which these issues could be overcome. In the first, asymptotic safety
would be an essentially gravitational phenomenon: the standard model (or a grand unified
extension thereof) coupled to gravity would not be UV complete and gravity would fix the
UV behaviour of all couplings, including the matter ones. In this case the matter theory
would be an effective field theory that need only hold up to the Planck scale; thereafter all
couplings would approach a FP together. This is probably the most preferred scenario due
to the lack of experimental hints beyond Standard Model of elementary partice physics.
This is the point of view that is implicit in [29, B9, B0]. Recent discovery of Higgs-like
particle in LHC at CERN reinforces the claim that sector of electroweak interactions is
perturbatively renormalizable, however really important issue become UV behaviours of
running electric charge and quartic coupling in the Higgs potential. One of the possibility
of securing UV limit of such theory is to require that these two couplings reach FP. This
is the second case, when each interaction would be asymptotically safe by itself, and each
coupling would reach the FP at a different energy scale: the TeV scale for electroweak
interactions and the Planck scale for the gravitational interactions. This is the point of
view that we tried to propose by consideration of our model.

Taking this seriously, one is led to a non-standard picture of all interactions, where both
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electroweak and gravitational interactions would be in their respective “broken” phases,
characterized by non-vanishing VEVs, and carrying non-linear realizations of the respective
local symmetries. Gravitation is in broken phase due to nonvanishing value of spacetime
metric, when we are way from the topological phase. The theory as formulated does not
admit the possibility of symmetry restoration at high energy. In fact, rather than going to
zero, the Higgs VEV goes to infinity asymptotically for ¢ — oo. At high energy, when the
FP of RG is reached, symmetry of the theory is enhanced, because we have scale-invariance,
which can be enhanced even more to the full conformal symmetry. We can see it from the
behaviour of the ratio «, illustrated in Fig. EZ1l which characterizes the three regimes of
the theory, with the electroweak and gravitational interactions becoming scale-invariant
above their characteristic mass scales. The approach to the FP would fix the behaviour of
the electroweak Goldstone sector, in a way that is still to be understood in detail, but has
nothing to do with gravity. For the abelian gauge interaction one would have to invoke
unification into a simple group, or gravity, as in [40)].

We now come to the striking correspondence between the RG flows computed by holo-
graphic and functional methods. Working examples of holography are hard to come by
outside the original domain of superstring theory, but in spite of this there seems to be
a trend towards viewing holography as a field-theoretic phenomenon [27]. In the famous
gauge/gravity duality the correspondence is conjectured between any quantum gravity the-
ory in the bulk and the boundary theory with some local symmetries. In some sense the
correspondence is surprising, because it is not a priori clear why the dynamics of gravity
in five dimensions should have anything to do with the RG in four dimensions understood
on the level of field theories. The idea of holography is often thought to be a fundamental
ingredient of the construction of consistent quantum gravity theory and it has a strong
support from open/closed string modes duality in string theory. On the other hand, our
understanding of holographic RG is based to a large extent on the AdS; solution interpreted
in the framework of Randall-Sundrum model. Given that the isometry group of AdS; is
the group SO(3,2), which can be interpreted as the conformal group in four dimensions

with standard Minkowskian signature, it is not so surprising that this space can be used
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to describe in geometric terms a theory at a FP. Our view here is therefore to interpret
the five-dimensional metric as a geometrization of the four-dimensional RG flow at or near
FP. In opposite direction we read out here, from spacetime geometry, RG runnings for
couplings of four-dimensional theory following RS prescription, which is very similar to
general AdS/CFT recipes. In RS prescription running of matter dimensionful coupling is
derived from warping factor of the spacetime metric. Gravitational coupling on a 3-brane
is of different nature and we obtain its scaling with energy by doing an integral over some
interval of radial coordinate in AdS-like spacetime. The brane introduced in section §2.21
devoted for holographic RG, can be regarded as a true boundary of AdS located at some
small but finite positive z. E[

In this chapter we have neglected completely holographic RG running for the cosmolog-
ical constant on the brane. The reason for this is quite technical. Despite the presence of
the bulk cosmological constant (giving the background AdS spacetime), on our flat probe
brane observer doesn’t see any 4d-gravitational effect originating from vacuum energy. We
chose to foliate 5-dimensional spacetime using flat Minkowski slices. That’s why the bulk
cannot induce any effect on the brane vacuum energy. Possible solutions would be to foliate
5-dimensional AdS using curved slices with maximal symmetry (dS, and AdS, for posi-
tive and negative 4-dimensional cosmological constant respectively), however this is not
always an option. Moreover another additional difficulty appears in such setup, because
then the value and the impact of the cosmological constant on the physics on the brane
is nonvanishing and finite. In the true gravitational interactions (mediated by gravitons)
the strength of interactions can be tuned to be infinitesimal, even for finite value of the
coupling m%, if only the energy excitations on the brane carry infinitesimal energy. This
is because the product m%k?, where k is the characteristic energy scale for matter pertur-
bations, measures that strength. This means that, the impact of such perturbations on

the background geometry of the brane can be safely neglected. Without back-reaction in

!For AdS to be a solution in the presence of such a boundary one has to add to the action the Gibbons-
Hawking boundary term [AT], which in the present case just reduces to a cosmological constant on the

brane.

37



this case we can study the linearized theory of gravitons (metric perturbations) and derive
their scaling with the radial dimension of AdS spacetime h,, = thl_zW. This was in the
core of our derivation of the holographic RG flow for Planck mass. In the case of inter-
action with the brane cosmological constant, we don’t have the possibility to turn off this
coupling smoothly to zero and its effect on the background brane geometry is non negligi-
ble. It is incorrect to consider here the linearization around flat Minkowski background of
the 3-brane. 4-dimensional gravitation here must be treated nonperturbatively in order to
determine the correct background and the response for brane vacuum energy. Additionally
on the field theory side we would have to work in the quantum field theory on the curved
background. Nontrivial scaling with ¢ of brane cosmological constant would correspond to
a foliation of bulk spacetime by leaves with changing internal curvature. This is much more
complicated setup for analyzing holographic RG flows. Fortunately this problem doesn’t
arise for holographic RG flow of couplings in front of gravitational higher derivative terms.

From the four-dimensional perspective, the corresponding large but finite value of ¢
defines a UV cutoff. Due to this boundary, five-dimensional graviton modes are normaliz-
able in the cut out region of AdS, and this setup describes gravity coupled to a conformal
field theory with a UV cutoff [, B]. This is exactly the construction as presented in [IJ.
In this connection, it is important to clarify the following point, which could be cause of
misunderstanding. In the limit z — 0 (conformal boundary of AdS) we have seen that
G — 0, and for this reason it is usually said that gravity decouples. However, the strength
of gravitation in a certain process is measured by the dimensionless product Gp?, where
p? is the characteristic momentum. In the vicinity of UV FP the following quantity If we
identify the cutoff k with the momentum p, the strength of gravity is given by G = Gk2,
which in the limit z — 0 tends to a finite constant (nb. this is the FP value of dimension-
less gravitational coupling). It is in this sense that the decoupling of gravity can be seen
as the consequence of a nontrivial FP for gravity.

It is not obvious at all that this five-dimensional theory has a dual CF'T description.
If it exists, it must correspond to the putative nontrivial fixed point of the O(N) non-

linear sigma model coupled to gravitation. Note that the non-linear sigma model has a
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dimensionful coupling and therefore, for fixed coupling it is certainly far from conformal. It
is the quantum running of the coupling that would make it scale-invariant at the nontrivial
fixed point. It should be possible to describe this fixed point also in terms of an effective
Lagrangian containing only dimensionless couplings and also in terms of fields suitable for

UV degrees of freedom. We will comment on this issue also in the next chapter.
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Chapter 3

Holographic RG flow geometries for

gravitational coupling

3.1 Holographic setup

In this chapter we focus on the precise realisation of RG flow geometries, which are
different from pure AdS spacetime. Mainly we will consider flow for the gravitational
coupling (which stands in front of the curvature scalar in Einstein-Hilbert action), but we
will say few words about RG flow for ordinary matter couplings too. We will read RG flows
from geometry following Randall-Sundrum prescription [II, 2], but in general geometries,
which admit foliation by 4-dimensional flat Poincaré slices. Moreover we demand that these
spacetimes asymptotically tend to AdS spacetime, so we will work with asymptotically
Anti-de Sitter (AAdS).

The main problem, we would like to address in this chapter is how to find holographic
geometries describing RG flows of gravitational coupling, which we found primarily using

other methods (like functional RG).

For a scalar field with standard kinetic term and minimally coupled to gravitation,
the only place, where the difference between different RG flows originates, is a scalar

potential. Its shape V(®) determines the flow completely. However the opposite is not
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always true, because the same configurations (scalar profiles) can be solutions of various
potentials. We have only the equivalence between RG flows and scalar profiles. Giving
the potential completes the ingredients necessary for building the holographic description
of flows. Hence the task of this chapter will be to find explicit 5-dimensional potentials
for explicit gravitational RG flows. We will also describe quickly its impact on matter RG
flows.

We will describe holographic geometries corresponding to RG flows as solutions of
Einstein-Hilbert system with minimally coupled scalar field with a potential. For generality
we will study (d+1)-dimensional theory, of which our 5-dimensional description is a special

case, with the action of the form

S = /dd+1x\/§Md‘1 (R+ L) = /dd+1x\/§Md_1 (Rq: %(6(1))2 — V((ID)) . (3.)

where M is the (d + 1)-dimensional Planck mass (constant gravitational coupling in the
bulk). We emphasise that the scalar field ® is chosen to be dimensionless and also the
scalar potential V' (®) has energy dimension equal to two, independent of d . Such choice
enables us for simultaneous studying of holo-duals in any bulk spacetime dimension d + 1.
In Lagrangian £ for scalar field we admit also the possibility, that scalar field has negative
sign of the kinetic term. Later we will decide and comment about it. We use the following
ansatz for the metric, which preserves full d-dimensional Poincaré symmetry of constant

r, flat Minkowski slices:

ds? = A0y datda? + dr® i, =1,...,d. (3.2)

It means that spacetimes of our interest are warped (conformally scaled) d-dimensional
flat Minkowski slices with original metric 7,;. We set all coordinates to have inverse energy
dimension, this establishes the proportionality relation between radial r coordinate in the
bulk of AdS and logarithmic RG time ¢. For definiteness we assume that r = r.t, where
r. = /v = (246 GeV)~! is the length associated to the electroweak scale. It is also equal
to the AdS radius in far UV as chosen in [#2]. The requirement that our holographic
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spacetimes are asymptotically AdS, when the radius r tends to plus or minus infinity, is
satisfied in situations, in which we have that A(r) — 7/r.. in respective asymptotics in 7.
r.+ denotes here the radii of AdS in asymptotic region of spacetime, they must be different
from each other, when we ask for nontrivial RG flow. The direction of r coordinate, taking
values on whole real line, is such that decreasing its value corresponds to following RG flow
from UV to IR FP’s.

Now we are going to present the method, which allows us to find a scalar potential V (®)
for a given RG flow. From our coupled system of classical equations of motion, we first
derive the scalar EOM in a fully generally covariant form £V2® — % = 0, where V2@ =
V9 '8, (y/go"®). For our spacetime metric ansatz ([B2) we have that /g = exp(d A).
We assume that our scalar profiles vary only along the radial direction, being constant on

Minkowski sections. With this simplification we have the scalar equation of motion given

by

oV
+(®"+dA D) - — =0 3.3
(@ +d A @)~ o =0, (33)
where by prime we denote radial derivatives % = i%. Our equations of motion take the

form of ordinary differential equation, where r is the independent variable. Warp function
A(r) contains all RG flow data. However we don’t want to solve (B3) for scalar profile
®(r), but rather to find a potential V(®Pg,) on a consistent solution Py, (r) of the full
gravitating system, provided some boundary conditions are satisfied in UV and IR limit of
r coordinate. To do this we need at least one equation of gravitational character, because
we don’t know explicitly the scalar solution ®g,(r). If we knew this explicitly we could
invert the relation and plug r(®g,) in the right side of the formula for the first derivative of
the scalar potential 3% = & (®”(r) + d A'(r) ®(r)). Now integrating the RHS (understood
as a function of independent variable ®y,) over @y, in some limits, we would get searched
potential V(P ). We will use a different method, which doesn’t use the explicit scalar

profile solution. Gravitational equations of motion must be exploited to reach this goal.

The Einstein tensor, of satisfying our metric ansatz spacetimes, contains only two
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interesting components G", and G*;. We compute a mixed covariant-contravariant form
(to get rid of warping factor). We have explicitly interesting tensors: R,, = —d(A” + A"?),
Rij = —e* ni;(A” +d A?) and R = —d (2A” + (d + 1) A”®). With this we get two diagonal
components of Einstein tensor as

d(d—1) d—1

G = = A and G =m0 (24 dAP). (3.4)

For a pair of equal transverse spacetime indices (i.e. i, j = tj; d-dimensional Minkowski

time), we see that it holds

G, — Gy = (d—1)A" (3.5)

nicely relating geometrical structure on the manifold with the second derivative of the
warp factor. On the other side of Einstein equations of motion G, = M—(d=1) TW, we
have energy-momentum tensor TW of matter, which here is only in a form of scalar field ®.
We are going to simplify the notation by rescaling energy-momentum tensor by A/~
which now has energy dimension equal to two and this is the most convenient choice for
dimensionless scalars. We denote it by 7},,. Then we have gravitational equations in the

simple form

G'uy — T'uy‘ (36)

From the action functional ([Bl) we derive the energy-momentum tensor for the scalar field

d:

TH, = +(5"®)(8,®) — 6", L, (3.7)

where the structure of the scalar Lagrangian £ is not as crucial as the sign in front of the
kinetic term. Combining all three last numbered equations we arrive at the one, we really

need for our method, namely

(d—1)A" = T8~ (3.8)
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This last equation tells an interesting thing, that the convexity of warp factor is entirely
determined by the sign of the kinetic term for the scalar field. For RG flows, which
corresponds to concave warp factor, we have standard positively defined kinetic term.
Those, for which A(r) is convex, may be described holographically by phantom scalar
field.

Now we parallel the derivation of a scalar potential V' (®) based on the method of fake
superpotential. We must remark that the presence of supersymmetry in the bulk is by
no means a necessary assumption. We only borrow the method for finding special scalar
potential from supergravity written in terms of superpotential. This is not completely
general potential, but one, which is a representative in a wider class of potentials solving
our issue. In this derivation we try to follow |46l B8], A7), where such potential was derived
in general Einstein-Hilbert system with standard sign of the kinetic term for the scalar
field, without at all invoking supersymmetry and for arbitrary dimension d+1. However we
must also modify the form of this derivation for case of the scalar field with negative kinetic
term. In the case of a single scalar field, when the target space metric is diffeomorphic to

a constant and V' becomes a function of a single real variable we can write

V =-2(d—1)* <%)2 —2d(d — 1)W?. (3.9)

The corresponding form of the scalar potential for standard (not phantomic) scalar field
would satisfy the requirement of nonperturbative gravitational stability of AdS vacua (as
found in [56, B7]). This would easily translate itself into a condition of positive energy so-
lutions in the gravitational framework and preservation of null energy condition for matter
content of the bulk theory. The situation with phantomic scalar field is however different

and this is why the sign is flipped of the first term in (B3). Next we note that

% 52W oW
— =4(d—-1)|—(d—1 —dW | — 1
which tells us that AdS vacua are at points, where fg;’ = —d;fl W. In addition to such

would-be supersymmetric vacua in our theory we have also domain wall solutions. We
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will mainly focus on would-be BPS domain walls, which interpolate between two would-
be supersymmetric AdS vacua. The reason is that for them we are able to easily solve
resulting equations of motion.

Let us turn back to the integral (B]) giving us the classical action of the whole system.
We plug there our ansatz for the metric (B2)) and the form of the gravitational Lagrangian
given by the curvature scalar. We already properly integrated it by parts from the initial
form R = —d(d — 1)A” with total derivative term (2¢?4 A’)/ abandoned. After neglecting
the integration over transverse d-dimensional space we can rewrite the action integral as

the following energy functional in only one integration variable r as

E[A, ] = —/_oodredA {_%qﬂ _d(d— 1)A’2+V]. (3.11)

o

With the use of (Bd) and Bogomol’'nyi method this functional can be presented in the

following form

+£2(d—1) [e* W]

0
—oo

00 1 2
E = —/ dr e [—5 ((IYqEQ(d— 1)‘%) —d(d—1) (A" F2W)?

(3.12)
We obtain so called BPS equations by requiring for extremisation of this expression with

respect to all A and ®. In the result a pair of first-order differential equations is derived:

A = oW (3.13)
ow
' = +2(d—1)—. 3.14
(- 15 (3.14)
A posteriori we check that solutions of these BPS equations indeed solve the full system

of equations of motion, given explicitly by:

dld—1)A%+d* +2V = 0 (3.15)

2(d —1DA" +d(d—1)A? —d? +2V = 0 (3.16)
" I &/ 6‘/ _

—O"—d A~ = 0. (3.17)
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Although in the BPS equations ([BIdl) we have two signs allowed, this ambiguity cancels,
when we go to the formula for the scalar potential representative written entirely using
derivatives of the warping factor:

V= —%d(d _1yAr - %(d — 1, (3.18)

where we also used the relation A” = 4(d — 1) (%)2. This is valid for both signs in (BI4)
and was derived from (B). The formula (BIF]) is a crucial step in our method for finding a
scalar potential valid for given scalar configurations. By knowing spacetime dependence of
warping factor A(r) in this way we can find exact radial dependence of the scalar potential
V(r) understood as evaluated on particular solution ®.,(r), though we don’t know it yet.

To find a unique function V(®) we must determine this scalar configuration solution

and invert it:

V(®) =V (r(®)) forr(®) = (Pey(r)) . (3.19)

In this method one integration (over ® variable) is avoided compared to the method pre-
viously suggested. We must note however, that these two methods are equivalent, because
they give the same answer for the potential. We must still find a solution @, (7). This can
be achieved by integration of equation (B8] over radial coordinate. With obvious notation

we get that

@(’f’) = (I)UV — / dr (b/(f) = (I)UV — / dr \ (d — 1)A”(’l:) (320)
If this integral can be done analytically and resulting function inverted, then equation

BTd) will yield an analytic expression for the desired potential V().

3.2 Gravitational RG flows

Main part of this section we will devote for the description of gravitational RG flow

geometries in the holographic perspective. But before this, let us describe briefly the
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RG runnning of ordinary matter couplings from the boundary theory. As it is common in
AdS/CFT we will describe the RG running of a scalar operator O, which triggers nontrivial
flow and hence explicitly breaks the conformal invariance. According to the dictionary it
is dual to some scalar field in the bulk ¢. Nontrivial radial dependence of this bulk field
¢(r) means that we have nonconformal RG flow for our deformation O in the boundary
theory. Of course the flow of such operator in the boundary theory can be interpreted as
the RG flow of a coupling parameter g, which is used to couple it. This coupling possesses
such an energy dimension that the product gO has dimension d proper for the Lagrangian
in the boundary theory. Although to different operators we have corresponding different
bulk scalars, the RG running of those is read not from their corresponding profiles, but
from the universal warp factor. Dynamics of all bulk fields have the impact on the actual
form of the warping factor A(r) due to the gravitational sourcing. Following [58] and [42]

we accept the following identification

k(r) = ko e (3.21)

between radial bulk direction and the momentum scale in the boundary theory. This is
the generalisation of the relation k(r) = ko e to bulk spacetimes different from AdS,
but still having the appropriate properties in the transverse directions. We may write the
expression for the beta function of the coupling g:

dg 1

By=kor o5 (1), (3.22)

where the first equality gives the field theory definition of such object, while the second
relation gives a holographic interpretation in the bulk spacetime. The most RHS of the
above equation can be rewritten further using equations of motion in the bulk and put
in a form, where there is only dependence on the bulk scalar ¢. This correspondence can
be viewed as another fundamental formula in AdS/CFT duality relating boundary to bulk
quantities.

Now we come to discuss the scaling properties of dimensionful couplings in boundary
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theory. If in boundary field theory we are in FP regime, then this scaling is in the form of

a power law

k: QUV,IR
gir,uv(k) = 9o <k:_0) : (3.23)

Conformal scaling dimensions ajg and ayy need not be identical, but they reach fixed
values at CFT FP’s in IR and UV respectively. There we have valid the simple expression
for the beta function 8, = ag. This agrees precisely with the way, how we have read the
scale-dependence in 2 when we assumed that our considered couplings come with some
defined scaling dimension a. Because in our model in infrared limit gaussian FP exists,
then the scaling dimensions ajg are given by classical energy dimension of couplings. To
leading order we continued with the assumption that they are not changed significantly
in UV, in other words we neglected anomalous dimensions of these couplings. Namely we
stuck with UV dimensions 1 for Higgs vev and 2 for the square of the 4-dimensional Planck
mass. With this we were able to read correctly in §2 the RG running in holographic
method. In full generality we have running dimension o = a(k) interpolating between two
scaling dimensions of the same operator O in two CFTs. They do not have to correspond
to classical dimension of this operator. We use the following definition for varying o,
g(k) = go <%>a In the intermediate region between two FPs of RG, we have an expression
for the beta function 3, = g¢ <a + [ log k%) We see that it was corrected by the beta
function of « itself multiplied by a logarithm of the energy scale. It often appears, when
we rescale a dimensionful coupling by power of energy scale with the classical dimension
in the exponent g = g k~*. This removes powers of momentum from RG running and the
corresponding beta function equals 3; = g (a — g + Ba log k%)

Now we are in position to apply method, described in the previous section, for finding
scalar potential for given RG flows. We will consider a flow of the gravitational coupling
in 4-dimensional boundary theory, whose tree level action (and also our truncation) is
Einstein-Hilbert for gravitation. We will consider an RG flow of mp caused by quantum

effects. From here on we work explicitly in d = 4. The reason is that only in this dimension
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we have the correct description from holographic RG flow as it was elucidated in the previ-
ous chapter. We adopt the following conventions for dimensionless gravitational couplings:
G = Gk?* = k*(m%)~!, where k is the RG energy scale related to radial coordinate by
B2Z1) [B2]. Let us pay attention to the fact that dimensionful Newton’s constant is given
by Gy = (8mm%)~", so it is off by numerical factors from the coupling G. In [A5] was
derived a one-loop equation governing the RG flow of G. This is in the form

@ — G(t) = (d—2)G + B, G2 (3.24)

The solution of this equation is given by

Git) = 2G/(0)e?
2+ B, G(0)(1 — e2t)

(3.25)

It is convenient (in four dimension) to analyse the RG running of the square of the effective
Planck mass. From B20) it is given by

m%(t) = mp(0) + %TC_Q (1—e*). (3.26)
It is very important that all investigated types of cutoffs give negative values of the co-
efficient B;. This signifies that the effective 4-dimensional Planck mass grows, when the
energy scale increases. This means that quantum gravity perturbed around flat Minkowski
spacetime shows its antiscreening nature.

To find a holographic geometry, which gives rise to a valid description of such a flow, we
recall how the running of effective couplings in gravitational theory living on hypothetical
brane of codimension 1 in the bulk, is seen from 5-dimensional perspective. This is basically
the argument presented by Randall and Sundrum in [T, which we showed already in §Z2
Here it is generalised to a ¢-dependent conformal factor A(t). We have the action on a

probe brane, located at some position given by the RG time ¢,

Siee = m(1) / Az G R, (3.27)
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where barred geometric quantities are induced on a brane from the bulk. An observer in
the bulk sees this action as resulting from integration of the gravitational action in the bulk

over some interval of radial coordinate (equivalently RG time t) according to the formula

t
Sgrav = M3 Tc/ dt, 62A(t,) /d43j V —§ R (328)
0

From two above formula we derive that the holographic running of 4-dimensional m? is

expressed by

t
m%(t) = mp(0) + M> rc/ dt’ 24, (3.29)
0

It means that roughly, when going in direction from IR to UV, the square of the Planck

A This is another,

mass gets increased by integrating always positive warping function e
holographic proof, of the character of running of this gravitational coupling parameter - it
is bigger at higher energy scales. By differentiating (B29) we get

d
%m% (t) = M3r, A0 (3.30)

and an explicit expression for the warping factor

Alt=—) = élog <%%f)> . (3.31)

We see, that the whole construction of the holographic RG geometry is derived not from the
scale dependence of coupling itself, but from the beta function of the gravitational coupling.
This means, that holography is insensitive to any additive constant, which might be present
in explicit running m%(¢). In order to read local curvature of AdS part of spacetime we
have to compute A’(r) with the help of

m2

A= " (3.32)
2r.m%

Constancy of the above quantity over some range of radial coordinate values means that

this region of spacetime is exactly a piece of AdS with given radius. However for a typical
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RG flow such good situation does not happen and only in asymptotic limits » — oo we
obtain constant value of local radius (A’ )_1. Therefore we work only with asymptotically
AdS spacetimes.

It is easy to convince ourselves that the RG flow as given by (B2H) is described by an
exactly affine function of the radial coordinate r: 2A(r) = 2;- + log (ﬁ) However
recalling from [42] that —B; = 2cp = (M r.)® we obtain linear radial dependence of the

T

warp factor A(r) = -, exactly like in AdS spacetime all the way along this RG flow.
The AdS radius equals always to r.. We state this fact as that the one-loop perturbative
Einstein-Hilbert flow is described by the pure AdS holographic spacetime. We are not
already at a conformal fixed point, because only at high energy we can neglect any ad-
ditive constant in the solution (B2ZH). In FP regime dimensionful Planck constant scales
according to m%(t) = G, 'r;2e*. That we are in pure AdS spacetime is not a surprise,
because in holographic construction in §&2 this was exactly our initial assumption about
the bulk spacetime. We must consider this kind of flow deeper. We have for it, that
AA" = 0, because A’ = r;'. This flow ([B2Z0) is valid for small (perturbative) values of
the dimensionless gravitational coupling G and significant corrections appear only, when
running G(t) is of order 1. So this happens for t around tp = —3 log G(0). (Knowing the
approximate experimental value of GG at electroweak scale ¢t = 0, we find that G(O) ~ 10733
and —3log G'(0) ~ 38) As it stands this flow of coupling possesses a nontrivial UV FP
with the fixed value of the coupling G, = _B%' Nevertheless we expect some changes to
details of this picture due to higher loops and nonperturbative corrections. This is because
close to this FP we are away from the regime of validity, where this flow was derived. It
is important to analyse the limiting behaviours of this flow in the UV and IR. Namely in

the UV regime we have that the flow is approximated by
~ 2 2e2 )
Gy~ —— (14—, 3.33
0~-5 (1 550 (3.33)

so we conclude, that the fixed limiting value of the coupling G, is reached exponentially

fast for t > tp. In the IR regime the flow asymptotically coincides with the flow from a
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gaussian (trivial) FP G(t) = G(0)e® and is given by an approximate formula

~ —~ QG(O) ezt By é(()) €2t
G(t) = 27 5,60 (1 = ) (3.34)

and again we have the conclusion of exponentially fast reaching of IR FP regime in neg-
ative ¢ variable. Of course in infrared the dimensionless constant has vanishing limit. In
the very far IR regime this flow as well as gaussian one is a solution of a simplified dif-
ferential equation é — 2G. This equation just governs the behaviour at trivial FP, where
the dimensionless values of the couplings vanish. At this FP the dimensionful Planck
mass is exactly constant and this naively means the breakdown of holographic descrip-
tion, because the warping factor blows up (A = —o0) and we cannot define the radius of
curvature. Indeed strong-weak duality arguments suggest that to infinitesimally weakly
coupled boundary theory (as when originating from gaussian FP) corresponds infinitely
high curved holographically dual spacetime. And such spacetime without including quan-
tum 5d gravitational corrections to bulk theory doesn’t make much sense. This is one of
the problems we want to address by later modification of the flow given in (B20).

It is not necessary to modify the RG flow in the UV, because for general flows ending at
nontrivial UV FP, we have the scale invariance of the gravitational coupling, which means
that m% (k) ~ k? and hence A’ = r!. The exponent 2 in the formula [B33)) comes because
of such dimensionality of Newton’s constant in four dimensions (negative to classical energy
dimension). We remind that here we have completely neglected the anomalous graviton
dimension. That the local radius of curvature equals to parameter r., is a very robust
feature for all approximations to gravitational flows near UV FP. For example for a flow

obtained from the exact RG differential equation

dG . B, G2
— oG+ " 3.35
dt 1+ By G ( )

with constant coefficients By and Bs, we find the following high energy behaviour of the

warping factor
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1
A(r):;+§log<

;il (1 + B, G)) . (3.36)

This expression near UV FP reduces to A(r) = =~ — 1 log <0p é*>, because the fixed

2

T Bit2B;" This exact ﬂOW,

point value of the coupling is given by the relation G, =
although precisely is not as the flow governed by the FP in formula (B2H), returns back
to it in the deep IR and UV. In IR it coincides precisely, because the effective value
of G is small and we can neglect the denominator in B30). Hence we arrive at flow
equation (BZ24). In deep UV we have however only a quantitative difference between the
two flows showing itself up in the presence of free term in the conformal factor for the latter
flow in formula ([B30). Additionally there is a difference between values of the coupling
at fixed points. For our purposes improvement given by functional RG doesn’t change
the qualitative characteristics of running of gravitational coupling with an energy scale.
Nevertheless we must note that the flow, which is a solution of (B3H) (not existing in a
closed form) is truly an interpolating flow between two almost identical CFT’s. The only
difference between them is in the fixed values of dimensionless couplings (between é* =0

and G* = in UV). This is because in the limit r — 400 the inverse AdS radius

=T
tends to the same value A’ — r_ . Moreover it seems, that their corresponding central
charges are the same! In global sense we have precisely that AA” = 0 for the whole flow.
But this and the continuity of the flow implies that the sign of the second derivative A”
is undetermined. So we arrive at the conclusion, that the local version of the c-theorem
doesn’t hold here. And moreover in the holographic description of this flow the sign of the
kinetic term for interpolating scalar field is undetermined too. It is fair to say that from
holographic perspective flows given by ([B2ZH) and solving (B3) are closer to being at UV
FP (where A’ = r1) than at IR gaussian FP (with A = —oc). The conclusion might be

opposite, when looking naively for running of dimensionful gravitational coupling m%(t).
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3.3 Holographic description of the interpolating gravi-

tational flow

To solve above mentioned problems with holographic interpretations, we may try to
modify the RG flow only in the IR, not spoiling therefore nice properties of asymptotic
safety scenario holding in UV. We cannot allow the warping factor to be or to tend to minus
infinity limit in the far IR region. We must include threshold effects and stop or better
neutralise the running in this low energetic regime. We obtain the most harmless running
derived from ([B2Z), when we put to zero the warping factor asymptotically for ¢ — —oc.
If we put it to a negative value, then the running would be even smaller, but then we would
enter another nontrivial inverse FP regime. Namely in the deep IR Planck mass would
tend to zero value exponentially fast. And there wouldn’t be a remnant non-zero value
for the effective Planck mass at IR limit - we want however opposite. Both these choices
of flow’s modification lead to different geometries in IR region of holographic spacetime.
But regardless of them we are forced to accept the global change of the inverse local AdS
radius to be positive AA” > 0. This is a necessary consequence, when we want to soften
the flow in the IR. The problem with the c-theorem can not be solved by this method. We
can achieve such a smooth change of warp factor that always A” > 0 and asymptotically
A” — 0. This means that in the holographic 5-dimensional description in the middle of our
interpolating geometry we excite a phantomic scalar field ® (from formula (B)). With the
choice that A = A" = 0 for deep IR we get the following flow of the gravitational coupling
m%(t) = m%(0) + 2cpr 2t. This is also a solution of an unautonomous flow equation

% =2G (1 —cp ée_2t>. We obtain the interpolating flow between IR and UV by simply
adding and adjusting two limiting behaviours in the IR and UV. This is possible, because
in opposite limits each of these flows is negligible with respect to the other one. In UV
limiting behaviour of the flow is m%(t) = m%(0) + cpr. % (e* — 1) (compare with (B2H)).

The interpolating flow has the explicit form
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mp(t) = cpr;? (¥ + 2t — 1) + m3(0). (3.37)

This is the flow, which we are going to analyse in this section looking for its fully-fledged
holographic description. We treat this particular flow as an example, for which we are
able to bring the explicit computation of scalar potential to the very end. Our method for
finding holographic RG geometries is however general and works also for other examples
of gravitational RG flows. The necessary ingredient is the explicit form of the function
mp(t).

We now come to the construction of a holographic RG flow spacetime, which may be
understood as a geometrization of the above flow. Equation (B31) governs the running of
the dimensionful gravitational coupling: Planck mass square. In terms of dimensionless
coupling G (convenient for describing physics from nontrivial UV FP perspective) the flow
is expressed as

~ G(0) e

) = e 2D 41

(3.38)

For very small values of G/(0) this flow has a big variability around ¢ = ¢p and this lasts
for around 5 units in logarithmic RG time ¢. Before this transition region the value of
é(t) almost vanishes and after it attains c¢5' equal to the fixed point value. Warping factor
function, because it gives the holographic description, is quite universal and doesn’t depend
on specific parameters of the flow expressed by its initial value é(()) and the rescaling
parameter cp. Hence, regardless of these parameters, for this type of flow warping factor

equals to

A(t) = %log (1+¢€*). (3.39)

It has required properties, which we described in the previous section, and this is easily

visible from the plot of A(t) shown on the left panel of Fig. BJl The value at the origin is

given by A(0) = %log? ~ 0.35. The origin is also a point, where the two asymptotic limit

of A(t) are joined smoothly. The first derivative of A(t) with respect to radial coordinate
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Figure 3.1: On the left: Warping factor A(t) as a function of ¢. On the right: First (in

blue) and second (in red) derivative with respect to radial coordinate ¢ of the warping

factor A(t).

r is a symmetric function interpolating between values of zero (in IR) and two (in UV).

The second derivative given by

262t
Alt) = ————— (3.40)
r2 (1 +e?)
is an even and positive function (as we demanded) and its maximal value %T’C_ 2 is reached

at the origin. In infinity this function attains vanishing limits. Plots of the rescaled to be
dimensionless, first and second derivative are shown on the right panel of Fig. Bl

Now using formula (BI8) we have the explicit radial dependence of the scalar potential

3e? (1 + 2¢e*)

Vi = r2 (1+ th)2

(3.41)

This potential has vanishing IR limit Vig = 0. From more closer look we also see that
value of it at ¢ = 0 equals to —9/4 = —2.25 and that UV limit is -6 in inverse square units
of radius of AdS .. Plot of the radial dependence of the scalar potential (B:Z1]) we present
on the left panel of Fig. using blue curve.

Fortunately enough for this simple form of warp factor (B39 we can integrate as

in equation ([B20) and the resulting scalar profile of a solution has the following radial
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dependence

D (1) = V6 arctan e'. (3.42)

[nverting this relation for finding ¢ as a function of ® is an easy task equivalent to solving
this simple transcendental equation for . We may do this analytically or in the last
part of the analysis we may resort to numerical results. Here we only want to add, that
monotonically increasing function ([BZ42)) takes values between 0 (which we have chosen as
value of 1) and P, = @w ~ 3.85 (which must be the value of the scalar field reached
at UV FP) in a symmetric way around the origin. The red curve on the left panel of Fig.
shows, how this scalar profile changes, when we move in radial direction. From last

relation (B22) we get that

e’ = tan (@) : (3.43)

Plugging this to the formula (BAIl), we obtain an analytical shape of the scalar potential

as the function of ® given by the following combination of trigonometric functions:

V(®) = —% sin? (@) (3 — cos (@)) : (3.44)

Using some trigonometric identities we rewrite this to the following simple form:

—7 + 8cos (@) — COS (@)] . (3.45)

This function is shown on the plot placed on the right panel of Fig. at least over

the range of the scalar field values covered in the holographic flow, i.e. from ¢ = 0
to Pyy = Ppax. Therefore we have produced an analytical result for the scalar potential
necessary to produce bulk geometry with conformal factor A(r) given by (B339) as a solution
of the system consisted of Einstein gravity and bulk scalar fields.

We can describe quantitatively few features of this potential. Firstly despite that it

is defined only for region of ® between 0 and ®,,,, we can make it periodic. The proper
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Figure 3.2: On the left: Radial dependence of the scalar potential V' (¢) in blue and of the
scalar profile ®4,, which is a solution of EOM, in red. On the right: Scalar potential V' as

a function of ®. Scalar potentials are shown in units of 7.

period in this case is exactly equal to 2®,,,, as we can read from explicit analytic formula
BZ0). We chose the biggest proper period out of periods for trigonometric functions, which
appeared there. As a result this was the period of the second term in the square bracket
in this formula. Moreover we can extend potential’s domain in such a way that the full
potential would be symmetric around points with values of ordinates ®yv and ®r. To do
this we must reflect the plot valid for the holographic RG flow with respect to vertical axes
at its critical points or simply extend naturally the domain of the trigonometric functions.
We easily observe that the period of two trigonometric factors in ([BZ4)) is identical and this
is the result for the period of the whole potential, which is equal to v/67r ~ 7.70. Obviously
from the equation ([B20) we have the shift symmetry & — & + &y enjoyed by the scalar
EOM related to the free choice of initial value of the field for IR region. For holographic
purposes we chose &g = 0, nevertheless we could equally well shift it by integer multiple
of the period. Secondly we don’t have the possibility of adjusting the constant in the
potential, this is precisely determined by formula ([BIX). This additive constant in the
potential is related to the already determined by the properties of FP in UV, value of the
cosmological constant in the bulk region V.. Therefore we have monotonically decreasing

potential from value zero at ®r = 0 to the value Viyy = —6r.2 at the edge of RG flow in
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UV for & = ®,,... Despite the fact that we were able to produce an analytic results for the
full form of the potential, it is still interesting and possible to consider limiting behaviours
around the IR and UV critical points. We will obtain these by a perturbative expansion
around these critical points. We define deviations of the scalar field value from its critical
ones by d®yy g = ® — Pyy g respectively for IR and UV FP’s. We easily verify that in
expansions around the corresponding points odd powers of these deviations do not appear.

We can cast potential in the vicinity thereof into the following form given by a series

V(0P) = Vet + %m2((5<1>)2 + 2—14>\(5<I>)4 4+, (3.46)

where formally infinite set of parameters Vi, m?2, ), ... parametrises dynamics of the
scalar profile near the corresponding critical points of CF'T’s. We have obviously that Vi
is the value of the cosmological constant in the corresponding to FP of RG AdS vacuum.

The mass parameter can be calculated from

% 1 d (1 dV)
m? = — - —— (=== (3.47)
o2 bebpy w2 dr \Odr )|
14

and similarly with the fourth power of the operator g; 2 for the quartic coupling A. Here
¢’ denotes the radial derivative of the scalar, which from [BX) equals to \/m,
where all functions are understood as functions of the independent variable r. As the
results of calculations we obtained for the masses m%; = —r.2, m#y, = 3r.? and for the
quartic couplings A\jg = —g, Auv = —4. We are not afraid of negative values of the quartic
couplings here, because the standard problem of unboundedness of the potential doesn’t
show up here. Scalar potential, which we found, is defined only on finite interval of ®, where
it is bounded function and never reaches large negative values. This remains obviously true,
if it is extended to be periodic. These negative values of quartic couplings are valid only
in the neighbourhoods of critical points of the potential and must be understood as the
first terms in series for the exact potential. We obviously see from the plot (and this also

confirmed by the calculation of mass parameters), that the critical point in IR is unstable,

whereas the other in UV exhibits stability.
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3.4 Interpretation and discussion

Holographic interpretation of the findings from the last section is as follows. Standard
reason for start of a nontrivial RG flow is that the boundary CFT is perturbed by some
relevant operator with respect to UV critical point. It has a conformal dimension A < d in
order to be a relevant deformation. In holographically dual gravity description this operator
is dual to some bulk field. In the case of scalar deformation in CFT, this is precisely ®,
and the conformal dimension of the operator is related to the mass of the bulk scalar by
the famous relation A(A — d) = m? (in units of r2). For asymptotic behaviour near UV
we have two solutions for conformal dimension of deformation §®, namely Ay = 2 + /7.

The scalar field near boundary will have two independent solutions

6O = 2= d_ () + ' O (2). (3.48)

Now because Ayy are of opposite signs (as always for positive mass square parameter),
we have one normalizable and one nonnormalizable mode of the scalar near UV boundary.
Moreover we have that the standard choice A = A, of nonnormalizable mode corresponds
to an irrelevant operator, which is implied by the fact that A, ~ 4.65 > d = 4. This means
that the vev for the dual operator in the boundary theory is represented by not vanishing
coefficient &, ~ (<I>>bdy. However for normalizable mode e~ we have decaying solution
with the coefficient ®_ proportional to the vanishing coupling for the dual operator in the
boundary theory. For this mode we easily see that the conformal dimension —A_ =~ 0.65
is precisely the exponent controlling asymptotic decay of this mode of d®. In this spirit
the operator, which triggers nontrivial RG flow from UV FP to a critical point in the IR
is irrelevant from the viewpoint of UV FP and only its nonzero expectation value causes
the flow.

Note that in the infrared limit we have m?; < 0 and hence the dual operator is always
irrelevant there (0 < A < d) from the perspective of IR FP. We have explicitly that
A; = 24 +/3 and both modes in IR regime are normalizable and correspond to irrelevant

operators. The standard choice for a surviving mode is A = A_, which signifies, that the
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dual operator is relevant. The leading contribution in the asymptotic decay of deviations
0® means that the corresponding coupling is nonvanishing in the boundary theory. This is
a standard holographic interpretation of the flow. From the boundary viewpoint we agree,
that the deformation in IR is relevant, because the inclusion of threshold phenomena
modifies the flow significantly by softening it. In UV we see, as noticed previously, that
with running ([B338) we are already at FP and the deformation turning the flow into the

direction of new IR FP is only irrelevant.

We can now come back shortly to the issue of a running of mass parameters in the
boundary theory, which are not of the gravitational type. Using equations (B23)) and
B39) we derive that all energy dependence is given by the root factor Vi+e =, /1+ ﬁ_g
Running of the Higgs vev is particularly simple here (because kg = vy) and is expressed
by formula v(k) = /vZ + k2 Tt is important to find UV limit of this formula. Here
is the result v(k) = k (1 + %) We see explicitly that it scales asymptotically in UV
like in a nontrivial FP regime. For comparison we can mention here the running of other
mass parameter in a theory. It is given by M = M,e?(") so in terms of energy scale
k it is expressed by the equation M (k) = 1\5_001 /1+ % In the UV regime this simplifies
to k]‘f—oo <1 + %) We derive the conclusion, that the running of all dimensionful matter
couplings, no matter what is their initial value, enters UV FP regime around the same
energy scale. This scale is given by the IR value of the Higgs vev vy. These observations
may harmonise with recent findings in [83]. There authors pointed out, that the only scale

at which new physics beyond SM can reach nontrivial UV FP regime is the electroweak

scale.

Here we discuss some issues related to the proposed modified RG flow of gravitational
coupling in 4-dimensional theory and its holographic interpretation. Firstly in the holo-
graphic model with bulk phantomic scalar we were able to describe the dual RG flow
geometry. We achieved softening of the flow in IR, by including relevant deformations
caused by threshold phenomena. They hide some strongly interacting physics, because

this IR part of the spacetime is dual to a flat holographic spacetime. To do this softening
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of the flow in IR, we had to use warp factor, which was convex as a function of radial
variable. Next the convexity of warp factor forced us to use the scalar field with wrong
sign of the kinetic term. However the formal calculation in the holographic framework can
still be carried on, even in this case. In the standard approach concavity of the warp factor
is closely related to the famous c-theorem. This originates from the duality between local
radius of curvature and the central charge of CFT. In holographic description of matter
couplings we have always that A” < 0, hence AA" < 0 [A7] and this perfectly agrees with
the local and global version respectively, of c-theorem Ac < 0 between UV and IR, for
references look at |9, 60]. For those holographic gravitational flows, which we considered
in previous sections, we found disagreement with the standard c-theorem. Maybe the ex-
planation for this is that gravitational interactions must be properly included and must
modify somehow standard CFT from flat spacetime.

This holographic construction is only one, indeed very interesting and enlightening,
way of describing effectively RG flows in real 4-dimensional spacetime. We do not have
to attach physical reality to such holograms - they are good descriptions extending our
insights for the physics of the boundary theory. We do not claim, that 5-dimensional bulk
spacetime with phantomic scalar field is a real physical object, amenable to observations.
This construction should be understood merely as a geometrization of the RG flow from 4-
dimensional boundary theory. It happens that we achieved this mathematical construction
by adding only one additional holographic dimension and this resembles very much ideas,
which are present in AdS/CFT conjecture. Our phantom field has a nontrivial potential
with two critical points (in the holographic domain) and the nontrivial RG flow corresponds
to interpolating BPS domain wall solution for this potential. In our setup, where all
functions depend on only one variable - radial coordinate, our model of phantom dynamics
in such potential admits a nice classical mechanics analogy. A similar analogy occurs in the
cosmological inflation, when the similar motion of a scalar field (inflaton) in the potential
resembles much rolling down the potential by a material point with friction given by the
Hubble parameter. In our case, from equation (B3) in the phantom case, we see that when

we interpret negative to radial coordinate as the time parameter and value of the scalar
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field as the position coordinate, we obtain motion in the potential for a material point with
a negative inertial mass. This means that the acceleration is in opposite direction to the
applied force and the material point rolls up from & = &, to & = 0 during the time
evolution. We also have a velocity-dependent friction term caused by the curvature of bulk
spacetime. In this situation we can reverse direction of time and end up with perfectly
reasonable dynamics of normal material point starting its evolution in the critical point in
IR, rolling down and ending in UV with & = ®,,,.. This is one interpretation of our RG
flow and its holographically dual description in terms of gravitation and phantomic scalar
in 5-dimensional bulk. We saw in the previous section, that thanks to the holographic
interpretation, we could find some interesting features of the gravitational RG flows. The
examples here are the dimensionalities and characters of the operators, which caused the
non-trivial RG flows from UV to IR and which deformed IR gaussian FP.

At the end we talk about some comments regarding asymptotic safety and its holo-
graphic interpretation in the light of just presented construction. A gaussian FP of RG
flow of gravitational coupling in IR is to be understood as noninteracting free CFT on flat
spacetime, so it satisfies the description given above. At this FP Newton’s constant G
rescaled by the square of the typical momenta tends to zero, gravity is decoupled, how-
ever in the holo-dual AdS-spacelike curvature is infinite (there 5-dimensional Planck mass
M doesn’t run). This CFT in IR FP is deformed by adding irrelevant operator (from
the IR FP perspective) m%R to the free action and therefore the gravitational couplings
are turned on. The nontrivial RG running for them starts. The holo-dual is no longer
AdS spacetime, but more complicated holographic RG geometry. Going towards UV we
integrate in interacting degrees of freedom - higher energetic gravitational modes, so the
corresponding c-function (if possible to construct) should grow monotonically. However
as we saw from holographic approach, this doesn’t happen in the gravitational case, but
presumably usual arguments don’t apply here. In UV limit we enter another FP region of
RG flow, different from one in (BZ2H). However there is an important difference, because
4-dimensional Newton’s constant in units of momenta tends to a constant and Planck

constant grows without a bound. The UV theory is scale invariant; if at FP, it may be
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conformally invariant, but surely it is not a standard CFT on flat spacetime.
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Classicalization and Quantum Effective

Action
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Chapter 4

Classicalization in nonlinear sigma

model

4.1 Introduction

The nonlinear sigma model and Einstein’s theory of gravity have many similar features.
At the kinematical level, both theories have nonlinear configuration spaces, which make
their dynamics necessarily nonlinear too. There is no “zero field” limit and the quantization
procedure can be based on the use of the background field method. In both cases the degrees
of freedom can be viewed as Goldstone bosonsH and their interactions involve derivatives.
Due to the nonpolynomial nature of the action, it is natural to think of the fundamental
fields as being dimensionless. Aside from a vacuum term, the Lagrangian can be expanded

as

S=Y"> GknOkn . (4.1)
k n

where Oy, is an operator containing £k derivatives and n powers of the fields. H This

'In the case of gravity this is explained for example in [G4].
2Usually k& must be even.
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operator can be naturally a sum of finitely many monomial terms in fundamental fields
of the theory. In four spacetime dimensions and in natural units the coefficients gs, have
dimension of mass squared and g, are dimensionless. In order to define a perturbative
expansion with a canonically normalized kinetic term, one usually redefines the fluctuation
field by a factor \/ga2 = m. Then one finds that the role of the perturbative coupling is
played by 1/m. It has dimension of length, so these theories are power counting nonrenor-
malizable. Perhaps more urgently, perturbative scattering amplitudes grow like powers of
momentum and exceed the unitarity bound for momenta comparable to m. In fact, it is
more correct to say that the perturbative expansion parameter is the dimensionless ratio
p/m, where p is a typical momentum of the process under study, so that the perturbative
treatment is useful up to momenta of order m. The standard view is then to regard these
theories as effective field theories, valid at energy and momentum scales below m.

In principle, however, it is possible that some of these theories may heal themselves of
their perturbative problems. By including true quantum dynamical effects these theories
may somehow overcome problems of violation of unitarity and nonrenormalizability [82].
One possibility is that the growth of the effective couplings such as p/m terminates in the
ultraviolet limit. In field theory a growth of a relevant coupling without an upper bound
doesn’t make much sense. This is not the case, if the theory approaches a fixed point
in the UV [65]. In particle physics and gravity this behaviour is also called “asymptotic
safety” [I4]. There is by now significant evidence for the existence of asymptotically safe
RG trajectories in gravity, see for example [66]; some work has also been done for the
nonlinear sigma models [67, 68| and in particular for the electroweak chiral model [69].
One expects that in such asymptotically safe theories the scattering amplitudes also stop
growing and respect the unitarity bounds, although no complete calculation of this type
has been performed so far.

More recently, a different idea has been proposed, namely that the growth of the scat-
tering amplitudes is controlled by the formation of classical intermediate states. In this
picture, which has been called “classicalization”, a high energy quantum state with low

occupation number would evolve into a classical state (called a “classicalon”) with large
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occupation number. This is conjectured to happen, when the radius of the configuration,
during process like a collapse, becomes comparable to a characteristic radius r, called “clas-
sicalization radius”. The classicalization radius is a new length scale in the theory emerging
from nonlinear dynamics. The important point is that r, does not decrease with energy
as one might naively think, but rather grows with it or at least tends to a constant. We
will call these cases strong and weak classicalization, respectively. Therefore the standard
paradigm of high energy physics, that with the increase of energy of colliding wavepackets
we decrease the probing scale given by the corresponding Compton wavelength, breaks
down here. As a result, when the energy of the incoming states becomes greater than
the characteristic scale m, scattering is dominated by the formation of classicalons and
the cross section tends to the classical geometrical value r2. In such conditions quantum
Compton wavelength ceases to be a resolving scale, instead its character is taken by the
classicalization radius. One of the necessary prerequisite for classicalization in field theory
is the high level of nonlinearity and corresponding self-sourcing. The idea of classicaliza-
tion emerged first in the case of gravity, where the classicalons would correspond to black
holes [70], but subsequently it has been recognized as a possible behaviour also in Gold-
stone bosons models |71} 72 [73, [74]. Other aspects of classicalization proposal have been
considered in |75, [76], 77, [7§).

In spite of the evident differences between asymptotic safety and classicalization, one
wonders whether they might not be two ways of looking at the same phenomenon. If, for
example, the amplitude for Goldstone boson scattering unitarizes at high energy without
having to introduce new weakly coupled degrees of freedom, it would be surprising, if there
existed two independent mechanisms by which Nature could achieve this. If two expla-
nations are available, they might just be different descriptions of the same phenomenon.
This is only a hypothesis, but still we believe, that in a fully consistent theory, Nature has
chosen definitively one unique mechanism, at whose two faces maybe we are looking now.

Motivated in part by this question, in this chapter we discuss aspects of classicalization
in the nonlinear sigma models. We extend previous analyses, done for scalar fields, by

considering in some more detail the effect of the curvature of the target space. Much of the
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work, that had been done previously, had concentrated on a simple model of a single scalar,
and since a one dimensional space is flat, nontrivial interactions necessarily involve terms
with more than two derivatives. When the target space is curved, there are infinitely many
interaction terms already at the two derivative level. We analyse the effect of these terms
first by themselves, and then in the presence of higher derivative interactions. In order to
be able to discriminate the effect of positive and negative curvature we shall consider both
spherical and hyperbolic target spaces. In a different vein for nonlinear sigma model with
two derivatives and with positively curved target space, evidences in favour of nontrivial
FP of RG have been found recently [T9]. This is why, exactly this model is under our
investigation in this chapter.

If one wants to compare classicalization to asymptotic safety, the first obvious difference
is the fact that asymptotic safety is based on renormalization group running, which is a
truly quantum effect. However classicalization, as the name may suggest, is related to the
formation of classical states and according to the classical dynamical evolution equations.
In order to disentangle classical from quantum effects we will work throughout in units
where h is not set equal to one.

Various signatures of the classicalization were outlined in the literature |73, [74), [[7].
The phenomenon of classicalization is of highly nonperturbative nature and hence various
checks are useful to decide a priori about occurence or not of it. One of such check relies
on a change of the characteristic of the nonlinear PDE. If the classical equations of mo-
tion are put in the quasi-linear form and the characteristic of them changes sign at some
location, then this location is expected to be an onset of the classicalization. This way of
UV completion is strongly based on the classical states. Hence another requirement is the
existence and single-valuedness of the solutions in classical field theory, which must be de-
fined on a whole spacetime. In this respect such classicalons are analogs to solitons, known
in nonlinear physics. In this chapter we will use another method for deciding about the
occurence of classicalization in our models. This method checks, whether the asymptotic
behaviour of the solutions is changed and whether there is a significant deformations of the

wave profile of the incoming packet in the scattering process. This approach was pioneered
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in [72] and in the next sections we will follow closely these derivations.

In this chapter we consider the phenomenon of classicalization in nonlinear sigma mod-
els with both positive and negative target space curvature and with any number of deriva-
tives. We will introduce and describe a weak form of classicalization, putting special
attention to the dependence on the sign of the curvature. Nonlinear sigma models with
higher derivatives actions are also analyzed, where a strong form of this phenomenon oc-
curs and which is moreover independent of the sign of curvature. Finally we will argue
that weak classicalization may actually be equivalent to asymptotic safety, whereas strong
classicalization seems to be a genuinely different phenomenon. We also discuss possible
ambiguities in the definition of the classical limit, which is in the very core of understanding
physical mechanisms lying behind classicalization.

We conclude this introduction by outlining the content of the following sections. In
section 2 we review the notion of classicalization in the case of a simple theory of a single
Goldstone boson with arbitrary derivative interactions. In section 3 we discuss nonlinear
sigma models with values in maximally symmetric spaces with both positive and negative
curvature, and with two derivatives only. We find that a weak form of “classicalization”
happens. In section 4 we extend the analysis to include higher derivative terms. There we
find, that the classicalization radius grows with energy, regardless of the sign of the internal
space’s curvature. In section 5 we return to the comparison between classicalization and

asymptotic safety and we draw our conclusions.

4.2 A single self-interacting Goldstone boson

In this section we begin by considering a model of a single Goldstone boson with higher

derivative interaction lagrangian of the form:

4(m—1)

2m

(%

L= 007+ — ((00P)" (1.2

Here m is an index counting the derivatives. The field has the canonical dimension
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M2 712 and the coupling a (which was called L, in [T}, [[2, [73, [74]) has dimension
L3* M~Y* Later we will comment on the effect on classicalization of the presence of
terms with lower or higher number of derivatives, but for the moment we assume that
(E32), with a fixed m, is the only interaction. Despite that we are mostly interested in
classicalization, which may occur in quantum dynamics of fields, here we will analyze it
using methods and equations of classical field theory. The action given by ([2) we view as
the bare action of our model subject to quantization procedure. Performing the full non-
perturbative calculation in quantum field theory is a very formidable task. Here we will
only incorporate quantum ideas about Compton wavelength and the quantum resolution

scale.

The equation of motion coming from the lagrangian ([2) is

O + a10m=D gr [(m ((a¢>2)m‘1} —0. (4.3)

In our setup we have wave incoming from infinity and approaching the centre of our coordi-
nate frame. Assuming that free asymptotic states solving the equation gy = 0 exist, the
solution of the nonlinear equation (E3]) can be constructed perturbatively. We consider so-
lutions with spherical symmetry. Then the divergence of a one-form v, is 9yvg — %2 O.(r*v,)
and the d’Alembertian is 0 = 97 — % 9,(r% 9,).

The initial ingoing unperturbed free wave has the form ¢o(t,r) = Vhy(w(t +1))/r,
where ¢(z) = Asin(z) + Bcos(z) is a dimensionless harmonic function in one dimension.
The general solution for the free massless wave equations of motion (without interactions)
we obtain by superposing waves with different real coefficients A and B as well as with
different frequencies w. (We threw away other solutions of free equations due to boundary
conditions at spatial infinity). However in further analysis, for simplicity, we will stick to
a monochromatic wave. We will assume that the wavelength w™! is small compared to the
radius r, so that we can think of this solution as a harmonic function with a slowly-varying

r-dependent amplitude. At large distances the effect of the interaction is negligible (because

of higher 1/r dependence of the interaction terms). This is why there the free wave solution
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well approximates a solution of full theory and constitutes well-defined asymptotical state
of the theory. When considering solutions with spherical symmetry approaching central
region from radial infinity, it is natural to assume that the characteristic classical length
of the configuration is given by radius r.

Our equations of motion are nonlinear, this means that even free initial wave, when
approaching the centre develops a scattered component. We treat this scattering process

perturbatively. The equation for the first order perturbation ¢, is

(1 + a4(m—1)((a¢0)2)m—1) D¢1
+2(m — 1) ™V ((9¢0)*)™ 2 (0" o 0 Po 00,1 + 20,00 0" 0o Dhr)
= —2(m — )"V ((9g)*)™ 2 8" do 0" do Du Dy - (4.4)

We have written on the left hand side of the equation all the terms that contain derivatives
of ¢; and on the right a source term containing only ¢o. This equation is still quite
complicated. However, we will see a posteriori that for the values of r, that we are interested
in (r > w™! and r — 00), the terms on the Lh.s. that come from the interaction are small
relative to [lg;. For our purposes it will therefore be sufficient to retain in the L.h.s. only
the term [lg;.

We make an ansatz for the form of the first perturbation:

or(t,r) = VR f(r)n(w(t +7)) . (4.5)

This ansatz preserves spherical symmetry of the configuration, and similarly to ¢y we chose
it in a separated form: oscillating function 7(z) and radially dependent amplitude f(r). In

the approximation wr > 1 we have that

o = 22 (g (46)

3 Alternatively one could observe that as long as ¢; is a small perturbation relative to ¢g, the terms on

the L.h.s. coming from the interactions must be small relative to the source term on the r.h.s. .
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where a prime denotes derivative of a function with respect to its argument. Then the

equation for ¢, in the leading order of our approximation is

m— _ (m—1) , ,m m—
- 2wVh " (fT’)/ _ _2 l(m 1)@4 Dw (\/ﬁ)2 1 ¢m—1 ¢/m—2 [w¢// +4w/2} . (4.7)

r rSm—l

We easily see, that two functions f and n of independent variables r and z in above
equation separate thmeselves into two independent ordinary differential equations. The

full solution of this equation can be expressed as

gm—1 C]{4(m—l) Em—l\/ﬁ

6713m—2

where E = hw and n(z) = [T¢m 1™ =2 )" + 44"?] dz’. Note that for any m the inte-

$1=— n(w(t+1)), (4.8)

grand is an odd and periodic function with period 27 and such that the integral over one
period is zero. Therefore the function n is again dimensionless and periodic with period
27, which means that the scattered wave ¢; has the same frequency as the incoming one.
In the solution for 7(z) function we neglect the constant of integration. In the solution of
radial equation for the function f(r) we do the same, because such constant only renor-
malizes the amplitude of the initial wave. In solving (7]) we have restricted ourselves to
our ansatz (LX) and a posteriori we confirm its validity. Invoking uniqueness theorems,
well motivated by physical situation we are in, the form of the scattered component is to
leading order of our approximations given by (L8]). This is the deformation of the incoming
wave profile, that we were looking for. Now we will analyze it further.

Since 1 ~ 1 ~ 1, the ratio of the amplitudes of the first perturbation to the initial wave

can be expressed as

4(m—1) om—1 pm—1 L\ 3(m—1)
: -(=) (4.9)

£y = e .

where in the last step we defined the “classicalization radius” r, = v/2a4E. Notice that
it does not depend on m. To obtain the ratio of amplitudes in our case, it is enough to

consider only radial dependence of initial and perturbed wave. Another useful quantity
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could be the ratio of energies stored in respective waves averaged in time to leading order
in our approximations. It happens, that the squares of the oscillating parts averaged over
one period are of the same order. This implies, that the ratio of energies is basically the
square of the ratio (EJ). We can now see, that the interaction terms on the Lh.s. of
) are indeed negligible. For example the second term in the first bracket is of order
(Ea*/r3)™=1 and when r > r, we have (F a*/r?) < 1. Similar considerations apply to
the other terms.

We thus find that the scattering process becomes important at distances of order r,,
where the ratio (EJ) is of order one. This behaviour must be put in contrast with the one
in A\¢* theory, where the characteristic radius is given roughly by \/w [2]. Normally one
would expect, with quantum intuition, that a scattering process involving particles with
energy E probes distances of order w™' = h/E. When collapsing wave approaches radial
coordinate r = r,, then the nonlinear modifications of the wave profile are so strong, that
the information about structures resolved by Compton wavelength is completely unavail-
able. We can only read out the structures at the characteristic scale r,. The radius r, plays
the role of the resolution scale and determines the characteristic momentum of the process
as well as its cross section. This behaviour has been called “classicalization” in [[[1], [[2, [73].

The meaning of the classicalization radius can be understood also as follows. First let
us define a characteristic energy scale E, = v2h%*a !, for which classicalization radius
equals to the Compton wavelenght i/E. At low energy (i.e. F < E,) the theory can be
treated as an effective field theory. Due to the uncertainty relations, an incoming wave with
energy F can only probe distances of order 2/ E. When one gets close to the characteristic
energy scale I, one would normally expect the effective field theory to break down. What
one sees here is that the scattered wave becomes significant at radius of order r,, and
therefore cannot resolve smaller distances. Since r, grows with energy, there is a turnover
energy where this bound becomes stronger than the one set by the uncertainty principle.
At F > FE, the resolving power decreases with energy. In this regime the scattering is
dominated by the production of classical states with high occupation number, which will

typically decay into many low energy particles [[8]. The hard scattering of few particles into

77



few particles will be exponentially suppressed and unitarity will be restored 711, [72), [73] [74].
In this way classicalization may provide a form of UV completion of an effective field theory,

that does not necessitate the introduction of new weakly coupled degrees of freedom.

The non-spherically symmetric case has been discussed in [76]. For mild deformations,
it was found that the classicalization radius becomes smaller (larger) in regions where the
curvature of the incoming wave is smaller (larger). Since the preceding arguments were
order-of-magnitude estimates anyway, this does not change the conclusions. In the limiting
case, when the incoming wavefronts are flat, the classicalization radius goes to zero and

hence no classicalization occurs.

Let us now allow for the simultaneous presence of the interaction terms with different
values of m. Motivated by effective field theory, we assume that all interactions are of the

form

Ling =Y cna’™ 7 ((09)°)" (4.10)

m

To each interaction there corresponds a classicalization radius given by r3 = 2E o* ™/2m c,,,.
Which one of these scales plays the dominant role depends on the dimensionless coeffi-
cients ¢,,. If ¢, ~ 1/m, as we assumed earlier, they are all of the same magnitude and
therefore in principle all terms in the Lagrangian are equally important. On the other
hand if 4c, > +/6c3 > /8cy > ..., then the corresponding r, decreases with m, and the
four-derivative term is the most important one. For large m one could assume that the
coefficients ¢,, do not grow faster than exponentials of m (c,, < a/2m for some a > 1).
(This condition is quite reasonable for effective field theories.) Under these conditions the
system will classicalize, when its size reaches the largest of all these possible classicalization

radii and the higher derivative interactions will not play any significant role.
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4.3 Nonlinear sigma model with 2 derivatives

Now we start the analysis of nonlinear sigma models, which is the main task of this
chapter. When there is more than one Goldstone boson, the internal space of them can
be curved and moreover the theory admits interaction terms with just two derivatives. A
standard way of describing the dynamics is to package the kinetic and the two-derivative

interaction terms in the geometrical form

L= %hab 00" 0", (4.11)

where hy, is a metric in the target space. In full generality this metric is a function of
coordinates on the internal space, here this role is played by field components ¢®. The
coefficients of the Taylor expansion of the metric around a constant ¢ can be viewed as an
infinite set of coupling constants. From this expansion we recover 2-derivative nonlinear
interaction terms. We will consider real, maximally symmetric target spaces, for which all
couplings are related and only the overall scale of the metric remains as a free parameter

of the theory. In such case there exist coordinates such that

¢a¢b
—2

f3F ¢

where the + and — signs correspond to positive and negative curvature of the target

hap = Oap & (4.12)

space (sphere and hyperboloid) respectively. In the above formula f,, which has the same
dimensions as the field, has the meaning of radius of the sphere or hyperboloid in field
space and 32 = E) . E = 0o ¢°¢" is the usual flat Euclidean product. Moreover we used
fields ¢, with covariant position of indices obtained by lowering them using the Kronecker
delta symbol. Later we will work only with this definition and we will never use the true
metric in the target space hy to lower indices on fields. In following derivation Lorentz
indices will be suppressed, when this doesn’t lead to confusion. We will use vector notation

for denoting the components in the field space and the centerdot for a scalar product in

this space. Exploiting the explicit form of the metric, the lagrangian (1)) can be put in
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the form

— . 2
£::% a¢fi(¢ aﬁg (4.13)
¥ ¢
The corresponding equations of motion are
2
00 (6-06) o (d-09)
Oo” + + = =0 (4.14)

gFe (29
We obtained them in a contravariant form as viewed from the flat internal space perspective.
Therefore we treat the nonlinear structure in the kinetic term as the interaction, not as a
geometry in the target space. Due to this paradigm our equations of motion in (BTl are
in a non-covariant form in a curved target space.

As in the preceding section, we are going to look for perturbative solution in the form
E) = E)o + 5)1 + ..., where E)o is a solution of the free wave equation: Dgo = 0. We
will study to which extent in spacetime evolution we can treat 5)1 as a small perturbation
solving approximately the nonlinear field equations with interactions. We will follow closely
the analysis of the preceding section in a very much the same set-up with spherical incoming
and scattered waves. In order to this, it is tempting to try and reduce the problem to a
single-field problem by assuming that only one component of the field is nonzero. The
equations of motion seem to retain much of their nonlinearity even in this case. This,
however, is an illusion that can be easily undone by a field redefinition. For example, with
a single-field ansatz (¢! = ¢ and ¢*3 = 0) the Lagrangian ([EE13) becomes

L op)? 13

2 13 ¥ ¢
and this can be recast as a free field Lagrangian for ¢ by the redefinition ¢ = fysing

(4.15)

(for the upper sign) or ¢ = fzsinh ¢ (for the lower sign). This means that, if we make a
single-field ansatz we will not be able to detect effects due to curvature, which is one of
our purposes. One-dimensional field space is diffeomorphic to a straight line and as such

is not characterized by any curvature. We must consider multi-field ansatz, possibly with

80



isotropy in a target space. This is an additional difficulty, we must overcome, when working
with fields taking their values in the nontrivial internal space (nonlinear sigma model).

Without much loss of generality we will work with a general spherically symmetric
unperturbed incoming wave ¢g(r,t) = vh*(w(t +r))/r, where we assume, that all com-
ponents have the same frequency w (monochromatic waves), and we assume wr > 1, as
before. The first order perturbation will be written using the following form of the ansatz:
%(r,t) = Vhn®(w(t + 7)) f(r). Later we will see, that it is consistent to assume that
all components of ¢{ have the same radial dependence. However we allow for different
oscillating functions n%(z) for different components in field space.

Linearizing the field equation around 30 we find

6 by 00§ £ & R OB 09 + (bcf_ﬂ hipe D% O
f¢2>_ 0 o Po
— — \2
205 -\ Dy Dy b <¢0~8¢0> b
T o2 <8q§0> ¢0+<¢0~8“¢0) 8“¢0i2—_>2¢0 b1
( ) f3F oo
=7F ¢°_>2 hie 0 09 - (4.16)
13— 9o

Here the metric hy, has to be regarded as a function of 30. We presented last equation in
a mixed form, where we used covariant metric in the target space as well as noncovariant
Euclidean products of fields. The reason for this is that such form of the linearized equations
of motion emerges from fully covariant formalism in target space, when only the derivatives
of the target metric are expressed in terms of fields. As we will see later it is useful to keep
the metric field unexpanded. As in the preceding section, higher interaction terms on the
L.h.s. can be neglected. We are left with the following form of the simplified equation for
the first perturbation:

_9% Odb O (4.17)
+ 5 —9 'tbc 0 (I .

o %o

To leading order in 1/rw we find equation in the target space covariant form:

5% hy Dgp§ =
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which is equivalent to the following equation, when we explicitly expand the target space

(4.18)

metric

— —>/)
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We note right away that in contrast to equation () the w-dependence will cancel out.

(4.19)

Instead, the behaviour of the solution is governed by the new dimensionless parameter
fsr/Vh. As long as fsr/v/h > 1, the denominator in the r.h.s. can be approximated by
one and the equation can be solved by separation of variables. Now we can notice that in
this case, after separation the radial equation for f is the same for all components of ¢f,

therefore the choice f*(r) = f(r) is justified. The solution can be written in the form

8t = TR (w(t + 1), (4.20)
2f¢7’

where n%(z) = [* waE) : E)/dz’. This first perturbation is again an oscillating function
with r-dependent amplitude, but in contrast to the case of the preceding section ([ELF), the
amplitude of the oscillations of the scattered wave is independent of w. The ratio between

the amplitude of the first perturbation and the incoming wave is

7ol = g = () (4.21)

:2f(§7’2 r

From the above expression we see that we can define a “classicalization radius” by

_ v
V2f,

independent of the frequency or energy of the incoming wave packet. Again, incoming

r. (4.22)

waves with arbitrarily high frequency are unable to probe distances shorter than r,, but in
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contrast to the preceding case r, does not increase with frequency. We thus have a weaker
form of classicalization (compare [74]).

Let us now consider the effect of curvature, which (aside from the immaterial overall
sign) is contained in the denominator of the r.h.s. of ([EIJ). We observe that since 0 <
?2 < C, for some constant C' of order one, the effect of the denominator is to enhance
the amplitude of the scattered wave for positive curvature (upper sign) and to decrease
it for negative curvature (lower sign). In fact, with the positive curvature the amplitude
reaches a pole for some r =~ \/f_i/f¢, strengthening the case for classicalization of the
preceding analysis. In the case of negative curvature, rhe r.h.s. of ([EIJ) increases for
decreasing radius, but tends to a constant for » — 0. The argument for classicalization is
considerably weaker in this case.

This can also be seen in another way. The approximation leading to solution in a

form (E20) corresponds to considering the theory with standard kinetic term and with

interaction Lagrangian

(¢-00)
zfq% '

Let us consider, what happens if we take as an interaction the next term in the expansion

Loy = & (4.23)

of the denominator of Lagrangian in equation ([EI3)

—2 — —

3309y
2f4 '

From here one finds instead of ([EI9) the following approximate form of the equation of

Eint - (424)

motion for the first perturbation:

20Vh " wWh? 2
- (fr)n" = ——g5V"Y v -9, (4.25)
r for
whose solution has a radial dependence such that
h2
[fr)rl = 55 Fi (4.26)
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This corresponds again to a classicalization radius of order \/f_’L/f¢. It is easy to see that
this is true for all the terms in the expansion, but when one takes them all into account
simultaneously, they appear all with negative sign, when the curvature is positive, but
with alternating signs, when the curvature is negative. Therefore in the case of positive
curvature of the target space, we have enhanced behaviour of the scattered wave amplitude
signalizing the occurence of the classicalization. For sigma models with negatively curved
internal space, these higher interaction terms are of the same order, but with alternating
signs. In the effect there are no evidences for strong deformation of initial wave profile and
classicalization does not occur. This dependence on the overall sign of interaction term in
(E23J) is in agreement with general conclusions derived in [72], [73]. Nonlinear sigma models
with these two different signs are very different also on the level of classical field theory

solutions.

For nonlinear sigma model with two derivatives we showed, that only in a case of
positive internal space curvature, classicalization happens. We must emphasize however
that it happens not in a strong form (where classicalization radius depends and grows
with the energy of the packet). In the case of two derivatives action, energy dependence
is removed and classicalization radius is a fixed length scale. In this aspect situation can
be similar to a linear sigma model with standard kinetic term written for a dimensionless
fields. Then constant /A [y ! plays very similar role like r, and is a fixed length scale.
But we know that in this flat case theory is free, without interactions, and that there is no
scattering. When target space is with positive curvature, then this length scale sets also

the characteristic length of the classicalization phenomenon.

In the case of an incoming plane wave, the ratio of the first perturbation to the initial
amplitude is independent both of w and r. This gives no clue about classicalization. These
considerations in the planar wave case confirms previous statement, that if classicalization

holds for NSM with 2 derivatives, it is in the weak form.
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4.4 Nonlinear sigma model with 2 and 4 derivatives

Now we want to add higher derivative terms to action of nonlinear sigma model and
check their impact on the analysis of scattering processes. In a maximally symmetric
nonlinear sigma model with a two-derivative Lagrangian ([EI3)), a general four derivative

interaction has the form

LY = 6,01 hapheg + 03 haehyg) 9,0 0" ¢ 0,¢° 0" ¢ | (4.27)

int
where /1 and /5 are dimensionless constants. In effective field theory framework we expect
them to be of order one. Expanding the metrics h,, in Taylor series would yield infinitely
many monomial operators with coefficients g4 ,,. For the sake of comparison to section §&2
we could write g4 = a*. In effective field theory one expects the coefficients of operators
with different number of derivatives to be all proportional to powers of the same mass
scale fs in natural units. Then we would write alternatively g4 = h/ fé. We will follow this
notation here, but one can revert to o at any moment.

When this interaction is added to the two-derivative Lagrangian ([EI3), applying the
same ansatz for the fields as in the preceding section, neglecting 31 on the Lh.s. and
expanding in inverse powers of wr we get to the leading order the following linear equation

for the first perturbation:

WIB? o

=T 2 (4.28)
73
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¢

Note that in the four-derivative terms the ¢-dependent part of the metric gives subleading
contributions, so hy, was already replaced by d4, in ([E25).
This equation can only be solved by separation of variables, if one of the two terms on

the r.h.s of (E28) can be neglected. However, we can get a reasonably good estimate of
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the terms involved by simply setting equal to one all the fastly oscillating factors n in the
Lh.s. and the terms involving ¢ on the r.h.s.. The resulting equation for f(r)r can then

be easily integrated to yield

1031 = ¥5g5 = g~ g+ = () = () = () a)

where the first and third term come from the expansion of the two-derivative term and the
second comes from the four-derivative term. Dots at the end of the formula correspond
to higher powers of dimensionless ratios, which give subleading contributions. We have

defined two classicalization radii by

h Eh
R d rg= 922 4.
To 2f£ an T4 3f;1 (4.30)

All the terms in the expansion of the two-derivative term correspond to the same
classicalization radius ro,. These terms are dominant for E < VA fs. For higher energy
the four-derivative terms dominate and the system behaves like some number of copies
of the single Goldstone boson model of section §L2 in the special case with 2m = 4
derivatives. Note that if we use the notation o = h/f}, we find that r4, = {/Ea’/3,
which is the same formula that we found in section &2 Strong classicalization occurs for
w > 1y, regardless of the sign of the curvature. This means, that adding four-derivative
interaction terms to the action of nonlinear sigma model makes it resembling very much
at high energy the ordinary sigma model with four-derivative interactions. The feature
of nonlinearity of kinetic term is not important in the context of high energy, when the
highest order derivative interaction terms dominate. Therefore our system exhibits exactly
the same properties as the system of single Goldston boson with higher derivatives studied
in §£2

In the case of a plane incoming wave we also have to distinguish two regimes. When
the two-derivative terms in (E28) dominate, no clues of classicalization can be found, as
in section €3 When the four-derivative term dominates classicalization does not occur,

in agreement with the discussion in section §2 and with [76].
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4.5 Classicalization vs. asymptotic safety

In the preceding sections we have analyzed a hypothetical scattering process in nonlinear
sigma models with any number of derivatives and with positive, negative or zero target
space curvature. We have found that quite generally, an incoming spherical wave satisfying
the free wave equation will generate a strong scattered wave, when it reaches a size r,, that
depends in general on the couplings of the theory and on the initial energy. Contrary to
naive expectation, this radius r, either increases with energy or is independent of it. As
discussed in [72], this is in sharp contrast to other field theories, such as a scalar with
a potential interaction, where the scattered wave only becomes important at a radius of
order i/ E. Following [, [(2, [73] [[4], we call this phenomenon “classicalization”, and for
our purposes we distinguish a “weak classicalization”, when r, is independent of E, from
“strong classicalization” when r, grows with E. In both cases scattering processes cannot
actually probe distances shorter than r,. The scattering process is softened and there is
a chance that, though perturbatively nonrenormalizable, the theory may actually be well

behaved at high energy.

As already mentioned in the introduction, this sounds sufficiently similar to the program
of asymptotic safety, that one may legitimately ask whether there is a relation between
the two phenomena. To further motivate this expectation, let us recall that in order to
avoid the complications due to redundant (or “inessential”) couplings, in the discussion of
asymptotic safety, it would be desirable to define the couplings directly in terms of physical
observables [I4]. Due to the difficulty of nonperturbatively computing observables in these
theories, so far efforts have concentrated on the running of couplings defined as coefficients
of operators in an effective Lagrangian. However, if there was a way of showing, for
example, that certain amplitudes have the right behaviour as functions of energy, then
one could show, that the couplings defined in terms of the corresponding exclusive cross
sections would reach a fixed point. This would give truly operational definition of couplings,
measured from experiment, not derived from some theoretical considerations. In this way

classicalization could turn out to be a valuable alternative tool for studying some issues
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about asymptotic safety.

Since asymptotic safety, if realized in nature, is clearly a quantum phenomenon, the
first priority is to understand, whether there is a way of viewing also classicalization as a
quantum phenomenon, in spite of its name. We believe, that the distinction between clas-
sical and quantum phenomena is not as clear cut as it seems. The real world is quantum in
nature and classical behaviour can only emerge in certain limits, but there are ambiguities
in the way these limits are taken. We refer to [84] for a recent discussion of this issue in
the context of QED. In order to introduce the issue in the context of the nonlinear sigma
model, let us go back to the parametrization where the fields p® are dimensionless (which
is natural in view of the fact that they appear as arguments in nonpolynomial metric func-
tions hgp, which has a geometrical meaning). The action can be expanded schematically
as in (E), where Oy, ~ [ 9*¢" contains k derivatives and n powers of the field . The
dimensions of the couplings gi , are M L*~3, independent of n. For the sake of perturbation
theory, one has to separate the kinetic term from the interactions. Defining a canonically

normalized field ¢* = ¢*, /a2, of dimension /M /L, the action becomes

S = / [(6¢)2 )Y gradte” (4.31)

k n>2

where gn = Jkn(y/g2,2)" have dimension MI=n/2 [k=34n/2 There is a theorem to the effect
that higher derivative corrections to the propagator can be eliminated by field redefinitions,
order by order in perturbation theory [85], so we may assume, without loss of generality,
that g2 = 0 for & > 2. Assuming that a Z, symmetry forbids the appearance of odd
powers of the field, the lowest interaction would be of the form g 4¢?(9¢)?. Let us define
G2.4 = f¢_2, where f, has the same dimensions as the field (it can be viewed as a kind of
VEV). Global symmetry then implies that g, ,, ~ j_” (see for example [EIT)). In effective
field theory it seems reasonable to assume that all dimensionful couplings are proportional
to powers of fys. (This is particularly clear in natural units, where f, can be viewed as a
natural mass scale, and all couplings are proportional to powers of this mass.) Then we

—k—npk/2-1

would write gy, = c;mf(;1 , where ¢y, ,, are dimensionless.
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One can define different notions of classical limit, depending on which couplings are
being kept fixed. If one takes i — 0 keeping gy, fixed, one obtains a classical field theory
with all the higher derivative terms; if one takes i — 0 keeping f, and the ¢, fixed
one gets a classical field theory with the two-derivative terms only. How one defines the
classical limit obviously affects the interpretation of classicalization. In the former limit
the classicalization radius, when k > 2, is (gkn)mﬁ?#ﬁ6 independent of % and is
therefore a truly classical notion [ZI]. In the latter limit, reexpressing gy, in terms of
fs and h, the classicalization radius goes to zero and should therefore be regarded as a
quantum effect. The classicalization radius found in section §€3 for the case k = 2, is
truly of quantum nature regardless which limit is taken. However as pointed out in S0, &T]
the emergence of the classicalization radius has to be understood as the macroscopic effect
of a quantum nonlinear dynamics of microscopic constituents of the system under question.
Hence according to authors of [80, BT] it has quantum origin.

Another potential source of ambiguity in the definition of the classical limit is the ques-
tion whether E or w is to be held fixed [84]. In the latter case again the classicalization
radius v/a*fw vanishes in the classical limit. Since in this paper we are mainly interested in
scattering experiments, where the momenta of the external particles are known and fixed,
it seems more appropriate to stick to the case when E is kept fixed in the classical limit.
Furthermore, writing the couplings in terms of powers of a single coupling f; is motivated
by perturbative arguments. Since both asymptotic safety and classicalization are nonper-
turbative notions, it is perhaps more appropriate to stick to the generic parameterization
(E3T)) and to consider all couplings gi ,, as truly independent. This is the notion of classical
limit which is implicitly assumed in [711, [72, [73, [74].

We now restrict ourselves to this particular notion of classical limit, and we try to
extract some conclusions from the results of the preceding sections. From the given ex-
pressions for r, we see that the weak classicalization, that was found in the two-derivative
models of section §3is a quantum phenomenon, whereas the strong classicalization of the
higher derivative models of sections §£2 and LA are genuinely classical effects. There is

therefore a chance that weak classicalization has something to do with asymptotic safety,
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whereas strong classicalization seems to be a genuinely different effect. There are then
some other suggestive facts. It was found in [67] that in the two-derivative truncation of
the nonlinear sigma model a non-trivial fixed point exists for positive curvature, but not for
negative curvature. This seems to agree with the result in section &3 according to which
the argument for (weak) classicalization is much more robust in the positive curvature case
than in the negative curvature case. On the other hand, no non-trivial fixed point seems
to exist in the S'-valued nonlinear sigma model, which corresponds to the single Gold-
stone boson model of section §£2 [68]. And furthermore, we have found in section §7]
that strong classicalization is completely insensitive to the sign of the curvature. Finally,
returning to natural units, the amplitude for scattering of two particles into two particles
in the two-derivative model with positive curvature behaves like p?/ fq%, where p is the mo-
mentum transfer. Since the latter is asymptotically of order 7, ! ~ f,, the amplitude tends
to a constant, as one would expect in an asymptotically safe theory.

In the case of gravity, it has been argued that classicalization is intimately related to
the notion of a minimal length [Z0]. This seems to be in contrast to the notion of a field
theoretic UV completion, where one talks of “arbitrarily high energy scales”. In fact it
had already been noted that in a certain sense a notion of minimal length is present in an
asymptotically safe theory of gravity [86]. We refer to [87] for further discussion of this
point.

We may comment here on the importance of weak and strong version of classicalization.
In [8T] authors noticed, that the self-completion of a nonrenormalizable theory by classi-
calization manifests itself as the increase of number of degrees of freedom with energy in a
classical configuration. It is this increase that replaces the notion of the usual Wilsonian
renormalization standard viewed as integration in some new weakly interacting degrees of
freedom. Moreover only in the case of strong classicalization r, = r.(E), we get a growing
with energy number of degrees of freedom present in the configuration and the portrait of
the classicalon as a soliton can be correct. The conclusion is again, that weak and strong
classicalization are very different and that way of UV completion by strong classicalization

doesn’t have features similar with those present in asymptotically safe scenario.
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All these facts reinforce the hypothesis, that weak classicalization may be a direct man-
ifestation of asymptotic safety in the scattering amplitudes whereas strong classicalization,
if true, would be a different kind of effect. We also observe that, if we assume equivalence
between weak classicalization and asymptotic safety, the absence of classicalization in the
case of plane waves suggests that momentum transfer is more important than total energy
in these matters. In order to substantiate the preceding conclusions one would need to

directly calculate some amplitudes in an asymptotically safe theory.
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Chapter 5

1-loop effective action in system of

gravitating scalar

5.1 Truncation ansatz and ’inverse propagator’

In this chapter we will compute 1-loop effective action in a system, where we have
standard Einstein-Hilbert gravitation and minimally coupled scalar field. Standard com-
putation, known in the literature, are mainly based on perturbative quantization methods
and they exploit Feynman diagrams techniques. Here we will follow a different route.
Namely we will obtain 1-loop quantum effective action as the effect of integrating average
effective action along the flow trajectory from UV down to IR limit. Moreover in the core
of our calculation we will use non-local heat kernel techniques to evaluate some functional
traces. We will pay special attention to the appearance of nonlocal terms in the quantum

effective action.

Now we want to introduce the notion of the average effective action (EAA). The EAA is
a scale-dependent generalisation of the standard effective action that interpolates smoothly
between the bare action for £ — oo and the standard quantum effective action for k& — 0.
In this way, we avoid the problems of performing the functional integral. Instead they

are converted into the problem of integrating the exact flow of the EAA from the UV to
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the IR. The EAA formalism deals naturally with several different aspects of quantum field
theories. One aspect is related to the discovery of non-Gaussian fixed points of the RG
flow. In particular, the EAA framework is a useful setting to search for Asymptotically
Safe theories, i.e. theories valid up to arbitrarily high energy scales. A second aspect, in
which the EAA reveals its big usefulness, is the domain of nonperturbative calculations.
In fact, the exact flow that EAA satisfies is a valuable starting point for inventing new
approximation schemes.

In EAA the crucial point is the separation between high and small energy modes of
quantum fields. The elimination of higher energy modes is performed by separating the
low energy modes, to be integrated out, from the high modes in a covariant way. To do this
we introduce a cutoff action constructed using the covariant d’Alambertian, that respects
the symmetries of the underlying theory. In full generality in order to construct EAA we

add to the bare action S an infrared (IR) “cutoft” or regulator term ASj of the form:

AS), = % / d®z\/gpR(0)¢ . (5.1)

In above formula the operator kernel Ry, is chosen in such a way to suppress the field modes
on, eigenfunctions of the covariant second differential operator [, with eigenvalues smaller
than the cutoff scale v, < k* Generic fields of our quantum field theory are denoted
here by ¢. We will call ASy the cutoff action. The functional form of the cutoff kernels
Ry(z) is arbitrary except for the requirements that they should be monotonically decreasing
functions in both z and k arguments, i.e. rigorously that Ry(z) — 0 for z > k? and that
Ri(z) — k? for 2 < k2. It is important to consider two limits of EAA. First in the IR
limit (k = 0) quantum effective action is obtained. On the other hand, when k — oo, then
EAA equals to the bare action of considered quantum theory. In this way we obtain the
scale dependent generalisation of the standard effective action, which interpolates between
the two.

Quantum gravity gives unambiguous predictions at low energy in the framework of

effective field theories. The low energetic action contains only the simplest Einstein-Hilbert
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term (with a possibility of adding a cosmological constant, which we however neglect here).
In this effective theory there exist observables, which do not depend on the particular
way of UV completion. They are genuine predictions of quantum gravity. The quantum
divergences, which must be absorbed in the renormalization procedure, are contained in
local, but not universal terms in the quantum effective action. We are mainly interested in
nonlocal term in quantum effective action. The reason for this is that they are universal
terms in low-energetic effective field theory of quantum gravity [95, O1]. They do not
depend on any specific way of UV completion of gravity. There are different ways, by
which, one can obtain quantum effective action in infrared limit. However it is without
any doubt that low- energetic predictions of quantum gravity are calculable and solid,
regardless of any complicated dynamics, which saves the theory in UV. In our method
for integration the RG flow we will use exact (also known as functional) Renormalization
Group equations. In integration of RG flow of average effective action such nonlocal terms

originate from the part of integration done for the lowest momentum scales.

At the end of this chapter we will try to draw a comparison with a similar computation
done in the perturbative framework [96]. Our computation we will finally perform entirely
in four spacetime dimension, however in the first sections we will be more general, working

with spacetime of any dimensionality.

We will use the following ansatz for the form of the action of our system

S = /ddx\@ {%R - %(8@2 - V(9)
2[?2a /ddx\/EXQ (5.2)

+/ddw§0u (—00% — RMYC".

where d’Alambertian is given by [0 = V,V#. Due to the gauge diffeomorphism symmetry
present in the system we are forced to introduce gauge fixing conditions necessary for

perturbative quantization of the system:
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Xp = Vh, — %Vuh. (5.3)
Moreover another consequence of this gauge redundancy in the system is that for consis-
tency, we also had to add vector ghosts denoted by C,, in the third line of (&2). In our
computation we use the background field method and we take the metric perturbations
in the form h,, = dg,, and in contracted version h = g"”h,,. All covariant derivatives
are with respect to the background metric. As we can see in the action (B2 we included
minimally coupled scalar field ¢ and we allow for the existence of potential V(¢) for it.
Gravitational coupling appears there as K, which has the inverse energy dimension. In the
gravitational part of the action R is a curvature invariant built out of the full metric g,,
and RY corresponding Ricci tensor. Additionally constant « is a gauge parameter in our
gauge fixing condition.
Now we are going to compute the bilinear part in fluctuations of action S, because this is
the main ingredient if we target on finding the explicit form of the covariant d’Alambertian
operator. The bilinear part in the metric field of the gravitational part S, of the effective

action is given by:

1,. . 1 (1 .4 11
50%S, = /dx\/§K2{4h Dhaﬁ+( 4+8a)hDh+

1 1 ) nos 1, 1
51+ o (R VEV*RE — hagVVh) + P

4

5 hWW) R (5.4)

1 1 1
S B Sy R R éhwR“a”ﬂhag}

We are not interested in the ghost part here and we will not report corresponding results
for this part of the action. However we present the ghost functional derivative, which is

equal to

529
§C,,(z)oC¥ (2)

Fixing a = 1 the second functional derivative of the gravitational part of the effective

— 06" — R~ (5.5)

action takes the following minimal form (summarised in pairs of indices (u, v) and («, 3)):

96



629, 1 1 1
— 0L aﬁD Ra w)B = ,uyRa,B - a,BR;w
Sh(D)ohas (@) | K2 { 27 0
1 1
—l—Zgaﬁg“”R + g RAY) — §g “g ”R} (5.6)
where CH% = —% (%g’“’go‘ﬁ = g“(o‘gﬁ)”) is the contravariant DeWitt metric tensor.

In what follows, we will derive the operator of second variation needed for computation
of Schwinger-DeWitt technique, simultaneously correcting the misprints, which appeared
in [O8]. This computation we will keep in general dimensionality, only later we will restrict
ourselves to d = 4. This is the novel feature of this work. The variation of the scalar field
away from the background field ¢ we denote by f. We note here the second variation of

the matter action S,, = — [ d%z\/g [5(9¢)* + V(¢)] with respect to all fluctuating fields
v = (hyw, f) given by

625, Y
5f2 O-v7, (5.7)
528, 1 1 1
m — _ MV (64 _ (M I/) R 114 /
S0 ] 19" (VOO) Vot 5 (VV0) V7 = SV, (5.8)
6%5, 1 1 1 1 1
m = —_gt @ R (n v) A I v/ 7A wi 2 S 112 v
5 ohy +79" (V) Va 2(V ¢)V + 2906 = SV — —g"'V'(5.9)
ﬂ = VO 4 l CHvpo (V¢)2 + l v (Vp¢) (v0¢) I
0Ny 0h e 2 29

g7 (V46) (76) — 24 (96) (75) (5.10)

The linear matrix-differential operator F45(V) defined by the relation
628 = 1 [ d'z /g Fapy? is given by

FAB(V) = Cuapd+ 2145V, + Wyp, (5.11)

where we order terms by number of covariant derivatives. Operator F45 is obviously equal

to the second variation The indices A, B take only two value 1 (for graviton) or

5¢A5¢B

2 (for scalar) and all matrices with such indices have tensorial character with respect to
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diffeomorphism transformations. Due to the different dimensionality of considered fluc-

tuations the energy dimensions of entries of matrix Fu5(V) are different. The action of

he,
the operator Flap(V) on fluctuations is schematically depicted by (A, f) F 7. By

f

explicit calculation, we get expressions for all tensors appearing in (BI1)):
Ay CHaB () 0 CHory
Cap=| D745 = A (5.12)
0 1 —CoPorY ¢ 0
CHvipa [ Uozﬁ 1 AV

Wag = ’ 29 (5.13)

=200V Ny — 39*°V" =V
We want to emphasise that the matrix W is not symmetric in indices (A, B). The tensorial

expression H,,*? (which in [98] was called P,,*”) equals to

2 | ~2R( o) + 2000R)) = 562 R — 2505a R — 9" Ry + 750,09 R} +
+1097 (V9)* — 200 (Voy0) (VP6) + VOS2 + 50,0 (VO0) (VP6) +  (5.14)
+%gaﬁ (vp¢) (v0¢) - mgaﬂgpa (V¢)2 )

and therefore in the result of contraction we have that

1 1 1 1 1
C“”’p"HmO‘ﬁ — [_Ra(w)ﬁ _ _guvRaﬁ _ _gaﬁRW + _gaﬁgwR + g(u(aRﬁ)V) _ _gu(agﬁ)vR +

K? 2 2 4 2
1 1
3 |0 (VO + 4o (7°6) (790) + 50 (90) (70) -

—9gHe (Vﬁ)¢) (V”)qb)] + VoAb

Later we will need functional determinant of the operator F' and such quantity is well-
defined (independent of chosen vector basis), if it has mixed position of indices. In order
to achieve this we multiply Fap(V) by the inverse matrix CP4 (CPAC,5 = 68), which is

equal to
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K2C,p,m 0
CcPA = OA’“ 1 (5.16)

with Coxw = Grudr + Grvdre — 7o59x 9w (this is not the version of C** with covariant
indices lowered by covariant metric tensor g, even for d = 4). The matrix CP4 plays the role
of the contravariant metric in the vector space of fluctuations. Additionally we define a set
of hatted quantities: I = d4, ['9 = TP = CPAT? 45, F(V) = F(V)P = CPAF(V) ap
and W = WP g5 = CPAW 5. With these definitions we have that

F(V)=I04207V, +W. (5.17)

It is much easier to compute determinants of the differential operators, which are in
the minimal form (no piece with one covariant derivative). We can use a new covariant
derivative D,, = V,ﬂtfu, which is the old one V, shifted by the covariant vector fu = gw,f”.
With this trick we absorb the part linear in derivative operators in F (V). Then our operator

takes the following minimal form

A

. . 1.
F(D)=1¢""D,D,+ P — BIR , (5.18)
where the scalar curvature R of the metric g was extracted for reasons of convenience. Now
newly defined operator P is expressed by the relation P=W-— <ng”> — 17 + %fR.
The energy dimensions of diagonal elements of P are equal to E2, while for Py, it is F

and for Py is E3. The matrices of ['° and W act on fluctuations as given schematically by

- e s
(W, f) P with i = K21, "\, And they look as follows

f
. 0 K?26°%V
[ = S "‘8 & and (5.19)
—LTT V)
W B K2Hﬁ)\aﬂ dT22K2gn)\V/ (5 20)
—20°PrN NV ) — %gaﬂV’ -V

We have interesting expressions for V,I7 and [, explicitly equal to
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~ 0 KQV,%V)\QS
V.17 = and (5.21)
—CPPN V6 0

A SR (202 (V99) (Va0) = 9% (Ved) (Vag)) 0

I, = (5.22)
0 —K?*(Vg)’

With this in mind we obtain the following matrix form of the P operator (we change the

indices pair (k, A) to (u,v)):

A +1Y6R6% B,

P = (5.23)

E8 D +1/sR

The coefficient functions are given below

a af . Lo 1 .

A = K?H,, 0 + 51{25((# (V76) (V1)) = 15797 (V,0) (V,9) (5.24)
2

B, = ﬁKngV/ — K*V,V,¢, (5.25)

af 1 a7l 1 af 1 aBy/!
EY = —§V \Y ¢+Zg ¢ — 59 V' and (5.26)
D=-V"+K?(V¢) . (5.27)

Note that the coefficient % in front of the second derivative of the scalar potential in
coefficient D was incorrect in [98].

Now we can compute the generalised curvature defined as the commutator of shifted
covariant derivatives [D,, Ds] ) = 7%&5 1, where 7%&5 = RQIBAB is understood as a 2x2
matrix. Using the definitions of D,, we get the relation R,z = ﬁgﬁ + QV[afm + 2f[afﬁ],

where 7@35 is the curvature for the ordinary spacetime covariant derivatives V, in the

matrix form. Only the (1,1) element of the latter matrix is nonvanishing (when acting on
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a tensor of metric fluctuations h,;) and equals to [V, V] h,r = O,* ogh,,. An operator
O is expressed by the Riemann tensor according to the formula O,.* .5 = Ragp(“(ﬁ) +
RaﬂT(”(%). Covariant derivative commute when acting on a scalar, so all other components

of 7@35 are zero. The generalised curvature acts in the following way on the fluctuations
<7sz7 f) 7A2aﬁ " 1. Now we write explicitly expressions appearing in the expansion of

the generalised curvature. We have that

R 0 K2(5">‘ o8V V
Vil = gV Va? ) g (5.28)
—C7r g5V 0 Vad 0
. —K2572C"= 41098 (Vad) (Vo) 0
Palg =T’y 0 = ’ > o
0 —K2C 9510981 (V@) (V:0)

(5.29)
The last low entry in f[ f@] is equal to zero, because after doing the change of names of
dummy indices (¢,k) < (0, ) we get this term equal to —K2C** 515941 (V0) (V-0).
And this means that this expression is symmetric in «, § indices. Adopting the following

convention for writing the matrix operator ﬁa@:

A X, ™ YTO!
Rag= | ~7 7 e (5.30)
Zm.s 0

we can read out the expression for X, Y and Z functions. Namely we have

X o = =20 R 1y + 262 055C" 7 o105 (V0) (V20) | (5.31)
Yprap = —2k*672 95 Vg Vad and (5.32)
ZM o5 = =201 6,5V 0 V0. (5.33)
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(In formulas (2.39-2.41) of [98] the overall sign was incorrect!). The energy dimensions of
these entries are respectively: E?, E and E3. Up to this moment every computation was

done under the assumption of the general dimensionality d of spacetime.

5.2 Local terms of one-loop effective action

First we will look for local terms in 1-loop effective action for our system. They are
related to UV divergences of the theory. In general these divergences give rise to the
renormalization of couplings in front of local terms. They are not universal and depend on
the precise way of UV completion. However we assume, that the bare action is given by

[(E32). At one loop order the quantum effective action is given by the integral

1 [ ds _ 8@
Lp, g] = —5/0 ?Tre s (5.34)

5 i5 the functional trace of some differential operator, which we are going

where Tre™
to compute with the heat kernel techniques. For our applications in the exponent of
heat kernel we use inverse propagator, found in the previous section, denoted here by
S®@ (second variational derivative of the action S with respect to all fluctuating fields).
This operator, as other quantities with a hat over, is a matrix in field space of gravitons
and scalar field perturbations. In order to find logarithmically divergent part of one-loop

effective action to second order in curvature we can use the Schwinger-DeWitt method for

quadratic operators:

S 1 N - 1. 1 - .
Tr 6_85(2) W /ddx\/gtr {1 + sP + 32 |:§P2 + ERMVRHV“_
1 .. 1 )
— 1—— g . .
+ 180Rlem 180R’WR } } (5.35)

We will restrict ourselves to second order contribution in operators P, 7%#,, and gravi-
tational curvatures. (We don’t consider here application of this method to the ghost part

of the action, because we are mainly interested in nonminimally coupled matter terms.)
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Using Schwinger-DeWitt technique we reduced the functional trace to matrix traces. In
what follows, small traces denote the traces done in field space (of 2x2 matrices). One
finds particular traces in forms given below. For a trace of quadratic scalar operator p2

we find:

3 119
—trP? = 5Riemz’ — 3Ric® + 532

11 1 1
t K Va0V Va0V 0 — T KPVROV6 4 DKV Vg VIV g

e (KQV(qb) - %R _ v"(¢>) Va6Vo 6 (5.36)

+ K2V (¢)V?¢ + 5k*V3(¢) — 1—;’K2R V(9)

_2k2v1(¢>2 . gvﬂ(Qﬁ) + (v,/;¢))2 )

The trace of the contracted square of the generalised curvature 7@,“,7@“’ amounts to:

1 ) ey v 1 . 1 [e%
SRWRY = —§Rlem2+6K2Ra@V oVl
1 1
—§K4va¢va¢vﬁ¢v% + EK"V%V% (5.37)

1 1
—§K2v@va¢vﬁva¢ + EI@R VooV
Finally we report here for completeness the trace of the unity matrix 1 in field space:

tr] = d(d+1)

+1=11 ford=4. (5.38)

The last result is equal to the sum of the dimensionality of space of symmetric tensors, i.e.
metric perturbations and one-dimensional scalar perturbation.
Now we are going to compute traces of the various matrix-valued operators appearing

in the second variation of the action I';,. We have after summation that

11 1 1 5 5
trby = 0 (Riem” — Ric®) + itr]ﬂ + ERWR"”

191 551 119

180 M T 180 ¢ T
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FRUV0) — 2V (0 = THRV(O) - o)+

6 2
+§K4va¢va¢vﬁ¢v% (5.39)
1 1 1
—6K2V2¢V2¢ + 6K2vﬁva¢vﬂva¢ + 6K2Raﬁva¢v%

1
#K? (K2V(0) = 3R = V'(0)) V097
+EV'(9)V?6,
where by b4 we denoted traditionally the expansion coefficients of matrix trace in front
of the second power of s parameter. For any scalar field we have the following identity

originating from the commutation of the second covariant derivatives acting upon it:

1 1 1
gRa@vagbv% - gv%v% - avﬁvagbvﬁva(p =0, (5.40)
Next we use the scalar equation of motion derived from the standard action. Here it is
given by
Vi —V'(¢) =0. (5.41)

Then one is able to derive the following identity valid onshell (For the moment we put

scalar perturbations onshell, while keeping graviton perturbations completely general).

K*V'(¢)V?¢ — 2KV (¢)* = —K*V'(¢)* . (5.42)

Exploiting this in our formula for tr b, leads to the simplification:

trby = %Riem2 — ?%ﬂﬁfiic2 + ¥R2
+§K4va¢va¢v@¢v%
+K? (—%R + K*V(¢) — 2v”(¢)) VoV (5.43)
13 R (V"(¢))?

——K?RV(¢) — Ev"(gb) + 5EYV2() — 2KV (¢)? +

3 2

104



Now we decide about the form of the scalar potential V' (¢). If we set it to contain only

the mass term V(¢) = " ¢?, then we have:

_ 191, 551 , 119 ,
trby, = 180Rlem 18ORIC + ™ R

5

+ZK4VQ¢V0‘¢V5¢V%

1 1

+K? (—gR + §K2m2¢2 — 2m2) VoV (5.44)
1 1 1

—§K2Rm2¢2 — 6m2R + ZK4m4¢4 — 2k*m1¢? + §m4 .

In the last step we can put gravitational excitations on shell. For our result this means,
that we can use Euler identity relating squares of Riemann, Ricci and scalar curvatures
according to the formula Riem? = 4Ric* — R? + E. We neglect the difference term FE,
because it is a total derivative. After doing this, we arrive at a final result for the trace of

bs coefficient:

trby, = —Ric*+ —R?
o 180 ¢ T 360

+§K4va¢va¢vﬁ¢v%

+K? (—%R + %K2m2(b2 — 2m2) VoV (5.45)

13 1 5 1
—€K2Rm2¢2 — 6m2R + ZK4m4¢4 —2K*m*p* + §m4 .

This is the form of one-loop local terms for scalar field with mass (non self-interacting)
minimally coupled to Einstein-Hilbert gravitation in four spacetime dimensions. We ob-
tained an agreement with previous results found by others for local part of divergent part
of one-loop effective action [08, [@9]. The contribution from the ghost part of the action has
the impact only on the first two coefficients (in front of the quadratic curvature invariants).
This is so, because of the initial gauge choice we adopted, where the scalars do not appear.
However in this and in the later derivations we focus on the monomials from the matter

part, where the scalar field ¢ is present.
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5.3 Nonlocal terms and exact RG flow equations

In order to go beyond Schwinger-DeWitt technique and find form of nonlocal part of
one-loop action we insert nonlocal structure functions. They are functions of s parameter
and box operator [0 = V#V, (acting under the integral) appearing in the combination
—s[J. We insert these structure functions between two matrix operators present at the

second order as in the detailed formula below

1 R R . .
(4rms)drz / Ao /gster { [P fp(=s0) P+ Ry fr (—s0) R+

+P fpr(—s0) R+ R fr (—s0) R1 + Ry fric (—s0) R™ i] + } . (5.46)

It must be emphasised, that the leading order in s contribution is equal to constants as
written in the formulas (33) in section above (for PR operator this constant vanishes).
Moreover we have used the Euler identity relating contribution of the square of Riemann
tensor to quadratic expression in Ricci tensor and scalar according to the formula £ =
Riem? — 4Ric? + R%. By E we denote Euler characteristics of the spacetime manifold - this
is a topological quantity and doesn’t influence local dynamics in the bulk of spacetime. The
traces of matrix terms of order curvature square are modified with respect to expressions
given in previous section by the appearance of structure functions fp, fr, fpr, fr and

fric- We have the results for the trace of the quadratic scalar operator P2

PN 11
trP pr == 3RMV fPRuV + inpR

11 1

8
+KV () [p(VadV9) — 2K “Rfp(VadV0) — K*V"(9) [p(VadV"0)

12
FIAV(0) p(V20) + 5KV (6) foV (6) — D KR [V (0)

3
V(O frV(6) — TSPV (8) + SV SV (0)

The trace of the contracted square of the generalised curvature 7@,“,7@“’ amounts to:
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. X 1 1
trR ., frRY = —2R,, frR"™ + §R frR + EKQRaﬁ fr(VeVP o)

KA VbV O fr(Vs6V0) + KX (V?0) fr(V70)  (5.49)

—%Kz(VgVaqb) FR(VPV24) + 1—12K2R FR(VadV) .

At the end we report here for completeness the trace of the new operator PR equal to:

trPfprR = 2k°R fpr(VadVe0) + 10k°R fprV (9)
“RfpV"(¢) - %53 fonR (5.49)

We proceed in a very similar way like in the last section. This time the only difference
is that we have to take care of nonlocal structure functions. Our previous results are still
valid, when we restrict ourselves to first terms in the expansion of these formfactors. After

summing all the terms we find the nonlocal equivalent of tr by:

1 . . . .
ﬁ (SRHV fRZ'CR‘uV — RfRR) + tl"prP + tl"prRR + tl"ijfRij =

33
= R, |:—fRz'c +6fp — 24f7z] R

o

180
S

h { 180

fut g doct 0fn 5 frr| B

FR(V009°0) | e = 3] (920970)

FRT0) =360+ fo| (720

FRA(V5Va6) [ — 4] (VP9°9)

K2R [—%fp fr 2pr] (Vg 7°9) (5.50)
FK Ry 2] (V°69%9)

HKV () 2] (Ta0970) — K2V'(6) 2] (Va0 V°9)

HKPV(9) [215] (V20) + KV (0) [1077] V (6)
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KR [—Q—ffp N 10pr} V(6) — K2V'(6) [4fe] V'(0)
R [—%fp _ fm} V() + V() o] V(9

If we set the scalar potential to V(¢) = m;¢2 and use scalar equations of motion in this
case, then we have some cancellations. We have even more cancellations and simplifications,
because obviously we have, that Jm? = 0 and this means, that the structure functions
with nonlocal pieces cannot be inserted between mass powers in mass terms. When we

exploit this fact, we arrive at the following final expression:

11 A . R .
@ (3RHV fRZ'CR‘uV — RfRR) + tl"prP + tl"prRR + trRWfRR“” =
11

33
= R;w |:—fRic+6fP_24fR:| R‘W-i-R{ 120

11 25
> fut g+ 6Fn = fon| B

FRT069°0) | e = 3| (F20970) + K ) (V,07°6)

FE S gp| 6 Kot |2t g o 5:51)

+K2(VVad) [fr — 4fr] (VPV*0) + K*R [—gfp + fr+ QfPR} (VadV0)
+K?Rag [2fz] (VY0V79) + K*m*R {—L;fp + 5fPR:| ¢*.

Now we want to consider the exact RG flow of EAA, which will be denoted here by
[',. As the ansatz for it we choose the expression above, understood that all the couplings
and structure functions now acquire dependence on the momentum scale k. The exact RG
flow equation for the background effective average action (bEAA) is the following

1 8tRk(—D2) — ’f]kR(—DQ) 8tRk(Agh)

9T —— _T . 5.52
t k[¢7 g] 2 r D2+ Rk(_D2> rAgh + Rk(Agh) ( )

In the above formula D is a general operator of the covariant derivative and Ry are cutoff

kernels (suitably chosen functions of momenta to suppress the contributions from high
energy modes in the path integral). We explicitly split the graviton and scalar part from

the ghost part in this equation. Our exact RG flow equation describes the change of the
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bEAA under the infinitesimal change of the RG logarithmic scale t = log k. The r.h.s. of
this equation expresses itself by functional traces of some differential operators and the RG
time derivatives of cutoff kernels. We note that in the denominator we have differential
part D? of our inverse propagator operator (second variation) (EIX), . The r.h.s. of the

flow equation is then (neglecting the ghost contribution) and writing all terms

oo = g [ #ava{ B | [ aohis) #4 2sd)| mes
v | [Casiis) 0| R4 K00 | [ wm&fﬁﬁ@m]www%w%
#int? | [ dsits) s i) (a9 + Kmte? | [T dshie) 60| 0+
2mie [ /0 T dshis) s (sm)] &+ K2(V5Va00) { /0 " dsT(s) s
+K?R [ /0 s h(s)s* 2 fu(s )} (Vad V) + K’Rop { /O s h(s) s?

wh | [ dshis) o a0 0}

where the functions f,(z), fy(2), ..., fi(x) were derived combining non-local heat kernel

f<>MWW%m&n

_d
2

1\3\&

f()hvwWW+

structure functions. In the above equation we enlisted all monomial terms, which appeared
in (ER1). In the {R,, R", R* K*(V,0V®p)? K*m?p*(V,oV*9), K*m*¢*, K*m*¢?,
K2(VVa)?, K R(VadVe0), K?Ro5(V*pVP¢), K*m?Rp*} basis as in ([L5), the cor-

responding functions for each monomial read explicitly:

fo = 18Ofch+6fP_24fR (5.54)
h o= —%fﬁ et 6 2 f (5.59)
fo = pr-;fn (5.56)
fa = fr (5.57)
fo = gfp (5.58)
fr = —gfp—i-f’/z (5.59)
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fo = fr—4fr (5.60)
fn = —gfp+fn+2fp3 (5.61)
fi = 2/ (5.62)
fi = —?fp%fm (5.63)

In [O0] another basis for structure functions was used. The transformation between them

are linear and are given below:

fp = ¢4 (5.64)

fr = ¢s (5.65)

frr = ¢3 (5.66)

fr = —180¢, (5.67)

frie = 609, (5.68)

(5.69)

Above structure functions for Lagrangian monomials can be rewritten using ¢1, ..., ¢5

structural functions coefficients (being linear combination of fp, fr, frr, fr and fri.).
Moreover we apply identity ([40) to reduce one term. Then the form of the quadratic

part of the effective action is given by

11 PN . R R
@ (SRHV fRZ'CR/W — RfRR) + tl"prP + tl"prRR + terijRlW =

25 11
= (11¢ + 64 — 24¢5) Ric* + <1l¢2 — Egzﬁg + %QM + 6q§5) R +

ryoutmtot = (Sou-300) Komi? + (560 - 5o ) KomRe? - (5.70)
- (¢3 + %QM) m*R + ¢ym* + <1741¢4 — g%) K* ((V¢)2)2 +

+ (¢4 — 6¢5) K% (VoV30)° + K2 (¢4K2m2¢2 + <2¢>3 — g@ + ¢5) R — 2m2) (Vo).
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(If we use modified version of the operator P, where the mass for the scalar field is treated
exactly, not perturbatively, then instead of the last numerical coefficient 2 in the last line
we have coefficient equal to twice the fourth structure functions 2¢,.)

Since now we are already in d = 4. From formula (Z0) we read the coefficients of
Lagrangian monomials in the different (extended) basis for formfactors. We have them

explicitly:

fao = 11¢1 + 604 — 24¢;5 (5.71)
fo = 11¢2—%¢3+;—é¢4+6¢5 (5.72)
fo = gm (5.73)
fa = —<g¢4—3¢5) (5.74)
fe = 5¢3—§¢4 (5.75)
fr = _<¢3+%¢4)} (5.76)
[fo = ¢4 (5.77)
fn = %(/154—%(155 (5.78)
fi = ¢4—06¢s5 (5.79)
fi = 4 (5.80)
fm = 2¢3—2¢4+¢5 (5.81)
[fn = 2(=2¢4)] (5.82)

Inside square brackets were written formfactors, for which only the constant term matters.
This is, because, when d’Alambertian operator acts on such expression, where the structure
functions are inserted in, it gives zero (presence of mass terms). Structure functions for such
monomials do not contain any non-local part. Now we are working in the following basis of
12 Lagrangian monomials { R, R", R?, K*m*¢*, K*m*¢?, K?*m?R¢*, m*R, m*, K*((V¢)?)?,
K2(V.V30)?, K'm?*¢*(Ve)?, K*R(V¢)?, K*m*(V¢)*}. Out of these monomials only 9

allow for the nonlocal form-factors functions depending on the operator L.
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With the definition of the basic heat kernel non-local form factor f(x)

flx) = /0 1 dgetm0" (5.83)

and recalling the relations between structure functions and f(x)

f(z) =14 Vex

¢1(z) = . (5.84)
OIS EVBELAL N LA L L (589
bo() = o f@)+ 2 LD (5.86)
bi(r) = @) (5.87)
¢s5(z) = —%% (5.88)

we can extract the running of the structure functions (k£ is the momentum scale here!)

given by the following equation

O fre(—0) = 1d/2 /OO ds h(s) s> % fi(s1) ; (5.89)
0

for I = a,b,...,I(n). Index I counts the number of possible monomials present in (EII).
We reserve letter k£ for momentum scale here and therefore it is excluded from the possible
values of the index I. The letter 7 is also excluded, in order not to confuse with other
notation.

Firstly our 9 non-local structure functions written in terms of f(z) function are given

below:

61+ 72f(z) | 11(f(2) ~ 1)

fo = 3f(@)+ —— = (5.90)
5 211 — 222f(z)  11(f(z) —1)

o= —ml@+—5; T 82 (5:91)

fe = %f(:v) (5.92)
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fo = =2 - 2= (5:93)
fo = g+ DD (5.94)
fo = %f(x)Jrg(f(ﬁ_l) (5.95)
fi = %f(x)+3(f(x£_1) (5.96)
fi = %f(:c) (5.97)
fm = —if(x)%—f(z)x_l (5.98)

For each value of index I, above corresponding expression (.89d) can be rewritten in

terms of a combination of ()-functionals inside parametric integrals. We have for example

5 37

(P aF) = —g5 [ dEQuln(+ae )] = o [ deQuln -+ aei -9+

211 11

b 2 e - g { [ e Qulhe e+ a1 )] - Qa e (9] 599

The arguments of Q-functionals are given by the expression hy(z) = Ofelz)  Now it is the

Tz Ri(2)
moment, we have to specify the cutoff function Ry(z). We use the optimised cutoff shape
function Ry(z) = (k* — 2)0(k* — 2), as proposed in [B5]. Next we use explicitly the values

of the ()-functionals as computed below

Qo [h(2)] = 2 (5.100)
Q1 [hw(2)] = 2k (5.101)
Q2 [hi(2)] = &* (5.102)

and their integrals over ¢ variable inside the hy(z) functions:

/0 dg Qo [he (z + 2€(1 = €))] = 2 [1 —\/1- gQ(U - 4)] (5.103)
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/0 d€ Q1 [y (2 + 26(1 — €))] = 2k [1 - g + % 1 % O(u — 4)] (5.104)
/0 € Qs [hy, (2 + x£(1 — €))] = 2k* E - % + % - g—; 1— % O(u — 4)] . (5.105)

L

7. We have now, after the integration, a set of equations, which can be

where u =

generally put in the following general form

1 T
Oufri(@) = —01 () 5.106
where the functions g;(u) are given for each monomial term respectively by
71 71 196 88 4
(u) = — -_— - — = 1——0(u—4 .
gale) = 35+ < 30 15u 15u2) mACa) (5.107)
71 7129 11 4
= — -+ — 1——60(u—4 5.108
%) =55+ ( 60 " Bu " 15u2) MG (5.108)

gu(t) = g - g, /1- %Q(u ) (5.109)
gau) = =2+ <2 + %) J1- %e(u —4) (5.110)

ge(u) = —? + (1—33 — ;—2) 1— %G(u —4) (5.111)
gn(u) = g + <—g - %) 1— %«9(u —4) (5.112)

gi(u) = —%\/ 1- %G(U —4) (5.113)
gi(u) =1— \/1—39@—4) (5.114)
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2 2 4

mu) = —= 4+ (2= =)\ /1—=0(u—4). 5.115
i =3+ (5~ ) 1~ 30— (5.115)
We now integrate the flow equations from a UV scale A down to a generic IR scale k.

We have schematically that

1 dk’' x
Jroa(x) = frp(x) = iy /k <9 (ﬁ) (5.116)
and after going to u variable we get
1 I du
fiale) = fiae) = o | G (.117)
/A2

In functions g;(u) we can isolate constant part gro in perturbative expansion in u
around u = 0, by the relation g;(u) = gro + gr(u). The constants gro are equal to
Ja0 = . Gho = B, Ge0 = 3. 940 = ~2, Geo = — %, gho = 3, G0 = 1, gmo = —2%.
(Only those nonvanishing were listed here). We isolate the logarithmic divergences in the

following schematic way

1 A ko 1 [7d
froa(x) = fre(z) = ng (log o + log k;) + ) //A2 %gf( ). (5.118)

We can renormalize the theory, imposing the following UV boundary conditions for the

flow of formfactors:

1 A
x lo + ¢y, 5.119
fI,A( ) (4 )2910 gk: 1 ( )
where ¢;’s are possible finite renormalizations. The general form of the g (u) function is
as follows:
N By C 4
w()(m+i+f)1—fm4y (5.120)
Therefore the integral f/A2 257 (u) amounts to f4/k (4L + )1/1 = 2du. This in-

tegral solved equals to
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14+,4/1-42 B C 4
24;log | — oA, + 2L M) 1o 2
1708 2 ( +6+60) u
2B, C;
w/l—— Al . .
+( 3 ) u 5u2 TArogu (5.121)

u=1/k?

It always happens, that the coefficient A; is the negative of g7 . With this simplification

in mind we have the following answer for the structure functions f; ,(x) at momentum scale

k:

- oA log | — Y= 204, — 2L _ 21
f1.1(2) 392 rlog 5 Ap 5 60

2B, O\ K %2 201k4
=t (5.122)

~Arlog <k£8)] O(z — 4k?) — A;log (ko) 0(4k? — x)} +er.

The finite renormalization constants c¢; can be chosen to be equal precisely to — 327r2 (2A1 — =L — %)

1 L /1- 4 < B 01) |

Xz

hence we don’t get any cosmological constant. We skip here the explicit form of the struc-
ture functions for each nine cases. They can be easily recovered from the general expression
above, after plugging corresponding values of coefficients A;, By and C7 for each value of
the index 1.

We are interested in the effective action I' = I'|z—o. In general form the limits of

form-factors in one-loop quantum effective action (k — 0) are equal to

A z gr,0 x
— "t — ) =21 — A2
fro@) = =55 5108 (k:g) 3052 OB (k;g) ’ (5.123)

therefore the explicit form of this action is

] 1 71 o\ . 71 O
FO"RQ = m/d4x\/§{%Ruylog( k‘2 )R“ + = RlOg( k2 )R+
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+§K4m4¢2 log (_D) ¢* — 2K *m*plog (_k—QD) ) (5.124)

2 k2
0 0
13500 2 N2 L e LD o2 iee [ 22 2
3Kleog<k8)¢ 5m R+2m +2K (Vo) log R (Vo)
—0 2 —0
+K*m?¢*log (?) (Vo) — gKQRlog (?) (Vo) — K>m? (v¢>)2} :
0 0

where we have also added the nonlogarithmic contributions coming from constant terms
proportional to mass.

We note that the coefficients in equation (RZ0) are related to those in (BI124)) in an
algebraic way. Finally we give the shortcuts assignments, which could give us the form of
the quantum effective action just from the form of trb, with non-local heat kernel for this
particular choice of the cutoff. Therefore they are not universal. We saw that only g7
terms contribute to quantum effective action. If knowing all of them, we don’t have to do
any integral over momentum. On the other hand the contributions to g come entirely

from &-integrals according to the following assignments:

/0 d€ Qo [hy (= + 2€(1 - €))] — 2 (5.125)
/0 Qi (2 + 260~ O) — (5.126)
[ @it +aga-en — 5. (5.127

On the level of expressions with functions f(z) the nonvanishing contributions come only

from:

flz) — 2 (5.128)
@ - _% (5.129)
fif) - 3_10 (5.130)

5 functions:

.....
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f = 55 (5.131)
1

b2 — —55 (5.132)

o3 — 0 (5.133)

by — 1 (5.134)

b5 — é (5.135)

If we have the expression for tr by with non-local structure functions ¢; in monomials, the

shortest way to get quantum effective action is to use the above shortcut assignments.

5.4 Flat space limit and formfactors

The goal of this section is to compute one-loop corrections to three-point vertex from
quantum effective action. In the last section we computed it to the second order in operators
of heat kernel and we arrived at a nonanalytic expression with low-energetic logarithms.
We want to consider the simplest vertex of interaction within our theory. This is a vertex
with one gravitons and two scalar field. That’s why we shall compute the third variational
derivative with respect to mentioned fluctuations. At the end we specify flat gravitational
background and vanishing background scalar field. Such third variational derivative equals
to double derivative of the matter energy-momentum tensor over scalar. We also prefer to
write the expression for the vertex in the momentum space.

The tree-level action on the general spacetime is:

1
Slo, gl = / 'z /g {59‘”@@9@ + V(gzﬁ)] (5.136)
We calculate the energy momentum tensor by varying the action with respect to the metric

and we find

5S[6,g] = / & /G Egaﬁ (@¢)2—%aa¢@%+%\/(¢)gaﬂ] hes.  (5.137)
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Hence the expression for the energy-momentum tensor is

1
TH = g {5 (09)* + V(qb)] — P . (5.138)
On flat Euclidean space (¢ =0, g,,, = 0,,,) and in momentum representation we have:

52T
0z, 0Pa,

In the above formula we used the following substitutions for the derivatives of delta func-

— =iy =PI — 0" [—pr-p2e —V"(0)] . (5.139)
$=0, guv =060

tions in momentum space. We assume that particles 1 and 3 are ingoing, while 2 is the
only one outgoing out of the considered vertex. For ingoing particles’ momentum we take
Or.00z.21 — 11,0 a0d Oy 40z »3 — iP3 and for outgoing 0, o0y 42 — —iP2q -

Besides this in the local part of the effective action, we have the following three types

of operators

Oy = / d?z/g ¢* (5.140)
Oy, = /ddx\/ER¢2 (5.141)
Oy = / d?z\/g R g" 0,00,¢ (5.142)

and corresponding vertices in momentum space amount to

6300r
7 = 5.143
5¢x16¢r25guy’x3 ( )
530,
7 2 [p30" — pspy] and 5.144
00000250 Gpu,2 [ 3 3 3} ( )
X 2 PV N 3N ) . "
000100250 G5 (30 Psp3] (1 - pa) (5.145)
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We used various kinematical relations between momenta (two ingoing ones and one for
outgoing graviton) to put the formulas in the above final forms.

In our quantum effective action, calculated using non-local heat kernel technique, we
are interested in operators, which give nonvanishing contribution to the vertex of our
interest. Such monomials must contain precisely two powers of scalar fields (may be under
covariant derivatives) and not more than two gravitational curvatures. We easily see, that

from (LI24), three operators satisfy this criterion. They are listed below.

O, = -2 / d*z\/gK*m"$log (;—25) ¢ (5.146)
0
O, = —1—33 / d*z\/gK*m*Rlog (;—25) ¢* (5.147)
0
A 2 4 2 —U 2
0

The computation of 3-rd variational derivative for O; gives as follows:

3 7 pv 2.2 Mo v Mmoo v mo v mo v
52014 L (—2) K [6_ log (plzjg) ST Y U W
5¢z15¢x2§guu,x3 2 ko pl p2 2p1 2p2
phps Py 0" (ps-p2) 0" (ps-pi) (5.149)
20t 213 2p} 2p3 ' '
We used the fact that
-0 o0 1 1
ol _ | = — = — _hy A Vi th v - ah « : 1
Og<k8) 5 D( VY — (VFEh,,) V +2(V )V) (5.150)

where the last two terms come from the variation of the second covariant derivative acting
on the scalar. To other two vertices (coming from operators O, and @3) part with the
variation of the logarithm doesn’t contribute, because it is multiplied by scalar curvature

R and so vanishes in flat spacetime limit. We have respectively on flat spacetime that

5°0, 26 -0

3 __K2 255050 69595 1 1.2 _5/“/825:0:0 0”0”&6 T d

§¢xl§¢x25guy7z3 - 3 m Y XLV X,T2 0g< k,g ) ( L3 + , 5) an
(5.151)
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503,
00200250 Gpuv,zs

We integrate by parts in the above two expressions to flip the logarithm of box operator

kg

— —%K 2000 2, 0" 012, 10g ( ) (=000 4y + 01004 0y)  (5.152)

to act only on ¢, ., (third particle). This is justified by the conservation of momentum for
the vertex and we perturb around flat spacetime, where ordinary momentum is conserved.
Corresponding vertices exhibit similar structure to (144 and (BIZH) multiplied by two

characteristic logarithms. Namely we find that

2 26 2,2 70,2cuv "wo v p?’»
0, — —gKm [p3(5 —p3p3] log o (5.153)
0
2 4 21 2cuv % pg
Oy — —oK*[p30" — plips] (b1 - po)log (15 ) - (5.154)
0

There is also a local nonlogarithmic term in the quantum effective action — [ d*z\/gK?*m? (V¢)?,

which is of our interest. Corresponding to it vertex has the following structure:

y 1
o K2m2 [&uy(pl p2) o 2pgﬂp2)] — _K2m2 |:_2P;LPV 4 m25;w - 5 (q25;w o q,uqy):|
(5.155)
Summing all these contributions we can write the form of three-point vertex coming

from our form of quantum nonlocal effective action to one loop.

K2
rey (0,6 = {(5“”7714 {1 +4log (k@)] — 6m*P"P”

P1,P2,P3 - 3272 0

3 2 2
+ [q25‘“’ — q“q”} (—§m2 + (10m2 — ng) log (%) } , (5.156)
0

where we defined a momentum transfer fourvector ¢ = ps = po — p; and a characteristic
momentum of the process P = %(p1 + pa). Moreover we used on-shell conditions for scalar
lines.

The most general form of the three-point vertex with two scalars and one graviton is

on the flat spacetime tightly constrained by Poincaré symmetry. Additional requirement
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is put by the transversality of the vertex function, when one contracts with one index on

the graviton field. This leads to the expression

K2
rh 1o, 6 = — {2P"PYFy(¢*) + [¢*0" — ¢"¢"] Fa(¢®)} (5.157)

P1,p2,P3 3271'2

where the formfactors F(¢?) and Fy(q?) appeared as functions of only invariant quantity
q*. Now comparing above formula with (B.150) we get the explicit form of the gravitational
form-factors Fy(¢?) and Fy(¢?):

Fi(¢®) = —3m? (5.158)

2 3 5 2 2, g’
F(q®) = —5m 10m — 34 log o (5.159)

We also set the reference scale equal to the mass of the scalar k) = m and neglect the
constant term proportional to o*.

It is necessary to continue the same computation, but for the third order in gener-
alised heat kernel curvatures. The reason for this is that the simplest vertex in interacting
theory must contain three lines and hence it corresponds to the third variational deriva-
tive. When we set the background fields to vanishing values, the contribution from the
third order doesn’t vanish. Only for the order of derivatives higher than three, we have
basically no contribution to three-point vertex. Additionally the mass parameter of the
scalar particle must be treated exactly to all orders. However it seems, that the second
order computation is not enough to capture the full result and this is only a part of the
final result. Here for completeness we show the results for form-factors computed by other

methods in perturbative effective field theory of gravity.

K? 3 1 m™m
F(?) =1 21 —Zlog(—¢?) + — 5.160
1(q%) + 3534 ( 7 los(=a") + G _q2> ( )
B = L [t og—g?) + LT (5.161)
= m” | —=log(— S .
2\ 3212 3 BT e



This was the result of one-loop computation carried out using Feynman diagram technique

and first reported in [95].
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Chapter 6

Conclusions and summary

In this thesis we touched on many issues. These topics may seem to be unrelated, how-
ever the common point is their relation to Quantum Gravity and Renormalization Group
methods. Despite the fact, that Quantum Gravity is very vast field of research, we tried to
concentrate on this approach to it, which uses RG methods. We also attempted to show
this particular approach as seen from different perspectives. This is the reason, why we
studied holography, classicalization and effective field theory of gravitational interactions.
This opens up the possibility that these powerful machineries could be brought to bear
on the issue of asymptotic safety. Here we want to summarise, what was obtained in this

research program and described in this thesis.

In the first part we concentrated on relations between holographic and exact functional
RG flows. By considering simple Randall-Sundrum setup, with AdS; spacetime in the bulk,
we were able to find agreement between two flows. The common similarities of the flows
were noticed for matter as well as for gravitational couplings. We found, that the best
agreement was at high energy in 4 dimensions, where holographic AdS spacetime corre-
sponded to our theory under RG flow in the vicinity of the nontrivial fixed point. However
to account for threshold phenomena in the infrared limit, we had to modify holographic
flow by introducing some sources. Then we went on constructing a 5-dimensional holo-

graphic model, which must be understood as a geometrization of the 4-dimensional RG
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flow in the theory living on a brane. We achieved this by adding minimally coupled scalar
field to Einstein-Hilbert gravitation in the holographic bulk and solving resulting system
of classical coupled equation of motion. We found implicitly scalar profile for every RG
flow of gravitational coupling and for particular interpolating RG flow explicitly. Due to
the nature of running of 4-dimensional Planck mass, we had to choose a scalar field with
negative kinetic term in 5d action. In this way we discover a fully-fledged 5-dimensional
description of the physics described in different language by 4d theory, where also gravi-
tation was present and dynamical. This was the novelty of this work. In a sense we used
holography in a very similar way like it is done for matter couplings in the framework of
AdS/CFT correspondence. Next using ideas from this conjecture we were able to derive
some interesting facts about gravitational RG flows and asymptotic safety in the ultraviolet
limit.

We devoted the fourth chapter for studying the phenomenon of classicalization. Our
target model was a nonlinear sigma model, which shares a lot of common features with
4-dimensional gravity, but at the same time is much simpler. We studied maximally sym-
metric target spaces with positive and negative curvatures. The results for classicalization
depended strongly on the sign of the curvature and also on the number of derivatives
present in the action. For 2-derivatives (only nonlinear kinetic term) and model on a
sphere, we presented evidences in favour of weak classicalization. Our analysis of model on
a hyperboloid was inconclusive. In the case of four derivatives, we noticed the occurrence
of strong (standard) classicalization in similarity with model of single Goldstone bosons.
At the end we motivated the conjecture that weak classicalization is related to asymptotic
safety, because both have quantum origin.

In the last main chapter the issue of low-energetic quantum gravitational theory was
discussed. We recalled the significance and origin of the local and non-local terms present
in the quantum effective action. We concentrated on the latter, because they are univer-
sal genuine prediction at low energy. We obtained the first few terms in an expansion in
powers of curvature of the quantum effective action for the system of minimally gravita-

tionally coupled scalar field in four spacetime dimension using a novel method. Namely
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we integrated the flow of the effective average action over RG trajectory from UV down to
IR. Hence we derived the equations for non-local formfactors in quantum effective action.
The last step consisted of taking the flat spacetime limit in obtained covariant quantum
action and deriving the form of the simplest vertex with the inclusion of one-loop quantum
corrections. In this way we got flat spacetime formfactors of the gravitational interactions
with scalars and were able to compare them with perturbative computation, which used

Feynman diagrams techniques.

129



Acknowledgements

L.R. is supported by the European Programme Unification in the LHC Era (UNILHC),
under the contract PITN-GA-2009-237920.

130



Bibliography

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) |arXiv:hep-
£h,/9906064].

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) |hep-ph/9905221].

[3] J. de Boer, E.P. Verlinde, H.L. Verlinde, JHEP 0008:003 (2000) [arXiv:hep-
th/9912012].

[4] N. Arkani-Hamed, M. Porrati, L. Randall, JHEP 0108 (2001) 017. [hep-th/0012148].
[5] R. Rattazzi and A. Zaffaroni, JHEP 0104, 021 (2001) arXiv: hep-th/0012248

[6] M. Bianchi, D. Z. Freedman and K. Skenderis, Nucl. Phys. B 631, 159 (2002)
|arXiv:hep-th/0112119].

[7] S. Gubser, Phys. Rev. D 63, 084017 (2001) arXiv:hep-th/9912001.

[8] R. Sundrum, arXiv:hep-th/1106.4501.

9] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231-252. |hep-th/9711200).
[10] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[11] F.J. Wegner, A. Houghton, Phys. Rev. A8 401-412 (1973).
J. Polchinski, Nucl. Phys. B231 269-295 (1984).

[12] C. Wetterich, Phys. Lett. B 301 (1993) 90.

131



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

K. G. Wilson, Phys. Rev. B4 (1971) 3174-3183; Phys. Rev. B4 (1971) 3184-3205.

S. Weinberg, In General Relativity: An Einstein centenary survey, ed. S. W. Hawking
and W. Israel, pp.790-831; Cambridge University Press (1979).

K. Gawedzki, A. Kupiainen, Phys. Rev. Lett. 55 (1985) 363-365.

W. Souma, Prog. Theor. Phys. 102, 181 (1999); [arXiv:hep-th/9907027].

O. Lauscher and M. Reuter, Phys. Rev. D65, 025013 (2002); |arXiv:hep-th/0108040];
Class. Quant. Grav. 19, 483 (2002); [arXiv:hep-th/0110021]; Int. J. Mod. Phys. A
17, 993 (2002); [arXiv:hep-th/0112089];

M. Reuter and F. Saueressig, Phys. Rev. D65, 065016 (2002). [arXiv:hep-
th/0110054].

D. F. Litim, Phys. Rev. Lett. 92 (2004) 201301 [arXiv:hep-th/0312114];

P. Fischer and D. F. Litim, Phys. Lett. B 638 (2006) 497 |arXiv:hep-th/0602203].
D. F. Litim and T. Plehn, Phys. Rev. Lett. 100 (2008) 131301 [arXiv:0707.3983
[hep-ph]].

E. Gerwick, D. Litim and T. Plehn, Phys. Rev. D 83 (2011) 084048 |arXiv:1101.5548
[hep-ph]].

E. Gerwick, Eur. Phys. J. C71 (2011) 1676. [arXiv:1012.1118 [hep-ph]].

A. Codello and R. Percacci, Phys. Lett. B672 280-283 (2009); arXiv:0810.0715 |hep-
th|

M. Fabbrichesi, R. Percacci, A. Tonero and O. Zanusso, Phys. Rev. D (2011); arXiv:
1010.0912 |hep-ph]|

M. Fabbrichesi, R. Percacci, A. Tonero and L. Vecchi, arXiv:1102.2113 |hep-ph|

F. Bazzocchi, M. Fabbrichesi, R. Percacci, A. Tonero and L. Vecchi, arXiv:1105.1968

[hep-ph]
X. Calmet, arXiv:1012.5529 |hep-ph)].

132



[22] D. F. Litim, Phil. Trans. R. Soc. A 369 (2011) 2759, |arXiv:1102.4624 |hep-th]|.

[23] D. F. Litim and J. M. Pawlowski, in: Krasnitz et. al. (ed.), The Ezact Renormali-
sation Group, World Sci (1999) 168, [arXiv:hep-th/9901063].
K. Aoki. Int. J. Mod. Phys., B14:1249-1326, 2000.
C. Bagnuls and C. Bervillier, Phys. Rept. 348 (2001) 91 |arXiv:hep-th/0002034].
J. Berges, N. Tetradis and C. Wetterich, Phys. Rept. 363 (2002) 223 [arXiv:hep-
ph/0005122].
J. M. Pawlowski, arXiv:hep-th/0512261.
T.R. Morris, Prog. Theor. Phys. Suppl. 131 395-414 (1998) [arXiv:hep-th/9802039]

[24] D. Shimizube and J. -I. Sumi, Prog. Theor. Phys. 115, 165 (2006) [hep-ph/0311109];
J. Berges, hep-ph/9902419;
J. -P. Blaizot, PoS QCD ~TNT09, 053 (2009) [arXiv:0912.3896 [hep-ph]].

[25] R. Percacci, J. Phys. A 40, 4895 (2007) [arXiv:hep-th/040919].

[26] 1. Heemskerk, J. Polchinski, JHEP 1106 (2011) 031. [arXiv:1010.1264 [hep-th]|.
T. Faulkner, H. Liu and M. Rangamani, arXiv:1010.4036 [hep-th].
D. Radicevic, arXiv:1105.5825 |hep-th)].

[27] S. S. Lee, Nucl. Phys. B 832, 567 (2010) arXiv:0912.5223 |hep-th|.
S. S. Lee, arXiv:1011.1474 [hep-th].

[28] P. Hasenfratz, Nucl. Phys. B 321 139-162 (1989);
R. Percacci and O. Zanusso, Phys. Rev. D81 065012 (2010) [arXiv:0910.0851 [hep-
th]].

[29] R. Percacci and D. Perini, Phys. Rev. D 68 (2003) 044018 [arXiv:hep-th/0304222].

[30] G. Narain, R. Percacci, Class. Quant. Grav. 27 (2010) 075001. [arXiv:0911.0386
[hep-th]].
G. Narain, C. Rahmede, Class. Quant. Grav. 27 (2010) 075002. |arXiv:0911.0394
|hep-th]].

133



[31] M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683 (2010) 196 |arXiv:0912.0208
[hep-th]].

[32] A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski, A. Weiler, arXiv:1108.1183[hep-
ph|

[33] A. Karch, A. O’Bannon and K. Skenderis, JHEP 0604, 015 (2006) [arXiv:hep-
th/0512125].

[34] F. Freire, D. F. Litim and J. M. Pawlowski, Phys. Lett. B 495 (2000) 256 |arXiv:hep-
th/0009110].

[35] D. F. Litim, Phys. Rev. D 64 (2001) 105007 [arXiv:hep-th/0103195]; Phys. Lett.
B 486 (2000) 92 [arXiv:hep-th/0005245; Int. J. Mod. Phys. A 16 (2001) 2081
[arXiv:hep-th/0104221].

[36] M. Reuter, Phys. Rev. D 57 (1998) 971 [arXiv:hep-th/9605030].
[37] D. Dou and R. Percacci, Class. Quant. Grav. 15 (1998) 3449 [arXiv:hep-th/9707239].

[38] A. Codello, R. Percacci, C. Rahmede, Annals Phys. 324 414 (2009) [arXiv:0805.2909
|hep-th]].

[39] S. Folkerts, D.F. Litim, J.M. Pawlowski, e-Print: arXiv:1101.5552 |hep-th)|
[40] U. Harst and M. Reuter, JHEP 1105 119 (2011) [arXiv:1101.6007 [hep-th]]
[41] G. Gibbons and S. Hawking, Phys. Rev. D 15, 2752 (1977).

[42] D. F. Litim, R. Percacci and L. Rachwal, Phys. Lett. B 710, 472 (2012)
|arXiv:1109.3062 [hep-th]|.
D. F. Litim, R. Percacci and L. Rachwal, J. Phys. Conf. Ser. 343, 012098 (2012).

[43] K. Falls, D. F. Litim, K. Nikolakopoulos and C. Rahmede, arXiv:1301.4191 |hep-th|.

134



[44] T. L. Curtright, X. Jin and C. K. Zachos, Phys. Rev. Lett. 108, 131601 (2012)
[arXiv:1111.2649 [hep-th]|.

[45] A. Codello, R. Percacci and C. Rahmede, Annals Phys. 324, 414 (2009)
|arXiv:0805.2909 |hep-th]|.

[46] K. Skenderis and P. K. Townsend, Phys. Lett. B 468, 46 (1999) |[hep-th/9909070].
[47] R. C. Myers and A. Singh, JHEP 1204, 122 (2012) [arXiv:1202.2068 [hep-th]]|.

[48] O. DeWolfe, D. Z. Freedman, S. S. Gubser and A. Karch, Phys. Rev. D 62, 046008
(2000) [hep-th/9909134].

[49] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Nucl. Phys. B 569, 451 (2000)
|hep-th /9909047 and
JHEP 9812, 022 (1998) [hep-th/9810126].

[50] A. B. Zamolodchikov, JETP Lett. 43, 730 (1986) |[Pisma Zh. Eksp. Teor. Fiz. 43,
565 (1986)].

[51] Z. Komargodski and A. Schwimmer, JHEP 1112, 099 (2011) [arXiv:1107.3987 [hep-
th|| and
Z. Komargodski, JHEP 1207, 069 (2012) [arXiv:1112.4538 |hep-th]|.

[52] R. Rattazzi and A. Zaffaroni, JHEP 0104, 021 (2001) [hep-th/0012248].
[53] I. Low and A. Zee, Nucl. Phys. B 585, 395 (2000) |hep-th/0004124].

[54] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Phys. Rept. 323,
183 (2000) |hep-th/9905111].

[55] P. Breitenlohner and D. Z. Freedman, Annals Phys. 144, 249 (1982),
P. Breitenlohner and D. Z. Freedman, Phys. Lett. B 115, 197 (1982),
L. Mezincescu and P. K. Townsend, Annals Phys. 160, 406 (1985).

135



[56] P. K. Townsend, Phys. Lett. B 148, 55 (1984).
[57] W. Boucher, Nucl. Phys. B 242, 282 (1984).

[58] D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, Adv. Theor. Math. Phys.
3, 363 (1999) [hep-th/9904017],

[59] J. L. Cardy, Phys. Lett. B 215, 749 (1988).
H. Osborn, Phys. Lett. B 222, 97 (1989).
I. Jack and H. Osborn, Nucl. Phys. B 343, 647 (1990).

|60] R. C. Myers and A. Sinha, JHEP 1101, 125 (2011) [arXiv:1011.5819 |hep-th]|.

[61] M. Kulaxizi and A. Parnachev, Phys. Rev. Lett. 106, 011601 (2011) [arXiv:1007.0553
[hep-th]].

[62] E. S. Fradkin and A. A. Tseytlin, Phys. Rept. 119, 233 (1985).
[63] R. Percacci and L. Rachwal, Phys. Lett. B 711, 184 (2012) [arXiv:1202.1101 [hep-th]]|.

[64] R. Percacci, Nucl. Phys. B 353, 271, (1991); PoS (CLAQGO8) 002
arXiv:0910.4951|hep-th|; R. Percacci PoS (ISFTG) 011 arXiv:0910.5167 [hep-th].

[65] K. Wilson and J. Kogut, Phys. Rep. 12 C 2 (1974); K. Wilson, Rev. Mod. Phys. 47
773 (1975).

[66] M. Niedermaier and M. Reuter, Living Rev. Relativity 9, 5 (2006); M. Niedermaier,
Class. Quant. Grav. 24 (2007) R171 [arXiv:gr-qc/0610018|; R. Percacci, in “Ap-
proaches to Quantum Gravity: Towards a New Understanding of Space, Time and
Matter” ed. D. Oriti, Cambridge University Press (2009); e-Print: arXiv:0709.3851
[hep-th]. D.F. Litim, PoS(QG-Ph)024 | arXiv:0810.3675 [hep-th]|; A. Codello, R. Per-
cacci and C. Rahmede, Int. J. Mod. Phys. A 23 14 (2008) arXiv:0705.1769 |hep-th|;
Ann. of Phys. 324 414-469 (2009), arXiv:0805.2909 |hep-th].

136



[67] A. Codello and R. Percacci, Phys. Lett. B 672 280-283 (2009) arXiv:0810.0715 |hep-
th].

[68] R. Percacci and O. Zanusso, Phys. Rev. D81 065012 (2010) arXiv:0910.0851 [hep-th].

[69] M. Fabbrichesi, R. Percacci, A. Tonero and O. Zanusso, Phys. Rev. D83, 025016
(2011) arXiv: 1010.0912 [hep-ph|; M. Fabbrichesi, R. Percacci, A. Tonero and L.
Vecchi, Phys. Rev. Lett. 107, 021803 (2011) arXiv: 1102.2113 |[hep-ph|; F. Bazzocchi,
M. Fabbrichesi, R. Percacci, A. Tonero and L. Vecchi, Phys. Lett. B705, 388-392
(2011) arXiv: 1105.1968 [hep-ph].

[70] G. Dvali, C. Gomez, arXiv:1005.3497 [hep-th|; G. Dvali, S. Folkerts and C. Germani
Phys. Rev. D84 024039 (2011) arXiv:1006.0984 [hep-th].

[71] G. Dvali, G.F. Giudice, C. Gomez, A. Kehagias, arXiv:1010.1415 [hep-ph].

[72] G. Dvali and D. Pirtskhalava, Phys. Lett. B699 78-86 (2011) arXiv:1011.0114 [hep-
ph|.

|73|] G. Dvali, arXiv:1101.2661 |[hep-th].

[74] G. Dvali, C. Gomez, A. Kehagias, JHEP 1111 070 (2011) arXiv:1103.5963 |hep-th].
|75 B. Bajc, A. Momen, G. Senjanovic, arXiv:1102.3679 |hep-ph].

[76] R. Akhoury, S. Mukohyama, R. Saotome, arXiv:1109.3820 [hep-th].

[77] N. Brouzakis, J. Rizos, N. Tetradis, arXiv:1109.6174 [hep-th|, J. Rizos, N. Tetradis
and G. Tsolias, JHEP 1208, 054 (2012) arXiv:1206.3785 [hep-th|. J. Rizos, N.
Tetradis, arXiv:1112.5546 [hep-th].

[78] C. Grojean, R.S. Gupta, arXiv:1110.5317 |hep-ph].
[79] G. Dvali and C. Gomez, JCAP 1207, 015 (2012) arXiv:1205.2540 |hep-ph].

[80] G. Dvali, A. Franca and C. Gomez, arXiv:1204.6388 |hep-th]|.

137



|81] G. Dvali and C. Gomez, Fortsch. Phys. 61, 742 (2013) arXiv:1112.3359 |hep-th].

[82] U. Aydemir, M. M. Anber and J. F. Donoghue, Phys. Rev. D 86, 014025 (2012)
arXiv:1203.5153 [hep-ph].

[83] G. M. Tavares, M. Schmaltz and W. Skiba, arXiv:1308.0025 |hep-ph].
[84] S.J. Brodsky and P. Hoyer, Phys. Rev. D83045026 (2011) arXiv:1009.2313 [hep-ph)|
[85] D. Anselmi, Class. Quant. Grav. 20 2355-2378 (2003) arXiv:hep-th/0212013

|86] R. Percacci and D. Perini Class. and Quantum Grav. 21, 5035 (2004) e-Print:hep-
th/0401071.

[87] R. Percacci and G.P. Vacca, Class. and Quantum Grav. 27 245026 (2010)
arXiv:1008.3621 [hep-th]|.

[88] A. Vikman, Europhys. Lett. 101, 34001 (2013) |arXiv:1208.3647 |hep-th]].
[89] A. Kovner and M. Lublinsky, JHEP 1211, 030 (2012) |arXiv:1207.5037 |hep-th]]|.

[90] A. Satz, A. Codello and F. D. Mazzitelli, Phys. Rev. D 82, 084011 (2010)
|arXiv:1006.3808 [hep-th]|.

[91] J. F. Donoghue, AIP Conf. Proc. 1483, 73 (2012) |arXiv:1209.3511 |gr-qc]|.

[92] N. E. JBjerrum-Bohr, J. F. Donoghue and B. R. Holstein, Phys. Rev. D 67, 084033
(2003) [Erratum-ibid. D 71, 069903 (2005)] [hep-th/0211072].

[93] N. E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, Phys. Rev. D 68, 084005
(2003) [Erratum-ibid. D 71, 069904 (2005)] [hep-th/0211071].

[94] J. F. Donoghue, Phys. Rev. D 50, 3874 (1994) [gr-qc/9405057].

[95] J. F. Donoghue, gr-qc/9512024.

138



[96] J. F. Donoghue, In *Glasgow 1994, Proceedings, High energy physics, vol. 2*
1061-1063, and Massachusetts U. Amherst - UMHEP-413 (rec.Oct.94) 6 p [hep-
th/9409143).

[97] J. F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994) [gr-qc/9310024].

[98] A. O. Barvinsky, A. Y. .Kamenshchik and I. P. Karmazin, Phys. Rev. D 48, 3677
(1993) [gr-qc/9302007].

[99] A. R. Pietrykowski, Phys. Rev. D 87, 024026 (2013) [arXiv:1210.0507 [hep-th]]|.

139



	Introduction
	I Holographic vs. Exact RG Flows
	Planck mass and Higgs VEV in Holographic vs. Exact 4D RG
	Motivation
	Holographic RG in pure AdS
	Functional RG
	Comparison between holographic and functional RG results
	Discussion

	Holographic RG flow geometries for gravitational coupling
	Holographic setup
	Gravitational RG flows
	Holographic description of the interpolating gravitational flow
	Interpretation and discussion


	II Classicalization and Quantum Effective Action
	Classicalization in nonlinear sigma model
	Introduction
	A single self-interacting Goldstone boson
	Nonlinear sigma model with 2 derivatives
	Nonlinear sigma model with 2 and 4 derivatives
	Classicalization vs. asymptotic safety

	1-loop effective action in system of gravitating scalar
	Truncation ansatz and 'inverse propagator'
	Local terms of one-loop effective action
	Nonlocal terms and exact RG flow equations
	Flat space limit and formfactors


	III 
	Conclusions and summary


