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Spacetime theories obtained from perturbative string theory constructions are automatically free
of perturbative anomalies, but it is not settled whether they are always free of global anomalies.
Here we discuss a possible Z24-valued pure gravitational anomaly of heterotic compactifications
down to two spacetime dimensions, and point out that it can be shown to vanish using the theory
of topological modular forms, assuming the validity of the Stolz–Teichner conjecture.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index A13, B24, B31

1. Introduction and summary

In the last several years, we have seen significant progress in the study of anomalies in general.
Although the nature of perturbative anomalies was extensively analyzed in the 1980s, there was no
systematic analysis of global anomalies, which were studied only on a case-by-case basis. In part
stimulated by the developments in theoretical condensed matter physics, we now have a unifying
framework to understand both perturbative and global anomalies [1]. This short paper records a small
step in the application of the new methods to the question of anomalies in string theory.

For the purpose of this paper, we regard perturbative string theory as an elaborate machinery
that produces a d-dimensional spacetime theory from a 2D conformal field theory (2D CFT) with
appropriate properties. The 2D CFT in question can arise, but not necessarily, as the worldsheet
sigma model of the string in an internal manifold of dimension 10 − d, in which case an analysis of
perturbative and global anomalies on the worldsheet is required. We take the position that this has
been taken care of if necessary so that we have a consistent 2D CFT at hand as an input. We can then
concentrate on the question of anomalies of the spacetime theory.

More specifically, we consider the case of perturbative heterotic string theories compactified down
to d dimensions, for which the input is

an N=(0, 1)-supersymmetric 2D CFT with (cL, cR) = (16 + (10 − d),
3

2
(10 − d)) (1.1)

and the output is

a spacetime theory in d dimensions. (1.2)

The resulting spacetime theory is famously free of perturbative anomalies; for d = 10 it is the foun-
dational result of Green and Schwarz [2], which was later generalized to arbitrary d by Schellekens,
Warner, and collaborators in Refs. [3–5]. In contrast, the issue of global anomalies is not settled
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at all. Aspects of global anomalies in d = 10 were studied in Refs. [6,7], but the case in general
dimensions has not been explored to the author’s knowledge.1

Let us first introduce the particular anomaly that we are going to study in this note, and then put
it in a more general perspective. We consider heterotic compactifications to two dimensions. They
can have chiral fermionic spectra, e.g., with n left-moving Majorana–Weyl fermions, which can
contribute to the anomaly polynomial of the form

−n(p1/48), (1.3)

where p1 is the first Pontryagin class of the spacetime tangent bundle. We can try to cancel this
anomaly by the Green–Schwarz mechanism, by including the 2D coupling

2π iN
∫

B, (1.4)

where the B-field is normalized to have periodicity one. In heterotic strings, we know that the field
strength H of B satisfies

dH = p1/2. (1.5)

The normalization of the right-hand side can be explained in multiple ways, some of which will
be explained later. Comparing Eqs. (1.3) and (1.5), we see that the fermionic anomaly (1.3) can
be canceled by setting N = n/24. The invariance of the coupling (1.4) under the large gauge
transformation of the B field requires that N is an integer, implying that there can be a Z24-valued
global anomaly in this system, unless n is divisible by 24.

Let us put this in a broader context. To discuss global anomalies from the modern point of view,
it is imperative to specify the spacetime structure. We assume that the spacetime is oriented and
equipped with a spin structure. In addition, we assume that a 3-form field strength H for a 2-form
field B satisfying the relation (1.5) is specified. This combination of geometric data is known as a
string structure in the mathematical literature, which can also be motivated purely within algebraic
topology.2 The possible global anomaly in d dimensions is then governed by the torsion part of
�

string
d+1 , the string bordism group in d + 1 dimensions, which is given as follows [9]:

D = d + 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

�
string
D Z Z2 Z2 Z24 0 0 Z2 0 Z ⊕ Z2 (Z2)

2
Z6 0 Z Z3

. (1.6)

What we saw above is the Z24-valued global anomaly in the case d = 2. Namely, a string structure on
the 2D spacetime � involves the specification of the orientation, the spin structure, and the B-field.
The possible anomaly due to the large gauge transformation of this B-field shifting

∫
�

B by one is
then given, in the modern interpretation, by the partition function of the invertible field theory in
three dimensions that governs the anomaly evaluated on � × S1 with a unit H flux on it.

1 Even the question of whether the 4D heterotic compactifications are free of Witten’s SU (2) anomaly is
wide open; see Ref. [8] for a recent discussion in the context of 4D N=2 compactifications.

2 Namely, we consider trivializing a given orthogonal bundle. The first obstruction is w1 ∈ H 1(BO, Z2),
which is trivialized by the orientation, the second obstruction is w2 ∈ H 2(BSO, Z2), which is trivialized by the
spin structure, and the next obstruction is λ ∈ H 4(BSpin, Z) = Z, which satisfies 2λ = p1 and is trivialized by
the string structure.
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As we will see below in more detail, the absence of this global anomaly boils down to the question
of whether the net number b of chiral Majorana–Weyl fermions in 2D heterotic compactifications is
always divisible by 24. In terms of the property of 2D N=(0, 1) CFT T with (cL, cR) = (24, 12) on
the worldsheet, this number b appears in the expression of its elliptic genus as the constant term in
its q-expansion:

Zell(T ; q) = aq−1 + b + O(q). (1.7)

The question is then whether this coefficient b is divisible by 24 for any such CFTs.
The author does not know of any field theoretical technique to study this divisibility. The only

approach that he is aware of is to utilize the theory of topological modular forms, which goes as
follows; more details will be provided later.

Hopkins and collaborators have constructed a generalized homology theory TMF• known as topo-
logical modular forms [10–12]. What makes TMF useful for us is the conjecture of Stolz and Teichner
[13,14], which says that the group TMFν is the group of deformation classes of 2D N=(0, 1)-
supersymmetric field theories with gravitational anomaly3 ν(p1/48). Then a 2D N=(0, 1) field
theory T determines a class [T ] ∈ TMFν .

Now, TMF• has a natural homomorphism ϕW , called the Witten genus, to the ring of integral
modular forms MF•/2 with the modular discriminant � inverted:

ϕW : TMF• → MF[�−1]•/2. (1.8)

Under the Stolz–Teichner conjecture, the Witten genus is equal to the elliptic genus as defined by
physicists, multiplied by η(q)ν :

ϕW ([T ]) = η(q)νZell(T ; q). (1.9)

The fact that the image of ϕW is completely determined (see Proposition 4.6 of Ref. [12]) then allows
us to conclude that b in Eq. (1.7) is a multiple of 24, showing that the heterotic compactifications to
two dimensions are free of the Z24-valued pure gravitational global anomaly.

The rest of the paper is organized as follows. In Sect. 2, we will describe how a single Majorana–
Weyl spinor in two dimensions has an anomaly 1 mod 24, and recast the condition of the absence
of the anomaly in terms of the property of the elliptic genus Zell of the internal worldsheet CFT.
In Sect. 3, we very briefly review basic properties of the topological modular forms, their relation
to integral modular forms, and the Stolz–Teichner conjecture. We will see that the coefficient b is
indeed a multiple of 24.

Before proceeding, we would like to mention that in this short note we are only going to scratch
the surface of the relationship between TMF and the anomaly of heterotic compactifications. A more
systematic analysis will be presented elsewhere.

3 It is a somewhat confusing point in this paper that the worldsheet and the spacetime are both 2D. We denote
the anomaly of the spacetime as n(p1/48) and that of the internal worldsheet CFT as ν(p1/48). Our convention
is that a CFT with chiral central charges (cL, cR) has ν = 2(cR − cL), and we take the right-moving side to be
supersymmetric for N=(0, 1) CFTs.
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2. A heterotic global anomaly
2.1. The Z24 anomaly

We start our discussion with the gravitational anomaly of n left-moving Majorana–Weyl fermions in
two dimensions. Its anomaly polynomial is given by −np1/48. This has the following interpretation:
the Majorana–Weyl fermions live on the boundary of a fermionic invertible phase in three dimensions,
whose partition function on a closed spin manifold M3 is given by

e2π inη(M3) = e−2π in
∫

W4
p1/48. (2.1)

Here, η(M3) is the normalized eta invariant appropriate for a single 2D Majorana–Weyl spinor, and
W4 is a spin 4-manifold such that ∂W4 = M3. The existence of W4 is guaranteed thanks to�spin

3 = 0,
and ZM3 does not depend on the choice of W4 because p1/48 integrates to an integer on any closed
spin 4-manifold.

We can try to cancel this anomaly via the Green–Schwarz mechanism. Namely, we introduce a
B-field whose 3-form field strength H satisfies dH = p1/2.4 We then consider a coupling 2π iN

∫
�2

B
in two dimensions. This corresponds to the inclusion of the contribution

e2π iN
∫

M3
H = e2π iN

∫
W4

p1/2 (2.2)

in the bulk action, which allows us to cancel the fermionic anomaly if n = 24N , i.e., when n is
divisible by 24.5

We can try to include the B-field coupling with N = n/24 even when N is fractional. In this case,
there is a Z24-valued global anomaly under the large gauge transformation of the B-field.6 Taking
n = 1, the invertible phase for the string structure in three dimensions is then given by

e2π i(η(M3)+
∫

M3
H/24). (2.3)

The expression above evaluates to e−2π i/24 on S3 with
∫

S3 H = 1, which is known to generate

�
string
3 = Z24.

2.2. Heterotic compactifications to two dimensions

Let us now point out how this Z24 anomaly could arise in the context of heterotic string compactifi-
cations down to two dimensions. Except for the analysis of the possible anomaly, the content of this
subsection is totally standard and has been explored in detail in the past; see, e.g., Refs. [17–24].

We take an N=(0, 1)-supersymmetric CFT T with (cL, cR) = (16 + 8, 3
2 · 8) as the internal

worldsheet degrees of freedom. To obtain spacetime massless fermions, the standard rule of the
string perturbation theory tells us that the worldsheet right-movers are in the R-sector vacuum, and
the worldsheet left-movers can have either L0 = 0 or 1. More precisely,

4 Here it is important that we cannot make the denominator larger. In a more proper formulation of the
B-field, e.g., using differential cohomology, we need to require that the right-hand side is also well defined as
an integral cohomology class. There is an integral class λ generating H 4(BSpin, Z) � Z that satisfies 2λ = p1,
and we use the pull-back of λ via the classifying map to BSpin to formulate this relation. For an introduction
to differential cohomology aimed at physicists, see Sects. 2 and 3 of Ref. [15].

5 We note that this is also how the heterotic worldsheet theory is anomaly free. Indeed, in the fermionic
formulation in the light-cone gauge, there are 32 left-moving Majorana–Weyl fermions for the current algebra,
and there are eight right-moving superpartners of the eight spatial coordinates. In total the anomaly is (32 −
8)(−p1/48) = −p1/2, which is canceled by the anomalous variation of the B field coupling with N = 1.

6 A 6D analogue of this construction was discussed in Ref. [16].
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◦ states with L0 = 0 give rise to ψ±
μ and λ∓, depending on (−1)FR = ±1, and

◦ states with L0 = 1 give rise to ψ±, again depending on (−1)FR = ±1.

Hereψμ are gravitinos whileλ andψ are ordinary fermions; the superscripts ± and ∓ specify whether
the modes are left-moving or right-moving, and (−1)FR is the right-moving fermion number.

We now recall that the number of states weighted by (−1)FR is encoded in the elliptic genus of the
internal CFT T , which has the following form:

Zell(T ; q) = tr(−1)FRqL0− cL
24 = aq−1 + b + · · · = aJ (q)+ b, (2.4)

where a, b ∈ Z. In the last equality we used the fact that the elliptic genus is modular; J (q) is the
modular j function normalized to have the leading term q−1 and no constant term.

The anomaly can then be computed, using the fact that the anomaly polynomial ofψ±
μ andψ± are

±23p1/48 and ∓p1/48, respectively [25]. We find that the total anomaly polynomial is given by

(−24a + b)(−p1/48), (2.5)

which requires the spacetime coupling 2π iN
∫

B with

N = −a + b/24. (2.6)

As in the original case of Green and Schwarz [2] and also in higher dimensions [3–5], the B-field
coupling with this required strength is automatically generated in the string 1-loop perturbation
theory [23,24]: the integral of the B-field vertex operator reduces to the expression

N = 1

8π

∫
M

Zell(T ; q)dμ, (2.7)

where M is the fundamental region of SL(2, Z) and dμ = dxdy/y2 for τ = x + iy is the standard
measure on it. This expression can be evaluated to give Eq. (2.6).

When N is an integer, we can include appropriately oriented |N | space-filling heterotic strings to
cancel the B-field tadpole. When N is fractional, it presents a genuine global anomaly of a heterotic
compactification down to two dimensions. As mentioned, many heterotic compactifications down to
two dimensions have been studied, but the coefficient b was divisible by 24 in all known examples.
The question then is whether this property holds for arbitrary N=(0, 1)-supersymmetric CFT with
(cL, cR) = (24, 12).

3. Its absence via topological modular forms
3.1. tmf and the Witten genus

Thus far, we have reinterpreted the question of the global anomaly of heterotic compactifications to
two dimensions into the divisibility by 24 of the constant term b of the q expansion of the elliptic
genus of the corresponding worldsheet CFT. The remaining task is to show that b is indeed divisible
by 24, using the theory of topological modular forms.

Topological modular forms come in three closely related variants, TMF, Tmf , and tmf . They are
generalized homology theories constructed by Hopkins and collaborators by combining algebraic
geometry and algebraic topology [10–12]. Here we only cite the properties that we will need. First,
tmf is connective, i.e., tmf •<0 = 0, and a ν-dimensional manifold M with string structure determines
a class [M ] ∈ tmf ν . In more detail, the class [M ] only depends on the string bordism class in�string

ν ,
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and therefore there is a homomorphism �
string• → tmf •. This homomorphism is known to be

surjective.
In addition, there is a homomorphism

ϕW : tmf • → MF•/2 (3.1)

where MF = Z[c4, c6,�]/(c3
4 − c2

6 − 1728�) is the ring of integral modular forms, with

c4 = 1 + 240q + · · · , c6 = 1 − 504q − · · · (3.2)

being the standard normalized Eisenstein series and

� = q − 24q2 + · · · (3.3)

the modular discriminant satisfying 1728� = c3
4 − c2

6. Here we put c4, c6, and � in degrees 4, 6,
and 12 of MF•. This homomorphism ϕW is known as the Witten genus.

Proposition 4.6 of Ref. [12] describes the image of ϕW . Namely, the image of ϕW has a Z-basis
given by

ai,j,kci
4cj

6�
k , i ≥ 0; j = 0, 1; k ≥ 0 (3.4)

where

ai,j,k =

⎧⎪⎪⎨
⎪⎪⎩

24/ gcd(24, k) if i = j = 0,

2 if j = 1,

1 otherwise.

(3.5)

The kernel of ϕW consists of torsion elements of tmf . In particular, the kernel is known to be absent
when k is a multiple of 24.

It is known that ϕW applied to [M ] satisfies the following equation:

ϕW ([M ]) = η(q)νq−ν/24
∫

M
Â(R) tr

∞∏

=1

(1 − q
eiR/2π)−1, (3.6)

where R is the curvature 2-form. Let us recall its physical significance [26–28]. We consider the
N=(0, 1) sigma model with the target space M . The right-moving fermions have sigma-model
anomalies in general [29], which can be canceled by introducing a coupling to the B field, if its field
strength H can be arranged to solve dH = p1/2. More precisely, this equality has to hold at the level
of integral cohomology [30], and the data of such H together with the spin structure of M comprise
the string structure of M . Summarizing, given an n-dimensional manifold M with string structure,
we can consider the N=(0, 1) sigma model σM whose target space is M . Its elliptic genus Zell(σM ; q)
can be computed in the large volume limit, and is given by Eq. (3.6) without the prefactor η(q)ν , so
that we have the relation

ϕW ([M ]) = η(q)νZell(σM ; q). (3.7)
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3.2. TMF and a tentative solution to our question

The discussions above strongly suggest that topological modular forms and 2D N=(0, 1) theories
should be related. Indeed, Stolz and Teichner [13,14] conjectured that another version of topological
modular forms, TMF, classifies 2D N=(0, 1) theories in the following manner. We first note that
�24 is in the image of ϕW applied to tmf 576 according to the theorem above. Furthermore, the kernel
of ϕW is trivial at that degree. Therefore there is a unique element that maps to�24 under ϕW , which
we also denote by �24. Then TMF is obtained by inverting �24:

TMF• = tmf [�−24]•, (3.8)

which is now 576-periodic. The conjecture of Stolz and Teichner is then

TMFν =
{

2D N=(0, 1)-supersymmetric QFTs
whose gravitational anomaly is ν(p1/48)

}
/ ∼, (3.9)

where two theories T and T ′ are considered equivalent T ∼ T ′ when they can be connected by
continuous (not necessarily marginal) deformations, and with the convention on ν that a single
chiral multiplet has ν = +1 instead of ν = −1. This conjecture has received some attention on the
theoretical physics side recently [31–35], in which various pieces of evidence toward the validity of
the conjecture can be found. We extend the Witten genus to the homomorphism

ϕW : TMF• → MF[�−1]•/2. (3.10)

We assume that ϕW applied to the class [T ] ∈ TMF satisfies the following relationship as before:

ϕW ([T ]) = η(q)νZell(T ; q). (3.11)

After these preparations, the desired divisibility of b by 24 is an immediate corollary. Let T be the
internal worldsheet CFT to be used in a heterotic compactification down to two dimensions. It has
(cL, cR) = (16 + 8, 3

28), which corresponds to the gravitational anomaly ν = 2(cR − cL) = −24.
The Witten genus is then

ϕW ([T ]) = η(q)−24(aJ (q)+ b) = ac3
4�

−2 + (−744a + b)�−1. (3.12)

Now we invoke the proposition above, which says that ϕW (TMF−24) has an integral basis consisting
of c3i

4 �
−(i+1) for i ≥ 1 and 24�−1. This implies that b is a multiple of 24.
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