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Abstract

The microscopic origin of electron pairing in Unconventional Superconductivity (USC) and in
particular for USC at high critical temperature remains one of the great challenges in condensed
matter physics. One large difficulty lies in the numerical simulation of such theoretical systems
which are hypothesized to exhibit USC. In particular, there is still contention as to what is the
ground state of the 2D Hubbard model, believed to represent USC in cuprates. As a result it
is difficult to predict which systems showing USC have high critical temperatures. The related
1D Hubbard ladder does allow for high-quality, quasi-exact solutions using the Density Ma-
trix Renormalization Group (DMRG) algorithm, and repulsively mediated electron pairing is
known to occur. However, despite the appearance of such pairing these ladders cannot exhibit
USC as quantum fluctuations in 1D are too strong even at zero temperature to allow for spon-
taneous breaking of a continuous symmetry (Mermin-Wagner theorem). Curing this deficiency
can be done by connecting the 1D system to a reservoir and in particular letting the reservoir
be an infinite array of such 1D systems. In this licentiate a method named MPS+MF, which
utilizes DMRG and mean field theory, has been developed for solving such systems. The low-
energy sector of Hubbard ladders can be realized by a Bose-Hubbard model with hard-core
restrictions. Such a system is itself interesting due to its possibility of being simulated with an
ultra-cold atomic gas. The validity of MPS+MF is tested against the established gold standard
of Quantum Monte Carlo (QMC) which has no issues in hard-core boson systems. It is found
that MPS+MF obtains a first order quantum phase transition from a 3D superfluid (SF) to a
largely one-dimensional array of 1D charge-density waves (CDWs) when interaction strength
is tuned which occurs at the same level as QMC. Furthermore, critical temperatures for the on-
set of superfluidity in the system are found to be substantially improved from full mean field
approaches. Additionally, the deviation that does occur seems independent of microscopic pa-
rameters. The results show dimensional cross-over being particularly pronounced around the
SF-CDW transition, verifying the approachs validity further.
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1. Introduction

Superconductivity has over the course of history provided many challenges
since its discovery in 1911 [1]. Notably, the first microscopic theory of so
called conventional superconductors by Bardeen, Cooper and Schrieffer (BCS
theory) was only developed over four decades after the initial discovery of the
phenomenon [2]. While conventional superconductivity is largely understood
through the BCS theory, examples that were not possible to explain in this
manner were inevitably discovered. The first material identified to exhibit so
called unconventional superconductivity (USC, or non-BCS superconductiv-
ity) was CeCu2Si2 tighly followed by the organic superconductors [3, 4, 5]. To
this day unresolved issues remain such as what the pairing mechanism of elec-
trons in so called unconventional superconductors is. Tied to this problem is
that of high critical temperature (Tc) superconductors. Most high-Tc materials
that have been found are of a USC type (with exceptions like the pressurized
Hydrides [6, 7]) yet it remains difficult to predict whether a material exhibits
USC and further whether it may obtain a large Tc [3]. This presents the issue
of how to systematically predict high-Tc materials.

Historically, the two-dimensional (2D) Hubbard model has provided a mini-
mal model containing short-range repulsive electron interactions, something
which is central for USC. Due to its reasonable fidelity in representing the
CuO2 sheets in cuprates the 2D Hubbard model with on-site repulsive interac-
tions has been hypothesized to achieve superconductivity at levels of doping
close to unit filling thereby capturing the experimental findings in the high-Tc
materials [8]. Despite concentrated efforts to determine whether this is true it
has remained an open problem with numerous results in favor and against the
hypothesis [9, 10]. In fact, the 2D Hubbard model achieves so much of the
physics observed in cuprates that it is plausible that at least some variation is
able to describe superconductivity [11].

While providing a starting point in the search for high Tc superconductivity
the numerical and analytical difficulty in resolving the 2D Hubbard model
motivates the search for other candidates. If it turns out the Hubbard model
is insufficient for superconductivity the correct model would likely only be-
come more complex, exacerbating the existing numerical issues. One alter-
nate candidate is that of quasi one-dimensional (Q1D) systems, i.e., three-
dimensional (3D) arrays of weakly coupled 1D systems. There are numerous
actively researched materials of this structure such as BPCB [12], the organic
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Bechgaard and Fabre salts [13], and strontium-based telephone number com-
pounds [14, 15] which can all be made to enter an USC state. Interestingly, the
organics’ (Bechgaard and Fabre salts) discovery as USC materials pre-dates
that of cuprates and is one of the first class of materials to defy description by
BCS theory [16].

Notably, Q1D systems can be studied by several methods. Where other high Tc
candidates of higher dimension may be solved with e.g. Quantum Monte Carlo
(QMC) [17, 18] methods or Dynamical Mean-Field Theory (DMFT) [19], 1D
and, by extension, Q1D systems are supported by additional tools. In 1D,
for numerical calculations there is the possibility of Density Matrix Renor-
malization Group (DMRG), a highly effective algorithm which has proven
markedly useful for 1D systems [20, 21, 22]. In addition, 1D allows the usage
of bosonization: An effective analytical tool in 1D which often can be used to
find expressions for relevant correlators of the model [23]. Furthermore, Q1D
systems are readily studied in ultra-cold atom gas experiments, providing a
direct experimental comparison to the theoretical approaches.

Q1D systems are of further interest as they have been known to exhibit so
called dimensional crossover, i.e., when quantum coherence between lower-
dimensional subsets of the system lose connection to each other and the sys-
tem behaves as a set of lower-dimensional systems rather than a connected
higher-dimensional system. The aforementioned organics are examples of ma-
terials which have been known to show this phenomenon [13]. Dimensional
crossover may also occur across a phase transition: something which becomes
very useful studying USC states. This is due to the lower-dimensional side of
the phase transition being simpler to treat and may allow approximations that
are imprecise in higher dimensions.

While neither repulsively mediated electron pairing nor superconductivity can
occur in true 1D (i.e. 1D systems with no extent in any other dimension) the
pairing has been shown to appear in the so called Hubbard ladder. This is
a 1D system with one lattice site of length in an extra-dimensional direction
and macroscopic length in the other (visualized in Fig. 1.1) which does exhibit
repulsively mediated electron pairing [13]. Further, it is possible to use quali-
tative methods like mean field (MF) or renormalization group theory to show
that a 3D connected set of such ladders enter an USC state, thus exhibiting
dimensional crossover. The end result is an exactly solvable model based on
first principles exhibiting an USC state in which the microscopic origin of the
pairing mechanism is well understood from a theoretical standpoint [23, 24].

Interestingly, while 1D systems cannot by themselves attain superconductiv-
ity their 1D nature seem to provide great conditions for superconductors to
achieve high critical temperatures [25]. Notably, systems of higher dimen-
sion often have their critical temperature bounded by the pairing energy of
fermions. However, for materials with strong lower-dimensional properties
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Figure 1.1. The geometry of the 1D Hubbard ladder.

the phase stiffness of the system becomes important [26]. Thus, we can imag-
ine creating a system with large phase stiffness such that critical temperature
is bounded by a pairing energy. In this manner, given a system with strong
phase stiffness the strategy becomes to maximize pairing energy in order to
maximize critical temperature. Previous studies indicate that pairing energies
at about 0.1t can be achieved (where t ∼ 104K is hopping strength) [24].

With this in mind, we aim to create a framework capable of high precision cal-
culations on Q1D systems with the end goal of producing models for materials
that can exhibit high-Tc superconductivity in which the microscopic origin of
pairing is understood.

This licentiate

In this licentiate we study how MF theory can be used to turn a Q1D model
composed of an infinite array of 1D chains coupled together weakly into an
effectively 1D model. The effective 1D model is subsequently solved using
DMRG, e.g., using the matrix product state (MPS) implementation thereof (see
Chapter 3). We create a framework, named MPS+MF, which solves such an
effective 1D system repeatedly in order to self-consistently determine the MF
parameters for the effective 1D model.

While the main goal of our research is to obtain quantitatively accurate cal-
culations of Q1D high-Tc superconductors it is of interest to test the fidelity
of our results against established methods. This will be important due to the
necessary inclusion of qualitative methods like MF theory. However, studying
repulsively mediated electron pairing can be difficult using methods like QMC
due to the fermionic sign problem [27]. Models with bosonic particles are
comparatively easy to access with QMC and we begin our study using such
models. In this system we study the condensate of bosonic particles which
form at low temperatures and repulsion.
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Figure 1.2. 3D anisotropic Bose-Hubbard model. Each tube represents a one-
dimensional Bose-Hubbard system. The transverse hopping parameter t⊥ connects
the 1D systems.

Using hard-core constraints (i.e. only one boson per lattice site) this model-
ing can be shown to have an equivalent low-energy theory to studying attrac-
tively interacting fermions [23]. This may be interpreted as fermionic particles
bound together and moving around in pairs. As such we restrict our study to
two cases: bosons with hard-core restrictions and the case where no such re-
strictions are applied which we call soft-core bosons.

Additionally, bosonic alternatives exhibit many of the physical effects that
we would also expect from an attractively interacting fermionic system. In
particular, dimensional crossover has been shown to occur in bosonic sys-
tems [28, 29]. Further, using bosonic particles makes comparison with ultra-
cold atom gas experiments more accessible [30, 31].

The work presented in this licentiate regards a 3D Bose-Hubbard model with
anisotropic hopping strength and repulsive interactions along the direction of
strong hopping shown in Fig. 1.2. The nature of ground states and thermal
states of a self-consistent 1D Hamiltonian are analyzed. The phase transitions
that occur in these models for varying interaction strengths and temperature
are localized and compared to corresponding results of QMC.

We find that our results compare impressively to QMC with regards to zero-
temperature quantum phase transitions which occur at almost the same level of
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interaction in the two methods and which furthermore agree on the transition
order. In addition, we find the MPS+MF critical temperature deviating from
the QMC one less than a what a full MF treatment would yield. The relative
deviation we do find, while somewhat notable, seems to be approximately
universal for varying microscopic parameters.
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2. Ordered states

An ordered system typically has correlated behavior, i.e., when particles move
and interact in a way that correlates with other particles. There are many
examples of ordered states such as (anti-)ferromagnetism, superconductivity,
and superfluidity. In this section we explain the concepts related to order and
phase transitions necessary to understand the results of paper I.

2.1 Order

When considering phase transitions between ordered and disordered states (or
between different ordered states) it is possible to define a so-called order pa-
rameter [32]. The order parameter quantifies the degree to which the system is
ordered. Notably, the physical meaning of the order parameter represents the
type of order a system exhibits.

An order parameter is associated with the breaking of a symmetry. A dis-
ordered system is described by macroscopic quantities like volume, particle
number, and internal energy. When a system attains a certain order additional
macroscopic quantities are required to determine the state of the system. For
instance, the Heisenberg model (in 2 or larger dimensions)

H =−J ·∑
〈i, j〉

si · s j,

will describe a disordered system above its Curie temperature as understood
by the minimization of free energy F = E−T S, also called the paramagnetic
state. Disorder in this case means that spins will be randomly oriented as this
maximizes entropy S. Such a system will look the same under like rotations
of each spin: There is rotational symmetry. However, below this temperature
threshold the system spins will be inclined to align along the same sponta-
neously chosen random direction (assuming J > 0). The rotational symmetry
is broken and a new macroscopic parameter

m = ∑
i
〈si〉 ,

called the magnetization is needed to describe the state. For a ferromagnet,
magnetization is the so-called order parameter. Since the new phase is no
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longer invariant under a set of transformations under which it was previously
invariant a set of symmetries have been broken in the transition to produce the
ferromagnet.

In general, when transitioning to an ordered system some symmetry of the
original Hamiltonian is broken. This coincides with the appearance of operator
averages in the new phase which are not invariant under the Hamiltonian’s
symmetry group. These averages become the order parameters.

Connected to the properties of ordered states is the concept of long-range or-
der. The appearance of an order parameter implies regularity in the state even
at very long distance. In other words, we expect the value of a measurement at
x will be able to provide information of the measurement at another position
y even when r = |x− y| → ∞. Given an operator φ which orders in the new
phase this may be described by

lim
r→∞
〈φ(x)φ(y)〉 → 〈φ(x)〉2 .

2.2 Superfluid order

Superfluidity, the state of matter where a gas of bosonic particles flows without
viscosity, is an ordered system. It can be likened to Bose-Einstein condensa-
tion (BEC) in which a macroscopic number of identical particles ”condense”
to the same quantum state (often, but not always, the zero momentum state).
The difference between these two phases is that BEC theory assumes weak in-
teraction while the prototypical cases of superfluidity in 4He are examples of
strong interactions. The properties of a superfluid can nevertheless be achieved
by assuming a macroscopic population of a single state being described by a
so called macroscopic wavefunction.

One method to obtain the formulation of macroscopic wavefunctions is with
the use of coherent states defined by

|αk0αk1 . . .〉= e−∑{ki} |αki |
2/2 exp

(
∑
{ki}

αkia
†
ki

)
|0〉 , (2.1)

where ladder operators ak have been defined for each momentum mode ful-
filling

[
ak,a

†
k′

]
= δkk′ . Coherent states have the property that a Hamiltonian

which has a spectrum of such states does not conserve particle number which
can be seen from the following property

〈aki〉= αki . (2.2)
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In order to find superfluid order one has to consider the single-particle density
matrix

ρ(r− r′) = 〈ψ†(r)ψ(r′)〉= 1
V ∑

k
e−ik·(r−r′) 〈a†

kak〉 , (2.3)

where

ψ(r) =
1√
V ∑

k
eik·rak. (2.4)

Assuming that one momentum mode (labeled k0) is macroscopically occupied
with Nmac particles we obtain

〈a†
kak〉= nk = Nmacδkk0 + f (k). (2.5)

If f (k) is a smooth enough function we obtain in the thermodynamic limit:

ρ(r− r′) = nmac +
1
V

∫
d3keik·(r−r′) f (k)︸ ︷︷ ︸

→0

→ nmac, (2.6)

where nmac = Nmac/V is the density of momentum mode k0. Further, we
would expect the operators ψ(r) to become disconnected at infinite separation
r− r′. This yields another view of the single-particle density matrix

nmac = 〈ψ†(r)ψ(r′)〉 ≈ 〈ψ†(r)〉〈ψ(r′)〉 . (2.7)

Due to the assumption of coherent states the averages 〈ψ(r)〉 can be non-
zero. A number-conserving state would yield a contradiction at this point in
which nmac would approach zero despite being required to correspond to a
large fraction of total particle number. Notably, this is a type of long-range
order since operators remain correlated even at infinite separation. In this case
the operators are different and as such the phenomenon is called off-diagonal
long-range order.

Since the average 〈ψ(r)〉 is related to the macroscopic population of the k0
state it invites the interpretation as an order parameter: When the particle
number of any mode grows to macroscopic levels 〈ψ(r)〉 attains a finite value.
Thus, superfluidity entails macroscopic populations of a mode which yields fi-
nite measurements of 〈ψ(r)〉. Additionally, it is worthwhile to note that ψ(r)
may be taken for a discrete lattice as well in which similar relations are ob-
tained with the order parameter becoming the lattice site annihilation operator
average:

nmac = 〈a†
i a j〉= 〈a†

i 〉〈a j〉 , (2.8)

where i, j label two far separated positions.
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2.3 Mott insulator

Mott insulators are a class of materials that insulate despite their electron struc-
ture suggesting otherwise given band theoretical calculations [33, 34]. This is
proposed to be due to electron-electron interactions pinning the electrons to
the atoms of the material.

In theory, such a material is simple to produce: Consider the ground-state of
the spin-less 1D Fermi-Hubbard Hamiltonian which may be computed analyt-
ically

HFH =−t ∑
i

(
c†

i ci+1 +h.c.
)
+V ∑

i
nini+1. (2.9)

Such a Hamiltonian will at half filling and sufficiently large V open a gap in
the energy band [23]. The effect is that electrons can no longer move and are
instead pinned to every other lattice site, driving the system into an insulating
state. Adding particles to this state will cost a finite amount of energy in the
thermodynamic limit: This energy difference between ground state and the
state with an added particle is commonly referred to as the charge gap.

The ingredient required to produce this effect is sufficient repulsion between
particles at filling fractions of the lattice which are commensurate with the in-
teraction. Similar examples of pinning can be produced with spinful fermions
where the repulsion may be on-site in addition to longer-range interactions.
For such examples filling fractions are required to be unit filling for on-site in-
teractions and lower density for longer-range interactions. Notably, the spin-
less fermion model described by eq. (2.9) is connected to spin-1/2 models
via a Jordan-Wigner transformation which in turn are connected to hard-core
bosons. Thus, we know that all of these examples will exhibit the Mott insu-
lator phase.

The order parameter for a Mott insulator (fermionic/bosonic) can be expressed
by the long-range order of the density-density correlator:

Czz =
1
L ∑

i
(〈nini+r〉−〈ni〉〈ni+r〉) , (2.10)

where r is a range chosen such that the correlator 〈nini+r〉 has converged to a
constant. Notably, this expression is directly related to the Sz-Sz correlator for
spin Hamiltonians and thus is similar to the anti-ferromagnetic order parame-
ter. This expression can be generalized to longer-range repulsive interactions.
Consider, the Hamiltonian in Eq. (2.9) with added next-to-nearest neighbour
repulsion

HFH,nn = HFH +V ′∑
i

ni+2ni. (2.11)

If the filling is tuned to one third of the lattice size fermions may now avoid the
energy penalty associated with nearest neighbour interaction by being pinned
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to every third site. An order parameter for this case could be defined via

Czz =
1
L ∑

i
(−1)r mod 3 (〈nini+r〉−〈ni〉〈ni+r〉) . (2.12)

Similarly, for longer range interactions the order parameter would become:

Czz =
1
L ∑

i
(−1)r mod (d+1) (〈nini+r〉−〈ni〉〈ni+r〉) , (2.13)

where d is the range of interaction which pins the particles, e.g., d = 1 for
nearest neighbour interactions and d = 2 for next-to-nearest range.

For the case of the Hamiltonian in Eq. (2.9): Weak enough repulsions will not
be able to localize the particles and the system will behave like a Tomonaga-
Luttinger liquid (see Chapter 4. In higher dimensions the low-energy be-
haviour will be a Fermi liquid). Such a phase is ungapped. Since the Mott
insulator appears at a certain value of U/t =Uc/t, opening the charge gap, we
obtain a phase transition between a phase with no gap and one with a gap. In
addition to the order parameter, the phase transition is marked with the open-
ing of a charge gap which can be used to mark its incidence.
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3. Computational Methods

At the center of a multitude of many-body physics problems lies the many-
body problem: that the total Hilbert space of solutions scales exponentially
with system size. When exact analytical methods are unavailable an exponen-
tially large Hilbert space becomes difficult to treat due to the exponentially
increasing size of computational resources needed to simulate the system.

A common class of algorithms are the QMC methods. The strength and flex-
ibility of such approaches is attested by a multitude of concrete implementa-
tions of QMC, such as the Worm algorithm [35, 36], Diagrammatic QMC [36],
SSE [37]. Simultaneously, since QMC is an algorithm which samples a space
of solutions it is able to run parallelized on a computing cluster with com-
munication between computation nodes making the number of Monte Carlo
updates scale almost linearly with the number of compute cores available.
Unfortunately, many physical problems give rise to the so called fermionic
sign problem in QMC [27]. When the physical situation is such that this oc-
curs the computational cost to obtain reasonably low statistical errors increases
exponentially with the inverse temperature making simulations, especially of
ground state properties, difficult if not impossible [11, 27].

3.1 Density Matrix Renormalization Group

While QMC is a powerful method its limitations motivate the usage of addi-
tional algorithms. One such alternative is the DMRG algorithm which was
developed in 1992 by Steven White [20, 21]. Intensive research has been per-
formed on the DMRG algorithm resulting in many variations and formulations
which are designed to be efficient in specific use cases, e.g., time evolution,
ground state searches and exotic lattice geometries [38, 39, 40, 41].

DMRG was originally formulated in an iDMRG setting (infinite DMRG) in-
spired by the Numerical Renormalization Group (NRG) pioneered by Wil-
son [42]. The failure of NRG, specifically for real-space problems, was re-
lated to imposing artificial boundary conditions between system blocks [43].
This motivated the search for an algorithm which could embed the iterated
sub-system in an environment which would be the correct surrounding at final
iteration. Steven White formulated a procedure in which a linear growth of
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the system is performed and its minimal energy is computed in an environ-
ment which is grown at each iteration. One of the large differences between
NRG and DMRG was that the former grows exponentially by finding the min-
imal energy of the current system connected to itself and the latter finds the
minimal energy of a small sub-system in connection with a linearly growing
environment.

For the purposes of this project a formulation of DMRG in a context of Matrix
Product States (MPS) is used [22, 44, 45, 46]. This formulation provides a
framework which is less complex than the original DMRG while still provid-
ing the same wave function solutions [47, 48, 49].

3.2 Matrix Product States

A common strategy for solving the many-body problem is to provide an ansatz
for the ground state parametrized by some set of parameters. The result will
be a class of states which cover a sub-set of the total Hilbert space of solu-
tions. Thus, a less complex problem can be solved provided that the ground
state can be captured sufficiently by the ansatz. Matrix product states are an
example of one such ansätze, parametrized by the sizes of matrices. In fact,
the parametrization of a MPS allows coverage of the entire solution Hilbert
space with the caveat of intractable numerical cost.

In this section we develop the concept of a matrix product state and note key
properties that make their usage natural for DMRG.

3.2.1 Schmidt decomposition

In order to connect a general quantum state to an MPS first consider the sin-
gular value decomposition (SVD) of a matrix M of dimension NA×NB:

M =USV †,

where the properties of a SVD guarantee that

• U is of dimension NA×min(NA,NB) and U†U = I

• S is of dimension min(NA,NB)×min(NA,NB) and is diagonal. The di-
agonal values are called the singular values of M.

• V † is of dimension min(NA,NB)×NB and VV † = I.
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In the case of a bipartite lattice composed of two sublattices A and B it is
possible to define a pure state

|ψ〉= ∑
i j

ψi j |i〉A | j〉B , (3.1)

where {|i〉A}, {| j〉B} are orthonormal bases of sublattice A and B respectively.

Using SVD on the components ψi j yields

|ψ〉= ∑
i ja

Ui,aSaa(V †)a j |i〉A | j〉B = ∑
a

sa |a〉A |a〉B , (3.2)

where

|a〉A = ∑
i

Ui,a |i〉A

|a〉B = ∑
j
(V †)a, j | j〉B .

Equation Eq. (3.2) is a so-called Schmidt decomposition of the state |ψ〉.
Assuming that the singular values si are ordered such that si > s j, i < j (i.e.
descending order) an optimal approximation of a matrix M can be defined in
the context of SVDs:

Mapprox =USapproxV †, (3.3)
Sapprox = diag{s1,s2, . . . ,smin,0, . . .} , (3.4)

where smin is the smallest singular value kept and the rest are set to zero [22].
Similarly, we may truncate the singular values in Eq. (3.2) to obtain an optimal
approximation of the state given a number of singular values. Using just one
singular value would produce a product state i.e. an outer product of all states
on A with all those on B:

|ψ〉 ≈ s1

(
∑

i
Ui,1 |i〉A

)
⊗
(

∑
j
(V †)1, j | j〉B

)
, (3.5)

which yields a state in which states on sublattice A and B are completely
disentangled. Notably, increasing the number of included singular values im-
mediately yields some entanglement between sublattice states which increases
as more singular values are included.

3.2.2 Fully decomposed state

Making use of the Schmidt decomposition from the previous section we are
able to perform SVDs on anything that can be shaped into a matrix. A general
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quantum state on a 1-dimensional lattice of length L can be defined by

|ψ〉= ∑
{σi}

cσ1,...,σL |σ1, . . . ,σL〉 , (3.6)

where σi is the quantum number on site i. The many-body problem can be
found in this description in the dL components of cσ1,...,σL (where d is the
local Hilbert space dimension). It is possible to restructure these components
into matrices and perform SVDs:

cσ1,(σ2σ3...σL) = ∑
a1

Uσ1,a1Sa1,a1(V
†)a1,σ2,...,σL = ∑

a1

Aσ1
1,a1

c(a1σ2),(σ3,...,σL), (3.7)

where A has the same components as U but has been reshaped into a set of
vectors Aσ1 whose entries are matrices, i.e. A is a tensor of rank 3, and S,V
has been absorbed into the new tensor c. In the final equality we thus obtain a
reduced number of entangled components dL−1. The structure chosen for the
new c allows further SVDs to be performed:

cσ1,(σ2σ3...σL) = ∑
a1

Aσ1
1,a1 ∑

a2

U(a1σ2),a2Sa2,a2(V
†)a2,(σ3,...,σL) =

∑
a1

Aσ1
1,a1 ∑

a2

Aσ2
a1,a2

c(a2σ3),(σ4,...,σL) = ∑
{ai}

Aσ1
1,a1

Aσ2
a1,a2
· · ·AσL−1

aL−2,aL−1AσL
aL−1,1

, (3.8)

which can be rewritten into a matrix product

cσ1,σ2,...,σL = Aσ1Aσ2 · · ·AσL−1AσL . (3.9)

This yields the aptly named matrix product state whose basis state weights are
determined by a product of matrices:

|ψ〉= ∑
{σi}

Aσ1Aσ2 · · ·AσL−1AσL |σ1, . . . ,σL〉 . (3.10)

Note that the first and final set of matrices, Aσ1 and AσL , are row and col-
umn vectors respectively, i.e. the matrix entries are size 1×d and d×1. The
many-body complexity has been hidden away in the size of these matrices
which increase toward some maximum at the matrix product center (i.e. at
AσL/2). The properties of SVD yield matrix dimensions of A in Eq. (3.10):
(1×d), (d×d2), (d2×d3) . . . where d is the local Hilbert space dimension.
The matrix sizes become unmanageable even for quite short systems such that
a cut-off, χ , must be introduced in accordance with the optimal approxima-
tion Eq. (3.3). The resultant matrix size is commonly referred to as the bond
dimension.

It shall often be practical to represent states like eq. (3.10) schematically as
the amount of indices and sums to be aware of increases strongly, especially
as operators are included. A typical way to do this is shown in Figure 3.1. The
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Aσ1
a0,a1 AσL−1

aL−1,aL· · ·

σ1 σL

a1 a2 a3 a4 a5 a6 a7 a8 a9

Figure 3.1. A schematic representation of the MPS where a0 and aL are dummy
indices of dimensions 1.

free legs represent physical indices {σi} which may be contracted with other
MPS. The connecting legs represent the matrix or bond indices which connect
each dot, representing the matrices in the MPS, to the next.

3.2.3 MPS properties

Granted that the left matrices of a SVD, U , fulfill the condition U†U = I the
constructed A tensors must in turn fulfill the correspondent equation:

δa′i,ai
= ∑

ai−1,σi

(U†)a′i,(ai−1σi)
U(ai−1σi),ai = ∑

ai−1,σi

(Aσi†)a′i,ai−1
Aσi

ai−1,ai
(3.11)

=⇒ ∑
σi

Aσi†Aσi = I. (3.12)

It is important to note that the converse is not necessarily true i.e.

∑
σi

AσiAσi† = ? (3.13)

Such matrices are said to be left-normalized. The corresponding MPS in
Eq. (3.10) is as such called a left-canonical MPS. It is also possible to di-
vide up the tensor components c by starting from the right and constructing
matrices from V instead of from U . This leads to a state which has the same
appearance as Eq. (3.10):

|ψ〉= ∑
{σi}

Bσ1Bσ2 · · ·BσL−1BσL |σ1, . . . ,σL〉 , (3.14)

where B is obtained by reshaping V †. The crucial difference between the two
states is in the normalization condition:

δa′i,ai
= ∑

ai−1,σi

(V †)a′i,(ai−1σi)
V(ai−1σi),ai = ∑

ai−1,σi

Bσi
a′i,ai−1

(Bσi†)ai−1,ai (3.15)

=⇒ ∑
σi

BσiBσi† = I. (3.16)
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Matrices which fulfill this condition are referred to as being right-normalized.
Thus, Eq. (3.14) is called a right-canonical MPS. Due to the usefulness of the
identity relations a SVD brings to a state both Eq. (3.10) and (3.14) are used
in DMRG in favour of other MPS structures where no such normalization
condition can be identified.

Further, it is possible to define MPS which are in a so-called mixed canonical
state. If the procedure performed in Eq. (3.14) is done only partially and the
remaining tensor components are created using Eq. (3.10) the MPS will have
both A and B matrices. Such states are of the form

|ψ〉= ∑
{σi}

Aσ1Aσ2 · · ·Aσl Λ
[l]Bσl+1 · · ·BσL−1BσL |σ1, . . . ,σL〉 , (3.17)

where Λ[l] is a diagonal matrix containing the singular values of a SVD per-
formed at site l.

3.2.4 Matrix Product Operator

It is also possible to express general operators in the form of a matrix product.
Any operator can be defined by

O = ∑
{σ ,σ ′}

Oσ ′1,σ
′
2,...,σ

′
L

σ1,σ2,...,σL |σ1,σ2, . . . ,σL〉〈σ ′1,σ ′2, . . . ,σ ′L| . (3.18)

Once again using SVD it is possible to divide the operator components into
matrices. Note the extra set of physical degrees of freedom σ ′. Grouping each
σi together yields

O = ∑
{σ ,σ ′}

O(σ1σ ′1),(σ2σ ′2···σLσ ′L) |σ1,σ2, . . . ,σL〉〈σ ′1,σ ′2, . . . ,σ ′L|

= ∑
{σ ,σ ′}

W σ1,σ
′
1Oσ2,σ

′
2,...,σL,σ

′
L |σ1,σ2, . . . ,σL〉〈σ ′1,σ ′2, . . . ,σ ′L| , (3.19)

where a similar splitting of indices was performed as was done for MPS. Note
that W σ1σ ′1 is a row vector. Continuing this process for each pair of σi,σ

′
i we

obtain

O = ∑
{σ ,σ ′}

W σ1,σ
′
1W σ2,σ

′
2 · · ·W σL,σ

′
L |σ1,σ2, . . . ,σL〉〈σ ′1,σ ′2, . . . ,σ ′L| . (3.20)

Similar to the case of MPS a schematic representation of operators may be
performed as shown in Figure 3.2.
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Oσ1,σ
′
1

b0,b1
OσL−1σ ′L

bL−1,bL

σ1 σL

σ ′1 σ ′L

b1 b2 b3 b4 b5 b6 b7 b8 b9

Figure 3.2. A schematic representation of a MPO.

b1 b2 b3 b4 b5 b6 b7 b8 b9

σ1 σL

σ ′0 σ ′1 σ ′2 σ ′3 σ ′4 σ ′5 σ ′6 σ ′7 σ ′8 σ ′9
a1 a2 a3 a4 a5 a6 a7 a8 a9

Figure 3.3. Schematic representation of an MPO applied to an MPS.

This description makes it easier to describe the application of operators to
MPS. Consider a MPS which has mixed left and right-normalized matrices M.
The application of the operator given in Eq. (3.20) to such a state becomes

O |ψ〉=

∑
{σ ,σ ′}

W σ1,σ
′
1W σ2,σ

′
2 · · ·W σL,σ

′
LMσ ′1Mσ ′2 · · ·Mσ ′L−1Mσ ′L |σ1,σ2, . . . ,σL〉

= ∑
{σ}

Nσ1Nσ2 · · ·NσL−1NσL |σ1,σ2, . . . ,σL〉 , (3.21)

where

Nσi
(ai−1bi−1),(aibi)

=



∑σ ′1
W σ1σ ′1

1,b1
Mσ ′1

1,a1
if i=1

∑σ ′1
W σLσ ′L

bL−1,1
Mσ ′L

aL−1,1
if i=L

∑σ ′i
W σiσ

′
i

bi−1,bi
Mσ ′i

ai−1,ai otherwise.

(3.22)

Notably, the structure of the MPS is preserved by the MPO application and the
result is that the MPS bond dimension is inflated by the MPO bond dimension.
The contraction of an MPO with an MPS can be visualized in the schematic
notation using Figures. 3.1 and 3.2 as shown in Fig. 3.3.

25



3.3 Finite size DMRG

DMRG can be used to study different physical situations. For the purposes of
this research project we need both ground states and thermal states and will
formulate them in a finite size DMRG algorithm.

3.3.1 Ground state DMRG

To obtain the ground state of a system the energy of a MPS trial state must
be minimized. The most efficient way to perform this minimization is a vari-
ational search in the space of possible MPS given a maximally allowed bond
dimension, χ [22]. The energy is defined by

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 . (3.23)

Let M denote the MPS matrices of |ψ〉. The state norm becomes

〈ψ|ψ〉= ∑
{σ}

(
MσL†MσL−1† · · ·Mσ2†Mσ1†)×(Mσ1Mσ2 · · ·MσL−1MσL) . (3.24)

Since minimizing with respect to the entire set of matrices is an exponentially
difficult problem the strategy is to minimize locally at some pair of sites (or
alternatively at a single site). Restructuring the state norm to reflect this we
obtain:

〈ψ|ψ〉= ∑
{σ}

(
BσL†BσL−1† · · ·Aσ2†Aσ1†)× (Aσ1Aσ2 · · ·BσL−1BσL)

= ∑
{σ}

∑
{al}

∑
{a′l}

(Aσl−1†Aσl−2† · · ·Aσ1†Aσ1 · · ·Aσl−2Aσl−1)al−1,a′l−1
×

(Bσl+1Bσl+2 · · ·BσLBσL† · · ·Bσl+3†Bσl+2†)a′l+1al+1
×

Mσl∗
al−1al

Mσl
a′l−1a′l

Mσl+1∗
alal+1Mσl+1

a′la
′
l+1

=

∑
σl

∑
{al}

∑
{a′l}

Ψ
A
al−1a′l−1

Ψ
B
a′l+1al+1

Mσl∗
al−1al

Mσl
a′l−1a′l

Mσl+1∗
alal+1Mσl+1

a′la
′
l+1

. (3.25)

It is possible to construct |ψ〉 in a mixed-canonical representation such that left
of index l the state is left-canonical and right of site l +1 it is right-canonical.
This has the benefit of simplifying the overlap tremendously due to left- and
right-normalization

Ψ
A
al−1a′l−1

= δal−1a′l−1
(3.26)

Ψ
B
a′l+1al+1

= δa′l+1al+1
. (3.27)
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a1 a2 a3 a4 a5 a6 a7

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

a′1 a′2 a′3 a′4 a′5 a′6 a′7

=

al

a′l

σl σl+1 al+1al−1

Figure 3.4. A schematic representation of the state norm in Eq. (3.25) simplified in
accordance with Eq. (3.26).

In fact, this can be neatly expressed in the schematic notation defined in
Figs. 3.1-3.3. The contraction from Eq. (3.25) can be described as shown in
Fig. 3.4. From this it can clearly be seen that the norm of a properly prepared
state in accordance with Eq. (3.26) is computationally cheap to obtain.

In addition to the state norm we need the energy expectation value. It becomes

〈ψ|H|ψ〉= ∑
{σ ,σ ′}

(
MσL†MσL−1† · · ·Mσ2†Mσ1†)×

W σ1,σ
′
1W σ2,σ

′
2 · · ·W σL,σ

′
L×
(

Mσ ′1Mσ ′2 · · ·Mσ ′L−1Mσ ′L
)

= ∑
{σ ,σ ′}

∑
{a,a′,b}

(
Mσ1∗

1,a1
W σ1,σ

′
1

1,b1
Mσ ′1

1,a′1

)
×
(

Mσ2∗
a1,a2

W σ2,σ
′
2

b1,b2
Mσ ′2

a′1,a
′
2

)
· · ·

×
(

Mσl∗
al−1,al

W
σl ,σ

′
l

bl−1,bl
M

σ ′l
a′l−1,a

′
l

)
· · ·×

(
MσL∗

aL−1,1
W σL,σ

′
L

bL−1,1
Mσ ′L

a′L−1,1

)
. (3.28)

Each bracket treats a specific site in the finite lattice. It is now possible to
isolate a specific pair of sites l and l + 1 in an environment of the remaining
lattice:

〈ψ|H|ψ〉= ∑
{σlσ

′
l }

∑
{bl}

∑
{al}

∑
{a′l}

Lal−1,a′l−1,bl−1
×

×
(

Mσl∗
al−1,al

W
σl ,σ

′
l

bl−1,bl
M

σ ′l
a′l−1,a

′
l

)(
Mσl+1∗

al ,al+1W
σl+1,σ

′
l+1

bl ,bl+1
M

σ ′l+1
a′l ,a
′
l+1

)
Ral+1,a′l+1,bl+1

,

(3.29)

where

Lal−1,a′l−1,bl−1
= ∑

σ1,...,σl−2

∑
a1,...,al−2

∑
b1...,bl−2

∑
a′1...,a

′
l−2

(
Mσ1∗

1,a1
W σ1,σ

′
1

1,b1
Mσ ′1

1,a′1

)
×

×
(

Mσ2∗
a1,a2

W σ2,σ
′
2

b1,b2
Mσ ′2

a′1,a
′
2

)
· · ·×

(
Mσl−1∗

al−2,al−1W
σl−1,σ

′
l−1

bl−2,bl−1
M

σ ′l−1
a′l−2,a

′
l−1

)
(3.30)

27



σ ′0 σ ′1 σ ′2 σ ′3 σ ′4 σ ′5 σ ′6 σ ′7 σ ′8 σ ′9

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

Figure 3.5. A schematic representation of the energy expectation value.

Ral+1,a′l+1,bl+1
=

∑
σl+1,...,σL

∑
al+1,...,aL

∑
bl+1...,bL

∑
a′l+1...,a

′
L

(
Mσl+2∗

al+1,al+2W
σl+2,σ

′
l+2

bl+1,bl+2
M

σ ′l+2
a′l+1,a

′
l+2

)
×

·· ·×
(

MσL−1∗
aL−2,aL−1W

σL−1,σ
′
L−1

bL−2,bL−1
M

σ ′L−1
a′L−2,a

′
L−1

)(
MσL∗

aL−1,1
W σL,σ

′
L

bL−1,1
Mσ ′L

a′L−1,1

)
, (3.31)

are the left and right partitions around a site pair (l, l + 1) of the lattice. It is
worthwhile to note that partitioning the matrices in this manner can be done for
any site pair. The expectation value Eq. (3.29) is schematically represented in
Fig. 3.5. Notably, the contraction for each σl does not simplify as in Fig. 3.4.

The central MPS matrices may be multiplied together and defined as a new
matrix (

Mσl∗
al−1,al

Mσl+1∗
al ,al+1

)
=
(

Θ
σlσl+1
al−1al+1

)∗
(3.32)

We next minimize 〈ψ|H|ψ〉 with respect to the components of
(

Θ
σlσl+1
al−1al+1

)∗
(i.e. the components of the two matrices at l) by looking for an extremum
which yields the equation

∑
σ ′l σ ′l+1

∑
{bl}

∑
{al}

Lal−1,a′l−1,bl−1

(
W

σl ,σ
′
l

bl−1,bl
W

σl+1,σ
′
l+1

bl ,bl+1
Θ

σlσl+1
a′l−1a′l+1

)
Ral+1,a′l+1,bl+1

−Eloc ∑
a′la
′
l−1

Ψ
A
al−1a′l−1

Ψ
B
a′l+1al+1

Θ
σlσl+1
a′l−1a′l+1

= 0, (3.33)

where Eloc denotes the energy of the system (dependent on the local choice of
Θ). This equation can be reshaped into an eigenvalue problem with the form

Hv−ElocPv = 0, (3.34)
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−Eloc× = 0

−Eloc×L R
= 0

Figure 3.6. A schematic representation of Eq. 3.33. Dashed circles indicate the objects
which have been eliminated through derivation.

with the following definitions

H(σlσl+1al−1al+1),(σ
′
l σ ′l+1a′l−1a′l+1)

=

∑
{bl}

Lal−1,a′l−1,bl−1
W

σl ,σ
′
l

bl−1,bl
W

σl+1,σ
′
l+1

bl ,bl+1
Ral+1,a′l+1,bl+1

(3.35)

v(σ ′l σ ′l+1a′l−1a′l+1)
= Θ

σ ′l σ ′l+1
a′l−1a′l+1

(3.36)

P(σlσl+1al−1al+1),(σ
′
l σ ′l+1a′l−1a′l+1)

= Ψ
A
al−1a′l−1

Ψ
B
a′l+1al+1

δσlσ
′
l
δσl+1σ ′l+1

. (3.37)

Solving the equation yields a spectrum of energies corresponding to different
choices of Θσlσl+1 where we are interested in the smallest energy. Once an
energy is determined the pair matrix Θ can be divided in two with an SVD.

In this manner it is possible to move through the system with SVD, changing
the bi-partition location, and minimizing energy at every step. The cumber-
some calculation of each contraction shown in Fig. 3.5 can be circumvented
by saving the contractions as the bi-partition is moved through the system thus
allowing repeated usage of already performed contractions. Thus, as can be
seen in Fig. 3.6 the problem is reduced to a repeated local treatment of the
state.

The process we have described is commonly referred to as two-site DMRG
since at each minimization step two sites are considered at once. It is also
possible to perform single-site DMRG with the same process where only one
MPS matrix M is included in the Θ definition of Eq. (3.32).
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3.4 Time evolution

For thermal states it is necessary to perform imaginary time evolution such that
the evolved state represents the appropriate inverse temperature β . Even here
the many-body problem is a source of difficulty. Generally, if the Hamiltonian
H is itself time-independent a time evolution operator is given by integrating
Schrödinger’s equation:

U(t) = e−iHt . (3.38)

This operator is difficult to obtain exactly since it requires the complete di-
agonalization of H. Fortunately, MPS methods can be used to reduce the
complexity of this problem as well.

3.4.1 Trotter decomposition

Similarly to ground state DMRG it is difficult to apply an entire MPO to an
MPS immediately. Instead, applying the MPO on each bond separately allows
for efficient time evolution.

Consider the time evolution operator

U = e−iH∆t = e−ihL−1∆t︸ ︷︷ ︸
UL−1

e−ihL−2∆t · · ·e−ih2∆te−ih1∆t +O
(
∆t2) , (3.39)

where ∆t is the amount of time to evolve, H = ∑i hi the Hamiltonian and hi
contains all interactions acting on the bond (i, i+ 1), assuming that H only
contains nearest neighbour interactions. Eq. (3.39) is an example of a first-
order Trotter decomposition where the error of order O(∆t2) is due to the fact
that in general [hi,h j] 6= 0 if i 6= j.

Splitting the time evolution operator allows the application thereof bond-wise
as shown schematically in Fig. 3.7 with the cost of an error related to the time-
step size. In addition, the issue of diagonalizing H has been partially solved
since only the diagonalization of hi separately is now required. In practice,
many hi will be the same local operator strongly reducing the time consump-
tion of creating a time evolution operator.

When the Hamiltonian only contains nearest neighbour interactions the hi on
odd bonds commute amongst each other and similarly for even bonds. Thus,
we are free to apply time evolution in any order on odd/even bonds. Evolving
an amount of time now becomes equivalent to applying the time evolution on
odd bonds followed by that of even bonds:

e−iHeven∆te−iHodd∆t |ψ(t)〉= |ψ(t +∆t)〉 , (3.40)

which simplifies application of the time evolution operator as is shown in
Fig. 3.8.
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Figure 3.7. Schematic representation of an application of U in eq. (3.39) to an MPS.
Note that each local operator Ui changes the MPS so that they must be applied sequen-
tially.

Figure 3.8. Schematic representation of eq. (3.40). With the Ui divided such that they
commute amonst each other they can be applied in any order.
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It is notable that higher-order Trotter decompositions can be made by dividing
up the Hamiltonian such that the ∆t2 contributions cancel. A second-order
Trotter decomposition can be achieved with

e−iH∆t = e−iHodd∆t/2e−iHeven∆te−iHodd∆t/2 +O(∆t3). (3.41)

Commonly, the time step ∆t will be chosen to be small so that the error related
to Trotter decomposition is small. From Eq. (3.41) the Hodd pieces from a
current and subsequent time step can be combined creating almost the exact
same routine as for a first-order Trotter decomposition with a strongly reduced
error.

Despite this, precision of results will often require yet a higher order of Trotter
decomposition. For thermal states we shall often make use of a fourth order
Trotter decomposition

e−iH∆t =U(a∆t)U(b∆t)U(c∆t)U(b∆t)U(a∆t) (3.42)

where

U(∆t) = e−iHodd∆t/2e−iHeven∆te−iHodd∆t/2, (3.43)

a = b =
1

4−41/3 , (3.44)

c = 1−2a−2b. (3.45)

3.4.2 MPS time evolution

Assuming a state which has a bi-partition at the pair (l, l +1) the appropriate
evolution operator to apply here is given by

Ul =
(

Uσlσl+1,σ
′
l σ ′l+1

)
. (3.46)

Combining MPS matrices as in Eq. (3.32) we may apply Eq. (3.46) such that
only Θ is affect and no other part of the MPS:

∑
{σ ′}

Uσlσl+1,σ
′
l σ ′l+1Θ

σ ′l σ ′l+1
al−1al+1 = Φ

σlσl+1
al−1al+1 . (3.47)

The resultant matrix is now subject to a SVD

Φ
σlσl+1
al−1al+1 = ∑

al

U(al−1σl),al
Salal (V

†)al ,(al+1σl+1), (3.48)

where we see an inflation of matrix size by local Hilbert space dimension d
which will require truncation and limits the amount of time that can be evolved
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while keeping errors due to truncation small. Thus, the original shape of the
MPS can be retrieved and it is possible move the bi-partition to the subsequent
bond.

In practice, applying the odd time evolution will mean sweeping through the
state using SVD and applying identity operators on the even bonds and con-
versely for the sweep back applying the even evolution. Notably, higher order
Trotter decompositions require more sweeps to perform one time step and
thus take more time to simulate for a given time step. However, for a given
error tolerance a much larger time step can be used in higher-order Trotter de-
compositions compared to the lower-order alternatives leading to a potentially
quicker solution.

3.4.3 Thermal states

Using time evolution it is possible to obtain thermal averages by setting the
evolved time as imaginary:

U(−iβ ) = e−iH(−iβ ) = e−βH , (3.49)

where the evolved time now may be interpreted as inverse temperature β . To
perform thermal averages we need the thermal density matrix, ρβ :

〈O〉
β
= Tr

[
Oρβ

]
. (3.50)

One way to obtain this operator is via state purification [50]. Consider an
auxiliary system (A) connected to the physical one (P) and a Schmidt decom-
position between the two systems:

|ψ〉= ∑sa |a〉P |a〉A . (3.51)

This yields the density matrix of P as

ρP = TrA(|ψ〉〈ψ|) = ∑s2
a |a〉P 〈a|P . (3.52)

The thermal density matrix is given by

ρP(β ) =
1

Z(β )
e−βH⊗I =

Z(0)
Z(β )

e−βH⊗I/2 TrA(|ψ(0)〉〈ψ(0)|)︸ ︷︷ ︸
ρP(0)=1/Z(0)

e−βH⊗I/2,

(3.53)
where ψ(0) denotes an infinite temperature state (i.e. β = 0) and I denotes
an identity matrix acting on a Hilbert space the size of the auxiliary system A.
The imaginary time evolution operators may be moved inside the trace since
H⊗ I only acts as an identity in the auxiliary space:

ρP(β ) =
Z(0)
Z(β )

TrA (|ψ(β/2)〉〈ψ(β/2)|) . (3.54)
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Assuming that an observable O only acts in the physical sub-space P we may
use this thermal density matrix such that thermal averages are obtained by
expectation values:

〈O〉
β
= TrP

[
Oρβ

]
=

Z(0)
Z(β )

Tr(O |ψ(β/2)〉〈ψ(β/2)|) (3.55)

The partition function, Z(β ) is given by

Z(β ) = Tr
(

e−βH
)
= Z(0)Tr(|ψ(β/2)〉〈ψ(β/2)|)

= Z(0)〈ψ(β/2)|ψ(β/2)〉 , (3.56)

which finally yields the expression for thermal averages

〈O〉
β
=
〈ψ(β/2)|O|ψ(β/2)〉
〈ψ(β/2)|ψ(β/2)〉 . (3.57)

Thus, in order to obtain a thermal average we must start with an infinite tem-
perature state (i.e. β = 0) and perform imaginary time evolution on the state
up to β/2.

It remains to compute the (purified) infinite temperature state. In the physical
sub-system this will be a product state with equal amplitude for all combi-
nations such that each site is the same i.e. the thermal density matrix is an
identity. For one site (labeled by i) we obtain (assuming that all quantum
number combinations are allowed)

ρPi(0) = ∑
σi

1
d
|σi〉〈σi|=

1
d

TrA

(∑
σi

|σi〉P |σi〉A

)∑
σ ′i

〈σ ′i |P 〈σ ′i |A


= TrA(|ψi(0)〉〈ψi(0)|), (3.58)

where we have made the identification

|ψi(0)〉= ∑
σi

1√
d
|σi〉P |σi〉A . (3.59)

Finally, the infinite temperature state is obtained as

|ψ(0)〉=
L⊗

i=1

|ψi(0)〉 . (3.60)

3.5 DMRG truncation error

Whether performing time evolution or variational minimization of the energy
each bi-partition of the MPS is associated with the application of some oper-
ator which inflates the bond dimension locally. In the case of time evolution
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the inflation is by a factor of the MPO bond dimension and for ground state
searches it is the local Hilbert space dimension d.

If the new matrix size would be accepted continuing the sweep intractable
matrix sizes would be obtained quickly making truncation a necessary ap-
proximation. Due to the variational nature of ground state DMRG the error
due to truncation error can be treated differently between the two presented
algorithms.

3.5.1 Ground state truncation error

When performing the minimization step of eq. (3.33) the eigenvalue problem
solution results in a new matrix which minimizes local bond energy. When
an SVD is applied the resultant bond dimension is inflated by d forcing us
to truncate to the set matrix dimension χ . The result is that some number of
singular values are removed from the central matrix of the SVD in accordance
with eq. (3.4).

In order to quantify the error consider a given state decomposed at a given site
as in eq. (3.2)

|ψ〉=
N

∑
a=1

sa |a〉 , (3.61)

where N is the number of singular values required to exactly describe the
current bi-partition. During a truncation the bond dimension χ < N would
be selected to reduce the size of the MPS:

|ψtrunc〉=
χ

∑
a=1

sa |a〉 . (3.62)

The expectation values of an observable O using the truncated and exact state
becomes

〈O〉= 〈ψ|O|ψ〉=
N

∑
a

N

∑
b

sasb 〈b|O|a〉 (3.63)

〈O〉trunc = 〈ψtrunc|O|ψtrunc〉=
χ

∑
a

χ

∑
b

sasb 〈b|O|a〉 . (3.64)
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The expectation value error becomes

| 〈O〉−〈O〉trunc |=
N

∑
a

N

∑
b

sasb 〈b|O|a〉−
χ

∑
a

χ

∑
b

sasb 〈b|O|a〉

=
N

∑
a=χ+1

χ

∑
b=1

sasb 〈b|O|a〉+
χ

∑
a=1

N

∑
b=χ+1

sasb 〈b|O|a〉

+
N

∑
a=χ+1

N

∑
b=χ+1

sasb 〈b|O|a〉 . (3.65)

It is clear that the error depends on the operator O. Since the set of density
matrix eigenvectors |a〉 is orthonormal if Oloc is an operator which acts locally
in the sense that it does not connect any of the eigenvectors:

〈a|b〉= δab =⇒ 〈a|Oloc|b〉= δab 〈a|Oloc|a〉 , (3.66)

we would obtain

| 〈O〉−〈O〉trunc |=
N

∑
a=χ+1

N

∑
b=χ+1

sasb 〈b|O|a〉=
N

∑
a=χ+1

s2
a 〈a|O|a〉

≤ Omaxεψ , (3.67)

where Omax = max(〈a|Oloc|a〉 ,{|a〉}) and εψ = ∑
N
a=χ+1 s2

a. Thus, the mea-
surement error at one truncation for local operators is bounded by the sum of
squared discarded singular values.

However, if O is able to connect some eigenvectors the error may be larger
than indicated in eq. (3.67). If O connects two eigenvectors where only one
singular value is small the error would have a larger leading term

| 〈O〉−〈O〉trunc | ∼ 2s1sχ . (3.68)

Since the leading singular value s1 is never going to be small particularly dif-
ficult operators may obtain errors which are hard to control. In particular,
longer-range measurements may cause such changes, making truncation er-
rors for such observables a common issue when using DMRG [43].

The quantity εψ is often called the truncation error [43]. Despite the problem-
atic error in correlation functions the truncation error proves to be useful in
minimizing the error associated with truncating the bond dimension of matri-
ces. In particular, a common observation of measurements of DMRG is that
the dependence of fully converged ground-state energy error on truncation er-
ror is a linear relationship [51, 52]:

EDMRG−EExact

EExact
∝ εψ . (3.69)
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Using this relationship, it is possible to obtain ground-state energies extrapo-
lated to the εψ → 0 limit even if such calculations would require intractable
bond dimensions to obtain otherwise.

For single-site observables (e.g. density or magnetization) the behaviour is
similar to that of energy with the caveat that achievable precision is lower
than that of energy [43]. Hence, precision of local quantities can typically be
improved by using a similar fitting form as eq. (3.69) i.e. the infinite bond
dimension (or zero truncation error) measurement of one-point correlators (in
particular energy) can be approximated by extrapolation to the limit of zero
truncation error.

Unfortunately, two-point correlators have no general heuristic like eq. (3.69)
applicable to them and εψ can not in general used for an extrapolation to
zero truncation error. In this manner, the precision of two-point correlators
in DMRG are reliant on how large a bond dimension can be chosen.

Notably, we have treated a single bi-partition and minimization, in this context
defining the truncation error εψ and it’s relation to the measurement error of
observables. In practice, there are several ways to define truncation error since
it’s main purpose is to serve as a variable to be used for extrapolation. Two
common definitions are the maximal truncation error of one bi-partition and
the sum of all bi-partition truncated weights in the last sweep, respectively.
In both of these methods it is sufficient to know the truncation error from
the last sweep since any change of the state caused by further minimization
will only be possible outside the fixed bond dimension. Hence, a state which
is converged given the set bond dimension will have all change brought on
by minimization removed via truncation and all subsequent sweeps yields the
same truncation error.

3.5.2 Time evolution truncation error

As opposed to the ground state algorithm the time evolution routine sweeps
through the system repeatedly applying a single time step operator to each
bond thereby evolving the state. In this manner, the truncation error is not
accurately depicted by the last sweeps maximal truncation or sum since it
contains only the error made by the final application of the time evolution
operator. Instead, the truncation error from each sweep needs to be summed
to obtain an accurate error in which it is possible to extrapolate.
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4. Bosonization

For a large class of many-body systems it is a good approximation to describe
low-energy physics using Fermi-liquid theory (FL). The model under consid-
eration is described by one of free fermionic quasiparticles with renormalized
mass and Fermi velocity. Thus, the problem is greatly simplified and details of
interaction are considered modifications of these parameters e.g. a strong re-
pulsion could lead to a quasiparticle with a larger effective mass. The strength
of this approach is particularly apparent as dynamics outside of FL theory can
be taken into account perturbatively, greatly expanding what can be computed.

However, for 1D systems the FL theory does not work as a low-energy the-
ory. Since it relies on low-energy excitations being describable as fermionic
quasiparticles, it fails when the low-energy state is not close to a free fermion
description.

In 1D, a fermionic particle cannot move past an identical copy of itself. Thus,
any free movement has to affect all particles that are in the path of movement,
i.e., a particle must push all other particles ahead of it to move. This makes a
free fermion Hamiltonian a poor description of the system. Further difficulty
arises with spinful fermions where so called spin-charge separation occurs:
collective charge excitations and spin excitations may propagate at different
speeds causing the elementary excitation to change from one into two separate
ones. This makes fermionic quasiparticles, upon which Fermi-liquid theory is
built unsuitable to describe the low-energy physics of a 1D system. Instead
a different type of physics called Tomonaga-Luttinger liquid (TLL) theory,
based on the Tomonaga-Luttinger model, may be defined.

The first consideration of the bosonization transformation was first conceived
of by Bloch in 1933 [53, 54]. After being rediscovered several times, most
notably by Tomonaga [55] proving that the transformation holds in 1D, its
Abelian version was solved by Luther and Peschel [56] and Mandelstam [57]
independently. It’s non-Abelian version was solved by Witten in 1984 [58].
As will be shown this approach allows the solution of fermionic systems with
interactions. Interestingly, many of the properties that make a bosonization
transformation possible do not generalize to higher dimensions rendering the
method exclusive to 1D systems [54, 23].

Many reviews have been written about bosonization [54, 23, 59]. In the fol-
lowing sections we largely follow Giamarchi’s book on Quantum Physics in
One Dimension [23].
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4.1 Tomonaga-Luttinger model

In many low-energy descriptions of fermions it is not uncommon to use a
model with linear dispersion relation. Such a description is commonly called
the Tomonaga-Luttinger model and is defined by the Hamiltonian

HT L = ∑
k,r=−1,1

vF(rk− kF)c
†
r,kcr,k, (4.1)

where r = −1 (r = 1) is considered left-moving (right-moving) respectively
which have to be defined due to the singular point in q = 0. A particle-hole
excitation (of one particle orientation) would produce an energy difference
given by

∆E = vF(r(k+q)− kF)− vF(rk− kF) = vFrq, (4.2)

where sgn(q) = r. The dependence of this particle-hole excitation is only on
the exchanged momentum q. Since each such excitation has uniquely defined
energy and momentum a quasi-particle theory may be formulated around them
with creation operator

ρ
†
r (q) = ∑

k
c†

r,k+qcrk. (4.3)

For a Hamiltonian like this the vacuum state is the Dirac sea. Since the Dirac
sea is filled there are an infinite number of occupied states. This raises issues
when considering density operators as they count the Dirac sea states as well.
To solve this we remove the background density value

c†
rkcrk→ c†

rkcrk−〈0|c†
rkcrk|0〉 ≡: c†

rkcrk :, (4.4)

where : AB : denotes normal ordering of operators and |0〉 is a state in which
the Dirac sea is occupied. Note that the equivalence only holds if the set of
operators A and B are linear combinations of the creation and annihilation
operators. Thus, the density fluctuation operator in Eq. 4.3 instead becomes

: ρ
†
r (q) :=

{
∑k c†

r,k+qcrk q 6= 0
Nr = ∑k c†

rkcrk−〈0|c†
rkcrk|0〉 q = 0.

(4.5)

The commutation relations between different flavors of density operators be-
comes zero due to being different particles. For identical flavors we obtain
(omitting the flavor index)[

ρ
†(q),ρ†(−q′)

]
= ∑

k1k2

c†
k1+qck1c†

k2−q′ck2− c†
k2−q′ck2c†

k1+qck1

= ∑
k1k2

c†
k1+qck2δk1,k2−q′− c†

k2−q′ck1δk2,k1+q

= ∑
k1

c†
k1+qck1+q′− c†

k1+q−q′ck1 . (4.6)
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Shifting the sum in the right term by q′ yields a zero commutator. However, to
allow this variable change we must use normal-ordered operators:[

ρ
†(q),ρ†(−q′)

]
= ∑

k1

: c†
k1+qck1+q′ :− : c†

k1+q−q′ck1 :

+∑
k1

〈0|c†
k1+qck1+q′ |0〉−〈0|c†

k1+q−q′ck1 |0〉

= δq,q′∑
k1

〈0|c†
k1+qck1+q|0〉−〈0|c†

k1
ck1 |0〉 . (4.7)

Specializing to a 1D system with periodic boundary conditions such that mo-
mentum is quantized q= 2πn

L allows the computation of these averages leading
to an approximatively bosonic commutator[

ρ
†
r (q),ρ

†
r′(−q′)

]
=−δr,r′δq,q′

rqL
2π

. (4.8)

Thus, it is possible to create bosonic operators:

b†
q =

√
2π

|q|L ∑
r

Θ(rq)ρ†
r (q) (4.9)

bq =

√
2π

|q|L ∑
r

Θ(rq)ρ†
r (−q), (4.10)

where Θ(x) is the Heaviside step function. Attempting to simply substitute
these operators in eq. (4.1) does not work. Instead, we discern the Hamiltoni-
ans expressed in bosonic operators via its commutation relations:

[bq,HT L] =

√
2π

|q|L ∑
r

Θ(rq)∑
k,r′

vF(r′k− kF)
[
ρ

†
r (−q),c†

r′,kcr′,k

]
=

√
2π

|q|L ∑
r

Θ(rq)∑
k,r′

vF(r′k− kF)∑
k′

(
c†

k′−q,rckr′δkk′δrr′− c†
kr′ck′rδk,k′−qδrr′

)
=

√
2π

|q|L ∑
r

Θ(rq)∑
k
(vF(rk− kF)− vF(r(k−q)− kF))c†

k−q,rckr

= vF |q|bq, (4.11)

where q 6= 0. However, this commutator is consistent with a Hamiltonian

HT L = ∑
p 6=0

vF |p|b†
pbp, (4.12)

using the bosonic commutator rules for bq. Interestingly, while eq. (4.12) is
quartic in fermionic operators its commutator agrees with that of eq. (4.1)
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which is quadratic in the same operators. Including the q = 0 piece requires
taking the zero-momentum limit of eqs. (4.9) and (4.10) giving the following
addition to eq. (4.12)

HT L = ∑
p 6=0

vF |p|b†
pbp +

vFπ

2L

(
∑
r

Nr

)2

, (4.13)

where the added term approaches zero in the thermodynamic limit.

Constructing the following field operators

φ(x) =−(N1 +N−1)
πx
L
− iπ

L ∑
q6=0

1
q

e−α|q|/2−iqx
(

ρ
†
1 (q)+ρ

†
−1(q)

)
, (4.14)

θ(x) = (N1−N−1)
πx
L

+
iπ
L ∑

q6=0

1
q

e−α|q|/2−iqx
(

ρ
†
1 (q)−ρ

†
−1(q)

)
, (4.15)

where α is a cut-off which acts like a smallest distance (or inversely, maximal
momentum) of the theory allows us to re-express the Hamiltonian in a more
convenient way. Consider the commutator

[φ(x),θ(y)] = i
π

2
Sign(y− x), (4.16)

which allows us to identify φ and θ as canonically conjugate field operators:

[φ(x),∇θ(y)] =
iπ
2

d
dy

(Θ(y− x)−Θ(x− y)) = iπδ (x− y), (4.17)

i.e. the conjugate momentum to φ is given by

Π(x) =
1
π

θ(x). (4.18)

Using the field operators it is possible to write the Hamiltonian as

HT L =
∫ vF

2π

[
(πΠ(x))2 +∇φ(x)2]dx. (4.19)

Notably, this is a Hamiltonian with a Gaussian action and observables can
conveniently be computed using path integral formalism (see Sec. 4.2).

4.2 Tomonaga-Luttinger liquids

While the Tomonaga-Luttinger model is exactly described by the Hamiltonian
in eq. (4.19) it is possible to connect it to a much more general class of models.
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Considering any systems density operator at a position x

ρ(x) = ∑
i

δ (x− xi), (4.20)

where xi are the particle positions, the 1D nature of our model allows us to
unambiguously label each particle using a labeling field φ(x) which fulfills

φlab(xi) = 2πi. (4.21)

The density expressed in terms of φ becomes

ρ(x) = ∇φlab(x)∑
i

δ (φlab(x)−2πi) =
∇φlab(x)

2π
∑
p

eipφlab(x), (4.22)

where Poisson’s formula has been used in the last equality and we have as-
sumed that ∇φlab(x)> 0 which may be done without issue in 1D.

We now choose the labeling field as a fluctuation around the crystalline solu-
tion:

φlab(x) = 2πρ0x−2φ f luct(x), (4.23)

where the field φ f luct represents this fluctuation. Inserting this definition into
eq. (4.22) and setting φ(x) = φ f luct(x) yields

ρ(x) =
(

ρ0−
1
π

∇φ(x)
)

∑
p

ei2p(πρ0x−φ(x)). (4.24)

From this we construct the single-particle creation (annihilation) operators

ψ
†(x) = ρ(x)1/2e−iθ(x), (4.25)

where θ is a phase factor operator. Using the appropriate commutation rela-
tions allows us to determine how the two fields φ and θ relate to each other.
For a bosonic system the single-particle operators fulfill the commutation re-
lations [

ψ(x),ψ†(x′)
]
= δ (x− x′), (4.26)

which is fulfilled when[
ρ(x),e−iθ(x′)

]
= δ (x− x′)e−iθ(x′). (4.27)

Expanding ρ in terms of φ yields[
ρ(x),e−iθ(x′)

]
=

(
ρ0−

1
π

∇φ(x)
)

∑
p

ei2pπρ0x
[
e−i2pφ(x),e−iθ(x′)

]
−
[

1
π

∇φ(x),e−iθ(x′)
]
∑
p

ei2p(πρ0x−φ(x)). (4.28)
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Notably, in the continuum limit strongly oscillating factors like ei2pπρ0x will
approach zero. Thus, if the commutator of φ and θ is determined by the
relation [

1
π

∇φ(x),θ(x′)
]
=−iδ (x− x′), (4.29)

then the condition for bosonic commutation relations in eq. (4.27) is fulfilled
in the continuum limit. Notably, we find the fields φ and θ to be canonically
conjugate with the canonical momentum defined by

Π(x) =
1
π

∇θ(x). (4.30)

The square root of a delta function in a distributional sense is given by

√
δ [ϕ] =

√
−
∫

∞

−∞

d
dx

(ϕ(x))Θ(x)dx =
√

ϕ(0) =
δ [ϕ]√
ϕ(0)

, (4.31)

where {ϕ} is a smooth set of test functions that decay sufficiently fast. This
means a square root of the Dirac delta function is itself a delta function up to
a pre-factor. Using Eq. (4.25) and Eq. (4.31) the single-particle operators now
become

ψ
†(x) =

(
ρ0−

1
π

∇φ(x)
)1/2

∑
p

ei2p(πρ0x−φ(x))e−iθ(x), (4.32)

where we used the fact that the momentum sum may be written as a delta
function whose square root is equal to itself. Notably, these operators have
been constructed to fulfill boson commutation relations. In order, to obtain
fermions we simply replace eq. (4.27) with a fermionic anti-commutator

{ψF(x),ψ
†
F(x
′)}= δ (x− x′), (4.33)

which can be fulfilled by adding the oscillating φlab field:

ψ
†
F(x) = ρ(x)1/2e−iθ(x)ei π

2 φlab(x)

=

(
ρ0−

1
π

∇φ(x)
)1/2

∑
p

ei2(p+1)(πρ0x−φ(x))e−iθ(x). (4.34)

Given the usual terms in a 1D Hamiltonian such as interactions and kinetic
energy we must determine how these are expressed in the field operators φ

and θ to lowest order regardless of whether the system models fermions or
bosons. Relevant operators include

• ∇φ(x)2 as it comes from density-density interactions

• ∇θ(x)2 as it comes from kinetic energy ∇ψ†∇ψ .
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In fact, ignoring higher order terms these two are all that will be required to
describe the Hamiltonian. Cross terms are prohibited due to symmetry:

ρ(x)→ ρ(−x), ψ
†(x)→ ψ

†(−x)
=⇒ φ(x)→−φ(−x), θ(x)→ θ(−x),

which makes both φθ and ∇φ∇θ terms symmetry-breaking.

Thus, the low-energy properties of all 1D systems are described by the Hamil-
tonian

HT LL =
h̄

2π

∫
dx
[

uK
h̄2 (πΠ(x))2 +

u
K
(∇φ(x))2

]
, (4.35)

where u and K are chosen to parametrize the constant in front of the only
relevant terms in the Hamiltonian. Typically, these are difficult or impossible
to obtain by analytical means but once found will determine all low-energy
properties of the system.

Notably, eq. (4.35) is the same Hamiltonian as eq. (4.19) with uK = u/K = vF
which places the Tomonaga-Luttinger model as the low-energy fixed point of
all massless 1D systems. This model plays the same roll Fermi liquids do in
higher dimensions giving rise to the name Tomonaga-Luttinger Liquid (TLL).
Further, The Hamiltonian in eq. (4.35) has a Gaussian action and allows the
computation of observables by use of path integral formalism.

4.3 Correlators and expectation values

In order to obtain expectation values of observables we note that all observ-
able can be expressed in the single-particle creation and annihilation operators
given in eq. (4.32). Notably, they are constructed using the conjugate field φ

and θ . The evaluation of useful expectation value such as Green’s functions or
correlations we must know how to manage the following expectation values

〈φ(x1)φ(x2)〉 , (4.36)
〈φ(x1)θ(x2)〉 , (4.37)
〈θ(x1)θ(x2)〉 . (4.38)

As an example, consider the density-density correlations (using eq. (4.24))

〈ρ(x,τ)ρ(0,0)〉= ρ
2
0 +

1
π2 〈∇φ(x,τ)∇φ(0)〉

+ρ
2
0 cos(2πρ0x)〈ei2φ(x,τ)ei2φ(0,0)〉

+ρ
2
0 cos(4πρ0x)〈ei4φ(x,τ)ei4φ(0,0)〉+ . . . , (4.39)
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where the exponential expectation value can be simplified due to the quadratic
Hamiltonian:

〈eO〉= e
1
2 〈O2〉, (4.40)

where O is an operator linear in the field operators. We are left with computing

〈(φ(x,τ)−φ(0,0))2〉 , (4.41)
〈∇φ(x,τ)∇φ(0,0)〉 . (4.42)

Ultimately, it is only necessary to compute the two-point correlator of φ since
the measurements are functionally the same when Fourier transformed.

Path integral formalism may be used to determine expectation values such as
the one in eq. (4.41) which yields (naming (x,τ) = r1 and (0,0) = r2)

〈(φ(r1)−φ(r2))
2〉

=
1

(βΩ)2 ∑
q1,q2

〈φ(q1)φ(q2)〉
(
eiq1r1− eiq1r2

)(
eiq2r1− eiq2r2

)
, (4.43)

where qi = (ki,ωn,i/u) and ri = (xi,uτi). Representing the expectation value
of Fourier transformed operators with a path integral yields

〈φ(q1)φ(q2)〉=
∫

D [φ ,θ ]φ(q1)φ(q2)e
−S, (4.44)

where S is the action in imaginary time of eq. (4.35) defined by

S =−
∫

β

0
dτ

∫
dx

1
π

∇θ i∂τφ − 1
2π

[ u
K

∇φ
2 +uK∇θ

2
]

(4.45)

Fourier transforming the action yields

S =
1

βΩ
∑
q

ikωn

π
φ(q)θ(−q)+

uk2

2πK
φ(q)φ(−q)+

uKk2

2π
θ(q)θ(−q). (4.46)

Since φ and θ are real-valued field we may further simplify the action by
defining the matrix A as follows

S =
1
2

1
βΩ

∑
q
(θ(q)∗,φ(q)∗)A−1

(
θ(q)
φ(q)

)

=
1

βΩ
∑
q
(θ(q)∗,φ(q)∗)

(
uKk2

π

ikωn
π

ikωn
π

uk2

πK

)(
θ(q)
φ(q)

)
. (4.47)

Finally, since the action is quadratic in the field operators it is possible to uti-
lize Gaussian integration and a general expectation value of two-point func-
tions becomes

〈φkφl〉=

(
∏i, j

∫ dφidφ j
2πi

)
φkφle∑i, j φ∗i Mi jφ j(

∏i, j
∫ dφidφ j

2πi

)
e∑i, j φ∗i Mi jφ j

= (M−1)kl, (4.48)
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where φi denotes any field at any co-ordinate (the derivation of eq. (4.48) is
given in Appendix A.2).

Noting that the inverse of
(
A−1

)−1
= A is given by

A =
π

k2((uk)2 +ω2
n )

(
uk2

K −ikωn
−ikωn uKk2

)
, (4.49)

we obtain the expectation value

〈φ(q1)φ(q2)〉=
βΩδ−q1,q2uKπ

(uk)2 +ω2
n

. (4.50)

From eq. (4.41) we now obtain

〈(φ(x,τ)−φ(0,0))2〉= 1
βΩ

∑
k,ωn

(1− cos(kx+ωnτ))
2uKπ

ω2
n +(uk)2 , (4.51)

where the sum has been split into a momentum (k) and Matsubara frequency
(ωn) sum separately. The latter can be performed in the standard way by uti-
lizing a pole-summation using the Bose factor [60, 61]

fB(z) =
1

eβ z−1
. (4.52)

This leaves the momentum sum which may be performed when going to the
thermodynamic limit and solving the resultant momentum integral:

〈(φ(x,τ)−φ(0,0))2〉= K
∫

∞

0
dk

2
k

e−αk fB(uk)(1− cos(kx)cosh(ukτ)

+K
∫

∞

0
dk

1
k

e−αk(1− cos(kx)e−uk|τ|), (4.53)

where we introduce an ultraviolet cut-off α effectively representing the largest
momentum used in the theory. In the limit of zero-temperature only the second
integral remains and the expectation value becomes

〈(φ(x,τ)−φ(0,0))2〉= K
2

log
(

x2 +(u|τ|+α)2

α2

)
. (4.54)

When temperature is finite the integral may be solved in the limit where (x,τ)
� α:

〈(φ(x,τ)−φ(0,0))2〉= K
2

log
(

β 2u2

π2α2

[
sinh2

(
πx
βu

)
+ sin2

(
πτ

β

)])
.

(4.55)
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4.3.1 Density-density correlations

To finish treating the density-density correlator we need the expectation value
of φ derivatives. These can be obtained similarly as to eq. (4.41). The differ-
ence enters when Fourier transforming eq. (4.41) in eq. (4.43)

〈∇φ(r1)∇φ(r2)〉=
1

(βΩ)2 ∑
q1,q2

(ik1) · (ik2)〈φ(q1)φ(q2)〉eiq1r1+q2r2 , (4.56)

which may be computed as in Sec. 4.3 to yield

〈∇φ(r1)∇φ(r2)〉=
K

2π2
y2

α − x2

(x2 + y2
α)

2 , (4.57)

where yα = uτ +αsgn(τ) and x = x1− x2, τ = τ1− τ2. With eq. (4.57) and
eq. (4.54) we obtain the density-density correlations from eq. (4.39)

〈ρ(x,τ)ρ(0,0)〉= ρ
2
0 +

K
2π2

y2
α − x2

(x2 + y2
α)

2

+A2ρ
2
0 cos(2πρ0x)

(
α

r

)2K
+A4ρ

2
0 cos(4πρ0x)

(
α

r

)8K
+ . . . , (4.58)

where now r = (x,τ) and Ai are non-universal amplitudes dependent on the
specific microscopic model under study.

4.3.2 Green’s functions

Notably, the density-density correlations require no discussion of whether the
model represents bosonic or fermionic degrees of freedom. When considering
Green’s functions this distinction becomes important. For bosons we obtain
the leading term

〈ψ(r)ψ†(0)〉= ρ0 〈eiθ(r)e−iθ(0)〉+ . . . . (4.59)

Noting that the Hamiltonian eq. (4.35) is symmetric when exchanging

θ → φ , φ → θ (4.60)
K→ 1/K, u→ u, (4.61)

we may repeat the calculations of section. 4.3 made for φ using θ instead.
Thus the expectation value eq. (4.41) is the same as when using θ with K→
1/K:

〈(θ(r1)−θ(r2))
2〉= 1

2K
log
(

x2 +(u|τ|+α)2

α2

)
, (4.62)
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at zero temperature. Similarly, the finite temperature expression follows with
K → 1/K. Thus, to lowest order the bosonic Green’s function becomes (at
zero temperature)

〈ψ(r)ψ†(0)〉= A0ρ0

(
α

r

) 1
2K

+ . . . . (4.63)

This procedure may be performed for fermions as well with the caveat that the
lowest-order term is more complex.
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5. Self-consistent effective Hamiltonians

5.1 Dimensional crossover and phase transitions in
coupled chains

Using a combination of DMRG in an MPS format with MF theory an algo-
rithm, which we name MPS+MF, which computes self-consistently iterated
Hamiltonian parameters is developed. The result is an effectively 1D Hamil-
tonian that describes a 3D system whose higher-dimensional character is con-
tained in the self-consistently determined parameters.

Treatments analogous to MPS+MF have been utilized before for studying e.g.
spin systems, such as BPCB [12]. In the present project, the algorithm is
used to study an anisotropic Bose-Hubbard model where repulsive interaction
occurs only along one direction: the one in which tunneling is strong. The
perpendicular directions exhibit weaker tunneling amplitudes giving rise to
the anisotropic nature of the model.

The model is studied at commensurate filling where it is possible to study the
zero-temperature phase transition driven by repulsion. In addition, the finite
temperature transition is studied at the same density. In order to allow com-
parison to Quantum Monte Carlo (QMC) calculations free from mean-field
theory the case of hard-core bosons, i.e. where only one particle is allowed
per lattice site is studied. For such systems, where there is no frustration,
QMC is free from the sign problem and is the standard method, capable of
achieving quasi-exact results with errors decreasing as 1/

√
N with the num-

ber of samples, N. In other words, in the considered models QMC is able to
produce exact results given enough samples have been collected. Remarkably
good agreement between the two methods as to where the zero-temperature
quantum phase transition driven by repulsion occurs is found and is identified
as a first-order transition between a 3D superfluid to an effectively 1D Mott
insulator exhibiting so-called dimensional crossover [28].

Furthermore, critical temperatures for the the finite-temperature second-order
transition between a 3D superfluid and the effectively 1D thermal state are
computed. However, QMC calculation find critical temperatures at ∼ 70−
80% of the value from MPS+MF. Typically, mean-field methods overestimate
critical temperatures and the developed MPS+MF method is found to be in
better agreement with QMC than with a complete mean-field treatment in
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which the QMC Tc is only 50% of the full mean-field result [62]. Notably,
MPS+MF has different restrictions on its performance than QMC does allow-
ing for promising results where QMC has difficulty performing, e.g., when
there is a sign problem.

Additionally, in order to further check the validity of the MPS+MF results a
bosonization with mean-field treatment is utilized [29]. The primary differ-
ence between this method and MPS+MF is that DMRG is exchanged with
TLL theory. In accordance with expectations perfect agreement between an-
alytical and numerical methods in the region where each 1D sub-system be-
haves like a TLL is found.

Further, the model is studied for no hard-core restrictions allowing several
bosons to exist on one site. Similar to the case of hard-core bosons a first-
order transition from a 3D superfluid to a 1D Mott insulator occurs when the
strength of repulsion is increased. Notably, when bosons exist on the same site
the relevant repulsion to be tuned is an on-site interaction as opposed to hard-
core bosons. The finite temperature transition from 3D superfluid to thermal
state is also found for the case of no hard-core restriction.

In conclusion, great agreement between QMC and MPS+MF is discovered
when studying hard-core bosons, which QMC can treat with little issue. In
addition, MPS+MF often converges faster and with less resources compared
to QMC. Another notable benefit of the developed MPS+MF is that it allows
straightforward extension to real-time non-equilibrium dynamics, something
which QMC could only manage with great difficulty [63, 64]. It is discovered
that systems of this kind exhibit superfluid order at small enough repulsion be-
tween bosons and that this order changes discontinuously (in first-order fash-
ion) to insulating order at a critical repulsion value. Notably, the repulsion
at which this occurs is larger than the 1D transition from a TLL into a 1D
Mott insulator: stronger repulsion is required to enter the insulating state in
the self-consistent array of chains.

The developed framework of MPS+MF is further useful since it allows sim-
ulation of any 1D system which is weakly coupled to copies of itself. This
makes possible the treatment of cases where the 1D sub-systems are described
by a massive low-energy theory, i.e. not a TLL, which allows the treatment of
cases where bosonization is no longer applicable (or difficult to use).
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6. Outlook

The paper included in this licentiate project analyzes bosons using the newly
developed MPS+MF algorithm. However, MPS+MF is able to treat any effec-
tively 1D Hamiltonian, even containing several mean-field parameters. Due to
the strengths of this approach it is a natural step to attempt similar analyses on
fermionic models.

In such models, QMC may begin encountering issues whereas the extension
is simple as far as DMRG is concerned. Working with fermionic models is
the first step. Initially, studying the reliability of MPS+MF in this context
using fermionic models with attraction, which relate to hard-core bosons, will
provide a useful testing ground for the method. With attractive interaction
the fermionic sign problem should be possible to circumvent and some (e.g.
AFQMC [65]) algorithms can provide bases for comparison to MPS+MF.

Continuing, the 1D sub-systems of attractive fermions may be replaced by
more complicated models. Since it is known that the quasi-1D repulsive Hub-
bard ladders exhibit fermionic pairing correlations, stabilizing the large fluc-
tuations in 1D using a reservoir is possible. Letting such a reservoir be played
by an infinite array copies of the 1D system, the MPS+MF algorithm should
be able to treat even this case. Consequently, making obtainable a model for
materials that exhibit superconductivity in which the superconducting pairing
correlation’s microscopic origin is well understood.

51



A. Path Integrals

An efficient way to compute observables from a bosonized field theory is the
use of path integrals (or functional integral). One reason for this is that Green’s
functions are time-ordered as a consequence of the method and as such time-
ordering does not have to taken into account explicitly.

A.1 Gaussian integration

A path integral over a single complex field with a quadratic action may be
written as ∫

Dφe−S =

(
∏

i

∫
dRe[φi]dIm[φi]

)
e−∑i, j φ∗i Mi, jφ j . (A.1)

The measure Dφ denotes small variations in the shape of φ such that
∫

Dφ

has the meaning of integration over all possible functions φ and is defined by

∫
Dφ ≡ lim

N→∞

∫ N−1

∏
n=1

dφn (A.2)

where dφn denote ordinary integration measures representing the variation of
φ at coordinate slice n. Assuming that M is a complex matrix with positive-
definite Hermitian part it is possible to diagonalize it and obtain a set of Gaus-
sian integrals:

∫
Dφe−S =

(
∏

i

∫
dRe[ui]dIm[ui]

)
e−∑i di|ui|2 =

πN

∏i di
= π

N detM−1,

(A.3)
where di are the matrix elements of M in its diagonal basis. If several fields
are included the φi will be vector-valued and each entry in M is itself a matrix.
The previous treatment thus creates one Gaussian set for each field with the
same result (M now has twice the linear dimension):∫

DφDθe−S = π
2N detM−1. (A.4)
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In order to compute expectation values we need to add source terms hi and h′i
to the action S∫

Dφe−Ssource =

(
∏

i

∫
dRe[φi]dIm[φi]

)
e−∑i, j φ∗i Mi, jφ j+∑i h∗i φi+φ∗i h′i , (A.5)

the addition of which can be resolved by completing the square:∫
Dφe−Ssource = π

N detM−1e∑i, j h∗i M−1
i, j h′j . (A.6)

It is now apparent that path integrals of the form

1
Z

∫
Dφ(φ ∗k φl)e−S =

(
∏

i

∫
dRe[φi]dIm[φi]

)
φ
∗
k φle−∑i, j φ∗i Mi, jφ j . (A.7)

may be obtained by applying derivatives of the source term and then setting it
to zero e.g.

1
Z

∫
Dφ(φ ∗k φl)e−S =

∂

∂hi

∂

∂h∗j

1
Z

∫
Dφe−Ssource

∣∣∣∣
h,h′=0

= M−1
i, j , (A.8)

where

Z =

(
∏

i

∫
dRe[φi]dIm[φi]

)
e−∑i, j φ∗i Mi, jφ j , (A.9)

is the path integral without added source terms and takes care of the diverging
terms of πN and detM−1. When several fields are included the same strategy
may be used where you take care to pick the appropriate component of the
matrix M−1

i, j .

A.2 Bosonization example

Given two (real-valued) conjugate fields φ and Π = 1
π

θ such that[
φ(x),Π(x′)

]
= iδ (x− x′) (A.10)

on which the Hamiltonian H = H[φ ,Π] = H[φ ,θ ] is dependent we may define
the systems partition function with a functional integral

Z = Tr
[
e−βH

]
=
∫

Dφ(x,τ)Dθ(x,τ)e
∫ β

0 dτ
∫

dx(i 1
π

∇θ(x,τ)∂τ φ(x,τ)−H[φ(x,τ),θ(x,τ)]). (A.11)
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Note that the exponent inside the partition function path integral is the system
action

S =−
∫

β

0
dτ

∫
dx
(

i
1
π

∇θ(x,τ)∂τφ(x,τ)−H[φ(x,τ),θ(x,τ)]
)
. (A.12)

The time ordered correlator of any observables which are functions of the
fields φ and θ may be obtained from another functional integral

〈T [A(x1,τ1)B(x2,τ2) · · ·C(xN ,τN)]〉

=
1
Z

∫
Dφ(x,τ)Dθ(x,τ)A(φ(x1,τ1),θ(x1,τ1))B(φ(x2,τ2),θ(x2,τ2))

×·· ·C(φ(xN ,τN),θ(xN ,τN))e
∫ β

0 dτ
∫

dx(i 1
π

θ(x,τ)∂τ φ(x,τ)−H[φ(x,τ),θ(x,τ)]).
(A.13)

To obtain expectation values we must know how to compute quantities like
the ones in eq. (4.48). Assuming the Hamiltonian H[φ ,θ ] is quadratic in the
fields. The action can be rewritten in the form (a Fourier transform has been
applied to get rid of derivatives)

S =− ∑
q1,q2

Ψ
†(q1)Mq1,q2Ψ(q2), (A.14)

where

Ψ(q) =
(

φq
θq

)
. (A.15)

Computing the following expectation value:

〈Ψ∗(q1)Ψ
T (q2)〉=

〈(
φ ∗q1

φq2 φ ∗q1
θq2

θ ∗q1
φq2 θ ∗q1

θq2

)〉
= M−1

q1,q2
, (A.16)

thus, it is sufficient to add source terms

Ssource =− ∑
q1,q2

Ψ
†(q1)Mq1,q2Ψ(q2)−∑

q1

h∗q1
Ψ(q1)+Ψ

†(q1)h′q1
(A.17)

and pick the component of your answer which corresponds to the desired ex-
pectation value.
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[16] C. Bourbonnais and D. Jérome. Interacting Electrons in
Quasi-One-Dimensional Organic Superconductors. In A. Lebed, editor, The
Physics of Organic Superconductors and Conductors, page pp. 358. Springer
Berlin Heidelberg, New York, 2007.

[17] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar. Monte Carlo calculations of
coupled boson-fermion systems. I. Phys. Rev. D, 24(8):2278–2286, 1981.

[18] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T.
Scalettar. Numerical study of the two-dimensional Hubbard model. Phys. Rev.
B, 40(1):506–516, jul 1989.

[19] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg. Dynamical mean-field
theory of strongly correlated fermion systems and the limit of infinite
dimensions. Rev. Mod. Phys., 68(1):13–125, jan 1996.

[20] S. R. White. Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett., 69(19):2863–2866, 1992.

[21] S. R. White. Density-matrix algorithms for quantum renormalization groups.
Phys. Rev. B, 48(14):10345, 1993.
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Quasi-one-dimensional (Q1D) systems, i.e., three- and two-dimensional (3D/2D) arrays composed of weakly
coupled one-dimensional lattices of interacting quantum particles, exhibit rich and fascinating physics. They
are studied across various areas of condensed matter and ultracold atomic lattice-gas physics, and are often
marked by dimensional crossover as the coupling between one-dimensional systems is increased or temperature
decreased, i.e., the Q1D system goes from appearing largely 1D to largely 3D. Phase transitions occurring
along the crossover can strongly enhance this effect. Understanding these crossovers and associated phase
transitions can be challenging due to the very different elementary excitations of 1D systems compared to
higher-dimensional ones. In the present work, we combine numerical matrix product state (MPS) methods
with mean-field (MF) theory to study paradigmatic cases of dimensional crossovers and the associated phase
transitions in systems of both hard-core and soft-core lattice bosons, with relevance to both condensed matter
physics and ultracold atomic gases. We show that the superfluid-to-insulator transition is a first order one, as
opposed to the isotropic cases, and calculate transition temperatures for the superfluid states, finding excellent
agreement with analytical theory. At the same time, our MPS + MF approach keeps functioning well where the
current analytical framework cannot be applied. We further confirm the qualitative and quantitative reliability of
our approach by comparison to exact quantum Monte Carlo calculations for the full 3D arrays.

DOI: 10.1103/PhysRevB.102.195145

I. INTRODUCTION

Quasi-one-dimensional (Q1D) systems, 3D arrays of
weakly coupled 1D quantum systems, appear in a wide variety
of solid state materials and can readily be realized in lattice-
confined ultracold atomic gases. On the materials side, there
is very active research into weakly coupled spin chains and
ladders such as BPCB [1,2] and related magnetic compounds
[3–5], the organic Bechgaard and Fabre salts (“the organics”)
[6–10], the strontium-based telephone number compounds
[11,12], and chromium pnictide [13,14], all three of which are
itinerant systems which can be made to enter an unconven-
tionally superconducting (USC) state. Of these, the organics,
preceding the high-Tc cuprate superconductors as the first
USC materials [15], have received the most in-depth research.
Much of this is due to the abiding challenge of resolving the
microscopic origin of repulsion-mediated electron pairing as
well as the direct transition between the USC state based on
this pairing and an insulating magnetically ordered one, anal-
ogous to that found in the cuprates, which is of first-order type
in the organics [9]. The fascination of the organics is further

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

enhanced by their exhibition of dimensional crossover (DC),
shown by various quantum spin systems as well [3,16–18],
where the systems effective dimensionality increases from 1D
to 2D and eventually 3D, as quantum coherence between the
constituent 1D systems increases with decreasing temperature
and/or increased (but still weak) intersystem coupling. These
DCs can further be marked by a phase transition occurring
along the crossover, where DC can then be particularly sharp;
for example, the opening of a gap in each constituent 1D
system can make it much harder for intersystem coupling
to establish coherence and thus ordering in the transverse
direction will be much weaker.

The concept of DC taking place around a phase transition is
especially interesting for the theory of the USC state, as it is in
Q1D models alone that the transition into a superconducting
state based on repulsively mediated pairing of fermions can
be understood at the fundamental level, at least qualitatively.
The prime models for this are 3D arrays of doped, weakly
coupled Hubbard ladders. Here, fusing Tomonaga-Luttinger-
liquid (TLL) theory for the single ladder [19] with either static
mean-field (MF) theory [20] or alternatively renormalization
group treatments [7] allows a qualitative description of the
transition to the USC state as the system crosses over from
effectively uncoupled 1D Hubbard ladders to the 3D ordered
array as temperature decreases.

Going from such a fundamental, qualitative description of
the phase transition marking this specific DC to one allowing
for quantitative accuracy has stayed an open challenge for
which the theoretical tools remain to be developed. Under-

2469-9950/2020/102(19)/195145(15) 195145-1 Published by the American Physical Society
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FIG. 1. A schematic representation of the model described by
Eq. (1) where (a) represents the 3D model and (b) the 1D subsets
of the full 3D model.

standing DC and their associated transitions in general with
quantitative and even qualitative theory can be very difficult,
such as in the case of the organics, because the basis of col-
lective density excitations used to describe the 1D system are
completely different from the one of Landau or Bogoliubov
quasiparticles used for 2D and 3D systems.

The present work is thus motivated by the twin challenge
of developing better theory for DC and associated phase
transitions in Q1D-systems in general, as well as specifi-
cally for the case of the transition into the USC phase in
the Hubbard-ladder array. As a first step towards this end
we set up a comparatively simple model, 3D arrays formed
from weakly coupled chains of interacting lattice bosons with
short-range interactions (cf., Fig. 1). As will be shown and
discussed, this class of models combines several advantages:
(i) They show multiple interesting DCs and associated phase
transitions, including first-order transitions (like the organics
do between the USC and a magnetically ordered insulating
phase) and possibly mixed-order transitions. (ii) They are
perfect testbeds to further advance efficient yet remarkably
accurate numerics based on combinations of matrix product
states (MPS) and MF pioneered, e.g., in Ref. [1]. Crucially,
the accuracy of these MPS + MF numerics can be ascertained
by the gold standard for 2D/3D lattice bosons, quantum
Monte Carlo (QMC) simulations. (iii) Our MPS + MF nu-
merics can be checked directly against fit-free TLL + MF
analytical theory used for the thermal transition to the su-
perfluid regime [21,22]. Additionally, our numerics will work
in regimes where TLL + MF is no longer applicable as well
as making possible efficient real-time many-body dynamics
for Q1D systems. (iv) When specializing the study model to
the case of hard-core bosons (HCBs) with nearest-neighbor
(n.n.) repulsion, it admits mapping to Q1D arrays of doped
Hubbard ladders at the level of low-energy, long-wavelength
effective TLL theory. (v) These systems either already admit

realization in many existing experiments on ultracold lattice
gases, including the possibility of observing mixed-order DC,
or, in the case of HCBs with n.n. repulsion, may do so within
the foreseeable future [23,24].

The present paper is thus structured as follows: Section II
describes the Q1D array model of bosonic chains and intro-
duces the transverse MF approximation. Section III describes
the MPS + MF method we use for fast, efficient calcula-
tions of the systems properties for ground and thermal states.
Details of the QMC calculations are also given. Section IV
discusses the zero-temperature first-order transition we find
between a 3D superfluid (SF) and a 1D charge-ordered (CO)
phase for HCBs with increasing n.n. repulsion and the similar
transition observed for soft-core bosons at integer filling. We
also study the transition between SF and a thermal gas with
rising temperature. The results of the MPS + MF approach
are compared against both QMC and TLL + MF analytics
and found to range from excellent to highly satisfactory. In
Sec. V we summarize the validity of the MPS + MF approach
to phase transitions in bosonic systems and discuss the impli-
cations of our results for DC physics in other systems as well
as consider the efficiency of MPS + MF in comparison with
QMC. Section VI then provides an outlook on future research
on the basis of the present work.

II. MODEL

In this work, we consider extended Bose-Hubbard models
with anisotropic tunneling strength. We first focus on hard-
core bosons (HCB), for which the number of allowed particles
is restricted to one boson per site. Further, to connect with
established experiments we can also lift this restriction of one
boson per site and consider the more general case of soft-core
bosons (SCB).

A. Three-dimensional Hamiltonian

The full Hamiltonian is given by the expression

HB = − t
∑
{R̂i}

b†
R̂i+x̂

b
R̂i

+ H.c. − μ
∑
{R̂i}

b†
R̂i

b
R̂i

+U

2

∑
{R̂i}

nR̂i

(
nR̂i

− 1
) + V

∑
{R̂i}

nR̂i+x̂nR̂i

−t⊥
∑

{R̂i},â∈[ŷ,ẑ]

b†
R̂i+â

b
R̂i

+ H.c.

= Ht + Hμ + HU + HV + Ht⊥ , (1)

where {R̂i} denotes the set of all lattice points, b†
R̂i

(bR̂i
) is

the creation (annihilation) operator associated with the site at
R̂i, and nR̂i

= b†
R̂i

bR̂i
is the number operator on that site. We

have set the lattice spacing a = 1.
The transverse hopping t⊥ governs two directions and the

longitudinal hopping one direction. In this paper we con-
sider cases where t⊥/t � 1. Further, we restrict ourselves to
U,V > 0, i.e., repulsive interactions. In addition, note that the
repulsive interaction V between nearest neighbors only occurs
along the strong tunneling direction.
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B. Local Hilbert space truncation

The Hamiltonian Eq. (1) allows any number of bosons on
one site: 〈ni〉 ∈ [0,∞]. In the hard-core case, U → ∞, such
that 0 � 〈ni〉 � 1. In the soft-core case we let 0 � 〈ni〉 � 3.
This cutoff of three bosons per site is chosen such that pro-
jections onto states of larger occupation number carry a small
weight:

〈�| P4(i) |�〉 � 10−4, (2)

where P4(i) is the projector onto the state of four bosons on
site i. For SCB the value of U is of course very important
and will be specified, while for simplicity we fix V = 0 in this
model.

C. Quasi-1D Hamiltonian

We wish to use the density matrix renormalization group
(DMRG) algorithm in matrix product state (MPS) formalism
[25,26] to solve our problem. However, calculations on 3D
models using DMRG scale very poorly with system size. To
bypass this issue we reduce the problem to solving an effec-
tively one-dimensional (1D) model using mean-field theory.
We consider fluctuations around an order parameter

bR̂i
= 〈

bR̂i

〉 + δbR̂i
(3)

and ignore terms in the Hamiltonian of order O(δb2).
We make this substitution only in the transverse hopping
Hamiltonian Ht⊥ . If we consider open boundary conditions
(OBC) this yields the Q1D Hamiltonian

HSMF(α) = −t
L−1∑
i+1

b†
i+1bi + H.c. − μ

L∑
i=1

b†
i bi

+ U

2

L∑
i=1

ni(ni − 1)

+V
L−1∑
i=1

ni+1ni − α

L∑
i=1

(b†
i + bi ), (4)

where indices i have been introduced which indexes the site of
a one-dimensional subset of the 3D model in the longitudinal
direction. In this work we will use both OBC and periodic
boundary conditions (PBC), the latter in which we have the
additional condition of bL+1 = b1 and the term

HL = −t (b†
1bL + H.c.) + V n1nL (5)

must be added to the Hamiltonian Eq. (4).
We only decouple the 3D system transversely since the

coupling t⊥/t � 1 is small by choice. We have routinely ig-
nored any constant contribution to the Hamiltonian. The new
coupling α is obtained as

α(∗) = zct⊥〈b(†)〉, (6)

where zc = 4 is the coordination number for a simple cubic
lattice and we have assumed that α is real. We will call the
constant α a boson injection/ejection amplitude. Notably, the
only difference between a 2D and 3D anisotropic system in
this approach is zc. A schematic representation of this model
is shown in Fig. 1.

III. METHODS

To find ground states and thermal states of the Hamiltonian
Eq. (1) two methods will be used. The first one is comprised
of using DMRG to solve the Q1D Hamiltonian Eq. (4). We
then use quantum Monte Carlo (QMC) simulations [27] for
the simplest case of hard-core bosons that we can directly
compare with DMRG results.

A. DMRG with static mean-field

Since Eq. (4) is a one-dimensional Hamiltonian, the
DMRG algorithm scales well with system size and can be
used to compute ground states and thermal states [26]. The
additional cost to this method is the self-consistent determina-
tion of α. We will call the outlined procedure MPS + MF for
the remainder of this paper.

1. Boson injection convergence

The self-consistent routine starts with guessing a boson
injection amplitude α0 and then computing a new value α1

α1 = zct⊥〈b〉0, (7)

where 〈 〉0 denotes an average with Hamiltonian HSMF(α0)
defined by Eq. (4) with α = α0 and b is in principle any bi

given an infinite system though in practice an average over
several sites. Extending the relation to an arbitrary number of
loops simply yields

αn+1 = zct⊥〈b〉n. (8)

Several exit conditions of the self-consistent loop can be
used. Different observables converge at various rates (e.g.,
density typically converges quickly). In the present case, we
use the Bose-Einstein condensate (BEC) order parameter as
the observable for determining whether the self-consistent
calculation has converged with the condition∣∣∣∣ 〈b〉n − 〈b〉n−1

〈b〉n−1

∣∣∣∣ < ε〈b〉. (9)

The quantity ε〈b〉 = 10−4 is an error tolerance which can be
selected to desired convergence error.

The convergence error should be the largest error in the
problem. Any other larger error scale allows α to fluctuate
within that scale which disallows settling on a value to con-
vergence precision. An example of such a potential error scale
is the truncation error inherent to DMRG.

The fast convergence of this algorithm is highly dependent
on how good the initial guess is. Therefore, we have found it
good practice to implement some guessing heuristic. For the
data shown in this paper, we select an initial value of α which
places us above the converged value and check the trend of the
computed values of α. For the models we consider this trend
is usually exponential. Restarting the whole algorithm using
the extrapolated value from an exponential fit as initial guess
typically brings you closer to the correct value. Thereby the
number of loops required for convergence is reduced.

When using this approach we ran into slow-downs of the
self-consistent loop convergence close to phase transitions.
If no extrapolation scheme as described previously is used,
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convergence at transition points may require intractably many
loops.

2. Density targeting

One issue in the mean-field treatment presented in Eq. (4)
is that the Hamiltonian is transformed from representing a
particle number-conserving system to one of nonconserva-
tion. Physically, this means that while the particle number is
conserved in the full 3D system each individual chain may
exchange particles with other chains thus upsetting the con-
served particle number locally.

Often we wish to fix the density of an individual chain to
some value n0 and must choose the corresponding chemical
potential μ. When converging α in the self-consistent loop,
the density for one value of α may have different dependence
on μ than for other α s.t.

nαn (μ) 
= nαn+1 (μ), (10)

where

nαn = 1

L

L∑
i=1

〈ni〉αn
. (11)

This means that in addition to converging α self-consistently
we must do the same for μ simultaneously. This procedure
involves the measurement of density each loop and then the
calculation of a new chemical potential that gives you the
desired density.

Due to this issue the cost of computation increases as each
new μ requires a new state calculation to verify the density,
i.e., one self-consistent loop may require several DMRG com-
putations. Fortunately, the density typically converges faster
than α and the performance is not greatly affected by the
fixation of μ in the cases considered in this paper. The density
is compared to a chosen target and must fulfill the following
condition

|nαn − ntarget|
nαn

< εn, (12)

where εn = 10−5 is the error tolerance used for densities in
calculations.

B. DMRG observables

When using DMRG we will consider two observables to
characterize the studied phases. The BEC order is evaluated
by measuring the expectation values 〈bi〉. When these are
finite it means that there is a finite probability for particles to
tunnel in and out of the quasi-1D system described by Eq. (4),
i.e., the boson injection/ejection amplitude is nonzero. This
quantity is our mean-field order parameter and it is computed
by averaging over several sites of the quasi-1D model

〈b〉 = 1

il − i f + 1

il∑
i=i f

〈bi〉, (13)

where i f (il ) is the first (last) site to be included in the average.
This calculation assumes that there is no preferential site in the
quasi-1D system from which to tunnel in or out. The choice
of i f , il depends on the boundary conditions. This means that

OBC requires an average of the systems central sites to avoid
boundary effects while PBC is free from this issue as all sites
are equivalent.

Typically, DMRG is more efficient with OBC. However,
in the hard-core case, OBC gives the system large boundary
effects, as is shown in Appendix A. Thus, the boundary con-
ditions we will use when resolving the SF-CDW transition are
PBC for the hard-core case and OBC for the soft-core case.

To characterize CDW phases we compute the charge gap,
i.e., the energy required to add or remove one particle from
the system. Since the Hamiltonian Eq. (4) does not conserve
particle number we will, in this work, define the charge gap as
the width in μ of density plateaus

�ρ = μupper − μlower, (14)

where the chemical potentials at the plateau edges are defined
by

n(μ) = const., μ ∈ [μlower, μupper] (15)

n(μupper + δ) > n(μupper) (16)

n(μlower − δ) < n(μlower), (17)

where δ > 0 is a small addition (subtraction) of the chemical
potential. Further details about the charge gap are given in
Appendix B.

1. Truncation error extrapolation of DMRG observables

In order for results from a DMRG solution to be reliable an
extrapolation to zero truncation error is required [26]. This is
done for all observables X using a linear fit to the data points
[28]:

X = X0 + c0εt . (18)

We find for OBC that this expression fits not only energies but
also measurements of the order parameter Eq. (13).

Using OBC the truncation error is small even for a modest
bond dimension as low as χ = 50. Extrapolations to zero trun-
cation error yield no improvements within the self-consistent
error. On such occasion we do not perform extrapolations
and use the largest bond dimension (smallest truncation error)
available.

We note that when using PBC quite large bond dimensions
are required. When computing charge gaps we have found
truncation errors as large as εt ∼ 10−5 for a bond dimension of
χ = 250. Further, the manner in which charge gaps are com-
puted in this paper carries an additional error (see Appendix
B). This has made extrapolations in truncation error difficult.
As a result, the charge gap data in Fig. 2(a) comes with the
caveat that it is affected by notable truncation errors.

2. Finite size extrapolation of DMRG observables

The type of DMRG used in the MPS + MF method is
finite size DMRG to make onsite measurements and corre-
lator measurements possible. We are often interested in the
thermodynamic behavior of a system and thus we must ex-
trapolate results to the limit of infinitely large systems. The
extrapolation scheme used depends on the observable that is
being measured.
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FIG. 2. A comparison of the order parameters characterizing the
two ordered phases at T = 0 at t⊥/t = 0.05. The red dashed line
is the BEC order parameter and the blue solid line the charge gap
(which can be seen as the charge density wave order parameter).
(a) MPS + MF results for a hard-core constraint model with filling
fraction n = 0.5 using PBC. (b) QMC for hard-core boson model
with BEC order parameter Eq. (23) size dependence. (c) QMC for
hard-core boson model with the CDW order parameter Eq. (22) size
dependence. (d) MPS + MF results for a soft-core boson model with
filling fraction n = 1.0 using OBC.

For the charge gap we use a second degree polynomial fit
in L−1:

�ρ (L) = c0 + c1
1

L
+ c2

1

L2
+ O

(
1

L3

)
. (19)

This expression is commonly used to fit the finite size depen-
dence of energies. We find that our charge gap measurements
fit this ansatz as well.

For the order parameter we use two different fitting forms.
When used to characterize the finite-temperature second-order
normal to superfluid phase transition we use a power-law
expression

〈b〉(L) = c0 + c1L−c2 . (20)

This expression is known to hold analytically at the transition
point, and we find our data for finite temperature fits Eq. (20)
quite well.

For the first order zero-temperature transitions from su-
perfluid to CDW we use a second order polynomial for the

squared order parameter

〈b〉2 = c0 + c1
1

L
+ c2

1

L2
+ O

(
1

L3

)
. (21)

These expressions hold close to phase transitions which is also
the area where finite size effects are most prominent. Concrete
examples of such extrapolations are provided in Appendix E.

Frequently, the largest error of the MPS + MF approach is
from the self-consistent convergence as opposed to finite size
errors. When this occurs, fitting to one of the forms Eqs. (19)–
(21) is difficult and yields poor fits. On these occasions we find
that larger sizes do not change measured value outside of the
self-consistent error and we use the largest size measurement
available.

C. Quantum Monte Carlo

Our large-scale QMC simulations have been performed
with the stochastic series expansion (SSE) algorithm [27] on
3D arrays of coupled chains, using anisotropic lattices of sizes
Lx × Ly × Lz, with Lx = L and Ly = Lz = L/ f for an integer
f . We have only focused on the case of HCB, but extending
to SCF is straightforward. Note also that PBC are used in all
directions.

In order to address the bosonic phases and associated
transitions for the 3D model Eq. (1) at both zero and finite
temperatures, we compute the three following observables.
Charge density wave order is evaluated with the staggered cor-
relation function at mid-distance, along the chain directions

Cstagg. = 1

N

∑
i

(−1)L/2(〈nini+L/2〉 − 〈ni〉〈ni+L/2〉), (22)

where the sum is performed over the N = L3/8 sites and
where f = 2 has been used for the aspect ratio. The BEC
order parameter (condensate density) is obtained by summing
off-diagonal correlators

ρ0 = 1

N2

∑
i, j

〈b†
i b j〉, (23)

where an aspect ratio of f = 4 has been used.
The superfluid response can be evaluated for longitudinal

(intrachain) and transverse (interchain) directions with the
superfluid stiffness

ρS,‖(⊥) = 1

N

∂2E0(ϕ‖(⊥) )

∂ϕ2
‖(⊥)

∣∣∣∣
ϕ‖(⊥)=0

. (24)

In the above definition, E0 is the total energy, and ϕ‖(⊥) is a
small twist angle enforced on all bonds in both longitudinal
and transverse directions. Technically, the superfluid stiffness
[29] is efficiently measured via the fluctuations of the winding
number [30] during the SSE simulation [31].

IV. RESULTS

For most of the results we perform three different types of
calculations: (i) an MPS + MF calculation of both ground and
thermal states for hard-core bosons which we also compare
with (ii) a correspondent QMC calculation and finally (iii)
calculations of both ground and thermal states for soft-core
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bosons using MPS + MF. For MPS + MF, a bond dimension
of χ = 50 has been used with OBC. For PBC we instead
use a bond dimension of χ = 250. As stated in Sec. III B 1
truncation error extrapolation has proved difficult since other
error sources are dominant. Nevertheless, such extrapolations
have been used where possible. We have omitted error bars
where the error is smaller than the symbol size in all figures.
For all data, the error due to truncation error is much smaller
than other sources and we omit such analyses.

First, we analyze the system when interaction strength
U, V is varied. We choose to analyze commensurate den-
sities, where we expect quantum phase transitions to occur
at zero temperature. In the hard-core case it is known that
charge ordering occurs for a half-filled isolated chain via a
Berezinskii-Kosterlitz-Thouless (BKT) transition at Vc = 2t
[32]. This particular density n = 1

L

∑L
i=1 〈ni〉 = 0.5 is inter-

esting as it forces the system to incur some energy penalty
along with an energy gain from hopping due to the repulsive
interaction. We expect there to be a charge-ordering transition
for the quasi-1D model as well but with a shifted Vc compared
to the 1D case.

For the soft-core case we instead target n = 1 and fix V =
0 to simplify the analysis. This unit-filled regime with only
local repulsions can generally be expected to yield some type
of order-to-order phase transition [33].

Second, we analyze the same systems but at finite temper-
ature. We are primarily interested in the critical temperature
and how it depends on the microscopic parameters of the
Hamiltonian. In this context, we are interested in how ac-
curate our approximate (but numerically low-cost) MPS +
MF-based calculations of Tc are in comparison to those from
quasiexact QMC.

A. Zero temperature results

For small values of repulsion we expect there to be a BEC
superfluid (SF) phase. At large values of repulsion, the system
should become insulating and exhibit a charge-ordered phase
(CDW). To analyze this transition we fix t⊥/t = 0.05.

1. BEC/superfluid to CDW at T = 0

MPS + MF results are shown in Fig. 2(a) where the charge
gap is plotted together with the BEC order parameter as a
function of the nearest-neighbor repulsion V . Note that for an
isolated 1D system the transition into CDW occurs at V/t = 2
whereas in the quasi-1D case we discuss here, the transition is
pushed to quite a higher value Vc/t ≈ 3.02, while t⊥/t = 1/20
is small. Importantly, one observes clear discontinuities for
both order parameters at Vc, indicating a first-order transi-
tion between a gapless BEC-SF and a CDW insulator. The
MPS + MF results can be directly compared to the QMC
simulations shown in Figs. 2(b) and 2(c). The agreement is
very good, since QMC results find a first-order transition for
Vc/t ≈ 3, the first-order (discontinuous step) character of the
transition becoming more and more evident upon increasing
system size.

QMC data in Figs. 2(b) and 2(c) show strong finite size
effects, which are more pronounced close to the transition.
The BEC density ρ0 [panel (b)] is shown for an aspect ratio
of 4. There, ρ0(L) becomes steeper when increasing system

size, a trend which is clearly compatible with a small but finite
jump at the thermodynamic limit. This is further discussed in
Appendix C where such a jump is more visible due to a larger
value of the transverse tunneling. The CDW order parameter
Cstagg, shown in Fig. 2(c), has been computed for a different
aspect ratio of 2 in order to get a better convergence towards
the thermodynamic limit. Using a general finite size scaling
of the form

Cstagg(L) = C∞
stagg + A/LB exp(−L/ξ ), (25)

a very good description of finite size data is obtained. The
infinite size extrapolation C∞

stagg, plotted against V/t , is clearly
compatible with a jump at the transition. Note however the
strong error bars in the critical regime, characteristic of a first
order transition.

The soft-core boson data has been computed for V = 0.
Since we fix the density to n = 1.0 a nearest neighbor repul-
sion would disturb the potential Mott insulator that can be
established at large U . In Fig. 2(c) a transition to the CDW
phase can be seen at Uc/t ≈ 8.12. This strongly contrasts with
the isolated chain case where a BKT transition occurs for a
much smaller onsite repulsion at Uc/t ≈ 3.3 [34].

At the transition point the charge gap attains a large value
seemingly discontinuously while no such strong first order
behavior is apparent when considering the order parameter.
It is possible that the latter has a jump so small that it is
undetectable by the current method we are using (see Sec. V).

B. Finite temperature

Using the MPS + MF method it is also possible to obtain
thermal averages [26], while for QMC finite temperature is
natural. Thus, we next investigate T > 0 physics.

1. SF to normal

An interesting transition that should occur for finite tem-
perature is that of 3D superfluid to a thermal gas (the normal
or disordered phase). We wish to compute the critical temper-
ature where the system looses BEC coherence and enters the
normal phase. We will let the repulsion vary in the system to
see how critical temperature is affected. Since we are mainly
interested in the SF to normal phase transition we will stay
away from values of the repulsion in which there is no SF
even at zero temperature, i.e., we stay at V/t < 3 for hard-core
bosons and U/t < 8.12 for soft-core bosons.

The critical temperature of the transition can be found by
finding the point at which 〈b〉 → 0 in the thermodynamic
limit. From Fig. 3 it is clear that for t⊥/t = 0.05 this point
lies close to T/t = 0.4. An important question using our
MPS + MF approach is how accurate the observed critical
temperatures are (i.e., how incorrect is the mean-field approx-
imation). A full mean field analysis overestimates the critical
temperatures by a factor of 2 compared to exact calculations
using QMC in the 3D case [35]. Hence, it is important to de-
termine if and by how much our MPS + MF hybrid approach
improves upon this factor.

We have therefore performed finite-T QMC simulations of
the full 3D Hamiltonian Eq. (1). We determine the critical
temperatures using standard finite-size scaling analysis which
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FIG. 3. A plot of the superfluid order parameter defined by 〈b〉 =
1

il −i f

∑il
i=i f

〈bi〉 extrapolated to infinite longitudinal size vs tempera-

ture. (a) Hard-core constraint model with V = 0 and filling fraction
n = 0.5 using OBC. (b) Soft-core boson model with filling fraction
n = 1.0 and U/t = 6.0 using OBC.

yields crossings for stiffnesses and BEC order parameter:

ρS,‖(⊥)(Tc) × Lz+d−2, (26)

with d = 3, z = 0 for a thermal transition, and

ρ0(Tc) × L2β/ν, (27)

where β = 0.3486 and ν = 0.6717 are the critical exponents
of the 3D XY universality class [36,37]. From the results given
in Fig. 4 the three crossings are in perfect agreement, giving
for V = 0 a critical temperature Tc/t = 0.323(1). Compared
to the critical temperature from our MPS + MF approach of
Tc/t ≈ 0.4 we find that the difference is significantly better
than a factor of 2 [38].

The soft-core model finite temperature data is computed
for U/t = 6.0 since leaving U too small makes the local
Hilbert space truncation increasingly erroneous. A notable
feature is the increased critical temperature at around
Tc/t ≈ 0.95 as seen in Fig. 3(b), which puts these transitions
squarely within the range of being observable within current
experiments.

2. Tc dependence on t⊥

The dependency of 〈b〉 on T does not change qualitatively
with t⊥, but the value of Tc does scale with t⊥, as shown in
Fig. 5. Combining bosonization and mean field theory this

scaling has been obtained as Tc ∼ t
2
3
⊥ for this system [22].

Thus, we have performed a fit to the data with a power law
given by

Tc = c1t c2
⊥ . (28)

In Fig. 5(a) we perform a power-law fit of our data and obtain
the exponent c2 ≈ 0.628. The scaling disagrees somewhat
with the analytical value of c2 = 2/3. This is expected as the
analytical value is less accurate for larger Tc. Further, we find

FIG. 4. Finite temperature QMC data for the full 3D model
Eq. (1) at V = 0 indicating a transition at Tc/t = 0.323(1) using
(a) the transverse superfluid stiffness ρS,⊥ scaled with L, (b) the
longitudinal superfluid stiffness ρS,‖ scaled with L, (c) the condensate
density ρ0 scaled with L2β/ν (see text).

the QMC Tc scaling, c2 ≈ 0.629, by fitting to all data points in
the same manner. We do not expect the scaling to agree with
the analytical expression which relies on mean-field theory—
see Sec. V for a discussion of the different scaling behaviors.

Using the same approach it is also possible to produce an
analytical expression for the critical temperature [22]:

Tc = vsn

4π

[
F (K )

t⊥zc

vsn

] 2K
4K−1

, (29)

where K, vs are the Tomonoga-Luttinger liquid (TLL) param-
eters [19], n is the density, and zc the coordination number.
The function F is given by

F (K ) = AB(K ) sin
( π

4K

)
β2

(
1

8K
, 1 − 1

4K

)
, (30)

where the amplitude AB(K ), relating the microscopic lattice
operators to the ones of the effective field theory, is nonuniver-
sal and depends on the specifics of the model, and β(x, y) is
the Euler beta function. Within the mean-field approximation,
Eq. (29) is exact and fit free, as long as K, vs, and AB are
known. Hence, using ground-state DMRG we can obtain these
three parameters from numerical fitting of the single particle
density matrix [19] at T = 0. Thus, it is possible to produce
critical temperatures given a ground-state calculation of a 1D
system with conserved quantum numbers which is consider-
ably less costly computationally. These values will be good
approximations as long at Tc is only a small fraction of the
systems bandwidth—the deviations between Eq. (29) and our
MPS + MF numerics at larger Tc values visible in Fig. 5(a) are
due to this. Conversely, at small Tc the agreement is excellent.
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FIG. 5. The critical temperature Tc of hard-core bosons at V = 0
and n = 0.5 vs the transverse hopping t⊥. (a) The red dashed line is a
power-law fit to the data points (black crosses). The orange solid line
is an analytical computation of Tc based on Eq. (29). (b) A power-law
fit to the QMC Tc data. (c) The constant R from Eq. (31) so that the
QMC Tc fits the analytical expression.

It is possible to extract critical temperature dependence on
t⊥ from QMC as well, and the results are shown in Fig. 5(b).
Using the analytical expression Eq. (29) with a renormaliza-
tion of t⊥ allows the overlapping of QMC data and analytical
data [39]:

Tc = vsn

4π

[
F (K )

R · t⊥zc

vsn

] 2K
4K−1

, (31)

where the renormalization constant R ∈ [0.74, 0.66], depend-
ing on t⊥, is found to fit the QMC data as shown in Fig. 5(c).
This renormalization constant has been discussed in the lit-
erature extensively [5,39–44], but here we find that as t⊥
decreases, it appears to converge to a larger value than the one
found in Ref. [39] for the case of an SU (2)-invariant system.

3. Tc dependence on V

The data presented so far for finite temperature have been
in the simplified regime of no nearest-neighbor repulsion
V = 0. However, the MPS + MF algorithm garners none or

FIG. 6. A plot of the critical temperature from superfluid to nor-
mal phase. The blue dashed line is computed using MPS + MF with
OBC and the orange solid line using QMC. The black dash-dotted
line is a ratio of the two results with values on the right axis.

slight penalties in having finite V . This yields the possibility of
measuring how the critical temperature depends on repulsive
interactions. Further, it is interesting to see whether the rela-
tion between Tc estimates from QMC and MPS + MF remains
the same when interactions are turned on.

In general, when repulsive interactions are turned on we
know from Fig. 2 that the superfluid should weaken. We
expect that the critical temperature is depressed for stronger
interactions and this can be seen in Fig. 6. Remarkably, the
ratio of critical temperatures is confined to a narrow band

0.73 <
T QMC

c

T MPS+MF
c

< 0.82. (32)

This remains true even when the quantum critical point at
Vc/t ≈ 3 is approached.

We point out that the MPS + MF approach we have de-
veloped here has a crucial advantage over the TLL + MF
framework behind Eq. (29): It can compute Tc even in regimes
where the individual 1D systems no longer realize a TLL, such
as for V/t > 2 for HCBs and U/t > 3.3 for SCBs, as shown
in Figs. 3(b) and 6.

V. DISCUSSION

The zero-temperature SF-CDW transition is an example of
so-called dimensional crossover [21]. We can see this by not-
ing that the order parameter for SF witnesses an exchange of
bosons between chains. When the order parameter for SF goes
to zero tunneling between chains is completely suppressed.
The system now behaves more like a set of 1D systems with
a remnant of interchain coupling only QMC can still resolve,
whereas in the case of finite SF order parameter the exchange
of particles made the system fully 3D. So, the crossover
from 3D to 1D becomes especially pronounced around the
transition point. A major difference to the quantum phase
transitions from SF to CDW occurring in 3D systems with
isotropic tunneling and interactions that we are showing here
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is that the transition in the present quasi-1D systems is not
second order but first order for HCBs (see Appendix D), and
possibly also for SCBs, as discussed below.

At the same time, it is evident from Fig. 2 that soft-core
and hard-core bosons have qualitatively similar behavior. One
notable difference is that the charge gap is much larger in the
soft-core case. This is likely due to the transitions occurring
at much larger values of U . Thus, the energy penalty for
adding and removing particles is much larger than in the
hard-core case. In addition, there is a small region around the
transition where the two order parameters coexist, i.e., where
both are small but finite. But as the limitations of mean-field
approaches (of which we are using a partial one) in predicting
supersolids are well documented, we refrain from concluding
the existence of such a state here. We also note that the SF
order parameter is enhanced for the soft-core case. This could
be explained by the fact that sites are almost never locked as
they often would be in the hard-core case. In other words, it
is almost always possible to inject particles into the system in
contrast to the hard-core case. If the maximum boson number
is reached the site is artificially locked but the amplitude for
a state where this occurs is negligible in accordance with
Eq. (2).

For soft-core bosons, in the true 1D case the CDW transi-
tion occurs at U1D/t ≈ 3.3 [34] whereas in the quasi-1D case
with t⊥/t = 0.05 (see Fig. 2) it does not occur until UQ1D/t ≈
8.12 [45]. For comparison, a 3D system with isotropic tun-
neling yields U3D/t = 29.94(2) [46] indicating that the large
increase we observe from U1D to UQ1D is reliable and the value
of UQ1D is heavily dependent on t⊥.

Overall, the soft-core boson case appears to differ quali-
tatively from the hard-core case when it comes to transition
order. In the soft-core model we could not find any clear first
order behavior in the superfluid order parameter while the
charge gap behaves similarly to the hard-core case—in fact,
charge gaps in both cases show a more pronounced discon-
tinuity than the supefluid order parameter or the transverse
superfluid stiffness (see Fig. 2). While we cannot detect a
jump in the SF order parameter, and thus a full first-order
transition, for the SCB system, this scenario remains the most
likely explanation for the observed behavior. We note that
there may be effects of the mean-field approximation that de-
grade any jump below the threshold that we could numerically
resolve. The only other alternative we see that could explain
the behavior of Fig. 2 is that of a simultaneous SF and CDW
order, i.e., a supersolid. As discussed above, it appears to us
that such an alternative would however require more evidence
than what can be supplied with the MPS + MF approach on
its own.

For the critical temperatures of the SF to normal transition,
the analytical prediction agrees well with the numerical corre-
spondents as seen in Fig. 5, especially at low Tc’s. It is notable
that the scaling of both MPS + MF and QMC data are very
similar, another positive for the approximative MPS + MF ap-
proach, with a power below that of the power of 2/3 predicted
from TLL + MF. At small t⊥ we expect and find improved
agreement between analytical theory and MPS + MF, in line
with the fact that the TLL + MF prediction will work better
as Tc becomes a small fraction of the systems bandwidth. For
both the MPS + MF and the QMC data we find that increas-

ingly constraining the fitting window to the smallest values of
t⊥ yields exponents approaching c2 ≈ 2/3 from below, show-
ing that the mean-field approximation becomes better with
decreasing t⊥. The close agreement in the scaling behavior
of Tc with t⊥ between the QMC and MPS + MF techniques,
and their common disagreement with the t2/3

⊥ -scaling derived
from TLL + MF points to the source being within the TLL
approximation of the microscopic lattice Hamiltonian of the
chains.

For the temperature data at finite repulsion in a hard-core
system it is interesting to note the relative constancy of the
Tc ratio between MPS + MF and QMC. The different critical
temperatures seem to agree less for larger values of repulsion
with the exception of the point at V = 2.75 where there is a
different trend.

While the results between QMC and MPS + MF differ
somewhat we note the differing efficiency of the two algo-
rithms. QMC data in this paper have been obtained using
30 000 equilibration steps and 1 000 000 measurement steps.
For a single core [Intel(R) Xeon(R) Gold 6140 CPU @
2.30 GHz] we find that

(i) CPU time for equilibration ≈0.001L4 sec,
(ii) CPU time for measurements ≈0.1L4 sec.
For MPS + MF we note that scaling is exactly that of

typical DMRG:

ttot ∼ Nsold
2χ3L, (33)

where d is the local Hilbert space dimension, χ is the bond
dimension, and L the system size. The MPS + MF routine has
the added complication of having to perform several DMRG
calculations. We have found that the number of required solu-
tions Nsol vary greatly, particularly close to transitions. Deep
in an ordered phase the number of required solutions can be
as low as Nsol ∼ 5. Close to a phase transition we find this
number able to reach Nsol ∼ 50 for OBC and Nsol ∼ 30 for
PBC including the various guessing heuristics we employ as
mentioned in Sec. III. Most important is that Nsol is not very
dependent on system size, approximately conserving the L
dependence of Eq. (33).

We compare data using a PBC model, and the efficiency
should be compared between these two cases as well. Note
that using OBC gives an incredible boost to efficiency due
to the lower bond dimension, which can be used for the
finite temperature case. It is further worthwhile to note that
QMC would obtain a better scaling with system size for finite
temperature and thus shorter run times as well.

On an [Intel(R) Xeon(R) Processor E5-2630 v4 CPU @
2.20 GHz] we find an L = 60 system running for ≈1600
seconds per solution in MPS + MF. With the largest number
of loops at Nsol ∼ 30 we arrive at

(i) QMC time: 15 days,
(ii) MPS + MF: 0.55 days.
As expected the MPS + MF algorithm ends up comparing

well when doing single-core calculations. It is worthwhile to
mention that QMC can scale up its measurement phase to
several cores where calculation speed increases linearly with
each core added. The degree with which MPS-based codes
can exploit parallelism varies widely by implementation, but
linear speedups in the number of CPU cores are generally
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not available over as wide a range as for QMC. Nevertheless,
scientific projects typically address some finite area of param-
eter space, meaning that the MPS + MF can obviously exploit
perfect (and trivial) parallelism in system parameters.

VI. CONCLUSION

Our results show that an approach using DMRG to solve
a decoupled 3D system self-consistently is valid for use
on an anisotropic system and also reproduces the transition
points with reasonable accuracy. In particular, the SF to CDW
phase transition has nearly equal critical repulsion Vc for the
MPS + MF case compared to QMC. The major benefit is
that the DMRG approach is computationally cheaper than the
corresponding exact QMC. We will further be able to simulate
real-time dynamics on the states produced by this framework
of MPS + MF. For the finite temperature transition to a nor-
mal phase the critical temperature deviates more from the
exact case. However, this deviation is much less sizable than
what a full mean-field approximation produces. This method
presents a powerful possibility of treating anisotropic 2D and
3D systems quickly using DMRG, in particular beyond the
TLL approach.

Another key finding of this work is the first-order nature of
the quantum phase transition between the superfluid and the
charge density wave order for hard-core bosons in these quasi-
1D anisotropic systems, as opposed to the expected purely
second order transition in a 3D system isotropic in tunneling
(and interactions, in the case of HCBs). At the same time, the
discontinuous opening of the charge gap contra the apparent
continuous vanishing of the SF order parameter, which occurs
for the case of soft-core bosons, may indicate different orders
of the transition in that specific system. The former suggesting
first order while the latter looks like second order. Our current
method and analysis is insufficient to determine whether there
is a very small jump. If that is the case it is further possible
that the gap gets smoothed out by the mean-field treatment.
A more detailed analysis of the soft-core model is required to
ascertain whether the transition is truly first order.

The method presented in this paper reproduces previous
analytical results. Critical temperature calculations using this
method scale with transverse hopping strength t⊥ correspond-
ing to what you would obtain using an effective field theory
on the 3D system and then decoupling with mean-field theory.
Replacing the effective field theory with DMRG we find sim-
ilar scaling laws with a modified exponent. In addition, using
ground state data from the normal 1D MPS routine we may
produce a critical temperature estimate from the field theory.
Both the scaling and estimated value agree well with the
presented approach at small t⊥, where agreement is expected.
The reasonably close agreement to theory allows us to trust
our numerical methods in the context of mean-field theory.
Combining analytical and numerical methods in this manner
could allow us to obtain Tc estimates in parameter regions
that are too computationally costly. This will be especially
true for an extension of our method to fermionic systems,
where, even putting aside the sign problem, auxiliary-field
QMC approaches scale much worse in the number of lattice
sites than in QMC for bosons (cubic vs linear scaling).
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APPENDIX A: OBC BOUNDARY CONTAMINATION

When using OBC the boundaries are dissimilar from other
sites in the system in that they are missing one neighboring
site. Depending on the Hamiltonian this causes a bias towards
either holes or particles to occupy the edge sites.

The usual method to deal with this bias is to focus on the
central part of the system and assume that boundary effects do
not reach in beyond a certain point. However, as can be seen
from Fig. 7, the assumption does not hold for the case of the
Hamiltonian in Eq. (4).

Instead we see the boundaries start a pattern of alternating
particles and holes. Since it is clearly preferable to have par-
ticles on the edges in the considered system, the two edges
have large weight on the occupation state. After V/t = 3 the
pattern becomes increasingly apparent and finally the average
simply does not attain the system center value. Further, even
if the average was a good measure of the center value it can
be seen from Fig. 7 that the boundaries actually incur a finite
superfluid order inside the system which leads to a transition
occurring only at Vc/t = 3.24.

It is further clear that this is a boundary effect since when
system size is increased above the sizes used in this paper the
finite size trend changes, making extrapolations difficult. In
practice, to overcome the boundary effect on superfluid or-
der in the hard-core system with nearest neighbor interaction
we find that sizes of L = 200 are insufficiently long to see
any convergence. This clearly shows the periodic boundary
conditions are necessary to analyze the hard-core bosons with
nearest neighbor repulsion since extrapolations to infinite size
suffer no trend changes at moderate sizes.

This is a much smaller problem in the case of soft-core
bosons with onsite repulsion as seen in Fig. 8. We can clearly
see the order parameter saturate to a specific value at the
center of the system quite quickly. Further, the plateauing does
not seem to be strongly affected by the onsite repulsion.

Evidently, when there is no nearest neighbor interaction the
effect of the boundaries is much smaller and OBC can safely
be used. Due to these observations we assume that PBC will
not yield a different result than OBC and neglect to perform
the costly computations soft-core bosons with PBC would
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FIG. 7. Order parameter 〈b〉 across the hard-core system for dif-
ferent values of nearest neighbor repulsion V using OBC. The OBC
data is for an L = 100 system and the PBC data is extrapolated to
L → ∞.

entail. Thus we have chosen to use PBC for the hard-core
system with nearest neighbor interactions and OBC for the
soft-core system with onsite interactions.

APPENDIX B: DENSITY PLATEAUS

When the considered model does not conserve particle
number it is not possible to use energy differences of states
with different particle number to determine the charge gap (as
in, e.g., Karakonstantakis et al. [20]). This is because it can
occur that

n(μ) = n(μ + δμ), (B1)

where δμ is some small shift from μ. In practice, this occurs
in the CDW phase which yields a certain arbitrariness to the
energy since certainly

E (μ) 
= E (μ + δμ) (B2)

as long as there are any particles in the system, while from
Eq. (B1) we would obtain

E (N ) = E (n(μ)) = E (n(μ + δμ)). (B3)

Another method may be used based on the variation of μ.
When computing density versus chemical potential, in the
CDW phase you find plateaus of constant density, as shown in

FIG. 8. Order parameter 〈b〉 across the soft-core system for dif-
ferent values of onsite repulsion U using OBC.

Fig. 9(a), whose width are the energy required to increase par-
ticle number by one. It is possible to compute how much the
chemical potential μ must be increased (decreased) to obtain
an increase (decrease) in the systems density. This yields an
upper and lower chemical potential for that particular density.
The difference of this upper and lower bound is then the
energy required to increase/decrease particle number.

The width of the density plateau W is related to an energy
difference obtained from a number-conserving calculation
once you enter the CDW phase of the system

W ≈ E (N + 1) + E (N − 1) − 2E (N ). (B4)

Further, as can be seen from Fig. 9(b), when repulsion is
decreased and we enter the superfluid phase the plateauing
tendency disappears. For charge gaps computed in the paper
we have used a precision which is at worst εμ = 1e−3 for the
upper and lower limit of the plateau.

APPENDIX C: ISOTROPIC TUNNELING

The first-order nature of the transition is not entirely clear
in the QMC data in Fig. 2. This is due to the fact that t⊥ =
0.05t is very small. To elucidate the nature of the transition we
may consider larger values of t⊥ as we still expect the system
to be in the same universality class.

For an isotropic case of t⊥ = t the correspondent result of
Figs. 2(b) and 2(c) is given in Fig. 10. Both order parameters
tend to exhibit clear jumps that become sharper as system size
is increased. We thus reason that the gap should remain, albeit
diminished, in the case of anisotropic tunneling.
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FIG. 9. Showing the density of a system with α = 0 at a V in the
(a) CDW phase and (b) the TLL phase. Note the clear plateau around
n = 0.5 inside the CDW phase.

APPENDIX D: FIRST ORDER TRANSITION

The jump in the order parameters given by the MPS + MF
routine in Fig. 2(a) and Fig. 2(c) do not by themselves guar-
antee first-order behavior. For the latter one of the order
parameters seems to vanish continuously as far as we can
resolve.

To clarify the transition order we compute additional indi-
cators. For the soft-core case we find no issue in computing

FIG. 10. BEC order parameter and CDW order parameter for the
isotropic case t⊥ = t .

FIG. 11. Density-density correlator and single-particle density
matrix vs onsite repulsion U/t in an L = 100 system for transverse
hopping t⊥ = 0.05t at bond dimension χ = 50.

FIG. 12. Energy gaps to the first excited state extrapolated to
infinity using PBC for bond dimension χ = 250 with transverse
hopping t⊥ = 0.05t .
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FIG. 13. Squared order parameter and charge gap vs inverted system size (black squares) for the hard-core boson model with PBC. The
blue solid line is a fit following Eq. (21) for the order parameter and Eq. (19) for the charge gap.

correlation functions and obtaining correlation lengths using
the scaling behavior for single-particle density matrix and
density-density correlator, respectively:

〈b†
i bi+r〉 ∼ A0 + B0 exp(−r/ξ ), (D1)

〈nini+r〉 ∼ A1 + B1 exp(−r/ξ ), (D2)

where ξ is the correlation length (differing between the two
correlators).

As can be seen from Fig. 11 there is a change of trend in
the correlation length at the transition. In addition, the single-
particle density matrix has an increasing correlation length
with a maximum at the transition. As far as we can resolve
there is no divergence and no increased tendency thereof with
increased bond dimension. This indicates we are capturing
the correct behavior. Since the correlation length is finite all
across the transition we conclude that the soft-core superfluid
to charge density wave transition is first order.

For the hard-core system it is difficult to fit Eqs. (D1) and
(D2) to the measured correlators. We find a nonexponential
trend taking over after a short distance suggesting insufficient
bond dimension for carrying the correlations over sufficient
distance to obtain good fits for a correlation length.

To obtain additional proof of the transition order in this
case we instead measure the (infinite size) gap to the first
excited state

�s = lim
L→∞

E1(L) − E0(L). (D3)

For a second order transition we would expect the gap to the
first excited state to be unchanged across the transition.

As can be seen from Fig. 12 the gap defined by Eq. (D3)
jumps by an order of magnitude across the transition and
changes direction abruptly. We take this to indicate a first
order transition since the gap to the excited state is not chang-
ing smoothly over the transition. Together with the jumplike
behavior of both the SF and CDW order parameter in Fig. 2(a)
we conclude that the hard-core transition is first order as well.

FIG. 14. Squared order parameter and charge gap vs inverted system size (black squares) for the soft-core boson model with OBC. The
blue solid line is a fit following Eq. (21) for the order parameter and Eq. (19) for the charge gap.
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APPENDIX E: FINITE-SIZE EXTRAPOLATION

We present the finite size data which after extrapolation
yields the data given by MPS + MF in Figs. 2(a) and 2(d).
The finite size data has been computed for a varying range of
sizes depending on when a clear trend which could be extrap-
olated appeared. Results for the hard-core model are shown
in Fig. 13. Notably, on the superfluid side order parameter
increases with size. In addition, there is a certain size at which
the system no longer supports superfluidity (e.g., L = 40 for
n.n. repulsion V = 3.005). With increasing repulsion larger
sizes are required to obtain superfluidity. We find that after
V = 3.02 no sizes manage to obtain superfluidity and all order
parameters are zero.

For the charge gap similar conditions hold. We find that be-
low transition smaller sizes obtain a finite charge gap whereas
in larger systems it is consistently zero valued. This comes as
no surprise since when superfluidity fails the system is truly
1D and should follow such physics. In this case, a truly 1D

system at these parameters transitions to a CDW phase at
V = 2 and we find the expected charge gaps at sizes where
superfluidity disappears.

For the soft-core case results look somewhat different as
shown in Fig. 14. This is mainly due to OBC allowing us
access to much larger system sizes such that only systems with
finite order parameter have been considered on the superfluid
side. We note that the order parameter seems to obtain large
fitting errors. In relation to the size of the order parameter
these errors typically remain on the order of marker size and
are included in Fig. 2(d).

For the charge gap we note that it looks finite before
transition. This is within the error produced by our charge
gap routine as outlined in Appendix B and we consider these
charge gaps zero valued. At onsite repulsion U = 8.12 we find
the curious case of simultaneous finite (but small) charge gap
and order parameter despite extrapolation which is discussed
in Sec. V.
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O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, and
T. Giamarchi, Phys. Rev. Lett. 101, 137207 (2008).

[2] P. Bouillot, C. Kollath, A. M. Läuchli, M. Zvonarev, B.
Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C.
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