
Synthese          (2024) 203:16 
https://doi.org/10.1007/s11229-023-04440-8

ORIG INAL RESEARCH

Functional Concept Proxies and the Actually Smart Hans
Problem: What’s Special About Deep Neural Networks in
Science

Florian J. Boge1,2

Received: 23 November 2021 / Accepted: 23 November 2023
© The Author(s) 2023

Abstract
Deep Neural Networks (DNNs) are becoming increasingly important as scientific
tools, as they excel in various scientific applications beyond what was considered pos-
sible. Yet from a certain vantage point, they are nothing but parametrized functions
f θ (x) of some data vector x, and their ‘learning’ is nothing but an iterative, algorith-
mic fitting of the parameters to data. Hence, what could be special about them as a
scientific tool or model? I will here suggest an integrated perspective that mediates
between extremes, by arguing that what makes DNNs in science special is their ability
to develop functional concept proxies (FCPs): Substructures that occasionally provide
them with abilities that correspond to those facilitated by concepts in human reason-
ing. Furthermore, I will argue that this introduces a problem that has so far barely
been recognized by practitioners and philosophers alike: That DNNs may succeed on
some vast and unwieldy data sets because they develop FCPs for features that are not
transparent to human researchers. The resulting breach between scientific success and
human understanding I call the ‘Actually Smart Hans Problem’.

Keywords Deep Neural Networks · Concepts · Reasoning · Clever Hans Problem ·
Automated science

It is very difficult for us to deconstruct a neural network to figure out exactly
what concepts the algorithm is “learning” [...]. In other words, AlphaFold has
improved our ability to predict a protein structure from its sequence; but hasn’t
directly increased our understanding of how protein sequence relates to
structure.

—Foldit staff member ‘bkoep’ (https://fold.it/portal/node/2008706, posted
January 31st, 2020; orig. emph.)
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AI systems can learn to identify patterns, but they cannot understand the
concepts behind those patterns.

—GPT3, when given the prompt “Write an essay proving that an AI system
trained on form can never learn semantic meaning”
(https://scottaaronson.blog/, posted April 24th, 2022)

1 Introduction

Without a doubt, Deep Neural Networks (DNNs) have become increasingly important
as scientific tools, as they excel in various scientific applications beyond what was
considered possible. Nevertheless, there is a strong continuity between present-day
DNNs and traditional data analysis methods and a general sense that there may really
be nothing new here, as reflected by the famous ‘internet meme’ displayed in Fig. 1.

A stark example of this is Google’s ‘AlphaFold2’, which vastly outperformed 100
rival methods in 2020’s Critical Assessment of Structure Prediction (CASP14). Pre-
dicting protein structures from amino acid sequences has been a hard problem for
decades (e.g. Branden & Tooze, 1999). But in 2/3 of the test cases in CASP14,
AlphaFold2 predicted structures to within the experimental accuracy of their empir-
ically determined shapes, and came close in the remaining cases. Because of this
impressive leap ahead, AlphaFold2 has been hailed an outright ‘game changer’ (see
Callaway, 2020).

Google’s DeepMind team (Jumper, 2021a, b) used the novel ‘Transformer’ algo-
rithm (Vaswani et al., 2017), originally developed for natural language processing,
in it’s ‘trunk’. Furthermore, unlike its already successful predecessor (Senior et al.,
2020), AlphaFold2 integrated information on the evolutionary history of proteins, the
known physical driving forces pertaining to molecules, and geometric information to
constrain the possible protein structures. Still, the bioinformatics community found
nothing fundamentally new in this approach:

In some respects, seeing the final complete description of the method was a
tiny bit disappointing, after the huge anticipation that had built up following
the CASP14 meeting. [...] In many respects, AlphaFold2 is ‘just’ a very well-
engineered system that takes many of the recently explored ideas in the field,
such as methods to interpret amino acid covariation, and splices them together
seamlessly using attention processing. (Jones & Thornton, 2022, p. 16)

In detail, one can map pretty much all success-driving elements of AlphaFold2
to well-known principles of traditional Machine Learning (ML): The arrangement of
amino acid sequences into data matrices that reveal evolutionary connections between
proteins is nothing but “a separate pre-processing step” (Petti et al., 2021, p. 2); i.e.,
something “that involves transforming raw data into an understandable format” (Mar-
iani et al., 2021, p. 109). The Transformer algorithm computes a non-linear function
of dot-products between linearly transformed vectors from these matrices. Informally,
this ‘contextualizes’ each vector in the sense of acknowledging the importance of other
vectors surrounding it. More formally, we have a combination of linear and non-linear
functions with learnable weights, so ‘just’ a specific DNN architecture.
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Fig. 1 Famous ‘internet meme’ displaying the relation between statistics, Machine Learning and Artificial
Intelligence. Original image by SandSerif, courtesy of the artist

Finally, in AlphaFold2’s ‘structure module’ (a second, subsequent DNN), physico-
geometric information strongly influences the space of potential outputs. But this is
nothing but an inductive bias1; something well-known from statistical learning theory
(Shalev-Shwartz & Ben-David, 2014, p. 16) and arguably necessary for real-world
success (Sterkenburg & Grünwald, 2021).

Another example is Google’s ‘LaMDa’ chatbot—an equally Transformer-based,
state of the art DNN whose extraordinary skill in describing its alleged feelings and
emotions convinced at least one Google engineer of its sentience. This sentiment was,
however, met with a lot of criticism by large chunks of the Artificial Intelligence (AI)
community, and ultimately led to said engineer’s suspension.2 As Alberto Delgado
from the National University of Columbia comments on his twitter account,

It ismystical to hope for awareness, understanding, common sense, fromsymbols
and data processing using parametric functions in higher dimensions.3

So what could possibly be special about even such advanced DNNs as AlphaFold2
and LaMDa? Are they not just fancy, complex, generic data models, subject to an
iterative, parametric statistical optimization? In a way, I believe the answer is ‘yes’.
But it is vital to notice that this does not imply that there is nothing remarkable about
these ML systems, especially when they are used to do science. To illustrate the point
a bit, consider how the human body is biochemically speaking just a hypercomplex
macro-molecule. Yet human bodies contain brains that provide themwith abilities way
beyond what less complex molecules can do. Without intending too close an analogy
between brains and DNNs here, this readily illustrates how complexity, rather than
type-identity, could possibly be relevant for the presence of special features.

In this paper, I will hence suggest an integrated perspective that mediates between
extremes, by focusing on a particular feature that makes them appear like cognitive
agents: Their apparent ability to acquire concepts, and that this seems to be a major
reason for their success (Buckner, 2018; López-Rubio, 2020). On the other hand, it
seems safe to say that there is little evidence that present DNNs are conscious, and

1 See https://predictioncenter.org/casp15/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf,
slide 7 (checked 08/22).
2 E.g. https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lem
oine (checked 07/22).
3 Seehttps://twitter.com/jadelgador/status/1535979040925958144?s=21&t=ncEQgno59MKl5OR6KJbz1A
(checked 07/22; emphasis added).
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some might think this is reason enough to doubt the possession of concepts. More
importantly, the kind of mistakes DNNs typically make, together with the decisively
semantic properties, plasticity and systematicity of concepts, should promote some
healthy skepticism here.4 I will hence argue that they do not possess concepts but
functional concept proxies (FCPs)5 Substructures that provide them with abilities that
correspond to, or exceed, those facilitated by concepts in human reasoning, but fail to
do so under certain circumstances, and in ways that exhibit their mere proxyhood. I
shall offer more precise definitions in Sect. 2.

Now I said that FCPs are the major reason for DNNs’ success, but they need not
always promote success, or at least not all across the board: They could possibly also
be misguided. In particular, this may happen when a DNN learns to specialize to
extremely subtle features of the data that do not generalize well beyond the training
and testing data sets. The ensuing problem resulting from this is known as the Clever
Hans Problem (CHP) in the technical literature.

Given that FCPs are at least often responsible for success, though, and that we use
DNNs to process often vast and unwieldy data, I believe there is also an opposite,
‘Actually Smart Hans Problem’ (ASHP). Imagine the following situation: A DNN is
trained on a vast and poorly understood data set. It thereby learns to process, classify,
and predict based on well-generalising features of the data that are not easily (if at
all) recognizable for humans. Furthermore, no human being has a relevant concept
to comprehend, or even identify, these features (yet). Would we not consider this a
problem, and find the DNN to have actually outsmarted us by means of the FCPs
it has, apparently, developed? Furthermore, given that the DNN does not even need
‘real’ concepts to so outsmart us, it would likely be unable to sensibly communicate
its findings to us. Would we not consider this an uncomfortable situation, in which
successful prediction has outpaced scientific understanding?

The paper is essentially organized into two parts: The first one establishes the notion
of FCPs and the reasons for embracing it. The second part then applies this notion
to scientific examples and outlines how a serious, novel problem may be generated
by DNNs’ ability to develop (new) FCPs somewhat autonomously. Thus, the second
part establishes why philosophers of science should care. The main contribution of the
paper, hence, lies in (a) finding the right vocabulary to discuss these subtle issues and
(b) establishing (or at least deepening) important connections between the cognitive
science-oriented parts of the debate on AI and DNNs and the philosophy of science-
oriented one.

As a small caveat, I shall note here that all this may pertain, strictly speaking, not
only to DNNs, but more generally to ML systems that combine complex learning
and very general parameterized mappings in the right ways; DNNs currently being
the most prominent sort of such systems.6 I shall largely suppress this issue below
though, as I believe it alters nothing about the philosophical substance of the paper.

4 See, e.g., (Marcus & Davis, 2020) for similar skepticism, based on similar observations.
5 Note that I will not offer a principled argument that all: DNNs inevitably develop (at least) FCPs, though
I think the cited evidence makes this plausible.
6 I have in mind here such things as, say, the automated topological graph-optimizer ‘Theseus’ used by
Krenn et al. (2021) to find new quantum optics experiments.

123



Synthese           (2024) 203:16 Page 5 of 39    16 

2 Functional Concept Proxies

2.1 Concepts

In order to say what a proxy for a concept is, I first need to say what I mean by
‘concept’. This is less straightforward than it might seem, as extant theories differ
among philosophers as well as between disciplines (see Camp, 2009; Machery, 2009).
Furthermore, as several anonymous referees have pointed out, given a sufficiently rich
notion of concepts, it would fairly straightforward to establish that a DNN cannot,
in fact, have concepts. However, this would pretty much mean excluding concept-
possession in DNNs by fiat, and so it is certainly more interesting to ask whether the
same is also true under a fairly modest reading of ‘concept’. Appealing to a modest
notion at the same time avoids several thorny issues in the philosophy of mind. I will
hence appeal to such a modest account, by building on certain reasonably modest
criteria for concept-attribution that have been distilled by a number of authors.7

Consider Camp’s (2009) approach to concepts. Camp compares the notion tradi-
tionally employed by philosophers from at least Descartes on, which assumes a strong
connection to linguistic capabilities, with psychologists’ usage of the word, which is
far more permissive. The latter notion, in particular, allows for animals that system-
atically respond to different stimuli in adequate ways to have concepts. Prima facie,
there appears to be stark disagreement between both notions. But Camp (2009, p.
276) argues, the core element that connects both approaches is “an important sort of
systematicity.”

An example given by her (280 ff.) is the imagined ability of dog D to treat another
dog, M , at times as a hunting partner, at times as a threat. This behavior of D towards
M might still be different from D’s behavior towards yet another dog, N , who was
always treated as a threat by D. It hence seems plausible that D has distinct concepts
of M and N , as well as distinct concepts hunting partner and threat. Crucially,
the things to be combined are representations of particulars and their ways of being,
and the latter representations can be combined in different ways with the former ones.

Camp (2009, p. 276; emph. added) considers a view she calls ‘minimalism’ about
concepts, which has “any representational abilities that can be systematically recom-
bined” be conceptual abilities. However, minimalism might be just too minimal, as
concept-possession additionally requires stimulus-independence:

it is now extremely well-established that creatures with no more than basic
cognition are not confined to representing only states of affairs that they take
themselves to be directly confronting. [...] a wide range of animals can represent
properties at distant locations, and navigate to those locations by novel routes to
satisfy their desires [...]. (Camp, 2009, p. 289, emph. added)

Another account compatible with these considerations is that of Newen and Bartels
(2007), which builds on the behavior of Parrot ‘Alex’, studied by Pepperberg (1999). In
order to determine whether Alex could be said to have concepts of colors and shapes,
Pepperberg designed a number of tests in which Alex had to respond to questions

7 I owe thanks to an anonymous referee and to Albert Newen for pointing me to relevant references here.
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targeting sameness and differences between visual stimuli in particular respects, such
as shape and color, number or object type. Alex also had to perform these tasks on
never before encountered items or pairs thereof, including sameness and difference-
tasks w.r.t. colors not encountered in the test before (cf. Pepperberg, 1999, pp. 58–68).

Following Newen and Bartels (2007, pp. 293–294; emph. added), Alex’s success in
these tasks nurtures the intuition that “in order to have one concept you should have a
minimal semantic net including that concept”,meaning a systemof representations that
allows one to identify and re-identify objects and their properties, with representations
being stimulus independent and involving some amount of abstraction. ‘Abstraction’
is here cashed out as going beyond the mere generalization of stimuli into perceptual
equivalence classes (such as the presence of a beak for bird-identification; cf. ibid.,
pp. 292, 295).

Thus, in order to have a concept of a particular color, there must be a concept of
a different, contrasting color as well as concepts of at least two further, contrasting
properties (such as two distinct shapes), combinable with the former ones (but not
one another). These pairs of propertied may be said to lie along different dimensions
(cf. ibid., pp. 293–294). Thus, the semantic aspect of concepts is intimately linked
with their systematicity and concerns the carrier’s ability to form different abstract
property-representations and the ways in which they can (and cannot) be combined.
These criteria for the presence of a ‘minimal semantic net’ Newen and Bartels hold to
be “satisfied if the behavior of a cognitive system can be explained in the most fruitful
way by attributing the [relevant] cognitive abilities” (Newen & Bartels, 2007, p. 294;
emph. added). So success in certain cognitive tasks in which these distinctions matter
is crucial.

The attractiveness of such comparatively modest accounts of concepts, wherein
they are “representations posited to explain certain cognitive phenomena including
recognition, naming, inference, and language understanding” (Piccinini, 2011; see
also Piccinini & Scott, 2006), is exactly this: that they allow us to explain the behaviors
of humans and other animals in a unified way.8 The required level of abstraction and
the connections to success in cognitive tasks allow us to distinguish between concept
possession and ‘blind’ stimulus–responses, even when stimuli can be grouped into
equivalence classes by the purported carrier. But then, only if there really are these
cognitive phenomena to be explained, should we contemplate postulating concepts
(see similarly Camp, 2009, p. 278).

Furthermore, if they are so to explain observed behaviors,wemay associate a certain
stability to concepts (cf. Camp, 2009, 277 ff.; Machery, 2009, pp. 23–24; Newen &
Bartels, 2007, p. 294): It is the multiple applicability of the same concept threat by
dog D that allows for the comparison between its behaviors towards M and N (see
Camp, 2009, p. 279). On the other hand, concepts, unlike ‘purely perceptual states’
are also “revisable as a result of [...] a range of different experiences”. This is one
aspect that makes them distinctively cognitive (Camp, 2009, p. 279). Another is the

8 As can be seen, I here presuppose a kind of realism about concepts, and hence bracket issues of meaning-
skepticism, such as Wittgenstein’s. Note, however, that it is in principle conceivable that at least some
biological organisms should also rather be seen as having FCPs than concepts. While there is some case
for concept-possession in insects (see, e.g., Camp, 2009), the case might be harder to argue for plants, and
so the notion of an FCP could also be useful for describing their behaviors and activities.
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fact that they are often conducive to the achievement of certain goals set forth by their
carrier, which conduciveness they exhibit in virtue of their combinability with other
representations of the same type (think dog-example again).

So concepts, modestly conceived, are relatively stable, revisable, and at least
minimally semantic representations that explain certain cognitive phenomena and,
particularly, the behavioral successes (or sometimes: failures) of humans and other
animals. Now, given that machines programmed in terms of DNNs are apparently
capable of succeeding (and sometimes: interestingly failing) in tasks such as image
recognition or language processing, why hesitate to attribute concepts to them?

2.2 Consciousness and Semantic Plasticity: Pleas for Caution

My account of the specialness of DNNs (and other, sufficiently rich ML systems) in
science will embrace the idea that we can associate conceptual meaning to them, but
it will be just a bit more cautious than to simply claim that DNNs do in fact develop
concepts. The reason is that, given the present state of the field, I am hesitant to fully
embrace anthropomorphic notions in the context ofAI (somewhat paceBuckner, 2018,
2021). Watson (2019) offers some ethical reasons for caution about such anthropo-
morphisms, but I believe there are also salient ‘alethic’ reasons for this. To see these
in some detail, let me first dig a little deeper into the notion of a representation that
underlies the notion of a concept.

As a zeroth step, I would like to dispel a distraction. For, there are two ways in
which DNNs could be associated with representations: They could (a) themselves be
scientific representations, much in the same sense as traditional scientific models; or
they could (b) be said to have representations, much in the same ways as humans and
other animals do. The first sense was recently disputed by Boge (2021, p. 51): We
do not assign meanings to the formal elements of the function f θ (x) as we would
do for the terms contained in some scientific model. Hence, while the elements of
said model are used to represent properties of an oscillating system, the weights and
biases contained in f θ (x) are not used, by researchers, to represent anything about
the system of interest.

One might still uphold that the function f θ (x) as a whole is a representation of
certain aspects of the system on which the data x were taken (e.g. Freiesleben et al.
2022, p. 9); and this is actually consistent with considerations found in Boge (2021,
p. 55). However, this would mean establishing a rather limited sense of representa-
tionality; and for the present purposes, this sense is even irrelevant: We are, indeed,
interested here in the question of whether DNNs can be said to have concepts, and
even on a minimal account, this requires them to have representations.

Such representations had by a cognizing system are usually referred to as mental
representations. A first, obvious reason for skepticism is hence that the relevant sense
of ‘representation’ involves a notion of mentality, and that mentality is often assumed
to bear some connections to consciousness. NowDNNs are, of course, implemented in
(partly silicon-based)machines, and strictly excluding the possibility of consciousness
emerging in such systems might be considered carbon chauvinism. But the point is
not one of impossibility, but rather of there being little evidence that present-day AI
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systems actually are conscious. I believe that most readers will agree with me, as
evidenced by the discussion over Google’s LaMDa mentioned above.

Actually, I submit that conscious content sometimes interacts with concept in such
ways that the conscious content itself bears explanatory relevance for the kinds of
cognitive phenomena that concepts are supposed to explain. For example, having a
certain concept of trianglemight enable me to draw certain inferences directly from
visual introspection without being able to fully verbalize them: I might mentally vary
the lengths of an imagined triangle’s sides and immediately, from that introspective
act, infer that angles must sum to a constant. Or I might visualize the Pythagorean
theorem and thereby convince myself of its intuitive validity.

However, such a connection need not always be present: Several authors distinguish
between explicit and implicit, or ‘tacit’, representations (e.g. Davies, 2015, for an
overview). The latter ones are supposed to underlie certain apparently cognitively
undergirded behaviors without necessarily entering into any specific relation to either
linguistic verbalization or conscious content (Orlandi, 2020, p. 107).

Typically, tacit representations are assumed to reside on a sub-personal level (cf.
Rescorla, 2020; Ryder, 2019). This is not really the same as detaching them from
personhood altogether. Hence, insofar as personhood involves conscious experiences,
one might still express reservations about entirely detaching tacit representations from
consciousness. For instance, most authors seem to accept that for x to be a represen-
tation of y, x needs to ‘be about’ y (see Orlandi, 2020, for some amount of overview),
and so representation may require intentionality. Furthermore, some (such as Kriegel,
2003; McGinn1988; Searle, 1992) have famously argued that even unconscious inten-
tionality is ultimately grounded in consciousness, and so there is a reasonable stance
that denies the possibility of mental representations without any consciousness at all.

But one may certainly refuse to accept such a connection to consciousness and the
notion of tacit representation certainly allows the possibility of an a-personal, non-
conscious entity withmental representations. So canwe at least say that DNNs possess
tacit concepts?

Brooks (1991, p. 149) gave a negative answer, based on the fact thatwhatever is there
in AI lacks semantic content; something often imposed as a minimal requirement not
only on concepts, but more generally on decidedly mental representations (see Ryder,
2019, p. 234). ‘Semantic’ can, of course, be fleshed in various different ways (say, as
requiring reference, intensionality, etc.). But typically, itmeans at least a contentfulness
that is associated with “conditions of satisfaction of some sort.” (Hutto &Myin, 2020,
p. 82) That is, mental representations “specify a way the world is such that the world
might, in fact, not be that way.” (ibid.)

Whether the verdict that AI systems cannot acquire semantic representations in this
sense is still true today is of course a subtle issue: Interpretability methods, such as
those discussed below, seem to suggest the presence of semantic content in modern
DNNs. But the question remains whether the fact thatwe, human beings, can represent
the goings on in a DNN in meaningful ways implies that they already ‘have’ meaning
(see also Brooks, 1991, ibid.; Boge, 2021, p. 50).

That ex post interpretability in terms of mental representations and, specifically,
concepts is not the same as concept-possession, was also already argued by Clark
(1993). Clark claimed that what is needed for an AI system to possess concepts is the
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ability to learn what he called structure-transforming generalizations: generalizations
which “involve not just the application of the old knowledge to new cases but the
systematic adaptation of the original problem-solving capacity to fit a new kind of
case.” (Clark, 1993, p. 73)

For instance, depending on the specifics of the training data, architecture, and even
the loss function guiding the training, a DNNmight fail to establish the dependency of
dog on leg, fur, ears, and so forth. Thus, when the image to be analyzed constitutes
a novel problem-situation that requires making use of this dependency, it could be
incapable of drawing several inferences usually facilitated by dog. I will discuss
relevantly similar, suggestive examples below.

At this point, defenders of DNN-representationalism could still counter that the
more upstream neurons in many-layered DNNs can often be shown, or at least rea-
sonably assumed, to specialize to such less involved concepts (e.g. Goodfellow et al.,
2016, p. 6; and below). However, in more complicated examples of a similar guise, to
be discussed in Sect. 3.2), this is likely not correct. Much depends on whether the other
concepts in question can be said to be components of the relevant object corresponding
to the given concept in, say, an image (as in the dog-example), or whether they are
semantically constitutive of it in a more abstract sense.

Frankly, it is not just the dependency of concepts on simpler concepts, but rather
their connectibility to other, similarly involved concepts that is crucial. Intel Labs vice
president Gadi Singer illustrates the point as follows:

A concept is not inherently bounded to a particular set of descriptors or values
and can accrue almost unlimited dimensions [...]. For example, biology students
signing up for their first class on epigenetics may know nothing about the field
beyond vaguely recognizing that it sounds similar to “genetics.” As time goes on,
the once very sparse concept will become a lot more multifaceted as the students
learn about prions, nucleosome positioning, effects of diabetes on macrophage
behavior, antibiotics altering glutamate receptor activity, and so on. This example
contrasts with deep learning, where a token or object has a fixed number of
dimensions. (Singer, 2021)

‘Dimensions’ here, as above, mean independent features associable to the given
concept. But some of these may characterize relations to other concept-like repre-
sentations, as the example shows. Hence, an important element of the systematicity
of concepts is their plasticity (which is one sense of revisability): A concept can be
enriched by connecting it up with other, different concepts. Note that the plasticity
in question is semantic: One can enrich a concept by connecting it up with other
already meaningful representations—not with any old mental representation such as,
say, spontaneous, random visual flashes before one’s inner eye.

Now, following the above quote, any potential element of aDNN that could possibly
realize a concept—such as a hidden unit, a hidden layer, or a pattern of activations
distributed across units inmultiple layers—would be severely limited in this respect by
the number of connections it can possibly enter into (by the DNN’s fixed architecture).
But the same is probably true, to some extent, of the limitations imposed by biological
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brains: The large and variable, but still finite, number of neurons and axons limits a
biological organism’s capacity for enriching its representations.

However, present day DNNs are restricted in a much more important way, namely
by common training-procedures:Minimizing a certain pre-defined loss functionmeans
realizing one objective9; and this is arguably insufficient to accomplish the plasticity
associated with concepts, which makes them so useful in navigating changing envi-
ronments. Thus, unless there is a radical change in how DNNs are built and trained, it
remains at best unclear whether they indeed establish the relevant relations that would
justify concept-attribution, even when they appear to succeed based on conceptual
reasoning.

I have thus sketched two independent lines of reasoning—one connected to con-
sciousness, one to semantic systematicity—that suggest some skepticism towards the
notion that even present-day DNNs have concepts, rather than just being humanly
interpretable in terms of these. When I turn to concrete study cases below, I will put
especially the second one to work. However, I clearly do not claim to definitively settle
the matter here. All I am urging is caution with concept-attribution to AI systems.

Such a cautious approach allows for a rather unifiedviewofDNNsas scientific tools:
Large chunk of the technical literature certainly read as if we should take seriously the
notion thatDNNs are cognitive agents that develop internalmodels and representations
of their environments. But a similarly large chunks read as if the present state of ML
is nothing but clever, heuristic statistics. Allowing that DNNs can merely develop
proxies for concepts—which could literally just be patterns of values the functions
concatenated to give back f θ (x) take on—makes these views compatible: it is not
overly demanding on the cognitive science-side but also not overly dismissive of
DNNs’ achievements.

Furthermore, I shall admit that with things likemultimodal inputs on the horizon for
systems like Google’s PaLM,10 we can envision a stage in the not-too-distant future
actual concept-attribution to DNNs becomes a lot more defensible (see Clark, 1993,
Chapter 4, for similar qualifications).

2.3 Functional Proxies

Despite all the skepticism, I also believe that present-dayDNNs can develop something
that plays the same role in classification, prediction, language processing and further
‘cognitive’ tasks as do concepts in human reasoning. Hence, how should we properly
speak and think of this ‘something’? In this section, I shall suggest a framework for
this, by defining the notion of a ‘(functional) concept proxy’; one that can do all the
work I expect it to do.

Consider what it means for some x to be a proxy for y. We usually do not mean by
this that x can replace y tout court. Rather, we have in mind a set of contexts within

9 Although this objective could contain several factors, realized by different, added-up terms, and so might
be said to factor into multiple objectives (like ‘minimize the mean squared error and maintain a small sum
over all squaredweights’). But this is inessential; this is verymuch unlike being able to train one’s arithmetic
skill by doing calculations first and then training one’s musical skill by playing the guitar.
10 See https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
(checked 08/22).
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which x can dowhatever y does. For instance, a proxy variable in statistics is a variable
that can be used to measure a latent trait or variable, because it strongly correlates with
said variable. However, this usually neither means that it correlates perfectly with said
variable (Carter, 2020, p. 174), nor that it satisfies all the causal roles the variable does
(Pietsch, 2021, p. 158). So the scope of the proxy variable’s use is limited across both
measurements and purposes. Similarly, a proxy can refer to someone you designate
to fill in for you in a decision-making process within a company or institution you are
part of; but said person clearly doesn’t thereby fulfill all the other roles you occupy in
the institution.

Thus, as a first (working) definition, I will say that, given a set of contexts, C , then
x is a proxy for y, relative to C , iff x occupies the same roles as does y in all c ∈ C ,
but does not do so in some c′ /∈ C .

Now, ‘roles’ can mean lots of things: In the decision-making case, they are legal
roles, in the statistical case, they are inferential roles. What roles could proxies for
concepts play? I submit that the relevant roles are causal ones: Entertaining a certain
concept of dog might stimulate me to say ‘look, that cute dog over there’, whenever
certain constituent stimuli are present. Similarly, it will stimulate me to infer that I can
likely steer the behavior of the object constituted by these stimuli by exclaiming things
such as ‘sit’ or ‘roll’. Hence, the presence of the concept dog causally contributes
to my observable behavior and to the ‘outputs’ I produce; though indirectly via the
inferences and other cognitive achievements to which it contributes and which result
in said outputs.11

Causal roles are usually identified as that which determines the function of some-
thing (see Levin, 2018, §1). Hence, I shall call a proxy x that fulfills all the same causal
roles as some y in all the c in a set of contexts C a functional proxy for y.12

Now, as for the definition of a concept proxy, the contexts C that matter may
be characterized as reasoning, or, more generally: cognitive, tasks, T . These may
comprise classification, i.e., sorting encountered entities under pre-defined classes,
categorization, i.e., finding new classes for these,13 inferring inductively into the future
or to a generality, and so on. Putting these ideas together with the minimal account of
concepts appealed to above, I define FCPs thus:

Given a set of tasks, T . Then x is a functional concept proxy (FCP), relative to
T , iff in any t ∈ T , but not in some t ′ /∈ T , x fulfills all the same causal roles as
does any relatively stable, revisable mental representation y posited to explain
certain cognitive phenomena and behavioral successes exhibited by its carrier.

This is a deliberately permissive definition, as it should be, given that FCPs are
supposed to be something that can be had by what is, under a slightly dismissive
description, ‘just’ a parametric function. However, an anonymous referee has con-
fronted me with the following set of interesting questions:

11 See Piccinini (2022, p. 5), for similar views.
12 The importance of the causal roles shall also become clearer in Sect. 2.4 below.
13 For an example, see (Knüsel & Baumberger, 2020) I take ‘categories’ to be basic classes in classification
systems.
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1. Would a linear regression model with a term for “socio-economic status” possess
an FCP for socio- economic status? If not, why not?

2. Would an automatic door equipped with an electric eye possess an FCP for person?
If not, why not? And what if it was trained with Reinforcement Learning?

3. Would a GOFAI program like Winograd’s SHRDLU possess an FCP for block or
pyramid? If not, why not?

4. Would a discriminative method like a support vector machine that classifies dogs
from non-dogs possess an FCP for dog? If not, why not?

5. Does possession of FCPs require some kind of “interpretable” substructure like
features in hidden layers, or could a discriminativemethodwith a complex decision
boundary possess FCPs?

I would answer 1. as follows: “Presumably yes, but because we have put it in by
hand”. The distinguishing characteristic is that DNNs are, according to the evidence
discussed below, capable of developingFCPs themselves. I fail to see how this could be
possible for the regression model, as the term was assumed to have been handcrafted
to represent the socio-economic status of people.

To 2., I would respond: “Presumably yes, but again becausewe have crafted it in this
way.” Furthermore, using Reinforcement Learning, it might even be conceivable that
the door develops FCPs for things we had not designed it to recognize. But whether
this is plausible depends on whether we can gather positive evidence to this effect—as
is possible with DNNs.

3. Is a bit more involved, so I will return to it below.
To 4., I would respond: “Since a support vector machine is a kind of (shallow)

neural network (Baldi, 2021, 13, pp. 56–57), it is certainly thinkable (given sufficient
length) that it develops FCPs, and even for things it was not explicitly trained to classify
(say, ears and tails).” So, again, FCPs and even their development may not strictly be
restricted to DNNs. However, whether support vector machines do or do not develop
FCPs depends onwhether we can relate, say, the values taken on by a non-linear kernel
(the machine’s activation function) to meaningful elements in an image (see below).
And to my knowledge, we happen to have positive evidence for this only in the case
of DNNs.

This bringsme immediately to 5., to which I respond: “While this is a typical way of
identifying FCPs (see below), this may not be necessary.” As the definition says, there
just needs to be ‘something’ that fulfills the same roles as a concept. Thus, whether
we can attribute FCPs or not depends on whether we can gather evidence that a given
system can exploit information in a certain way—and this does not necessarily require
that we can identify that something in terms of some interpretable structure. It only
requires, much in the same ways as this is the case with actual concepts, that we have
reason to postulate the FCP’s existence, given the system’s performance.

I believe that this definition is also sufficient for distinguishing FCPs from actual
concepts. For example, allowing a more involved definition of ‘concept’ for the
moment, which requires at least some grounding in consciousness, a given task may
involve imagining an object and drawing inferences based on the given mental image.
So unless DNNs become conscious, this would be impossible for them. However,
even disregarding these more involved issues, a general pattern for identifying mere
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proxyhood emerges: It might be possible, by a slight alteration of the given task, to
show that the FCPs attributable to DNNs are quite likely missing relevant links to
other concept-like representations—and even feature links to stuff that quite clearly
lacks meaning.

These missing or erroneous links can be exhibited by means of the mistakes
prompted by actual or merely contemplated alterations of the tasks DNNs are sub-
jected to, as I shall argue below. This means showing that the relevant sort of semantic
systematicity and plasticity typical of concepts is missing, by taking a DNN out of
its comfort zone (the t ∈ T ). However, a more direct route might be possible as well,
which consists in straightforwardly showing the questionability of the meaningfulness
of activation patterns by taking a DNN out of its comfort zone. I here have in mind
the notorious problem of adversarial examples, addressed in Sect. 3.3.

Finally, note that there could also be an extended set of tasks T ∗ ⊃ T and tasks
t∗ ∈ T ∗ \ T in which a DNN succeeds by means of its FCPs, but no human being
does, using only the concepts she has available.14 That is clearly permitted by my
definition and it hints at the main problem for science I am embarking upon here: That
DNNs and other, similarly complex ML systems may selectively outsmart us despite
not (yet) having actual concepts, and that this may put us at a loss when it comes to
an understanding of the subject matter.

2.4 Evidence for the Existence of Self-Developed FCPs

Why think there is such a thing as self-developed FCPs (if not concepts) in DNNs? The
fact of the matter is that there is some amount of empirical evidence for this, although
the distinctions I have drawn above have of course not yet been acknowledged in the
relevant literature.

Before going into relevant studies, note that there is also textual evidence for the
relevance of concepts for understanding Deep Learning successes. For instance, the
very notion of representation learning builds around this: It is generally assumed that
DNNs’ hidden layers are capable of learning distributed representations (Goodfellow,
2016, pp. 536–537), where these representations are indeed typically understood in
terms of concepts:

When we speak of a distributed representation, we mean one in which the units
represent small, feature-like entities. In this case it is the pattern as a whole that
is the meaningful level of analysis. This should be contrasted to a one-unit-one-
concept representational system in which single units represent entire concepts
or other large meaningful entities. (Hinton, 1986, p. 47; first and third emphasis
mine, second original)

Thus, the idea is that, through the iterative updating of its parameters, a DNN can
acquire a certain concept if its hidden layers learn to specialize to representing certain

14 Here, t ′ /∈ T ∗, i.e., the tasks on which the DNN fails correspond to a yet distinct set, T ′. So in other
words, the scope of tasks on which FCPs and concepts both yield successes correspond to an overlap
between two distinct sets (T ′ ∩ T ). I owe thanks to an anonymous referee for pointing out that this is a
nice way of clarifying FCPs and, frankly, their relation to the ASHP. Note also that this makes FCPs simply
different from concepts, not necessarily derivative of them, nor generally inferior.
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features, so that the overall pattern of activation may signify these features’ presence
or absence, respectively.

In the philosophical literature, Cameron (Buckner, 2018, p. 3) has recently simi-
larly suggested that DNNs are capable of forming “subjective category representations
or ‘conceptualizations’”, through a process he calls “transformational abstraction”.
Likewise, López-Rubio (2020, p. 3) argues that “emergent visual concepts are learned
spontaneously by [...] deep networks because they are useful as intermediate steps
towards the resolution of the final goal [...].” Overall, there appears to be a broad con-
sensus, both in technical and relevant philosophical literature, that DNNs are capable
of forming something akin to concepts. Understanding the limitations in attributing
actual concepts to DNNs, however, requires looking carefully into the details of some
non-textual evidence.

Consider first the study by Bau et al. (2017), also discussed by López-Rubio (2020).
In this study, Bau et al. (2017) introduced a method they called ‘network dissection’,
which aimed at mapping out the extent to which activations of individual hidden units
of several convolutional DNNs align with humanly interpretable concepts at multiple
scales, such as color concepts, object concepts, scene concepts, and so forth. To this
end, a dataset with a broad range of images of different scenes or objects was used,
wherein each image is attached with various labels down to the pixel level (specifying
the color, but also the object to which the pixel belongs). These images were also
equipped with annotation masks, which can be visualized as a dimming of every pixel
that does not belong to a given object falling under some concept.

To quantify howmuch individual hidden units would align with this humanly inter-
pretable segmentation, Bau et al. (2017) defined a binary activation map, based on
hidden units’ activations that were so high that they were exceeded in only half a
percent of the images by the given unit. The interpretability of some unit in terms of a
given concept was then evaluated with the aid of the intersection-over-union measure
over all images, which basically computes a ‘matching-percentage’.

Bau et al. (2017) then defined those units as interpretable for which a set of inde-
pendent human raters agreed with the ‘ground truth’ in a yes/no decision, i.e., with the
labels as given by some annotation mask. These ground truth labels were also checked
for consistency by asking a second set of raters. Both the agreement between human
raters about the ground truth labels and the agreement between the activation mask
and the concept was the highest for later convolutional layers, which are typically
specialized to object rather than color or edge recognition. An exemplary illustration
is provided in Fig. 2

A second study by Bau et al. (2018) probed even deeper into DNNs’ conceptual
interpretability, which is suitable also for highlighting several reasons for considering
such interpretable activations (or patterns thereof) functional proxies for concepts,
rather than actual concepts. In this second study, the network investigated was the
generative part of a ‘GAN’; a generative-adversarial network. In a GAN, there is a
generative part, G, that is trained to produce images (or other data-like outputs) and
an ‘adversarial’ part that tries to decipher whether a given instance y is G’s output or
a genuine data instance (say, a photo taken with a camera). This type of architecture
can be used either to produce ever better ‘fakes’, or to identify fabricated data such as
machine-generated images (Goodfellow et al., 2014a).
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Fig. 2 Exemplary units of the ResNet image recognition DNN interpretable in terms of the concepts house
and dog respectively. Adapted from Bau et al. (2017) under a CC BY 4.0 license. Colour available online

By ‘dissecting’ the generative part of a GAN in partly the same ways as with
the image-recognition DNNs discussed above,15 Bau et al. (2018) could not only
demonstrate a match between activations of hidden units and certain concepts, but
also the causal relevance of those units for the presence of conceptually meaningful
image patches.

In particular, Bauet al. (2018, p. 5) used a set of interventions on hidden units—that
is, precise, selective manipulations of their values—to test the effects of changes to
these units on the generative DNN’s output. Interventions on certain variables (such
as a hidden unit’s activation) are often held to be key to elucidating their causal
relations to other variables (seeWoodward, 2003)—such as a generativeDNN’s output.
Thus, the results of Bau et al. (2018) can be used to substantiate the functional aspect
invoked above: Recall that the whole point of inserting the qualifier ‘functional’ into
my definitions in Sect. 2 was to elucidate what roles an x present in some DNN needs
to play in order to qualify as a proxy for some concept, relative to the tasks we subject
the DNN to.

In particular, after identifying (sets of) conceptually meaningful units, Bau et al.
(2018) could show that ablating these units, i.e., setting their values to zero by hand,
removed the corresponding parts in the generated images. For instance, ablating more
andmore units that had been identified with tree, the generative DNN could be shown
to produce images with less and less trees.

Now, as matter of fact, studies on human beings

that have probed for knowledge of particular concepts across different modes of
access and output (e.g., fluency, confrontation naming, sorting, word-to-picture
matching, and definition generation) demonstrate that patients with Alzheimer’s
disease are significantly impaired across all tasks, and there is item-to-item cor-
respondence so that when a particular stimulus item is missed (or correctly
identified) in one task, it is likely to be missed (or correctly identified) in other
tasks that access the same information in a different way [...]. (Salmon, 2012, p.
1226)

15 Some changes are briefly crossed below.
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Hence, the kind of brain-damage related to Alzheimer’s disease apparently leads to
the loss of certain concepts in human beings. By the same token, an imagined future
‘evil neuroscientist’ might selectively inhibit neural activity in a biological brain in
precisely such ways that a measurable loss in relevant cognitive abilities would result,
suggesting that the relevant concept had been ‘deactivated’—in analogy to the study
by Bau et al. (2018). This justifies the relevance of the causal roles played by, viz.,
the functioning of, concepts in the reasoning and cognition of biological organisms.

It doesn’t at all clear up the requirement for merely speaking about proxies though.
First note that the fact that these hidden units’ activations can so fulfill a relevant causal
role in generating images of, e.g., trees when the DNN is supposed to generate trees,
is evidence enough for candidate proxyhood: The activation patterns can fulfill the
same causal roles as do concepts in tasks wherein the respective carrier is supposed
to create a visual representation16 of a tree (in the relevant contexts, C). However, in
order to show that they are just proxies, it is necessary to show that they do not fulfill
said roles across all tasks wherein a given concept would.

Recall that I had claimed both an element of stability as well as of plasticity to
concepts’ systematicity: They remain stable enough so that the same concept may be
said to combine with other concepts over different instances in time, and are plastic
enough so that the given concept can be enriched by being equipped with further
connections to other concepts.

In order to realize specifically the plasticity aspect of this, it would be necessary to
enrich the activation patterns alignedwith concepts in these two studies by connections
to (or co-activations with) further hidden units, so that the representational capacity
of the DNN would be increased. But besides the aforementioned general limitations
to this imposed by architectural and learning-related constraints, I shall here provide
some reasons for thinking that such co-activations and connections can actually be
shown to lack the relevant semantic features.

The second study by Bau et al. (2018) can, in fact, be used to advance just such
a reason: In addition to the causal investigation of units’ contributions to humanly
interpretable pixel-patterns, Bau et al. (2018, p. 2; emph. added) noted that their
“method can diagnose and improve GANs by identifying artifact-causing units”. In
particular, correlating certain units with artifacts in generated images and then ablating
these units contributes “to debugging and improving GANs” (ibid.).

However, consider the type of artifact typically in need of such ‘debugging’: Typical
artifacts recognized by Bau et al. were patterns of vertical bars or smudges of greyish-
violet color. Furthermore, the improvement of the GAN proceeded not by ‘educating’
the generative part further, but by ablating those artifact-causing units (cf. Bau et al.,
2018, p. 13).

Now, it is not typical, say, for a bed to co-occur with either a set of vertical bars
or greyish-violet smudges; hence, a human being would likely never learn a semantic
connection between bed and greyish- violet smudge, in conceiving of the interior
of a bedroom. However, greyish-violet smudges—overlayed with other patterns, so as
to be invisible to the human eye—might be typical co-occurrents with sets of pixels

16 Note that in a human being, this could also just be a mental image: Having a certain concept of trees
will certainly prompt me to imagine a tree when an instructor mentions the relevant word.
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in RGB images that, to a human being, represent beds. But if greyish-violet smudges
appear as meaningful to the DNN as beds, it becomes doubtful whether anything is
meaningful for it at all. Hence, there is reason to think that the generator part of the
GAN had really only learned a statistical correlation between sets of pixels, instead of
acquiring a concept of beds.

To make this just a bit more plausible, recall how the success of parrot Alex was
best explained, according to Newen and Bartels (2007), by attributing a minimal
semantic net to Alex. However, when beds are connected to greyish-violet smudges as
elements typical of bedrooms by a generative DNN, it becomes unclear that concept-
possession is indeed the most fruitful way to explain its generative abilities: Any
purported semantic net would then have to include connections between bed-like
objects andmeaningless blobs. It would thus be anchored in something which is not an
object, though aligned along the object-dimension (or: located in the object-subspace)
of said net. This doesn’t sound very convincing.

I submit that it seems much more plausible to assume that the DNN merely learns
to exploit correlations between pixel-patterns, and that there is no semantic net present
within it: The patterns learned by DNNs are not contentful representations, and their
potential ‘satisfaction conditions’ are really exhausted by the respective optimization
method terminating near some minimum of a loss function. Like the Google engineer
who arguably fell prey to the illusion of sentience, we thus arguably fall prey to
an illusion of there being meaningful representations attached to DNNs, when they
skillfully learn to exploit (and reproduce) statistical patterns. This illusion is exposed,
however, when we pay careful attention to the kinds of mistakes DNNs make.

It is easy to see that this evidence against actual concepts in DNNs correlates with
the kind of task, T , we subject them to. For instance, imagine that the generative DNN
had been tested on a range of commands that had simply happened not to stimulate the
smudge-producing hidden units. Then it would have reproduced bedrooms just fine,
and success would have been granted. Similarly, consider a set of tasks, T , in which a
generative DNN trained in the ways discussed above was supposed to produce images
that fool human beings into believing they are real camera footage. Clearly, here the
generator could easily fail, because the regular appearances of greyish-violet smudges
might raise suspicions in suitably educated test subjects.17

I acknowledge that defendants of the attributability of outright concepts to DNNs
could maintain that the DNN has, among other things, learned the object-level concept
greyish- violet smudge. But I claim that this would mean stretching the notion
‘concept’ too far: Extant theories of concepts individuate them by their meanings as
well as the connections to other alreadymeaningful representations, and amajor reason
for postulating concepts is explanatory power. It seems rather contrived to associate
meanings to hidden units producing greyish smudges when the respective DNN’s
behavior can equally well be explained by learned statistical correlations between
pixel-patterns. I consider the foregoing to deliver a sensible amount of justification
for preferring to speak of mere functional proxies for concepts, and will return to the
matter in Sect. 3.3.

17 See Marcus and Davis (2020) for a discussion of similar mistakes in natural language processing DNNs.
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3 Success and the Novelty of DNNs in Science

3.1 DNNsVersus Traditional Multivariate Analysis and ‘GOFAI’

So far, I have only made a case for the existence of self-developed FCPs (and against
actual concepts), but neither for the fact that they enable success nor that they make
DNNs special. Let me begin by first looking into the general connection between
DNNs (or ML more generally) and statistics a little more carefully. That there is some
kind of connection probably goes without saying (see Flach, 2012, xv; Goodfellow et
al., 2016, p. 95; Skansi, 2018, v).

There is, however, some disagreement about the exact connection between statistics
andML, not least when it comes to fundamentalmatters. For instance, Boge (2021) has
recently argued that both statistical models and DNNs are in a sense not explanatory,
whereas Srećković et al. (2021) argue that statistical models are more explanatory.
The apparent disagreement can be resolved, however, when one looks into the details.

In essence, statistics might be characterized as an activity of collecting data samples
�x = 〈x1, x2, . . . , xn〉 and, more often than not, using them to infer something general
about a ‘population’ from which the data were drawn, or something about future
samples. Usually, this is donewith the aid of parameterized (probability)models Pθ (x)

that, for some choice of θ , match the data’s frequency distribution, or the frequency
distribution of a function of �x (a ‘test statistic’), in the sense specified by an appropriate
criterion for the matching. However, the details of this process can vary drastically.

A major conceptual difference has been recognized by various statisticians from
at least Neyman (1939) between theory- and data-driven approaches to statistics. As
Neyman (1939, p. 55) writes, applying statistical concepts to data requires “some
system of conceptions and hypotheses, the consequences of which are approximately
similar to the observable facts.” However, “this similarity may be differently placed”;
it could either apply

to the shape of [relevant probabilistic] curves and to the shape of the empirical
histograms. Otherwise it may apply to certain real features of the phenomena
studied and to some mathematically described model of the same phenomena.
And if the theoretical distributions deduced from the mathematical model do
agree with those that we observe, and if that agreement is more or less per-
manent, we say that the mathematical model has “explained” the origin of the
distributions. (ibid.)

Thus, whenever one has a theory or theoretical model in hand, said theory or model
may be used to determine the expected empirical distribution of data, and statistics
can serve the aim of testing the theory. The use of statistics may here either reflect
the theory’s stochastic nature, or the noisiness of the measurement conditions, or both
(Lehmann, 1990, p. 166). In turn, if the theory thus reasonably matches the data, it
may be said to explain the observed phenomena.

Data-driven approaches to statistics, in contrast, usually serve the goal of ‘mere’
prediction:
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For example, in trying to predict whether a customer will buy a particular item
next week, one does not base one’s prediction on a set of differential equations
[...], but rather on a (probably fairly simple) [...] empirical model [...] relating
past purchases to the characteristics of the customers making them. (Hand, Hand
(2009), p. 294)

Such a fundamental distinction between uses of statistics has, in some form, been
acknowledged and echoed by several statisticians (see, for instance Breiman, 2001;
Davies, 2014; Hand, 2009, 2019; Lehmann, 1990; Shmueli & Koppius, 2011, ). Fur-
thermore, we can see that ML has a lot in common with, or is even an instance of,
data-driven statistics18; and the disagreement between philosophers such as Srećković
et al. (2021) and Boge (2021) is resolved when one realizes that the former focus on
theory-driven uses whereas the latter is focused on data-driven ones.

Of course, there are also differences in detail between ML and traditional data-
driven methods in statistics, starting with the fact that the output of a DNN f θ (x)

need not (though it might) be a probability distribution: In the case of AlphaFold2, it
is a rotatable depiction of a three-dimensional protein shape. Nevertheless, the gener-
ation of the final f θ (x) is generally a statistical procedure, as it involves adapting a
certain function by using probabilistic methods and random samples of data. Further-
more, typical choices of activation functions in downstream layers have probabilistic
interpretations (Goodfellow et al., 2016, 178 ff.), and so the output of a DNN may
quite generally be considered the most probable class label (or: protein-shape, recon-
struction of the data,...), on account of a statistical model ‘hidden’ within the DNN.

Finally, the learning process is fundamentally described in an entirely statistical
vocabulary (e.g. Shalev-Shwartz & Ben-David, 2014). But very often, methods are
used without regard to some formal justification. For instance, the shape of many
regularizers is not directly motivated by traditional statistics, and their effects are
often understood only to a limited extent (e.g. Moradi et al., 2020).

In sum, there are several differences betweenML and (data-driven) statistics, in the
general style of models, what they can achieve, and how one treats them. I maintain
that all these differences are not really fundamental though: Both DNNs and tradi-
tional data-driven statistical modeling are methods for analyzing data and inferring
something from that analysis, and all ML models at some point appeal to techniques
that were chiefly developed within statistics. Yet, a core fundamental difference lies,
I believe, exactly in the presence or absence of self-developed FCPs.

However, DNNs are not just used as analysis methods, but considered instances
of AI. Hence, might a better pick for comparison not be ‘Good Old-Fashioned AI’
(GOFAI) systems, where “GOFAI methodology employs programmed instructions
operating on formal symbolic representations”, and “A GOFAI symbol is an item in
a formal language (a programming language)” (Boden, 2014, p. 89)? This brings me
back to the reviewer question 3., mentioned in Sect. 2.3.

18 This is not so clearly true anymore in integrated approaches that also use theoretical information next
to data, as suggested, e.g., by Reichstein et al. (2019) for earth science and true to some extent also of
AlphaFold2; but apart from the considerations on inductive bias offered in Sect. 1, I will bracket this issue
here.
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Note, first, that I am interested here in whether DNNs are somehow special within
scientific applications. From that vantage point, of course the technological advance-
ments brought about by the GOFAI-approach must be acknowledged, which have
certainly impacted science in many direct and indirect ways (see Boden, 2014, p.
101). However, is an analogous problem to the ASHP posed by GOFAI, wherein
computers leap ahead of us in such a way that they can accurately predict, classify,
and discover, while human researchers have a hard time understanding the predicted,
classified, or discovered?

I believe this is doubtful, at the very least due to questions of extent, and I will
illustrate this using examples discussed byDreyfus (1992, including the one suggested
by the reviewer). First, consider the most plausible GOFAI candidate in Dreyfus’s
discussion for an AI system that could potentially develop FCPs: Winston’s ‘concept
learning’ program (see Dreyfus, 1992, 21ff.). “Given a set of positive and negative
instances”, Winston’s program was able to, “for example, use a descriptive repertoire
to construct a formal description of the class of arches.” (ibid.) Furthermore, since
said program was not crafted ab initio with some sort of representational means for
representing arches, it may be claimed to have developed an FCP, relative to the task
just described (offering formal descriptions). However, even if we accept this as true,
there are reasons to be suspicious of the nature and scope of this FCP-developing
ability:

[...] Winston’s program works only if the “student” is saved the trouble of what
Charles Sanders Peirce called abduction, by being “told” a set of context-free
features and relations—in this case a list of possible spacial relationships of
blocks such as “left-of,” “standing,” “above,” and “supported by”—from which
to build up a description of an arch. (ibid.)

Thus, on the one hand, we might argue that the concept (or the FCP, frankly)
was crafted in after all; even if only implicitly. That is, we might hold that it is only
meaningful to speak of the (somewhat autonomous) ‘development’ of an FCP if this
requires being able to react in fairly novel ways to a given problem set, and so other
than by “put[ting] together available descriptions in such a way as to match these
encountered cases”. This latter sort of task could be seen as making explicit that the
system in question already had a given FCP, by design.

If, on the other hand, we reject this line of reasoning, there would certainly still be
a major difference in extent between what GOFAI systems were able to do and what
modern DNNs are capable of, in terms of self-developed FCPs. Indeed, it is out of
the question, for the very reasons given by Dreyfus, that Winston’s system could have
developed FCPs for objects not at all connected to the resources (descriptions) made
available by the programmers. It seems that this is different in DNNs, as shown by the
evidence given above and below. But maybe an advocate of the in-principle equality
of GOFAI to DNNs on the grounds on which I am evaluating both here could at least
argue that we need to alter the ASHP by including a qualifier such as ‘in novel ways
and to an unprecedented extent’.

Let us consider the reviewer’s favored example, SHRDLU, now to see whether this
verdict can be upheld. SHRDLU
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simulates a robot armwhich canmove a set of variously shaped blocks and allows
a person to engage in a dialogue with the computer, asking questions, mak-
ing statements, issuing commands, about this simple world of movable blocks.
(Dreyfus, 1992, p. 5)

In the course of handling blocks and responding, SHRDLU could successfully
disambiguate pronouns such as ‘it’, when multiple referents were conceivable, and
use a deductive system to find an actual example for answering modally qualified
questions (such as “can a pyramid be supported by a block?”; Dreyfus, 1992, p. 7).
Does this ability to handle blocks and respond to queries by a user not speak in favor of
FCP-possession on the side of SHRDLU?Maybe so, but as the discussion in Sect. 2.3
should have made clear, this by itself is not interestingly distinguishing (given the
liberality of ‘FCP’). Thus, does the fact that the deductive system can apparently alter
SHRDLU’s conception of ‘pyramid’ not imply the development of FCPs? I doubt it;
at least for the ‘ab initio’ development that seems to be possible for modern DNNs.
Furthermore, even if this was answered in the affirmative, I believe the difference in
extent mentioned above for Winston’s program could be even more so upheld in this
case—thus making neither system interesting for the question of whether AI may be
said to have a profound impact on science in the sense promoted by the ASHP.

3.2 The Role of FCPs in Generating Success

To make the case more clearly, let us first turn to the question of success now. In order
to make a case for a connection between success and (the development of) FCPs, I
may partly rely on authority again: Buckner (2018, p. 4) too argues that convolutional
DNNs “are so successful across so many different domains because they model a
distinctive kind of abstraction from experience”, which, as we have seen above, he
takes to result in ‘conceptualizations’.

I will here not engage with the question of whether Buckner’s account, which
he takes to vindicate some empiricist themes in the philosophy of mind, is ultimately
correct. This is a thorny subject and I cannot judgewhether the process is not, say, better
phrased in terms of Kantian ‘spontaneity’ (Fazelpour & Thompson, 2015), with its
decidedly rationalist elements, or whether these views are ultimately even compatible
(cf. Buckner, 2018, p. 12). Instead, with an eye on the discussion to follow, I will
look into studies that provide evidence for the connection between success and the
discovery or formation of ‘higher level’ concepts.

Some striking such evidence comes from particle physics, a field in which the
analysis of massive amounts of data from particle colliders stimulates various new
ideas in ML. It has here been recognized for a while that DNNs appear to be able
to infer what physicists call ‘higher level features’ (Baldi et al., 2014; Chang et al.,
2018). These are features that are determined as typically non-linear functions from
other, ‘lower level’ features that are more directly read off from the data (Baldi et al.,
2014, p. 3).

A typical example of a low level feature is the transverse momentum; the
momentum-component a particle has transverse to the particle beam in a collider.
This can be inferred from energy deposits particles leave in the detector, referred to

123



   16 Page 22 of 39 Synthese           (2024) 203:16 

as ‘raw data’. For instance, for a charged particle, ‘particle trackers’ apply a magnetic
field and calculate the transverse momentum from the field strength, the radius of the
particle’s curved track in the detector and its charge, according to the Lorenz force
law (see Albertsson et al., 2018, p. 7).

Given that physics information is needed to perform such ‘reconstructions’, this
makes low level features “still high-level relative to the raw data” (Albertsson et al.,
2018, p. 8). Nevertheless, for efficient event classification and analysis, physicists
often rely on quantities that are still ‘higher level’, i.e., defined by complex inferential
chains that rely on further physical principles. They are thought to “capture physical
insights about the data” (Baldi et al., 2014, p. 2).

An example of such a higher lever feature is the reconstructed invariant mass of
a decayed particle. Most particles produced in high-energetic scatterings will decay
intomore stable ones; for elementary particles, in the particle annihilation and creation
processes predicted by our current quantum field theories. Then, given the relativistic
energy–momentum relation and the conservation of energy and momentum, it is pos-
sible to reconstruct the mass of a decayed particle from the energies and momenta of
measured particles it decays into.

A study that provided evidence that DNNs are able to autonomously infer the
information contained in such higher-level variables was presented by Baldi et al.
(2014). In this study, several hypothetical physics processes were simulated and the
simulated data were then processed by a DNN. One such process included a more
massive, electrically neutral Higgs boson, H0, which decays into the known ‘light’
Higgs boson, h0, that was discovered in 2012 (cf. Aad, 2012: Chatrchyan, 2012), via
further, positively or negatively electrically-charged Higgs bosons, H±. The DNN
was now trained to classify events that contained the H0 as ‘signal’ and events that
did not as ‘background’.

The DNNwas now trained for this task using lower-level data such as the transverse
momentumdescribed above. Actually, higher level variables, such as the reconstructed
invariant mass of decayed, intermediate particles, can expose the differences between
background and signal data much more clearly, and so have higher discrimination
power (cf. Baldi et al., 2014, pp. 4–5). Remarkably, however, feeding the higher-level
variables to the DNN in addition to lower-level ones during training resulted only in
a modest increase in performance, while training the DNN solely on the higher level
variables actually led to a more drastic decrease as compared to when it was trained
solely on lower-level ones. This behavior was in marked contrast to other classifiers
used in the study, such as a boosted decision tree and a neural network with only one
hidden layer (cf. Baldi et al., 2014, p. 7).

These results suggest that the DNN somehow autonomously discovers the infor-
mation contained in higher-level variables. However, in a different benchmark with
simulations including supersymmetric particles, the differences between the DNN and
other classifiers were not as prominent (cf. Baldi et al., 2014, p. 8). Furthermore, the
fact that a DNN trained only on higher-level features performs worse than with the
lower level ones does not make the higher level variables’ connection to success all
that clear.

In this last respect, another study by Chang et al. (2018) is instructive, which was
in many ways similar to that by Baldi et al. (2014) but added further ideas. Herein,
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Fig. 3 Data planing illustrated on the example of a reconstructed particle mass. Reproduced from Chang
et al. (2018) under a CC BY 4.0 license. Colour available online

the DNN was ‘robbed’ of the information on higher level variables after training, and
corresponding drops in performance were observed. In an ingenious procedure called
‘data planing’, Chang et al. (2018, p. 2) removed the information contained in certain
variables, effectively byweighting any given input variable xi , characterizing a certain
scattering event i , by the inverse height of the histogram for the given higher-level
variable at i .

This is illustrated in Fig. 3, for the reconstructed mass of a decayed particle: The
upper panel shows unplaned histograms, the lower one planed ones. As is easily seen,
the mass histogram itself (which originally has the characteristic ‘bump’ indicating a
particle) is flattened out into a uniform distribution. But changes in other higher-level
variables, such as the rapidity y for electrons (e+) and positrons (e−), are far more
subtle, as shown in the mid and right plots.

The most important observation of Chang et al. (2018, p. 4) was that the perfor-
mance of their DNN dropped significantly in response to the planing. To show this,
Chang et al. (2018, p. 3) used two physics models to generate simulated data on which
the performance was tested. In both models a new particle, called Z ′, was included,
but only in one of them was it coupled with unequal strengths to known particles and
anti-particles, such as electrons and positrons. In the case of the symmetric coupling,
planing for the invariant mass of the Z ′ was sufficient to reduce the DNN’s perfomance
to guesswork. In the asymmetric case, another higher-level variable had to be intro-
duced in addition, in order to achieve the same effect. This was the so-called rapidity
difference, which provides information on the different angles into which electrons
and positrons scatter, relative to the direction of the beam of colliding particles. In
the case of uneven coupling, a difference in these rapidities is to be expected, and the
network’s performance indeed wound up no better than guesswork when the rapid-
ity difference was planed away, whereas planing only for the mass left it in a still
somewhat better place.

This study is impressive, as it quite clearly shows the dependency of the DNN’s
success on the presence of information on higher-level variables in the data. And
as in the study by Baldi et al. (2014), the DNN may be said to have ‘discovered’
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this information ‘on its own’. Furthermore, the variables planed for clearly encode
physical concepts: that of a particle’s mass, or that of the ‘tilt’ of its trajectory relative
to a certain direction of reference.

Nevertheless, given everything said in Sects. 2.2 and 2.4, I believe it is utterly
implausible to say that the relevant DNN had literally developed these concepts. For
quite certainly, it had no conception of particles scattering and decaying at all, thus
missing relevant semantic links to particle, scatter, and decay. Hence, had the
relevant DNN been taken out of the comfort zone of the kind of classification task it
had been trained for, and into one in which these concepts and their connections would
have mattered, it would have clearly failed. More importantly, it would then probably
have exhibited artifacts (or reacted to artificial features) similar to the ones discussed
for the generative network studied by Bau et al. (2018) in Sect. 2.4.

To make this a little more plausible, consider once more Fig. 3. It is noticeable that
there are, of course, also swift changes in the histograms for quantities other than the
quantity planed for. The same extends to the lower level quantities that make up the
entries xi j of data vector xi for event i : If the frequency of vectors xi with a certain,
specific set of properties (such as the transverse momentum falling into a certain bin)
is changed, then plotting events with said properties in a histogram will lead to a
different result.

This makes it entirely reasonable to suppose that the DNN had here learned to
specialize to these swift changes in event-frequencies in a highly effective manner,
and it is also reasonable to suppose that there are activation patterns that correlate
with humanly meaningful representations of these changes. In fact, this is not just
reasonable, but in yet another study by Iten et al. (2020a), that too exhibited some
relevant structural similarities to the studies discussed do far, this could be evidenced
directly.

In said study, a specific encoder-decoder architecture, called SciNet, was used to
“investigate whether neural networks can be used to discover physical concepts from
experimental data.” (ibid., 1) The precise setup used by Iten et al. is an instance of a
generic DNN architecture called a (variational) autoencoder (cf. Iten et al., 2020b,
for a brief overview), which compresses the data and then decompresses them again,
where the intermediate, compressed layers are interpreted as developing a ‘latent
representation’, and the output then identifies the network’s ‘interpretation’ of the
data based on this latent representation.

Surprisingly, when SciNet was used to predict, e.g., the future position of a pen-
dulum from its past positions, it had learned “to extract the two relevant physical
parameters from (simulated) time series data for the x-coordinate of the pendulum
and to store them in the latent representation [...] [w]ithout being given any physical
concepts”(Iten et al., 2020b, p. 16; emph. added): Out of three latent units in the most
compressed layer, one unit’s activation correlated perfectly with the damping-constant
of the harmonic oscillator equation and another one with the spring constant, while the
third unit was barely activated, meaning that it was superfluous (see Fig. 4). Hence, it
seems that “SciNet has recovered the same time-independent parameters [...] that are
used by physicists.” (Iten et al., 2020b, p. 16)

Now, assuming that the same sort of identification would have been possible (with
some additional effort) for the DNN used by Chang et al. (2018), ablation of the
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Fig. 4 Activations of SciNet’s three latent units when trained to predict the behavior of a pendulum, plotted
against the two constants (b and k) describing the damped pendulum equation (both divided by mass).
Taken from Iten et al. (2020b), courtesy of the authors. Color available online

respective units in the style of Bau et al. (2018) would have probably led to the exact
same losses in performance as the removal of relevant information from the data. In
this way, the corresponding activations could have again been shown to function like
the respective concepts within the given task. This qualifies them as candidates for
functional proxies. (If youwish, youmay imagine a particle physicistwithAlzheimer’s
staring blank at a mass histogram for comparison.)

To again supplant the claim of a mere proxyhood, though, imagine that the data
had been contaminated with artifacts from the data-generation process and that these
artifacts correlatedwith the changes in certain histograms. For instance, particle physi-
cists often use simulated data to train DNNs and it is well known that this can induce
spurious correlations with certain assumed particle masses (see Kasieczka & Shih,
2020). However, there are of course many further sources of artifact in these complex
simulations (Boge & Zeitnitz, 2020, for an overview), and some more subtle such
artifacts could perfectly well correlate with the relevant swift changes in histograms
without thereby correspond to any meaningful representations at all—much like the
greyish smudges learned by Bau et al.’s (2018) generative DNN.

In sum, this makes it again entirely reasonable to hold that the DNNs considered
here should be said to have learned statistical correlations among numbers, rather
than having developed concepts: Because the links to other relevant concepts such
as particle or scatter were likely missing, and links to semantically meaningless
patterns are to be expected.
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Nevertheless, relative to the tasks at hand, the activations learned by the DNNs
used by Chang et al. (2018) and Iten et al. (2020a) seem to function the same ways
as relevant human concepts would. Hence, it is also entirely reasonable to attribute
the success of SciNet and Chang et al.’s DNN to FCPs for concepts such as mass,
rapidity, damping- and spring- constant.

Let me dispel a final distraction here. It probably goes without saying that finding
some sort of parametrized function to describe a data set in an otherwise conceptually
rather empty way can stimulate the development of new concepts in researchers. For
example, the existence of the Rydberg formula λR(n,m) = R−1(n−2 − m−2)−1,
parametrizing the distances between spectral lines, was later claimed by Bohr to have
exerted amajor influence on his development of the atommodel (cf.Duncan&Janssen,
2019, p. 14).

The concepts used by Bohr were, however, fully unknown to Rydberg and Balmer
(who devised the predecessor formula), and so the discovery of a parametric function
describing an empirical regularity can here be claimed to have stimulated the devel-
opment of entirely new concepts. The point, however, is not that researchers can find
new concepts using DNNs, but whether DNNs themselves can develop concepts, and
how that relates to their success.

This gives us a first indication as to whyDNNsmight be special in science: It seems
plainly nonsensical to claim that a function with free parameters, such as the Rydberg
function with its adaptable proportionality constant R−1, can develop concepts or
even proxies for these. This holds regardless of whether the function is as simple as
Rydberg’s, or as complicated as a multivariate probability distribution.

What is this intuitive difference in the attributability of self-developed FCPs
between DNNs and traditional parametric functions due to? One might think that
it resides in the fact that DNNs are implemented on physical machines, but I believe
this is a mistake: Having a computer program fit the parameters of a multivariate
Gaußian, we would still hesitate to say that it develops even proxies for concepts.

Rather, the difference indeed lies in the fact that DNNs mimic at least some proper-
ties of cognitive agents, such as their adaptability across different purposes19 as well
as their ‘partial autonomy’ (Boge & Grünke, forthcoming, p. 16). More specifically,
being ‘universal approximators’ (e.g. Hornik et al., 1989; Poggio et al., 2020), DNNs
can in principle be trained to fit a very wide range of input–output connections, pro-
vided they have enough units. This makes it meaningful to even speak of ‘learning’
here (though this may, of course also be possible in other circumstances), in contrast to
the automated fitting of some more restricted parametric function as just considered.

Furthermore, if one uses a loss function that can be meaningfully taken to reflect
at least some potential ‘aim’ of an agent, we may think that a machine equipped
with a DNN so trained at least somewhat autonomously navigates its environment.20

Together with the facts about conceptual interpretability discussed in Sect. 2.4, this
makes it plausible that a DNN, in contrast to most other functions scientists use to
analyze data, can be associated with the development of FCPs.

19 Though not yet in the sense of a full domain-general intelligence; cf. Lyre (2020) and the foregoing.
20 Based on the above remarks on carbon chauvinism and implementation, onemay thus of course speculate
that amachinewhich realizes somehypercomplex,multimodalDNNwill thus eventually satisfy our intuitive
criteria for agency, but as I said, I believe indulging in such speculation is presently still premature.
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Fig. 5 Famous example of an adversarial, taken from Goodfellow et al. (2014b). Color available online

3.3 The Clever Hans Problem

Despite their remarkable usefulness in science, there is also a well-known problem
associated with DNNs and the FCPs they develop, sometimes called the Clever Hans
Problem (CHP). This is the problem that DNNs often seem to ‘reward-hack’ (Buckner,
2021) their way through the data by exploiting features that do not generalize beyond
training and testing sets, or at least not to all relevant data. The name is instructive:
‘Hans’ was a horse who appeared to be able to count, and even perform arithmetic
operations, using his hoof. But a closer analysis revealed that Hans was looking for
subtle clues from his trainer (Johnson, 1911). In other words: In order to respond
successfully, Hans reacted to features that did not generalize beyond his training- and
testing-situations.

There is a famous set of examples sometimes used to unmask such Clever Hans
behaviour (cf. Goodfellow, 2018, pp. 34–35), going by the name of ‘adversarials’. In
the original sense of the word (Szegedy et al., 2013), these are data-instances (often
images) which are perturbed by the addition of noise just enough so as to make the
relevant DNN fail (Freiesleben, 2021, for a formal definition). It has been realized,
however, that there are also ‘natural’ adversarials; images of objects shown in a strange
pose (Alcorn et al., 2019) or with an unusual background (Hendrycks et al., 2021) that
make DNNs fail without having been specifically crafted to do so.

A now-famous example is the image of the panda, originally relatively confidently
classified as such by the GoogLeNet DNN, but classified as a gibbon with an even
higher confidence by that same DNN after the addition of some random-looking,
dedicated noise (Fig. 5). But if a small amount of humanly-invisible noise is sufficient
to spoil the DNN’s success, it seems that it must have learned to rely on features other
than those used by humans to identify pandas.

Note that adversarials could thus possibly be fleshed out as providing further, more
direct (though maybe also weaker) evidence of the fact that decidedly semantic prop-
erties are likely missing in DNNs. In fact, Fig. 5 already nicely illustrates the relevant
intuition, as it seems to suggest that both ‘pandas’ and ‘gibbons’ are just decisive pixel
patterns to GoogLeNet; patterns that merely correlate (imperfectly) with something

123



   16 Page 28 of 39 Synthese           (2024) 203:16 

humanly interpretable in terms of object-level concepts. However,making a somewhat
compelling case here clearly requires looking into further technical details again.

There are two recent studies on adversarials I have inmind in particular, introducing
DNNs’vulnerability to ‘unforeseen attacks’ and ‘blind spots’, respectively (Kanget al.,
2019; Narodytska & Kasiviswanathan, 2016; Zhang et al., 2019). Unforeseen attacks
are adversarial examples generated in a way that differs from how other adversarials
are generated, which the DNN has already learned to master (Kang et al., 2019).

For instance, one may generate adversarials by moving a small step in the direc-
tion of greatest change of the loss function along each dimension of an image vector
(Goodfellow et al., 2014b). If a classifier vulnerable to these adversarials is then inte-
grated into a GAN architecture in which the generative part produces corresponding
adversarials in exactly this way, it can learn to classify them correctly. However, when
a different kind of method for generating aversarials is used, even an already adver-
sarially trained classifier will likely continue to fail (Kang et al., 2019, p. 4).

Thus, including simulated snow or fog can here lead to severe misclassifications.
Furthermore, contrary to what would be expected, heavier snowfall is not generally
more likely to produce such misclassifications, even though it more strongly distorts
the visibility of the object (ibid.). So the strength of perturbation for the DNN does
not co-align with the strength of perturbation experienced by a human being. As a
matter of fact, even a small number of randomly added pixels have been shown to
spoil DNNs’ successful performance (Narodytska & Kasiviswanathan, 2016), which
suggests that whatever the DNN exploits in order to classify correctly is connected to
the distribution of the pixels rather than to any ‘real’ features that could be interpreted
as corresponding to concepts.

Blind spots add a second layer to this. These are data instances that are in a sense
‘far’ from the data encountered during training, while still being correctly classified
by a DNN and perfectly well recognizable for human beings (Zhanget al., 2019, p. 5).
The sense of distance here is non-trivial but intuitive: Zhanget al. (2019, p. 4) averaged
over the k nearest neighbors of training data to the given testing data instance, but in the
space spanned by the activations in a hidden layer of some DNN, and with ‘nearness’
defined by an �p metric. This basically measures how atypical a given test-image (or
other data point) is for the DNN. Small shifts and re-scalings of pixels then suffice
to create adversarial examples from such blind spots, and prior adversarial training
proves ineffective against these (Zhanget al., 2019, p. 6).

Why should any of this suggest that adversarials can be interpreted as providing
further, direct evidence of the fact that DNNs learn FCPs rather than outright concepts?
Could it not be taken to merely show that DNNs learn concepts that are alien for us?
Indeed it could, but as I said, I believe this is quite a stretch.

For, the fact that altering these ‘features’ in the data sample just a tiny little bit—
which implies, exactly, a slight alteration of the classification task, t—can fool the
DNN into ‘seeing’ something completely different should strike us as surprising: It
would be like, say, a convicted felon on the run passing a police control by merely
putting on a tiny little bit of make up, just because the police officer hadn’t seen him
in real life before. Explaining such an event by saying that the police officer entertains
alien concepts seems fairly contrived. Under these circumstances, we might rather
wonder whether said police officer does not suffer from sudden-onset Alzheimer’s.
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Here is, hence, a different perspective: The activations of hidden units get cor-
related, during training, with certain distinctive pixel-patterns in images that we, as
human beings, recognize as displaying certain objects. The DNN thereby learns to
classify them accordingly, based on said patterns and the activations they regularly
provoke. However, when we pick images with patterns that have a low correlation
with the DNN’s activations, we can change these images in a way that hardly makes
a difference for us but nullifies the correlation entirely. The resulting output is then
altered accordingly, for the relevant activations will not contribute anymore. And that
is all that happens.

To make this just a little more plausible, consider once more the case of Alex.
Assume, for the sake of argument, that Alex had only seen perfect circles as round
shapes before, but was still able to recognize a yellow ellipse as round. Furthermore,
assume that slightly changing the eccentricity of said ellipse and coloring it in a
darker shade of yellow made Alex fail. Should we then assume that he had a concept
of roundness indeed? Or should we assume that Alex has some sort of alien concept?
Instead, I believe we should here assume that Alex was only able to group certain
compound stimuli into limited equivalence classes—which is not enough for concept
possession. Furthermore, I suggest that something of this sort is in evidence when
blind spot adversarials (or randomly inserted pixels etc.) make DNNs fail.

The point I am trying to make here could again be challenged on account of a
number of observations made by Zhou and Firestone (2019), as well as Buckner
(2021), who discuss a range of experiments wherein humans were able to predict the
erroneous labels theDNNwould likely apply to an adversarial. Buckner (2021) argues,
accordingly, that our evaluation of DNN performance might be biased. For instance,
the limited range of class labels available to theDNN creates a biased evaluation, as the
DNN has to chose between these labels, and cannot offer amore differentiated account
of its reasoning. So maybe the evaluation in the case of blind spots and unforeseen
attacks is somehow similarly biased?

I believe that the discussion above demonstrates that the cases considered by Zhou
and Firestone (2019) and Buckner (2021) only represent a selected subset of all adver-
sarials, which is still somewhat co-aligned with human recognition capabilities. They
hence cannot do justice to the full space of possible mismatches between image and
classification that can be effected in DNNs by means of adversarial perturbations, and
so also do not offer a full explanation of their vulnerabilities (see also Dujmović et al.,
2019).

I began this section by claiming that adversarials can be used to unmask Clever
Hans behavior, as they show that DNNs do not rely on features they are supposed to,
but rather on ones that can easily mislead them. These features have been called ‘non-
robust’ by Ilyas et al. (2019), since small perturbations can destroy them, as we have
just seen.Nevertheless, (Ilyas et al., 2019, 1, emph. altered) also hold that “[a]dversarial
vulnerability is a direct result of our models’ sensitivity to well-generalizing features
in the data.” Thus, while easily perturbed, the features typically exploited by DNNs
may in fact be present across broad ranges of available data. This actually leaves open
whether they might at least sometimes correspond to distinct hidden patterns that,
though not co-aligned with known object- and property-concepts, could be useful
rather than misleading. I will turn to this question below.
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Per se, adversarials fall short of reliably identifying the features actually exploited
by the DNN though. In this respect, interpretability methods are more promising.
Consider, for instance, the approach byLapuschkin et al. (2019), which builds around a
technique called Layer-Wise Relevance Propagation (LRP; Bach et al., 2015), wherein
the relevance of a feature encoded into some unit is given by the sum of its normalized
contributions to higher-up units, weighted by the relevance of these respective units
(for yet higher-up units, and ultimately the output).21

There is an obvious resemblance to the works of Bau et al. (2017) or Iten et al.
(2020a): Since the first relevance-score is the network output itself, the relevance-
scores of previous units are directly connected to their activations and, as in the network
dissection method and the study by Iten et al. (2020a), these are then correlated with
features of the input. Unlike in these studies, however, this is used to generate a
relevance map that highlights the features of the input image relevant for the overall
behavior, not individual units. Hence, this might be seen as providing indirect access
to DNNs’ FCPs, supporting my answer given to reviewer question 5. in Sect. 2.3.

In order to highlight features across data-instance that were relevant to the predic-
tion, Lapuschkin et al. (2019, p. 6) combined LRP with a clustering method. When
this method was then applied to a DNN playing pinball, with “excellent results beyond
human performance”, it could be shown that

the DNN [...] firstly moves the ball into the vicinity of a high-scoring switch
without using the flippers at all, then, secondly, “nudges” the virtual pinball
table such that the ball infinitely triggers the switch by passing over it back and
forth, without causing a tilt of the pinball table[.] (Lapuschkin et al., 2019, p. 4)

Lapuschkin et al. interpret this behavior as demonstrating that “the model has
learned to abuse the “nudging” threshold implemented through the tilting mechanism
in the Atari Pinball software.” (ibid.) Obviously, this is in a sense a ‘valid’ solution
to the problem of scoring high in a virtual pinball game, and human players might
actually be prone to exploit the same sort of mechanism (cf. Buckner, 2021, p. 34).
However:

In a real pinball game, [...] the player would go likely bust since the pinball
machinery is programmed to tilt after a few strong movements of the whole
physical machine. (Lapuschkin et al., 2019, p. 4)

Phrased in terms of FCPs, the relevant DNN might thus be said to have developed
an erroneous FCP of pinball as being mostly a ‘nudging game’. This faulty ‘concep-
tualization’ would have led to a stark failure when taken out of the comfort-zone of
the training and testing data, and into a more realistic implementation of the game.

The CHP is not only a problem for video-gaming and image recognition, though,
but also in scientific applications. Particle physicists, for instance, often use simulated
data to train ML algorithms, so that they can recognize hypothetical new particles
contained in the simulation but not yet recognized in any available real-world data.
However, such simulations are built on assumed mass values, and this may, e.g.,
forestall the identification of particles with unknownmasses (Kasieczka & Shih, 2020,

21 Cf. also Samek et al. (2019) for generalizations to this basic rule.
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Fig. 6 Gaming behaviour of a DNN viewed through LRP: The DNN focuses on score multipliers, and then
uses a nudging mechanism to increase the score indefinitely. The pedals with which to actually flip the ball
are not highlighted as relevant at all. Image taken from Lapuschkin et al. (2019) under a CC BY 4.0 license.
Color available online

p. 2). Mitigating this issue requires training the DNN on suitable adversarial examples
or penalizing it directly by adding a regularizer that penalizes the learned correlation
between correct output and mass values (ibid., pp. 2–3).

As can be seen from these examples, the general management of the CHP requires
one key ingredient: Insight into the features that the DNN could possibly rely on.
In the case of images or video games, this is relatively straightforward, though also
not entirely immediate. Figure 6 shows the relevance of certain features in selected
frames of the Atari pinball game played by a DNN. It is obvious that the pedals are not
relevant at all, but the inference to the DNN’s nudging the table in order to succeed
requires further information and analysis.

3.4 The Actually Smart Hans Problem

This issue, that the features actually exploited by the DNN usually need to be inferred
in more involved procedures than visualization, is less benign than it might seem.
Think back to some of the scientific applications discussed above: In the case of
particle physics, DNNs could be shown to exploit information on non-linear functions
of input variables without being given direct access to the features these represent.

Phrased in terms of FCPs, this means that DNNs are capable of ‘conceptualiz-
ing’ non-obvious features that are highly informative about the underlying physics.
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However, there are various exotic concepts around in physics, such as spin, color
charge, or entanglement, and these were introduced in long-winding back-and-
forths between evidence and innovative theorizing. In the words of Susskind (2008,
mins. 15:19–15:31): “Nobody has ever understood what the hell Heisenberg was [...]
smoking [...] when he invented matrix mechanics.”

Now given that DNNs develop FCPs somewhat autonomously and that the discus-
sion surrounding adversarials suggests that they are capable of developing FCPs for
features that are “human-inscrutable” (Buckner, 2020, p. 3), it is perfectly conceiv-
able that a DNN develops an FCP that would have to be paralleled by a novel, exotic
concept, thereby jumping leaps and bounds ahead of the scientific community in its
capacity for conceptualizing novel phenomena.

To convince you that this isn’t a philosopher’s fairy tale, refer once, more to the
study by Iten et al. (Sect. 3.2). The simple toy-example of the damped harmonic
oscillator clearly adds support to the claim that FCPs exist and are connected to success.
However, the main interest of Iten et al. (2020a) was obviously not in proving points
about toy examples: Ultimately, SciNet (or some suitable successor) is supposed to
convey insight into real data, possibly from highly involved systems, and to elucidate
the relevant concepts needed to successfully recover these systems’ behaviors. In
particular, (Iten et al., 2020a, p. 3) express the hope that “for quantummechanics,” this
may aid in “finding conceptually different formulations of the theory with the same
predictions”. There is continuing interest in this because, despite its current status
as the fundamental framework for physics, quantum mechanics faces well-known
philosophical difficulties (Boge, 2018, for an overview).

However, given how remarkably difficult it was for physicists to arrive at quantum
mechanics and its underlying concepts in the first place, it seems far fetched to hope
that the concepts to read off from SciNet’s latent units simply jump in one’s face.More
precisely: In the toy example, extracting these was easy only because it was already
known against which variables to plot the activations.

Themajor problem I see associatedwithDNNs’ use in science, then, is that theymay
develop FCPs based on features that are (a) non-obvious or even “human-inscrutable”,
(b) present across (vast and complex) data sets, and (c) highly fruitful for scientific
prediction and discovery. This will make human researchers fall behind qua being left
without the right concepts to (i) comprehend the reasons for the given DNN’s success
and to (ii) develop theoretical models of their own to advance science in the ways
we’re used to. This is what I have called the Actually Smart Hans Problem (ASHP)
above.

What is the detailed connection between FCPs and the ASHP? I believe an analo-
gous problem would arise at a stage where DNNs could more clearly be claimed to
have actual concepts. That is, at an imagined future stage where the discussed restric-
tions that make concept-attribution problematic are absent, we could obviously also
face a situation where DNNs learn concepts that equip them with abilities beyond
what is humanly possible. The first thing to notice is, hence, that FCPs are enough to
create the ASHP: DNNs need not even have concepts in order to selectively outsmart
us.

Secondly, however, I believe that FCPs also amplify the ASHP: Recall that a major
reason for rejecting the notion that DNNs have concepts was that they sometimes
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connect what seem to be meaningful representations to seemingly meaningless blobs.
Hence, the semantic knowledge inherent in a concept is missing in an FCP. Now
consider again the imagined future scenario wherein we havemuchmore solid reasons
for thinking that DNNs do in fact have concepts. They would then likely also be
equipped with communication skills helpful for instructing human researchers on
their quest for humanly comprehensible models.

In contrast, so long as DNNs only have FCPs, the ‘reasoning’ they can offer for
certain decisions based on humanly inscrutable features would likely turn up seeming
nonsensical to human beings, even though there might be conceptually valuable infor-
mation hidden in the data, and exploited by the DNN. For example, Google’s PaLM
has a reasoning prompt wherein it offers a concise reasoning chain for its outputs.22

However, there is a general worry that the successful examples are cherry picked, and
that there will also be nonsensical reasoning chains offered on a larger scale (see Mar-
cus & Davis, 2020).23 I thus submit that at the present stage, where DNNs arguably
only have FCPs instead of concepts, the ASHP is even worse than it would be at a
stage where conversations with semantically competent AI could educate us.

To summarize, I agree with Buckner (2018, 2020) and López-Rubio (2020) that
it is important to relate DNNs and their present successes to human concepts, as this
relation may help us understand said successes better. Furthermore, I agree especially
with Buckner (2020) that the non-human feature selection made by DNNs can have
major implications for science.

However, as I have explained in detail above, I believe it is premature to associate
outright concepts to DNNs. FCPs deliver a more cautious notion that does justice to
the controversy over the status of present-day AI. Furthermore, as explained in this
section, I believe that this presence of FCPs can make for an actual problem, which
I have coined the ASHP: Since we arguably desire more from science than mere
prediction, successful performance may not be enough. We want to know the ‘right
reasons’ for success; that is, we desire to possess concepts that allow us to parallel our
DNNs’ successes, thereby giving us insight into the information hidden in the data.

Given that theASHPcan arise alreadynow, at a stagewhere it is at least controversial
whether DNNs can indeed be said to have concepts, it may be especially difficult to
bypass the fact that we do not have those concepts: If I am right, DNNs themselves do
not (yet?) possess systematic, semantic mental representations, and so even reasoning-
prompts may prove useless in the kind of situation where the ASHP may arise.

Note that this is a contingent problem; nothing about DNNs strictly necessitates
that they succeed in exactly this way. But all the evidence pointing in the direction that
DNNs very often ‘conceptualize’ the data in ways that can be highly fruitful, though at
the same time fairly different from our own, clearly suggests that it is entirely likely to
happen. Furthermore, interpretability methods may partly help, as was demonstrated
in the foregoing sections. But when larger numbers of complex, novel concepts are
required to reproduce a DNN’s success—as could become the case, say, in purported

22 See https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html; (checked 08/
22).
23 See also https://twitter.com/garymarcus/status/1512067689908375556?s=21&t=P-TTB1D_BllCLGK
4-NgZbg0 or https://garymarcus.substack.com/p/what-does-it-mean-when-an-ai-fails (both checked
08/22) in this connection.
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replacements of present-day quantum physics—this seems less and less plausible.
In other words: The ASHP is a problem that can easily arise already in present-day
science, and it might prove fairly hard to overcome.

4 Conclusions

I have argued in this paper that while DNNs may not be literally in possession of
concepts, they are able to develop functional proxies for these (FCPs), relative to a
given set of tasks, and that this quite likely is the main reason for their success. I
have supported both these claims, that to the existence of FCPs and their connection
to success, with dedicated empirical evidence from the ML literature, followed by a
discussion of a well-known problem associated with the resulting abilities of DNNs to
specialize to non-obvious features abstractable from the data: The cleverHans Problem
(CHP). This problem is focused on features that are non-robust in the sense that they
are easily destroyed by dedicated perturbations and on top of that do not generalize
well beyond training and testing data.

However, as I have here argued as well, there is also an opposite, ‘Actually Smart
Hans Problem’ (ASHP): That DNNs could, in virtue of their ability to develop FCPs,
specialize to features that are well-generalizing while also being highly non-obvious
or even human-inscrutable. In virtue of this, DNNs might jump ahead of researchers
in their ability to predict complex phenomena in ways that would require novel the-
oretical understanding of human beings. Actually, several studies from applied ML,
as discussed in this paper, seem to suggest that we might be on the verge of this
happening.

This problem is only beginning to be recognized in the technical and philosophical
literature, and usually in different terms than I have used to phrase it here: Ilyas et al.
(2019) define a notion of “useful non-robust features” which are correlated with the
desired output in supervised learning but not so when the input is minimally perturbed.
And they emphasize that these may be “highly predictive features that happen to be
non-robust under a human-selected notion of similarity” (Ilyas et al., 2019, p. 11;
emph. added). But they do not connect this specifically to scientific applications or the
possibility that some such DNN-discovered features could require the need for new
concepts on the human side.

Similarly, Buckner (2020) suggest several distinctions, including a “cut [that]
divides the predictive-but-inscrutable features into artefacts and inherent data patterns
detectable only by non-human processing” (ibid., 5), and on top of that (ibid, 3) makes
a connection to Goodman’s bleen and grue, and so to non-standard concepts. But he
displays this more as an opportunity than a problem. Finally, Boge (2021) sketches a
challenge that is similar to the ASHP, but is overly specific about the conditions under
which this may happen, and rather unspecific about the relation between DNNs and
concepts (or FCPs).

I believe that FCPs and their relation to the ASHP give us a fairly clear sense of
what is special about DNNs in science: As I have argued in Sect. 3.2, other multivari-
ate methods in statistics (and many simpler ML algorithms) are not associated with
FCPs, mostly due to differences in generality, adaptability, in-principle conceptual
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interpretability, and partial autonomy. Furthermore, there is a good case that FCPs are
responsible, not only for Clever Hans behavior, but also the super-human (or, more
generally: unrivaled) performance of DNNs that we are currently witnessing in sev-
eral domains. Thus, with the current revolution in AI as predominantly brought about
by present-day DNNs, we may also be witnessing shift in the way we do science, as
they take us a step away from traditional procedures such as the formation of con-
cepts on which we base theories and models to generate successful explanations and
predictions.
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