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1 INTRODUCCION

1. Introduccion

La correspondencia AdS/CFT es una realizacién del principio holografico
que provee un marco tedrico preciso con el cual podemos mapear propiedades
de una teoria de campos conforme en un espacio de dimensién d a una teoria
de gravedad en un espacio anti-de Sitter de dimensién D (donde D > d). Han
pasado casi 20 anos desde el descubrimiento de la correspondencia AdS/CFT por
Juan Maldacena [20] y los esfuerzos por develar el diccionario que nos permite
hacer este mapeo han sido fructiferos. Sin embargo, atin no se sabe exactamente
como funciona este mapeo. La respuesta a esta pregunta nos permitiria entender
los fundamentos del principio holografico y esto contribuiria a la busqueda del
entendimiento de gravedad cuéntica.

Una de las lineas de trabajo en esta direccién ha sido tratar de comprender
como es que el espacio-tiempo de mayor dimensién emerge de la teoria de campos
en menor dimensién. Dado que el espacio donde vive la teoria cudntica es el
mismo espacio de la frontera de AdS, es comun referirnos al espacio de menor
dimensién como la “frontera” y a AdS (el espacio de mayor dimensién) como
el “bulto”. Entonces la pregunta es jcémo es que la teoria cuantica de campos
en la frontera contiene la informacion sobre el espacio-tiempo en el bulto? Para
entenderlo, uno se puede preguntar qué tanto del bulto se puede reconstruir
conociendo solo una regién A de la frontera [7]. No se conoce la respuesta a esta
pregunta pero una posibilidad es asociar una regién A en la frontera a una parte
del bulto que este relacionada con A solo por relaciones causales, esta regién
del bulto es la llamada cufia causal ¢ 4. Una manera intuitiva de entender la
cuna causal es preguntandose: ;jsi disparo luz hacia el bulto desde el diamante
causal asociado a una regién A en la frontera, qué regién del bulto puedo cubrir?
A esta region es a la que llamamos cuna causal. A la cufia causal le podemos
asociar una superficie especial llamada superficie de hologréafica causal, el drea
de esta superficie es una medida de la informacién contenida en la cuna causal,
y es por esto que se le denomina como informacién holografica causal y 4 [18].

El estudio de cunas causales es interesante porque al ser definido por relacio-
nes puramente causales se espera que juegue un papel importante en la teoria de
campos en la frontera. Ademds, sus propiedades geométricas son no triviales: en

particular se sabe que puede tener partes desconectadas. En el lado de gravedad,
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se puede estudiar para qué valores de los pardametros sucede la transiciéon entre
cufla causal conexa y disconexa [19].

El objetivo de la presente tesis es entender la cuna causal en un espacio
tiempo Schwarzschild-AdS en 441 dimensiones y reproducir los resultados en
[19]. En particular queremos estudiar (dado un radio del horizonte) jcudl es el
tamano critico en la frontera para el cual la cuna causal se vuelve disconexa?
Esto debe ser dual a una transicién de fase en la teoria de campos. Pero ya
que el dual de la cuna causal no esta establecido, el estudio de la transicién de
fase en la teoria de campos estd fuera del alcance del presente trabajo. Para
poder definir y motivar la cuna causal primero revisaremos brevemente qué es
la correspondencia AdS/CFT y propiedades de agujeros negros en AdS. Luego
definiremos los conceptos necesarios para motivar y construir la cuna causal.
Después, en la parte principal de esta tesis, presentaremos los célculos reali-
zados para reproducir las figuras 2, 4 y 5 del articulo [I9]. Por tltimo, en las

conclusiones resumiremos lo aprendido en el presente trabajo.



2 REVISION DE LA CORRESPONDENCIA ADS/CFT

2. Revisién de la correspondencia AdS/CFT

La correspondencia AdS/CFT relaciona una teoria de gauge con una teoria
gravitacional. Esto es posible s6lo para una teoria de campo unificada como
teoria de cuerdas. El ejemplo mas estudiado de esta dualidad es la equivalencia
entre una teoria de cuerdas tipo IIB compactificada en AdSsx S® y una teoria de
Yang-Mills con N = 4 supersimetrias la cual es una teoria conforme (de aqui la
abreviacién CFT). Por su parte, la abreviacién AdS se refiere a un espacio-
tiempo anti-de Sitter en 5 dimensiones, mientras que S° se refiere a la esfera
cinco dimensional. Adn y cuando existen otros ejemplos de dualidades entre
teorias de norma y teorias de gravedad, este trabajo se centrard en el ejemplo

anterior.

2.1. Espacio anti-de Sitter y sus simetrias

Los espacios anti-de Sitter son soluciones a la ecuacién de Einstein con cons-
tante cosmolégica negativa. AdSy puede ser incrustado en un espacio-tiempo

plano con 2 direcciones tipo-tiempo:
ds®> = —dz? — dX? + dy? (1)
con la siguiente restricciéon:
- Z22-X?+Y?*=-1I% (2)
L recibe el nombre de radio de AdS. Para resolver la restriccién anterior to-
mamos un sistema de coordenadas un poco diferente a las coordenadas esféricas:

X = Lsinhpcos¢, Y = Lsinhpsing, Z = Lcoshp (3)

con lo cual la métrica de AdSy puede ser escrita como

ds* = L*(—cosh?pdt* + dp?) (4)

Al sistema coordenado (t,p) se le conoce como coordenadas globales, donde
la coordenada t tiene periodicidad 27, es decir, es ciclica. Esto representa un

problema ya que podriamos tener geodésicas tipo-tiempo cerradas donde las
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curvas causales también serfan cerradas [23]. Para desenvolver esta coordenada
ciclica, consideramos la cubierta de AdS, donde ¢ va de —oo a oo.

En la correspondencia consideraremos el espacio-tiempo anti-de Sitter 5-
dimensional como la bola espacial producto con el eje temporal infinito. Des-
cribiremos su geometria con las coordenadas t,r,f) donde t es el tiempo, r es
la coordenada radial, 0 < r < 1, y € parametriza a la esfera unitaria en 3

dimensiones. La métrica estda dada por:
12
dr? = m(—(1 +7)2dt? + 4dr? + 4r?dQ?). (5)

Podemos ver que el punto » = 0 es el centro del espacio anti-de Sitter y
que una geodésica nula radial debe satisfacer (1 +r)2dt? = 4dr?, es decir, no se
mantendran constantes las coordenadas t y . Ademas, cerca de r = 1 la métrica
tiene una singularidad en todas sus componentes, acotando asi su coordenada
radial.

Para construir el espacio AdSs x S° debemos definir 5 coordenadas w; que
describan a la esfera unitaria 5-dimensional y agregar un término a la métrica
de AdSs. Si escribimos la métrica en coordenadas de Poincaré

dr? = L—Q(—dtz + dxtd’ + dy?) (6)

e

con ¢ de 1 a 3, se puede observar que la métrica es invariante bajo las trans-
formaciones de Poincaré de las coordenadas 4-dimensionales t,2° del espacio de
Minkowski. Esta invarianza se da bajo el grupo de transformaciones IS0(1, 3)
en z = (t,z'), donde el elemento z* es interpretado como las coordenadas espa-
cio temporales de la teoria gauge dual. En coordenadas de Poincaré una simetria
extra se hace evidente, la invarianza 4-dimensional de la escala o invarianza bajo
transformaciones conformes

1
at — axt, r— -7 (7)
a

De acuerdo con el principio holografico podriamos describir la fisica en el
bulto con una teorfa con grados de libertad en la frontera [I7][3], por este motivo
debemos preguntarnos por las simetrias en la frontera de AdS. Existe un grupo
de simetrias O(5) asociadas con las rotaciones de la 5-esfera, mientras que el

grupo completo de simetrias de AdSs es O(4,2) el cual es idéntico al grupo
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conforme 4-dimensional, que actuando en la frontera es el grupo conforme del
espacio de Minkowski SO(4,2). Lo anterior sugiere que la teorfa dual en la
frontera debe ser una teoria conforme. Sin embargo, existe otra simetria ademas
del grupo conforme y el grupo O(6), esta simetria es la N/ = 4 supersimetria.
Conociendo las simetrias uno llega al tipo de sistemas con N = 4 supersimetrias
como candidatos a sistema dual, estos son las teorfas de Yang-Mills(SYM) con

grupo de simetria SU(N).

2.2. Variables en la SYM y en el bulto

Se sabe que las teorias de Super Yang-Mills son conformes, no tienen parame-
tros dimensionales, y para los propositos de la correspondencia nos gustaria que
la SYM viviera en la frontera (de AdSsx S®) parametrizada por las coordenadas
t,Q) o t,x, mientras que la teoria de gravedad en el bulto mantenga sus dimen-
siones usuales.

Para transformar las coordenadas de la SYM a coordenadas del bulto necesi-
tamos emplear como factor de conversiéon a L, el radio de curvatura. Es decir,
si Fsyy y M representan la energia de la SYM y del bulto respectivamente, el

factor de conversion estara dado por
Esym = ML. (8)

La teoria 10-dimensional en el bulto tiene dos parametros adimensionales: el
radio de curvatura de AdS en unidades L/ls y la constante de acoplo de la
cuerda g.

Estas constantes estdn relacionadas con la longitud de Planck y la constante
de Newton:

h=gl=G (9)

donde I3 la longitud de Planck 10-dimensional.

Por su parte la teoria gauge tiene también dos constantes: el rango N
del grupo de gauge y la constante de acoplo del grupo de gauge gym.
La relacién entre los parametros de ambas teorias, originalmente obtenida

por Juan Maldacena [20], es la siguiente:
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L 1
== (Ng;,)1, 9= Gom- (10)

o~

En este punto existen dos limites interesantes. La correspondencia AdS/CFT
ha sido usada como herramienta para el estudio de teorias gauge en el limite
de 't Hooft fuertemente acoplado. En la teoria gauge este limite se define como
gym — 0, N — oo tal que ggmN = cte. En el bulto, este limite estd dado por
g%()conﬁ:cte.

Con esto vemos que el limite de 't Hooft fija la curvatura de AdS. Con la
constante de acoplo nula nos posicionamos en limite cldsico de teoria de cuerdas.
El otro limite interesante es aquel en el cual el radio de AdS crece pero los
parametros del mundo microscépico se mantienen:

L
g = cte, 7 % (11)

El mismo limite pero del lado de la teoria gauge es

Jym = cte, N — . (12)

En el limite N — oo de la teoria gauge nos gustaria mostrar que el nimero
de grados de libertad satisfacen la cota impuesta por el principio holografico

9.
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2.3. Grados de libertad y los limites UV-IR

De acuerdo con el principio holografico, la teoria en la frontera no debe
contener mds de 1 grado de libertad por drea de Planck [29]. En particular, el
numero de estados cuanticos no debe exceder emp(ﬁ), donde A es el drea d-1
dimensional en un espacio-tiempo d+1 dimensional, mientras Gp es la constante
de Newton en D dimensiones. Se ha especulado que la teoria en la frontera
esta acotada de tal manera que la densidad de informacion también estd acotada
[31]. Para poder contar el ntimero de grados de libertad en AdSs x S° suponemos
que colocamos a las 9 dimensiones espaciales de una rejilla. A pesar de que no
es posible tener una rejilla regular, si es posible que nuestra rejilla tenga una
espaciamiento promedio de una longitud de Planck [,, ademés de incrustar la
rejilla también se debe regular el drea en la frontera de AdS (la cual diverge en
r = 1), para conseguirlo le agregamos el regulador r = 1 — §. Podemos calcular

el volumen de esté rejilla con radio 1 — § a partir de la métrica

L? o
dr* = ?(—dﬁ2 + da'dx’ 4 dy?)

Para curar la divergencia en r = 1 se agrega una superficie R en r =1 — §,
esta superficie es 9-dimensioanl y el volumen en su interior es proporcional a
g—:. Por lo tanto, el nimero de espacios con longitud de Planck en la rejilla
equivalentes al nimero de grados de libertad es

Vo 11L°

2o (13)
L

2.3.1. Dp-branas

Antes de relacionar el regulador IR con el regulador UV debemos entender el
papel de las D-branas en la correspondencia. En teoria de cuerdas, las cuerdas
abiertas pueden tener dos tipos de condiciones de frontera: de Neumann y de
Dirichlet. Las condiciones de Neumann son aquellas donde los extremos de la
cuerda estan libres, mientras que en el caso de Dirichlet los extremos de la cuerda
estan fijos. Las condiciones de frontera se consideran independientes para cada
coordenada, para el caso de Neumann podemos escoger p + 1 condiciones para

p dimensiones espaciales y una temporal. En el caso de condiciones de Dirichlet

10
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consideramos d — p — 1 condiciones. Asi, los extremos de la cuerda deben existir
en un plano p+ 1 dimensional o una Dp-brana. Las cuerdas abiertas tienen una
tensién finita y su centro de masa no se puede poner arbitrariamente lejos de
la D-brana, como consecuencia los grados de libertad de la cuerda abierta solo
se pueden propagar en la direccién paralela a la brana, es decir, los grados de
libertad viven en la brana. Si se tienen N, D-branas coincidentes las cuerdas
abiertas pueden tener sus extremos en diferentes branas o en una sola. En el
primer caso los nuevos grados de libertad corresponden a los grados de libertad
de SU(N.). En el caso de la correspondencia AdS/CFT empezamos con un
empaquetamiento de D3-branas incrustadas en 10 dimensiones, es decir branas
que llenan 3 dimensiones espaciales y la temporal. Llamaremos 2™ a las otras 6
coordenadas y definiremos a z = v/zmz™. Al empaquetamiento lo colocaremos
en z = 0, y como la posicién en z es un grado de libertad para la brana, podemos
pensarlo como un campo escalar en la D-brana. La solucién de la D3-brana que

corresponde al empaquetamiento de N branas coincidentes es de la forma

ds® = H™3(—dt® + da? + da? + da?) + H™ 2 (dr® + r2dQ2) (14)
La funcién H(r) es el factor de envoltura
L4
H=1+ s (15)
La geometria de esta solucién es asintéticamente Minkowski con una garganta
de longitud infinita en la cual podemos tomar r < 1 para obtener el limite

cercano al horizonte

L4
H=1+—
r
r? L?
ds® = ﬁ(—dtQ + dad + das + da3) + T—QdTQ + L2dO? (16)
en este punto con un cambio de variable r = % recuperamos la métrica de
AdSsx S°
L2
ds® = ?(—dtz + da? + dak + dal + dy?®) + L2dQ? (17)

Por otra parte, la teoria de las fluctuaciones sobre la coordenada z en la cual
se coloca el empaquetamiento de las D3-branas es N/ = 4 SYM donde todos los
campos en estd teoria forman un supermultiplete que pertenece a la represen-

tacién adjunta (matrices N x N) de SU(N). Mientras que las coordenadas z™

11
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en la SYM estan representadas por 6 campos escalares que viven en el volumen
de mundo de la brana, es decir en las 341 dimensiones que llena la brana.
Finalmente, resulta interesante relacionar las escalas en ambas teorias. A
partir del factor L?/y? en la métrica de AdS observamos que la distancia propia
en el bulto d y la distancia dy,; en el espacio de Minkowski en la frontera de

AdS estén relacionadas por

L
d="dy (18)
)
Y debido a que [E] = [L]~! en unidades naturales, la relacién entre las energfas
es
E=YEyy (19)
L

De la ultima relacién podemos ver que el limite de altas energias (UV) en la
SYM se obtiene cuando y — 0 es decir cerca de la frontera (r — 1), mientras

que el limite de bajas energias (IR) se recupera cuando y — oo.

12



3 LA METRICA DE SCHWARZSCHILD

3. La métrica de Schwarzschild

En fisica, la simetria esférica respecto a un punto central es de particular
interés ya que un gran numero de problemas se simplifican cuando la presentan.
En el caso del campo gravitacional nos gustaria que la teoria pudiera describir
un campo esféricamente simétrico. En este capitulo describiremos una solucién a
las ecuaciones de Einstein con simetria esférica, la solucién de Schwarzschild. Tal
solucién es asintéticamente plana (Minkowski), ademds de ser temporalmente

estatica y variante bajo traslaciones espaciales.
d82 aintéticamente 7dt2+d(£idf£i (20)

Bajo rotaciones, es decir bajo la accién de O € SO(3), la coordenada x trans-

forma como

rh O;-J:i, da' — O;-dari (21)
Mientras que Y, 'z’ = x.x transforma como
x.x = (0%).(0x) = x0TOx = x.x (22)

Definiremos como estatica a la métrica si ninguno de sus componentes es de-
pendiente del tiempo, y ademés de que no haya términos cruzados entre las
componentes temporales y espaciales, por ejemplo dtdz’. Tomando en cuenta

estds condiciones propondremos el siguiente ansatz para la métrica
ds?> = —F(r)dt? + D(r)x*dx?dz’ + C(r)dx? (23)
donde y/xx = r. Introduciremos las coordenadas esféricas
z! =rsinfcos¢, 22 =rsinfsing, x> =rcosh (24)

donde dx esta dado por

dx!' = sin 6 cos ¢dr + 1 cos ¢ cos 0df — r sin 0 sin pd
dx? = sin 0 sin ¢dr + 7 sin ¢ cos 0d6 + r sin 0 cos ¢do

dz® = cosOdr — rsin 0d
Sustituyendo dx en el ansatz obtenemos
ds®> = —F(r)dt* + r*D(r)dr® + Cdr® + C(r*d0® + r’sin®0d¢*)  (25)

13
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Debido a la naturaleza covariante de la teoria podemos hacer el cambio de

2

variable r"2 = C(r)r?, cuya derivada total estd dada por

4y dy'?
dr? 2
" 2C(r)r +r2C'(r) (26)

Si sustituimos la ecuacién anterior en el término r2D(r)dr? + Cdr? del ansatz,
llegamos a un nuevo término

r2D(r)/C(r) +1
(L+r/2C"(r))?

(r2D(r) + C(r))dr® = dr'? = A(r')dr" (27)

lo mismo sucede para los otros 2 términos después del cambio de variable
C(r)r*(df? + sin®0d¢*) = r"*(d6* + sin*0d¢?)
F(r) = B(r)
Con lo anterior, la métrica se simplifica de la siguiente manera
ds* = —B(r)dt* + A(r)dr? + r?(d6* + sin?0d¢?) (28)

Para facilitar los cdlculos asumiremos que A(r) = B(r)~! sin razén fisica o
matematica de fondo.

Con el ansatz listo, lo que sigue es introducirlo en la ecuacién de Einstein
1
R, — éRgﬂ,, =81GT (29)
la cual por estética se reescribe como

1
R, =8nG(T, — §Tg,w) (30)

Recordando que asumimos un espacio vacio, el tensor de energia-momento 7},

debe ser nulo y por lo tanto la ecuacién de Einstein se reduce a
R =0 (31)
El tensor de Ricci Ry, estd dado por la conexién de Christoffel

Ry, = 0,I%, — d,I"

po

+17 \Iy, —T2,1 (32)

no

donde

1 (e
LYy = 29 P(0u9vp + Ovgpu — Opgurv) (33)

14
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A partir del Ansatz podemos calcular las estradas de g,

1 .
gt = 7Ba Grr = Ea goo = T27 9o = T2 SlIl2 0 (34)

donde los coeficientes de T, estdn dados por

Otgtt OrGst oy 0s 91t 0 -B" 00

I, = =1 | 0rgi  —0igrr 0 0 _ -1 -B" 0 00
2B | dggu 0 —0tgoo 0 2B | o 0 0 0

dogee 0 0 —diges 0 0 00

todas las derivadas temporales 0; se anulan bajo la suposicién de invarianza

temporal. Los otros componentes de I'}} ) se calculan de manera similar

—0r g1t O1Grr 0 0 B 0 0 0
pr = lg| Qo o Oag Ouger | B0 = 0 0
2 0 Jogrr —Orges O 210 o -2 0
0 O Yrr 0 —0r9os 0 0 0 —2rsin?6
— 0y gt 0 0: 900 0 0O 0 O 0
g 1 0 O9Grr  Orgos 0 1 0 0 2r 0
e Ocgos Orgoo  Oogos  OpGos 2 0 2r 0 0
0 0 04960 —0890s0 0 0 0 —2r2sinfcosf

15
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Dy Gt 0 0 09

o, = % 0 —04Grr 0 Orgoo
N 2 ol

2r2sin” 0 0 0 —0s900  009p¢

ONgps  Orgps  Ooges  —0pYss

0 0 0 0

B 1 0 0 0 2rsin? 6

S 2Zsin®0 [ o 0 22 sin § cos 0
0 2rsin®6 2r2sinfcosd 0

Entonces procedemos a calcular el tensor de curvatura R,,,

1B(2E 4 B") 0 0 0
0 A2+ B 0 0
0 0 (-B—rB'+1) 0
0 0 0 sin?(f) (=B —rB’ +1)

En el régimen del vacio para la Ecuaciéon de Einstein, la igualdad R,, = 0

debe mantenerse después de introducir el ansatz, observamos claramente que lo

anterior se cumple si las siguientes igualdades son satisfechas

2D
r

0=-B-rB' +1 (36)

0

+B” (35)

la segunda igualdad (36) es una ecuacién diferencial de primer orden y por
lo tanto es una restriccién sobre la ecuacién de segundo orden (35). Para en-
contrar una solucién a (35) notamos que la derivada de (36) respecto de r es

precisamente la ecuacion de segundo orden que queremos resolver

d%(rB’ +B-1)=rB"+2B (37)

Por lo tanto es suficiente con encontrar una solucién para la ecuacién de primer

orden.

16
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El caso trivial B(r) = 1 que resuelve a (35) nos lleva a la métrica de Min-

kowski escrita en coordenadas polares
ds* = —dt? + dr® + r*(d6* + sin® 0dp?) (38)

Por lo tanto la solucién trivial no rompe la invarianza traslacional. Otra solu-
cién para (35) es B(r) = —irj, + rc, que al momento de sustituirla en (36) se
observa que r. = 1, en cambio 7, no tiene restriccion alguna, sin embargo la
asumiremos como positiva. Sustituyendo B(r) finalmente llegamos a la métrica
Schwarzschild

1
1—

ds? = —(1— %")dt? + - dr? 4 r2(d6? + sin® 0dg?) (39)
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3 LA METRICA DE SCHWARZSCHILD

3.1. La constante r;, y goedésicas de Schwarzschild

Como mencionamos al principio de este capitulo, nos gustaria tener una
teoria de gravedad que reprodujera un campo gravitacional esféricamente
simétrico, por lo tanto la métrica de Schwarzschild deberia reproducir la fisica
Newtoniana para objetos masivos. Para comprobar lo anterior debemos estu-

diaremos la dindmica de la solucién de Schwarzschild.

3.1.1. Geodésicas Radiales

La dindmica de una particula estd dada por las soluciones a la siguiente

ecuacién
A2z dx” dx®
+ o
d\? PTdN dA

Las soluciones que buscamos en este caso son de la forma zt =

=0 (40)

(A, 7(N),m/2,0) donde A es el pardmetro de la trayectoria, y en el caso de una
particula masiva se toma como el tiempo propio 7. La coordenada 6 se fija en
/2 para confinar la trayectoria de la particula al plano ecuatorial lo cual es
permitido por la isotropia del campo.

Para resolver la ecuacién geodésica necesitamos los coeficientes de I') , que ya

tenemos calculados

B’ B’
Fit ~ o5n ir ~o5n
2B 2B
1 -B'
[y =5B'B Tj, =45 Tp=-rB Tj,=-rBsin®0
rf, =1 rg =1 1%, = —cosfsing
rg = , or — , b — COS ¥ sin
re -1 I, = cotf re -1 %, =cotd
ro = . gg = COt or = o = €Ot

por lo tanto para las coordenadas temporal y radial obtenemos respectivamente

0=1t+T0,ari% =1+ T%,i%" + Tf,4'°
. B . B. . B ..
:t 7'2‘: 72‘:' :t 7.2‘:
Topt g T T BT

0=7#+17,i’%"
=i+ I},a%°0 + I, @'a" + Thyia® + T ,d°i°
=i+ Lppi2 + 7B/1'a2 — rB6? — rBsin? 04>
2 2B '

18



3 LA METRICA DE SCHWARZSCHILD

Debido a que nos interesa solo el comportamiento radial respecto del tiempo,

podemos simplificar la ecuacién geodésica para r

1., . —B
0=7i+ BBt + o7

5 (41)

donde B =1—ry,/r y B’ = rp,/r?. Para poder resolver las ecuaciones anteriores

hacemos el siguiente cambio de variable (f,7) — (u®,ul),

1 T
-0 h 0,1
0= +r—2(71_&)uu
s
-1 Th Thy 0,0 1 Th 1,1
0= +—2T2(177)uu 7—2r2(71_%)uu

De la primera ecuacién podemos resolver para u’. Dividiendo primero entre u°
y después integrando se obtienen lo siguiente

iLO 1 Th

_ 0,1
0= Tl
du® 1 Th T
0= 4 (- Yr =+ [ g
u0+r2(1—%)r n +/r(r—rh)r

-1 1
zlnuo—&—/(T—l— Ydr = Inu’ —Inr + In(r — rp,) — In(b)

T —Thp
donde b es una constante de integracién

1- %h)uo —b (42)

Para poder fijar la constante r;, que aparece en la métrica de Schwarzschild
necesitamos considerar las aceleracion de una particula que parte del reposo,

para la cual el cuadrivector de la velocidad inicial es
uly = (u®,ut, u? u®) = (i,7,0, d)
= (£,0,0,0) = u°(1,0,0,0)

sustituyendo estos valores en las ecuaciones geodésicas se obtiene

W’|,_, = =20, ugug =0
a1’t20 = —Thubud # 0
u2’t:0 =0

i‘3|t:0 =0

Aqui observamos que la aceleracién inicial existe sélo en la direccién radial. Para

encontrar u sustituimos los valores iniciales de la velocidad en el elemento de
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3 LA METRICA DE SCHWARZSCHILD

linea de la métrica recordando que las particulas masivas siguen geodésicas tipo-

tiempo para las cuales ds® = —1

—1=ds* = g ufuf

= —(1 = )W) + T () + 17 ((wd)? + sin” 6(3)°)

1—

r

Thy/ 0y2
=—(1-—)(u
(1= 2)wh)
despejando para uJ obtenemos
u) = ———— (43)
Sustituyendo uJ en la ecuacién geodésica para u}, se encuentra la aceleracién
radial inicial

-1 _ r 0 0
u|,_o = —Thugug

Por ultimo, para un radio inicial suficientemente grande (ro > r,) podemos

dt _ .0 _ 1
tomar ;T = uy =

— ~ 1. Lo cual nos permite reemplazar dA =~ dt y por

-
1 2 7 . 7 . (e
lo tanto %\ ~ %. Este tltimo término se puede comparar con la aceleracion

gravitacional Newtoniana

d?r _ GM
dez 2
Th _ GM
22 g

(o

Donde M es la masa del objeto. Para un potencial Newtoniano la velocidad de
escape esta dada por

1 M
0=F = ~mov? GMm

2 esc

. 2GM

esc —

r

v,
r

Th
T

Es decir que el término (1 — &) que aparece en la métrica de Schwarzschild

2

equivale a (1 —vZ,,) donde ves. es la velocidad de escape Newtoniana.
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3 LA METRICA DE SCHWARZSCHILD

Para la masa de un sistema solar v.s. es mucho menor que la velocidad de
la luz.
Por ultimo sustituyendo r, encontramos la métrica de Schwarzschild, con la
cual podemos describir el campo gravitacional de objetos como la luna, estrellas

0 agujeros negros.

ds* = —(1 dr? + r2(d6? + sin? 0dp?) (45)

2GM
- =)+

Una vez especificada la constante r;, podemos volver al estudio de las geodésicas
radiales, definiendo a la constante de integracion b de la siguiente manera

2GM

(1-=

wl =b (46)

donde al sustituir la condicién inicial uJ = (1 — 2GM /ro)_% encontramos el

J1-26M (47)
To

Ahora podemos encontrar u! a partir de la sustitucién de u° en el elemento de

valor de b en funcién de rg

linea
2GM 1
1= )(u0)2+1_w(u1)2
2GM b 1
-1=-01- r )(1_2c,;M)2+1_2(iM (u')?
ul— \/b2 1 26M,
r

_ [2GM 2GM
N T To

Recordemos que u' es la velocidad en la direccién radial causada por un objeto

1

masivo en r=0, serfa de esperarse que @ coincida con la aceleracién Newtoni-

nana o lo que llamamos g para el planeta Tierra. Esta aceleracion emerge de la

1

ecuacion geodésica para u- a orden mas bajo como ya lo observamos anterior-

mente cuando encontramos que r, = 2GM.
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3 LA METRICA DE SCHWARZSCHILD

3.2. Schwarzschild, la solucién del agujero negro
3.2.1. El radio de Schwarzschild r;

Para poder describir la geometria del espacio-tiempo de Schwarzschild
también debemos explorar la regiéon r < 2GM, las singularidades en r = 0
y en la hipersuperficie r = 2GM a la cual se le conoce como el radio de
Schwarzschild (rs). Aqui debemos recordar que derivamos la solucién de
Schwarzschild resolviendo las ecuaciones de Einstein en el vacio y por lo tanto
todo lo que mencionemos es valido solamente para distribuciones esféricas de
materia, incluido el calculo del radio de Schwarzschild que para un objeto como
el Sol es del orden de un par de kilémetros, el cual es mucho menor que el radio
del sol. De igual manera se podria considerar el radio de Schwarzschild para
un protén (rs = 10752m) el cual también es mucho menor que el radio del
mismo (R, = 107'%m). De hecho, para la mayorfa de los objetos, su radio de
Schwarzschild se encuentra muy por debajo de su radio donde las ecuaciones de
Einstein que consideramos al inicio no aplican, por lo cual resulta interesante
preguntarnos ;si existe un objeto tan compacto tal que su radio sea menor que
su radio de Schwarzschild?

Consideremos un objeto para el cual r sea menor que rg, en tal caso, e
ignorando que en r = 1 existe una singularidad, se pueden considerar dos re-

giones para la solucién de Schwarzschild, la region I: r > 75 y laregion IT: r < 7.

Region I: Por inspecciéon podemos ver que para r > 75 los coeficientes del
elemento de linea mantienen su signo, es decir que gog se mantiene negativo
mientras que g;; se mantienen positivos, lo que implica que la coordenada t
se mantiene como una coordenada tipo-tiempo y r,6,¢ se mantienen como
coordenadas tipo-espacio. Agregando algo de sentido fisico a esta oracion
podemos decir que t es el tiempo propio medido por un observador en reposo
ubicado en el infinito, y que r por ejemplo es una coordenada radial tal que el

rea superficial de una 2-esfera con t y r constantes es 4mr2.
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3 LA METRICA DE SCHWARZSCHILD

Regidén II: En estd regién (r < ry) los signos de goo v g11 se intercambian,
por lo tanto t pasa a ser una coordenada tipo-espacio y r una coordenada tipo-
tiempo. Pero ;qué significa este cambio en la naturaleza de estds coordenadas
cuando pasamos de r > ry a r < rg? y mas importante ain, ;qué significado
fisico tiene?. Para responder lo anterior estudiaremos las singularidades en r = 0

yr=rs.

3.2.2. Coordenadas y Singularidades

Las coordenadas son una forma de etiquetar eventos en el espacio-tiempo, las
cantidades geométricas fisicamente utiles son los 4-tensores definidos en cual-
quier punto del espacio. El tensor de Ricci y sus contracciones describen la
curvatura del espacio tiempo de manera covariante, por ejemplo, el escalar de
Kretschmann definido como RgpeqR*°? para la métrica de Schwarzschild es
12(GM)?/r8 y evaluado en 7 = 7, es finito, por lo tanto, la singularidad en 7, es
una singularidad debida a la forma en la que estamos etiquetando los eventos,
mientras que 7 = 0 si es una singularidad intrinseca de la geometria de Sch-
warzschild.

La singularidad debida a la eleccién de las coordenadas desaparece con una
transformacién apropiada, sin embargo, antes de proponer cualquier transfor-
macién de coordenadas seguiremos investigando la geometria de Schwarzschild
en coordenadas (t,r,0,¢). En nuestra exploracién no hemos hablado sobre la
estructura causal del espacio-tiempo, para poder considerarla debemos estudiar
las geodésicas radiales y nulas, es decir aquellas para las cuales las coordenas

0,¢ son constantes y el elemento de linea (ds?) es es nulo.

2GM 1
ds®* = —(1— . )dt? + e drt =0 (48)
despejando para dt/dr:
dt 1
ar 1 _ 2GM (49)

donde dt/dr es la pendiente de los conos de luz en el plano t-r, el signo positivo
corresponde a un fotén saliente (r crece en funcién del tiempo para la regién
r > 2GM) y el negativo a un fotén entrante (r decrece en funcién del tiempo
para la regién r > 2GM). En limite de » muy grande la pendiente es +1, como

en el caso del espacio-tiempo de Minkowski, comprobando asi que la propiedad
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3 LA METRICA DE SCHWARZSCHILD

asintoticamente plana se mantiene. Pero cuando nos acercamos a la hipersu-
perficie en r = 2GM la pendiente tiende a +o0o, y los conos de luz se cierran,
lo cual nos dice que un rayo de luz que se acerca a r = 2GM parece nunca
llegar a la hipersuperficie ya que el progreso en la coordenada r se hace més
lento respecto del progreso en la coordenada temporal, sin embargo al igual que
con la singularidad debida a las coordenadas, este comportamiento podria ser
resultado de nuestra eleccién de coordenadas. Para comprobarlo intentaremos
arreglar el problema de la inhabilidad de acercarnos a r = 2GM en un tiempo
finito. Primero remplazaremos t con una coordenada que se mueva més lento
sobre las coordenadas nulas.

Integramos dt/dr para encontrar t en funcién de r

r

2GM

t=4r+2GM In( -1)+c (50)

los signos =+ indican la regién I y IT respectivamente. De la solucién anterior

para t definimos 7* como

r

r :7“+2GM111(2GM

1) (51)

tal que t = +r* + cte.
A r* se le conoce como coordenada tortuga, podemos observar por el signo po-
sitivo que r* solo esta relacionada con la regién II, es decir, con r > 2G M.

En términos de la coordenada tortuga podemos reescribir la métrica de Sch-

warzschild usando dr* = (r)/(r — 2GM)dr

as? = —(1 = 2 Mg (0 29 g2y 20 (52)
T T

Se observa que la singularidad en r = 2GM ha desaparecido, sin embargo r =
2G'M se encuentra en el infinito de la coordenada tortuga ya que r* evaluado

en r = 2GM es proporcional a In(0).

3.2.3. Coordenadas Eddington-Finkelstein

Usando la libertad de elegir la constante en la relacién t = +r* + cte, reali-

zamos un nuevo cambio de coordenadas:

vy =tFre (53)
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3 LA METRICA DE SCHWARZSCHILD

donde v_ caracteriza a la geodésica radial entrante y v4 a la geodésica radial
saliente. A tales coordenadas se les denomina como avanzadas v_ y retarda-
das vy. Podemos usar v_ como la coordenada tipo tiempo en la solucién de

Schwarzschild

2GM
ds? = —(1 — GT)dui +do_dr + drdv_ + r2dQ> (54)

donde las componentes de g,,,, son

—(1-2¢My 1 0 0
1 0 O 0
(55)
0 0 r? 0
0 0 0 72sin%6

en las coordenadas de Eddington-Finkelstein las componentes de la métrica no
tienen singularidades para r > 0, en particular la hipersuperficie en r = 2GM
estd bien definida a pesar de que ggo sea nulo, ademas, el determinante de la

4sin? # es no degenerado, es decir, no se anula para r > 0 lo

métrica g = —r
que implica que la inversa de la métrica estd bien definida. Recordemos que
la solucién original de Schwarzschild era regular en la region 2GM < r < oo
mientras que en estas nuevas coordenadas es regular en 0 < r < oo por lo tanto
en la regién de traslape ambas formas estan relacionadas por la transformacion
y representan a la misma solucion.

Como uno podria esperar, las nuevas coordenadas son particularmente ttiles pa-

ra las geodésicas nulas. En el caso de las coordenadas avanzadas v_ las geodési-

cas radiales nulas estan dadas por las soluciones a la ecuacién

2GM . dv_ dv_
(1- =) -2 (56)

con dos soluciones

dv_

— =0

dr

dv_ 2GM

— =2(1- -1

dr ( r )
la primera solucién corresponde a una geodésica radial entrante v_ = cte la

cual es valida por construccion, mientras que la segunda solucién corresponde

una geodésica radial nula saliente. Nota que esta iltima es discontinua ya
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3 LA METRICA DE SCHWARZSCHILD

que una geodésica que comienza en r < 2GM no puede escapar a la regién
r > 2GM, por lo tanto r = 2GM define un horizonte de eventos, o una frontera
de no retorno. Y dado que hablamos de geodésicas nulas, lo mismo sera cierto
para particulas masivas (geodésicas tipo-tiempo). Por tltimo, a partir de las
trayectorias de las geodésicas salientes podemos ver que cualquier fotén emitido
por una particula en la regién II no llegard a un observador en la regién I.
Es por esto que a la solucion de Schwarzschild se le conoce como soluciéon del

agujero negro.

En el caso de las coordenadas retardadas (usando vy = ¢ — r*) la métri-

ca toma la siguiente forma

ds?* = —(1 — QGTM)dvi — dvydr — drdvy +r?d9Q? (57)
Y de manera analoga, a partir de las condiciones para las geodésicas radiales
nulas, para las coordenadas retardadas v4 se encuentra que las geodésicas en-
trantes son discontinuas y la regiéon r = 2GM estd vez si deja escapar geodésicas
pero no permite que entren, de hecho las particulas se deben alejar de la singu-
laridad en r = 0 forzosamente, a tal objeto se le conoce como agujero blanco.
Uno se puede preguntar como es que un cambio de coordenadas nos lleve a un
proceso fisico diferente si hemos argumentado que las coordenadas no son méas
que una etiqueta de los eventos en el espacio-tiempo. Para resolver este dilema

se deben introducir las coordenadas de Kruskal.

3.2.4. Coordenadas de Kruskal

En la seccién anterior se encontré que ni las coordenadas avanzadas o las
retardadas nos eran del todo satisfactorias, en el primer caso las geodésicas
radiales nulas salientes eran discontinuas, mientras que en el segundo caso las
geodésicas radiales nulas entrantes eran discontinuas. Y no fue hasta 1961 que
Martin Kruskal encontré un sistema de coordenadas donde todas las geodésicas
radiales eran continuas y rectas, lo cual también sirvié para devisar al fin la

geometria completa de la solucién de Schwarzschild.
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El paso inicial para eliminar las discontinuidades, es usar las dos coordenadas

de Eddington-Finkelstein a la vez

ds? = —%(1 - mTM)(dv,dqu + dvpdv_) + r2dQ? (58)

donde r estd definido por la relacién siguiente relacion entre v_ y vy

r
2GM

%(U_ —0y) =7+ 2GM In(s—— — 1) (59)

A partir de la métrica se puede observar que el espacio 2-dimensional definido

por (6, ¢) = cte tiene la métrica simplificada

1 2GM
—2(1=—
2( r

Usando , y r*(r) se puede regresar a las coordenadas t y r*

ds® =

J(dv_duy + dvydv_) (60)

1
t= 5(11_ +7]+)

1
r* = 5(11_ —vq)

Con este cambio de variable la métrica del espacio 2-dimensional toma la si-

guiente forma

1 2GM
ds? =5 (1~ GT)(dtQ — dr?)
= w? (), de"dz”

donde 20 = t y 2! = r*. Este elemento de linea no es mas que Minkowski
2-dimensional multiplicado por un factor conforme de escala w?(x) que solo
depende de la posicién (ver apéndice , y a pesar de que la métrica en si es
curva, es claro que es conformemente plana. Una consecuencia de lo anterior
resalta cuando estudiamos fotones moviendose radialmente debido a que el factor
w?(x) solo es una escala, por lo cual, la estructura del cono de luz no se modifica
y por lo tanto se ve igual al cono de luz del espacio de Minkowski. Es decir, en el
plano (¢,7*), las geodésicas radiales nulas entrantes y salientes son lineas rectas
con pendiente +1.

Todo bien hasta este punto, sin embargo de nuevo hemos empujado la regiéon
en r = 2G M hasta el infinito con el cambio de coordenadas (sustituir r = 2GM
en . Sin embargo el andlisis anterior sugiere que en lugar de usar v_ y v

se debe buscar una transformacién de coordenadas que preserve la naturaleza
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conforme del espacio 2-dimensional que encontramos, y a la vez se debe eliminar
el factor (1—-2G M /r) que nos ha resultado problemético. Aqui fue donde Kruskal

sugirié usar las siguientes funciones p(v_) y q(v4)

p = exp( p=—erp(—-) (61)

)
AGM
para las cuales encontramos que

_ 16G3M3 e*T/QGM
T

ds* = (dpdq + dqdp) + r2dQ? (62)

Finalmente r = 2GM ya no presenta problema alguno para ninguno de los coe-
ficientes de la métrica. Por tltimo, las coordenadas p y ¢ son coordenadas nulas,
para trabajar con una coordenada tipo-tiempo y otra tipo-espacio definimos T'

v R de la siguiente manera

T = S+ a) = Gy — VY2 sinh( ) (63)
R=5(p—a) = (gr — D2 cosh( o) (64)
sustituyéndolos en la métrica llegamos a
ds® = ?a(iﬂﬂe*WGM(de? + dR?) + r2dQ? (65)
donde r de nuevo estd definido implicitamente como
T2 R*=(1 )er/2GM (66)

2GM

En estas nuevas coordenadas las geodésicas radiales estan dadas por T'=+R +
cte, lo que representa lineas rectas a 45 grados de los ejes, por lo tanto, el cono
de luz es el mismo que en Minkowski. También es instructivo encontrar las
lineas a T' = cte y R = cte. Las lineas a R = cte estan dadas por la condicién
T? — R? = cte lo que significa que son hipérbolas en el plano R — T. Por otra
parte, las lineas a T' = cte estdn dadas por T/R = tanh(¢t/4GM) que define

lineas rectas que pasan por el origen.

Las coordenadas usuales de Schwarzschild definidas en la regién —oo < t <
00, 0 < r < oo son mapeadas a las regiones I y I (ver figura [I|) por lo tanto
se requerirfan 2 cubiertas (LII) y (I',I’) para cubrir toda la geometria. Sin

embargo, en el caso de Kruskal sélo se necesita un tinico sistema coordenado.
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Figura 1: Diagrama de la geometria de Schwarzschild en coordenadas de Kruskal.

Diagrama basado en la figura 11.6 en [16]

Las diagonales en 7 = 2G M, t = +o00 definen los horizontes de eventos separando
las regiones II y IT’ de las regiones I y I'. Las regiones I y I’ tipo Minkowski,
podemos identificar I como la regién del espacio-tiempo fuera del agujero negro
de Schwarzschild y la regién II como el interior del horizonte de eventos del
agujero negro. Cualquier particula que viaja de la regién I a la region IT no puede
regresar y eventualmente llegara a la singularidad en r = 0. Las regiones I’ y I’
son inaccesibles para las regiones I y II. La regién II’ es similar a II, pero con la
particularidad de ser una parte del espacio-tiempo donde las particulas pueden
salir (hacia las regiones I’ y I) pero no entrar. Por lo tanto la singularidad » = 0
en el pasado es un agujero blanco (ver del cual las particulas pueden
emanar. Con el andlisis anterior ya podemos entender mejor las coordenadas
avanzadas y retardadas de Eddington-Finkelstein: las avanzadas describen la
geometria de Schwarzschild en I y II, mientras que las retardadas cubren las
regiones I’ y II’. De hecho, los universos [ y I’ estan conectados por un agujero

de gusano (puente de Einstein-Rosen) ubicado en el origen del diagrama, aunque
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ya se demostré que ninguna particula puede viajar entre estas dos regiones [10].
Con la introduccién de las coordenadas de Kruskal hemos podido extender la

solucién de Schwarzschild y encontrar su geometria completa.

3.2.5. Diagrama conforme

Las coordenadas de Kruskal cubren todo el espacio-tiempo, pero estas no
estan acotadas, lo cual nos gustaria cuando estudiamos la estructura causal de
un espacio-tiempo (ver apéndice . Siguiendo un procedimiento similar al de
caso de Minkowski podemos compactificar las coordenadas nulas de Kruskal p

yq
), ¢ = arctan(—L—) (67)

b
V2GM V2GM

entonces las coordenadas p’, ¢’ y p' + ¢’ ya estdn acotadas entre —w/2 y 7/2.

p’ = arctan(

Con este cambio de coordenadas las singularidades en » = 0 son lineas rectas
desde el infinito tipo-tiempo de una regién al infinito tipo-tiempo de la otra
region, las lineas diagonales del horizonte de eventos se mantienen mientras que
el infinito tipo-espacio se hace visible en los extremos del diagrama.

Los puntos i1, i~ representan los infinitos tipo-tiempo futuro y pasado, mien-
tras que i® es el infinito tipo-espacio. £+ y £~ son el el infinito nulo futuro
y el infinito nulo pasado. Las geodésicas radiales nulas se mantienen a 45 gra-
dos. Todas las geodésicas tipo-tiempo comienzan en i~ y terminan en it, las
geodésicas tipo-espacio comienzan y terminan en Y. El diagrama conforme de
Schwarzschild posiciona todo el espaciotiempo en una regién finita, y muestra

su naturaleza asintoticamente Minkowski.
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7; 7‘:0 7,

Figura 2: Diagrama conforme de Schwarzschild

3.2.6. Solucién en mas dimensiones

La solucion de Schwarzschild se puede generalizar para espacios

n—dimensionales con los siguientes elementos de linea

2 dr? 2 102
ds, = —f(r)dt* + m +redQ;,_, (68)

con f(r), dQ? (el elemento de linea para S™) y Q, el drea en términos de la

funcién Gamma estan definidos como

o (TO\n-3 _ 4 167G, M
f(T) =1 ( r ) =1 (n _ 2)Qn—2) 7’"73
n+1
Q, = 21 21
L(%4)

donde G, es la constante de Newton en un espaciotiempo n—dimensional. El
comportamiento de la funcién f(r) se debe al potencial Newtoniano en un es-

pacio n-dimensial: 1/r"3.
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3 LA METRICA DE SCHWARZSCHILD

3.3. Distribucién uniforme de cargas

Consideremos ahora la forma que tomaria la métrica para una distribucién
uniforme de cargas. El exterior de un objeto masivo y cargado no es el vacio de-
bido a la presencia del campo eléctrico. Es por esto que no tomaremos la solucion
de Schwarzschild para modificarla, en cambio debemos resolver las ecuaciones de
Einstein pero ahora con un tensor de momento-energia 7},, no nulo. Sin embar-
go, la simetria esférica y la invarianza temporal del objeto siguen presentes por
lo tanto podemos conservar las funciones A(r), B(r) usadas en y reescribir

el Ansatz para el elemento de linea de la siguiente manera
ds* = —A(r)dt? + B(r)dr? + r*(d6? + sin®0d$?) (69)

Por otra parte, el tensor electromagnético de momento-energia esta dado por

1 1
T = —(FWF,,” — Zg,WF,mF”") (70)
Ho

donde pg es la permeabilidad del vacio y F),, es el tensor electromagnético en

funcién del vector potencial A,
F., =0,A, - 0,4, (71)

Antes de sustituir el tensor electromagnético en la ecuaciones de Einstein note-
mos que la traza de T, se anula

1 1 )
T =1t = o (Fup P = {9uuFpe F'7) = 0 (72)

Y por lo tanto las ecuaciones de Einstein toman la siguiente forma

R, = 87GT,, (73)

La soluciéon que buscamos, ademads de satisfacer la ecuacién anterior, debe sa-

tisfacer las ecuaciones de Maxwell con densidad de corriente nula

glwv,u,Fua = ,UOJ'u
=0

VipFr =0
El vector potencial en coordenadas (¢,r,0,¢) toma la forma
[A¥] = (¢(r), a(r),0,0) (74)

32



3 LA METRICA DE SCHWARZSCHILD

donde ¢(r) es el potencial electrostético y a(r) es la componente radial del vector

potencial, con este Ansatz, podemos encontrar la forma del vector potencial

-1
0

0
0
(75)
0 0
0

o O = O
o o o O

Las componentes temporales se anulan debido a la invarianza temporal. E(r) es
una funcién arbitraria que solo depende de r. Ademaés de E(r), también debemos
encontrar las funciones A(r) y B(r), y para ello usaremos primero las ecuaciones
de Maxwell.

Usando la anti-simetria en F'*¥ podemos reescribir la divergencia covariante en
la primera ecuacién de Maxwell [I6] como
1
ﬁ

Debido a la forma de F*¥ la ecuaciéon anterior se puede simplificar a un solo

0=V, FH = 0, (v/—gF™) (76)

término, ademds sustituyendo g (el determinante del elemento de linea, que

en nuestro caso estd dado por g = —A(r)B(r)rtsin?0) obtenemos la siguiente
relacién
01 (VABr?F'%) =0 (77)

donde F'0 = glrg'VF,, = ¢''¢""Fy = —E/(AB), por lo tanto tenemos que

d , r’FE
i) =0 (78)

Integramos para encontrar E(r)
(79)

La constante k resulta de la integracién. Si la métrica es asintéticamente plana,
entonces cuando r — oo, A(r) = 1y B(r) — 1. En este régimen identificamos
a E(r) como la componente radial del campo eléctrico cuando r — oo, por lo

tanto k esta dado por @ la carga eléctrica total del objeto

Q

(r)|'r~>oo = ﬁ (80)

Por otra parte, ya podemos calcular las componentes del tensor momento-

energia, donde los inicos elementos no nulos de F},,, son Fy; y Fig:
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2

E
Too = Fo1 Fo' = Fo19™ Fo1 = 5
0 E?
Ty = FioFy° = Fiog® Fio = -
)

1
Ty = —1(922[F01F01 + FoFY]

T2E2
2AB

22
- _%(FMQOOQHFM + Fi09%g" Fio) =

1
T33 = —1(933[F01F01 + FioF')

g .
= *%(FMQOOQHFM + Fi0g°g*' Fio) = Taosin® 0

donde hemos usado unidades naturales para pg. De las ecuaciones de Einstein
(R, = T),) encontramos la relacién entre las componentes del tensor de Ricci
y las componentes de T,,. R, se encuentra a partir de las conexiones I'} )y
la métrica g,,, que propusimos como ansatz. Siguiendo el mismo procedimiento
que en el caso de Schwarzschild llegamos a

A// Al A/ B/ A/

Fo=25 -3 A+ 5 "B
A// A/ A/ B/ B/

R11=—ﬂ+m(j+§)+@
1 r A B

=m0~ %)

R33 = R22 SiIl2 0

Ahora ya tenemos ambos lados de las ecuaciones de Einstein, el lado
geométrico R, y el lado de la materia T},,

E2 E2 7‘2E2 ’I"2E2
B ) 11 A ) 22 2AB7 33 2AB

Roo = sin® 6

podemos encontrar relaciones entre A y B. Observemos que una primer relacién

entre Rgg y Ri1 es trivial:
BRyy+ AR11 =0 (81)

sustituyendo los valores que encontramos para Rgg y R11 llegamos a la siguiente
relacion explicita

AB+AB =0 (82)

Por lo tanto el producto AB es constante (ya que 9,(AB) = 0). Podemos fijar

esta constante con el requerimiento de que la métrica debe ser plana cuando
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r — 00, y entonces A(r)B(r) = 1. Sustituimos esta relacién en Ray e igualamos

a Tho
@:_l+1_L(£_E)
25432 B Qijl B
T a4
;(%) —A—Ar+1

despejando para A + rA’

Q2
A+rA =0,(rd)=1- ) (83)

integramos para encontrar A(r)

2
Ar:/dr—/%dr
r

Ar) =14+ 2% + —
(r) +T2+7‘

Para encontrar la constante de integraciéon debemos recordar que en el caso
@ = 0 se debe recuperar la solucién de Schwarzschild por ende A(r)|g—o =
1—2GM/r y por lo tanto la constante es —2G M. La forma explicita de B(r) y
E(r) resultan triviales a partir de este punto. Finalmente, el elemento de linea
para el espacio-tiempo fuera de un cuerpo de masa M y con una carga Q esta

dado por

2GM  Q? :
ds® = —(1 = ==+ ~5)di* + T dr® + r*(df” + sin® 6d?)

T r2

(84)
A tal solucién se le conoce como la métrica de Reissner-Nordstrom, y el cam-
po electromagnético F},, del objeto masivo estd dado por la ecuacién familiar
E(r) = Q/r?. Al igual que con la solucién de Schwarzschild sin carga, se debe
considerar la geometria completa para llegar al agujero negro con carga, sin em-
bargo la presente no abordaremos la exploraciéon de esta geometria, para tener

un tratado general se puede dirigir a los siguientes trabajos [16] [28] [4].
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4. Agujeros negros en AdS

Hemos hablado sobre agujeros que son asintéticamente planos. Sin embar-
go, los agujeros negros en un espacio asintéticamente anti-de Sitter han sido
de mucho interés, especialmente en el marco de la correspondencia AdS/CFT.
Histoéricamente, con el descubrimiento de las propiedades termodinamicas ex-
hibidas por agujeros negros, se encontré que el agujero negro de Schwarzschild
en un espacio asintéticamente plano tiene un calor especifico negativo y por
lo tanto es inestable termodindamicamente, caso contrario a un agujero negro
de Schwarzschild en un espacio asintéticamente AdS (para radios del horizonte
suficientemente grandes [26]). En esta seccién exploraremos algunas propieda-
des de los agujeros negros en AdS, comenzando con resultados sobre la termo-
dindmica de agujeros negros para después introducir la geometria del espacio

Shewarzschild-AdS.

4.1. Propiedades termodinamicas de agujeros negros

Como lo mencionamos en 2] Hawking y Bekenstein encontraron que los agu-
jeros negros tienen una temperatura y entropia dadas por

k A

= —, S = —
o BH =7y

Ty
donde k y A son la constante de gravedad de superficie y el area del agujero negro
respectivamente. Ambas relaciones dependen de cantidades en la frontera y por
lo tanto son una manifestaciéon del principio holografico. A partir de entonces

se inicia la exploracion de las propiedades termodinamicas para diferentes tipos

de agujeros negros.

4.1.1. Solucion de Schwarzschild

En la seccién anterior estudiamos la solucién del agujero de Schwarzschild.

Su temperatura Ty es

1
Tn = gonr 85
B = gnM (85)
El valor de & en el caso de Schwarzschild es de 1/4M [24]. Por lo tanto, su calor
especifico estd dador por %%
-1
T = —
SmM? (86)
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Consideremos entonces tal agujero negro en equilibrio con una reserva de calor
infinita, cualquier fluctuacién positiva en la temperatura ocasionaria que este
irradiara masa, mientras la temperatura continuara subiendo hasta que el agu-
jero negro se evapora. Una fluctuacién negativa en la temperatura haria que el
agujero negro absorbiera mas radiaciéon de la que radia incrementando asi su
masa. Entonces, el agujero negro se enfria, absorbe masa a una tasa de cambio

mayor y crece indefinidamente.

4.1.2. Agujero negro en una caja

Para curar estd inestabilidad termodindmica, se considerd poner agujero
negro de Schwarzschild en una caja de volumen infinito y capacidad calorifica
finita [I3]. Asi fue como Hawking encontré que el agujero negro puede estar
en equilibrio termodinamico si la energia de radiacién satisface E,q.q < iM LA
continuacion resumiremos una derivacién rapida de esta condicion:

Sabemos que un sistema esta en equilibrio termodinamico si se cumple que
S = Srad +SBH (87)

sea un maximo sujeto a la restriccién de la energia total, ¥ = E,..q + M, donde
S es la entropia total. Esto se traduce a las siguientes condiciones:

1. d(S — AE) =0, donde A es el multiplicador de Lagrange.

2 2
2. %55‘“ + &3a <0
rad

De la primera condicién obtenemos

aSrad aSBH
dFE,, ———dM — AdFE,qq — \dM =0, A
DBag "t o0 d 0

o aS’rad _ aSBH
OB OM (88)

Lo cual nos dice que el agujero negro esta en equilibrio con la radiacién: T}.,q =

Tpg. La segunda condicién implica que

2 2
0°Srad . 0°SpH <0, o_T2 T} ad 5, OTgH

OE2, = OM? ") B0a PP OM

<0 (89)

y debido a que la energia irradiada por el agujero negro es proporcional a la

cuarta potencia de temperatura, tenemos que

aT‘rad o 1 Trad
al?rad B 4 Erad

(90)

Por lo tanto, la segunda condicién se reduce a F,qq < iM .
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4.2. Solucién Schwarzschild-AdS

A pesar de que poner el agujero negro en una caja con las condiciones
antes mencionadas nos lleva a una solucién termodindmicamente estable,
la situacién planteada no es para nada una situacién fisica. Asi que una
construccién més natural fue poner el agujero negro en un espacio-tiempo
que no es asintéticamente plano. En [2.I] introducimos un espacio-tiempo con
constante cosmoldgica negativa, el cual se puede pensar como un espacio con
una barrera de potencial que aparece cuando uno se acerca asintéticamente al
infinito, por lo tanto también puede ser usado como una caja “natural”. En
estd seccidn retomaremos y generalizaremos la solucién encontrada para AdSs,
después introduciremos el epacio-tiempo que usaremos para la construccién de

la cuna causal, es decir Schwarzschild-AdS.

El espacio AdS es una solucién a las ecuaciénes de Einstein con la siguiente

constante cosmoldgica

R =Agur  A=—r5 <0 (91)

También lo podemos pensar como una subvariedad de R>"~!. A su vez, la

métrica para R%"~! es
n—1 )
ds* = —(dz°)® — (dz™)* + Z(dl‘z)Q (92)
i=1

El espacio AdS n—dimensional (AdS,,), estd definido como el conjunto de puntos

a una distancia b del origen:
n—1 ,
{(fco, x| = (@) = (@) + Y () = —b2} (93)
i=1

Por construccién este espacio tiene grupo de isometria SO(2,n — 1), andlogo al
grupo de Lorentz SO(1,n) asociado al espacio de Minkowski. Este hecho fue
importante en el establecimiento de la correspondencia.

Existen 4 conjuntos de coordenadas generalmente usados para describir AdS.

Primero tenemos las coordenadas globales

2o = bcosh pcosT, ZTp =bcoshpsinT, x; = Rsinh p§; (94)
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donde 7 € [0,27), p > 0,i=1,...,n—1y >, Q? = 1. Sustituyendo en la métrica
obtenemos

ds® = b%(— cosh? pdr? + dp? + sinh? pdQ? ) (95)

donde dQ2_, es la métrica de S"~2. Las coordenadas (7,p,2) son las mismas
coordenadas usadas en estas cubren todo el espacio. Recordemos también
que existe la posibilidad de tener curvas tipo-tiempo que sean cerradas. La
manera de evadir esto es desenvolviendo la coordenada 7 para que abarque de
—00 < T < o0. La topologia de AdS se puede observar mejor si se compacta la
métrica usando tan § = cosh p.
b2
cosf

ds® = (—dr? + df? + sin? pdQ? _,) (96)

Esta métrica es conforme a la métrica del espacio de Minkowski también conoci-
da como el universo estético de Einstein ds? = —dr? + d6? +sin® pdQ? _,. Por lo
tanto, AdS es conforme a la mitad de el universo estatico de Einstein. En el ca-

s

so de AdS,, 0 toma valores entre (—7, 7), para cualquier otro caso 6 vade 0 a 7.

Otras coordenadas que también son usadas son las coordenadas de Poincaré,

(t,&;,z) parai=1,...n—1

. Rt
xoz (2 +b2+z )2 — 12, ' = j
bt
n—1 2 2 n
x 222 —I—Z x 2

sustituyendo estas nuevas coordenadas en la métrica obtenemos
ds® = —(—dt* + Z 24 dz?) (97)

Sin embargo, para la discusion de la estabilidad termodindamica del agujero ne-
gro de Schwarzschild-AdS trabajaremos en las coordenadas estdticas (¢, r, 6, ¢),
donde t = br, r = bsinh p. A continuacién nos restringiremos a el caso AdS,.
En coordenadas estdticas la métrica toma la siguiente forma

2
A2+ (1+ =

dSQZ_( b2)

b2 ) “Ldr? + r2dQ? (98)

Cualquier métrica que tienda asintéticamente a se le denomina asintdtica-

mente AdS.
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Como ya lo adelantamos, la métrica de AdS tiene una barrera de potencial in-
finita ubicada en el infinito asintético. Para confirmar lo anterior usaremos la
ley de Tolman la cual establece que la energia medida en el infinito asintético
estd corrida al rojo comparada con la energia medida localmente [27]. Consi-
deremos una particula con un cuadrimomento P* = (—E,p’), y un observador
estatico en el infinito con una cuadrivelocidad U* = k*//—k2, donde k = 0/0t.

La energia medida por el observador local esta dada por

E E
E=—g, UrPY = —2_ _ _~ 99
g,LL —k2 /_gOO ( )

Por lo tanto, E esta corrida al rojo por un factor \/—ggg de Eo. En el caso de

la métrica de AdS, el elemento —ggo estd dado por (1 + Z—;), lo cual indica que
E esté corrida al rojo hasta el valor 0 cuando r — oco. Por ende, la temperatura
T también estard corrida al rojo por el mismo factor, mostrando asi la barrera

infinita de potencial ubicada en el infinito asintético de AdS.

4.2.1. Diagrama Conforme

De la métrica de AdS en coordenas de Poincaré (97) podemos ver que se
trata de la métrica de Minkowski multiplicada por un factor conforme, por lo
tanto el diagrama conforme también estara formado por un tridngulo. Lo cudl
resulta contradictorio ya que dos espacios-tiempo distintos no pueden tener el
mismo diagrama. Lo que sucede aqui es que las coordenadas de Poincaré no
cubren por completo al espacio AdS, s6lo cubren una parte (un periodo en la
coordenada 7) que se denomina el "parche”de Poincaré. Asi pues el diagrama
triangular tipo Minkowski es solo para el parche de Poincaré. Por otra parte,
a partir de la métrica en coordenadas globales se puede observar que el
diagrama conforme para AdS; es una cinta infinita (debido al rango infinito
de la coordenada 7) que va de § = —m/2 hasta § = 7/2, donde el parche de

Poincaré triangular comparte frontera con la frontera de AdSs,.
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T=m
n
=
<
[
T
®
=
3]
it
=}
[}
&
T = 0 ——————————————
I
I
I
|
|
|
|
I
|
I
T = —T parche de Poincaré :
|
|
0 =m/2 0=—7/2

Figura 3: Diagrama conforme para AdSs

El diagrama conforme para AdS,, (ahora 0 < 6 < %) es un cilindro obtenido
por la revolucion de la cinta infinita al rededor del eje § = 0, este circulo de

revolucién representa una esfera n — 2 dimensional, y por ende la frontera de

AdS,, es R, x S,,_s.

4.2.2. Al fin, el agujero negro en AdS

En este punto, por inspeccién podemos proponer una métrica que se vea
tipo Schwarzschild para r pequeno y tipo AdS para r asintético, a esta métrica

se le conoce como Schwarzschild-AdS

dr? 20 7.2 ) 2
—— +1r?(de” + sin“pdQ3) (100)

ds® = —f(r)dt +f(7°)

tal métrica satisface las ecuaciones de Einstein en el vacio con constante cos-
molodgica negativa. El agujero negro tiene el horizonte de eventos en r = r4,

L . . 2 ri(ra+1)
tal valor es la rafz mas grande del polinomio f(r) = r* + 1 — -4 Para
calcular su temperatura (y posteriormente probar su estabilidad termodindmi-
ca) podrfamos primero encontrar su gravedad de superficie o bien realizar una
rotacion de Wick 7 = it y observar la métrica cerca del horizonte de eventos

[15]:
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Sea r = r; + p? con p < 1, expandiendo f(r) en p a primer orden obtenemos

£r) = b2p2—|—3r_2~_p2—|—3rip4+p6 62—1-27“3_
e b2 (ry + p°) Ty

sustituyéndolo en la métrica para encontrar su forma cerca del horizonte obte-
nemos
4%r, b +3r2

2 _
= s oy

)p2dr? + dp®) + r3.dQ?

el término dentro de los paréntesis se parece a las coordenadas polares ds? =
r2df? +dr?, si 6 tuviera periodo 27 entonces serfa la métrica del plano, cualquier
otro valor de 6 resultaria en una singularidad cénica en r = r, que para evitarla

Amb3r
b2 +37’i

el periodo de 7 debe ser fy = . Se sabe que la temperatura de un agujero

negro es el inverso de su periodo [15], por lo tanto

b + 37’_2‘_

Tpw =By = Anbir,

(101)

Podemos observar que la temperatura no decrece de manera mondétona, a di-
ferencia del agujero negro de Schwarzschild, en AdS este adquiere una tem-
peratura minima (T = v/3/(27b)). Para cualquier temperatura mayor que la
minima existen 2 soluciones del agujero negro en equilibrio (r < ro y r > 7¢),
el primero tiene calor especifico negativo y por lo tanto es termodindmicamente
inestable mientras que el segundo (r > 7¢) si tiene calor especifico positivo.
Poner al agujero negro en un espacio asintéticamente AdS le otorgé estabilidad
termodindmica. Para cualquier temperatura menor a la minima no existe una
solucién de agujero negro, lo que se tiene es radiacion térmica. Hawking y Page
encontraron que a pesar de que los agujeros negros pueden estar en equilibrio
térmico con radiacién, estos no son un estado preferido debajo de una cierta
temperatura. Una vez alcanzada esta temperatura ocurre una transicion de fase
en la cual los agujeros negros se convierten en un estado preferido [I5]. Esta
transicion seria reinterpretada posteriormente por Witten en el marco de la co-
rrespondencia AdS/CFT como una transicién de fase en la teorfa gauge entre
los estados confinado y no confinado [35]. La termodindmica de agujeros negros
en AdS es mucho mas rica que la de sus primos asintéticamente planos, y con la
aparicién de la correspondencia se encontré una conexiéon entre estos y las pro-
piedades termodindmicas de las teorias gauge. Desde entonces se ha trabajado

en agujeros negros en AdS con las propiedades de masa, carga y rotacion.
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A continuacién mostramos la métrica de Reissnerr-Nordstrom, pero antes gene-
ralizaremos la solucién Schwarzschild-AdS a dimensiones mas altas.

La métrica en coordenadas globales del agujero negro en un espacio AdS d + 1-
dimensional con un radio de curvatura b esta dado por

dr r? 2p

2
Ty @00 st 9dY o), flr) = 11— e (102)

donde p tiene la forma

ds* = —f(r)dt* +

B 8TGM
H= = 1)vol(si7)

con M como la masa del agujero negro. El horizonte de eventos se encuentra en

(103)

r =1y, tal que f(ry) = 0, mientras que la temperatura de Hawking es

dr? + (d — 2)b?
Ty=—h /7 104
H 47b%ry, (104)

Uno también podria poner un agujero negro de Reissner-Nordstrom dentro del

espacio anti-de Sitter agregando el pardmetro @ a la funcién f(r) [5]

r? ¢

q es un pardmetro en funcién de la carga Q = 1/2(d — 1)(d — 2)(Vol(S%71))q

del potencial vectorial (parte eléctrica)

1 q
( crd-2

A + Bt (106)

donde ¢ = (2(d—2)/(d—1))*/? y ® es una constante que se fija tal que A;(r; =
0). r4 es la raiz positiva més grande del polinomio f(r), el cual debe satisfacer

la siguiente relacion

(5= 2)7123*2 N (107)

con tal de que la métrica describa un agujero negro cargado con un horizonte

sin singularidad en r = r,. Por dltimo, el valor de ® estd dado por ¢/ (cri_Q).

Las soluciones para el agujero negro de Kerr en AdS fueron estudiadas
por primera vez en el contexto de la correspondencia AdS/CFT en [2] donde
estudian la soluciéon Kerr-AdS en 4 y 5 dimensiones. Los tinicos pardmetros
que se le pueden agregar al agujero negro son @, M y J, asi lo establecen los

teoremas de no pelo[21].
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5. Causalidad

El concepto de causalidad, es decir, que un evento A no pueda ser afectado
por un evento B si este no se encuentra en el pasado de su cono de luz, o
que un evento B no pueda afectar a un evento A si este no se encuentra en el
futuro de su cono de luz, es esencial en una teoria de la fisica, y en relatividad
juega un papel fundamental. En el caso de un espacio-tiempo plano, para a un
evento p se tiene la definicién anterior de causalidad (en términos de eventos en
el cono de luz), mientras que en un espacio-tiempo curvo la estructura causal
varia globalmente a pesar de que localmente es de la misma naturaleza que
en el caso anterior. A continuacién motivaremos la construccién de la cuna
causal introduciendo algunos conceptos usados en el estudio de la estructura
causal de un espacio-tiempo. Los conceptos asociadas a la estructura causal
(como dominios de dependencia y de influencia) son los ingredientes para la

construccion de la cuna causal.

5.1. Definiciones, resultados basicos y la Cuna Causal

Sea M un espacio-tiempo con una métrica asociada g.;. En cada punto
p € M tenemos un espacio tangente a p, T},, cuyo origen es el cono de luz de p,
por lo tanto el cono de luz es un subconjunto de 7, y no de M. Para definir el
futuro y el pasado de p en el cono de luz es necesario que M sea orientable en
el tiempo, es decir, que sea posible hacer una designacion continua del futuro y
el pasado mientras que p varia en M. En tal caso, una curva tipo-tiempo o nula
ubicada en el el futuro del cono de luz serda una curva dirigida hacia el futuro.
Todo espacio-tiempo es orientable en el tiempo si contiene un campo vectorial
(una funcién continua sobre M) tipo-tiempo que no sea nulo en ningiin punto.
De aqui en adelante supondremos que el espacio-tiempo es siempre orientable

en el tiempo.

Definicién 1: Una curva causal v por definicion es una curva que no es

tipo-espacio, es decir, puede ser nula o tipo-tiempo.
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5 CAUSALIDAD

5.1.1. Dominio de Influencia

Definicién 2: Vp € M, el futuro causal de p o dominio de influencia de p,

denotado como JT(p), se define como
J*(p) = {g € M|3 una curva causal v dirigida hacia el futuro que va de p a ¢}

De manera similar, el pasado causal de p, J~(p), se define en términos de las
curvas causales dirigidas hacia el pasado.

Las definiciones para J*(p) se pueden extender de un punto p una regién S

Definicién 3: El dominio de influencia de una region S, J[S] es la union

de los dominios de influencia Vp € S

TS = | 7 ()

peES

Figura 4: Dominio de influencia para una region S

En la seccién [] nos aseguramos de usar coordenadas que evitaran curvas
tipo-tiempo cerradas en Schwarzschild-AdS debido a que estas violaban
la condicién de causalidad del espacio-tiempo al conducirnos a paradojas
como la siguiente: considera a un observador que viaja sobre una de estas

1 . . .
curvas S°, en algin momento este observador llegaria al punto justo an-
tes de su propia partida pudiendo influenciar su salida inicial. Para ubicar

las regiones donde se viola la causalidad se hace uso de las siguientes definiciones
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5 CAUSALIDAD

Definicién 4: Una region de un espacio-tiempo M donde se viola la causa-
ldad es aquella para la cual un conjunto de puntos x se encuentran conectados
CONSIGo MISMOS POT UNA CUTVG causal y

En un espacio-tiempo causal, la regiéon anterior es el conjunto vacio. Por
lo tanto, para un punto p en una regiéon donde se viola la causalidad, la
intersecciéon entre el pasado y el futuro causal es diferente del vacio, lo cual nos

lleva a la siguiente definicién

Definicién 5: La region asociada a un punto p donde se viola la causalidad

estd definida como
Jp) =T ()N I (p)
Al promover p a una regién S obtenemos lo siguiente
Definicién 6: La region donde se viola la causalidad estd definida como

JOS81= 1 1)

peS

Por lo tanto para que un espacio-tiempo sea causal la regién J°(M) debe ser el

conjunto vacio.

5.1.2. Dominio de Dependencia

Hemos descrito los dominios de influencia en los cuales nos apoyamos para
definir a un espacio-tiempo como causal, particularmente sabemos que J*[S]
contiene la coleccién de eventos que podrian ser influenciados por el conjunto
de eventos que conforman a la regién S. Sin embargo, los eventos p € JT[S] no
estan determinados por S. Y debido que todos los puntos en S estan conectados
por una curva causal con todos los eventos en J[S], existe una regién D C J
que estria completamente determinada por los eventos en S, a tal region se le
conoce como desarrollo futuro de Cauchy o dominio de dependencia de S.

Definicién 7: El dominio de dependencia futura de S, denotado DT[S], es
D*[S] = {p € M| Toda curva causal pasada v~ a través de p intersecta a S}

De manera similar, el dominio de dependencia pasada de S, D~[S] se define

intercambiando a p € JT[S] y a las curvas causales dirigidas hacia el pasado v~
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5 CAUSALIDAD

por p € J7[S] con curvas causales dirigidas hacia el futuro v. Asi, el dominio

completo de dependencia de S, DIS], es el conjunto definido por
D[S] = D" [S]uD~[S] (108)

Para que la definicién anterior se mantenga es necesario que las que las curvas
causales 7T no tengan como punto final a un punto ¢ en el pasado (para el
caso de y~) 0 a un punto g en el futuro (para el caso de vT). D[S] representa
el conjunto completo de eventos cuyas condiciones deben estar determinadas si

conociéramos las condiciones en S.

D~ [S]

Figura 5: Dominio de influencia para una region S

Cercanamente relacionado con el dominio de dependencia, tenemos al con-
cepto de hiperbolicidad global. Se dice que un espacio-tiempo es globalmente
hiperbdlico si posee una superficie de Cauchy. Una superficie de Cauchy es un
conjunto cerrado, 3, acronal (donde dos puntos cualesquiera no pueden ser uni-
dos por una curva causal) tal que D[X] = M. Por lo tanto, en un espacio-tiempo
globalmente hiperbdlico el futuro (o pasado) del universo puede ser predicho (o
retrocedido) a partir de la evolucién de la informacién contenida en Y. Asf,
podriamos pensar a la superficie de Cauchy como un mismo instante de tiempo
a través de todo el espacio-tiempo M.

Estd seccién estd basada en las siguientes referencias [14], [33], [32] y [11].
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5 CAUSALIDAD

5.1.3. Cuna Causal

Consideremos un espacio-tiempo causal asintéticamente anti-de Sitter,
M = M UOM, donde M es el bulto y OM su frontera (tipo-tiempo)
ubicada en el infinito conforme B que a su vez es un espacio d-dimensional
con una métrica Lorentziana fija. Supongamos que B admite una foliacion

en superficies de Cauchy, Y5 y tomemos una subregién A de X5 con frontera 0.A.

Sabemos que el dominio completo de dependencia de A, que denotaremos
O 4, esta dado por
Oa = DE[AJU Dy [A] (109)

Entonces, la cufia causal, ¢ 4, es el conjunto de puntos p € M que se encuentran

en la interseccién de los dominios de influencia futura y pasada de ¢ 4

=T [0 NTT[0A] (110)

Figura 6: Cufia Causal ¢ 4 en AdS planar

La construccién de la cuna causal estd motivada por el problema de la re-

construccién holografica del espacio-tiempo en el marco de la correspondencia
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5 CAUSALIDAD

AdS/CFT, se propuso en [I§] como un medio para encontrar la informacién con-
tenida en una region en el bulto que se puede cuantificar a partir de una regién,
A, en la frontera, haciendo uso de relaciones causales. A continuacién construire-
mos la cunia causal para un agujero negro en un espacio-tiempo asintéticamente
anti-de Sitter para estudiar como cambia su estructura en funcién del radio del
agujero negro y de la medida de la regién A, lo cual representa la parte principal

de esta tesis.
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6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

6. Cuna Causal en Schwarzschild-AdS

En la seccién anterior encontramos que la cuna causal estd compuesta por
curvas causales en el bulto del espacio-tiempo, es por esto que su frontera
estd compuesta por geodésicas nulas. Por lo tanto, es necesario encontrar las
geodésicas nulas del espacio-tiempo en el cual construiremos la cufia causal ¢ 4.
El espacio-tiempo que usaremos serd el agujero negro de Schwarzschil-AdSg41,

en particular, el caso d = 4 en coordenadas globales.

6.1. Shwarzschild-AdS,,; en coordenadas globales

Consideremos el agujero negro Schwarzschild-AdSg44 [I00] con radio de cur-
vatura b igual a la unidad. El agujero negro estard caracterizado por su radio
del horizonte, rp, en unidades de AdS, donde rj, € (0,00). Asi, la funcién f(r)

y el elemento de linea tendran la siguiente forma

ri(rh 1)
2 i

dr? 2/ 7,2 . 2 2
o) + 7 (do* + sin“¢d3)

En el caso de d=4, podemos simplificar el problema a uno 3-dimensional redu-

fry=r>+1- ds* = —f(r)dt* +

r

ciendo la geometria S?~! en la métrica a un solo angulo no trivial ¢ € [0, 7] el
cudl también caracterizara a la region A, ¢ 4, en la frontera. Con estd reduccién
es conveniente compactar la coordenada radial, » = tan p, tal que p € [0,7/2) y
usar las coordenadas globales (¢, p, ¢). Después del cambio de variable tenemos
que dr? = sec? pdp?, ademds si introducimos la constante u = r2(ri + 1), f(r)

toma la forma

f(r)=tan’p+1 — M2 =sec?p— M2
tan” p tan” p
2 2 4
9 cos“p  cos 1 cos™ p
=sec’p — X = -
P p cos?  cos? M os? psin’ p
_ cos? p
cos?p - HMsinZp”

realizaremos una sustitucién més en f(r) para introducir una funcién g(p),

9(p) cos* p

ahora sustituimos dr y f(r) en el elemento de linea

2
ds? = — g(g) dt® + o5 sect pdp? + tan? pdg?
cos? p 9(p)
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6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

para finalmente obtener la métrica de Schwarzschild-AdS4, 1 reducida a un pro-

blema efectivo en solo tres coordenadas

1

dp? )
m(—g(p)dt2 + Y sin? pd¢?) (111)

ds” = 9(p)

6.2. Geodésicas Nulas

Usaremos el principio variacional sobre el elemento de linea para caracterizar

a las geodésicas nulas en funcién de las coordenadas (¢, p, ¢).

1 dx* dx¥
=3 / v~

Sustituimos los términos del elemento de linea g, y aplicamos la variacién

d¢
d\

_ [ 9(p) dt 1 dp
I= 2/[ COSQp(d)\) + g(p)cost(d)\

)2 + tan? p(—)?]dA (112)

Para encontrar como cambia una coordenada respecto de un parametro afin A, se
tiene que considerar la variacién tinicamente en esa coordenada, z# — xH + dxt.
Comenzaremos con la coordenada ¢, en tal caso el tnico término que sobrevive
a la variacién es el siguiente:

]

~ 2g9(p) dt d(6t)
cos? pdX\ dA

(113)

Por lo tanto, para encontrar la ecuacién geodésica se debe resolver la siguiente

51 = — /[Ci(sg)pgdgt)w (114)

Procedemos a integrar por partes, usando [ udv = vu — [vdu, tomando u y dv

integral

de la siguiente manera

_9(p) dt _ d(dt)
“= cos?p d\’ dv = d\ dX

tal que

L 9p) &t ﬁi(g(p)
cos?2 pdA?2  dAd)\cos?p

), v =0t

La derivada del término (g(p)/ cos? p) respecto de A la calculamos a continuacién

4 olo) g(p) cos? p + 2g(p) cos psin p %
d)\ “cos? p costp
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6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

Una vez derivado el término lo agregamos a du

gy — 9p) &t dt §(p)cos® pig + 2g(p) cos psin i

cos2 pdX2 ' dx costp
_ glp) &t [g(p)cos® p+2g(p)cospsinp] dt dp
~ cos2 p dA2 costp dX d\

Antes de regresar el término du a la formula para la integracién por partes, hay
que recordar el producto vu se anula ya que v = t, y por definicién 6t se anula

en los extremos de la integral 61. Asi que solo nos queda

oI = /udv = —/du~5td)\ (115)

Debido que se buscan puntos estacionarios, queremos que 61 — 0 para cualquier
ot, por lo tanto buscamos soluciones a la ecuacién du = 0, la cudl es equivalente
a la ecuacion geodésica

_ glp) d*t {g'(p)COS%Jr2g(p)COSpsinp] dt dp

T cos? p dX\? costp dX d\
B d72t n cos? p [g(p) cos? p + 2g(p) cos psin p dt dp
dX2 T g(p) cos* p dX d\
Haciendo las simplificaciones necesarias tenemos
&t g(p) dt dp
Rl 2t i 116
oz TG0 TR s (116)

Aqui se observa que la ecuacién es de la forma [0] con la siguiente conexién de
Christoffel

0 :M+2tanp (117)

" g(p)

Antes de resolver la ecuacién ([116)), encontraremos la ecuacion para la coordena-
da ¢ realizando el mismo procedimiento. En este caso el término que sobrevive

a la variacion ¢ es

d¢ d¢ d(6¢)
§ |tan? p(—=)?| = tan? p— —= 11
(G| = G220 (118)
Por lo tanto la integral a resolver §I a resolver es la siguiente
1 dé d(59)
6I = = [ |tan® p———~=| d\ 11
2/[“”& X (119)
De nuevo integramos por partes con v y dv como sigue
do d(0¢)
— 2 . =
u = tan” p R dv o\ dA
tal que
de¢ dp d?¢
=2 2= 2 )+ =
du tan p sec PN + tan P v =0t
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6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

Por lo tanto la ecuacién geodésica estard dada por du = 0 (ver derivacién de
ecuacién geodésica para t)

¢ | 2sec’p dpdp _
A2 tanp drdh

0 (120)

Ahora solo falta la ecuacién geodésica para la coordenada p, la cual puede ser
encontrada una vez que encontremos t y ¢ y las sustituimos en el elemento de
linea para después despejar a p. A continuacién resolveremos para t.

A la ecuacién 1| le aplicamos el cambio de variable u = j—f\ tal que

du 9) Lo N
ax T gp) T 20m)

La anterior es una ecuacién diferencial de primer orden y por lo tanto la podemos

dp

a _ 121

resolver de la siguiente manera

du Z—/(M+2tanp)~dp
u 9(p)
Inu=—Ing(p) + 21lncosp

cos?

= 9(p)

Entonces, dt/d)\ = u estard dado por la siguiente ecuacién

- cos? p
) 122)

Para encontrar d¢/d\ tomaremos un atajo, en lugar de resolver la ecuacién
diferencial observamos que la coordenada ¢ es una coordenada ciclica ya
que no aparece explicitamente en el elemento de linea por lo tanto existe
una constante de movimiento asociada a ¢ que en este caso se trata del momento

angular ¢
sin? p

cos? pﬂ.ﬁ = tan®p =

La constante ¢ caracterizard a cada geodésica y puede tomar valores entre (0, 1)
(hay que recordar que p toma valores entre 0 y 7). De la ecuacién anterior
despejamos para (b

é = ltan® p (123)

Por ultimo tenemos que encontrar p, lo cual es relativamente simple debido a

que ya conocemos t y qb a los cuales podemos sustituir en la condicién de nulidad
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para una geodésica: g, V*VY =0

o g datda
= I Tdn
glp)  dt\o  sec’p dp, 2 Ay
= — _ - t T
COSQp(d)\) g(p) (d)\) +tan p(d)\)
== g(,;)) 'CC;S4p el +tan?p - 7[24
cos?p g*(p)  9(p) tan® p

cos’p sec’p., cos’p
_ o : .
9(p) 9(p) sin? p

., . . dp
De la ecuacién anterior ya podemos despejar para g5

: / 9(p)
p=cos®py[1— (20
sin” p

Recordemos que p es la coordenada radial, entonces, si g—i > 0 las geodésicas
se estan alejando de la singularidad en p = 0, y si (’f—f\ < 0 las geodésicas estan
acercandose a la singularidad. Por lo tanto podemos agregar un parametro n =
+1 a la ecuacién para p para etiquetar a las geodésicas salientes (n = +1) y a

las geodésicas entrantes (n = —1). Por lo tanto la ecuacién diferencial para p en

términos del parametro afin es la siguiente

p=ncos® py[1 —£2Sir(1§)p (124)

6.3. Caracterizacion de las Geodésicas

Hemos encontrado las ecuaciones diferenciales (116] y [124) para las

coordenadas de las geodésicas en el espacio-tiempo Schwarzschild-AdS 3-
dimensional, donde cada geodésica esta caracterizada por su momento angular
£. Solo las geodésicas con un momento angular suficientemente grande tienen
un punto de retorno p = 0 en el cual la funcién p(A) cambia de decreciente a
creciente o dicho de otra manera, el punto donde las geodésicas pasan de ser
entrantes (n = —1) a salientes (n = 1). Estos puntos de retorno estdn dados por
las raices reales del polinomio p = 0, las cuales existen para momentos angulares

¢ en el rango (£, 5 ), donde

Ap
by = 12
0 T+ (125)
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El cual corresponde a la drbita circular nula. Por otra parte, la raiz més grande

del polinomio, la cual es la posicién radial del punto de retorno estd dada por

N
2(1 — £2)

)
po = tan™ 1+4/1— 4#(16)] (126)
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Las geodésicas con £ < ¢y no tienen punto de retorno por lo cual terminan en la
singularidad en » = 0. Hay que aclarar que en los puntos de retorno la geodésica
no se encuentra estatica ya que qﬁ(po) # 0 por lo tanto si habra desplazamiento
angular a pesar de que no existe desplazamiento radial. Una vez determinados
los puntos de retorno debemos encontrar las integrales para las trayectorias.
Observamos que t y ¢ dependen de p por lo tanto definiremos sus integrales en
términos de una funcién h(p). Sean J(p) y h(p) de la siguiente forma

d
J(p) = 1—62@, tal que —ianOS%-J(p)

sin” p d

1 h(p)dp
h(p) = ——, talque cos’p-d\=
(r) 700) p ,

Podemos sustituir el término cos? p - dX en funcién de h(p) en la ecuacién dife-

rencia ((116])

dt  cos’p 1 1 hip)
- = . talque dt=—(cos’p-d\)=—— —“dp
dx— g(p) i =30

Integramos la ecuacién anterior recordando que las coordenadas estan caracte-

rizadas por la geodésica con momento angular ¢

wpy=ti+ [ n’?{;f;) a7 (127)

De manera similar encontramos la coordenada ¢.(p)

d¢ ¢ cos’p 14 9 h(p)
2 _ tal d¢ = Cd\) = ),
d\  sin?p g(p)’ Al ane ¢ sin2p(COS pdd) sin?p 7 P
PE ho(p)
slpy =i+ [ ap (129)
p. 7-sin®p

Ahora si podemos integrar numéricamente para encontrar las coordenadas

(te(p), p, de(p)) para cada geodésica con momento angular £.
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6.4. Construccion

Para construir la cuna causal ¢ 4 en este espacio-tiempo primero hay que
construir el dominio de dependencia ¢ 4 en su frontera. Etiquetaremos con t = 0
a la superficie de Cauchy ¥ en donde colocaremos a la regiéon A en la frontera.
Haciendo uso de la simetria angular, el centro de la regién A comenzara en ¢ = 0
y terminard en ¢ = ¢ 4, asi la region en la frontera tendra una longitud total de
2¢ .4 con el otro extremo ubicado en la coordenada angular ¢ = —¢ 4. Con las
consideraciones anteriores, el dominio de dependencia en frontera estard dado
por

Oa=J"g"1NJT[q"]

\%

Donde los puntos ¢™" son los origenes de los dominios de dependencia DT [A]

y D7 [A] respectivamente. En coordenadas (¢, p, ¢) estos puntos estdn ubicados

en (¢Aa gao) y (_¢A7 %70)

Figura 7: ¢ 4 en la frontera

La cuna causal ¢ 4 estd delimitada por las geodésicas nulas en el bulto, las
cuales salen de los puntos ¢”V. Sin embargo, en lugar de graficar las trayectorias
completas de las geodésicas, graficaremos la superficie holografica causal, = 4,
tal superficie esté definida como la interseccién entre las geodésicas que vienen
de ¢¥ y ¢"[18], por ende es la regién de la cuna causal que llega més lejos en
el bulto del espacio-tiempo. Las coordenadas de la superficie holografica causal
E4 son (t =0, pi—o, ¢1=0) para cada geodésica con momento angular ¢ € (0, 1),

tomando en cuenta que se tienen 2 tipos de geodésicas, aquellas que tienen punto
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de retorno y las que terminan en la singularidad. A continuacién haremos un
esbozo del algoritmo necesario para encontrar la superficie holografica causal, y

presentaremos los graficos obtenidos.

6.5. Procedimiento

Iniciaremos con las geodésicas con momento angular £ > ¢y, es decir aquellas
que tienen punto de retorno, el cual se calcula usando . Notemos que pg
solo dependera del radio del horizonte del agujero negro y del momento angular.
Una vez encontrado pg, podemos calcular el tiempo que tarda la geodésica en
llegar desde la frontera en ¢ hasta su punto de retorno usando

te(po) = —pa — /”0 i dp = —da+ /W/2 help) dp (129)
=2 9(P) oo 9(P)

El signo negativo en la integral viene de n = —1 ya que la geodésica es entrante,

mientras que la inversién en los limites de integracién es para facilitar la inte-
graciéon numérica. El punto de retorno podria estar antes o después de ¢t = 0,
es decir en t4(pg) < 0 o en ty(po) > 0, su ubicacién temporal dependerd de la
longitud de la regién A y de 7, en el primer caso, debemos seguir integrando
t(p) sobre p hasta que lleguemos a un py tal que t(py) > 0 (nota que ahora la

geodésica es saliente, n = 1)

o) =tlon)+ [ 48455 0 (130)

oo 9(P)

Por lo tanto pi=o estarfa en la regién (po, ps), asi la coordenada radial en la
superficie holografica causal para un geodésica con momento angular ¢ sera la
rafz de la funcién t¢(p). Evidentemente en el caso t¢(pg) > 0 no serfa necesario
seguir integrando para encontrar la raiz de t,(p).

De manera similar pero ahora usando encontramos la coordenada angular
en E 4, ¢¢—o, de nuevo separando entre los casos donde t¢(po) < 0y te(po) > 0.

En el primer caso, ¢¢(pi—o) estard dado por la siguiente integral

Pt=0 ~
Ge(pi=0) = ¢i + f/ h.g(Qp)

po  SIn°p

dp (131)

donde ¢; es la coordenada angular desde el punto de retorno py hasta la frontera
en /2. Por otra parte, en el segundo caso, ¢s(p;—o) estaria dado por la integral

desde p;—( hasta la frontera.
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Para las geodésicas sin punto de retorno (¢ < £p), es decir aquellas que terminan
en la singularidad, el cdlculo es un poco mas sencillo. Iniciamos calculando el
tiempo que las geodésicas tardan en llegar desde la frontera hasta el horizonte

del agujero negro

w/2 ~
tlon) =0+ [ he?) 5 (132)

o 9(P)

De nuevo nos preguntamos si la geodésica £ llega al horizonte del agujero negro

antes o después de t = 0. Si llega antes, ¢s(pi—o) ¥ pt—o estardn dados por

™2 ho(p)
Ge(pr=0) =1 sin(2 ;dp, Pt=0 = Ph (133)
Ph

En caso contrario, se debe encontrar la raiz de la funcién t,(p), pi—o, para
después poder calcular ¢y(pi—g) de manera inmediata. Con la descripcién
anterior ya podemos calcular los puntos de la superficie holografica causal para
cada geodésica. Debido a la simetria angular, solo calcularemos la =4 para
los momentos angulares entre 0 y 1 e invertiremos la coordenada angular al
momento de graficar para obtener las geodésicas con momentos angulares entre

0y-1.

58



6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

6.6. Resultados

Para un radio del horizonte r;, = 0,5 y una longitud ¢4 = 2,5 la superficie

holografica causal =4 presenta la siguiente estructura

Figura 8: Superficie holografica causal en el disco de Poincaré, con rp, = 0,5 y

o4 = 2,5, el color va de rojo (para £ = 0) hasta el violeta (para £ = 1)

Como podemos observar la cunia causal consta de una sola pieza, caso con-
trario a lo que sucede si mantenemos la misma longitud de la region ¢ 4 pero
disminuimos el radio del horizonte del agujero negro. A continuacién mostra-
mos el grafico para r, = 0,2y ¢4 = 2,5, y notamos que la superficie hologréfica
causal ahora estd compuesta por dos partes desconectadas, una enrollada en
el agujero negro y la otra conectada a d.A, lo que significa que la cuna causal

presenta un hoyo en la parte trasera del agujero negro.
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6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

Figura 9: Superficie holografica causal en el disco de Poincaré, con rp, = 0,2 y

ba=2.5.

Para el caso r;, = 0,2 hemos calculado la superficie holografica causal varian-
do la longitud en la frontera ¢4 desde 0.1 hasta 3 (ver Figura, y observamos
que existe una transicién entre las cunas causales de una sola pieza a cunas cau-
sales compuestas por dos partes. Existe una longitud critica ¢% para cada radio
del horizonte en la cual la cuna se parte. Para encontrarla basta con realizar una
iteracién sobre la longitud ¢4 con pp = cte, y en cada ciclo se evaluar la coor-
denada ¢4(pi—o) para cada geodésica. El ciclo se romperd cuando ¢y(pi—g) > 7
y en ese momento se recoge la longitud de A donde esto pasa. En este trabajo

presentamos un grafico que recoge 9 parejas (pp, ¢%).
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6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

Figura 10: Superficies hologréficas causales en el disco de Poincaré, con r, = 0,2

y distintos valores para ¢ 4.

R

Ph

o
B
SR

Figura 11: Longitudes criticas ¢% en funcién de py,

Para reproducir los graficos anteriores hicimos uso de Mathematica 10.
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6 CUNA CAUSAL EN SCHWARZSCHILD-ADS

La cuna causal puede tener hoyos para regiones simples de A en AdS global,
para otras geometrias se ha encontrado como un requerimiento el que se ad-
mitan geodésicas circulares nulas (en el caso de espacios-tiempo esféricamente
simétricos) para que la cuna causal presente hoyos [19]. Aun no se sabe cual es
dual en el lado de teoria de campos para la cuna causal, asi como lo que repre-
senta esta transicion de fase en su estructura, sin embargo, mientras se escribia
este trabajo de tesis aparecié una propuesta donde se argumenta que la matriz

de densidad reducida causal es un dual natural a la cufia causal [g].

6.7. Conclusiones

Con la finalidad de construir la cuna causal y reproducir los gréaficos en
la seccién de resultados, se hizo una revisiéon del marco tedrico necesario. Se
comenz6 con una introduccion a la correspondencia AdS/CFT donde también se
introdujo el espacio-tiempo anti de-Sitter, asi como el diccionario entre variables
en el bulto y la frontera. En la seccién 2 hablamos sobre el concepto de agujero
negro y las distintas soluciones a las ecuaciones de FEinstein que derivan en
diferentes tipos de agujeros negros incluyendo sus diagramas conformes. Después
se hablé sobre las propiedades termodindmicas de estos objetos asi como la
necesidad de introducir el concepto de agujero negro en un espacio anti de-
Sitter. En la secciéon 5 se traté el concepto de causalidad y se describieron
los dominios de influencia y dependencia, claves en la construccién de la cuna
causal. Finalmente procedimos a construir la cunia causal en un espacio-tiempo
Schwarzschild-AdS en coordenadas globales, donde encontramos que, para una
longitud de la regién A suficientemente grande, la cufa causal presenta una
estructura no-trivial. En la seccién de resultados presentamos la reproduccion
de los gréficos incluidos originalmente en [19], con lo cual se cumple el objetivo

principal de este trabajo de tesis.
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Apéndices

A. Diagramas Conformes

En relatividad general emerge la posibilidad de tener diferentes tipos de
espaciostiempo como soluciones a las ecuaciones de Einstein. Por lo tanto, seria
muy util tener una imagen informativa de la geometria completa inducida por
una métrica en particular. En principio tal imagen seria infinita, asi que se debe
encontrar la manera de poner el espaciotiempo completo en una imagen finita.

Para resolver lo anterior se hace uso de las transformaciones conformes.

A.1. Transformaciones Conformes

Una transformacion conforme es un cambio en la escala generado por el
producto de la métrica con una funcién no nula de las coordenadas del espacio-
tiempo

~ 2
G = w” ()G (134)

ds* = w?(z)ds? (135)

donde el inverso de esta transformacion estd dado por

Guw = 0 (@) Gw (136)
Como propiedad general de las transformaciones conformes se encuentra que
ante una transformacién conforme las curvas nulas permaneces invariantes, es
decir, si 2#(\) es una geodésica nula respecto de g,,,,, se mantendra nula respecto

de g,., para mostrarlo recordemos la condicién de nulidad para una curva

datt da”
I ~ax "dn

donde V# = dat/d)\ es el vector tangencial. Observemos que la condicién se

= g V*VY =0 (137)

mantiene después de realizar una transformacién conforme sobre g,,,,

_ dx* dx¥ dx* dx”

- = 2 -
s T L s whr )

(138)

Debido a que los conos de luz estan dados por las geodésicas nulas, podemos
asegurar que bajo transformaciones conformes los conos de luz permaneces in-

variantes. Estd caracteristica es compartida con las transformaciones conformes
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en anélisis complejo, donde el angulo entre dos vectores cualesquiera permanece
invariante. Lo anterior no significa que las geodésicas tengan la misma geometria

en g,y ¥ Guw como lo confirmaremos mds adelante.

A.2. Diagrama Conforme para el espaciotiempo de Min-

kowski

Una vez asegurada la invarianza de los conos de luz bajo trasnformaciones
conformes, debemos encontrar una transformacién con la particularidad que
respecto de las nuevas coordenadas tipo-tiempo y tipo-espacio los bordes de los
conos de luz siempre estén a 45 grados. Matematicamente esto se puede escribir

de la siguiente manera
dr
dR

+1 representan los valores para la pendiente de las curvas radiales nulas. Por otra

+1 (139)

parte, para obtener el diagrama de de Penrose (o conforme) del espaciotiempo

de Minkowski primero analizamos su métrica antes de cualquier transformacion
ds? = —dt* + dr® + r2dQ? (140)

donde r2dQ? = r2[df? + sin?0¢?] es la métrica para una esfera de radio r (la 2-
esfera, 0 52). Podemos notar que las coordenadas t y r no estan acotadas (—oo <
t < 00,0 < r < oo)y por lo tanto no existe manera de realizar un diagrama
finito bajo estas coordenadas. De alguna manera debemos compactificarlas para
después confirmar que preservan los valores +1 para la pendiente de los bordes
en los conos de luz.

Comenzaremos por introducir coordenadas nulas

u=t—r (141)
v=t+r (142)

asi cualquier vector dentro del cono de luz puede ser escrito como una com-
binacién lineal de u y v. En la figura solo se muestra la parte derecha del
plano ¢t — r ya que r > 0 como especificamos notamos anteriormente. Nota que
cualquier punto en [I2] representa una 2-esfera de radio 7.

Podemos resolver para la coordenada tipo-espacio en funciéon de u y v

r:%(vfu)>0 (143)

64



A DIAGRAMAS CONFORMES

! Cono de luz

fotén saliente

particula\
/
\

fotén entrante

\ AN

<

Figura 12: Minkowski en coordenadas nulas

por lo tanto v > w. En coordenadas nulas la métrica de Minkowski toma la

siguiente forma
2 1 1 2
ds® = —i(dudv + dvdu) + Z(U — u)df) (144)

en este punto, el rango de t y r siguen sin ser acotados, para cambiar esto
haremos una compactificacion sobre las coordenadas nulas u and v tomando
como funcién compactificadora (es decir, cualquier funcién que mapeé la recta
real a un intervalo, f : ® — [a,b]) a arctan(z).

Sean U y V las coordenadas compactificadas

U = arctan(u) (145)

V = arctan(u) (146)

Con los nuevos rangos —5 <U < §y —5 <V < 5, con V > U. Si sustituimos

Uy V en ds? para Minkowski en coordenadas nulas obtenemos

1

ds? = —————
s 4cos2Ucos?V

[—2(dUdV + dVdU) + sin®*(V — U)dQ?] (147)

Si regresamos a las coordenadas tipo-tiempo y tipo-espacio T = V + U
y R = V — U la métrica anterior se revela como el inverso de una métrica

relacionada de manera conforme
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ds®* = w (T, R)[—dT? + dR? + sin®> RdQ?] (148)

donde w(T, R) = cosT + cosR, entonce ya podemos escribir la métrica ds?

la cual estd relacionada conformemente con la métrica de Minkowski’s ds?

ds? = (T, R)ds® = —dT? + dR? + sin* RdQ? (149)

ds? describe una variedad ® x S3 conocida como el universo Estético de
Einstein, una solucién estatica a las ecuaciones de Einstein para un fluido per-
fecto y una constante cosmoldgica positiva. El espacio completo de Minkowski
es conforme a una regién dentro del universo estatico de Einstein. La estructura
de los infinitos conformes de la métrica anterior nos permite visualizar el espacio

de Minkowski de la siguiente manera

r constante

Figura 13: Diagrama conforme del espacio de Minkowski

Donde los puntos it, i~ representan los infinitos tipo-tiempo futuro y pasado
ubicados en (T = m, R = 0) y (T = —7, R = 0) respectivamente, mientras que i’
en (T =0,R = ) es el infinito espacial. £ y .#~ son el el infinito nulo futuro

(T'=m—R,0 <R < )y el infinito nulo pasado(T’ = —7 + R,0 < R < 7).
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Como era de esperarse las geodésicas radiales nulas se mantienen a 45 grados
en el diagrama. Todas las geodésicas tipo-tiempo comienzan en i~ y terminan
en it, las geodésicas tipo-espacio comienzan y terminan en . En el caso de las
geodésicas nulas, estas comienzan en .# ~ y terminan en £ 7.

Los diagramas conformes nos dan una idea de la estructura causal del espacio-
tiempo, pero en el caso de Minkowski no nos muestra mucho mas de lo que ya
sabiamos, sin embargo en casos més complicados, por ejemplo para espacios-

tiempos curvos o con agujero negro, estos se vuelven muy utiles.
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