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ÍNDICE
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1 INTRODUCCIÓN

1. Introducción

La correspondencia AdS/CFT es una realización del principio holográfico

que provee un marco teórico preciso con el cual podemos mapear propiedades

de una teoŕıa de campos conforme en un espacio de dimensión d a una teoŕıa

de gravedad en un espacio anti-de Sitter de dimensión D (donde D > d). Han

pasado casi 20 años desde el descubrimiento de la correspondencia AdS/CFT por

Juan Maldacena [20] y los esfuerzos por develar el diccionario que nos permite

hacer este mapeo han sido fruct́ıferos. Sin embargo, aún no se sabe exactamente

cómo funciona este mapeo. La respuesta a esta pregunta nos permitiŕıa entender

los fundamentos del principio holográfico y esto contribuiŕıa a la búsqueda del

entendimiento de gravedad cuántica.

Una de las ĺıneas de trabajo en esta dirección ha sido tratar de comprender

cómo es que el espacio-tiempo de mayor dimensión emerge de la teoŕıa de campos

en menor dimensión. Dado que el espacio donde vive la teoŕıa cuántica es el

mismo espacio de la frontera de AdS, es común referirnos al espacio de menor

dimensión como la “frontera” y a AdS (el espacio de mayor dimensión) como

el “bulto”. Entonces la pregunta es ¿cómo es que la teoŕıa cuántica de campos

en la frontera contiene la información sobre el espacio-tiempo en el bulto? Para

entenderlo, uno se puede preguntar qué tanto del bulto se puede reconstruir

conociendo solo una región A de la frontera [7]. No se conoce la respuesta a esta

pregunta pero una posibilidad es asociar una región A en la frontera a una parte

del bulto que este relacionada con A solo por relaciones causales, esta región

del bulto es la llamada cuña causal �A. Una manera intuitiva de entender la

cuña causal es preguntándose: ¿si disparo luz hacia el bulto desde el diamante

causal asociado a una región A en la frontera, qué región del bulto puedo cubrir?

A esta región es a la que llamamos cuña causal. A la cuña causal le podemos

asociar una superficie especial llamada superficie de holográfica causal, el área

de esta superficie es una medida de la información contenida en la cuña causal,

y es por esto que se le denomina como información holográfica causal χA [18].

El estudio de cuñas causales es interesante porque al ser definido por relacio-

nes puramente causales se espera que juegue un papel importante en la teoŕıa de

campos en la frontera. Además, sus propiedades geométricas son no triviales: en

particular se sabe que puede tener partes desconectadas. En el lado de gravedad,
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1 INTRODUCCIÓN

se puede estudiar para qué valores de los parámetros sucede la transición entre

cuña causal conexa y disconexa [19].

El objetivo de la presente tesis es entender la cuña causal en un espacio

tiempo Schwarzschild-AdS en 4+1 dimensiones y reproducir los resultados en

[19]. En particular queremos estudiar (dado un radio del horizonte) ¿cuál es el

tamaño cŕıtico en la frontera para el cual la cuña causal se vuelve disconexa?

Esto debe ser dual a una transición de fase en la teoŕıa de campos. Pero ya

que el dual de la cuña causal no está establecido, el estudio de la transición de

fase en la teoŕıa de campos está fuera del alcance del presente trabajo. Para

poder definir y motivar la cuña causal primero revisaremos brevemente qué es

la correspondencia AdS/CFT y propiedades de agujeros negros en AdS. Luego

definiremos los conceptos necesarios para motivar y construir la cuña causal.

Después, en la parte principal de esta tesis, presentaremos los cálculos reali-

zados para reproducir las figuras 2, 4 y 5 del art́ıculo [19]. Por último, en las

conclusiones resumiremos lo aprendido en el presente trabajo.
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2 REVISIÓN DE LA CORRESPONDENCIA ADS/CFT

2. Revisión de la correspondencia AdS/CFT

La correspondencia AdS/CFT relaciona una teoŕıa de gauge con una teoŕıa

gravitacional. Esto es posible sólo para una teoŕıa de campo unificada como

teoŕıa de cuerdas. El ejemplo más estudiado de esta dualidad es la equivalencia

entre una teoŕıa de cuerdas tipo IIB compactificada en AdS5× S5 y una teoŕıa de

Yang-Mills con N = 4 supersimetŕıas la cual es una teoŕıa conforme (de aqúı la

abreviación CFT). Por su parte, la abreviación AdS se refiere a un espacio-

tiempo anti-de Sitter en 5 dimensiones, mientras que S5 se refiere a la esfera

cinco dimensional. Aún y cuando existen otros ejemplos de dualidades entre

teoŕıas de norma y teoŕıas de gravedad, este trabajo se centrará en el ejemplo

anterior.

2.1. Espacio anti-de Sitter y sus simetŕıas

Los espacios anti-de Sitter son soluciones a la ecuación de Einstein con cons-

tante cosmológica negativa. AdS2 puede ser incrustado en un espacio-tiempo

plano con 2 direcciones tipo-tiempo:

ds2 = −dZ2 − dX2 + dY 2 (1)

con la siguiente restricción:

− Z2 −X2 + Y 2 = −L2. (2)

L recibe el nombre de radio de AdS. Para resolver la restricción anterior to-

mamos un sistema de coordenadas un poco diferente a las coordenadas esféricas:

X = L sinh ρ cosφ, Y = L sinh ρ sinφ, Z = L cosh ρ (3)

con lo cual la métrica de AdS2 puede ser escrita como

ds2 = L2(−cosh2ρdt̃2 + dρ2) (4)

Al sistema coordenado (t,ρ) se le conoce como coordenadas globales, donde

la coordenada t̃ tiene periodicidad 2π, es decir, es ćıclica. Esto representa un

problema ya que podŕıamos tener geodésicas tipo-tiempo cerradas donde las
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2 REVISIÓN DE LA CORRESPONDENCIA ADS/CFT

curvas causales también seŕıan cerradas [23]. Para desenvolver esta coordenada

ćıclica, consideramos la cubierta de AdS2 donde t̃ va de −∞ a ∞.

En la correspondencia consideraremos el espacio-tiempo anti-de Sitter 5-

dimensional como la bola espacial producto con el eje temporal infinito. Des-

cribiremos su geometŕıa con las coordenadas t,r,Ω donde t es el tiempo, r es

la coordenada radial, 0 ≤ r ≤ 1, y Ω parametriza a la esfera unitaria en 3

dimensiones. La métrica está dada por:

dτ2 =
L2

(1− r)2
(−(1 + r)2dt2 + 4dr2 + 4r2dΩ2). (5)

Podemos ver que el punto r = 0 es el centro del espacio anti-de Sitter y

que una geodésica nula radial debe satisfacer (1 + r)2dt2 = 4dr2, es decir, no se

mantendrán constantes las coordenadas t y r. Además, cerca de r = 1 la métrica

tiene una singularidad en todas sus componentes, acotando aśı su coordenada

radial.

Para construir el espacio AdS5 × S5 debemos definir 5 coordenadas ωi que

describan a la esfera unitaria 5-dimensional y agregar un término a la métrica

de AdS5. Si escribimos la métrica en coordenadas de Poincaré

dτ2 =
L2

y2
(−dt2 + dxidxi + dy2) (6)

con i de 1 a 3, se puede observar que la métrica es invariante bajo las trans-

formaciones de Poincaré de las coordenadas 4-dimensionales t,xi del espacio de

Minkowski. Esta invarianza se da bajo el grupo de transformaciones ISO(1, 3)

en xµ = (t, xi), donde el elemento xµ es interpretado como las coordenadas espa-

cio temporales de la teoŕıa gauge dual. En coordenadas de Poincaré una simetŕıa

extra se hace evidente, la invarianza 4-dimensional de la escala o invarianza bajo

transformaciones conformes

xµ → axµ, r → 1

a
r. (7)

De acuerdo con el principio holográfico podŕıamos describir la f́ısica en el

bulto con una teoŕıa con grados de libertad en la frontera [17][3], por este motivo

debemos preguntarnos por las simetŕıas en la frontera de AdS. Existe un grupo

de simetŕıas O(5) asociadas con las rotaciones de la 5-esfera, mientras que el

grupo completo de simetŕıas de AdS5 es O(4, 2) el cual es idéntico al grupo
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2 REVISIÓN DE LA CORRESPONDENCIA ADS/CFT

conforme 4-dimensional, que actuando en la frontera es el grupo conforme del

espacio de Minkowski SO(4, 2). Lo anterior sugiere que la teoŕıa dual en la

frontera debe ser una teoŕıa conforme. Sin embargo, existe otra simetŕıa además

del grupo conforme y el grupo O(6), esta simetŕıa es la N = 4 supersimetŕıa.

Conociendo las simetŕıas uno llega al tipo de sistemas con N = 4 supersimetŕıas

como candidatos a sistema dual, estos son las teoŕıas de Yang-Mills(SYM) con

grupo de simetŕıa SU(N).

2.2. Variables en la SYM y en el bulto

Se sabe que las teoŕıas de Super Yang-Mills son conformes, no tienen paráme-

tros dimensionales, y para los propósitos de la correspondencia nos gustaŕıa que

la SYM viviera en la frontera (de AdS5× S5) parametrizada por las coordenadas

t,Ω o t,x, mientras que la teoŕıa de gravedad en el bulto mantenga sus dimen-

siones usuales.

Para transformar las coordenadas de la SYM a coordenadas del bulto necesi-

tamos emplear como factor de conversión a L, el radio de curvatura. Es decir,

si ESYM y M representan la enerǵıa de la SYM y del bulto respectivamente, el

factor de conversión estará dado por

ESYM = ML. (8)

La teoŕıa 10-dimensional en el bulto tiene dos parámetros adimensionales: el

radio de curvatura de AdS en unidades L/ls y la constante de acoplo de la

cuerda g.

Estas constantes están relacionadas con la longitud de Planck y la constante

de Newton:

l8p = g2ls = G (9)

donde l8p la longitud de Planck 10-dimensional.

Por su parte la teoŕıa gauge tiene también dos constantes: el rango N

del grupo de gauge y la constante de acoplo del grupo de gauge gym.

La relación entre los parámetros de ambas teoŕıas, originalmente obtenida

por Juan Maldacena [20], es la siguiente:
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2 REVISIÓN DE LA CORRESPONDENCIA ADS/CFT

L

ls
= (Ng2

ym)
1
4 , g = g2

ym. (10)

En este punto existen dos ĺımites interesantes. La correspondencia AdS/CFT

ha sido usada como herramienta para el estudio de teoŕıas gauge en el ĺımite

de ’t Hooft fuertemente acoplado. En la teoŕıa gauge este ĺımite se define como

gym → 0 , N → ∞ tal que g2
ymN = cte. En el bulto, este ĺımite está dado por

g → 0 con L
ls

= cte.

Con esto vemos que el ĺımite de ’t Hooft fija la curvatura de AdS. Con la

constante de acoplo nula nos posicionamos en ĺımite clásico de teoŕıa de cuerdas.

El otro ĺımite interesante es aquel en el cual el radio de AdS crece pero los

parámetros del mundo microscópico se mantienen:

g = cte,
L

ls
→∞. (11)

El mismo ĺımite pero del lado de la teoŕıa gauge es

gym = cte, N →∞. (12)

En el ĺımite N →∞ de la teoŕıa gauge nos gustaŕıa mostrar que el número

de grados de libertad satisfacen la cota impuesta por el principio holográfico

[9].
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2 REVISIÓN DE LA CORRESPONDENCIA ADS/CFT

2.3. Grados de libertad y los ĺımites UV-IR

De acuerdo con el principio holográfico, la teoŕıa en la frontera no debe

contener más de 1 grado de libertad por área de Planck [29]. En particular, el

número de estados cuánticos no debe exceder exp( A
4GD

), donde A es el área d-1

dimensional en un espacio-tiempo d+1 dimensional, mientras GD es la constante

de Newton en D dimensiones. Se ha especulado que la teoŕıa en la frontera

está acotada de tal manera que la densidad de información también está acotada

[31]. Para poder contar el número de grados de libertad en AdS5× S5 suponemos

que colocamos a las 9 dimensiones espaciales de una rejilla. A pesar de que no

es posible tener una rejilla regular, śı es posible que nuestra rejilla tenga una

espaciamiento promedio de una longitud de Planck lp, además de incrustar la

rejilla también se debe regular el área en la frontera de AdS (la cual diverge en

r = 1), para conseguirlo le agregamos el regulador r = 1− δ. Podemos calcular

el volumen de está rejilla con radio 1− δ a partir de la métrica

dτ2 =
L2

y2
(−dt2 + dxidxi + dy2)

Para curar la divergencia en r = 1 se agrega una superficie R en r = 1− δ,
esta superficie es 9-dimensioanl y el volumen en su interior es proporcional a

L9

δ3 . Por lo tanto, el número de espacios con longitud de Planck en la rejilla

equivalentes al número de grados de libertad es

V9

l9p
=

1

δ3

L9

l9p
. (13)

2.3.1. Dp-branas

Antes de relacionar el regulador IR con el regulador UV debemos entender el

papel de las D-branas en la correspondencia. En teoŕıa de cuerdas, las cuerdas

abiertas pueden tener dos tipos de condiciones de frontera: de Neumann y de

Dirichlet. Las condiciones de Neumann son aquellas donde los extremos de la

cuerda están libres, mientras que en el caso de Dirichlet los extremos de la cuerda

están fijos. Las condiciones de frontera se consideran independientes para cada

coordenada, para el caso de Neumann podemos escoger p+ 1 condiciones para

p dimensiones espaciales y una temporal. En el caso de condiciones de Dirichlet
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2 REVISIÓN DE LA CORRESPONDENCIA ADS/CFT

consideramos d− p− 1 condiciones. Aśı, los extremos de la cuerda deben existir

en un plano p+ 1 dimensional o una Dp-brana. Las cuerdas abiertas tienen una

tensión finita y su centro de masa no se puede poner arbitrariamente lejos de

la D-brana, como consecuencia los grados de libertad de la cuerda abierta solo

se pueden propagar en la dirección paralela a la brana, es decir, los grados de

libertad viven en la brana. Si se tienen Nc D-branas coincidentes las cuerdas

abiertas pueden tener sus extremos en diferentes branas o en una sola. En el

primer caso los nuevos grados de libertad corresponden a los grados de libertad

de SU(Nc). En el caso de la correspondencia AdS/CFT empezamos con un

empaquetamiento de D3-branas incrustadas en 10 dimensiones, es decir branas

que llenan 3 dimensiones espaciales y la temporal. Llamaremos zm a las otras 6

coordenadas y definiremos a z ≡
√
zmzm. Al empaquetamiento lo colocaremos

en z = 0, y como la posición en z es un grado de libertad para la brana, podemos

pensarlo como un campo escalar en la D-brana. La solución de la D3-brana que

corresponde al empaquetamiento de N branas coincidentes es de la forma

ds2 = H−
1
2 (−dt2 + dx2

1 + dx2
2 + dx2

3) +H−
1
2 (dr2 + r2dΩ2

5) (14)

La función H(r) es el factor de envoltura

H = 1 +
L4

r4
(15)

La geometŕıa de esta solución es asintóticamente Minkowski con una garganta

de longitud infinita en la cual podemos tomar r � 1 para obtener el ĺımite

cercano al horizonte

H ≈ 1 +
L4

r4

ds2 =
r2

L2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
L2

r2
dr2 + L2dΩ2

5 (16)

en este punto con un cambio de variable r = L
y recuperamos la métrica de

AdS5× S5

ds2 =
L2

y2
(−dt2 + dx2

1 + dx2
2 + dx2

3 + dy2) + L2dΩ2
5 (17)

Por otra parte, la teoŕıa de las fluctuaciones sobre la coordenada z en la cual

se coloca el empaquetamiento de las D3-branas es N = 4 SYM donde todos los

campos en está teoŕıa forman un supermultiplete que pertenece a la represen-

tación adjunta (matrices N ×N) de SU(N). Mientras que las coordenadas zm
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2 REVISIÓN DE LA CORRESPONDENCIA ADS/CFT

en la SYM están representadas por 6 campos escalares que viven en el volumen

de mundo de la brana, es decir en las 3+1 dimensiones que llena la brana.

Finalmente, resulta interesante relacionar las escalas en ambas teoŕıas. A

partir del factor L2/y2 en la métrica de AdS observamos que la distancia propia

en el bulto d y la distancia dYM en el espacio de Minkowski en la frontera de

AdS están relacionadas por

d =
L

y
dYM (18)

Y debido a que [E] = [L]−1 en unidades naturales, la relación entre las enerǵıas

es

E =
y

L
EYM (19)

De la ultima relación podemos ver que el ĺımite de altas enerǵıas (UV) en la

SYM se obtiene cuando y → 0 es decir cerca de la frontera (r → 1), mientras

que el ĺımite de bajas enerǵıas (IR) se recupera cuando y →∞.
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3 LA MÉTRICA DE SCHWARZSCHILD

3. La métrica de Schwarzschild

En f́ısica, la simetŕıa esférica respecto a un punto central es de particular

interés ya que un gran número de problemas se simplifican cuando la presentan.

En el caso del campo gravitacional nos gustaŕıa que la teoŕıa pudiera describir

un campo esféricamente simétrico. En este caṕıtulo describiremos una solución a

las ecuaciones de Einstein con simetŕıa esférica, la solución de Schwarzschild. Tal

solución es asintóticamente plana (Minkowski), además de ser temporalmente

estática y variante bajo traslaciones espaciales.

ds2 aintóticamente−−−−−−−−−→ −dt2 + dxidxi (20)

Bajo rotaciones, es decir bajo la acción de O ∈ SO(3), la coordenada x trans-

forma como

xi 7→ Oijx
i, dxi 7→ Oijdx

i (21)

Mientras que
∑
i x

ixi = x.x transforma como

x.x 7→ (Ox).(Ox) = xOTOx = x.x (22)

Definiremos como estática a la métrica si ninguno de sus componentes es de-

pendiente del tiempo, y además de que no haya términos cruzados entre las

componentes temporales y espaciales, por ejemplo dtdxi. Tomando en cuenta

estás condiciones propondremos el siguiente ansatz para la métrica

ds2 = −F (r)dt2 +D(r)x2dx2dxi + C(r)dx2 (23)

donde
√

xx = r. Introduciremos las coordenadas esféricas

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ (24)

donde dx esta dado por

dx1 = sin θ cosφdr + r cosφ cos θdθ − r sin θ sinφdφ

dx2 = sin θ sinφdr + r sinφ cos θdθ + r sin θ cosφdφ

dx3 = cos θdr − r sin θdθ

Sustituyendo dx en el ansatz obtenemos

ds2 = −F (r)dt2 + r2D(r)dr2 + Cdr2 + C(r2dθ2 + r2sin2θdφ2) (25)

13



3 LA MÉTRICA DE SCHWARZSCHILD

Debido a la naturaleza covariante de la teoŕıa podemos hacer el cambio de

variable r′2 ≡ C(r)r2, cuya derivada total está dada por

dr2 4r′2dr′2

2C(r)r + r2C ′(r)
(26)

Si sustituimos la ecuación anterior en el término r2D(r)dr2 + Cdr2 del ansatz,

llegamos a un nuevo término

(r2D(r) + C(r))dr2 =
r2D(r)/C(r) + 1

(1 + r/2C ′(r))2
dr′2 ≡ A(r′)dr′2 (27)

lo mismo sucede para los otros 2 términos después del cambio de variable

C(r)r2(dθ2 + sin2θdφ2) = r′2(dθ2 + sin2θdφ2)

F (r) ≡ B(r′)

Con lo anterior, la métrica se simplifica de la siguiente manera

ds2 = −B(r)dt2 +A(r)dr2 + r2(dθ2 + sin2θdφ2) (28)

Para facilitar los cálculos asumiremos que A(r) = B(r)−1 sin razón f́ısica o

matemática de fondo.

Con el ansatz listo, lo que sigue es introducirlo en la ecuación de Einstein

Rµν −
1

2
Rgµν = 8πGTµν (29)

la cual por estética se reescribe como

Rµν = 8πG(Tµν −
1

2
Tgµν) (30)

Recordando que asumimos un espacio vaćıo, el tensor de enerǵıa-momento Tµν

debe ser nulo y por lo tanto la ecuación de Einstein se reduce a

Rµν = 0 (31)

El tensor de Ricci Rµν está dado por la conexión de Christoffel

Rµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (32)

donde

Γµνρ =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (33)
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3 LA MÉTRICA DE SCHWARZSCHILD

A partir del Ansatz podemos calcular las estradas de gµν

gtt = −B, grr =
1

B
, gθθ = r2, gφφ = r2 sin2 θ (34)

donde los coeficientes de Γtµν están dados por

Γtµν =
−1

2B


∂tgtt ∂rgtt ∂θgtt ∂φgtt

∂rgtt −∂tgrr 0 0

∂θgtt 0 −∂tgθθ 0

∂φgtt 0 0 −∂tgφφ

 =
−1

2B


0 −B′ 0 0

−B′ 0 0 0

0 0 0 0

0 0 0 0


todas las derivadas temporales ∂t se anulan bajo la suposición de invarianza

temporal. Los otros componentes de Γµνρ se calculan de manera similar

Γrµν =
1

2
B


−∂rgtt ∂tgrr 0 0

∂tgrr ∂rgrr ∂θgrr ∂φgrr

0 ∂θgrr −∂rgθθ 0

0 ∂φgrr 0 −∂rgφφ

 =
B

2


B′ 0 0 0

0 −B′

B2 0 0

0 0 −2r 0

0 0 0 −2r sin2 θ



Γθµν =
1

2r2


−∂θgtt 0 ∂tgθθ 0

0 ∂θgrr ∂rgθθ 0

∂tgθθ ∂rgθθ ∂θgθθ ∂φgθθ

0 0 ∂φgθθ −∂θgφφ

 =
1

2r2


0 0 0 0

0 0 2r 0

0 2r 0 0

0 0 0 −2r2 sin θ cos θ



15



3 LA MÉTRICA DE SCHWARZSCHILD

Γφµν =
1

2r2 sin2 θ


−∂φgtt 0 0 ∂tgφφ

0 −∂φgrr 0 ∂rgφφ

0 0 −∂φgθθ ∂θgφφ

∂tgφφ ∂rgφφ ∂θgφφ −∂φgφφ



=
1

2r2 sin2 θ


0 0 0 0

0 0 0 2r sin2 θ

0 0 0 2r2 sin θ cos θ

0 2r sin2 θ 2r2 sin θ cos θ 0


Entonces procedemos a calcular el tensor de curvatura Rµν


1
2B( 2B′

r +B′′) 0 0 0

0 −1
2B ( 2B′

r +B′′) 0 0

0 0 (−B − rB′ + 1) 0

0 0 0 sin2(θ) (−B − rB′ + 1)


En el régimen del vaćıo para la Ecuación de Einstein, la igualdad Rµν = 0

debe mantenerse después de introducir el ansatz, observamos claramente que lo

anterior se cumple si las siguientes igualdades son satisfechas

0 =
2B′

r
+B′′ (35)

0 = −B − rB′ + 1 (36)

la segunda igualdad (36) es una ecuación diferencial de primer orden y por

lo tanto es una restricción sobre la ecuación de segundo orden (35). Para en-

contrar una solución a (35) notamos que la derivada de (36) respecto de r es

precisamente la ecuación de segundo orden que queremos resolver

d

dr
(rB′ +B − 1) = rB′′ + 2B′ (37)

Por lo tanto es suficiente con encontrar una solución para la ecuación de primer

orden.
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3 LA MÉTRICA DE SCHWARZSCHILD

El caso trivial B(r) = 1 que resuelve a (35) nos lleva a la métrica de Min-

kowski escrita en coordenadas polares

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) (38)

Por lo tanto la solución trivial no rompe la invarianza traslacional. Otra solu-

ción para (35) es B(r) = − 1
r rh + rc, que al momento de sustituirla en (36) se

observa que rc = 1, en cambio rh no tiene restricción alguna, sin embargo la

asumiremos como positiva. Sustituyendo B(r) finalmente llegamos a la métrica

Schwarzschild

ds2 = −(1− rh
r

)dt2 +
1

1− rh
r

dr2 + r2(dθ2 + sin2 θdφ2) (39)
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3 LA MÉTRICA DE SCHWARZSCHILD

3.1. La constante rh y goedésicas de Schwarzschild

Como mencionamos al principio de este caṕıtulo, nos gustaŕıa tener una

teoŕıa de gravedad que reprodujera un campo gravitacional esféricamente

simétrico, por lo tanto la métrica de Schwarzschild debeŕıa reproducir la f́ısica

Newtoniana para objetos masivos. Para comprobar lo anterior debemos estu-

diaremos la dinámica de la solución de Schwarzschild.

3.1.1. Geodésicas Radiales

La dinámica de una part́ıcula está dada por las soluciones a la siguiente

ecuación
d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (40)

Las soluciones que buscamos en este caso son de la forma xµ =

(λ, r(λ), π/2, 0) donde λ es el parámetro de la trayectoria, y en el caso de una

part́ıcula masiva se toma como el tiempo propio τ . La coordenada θ se fija en

π/2 para confinar la trayectoria de la part́ıcula al plano ecuatorial lo cual es

permitido por la isotroṕıa del campo.

Para resolver la ecuación geodésica necesitamos los coeficientes de Γµνρ que ya

tenemos calculados

Γtrt =
B′

2B
Γttr =

B′

2B

Γrtt =
1

2
B′B Γrrr =

−B′
2B

Γrθθ = −rB Γrφφ = −rB sin2 θ

Γθrθ =
1

r
Γθθr =

1

r
Γθφφ = − cos θ sin θ

Γφrφ =
1

r
Γφθφ = cot θ Γφφr =

1

r
Γφφθ = cot θ

por lo tanto para las coordenadas temporal y radial obtenemos respectivamente

0 = ẗ+ Γtρσẋ
ρẋσ = ẗ+ Γtrtẋ

0ẋ1 + Γttrẋ
1ẋ0

= ẗ+
B′

2B
ṙṫ+

B′

2B
ṫṙ = ẗ+

B′

B
ṙṫ

y

0 = r̈ + Γrρσẋ
ρẋσ

= r̈ + Γrttẋ
0ẋ0 + Γrrrẋ

1ẋ1 + Γrθθẋ
2ẋ2 + Γrφφẋ

3ẋ3

= r̈ +
1

2
B′Bṫ2 +

−B′
2B

ṙ2 − rBθ̇2 − rB sin2 θφ̇2.
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3 LA MÉTRICA DE SCHWARZSCHILD

Debido a que nos interesa solo el comportamiento radial respecto del tiempo,

podemos simplificar la ecuación geodésica para r

0 = r̈ +
1

2
B′Bṫ2 +

−B′
2B

ṙ2 (41)

donde B = 1− rh/r y B′ = rh/r
2. Para poder resolver las ecuaciones anteriores

hacemos el siguiente cambio de variable (ṫ, ṙ)→ (u0, u1),

0 = u̇0 +
1

r2
(

rh
1− rh

r

)u0u1

0 = u̇1 +
rh
2r2

(1− rh
r

)u0u0 − 1

2r2
(

rh
1− rh

r

)u1u1

De la primera ecuación podemos resolver para u0. Dividiendo primero entre u0

y después integrando se obtienen lo siguiente

0 =
u̇0

u0
+

1

r2
(

rh
1− rh

r

)u0u1

0 =
du0

u0
+

1

r2
(

rh
1− rh

r

)dr = lnu0 +

∫
rh

r(r − rh)
dr

= lnu0 +

∫
(
−1

r
+

1

r − rh
)dr = lnu0 − ln r + ln(r − rh)− ln(b)

donde b es una constante de integración

(1− rh
r

)u0 = b (42)

Para poder fijar la constante rh que aparece en la métrica de Schwarzschild

necesitamos considerar las aceleración de una part́ıcula que parte del reposo,

para la cual el cuadrivector de la velocidad inicial es

uµ0 = (u0, u1, u2, u3) = (ṫ, ṙ, θ̇, φ̇)

= (ṫ, 0, 0, 0) = u0(1, 0, 0, 0)

sustituyendo estos valores en las ecuaciones geodésicas se obtiene

u̇0
∣∣
t=0

= −2Γttru
0
0u

1
0 = 0

u̇1
∣∣
t=0

= −Γrttu
0
0u

0
0 6= 0

u̇2
∣∣
t=0

= 0

u̇3
∣∣
t=0

= 0

Aqúı observamos que la aceleración inicial existe sólo en la dirección radial. Para

encontrar u0
0 sustituimos los valores iniciales de la velocidad en el elemento de
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3 LA MÉTRICA DE SCHWARZSCHILD

ĺınea de la métrica recordando que las part́ıculas masivas siguen geodésicas tipo-

tiempo para las cuales ds2 = −1

−1 = ds2 = gµνu
µ
0u

ν
0

= −(1− rh
r

)(u0
0)2 +

1

1− rh
r

(u1
0)2 + r2((u2

0)2 + sin2 θ(u2
0)3)

= −(1− rh
r

)(u0
0)2

despejando para u0
0 obtenemos

u0
0 =

1√
1− rh

r

(43)

Sustituyendo u0
0 en la ecuación geodésica para u1

0, se encuentra la aceleración

radial inicial

u̇1
∣∣
t=0

= −Γrttu
0
0u

0
0

= − rh
2r2

0

(1− rh
r0

)(
1√

1− rh
r0

)2

= − rh
2r2

0

Por último, para un radio inicial suficientemente grande (r0 � rh) podemos

tomar dt
dλ = u0

0 = 1√
1− rh

r

≈ 1. Lo cual nos permite reemplazar dλ ≈ dt y por

lo tanto du1

dλ ≈ d2r
dt2 . Este último término se puede comparar con la aceleración

gravitacional Newtoniana

d2r

dt2
= −GM

r2
0

− rh
2r2

0

= −GM
r2
0

rh = 2GM (44)

Donde M es la masa del objeto. Para un potencial Newtoniano la velocidad de

escape está dada por

0 = E =
1

2
mv2

esc −
GMm

r

v2
esc =

2GM

r

Es decir que el término (1 − rh
r ) que aparece en la métrica de Schwarzschild

equivale a (1− v2
esc) donde vesc es la velocidad de escape Newtoniana.
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3 LA MÉTRICA DE SCHWARZSCHILD

Para la masa de un sistema solar vesc es mucho menor que la velocidad de

la luz.

Por último sustituyendo rh encontramos la métrica de Schwarzschild, con la

cual podemos describir el campo gravitacional de objetos como la luna, estrellas

o agujeros negros.

ds2 = −(1− 2GM

r
)dt2 +

1

1− 2GM
r

dr2 + r2(dθ2 + sin2 θdφ2) (45)

Una vez especificada la constante rh podemos volver al estudio de las geodésicas

radiales, definiendo a la constante de integración b de la siguiente manera

(1− 2GM

r
)u0 = b (46)

donde al sustituir la condición inicial u0
0 = (1 − 2GM/r0)−

1
2 encontramos el

valor de b en función de r0 √
1− 2GM

r0
= b (47)

Ahora podemos encontrar u1 a partir de la sustitución de u0 en el elemento de

ĺınea

−1 = −(1− 2GM

r
)(u0)2 +

1

1− 2GM
r

(u1)2

−1 = −(1− 2GM

r
)(

b

1− 2GM
r

)2 +
1

1− 2GM
r

(u1)2

u1 =

√
b2 − (1− 2GM

r
)

=

√
2GM

r
− 2GM

r0

Recordemos que u1 es la velocidad en la dirección radial causada por un objeto

masivo en r=0, seŕıa de esperarse que u̇1 coincida con la aceleración Newtoni-

nana o lo que llamamos g para el planeta Tierra. Esta aceleración emerge de la

ecuación geodésica para u1 a orden más bajo como ya lo observamos anterior-

mente cuando encontramos que rh = 2GM .
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3 LA MÉTRICA DE SCHWARZSCHILD

3.2. Schwarzschild, la solución del agujero negro

3.2.1. El radio de Schwarzschild rs

Para poder describir la geometŕıa del espacio-tiempo de Schwarzschild

también debemos explorar la región r < 2GM , las singularidades en r = 0

y en la hipersuperficie r = 2GM a la cual se le conoce como el radio de

Schwarzschild (rs). Aqúı debemos recordar que derivamos la solución de

Schwarzschild resolviendo las ecuaciones de Einstein en el vaćıo y por lo tanto

todo lo que mencionemos es válido solamente para distribuciones esféricas de

materia, incluido el cálculo del radio de Schwarzschild que para un objeto como

el Sol es del orden de un par de kilómetros, el cual es mucho menor que el radio

del sol. De igual manera se podŕıa considerar el radio de Schwarzschild para

un protón (rs = 10−52m) el cual también es mucho menor que el radio del

mismo (Rp = 10−15m). De hecho, para la mayoŕıa de los objetos, su radio de

Schwarzschild se encuentra muy por debajo de su radio donde las ecuaciones de

Einstein que consideramos al inicio no aplican, por lo cual resulta interesante

preguntarnos ¿si existe un objeto tan compacto tal que su radio sea menor que

su radio de Schwarzschild?

Consideremos un objeto para el cual r sea menor que rs, en tal caso, e

ignorando que en r = rs existe una singularidad, se pueden considerar dos re-

giones para la solución de Schwarzschild, la región I: r > rs y la región II: r < rs.

Región I: Por inspección podemos ver que para r > rs los coeficientes del

elemento de ĺınea mantienen su signo, es decir que g00 se mantiene negativo

mientras que gii se mantienen positivos, lo que implica que la coordenada t

se mantiene como una coordenada tipo-tiempo y r, θ, φ se mantienen como

coordenadas tipo-espacio. Agregando algo de sentido f́ısico a esta oración

podemos decir que t es el tiempo propio medido por un observador en reposo

ubicado en el infinito, y que r por ejemplo es una coordenada radial tal que el

área superficial de una 2-esfera con t y r constantes es 4πr2.

22



3 LA MÉTRICA DE SCHWARZSCHILD

Región II: En está región (r < rs) los signos de g00 y g11 se intercambian,

por lo tanto t pasa a ser una coordenada tipo-espacio y r una coordenada tipo-

tiempo. Pero ¿qué significa este cambio en la naturaleza de estás coordenadas

cuando pasamos de r > rs a r < rs? y más importante aún, ¿qué significado

f́ısico tiene?. Para responder lo anterior estudiaremos las singularidades en r = 0

y r = rs.

3.2.2. Coordenadas y Singularidades

Las coordenadas son una forma de etiquetar eventos en el espacio-tiempo, las

cantidades geométricas f́ısicamente útiles son los 4-tensores definidos en cual-

quier punto del espacio. El tensor de Ricci y sus contracciones describen la

curvatura del espacio tiempo de manera covariante, por ejemplo, el escalar de

Kretschmann definido como RabcdR
abcd para la métrica de Schwarzschild es

12(GM)2/r6 y evaluado en r = rs es finito, por lo tanto, la singularidad en rs es

una singularidad debida a la forma en la que estamos etiquetando los eventos,

mientras que r = 0 śı es una singularidad intŕınseca de la geometŕıa de Sch-

warzschild.

La singularidad debida a la elección de las coordenadas desaparece con una

transformación apropiada, sin embargo, antes de proponer cualquier transfor-

mación de coordenadas seguiremos investigando la geometŕıa de Schwarzschild

en coordenadas (t, r, θ, φ). En nuestra exploración no hemos hablado sobre la

estructura causal del espacio-tiempo, para poder considerarla debemos estudiar

las geodésicas radiales y nulas, es decir aquellas para las cuales las coordenas

θ,φ son constantes y el elemento de ĺınea (ds2) es es nulo.

ds2 = −(1− 2GM

r
)dt2 +

1

1− 2GM
r

dr2 = 0 (48)

despejando para dt/dr:
dt

dr
= ± 1

1− 2GM
r

(49)

donde dt/dr es la pendiente de los conos de luz en el plano t-r, el signo positivo

corresponde a un fotón saliente (r crece en función del tiempo para la región

r > 2GM) y el negativo a un fotón entrante (r decrece en función del tiempo

para la región r > 2GM). En ĺımite de r muy grande la pendiente es ±1, como

en el caso del espacio-tiempo de Minkowski, comprobando aśı que la propiedad
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asintóticamente plana se mantiene. Pero cuando nos acercamos a la hipersu-

perficie en r = 2GM la pendiente tiende a ±∞, y los conos de luz se cierran,

lo cual nos dice que un rayo de luz que se acerca a r = 2GM parece nunca

llegar a la hipersuperficie ya que el progreso en la coordenada r se hace más

lento respecto del progreso en la coordenada temporal, sin embargo al igual que

con la singularidad debida a las coordenadas, este comportamiento podŕıa ser

resultado de nuestra elección de coordenadas. Para comprobarlo intentaremos

arreglar el problema de la inhabilidad de acercarnos a r = 2GM en un tiempo

finito. Primero remplazaremos t con una coordenada que se mueva más lento

sobre las coordenadas nulas.

Integramos dt/dr para encontrar t en función de r

t = ±r ± 2GM ln(
r

2GM
− 1) + c (50)

los signos ± indican la región I y II respectivamente. De la solución anterior

para t definimos r∗ como

r∗ = r + 2GM ln(
r

2GM
− 1) (51)

tal que t = ±r∗ + cte.

A r∗ se le conoce como coordenada tortuga, podemos observar por el signo po-

sitivo que r∗ solo está relacionada con la región II, es decir, con r ≥ 2GM .

En términos de la coordenada tortuga podemos reescribir la métrica de Sch-

warzschild usando dr∗ = (r)/(r − 2GM)dr

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)dr∗2 + r2dΩ2 (52)

Se observa que la singularidad en r = 2GM ha desaparecido, sin embargo r =

2GM se encuentra en el infinito de la coordenada tortuga ya que r∗ evaluado

en r = 2GM es proporcional a ln(0).

3.2.3. Coordenadas Eddington-Finkelstein

Usando la libertad de elegir la constante en la relación t = ±r∗ + cte, reali-

zamos un nuevo cambio de coordenadas:

v± ≡ t∓ r∗ (53)
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donde v− caracteriza a la geodésica radial entrante y v+ a la geodésica radial

saliente. A tales coordenadas se les denomina como avanzadas v− y retarda-

das v+. Podemos usar v− como la coordenada tipo tiempo en la solución de

Schwarzschild

ds2 = −(1− 2GM

r
)dv2
− + dv−dr + drdv− + r2dΩ2 (54)

donde las componentes de gµν son
−(1− 2GM

r ) 1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2sin2θ

 (55)

en las coordenadas de Eddington-Finkelstein las componentes de la métrica no

tienen singularidades para r > 0, en part́ıcular la hipersuperficie en r = 2GM

está bien definida a pesar de que g00 sea nulo, además, el determinante de la

métrica g = −r4 sin2 θ es no degenerado, es decir, no se anula para r > 0 lo

que implica que la inversa de la métrica está bien definida. Recordemos que

la solución original de Schwarzschild era regular en la región 2GM < r < ∞
mientras que en estas nuevas coordenadas es regular en 0 < r <∞ por lo tanto

en la región de traslape ambas formas están relacionadas por la transformación

(53) y representan a la misma solución.

Como uno podŕıa esperar, las nuevas coordenadas son particularmente útiles pa-

ra las geodésicas nulas. En el caso de las coordenadas avanzadas v− las geodési-

cas radiales nulas están dadas por las soluciones a la ecuación

(1− 2GM

r
)(
dv−
dr

)2 − 2
dv−
dr

= 0 (56)

con dos soluciones

dv−
dr

= 0

dv−
dr

= 2(1− 2GM

r
)−1

la primera solución corresponde a una geodésica radial entrante v− = cte la

cual es válida por construcción, mientras que la segunda solución corresponde

una geodésica radial nula saliente. Nota que esta última es discontinua ya
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que una geodésica que comienza en r < 2GM no puede escapar a la región

r > 2GM , por lo tanto r = 2GM define un horizonte de eventos, o una frontera

de no retorno. Y dado que hablamos de geodésicas nulas, lo mismo será cierto

para part́ıculas masivas (geodésicas tipo-tiempo). Por último, a partir de las

trayectorias de las geodésicas salientes podemos ver que cualquier fotón emitido

por una part́ıcula en la región II no llegará a un observador en la región I.

Es por esto que a la solución de Schwarzschild se le conoce como solución del

agujero negro.

En el caso de las coordenadas retardadas (usando v+ = t − r∗) la métri-

ca toma la siguiente forma

ds2 = −(1− 2GM

r
)dv2
− − dv+dr − drdv+ + r2dΩ2 (57)

Y de manera análoga, a partir de las condiciones para las geodésicas radiales

nulas, para las coordenadas retardadas v+ se encuentra que las geodésicas en-

trantes son discontinuas y la región r = 2GM está vez śı deja escapar geodésicas

pero no permite que entren, de hecho las part́ıculas se deben alejar de la singu-

laridad en r = 0 forzosamente, a tal objeto se le conoce como agujero blanco.

Uno se puede preguntar cómo es que un cambio de coordenadas nos lleve a un

proceso f́ısico diferente si hemos argumentado que las coordenadas no son más

que una etiqueta de los eventos en el espacio-tiempo. Para resolver este dilema

se deben introducir las coordenadas de Kruskal.

3.2.4. Coordenadas de Kruskal

En la sección anterior se encontró que ni las coordenadas avanzadas o las

retardadas nos eran del todo satisfactorias, en el primer caso las geodésicas

radiales nulas salientes eran discontinuas, mientras que en el segundo caso las

geodésicas radiales nulas entrantes eran discontinuas. Y no fue hasta 1961 que

Martin Kruskal encontró un sistema de coordenadas donde todas las geodésicas

radiales eran continuas y rectas, lo cual también sirvió para devisar al fin la

geometŕıa completa de la solución de Schwarzschild.
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El paso inicial para eliminar las discontinuidades, es usar las dos coordenadas

de Eddington-Finkelstein a la vez

ds2 = −1

2
(1− 2GM

r
)(dv−du+ + dv+dv−) + r2dΩ2 (58)

donde r está definido por la relación siguiente relación entre v− y v+

1

2
(v− − v+) = r + 2GM ln(

r

2GM
− 1) (59)

A partir de la métrica se puede observar que el espacio 2-dimensional definido

por Ω(θ, φ) = cte tiene la métrica simplificada

ds2 = −1

2
(1− 2GM

r
)(dv−du+ + dv+dv−) (60)

Usando (53), (50) y r∗(r) (51) se puede regresar a las coordenadas t y r∗

t =
1

2
(v− + v+)

r∗ =
1

2
(v− − v+)

Con este cambio de variable la métrica del espacio 2-dimensional toma la si-

guiente forma

ds2 = −1

2
(1− 2GM

r
)(dt2 − dr∗2)

= ω2(x)ηµνdx
µdxν

donde x0 = t y x1 = r∗. Este elemento de linea no es mas que Minkowski

2-dimensional multiplicado por un factor conforme de escala ω2(x) que solo

depende de la posición (ver apéndice A), y a pesar de que la métrica en śı es

curva, es claro que es conformemente plana. Una consecuencia de lo anterior

resalta cuando estudiamos fotones moviendose radialmente debido a que el factor

ω2(x) solo es una escala, por lo cual, la estructura del cono de luz no se modifica

y por lo tanto se ve igual al cono de luz del espacio de Minkowski. Es decir, en el

plano (t, r∗), las geodésicas radiales nulas entrantes y salientes son lineas rectas

con pendiente ±1.

Todo bien hasta este punto, sin embargo de nuevo hemos empujado la región

en r = 2GM hasta el infinito con el cambio de coordenadas (sustituir r = 2GM

en 59). Sin embargo el análisis anterior sugiere que en lugar de usar v− y v+

se debe buscar una transformación de coordenadas que preserve la naturaleza
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conforme del espacio 2-dimensional que encontramos, y a la vez se debe eliminar

el factor (1−2GM/r) que nos ha resultado problemático. Aqúı fue donde Kruskal

sugirió usar las siguientes funciones p(v−) y q(v+)

p = exp(
v−

4GM
), p = −exp( −v+

4GM
) (61)

para las cuales encontramos que

ds2 = −16G3M3

r
e−r/2GM (dpdq + dqdp) + r2dΩ2 (62)

Finalmente r = 2GM ya no presenta problema alguno para ninguno de los coe-

ficientes de la métrica. Por último, las coordenadas p y q son coordenadas nulas,

para trabajar con una coordenada tipo-tiempo y otra tipo-espacio definimos T

y R de la siguiente manera

T =
1

2
(p+ q) = (

r

2GM
− 1)1/2er/4GM sinh(

t

4GM
) (63)

R =
1

2
(p− q) = (

r

2GM
− 1)1/2er/4GM cosh(

t

4GM
) (64)

sustituyéndolos en la métrica llegamos a

ds2 =
32G3M3

r
e−r/2GM (−dT 2 + dR2) + r2dΩ2 (65)

donde r de nuevo está definido impĺıcitamente como

T 2 −R2 = (1− r

2GM
)er/2GM (66)

En estas nuevas coordenadas las geodésicas radiales están dadas por T = ±R+

cte, lo que representa ĺıneas rectas a 45 grados de los ejes, por lo tanto, el cono

de luz es el mismo que en Minkowski. También es instructivo encontrar las

ĺıneas a T = cte y R = cte. Las ĺıneas a R = cte están dadas por la condición

T 2 − R2 = cte lo que significa que son hipérbolas en el plano R − T . Por otra

parte, las ĺıneas a T = cte están dadas por T/R = tanh(t/4GM) que define

ĺıneas rectas que pasan por el origen.

Las coordenadas usuales de Schwarzschild definidas en la región −∞ < t <

∞, 0 < r < ∞ son mapeadas a las regiones I y II (ver figura 1) por lo tanto

se requeriŕıan 2 cubiertas (I,II) y (I’,II’) para cubrir toda la geometŕıa. Sin

embargo, en el caso de Kruskal sólo se necesita un único sistema coordenado.
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t cte
r cte

r=0

r=0
r =

2G
M

t =
+∞

r =
2GM

t = −∞
r =

2G
M

t =
+∞

r =
2GM

t = −∞

I’ I

II

II’

T

R

Figura 1: Diagrama de la geometŕıa de Schwarzschild en coordenadas de Kruskal.

Diagrama basado en la figura 11.6 en [16]

Las diagonales en r = 2GM , t = ±∞ definen los horizontes de eventos separando

las regiones II y II’ de las regiones I y I’. Las regiones I y I’ tipo Minkowski,

podemos identificar I como la región del espacio-tiempo fuera del agujero negro

de Schwarzschild y la región II como el interior del horizonte de eventos del

agujero negro. Cualquier part́ıcula que viaja de la región I a la región II no puede

regresar y eventualmente llegará a la singularidad en r = 0. Las regiones I’ y II’

son inaccesibles para las regiones I y II. La región II’ es similar a II, pero con la

particularidad de ser una parte del espacio-tiempo donde las part́ıculas pueden

salir (hacia las regiones I’ y I) pero no entrar. Por lo tanto la singularidad r = 0

en el pasado es un agujero blanco (ver 3.2.3) del cual las part́ıculas pueden

emanar. Con el análisis anterior ya podemos entender mejor las coordenadas

avanzadas y retardadas de Eddington-Finkelstein: las avanzadas describen la

geometŕıa de Schwarzschild en I y II, mientras que las retardadas cubren las

regiones I’ y II’. De hecho, los universos I y I’ están conectados por un agujero

de gusano (puente de Einstein-Rosen) ubicado en el origen del diagrama, aunque
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ya se demostró que ninguna part́ıcula puede viajar entre estas dos regiones [10].

Con la introducción de las coordenadas de Kruskal hemos podido extender la

solución de Schwarzschild y encontrar su geometŕıa completa.

3.2.5. Diagrama conforme

Las coordenadas de Kruskal cubren todo el espacio-tiempo, pero estas no

están acotadas, lo cual nos gustaŕıa cuando estudiamos la estructura causal de

un espacio-tiempo (ver apéndice A). Siguiendo un procedimiento similar al de

caso de Minkowski podemos compactificar las coordenadas nulas de Kruskal p

y q

p′ = arctan(
p√

2GM
), q′ = arctan(

q√
2GM

) (67)

entonces las coordenadas p′, q′ y p′ + q′ ya están acotadas entre −π/2 y π/2.

Con este cambio de coordenadas las singularidades en r = 0 son ĺıneas rectas

desde el infinito tipo-tiempo de una región al infinito tipo-tiempo de la otra

región, las ĺıneas diagonales del horizonte de eventos se mantienen mientras que

el infinito tipo-espacio se hace visible en los extremos del diagrama.

Los puntos i+, i− representan los infinitos tipo-tiempo futuro y pasado, mien-

tras que i0 es el infinito tipo-espacio. I + y I − son el el infinito nulo futuro

y el infinito nulo pasado. Las geodésicas radiales nulas se mantienen a 45 gra-

dos. Todas las geodésicas tipo-tiempo comienzan en i− y terminan en i+, las

geodésicas tipo-espacio comienzan y terminan en i0. El diagrama conforme de

Schwarzschild posiciona todo el espaciotiempo en una región finita, y muestra

su naturaleza asintóticamente Minkowski.

30
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II’

II

II’

i+
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M
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2G
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I +

I −

r = 0

r = 0

r
=

ct
e

t = cte

Figura 2: Diagrama conforme de Schwarzschild

3.2.6. Solución en más dimensiones

La solución de Schwarzschild se puede generalizar para espacios

n−dimensionales con los siguientes elementos de ĺınea

dsn = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

n−2 (68)

con f(r), dΩ2
n (el elemento de ĺınea para Sn) y Ωn el área en términos de la

función Gamma están definidos como

f(r) = 1− (
r0

r
)n−3 = 1− 16πGn

(n− 2)Ωn−2)

M

rn−3

Ωn =
2π

n+1
2

Γ(n+1
2 )

donde Gn es la constante de Newton en un espaciotiempo n−dimensional. El

comportamiento de la función f(r) se debe al potencial Newtoniano en un es-

pacio n-dimensial: 1/rn−3.
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3.3. Distribución uniforme de cargas

Consideremos ahora la forma que tomaŕıa la métrica para una distribución

uniforme de cargas. El exterior de un objeto masivo y cargado no es el vaćıo de-

bido a la presencia del campo eléctrico. Es por esto que no tomaremos la solución

de Schwarzschild para modificarla, en cambio debemos resolver las ecuaciones de

Einstein pero ahora con un tensor de momento-enerǵıa Tµν no nulo. Sin embar-

go, la simetŕıa esférica y la invarianza temporal del objeto siguen presentes por

lo tanto podemos conservar las funciones A(r), B(r) usadas en (28) y reescribir

el Ansatz para el elemento de ĺınea de la siguiente manera

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2θdφ2) (69)

Por otra parte, el tensor electromagnético de momento-enerǵıa esta dado por

Tµν =
1

µ0
(FµρFν

ρ − 1

4
gµνFρσF

ρσ) (70)

donde µ0 es la permeabilidad del vaćıo y Fµν es el tensor electromagnético en

función del vector potencial Aµ

Fµν = ∂µAν − ∂νAµ (71)

Antes de sustituir el tensor electromagnético en la ecuaciones de Einstein note-

mos que la traza de Tµν se anula

T ≡ Tµµ =
1

µ0
(FµρF

µρ − 1

4
gµµFρσF

ρσ) = 0 (72)

Y por lo tanto las ecuaciones de Einstein toman la siguiente forma

Rµν = 8πGTµν (73)

La solución que buscamos, además de satisfacer la ecuación anterior, debe sa-

tisfacer las ecuaciones de Maxwell con densidad de corriente nula

gµν∇µFνσ = µ0J
µ

= 0

∇[µFνρ] = 0

El vector potencial en coordenadas (t,r,θ,φ) toma la forma

[Aµ] = (φ(r), a(r), 0, 0) (74)
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3 LA MÉTRICA DE SCHWARZSCHILD

donde φ(r) es el potencial electrostático y a(r) es la componente radial del vector

potencial, con este Ansatz, podemos encontrar la forma del vector potencial

Fµν = E(r)


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 (75)

Las componentes temporales se anulan debido a la invarianza temporal. E(r) es

una función arbitraŕıa que solo depende de r. Además de E(r), también debemos

encontrar las funciones A(r) y B(r), y para ello usaremos primero las ecuaciones

de Maxwell.

Usando la anti-simetŕıa en Fµν podemos reescribir la divergencia covariante en

la primera ecuación de Maxwell [16] como

0 = ∇µFµν =
1√−g ∂µ(

√−gFµν) (76)

Debido a la forma de Fµν la ecuación anterior se puede simplificar a un solo

término, además sustituyendo g (el determinante del elemento de ĺınea, que

en nuestro caso está dado por g = −A(r)B(r)r4sin2θ) obtenemos la siguiente

relación

∂1(
√
ABr2F 10) = 0 (77)

donde F 10 = g1µg1νFµν = g11g00F10 = −E/(AB), por lo tanto tenemos que

d

dr
(
r2E√
AB

) = 0 (78)

Integramos para encontrar E(r)

E(r) =
k
√
A(r)B(r)

r2
(79)

La constante k resulta de la integración. Si la métrica es asintóticamente plana,

entonces cuando r → ∞, A(r) → 1 y B(r) → 1. En este régimen identificamos

a E(r) como la componente radial del campo eléctrico cuando r → ∞, por lo

tanto k está dado por Q la carga eléctrica total del objeto

E(r)
∣∣
r→∞ =

Q

r2
(80)

Por otra parte, ya podemos calcular las componentes del tensor momento-

enerǵıa, donde los únicos elementos no nulos de Fµν son F01 y F10:
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T00 = F01F0
1 = F01g

11F01 =
E2

B

T11 = F10F1
0 = F10g

00F10 = −E
2

A

T22 = −1

4
(g22[F01F

01 + F10F
10])

= −g22

4
(F01g

00g11F01 + F10g
00g11F10) =

r2E2

2AB

T33 = −1

4
(g33[F01F

01 + F10F
10])

= −g33

4
(F01g

00g11F01 + F10g
00g11F10) = T22 sin2 θ

donde hemos usado unidades naturales para µ0. De las ecuaciones de Einstein

(Rµν = Tµν) encontramos la relación entre las componentes del tensor de Ricci

y las componentes de Tµν . Rµν se encuentra a partir de las conexiones Γµνρ y

la métrica gµν que propusimos como ansatz. Siguiendo el mismo procedimiento

que en el caso de Schwarzschild llegamos a

R00 =
A′′

2B
− A′

4B
(
A′

A
+
B′

B
)− A′

rB

R11 = −A
′′

2A
+
A′

4A
(
A′

A
+
B′

B
) +

B′

rB

R22 = − 1

B
+ 1− r

2B
(
A′

A
− B′

B
)

R33 = R22 sin2 θ

Ahora ya tenemos ambos lados de las ecuaciones de Einstein, el lado

geométrico Rµν y el lado de la materia Tµν

R00 =
E2

B
, R11 = −E

2

A
, R22 =

r2E2

2AB
, R33 =

r2E2

2AB
sin2 θ

podemos encontrar relaciones entre A y B. Observemos que una primer relación

entre R00 y R11 es trivial:

BR00 +AR11 = 0 (81)

sustituyendo los valores que encontramos para R00 y R11 llegamos a la siguiente

relación explicita

A′B +AB′ = 0 (82)

Por lo tanto el producto AB es constante (ya que ∂r(AB) = 0). Podemos fijar

esta constante con el requerimiento de que la métrica debe ser plana cuando
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r →∞, y entonces A(r)B(r) = 1. Sustituimos esta relación en R22 e igualamos

a T22

r2E2

2AB
= − 1

B
+ 1− r

2B
(
A′

A
− B′

B
)

r2E2

2
= −A+ 1− A

2
(
2A′

A
)

r2

2
(
Q

r2
) = −A−A′r + 1

despejando para A+ rA′

A+ rA′ = ∂r(rA) = 1− Q2

r2
(83)

integramos para encontrar A(r)

Ar =

∫
dr −

∫
Q2

r2
dr

A(r) = 1 +
Q2

r2
+
cte

r

Para encontrar la constante de integración debemos recordar que en el caso

Q = 0 se debe recuperar la solución de Schwarzschild por ende A(r)|Q=0 =

1− 2GM/r y por lo tanto la constante es −2GM . La forma explicita de B(r) y

E(r) resultan triviales a partir de este punto. Finalmente, el elemento de ĺınea

para el espacio-tiempo fuera de un cuerpo de masa M y con una carga Q esta

dado por

ds2 = −(1− 2GM

r
+
Q2

r2
)dt2 +

1

1− 2GM
r + Q2

r2

dr2 + r2(dθ2 + sin2 θdφ2)

(84)

A tal solución se le conoce como la métrica de Reissner-Nordström, y el cam-

po electromagnético Fµν del objeto masivo está dado por la ecuación familiar

E(r) = Q/r2. Al igual que con la solución de Schwarzschild sin carga, se debe

considerar la geometŕıa completa para llegar al agujero negro con carga, sin em-

bargo la presente no abordaremos la exploración de esta geometŕıa, para tener

un tratado general se puede dirigir a los siguientes trabajos [16] [28] [4].
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4. Agujeros negros en AdS

Hemos hablado sobre agujeros que son asintóticamente planos. Sin embar-

go, los agujeros negros en un espacio asintóticamente anti-de Sitter han sido

de mucho interés, especialmente en el marco de la correspondencia AdS/CFT.

Históricamente, con el descubrimiento de las propiedades termodinámicas ex-

hibidas por agujeros negros, se encontró que el agujero negro de Schwarzschild

en un espacio asintóticamente plano tiene un calor especifico negativo y por

lo tanto es inestable termodinámicamente, caso contrario a un agujero negro

de Schwarzschild en un espacio asintóticamente AdS (para radios del horizonte

suficientemente grandes [26]). En esta sección exploraremos algunas propieda-

des de los agujeros negros en AdS, comenzando con resultados sobre la termo-

dinámica de agujeros negros para después introducir la geometŕıa del espacio

Shcwarzschild-AdS.

4.1. Propiedades termodinámicas de agujeros negros

Como lo mencionamos en 2, Hawking y Bekenstein encontraron que los agu-

jeros negros tienen una temperatura y entroṕıa dadas por

TH =
k

2π
, SBH =

A

4

donde κ y A son la constante de gravedad de superficie y el área del agujero negro

respectivamente. Ambas relaciones dependen de cantidades en la frontera y por

lo tanto son una manifestación del principio holográfico. A partir de entonces

se inicia la exploración de las propiedades termodinámicas para diferentes tipos

de agujeros negros.

4.1.1. Solución de Schwarzschild

En la sección anterior estudiamos la solución del agujero de Schwarzschild.

Su temperatura TH es

TH =
1

8πM
(85)

El valor de κ en el caso de Schwarzschild es de 1/4M [24]. Por lo tanto, su calor

especifico está dador por ∂TH

∂M

T ′ =
−1

8πM2
(86)
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Consideremos entonces tal agujero negro en equilibrio con una reserva de calor

infinita, cualquier fluctuación positiva en la temperatura ocasionaŕıa que este

irradiara masa, mientras la temperatura continuara subiendo hasta que el agu-

jero negro se evapora. Una fluctuación negativa en la temperatura haŕıa que el

agujero negro absorbiera más radiación de la que radia incrementando aśı su

masa. Entonces, el agujero negro se enfŕıa, absorbe masa a una tasa de cambio

mayor y crece indefinidamente.

4.1.2. Agujero negro en una caja

Para curar está inestabilidad termodinámica, se consideró poner agujero

negro de Schwarzschild en una caja de volumen infinito y capacidad caloŕıfica

finita [13]. Aśı fue como Hawking encontró que el agujero negro puede estar

en equilibrio termodinámico si la enerǵıa de radiación satisface Erad <
1
4M . A

continuación resumiremos una derivación rápida de esta condición:

Sabemos que un sistema está en equilibrio termodinámico si se cumple que

S = Srad + SBH (87)

sea un máximo sujeto a la restricción de la enerǵıa total, E = Erad +M , donde

S es la entroṕıa total. Esto se traduce a las siguientes condiciones:

1. d(S − λE) = 0, donde λ es el multiplicador de Lagrange.

2. ∂2Srad

∂E2
rad

+ ∂2SBH

∂M2 < 0

De la primera condición obtenemos

∂Srad
∂Erad

dErad +
∂SBH
∂M

dM − λdErad− λdM = 0, oλ =
∂Srad
∂Erad

=
∂SBH
∂M

(88)

Lo cual nos dice que el agujero negro está en equilibrio con la radiación: Trad =

TBH . La segunda condición implica que

∂2Srad
∂E2

rad

+
∂2SBH
∂M2

< 0, o− T−2
rad

∂Trad
∂Erad

− T−2
BH

∂TBH
∂M

< 0 (89)

y debido a que la enerǵıa irradiada por el agujero negro es proporcional a la

cuarta potencia de temperatura, tenemos que

∂Trad
∂Erad

=
1

4

Trad
Erad

(90)

Por lo tanto, la segunda condición se reduce a Erad <
1
4M .
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4.2. Solución Schwarzschild-AdS

A pesar de que poner el agujero negro en una caja con las condiciones

antes mencionadas nos lleva a una solución termodinámicamente estable,

la situación planteada no es para nada una situación f́ısica. Aśı que una

construcción más natural fue poner el agujero negro en un espacio-tiempo

que no es asintóticamente plano. En 2.1 introducimos un espacio-tiempo con

constante cosmológica negativa, el cual se puede pensar como un espacio con

una barrera de potencial que aparece cuando uno se acerca asintóticamente al

infinito, por lo tanto también puede ser usado como una caja “natural”. En

está sección retomaremos y generalizaremos la solución encontrada para AdS2,

después introduciremos el epacio-tiempo que usaremos para la construcción de

la cuña causal, es decir Schwarzschild-AdS.

El espacio AdS es una solución a las ecuaciónes de Einstein con la siguiente

constante cosmológica

Rµν = Λgµν , Λ = − 3

b2
< 0 (91)

También lo podemos pensar como una subvariedad de R2,n−1. A su vez, la

métrica para R2,n−1 es

ds2 = −(dx0)0 − (dxn)2 +

n−1∑
i=1

(dxi)2 (92)

El espacio AdS n−dimensional (AdSn), está definido como el conjunto de puntos

a una distancia b del origen:{
(x0, ..., xn)| − (x0)2 − (xn)2 +

n−1∑
i=1

(xi)2 = −b2
}

(93)

Por construcción este espacio tiene grupo de isometŕıa SO(2, n− 1), análogo al

grupo de Lorentz SO(1, n) asociado al espacio de Minkowski. Este hecho fue

importante en el establecimiento de la correspondencia.

Existen 4 conjuntos de coordenadas generalmente usados para describir AdS.

Primero tenemos las coordenadas globales

x0 = b cosh ρ cos τ, xn = b cosh ρ sin τ, xi = R sinh ρΩi (94)
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4 AGUJEROS NEGROS EN ADS

donde τ ∈ [0, 2π), ρ ≥ 0, i = 1, ..., n−1 y
∑
i Ω2

i = 1. Sustituyendo en la métrica

obtenemos

ds2 = b2(− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
n−2) (95)

donde dΩ2
n−2 es la métrica de Sn−2. Las coordenadas (τ ,ρ,Ω) son las mismas

coordenadas usadas en 2.1, estás cubren todo el espacio. Recordemos también

que existe la posibilidad de tener curvas tipo-tiempo que sean cerradas. La

manera de evadir esto es desenvolviendo la coordenada τ para que abarque de

−∞ < τ <∞. La topoloǵıa de AdS se puede observar mejor si se compacta la

métrica usando tan θ = cosh ρ.

ds2 =
b2

cos θ
(−dτ2 + dθ2 + sin2 ρdΩ2

n−2) (96)

Esta métrica es conforme a la métrica del espacio de Minkowski también conoci-

da como el universo estático de Einstein dŝ2 = −dτ2 +dθ2 +sin2 ρdΩ2
n−2. Por lo

tanto, AdS es conforme a la mitad de el universo estático de Einstein. En el ca-

so de AdS2, θ toma valores entre (−π2 , π2 ), para cualquier otro caso θ va de 0 a π
2 .

Otras coordenadas que también son usadas son las coordenadas de Poincaré,

(t, x̂i, z) para i = 1, ..., n− 1

x0 =
1

2z
(z2 + b2 +

∑
i

(x̂i)2 − t2), xi =
Rx̂i

z

xn−1 =
1

2z
(z2 − b2 +

∑
i

(x̂i)2 − t2), xn =
bt

z

sustituyendo estas nuevas coordenadas en la métrica obtenemos

ds2 =
b2

z2
(−dt2 +

∑
i

(x̂i)2 + dz2). (97)

Sin embargo, para la discusión de la estabilidad termodinámica del agujero ne-

gro de Schwarzschild-AdS trabajaremos en las coordenadas estáticas (t, r, θ, φ),

donde t = bτ , r = b sinh ρ. A continuación nos restringiremos a el caso AdS4.

En coordenadas estáticas la métrica toma la siguiente forma

ds2 = −(1 +
r2

b2
)dt2 + (1 +

r2

b2
)−1dr2 + r2dΩ2 (98)

Cualquier métrica que tienda asintóticamente a (98) se le denomina asintótica-

mente AdS.
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4 AGUJEROS NEGROS EN ADS

Como ya lo adelantamos, la métrica de AdS tiene una barrera de potencial in-

finita ubicada en el infinito asintótico. Para confirmar lo anterior usaremos la

ley de Tolman la cual establece que la enerǵıa medida en el infinito asintótico

está corrida al rojo comparada con la enerǵıa medida localmente [27]. Consi-

deremos una part́ıcula con un cuadrimomento Pµ = (−E, pi), y un observador

estático en el infinito con una cuadrivelocidad Uµ = kµ/
√
−k2, donde k = ∂/∂t.

La enerǵıa medida por el observador local esta dada por

E = −gµνUµP ν =
E∞√
−k2

=
E∞√−g00

(99)

Por lo tanto, E está corrida al rojo por un factor
√−g00 de E∞. En el caso de

la métrica de AdS, el elemento −g00 está dado por (1 + r2

b2 ), lo cual indica que

E está corrida al rojo hasta el valor 0 cuando r →∞. Por ende, la temperatura

T también estará corrida al rojo por el mismo factor, mostrando aśı la barrera

infinita de potencial ubicada en el infinito asintótico de AdS.

4.2.1. Diagrama Conforme

De la métrica de AdS en coordenas de Poincaré (97) podemos ver que se

trata de la métrica de Minkowski multiplicada por un factor conforme, por lo

tanto el diagrama conforme también estará formado por un triángulo. Lo cuál

resulta contradictorio ya que dos espacios-tiempo distintos no pueden tener el

mismo diagrama. Lo que sucede aqúı es que las coordenadas de Poincaré no

cubren por completo al espacio AdS, sólo cubren una parte (un periodo en la

coordenada τ) que se denomina el ”parche”de Poincaré. Aśı pues el diagrama

triangular tipo Minkowski es solo para el parche de Poincaré. Por otra parte,

a partir de la métrica en coordenadas globales (96) se puede observar que el

diagrama conforme para AdS2 es una cinta infinita (debido al rango infinito

de la coordenada τ) que va de θ = −π/2 hasta θ = π/2, donde el parche de

Poincaré triangular comparte frontera con la frontera de AdS2.
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τ = −π

τ = π

parche de Poincaré

fr
o
n
t
e
r
a

d
e
A
d
S

τ = 0

θ = π/2 θ = −π/2

Figura 3: Diagrama conforme para AdS2

El diagrama conforme para AdSn (ahora 0 < θ < π
2 ) es un cilindro obtenido

por la revolución de la cinta infinita al rededor del eje θ = 0, este ćırculo de

revolución representa una esfera n − 2 dimensional, y por ende la frontera de

AdSn es Rτ × Sn−2.

4.2.2. Al fin, el agujero negro en AdS

En este punto, por inspección podemos proponer una métrica que se vea

tipo Schwarzschild para r pequeño y tipo AdS para r asintótico, a esta métrica

se le conoce como Schwarzschild-AdS

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dφ2 + sin2φdΩ2

2) (100)

tal métrica satisface las ecuaciones de Einstein en el vaćıo con constante cos-

mológica negativa. El agujero negro tiene el horizonte de eventos en r = r+,

tal valor es la ráız más grande del polinomio f(r) = r2 + 1 − r2h(r2h+1)
r2 . Para

calcular su temperatura (y posteriormente probar su estabilidad termodinámi-

ca) podŕıamos primero encontrar su gravedad de superficie o bien realizar una

rotación de Wick τ = it y observar la métrica cerca del horizonte de eventos

[15]:

41



4 AGUJEROS NEGROS EN ADS

Sea r = r+ + ρ2 con ρ� 1, expandiendo f(r) en ρ a primer orden obtenemos

f(r) =
b2ρ2 + 3r2

+ρ
2 + 3r2

+ρ
4 + ρ6

b2(r+ + ρ2)
≈ b2 + 2r2

+

b2r+

sustituyéndolo en la métrica para encontrar su forma cerca del horizonte obte-

nemos

ds2 =
4b2r+

b2 + 3r2
+

((
b2 + 3r2

+

2b2r+
)ρ2dτ2 + dρ2) + r2

+dΩ2

el término dentro de los paréntesis se parece a las coordenadas polares ds2 =

r2dθ2+dr2, si θ tuviera periodo 2π entonces seŕıa la métrica del plano, cualquier

otro valor de θ resultaŕıa en una singularidad cónica en r = r+ que para evitarla

el periodo de τ debe ser β0 = 4πb2r+
b2+3r2+

. Se sabe que la temperatura de un agujero

negro es el inverso de su periodo [15], por lo tanto

TBH = β−1
0 =

b2 + 3r2
+

4πb2r+
(101)

Podemos observar que la temperatura no decrece de manera monótona, a di-

ferencia del agujero negro de Schwarzschild, en AdS este adquiere una tem-

peratura mı́nima (T =
√

3/(2πb)). Para cualquier temperatura mayor que la

mı́nima existen 2 soluciones del agujero negro en equilibrio (r < r0 y r > r0),

el primero tiene calor espećıfico negativo y por lo tanto es termodinámicamente

inestable mientras que el segundo (r > r0) śı tiene calor espećıfico positivo.

Poner al agujero negro en un espacio asintóticamente AdS le otorgó estabilidad

termodinámica. Para cualquier temperatura menor a la mı́nima no existe una

solución de agujero negro, lo que se tiene es radiación térmica. Hawking y Page

encontraron que a pesar de que los agujeros negros pueden estar en equilibrio

térmico con radiación, estos no son un estado preferido debajo de una cierta

temperatura. Una vez alcanzada esta temperatura ocurre una transición de fase

en la cual los agujeros negros se convierten en un estado preferido [15]. Esta

transición seŕıa reinterpretada posteriormente por Witten en el marco de la co-

rrespondencia AdS/CFT como una transición de fase en la teoŕıa gauge entre

los estados confinado y no confinado [35]. La termodinámica de agujeros negros

en AdS es mucho más rica que la de sus primos asintóticamente planos, y con la

aparición de la correspondencia se encontró una conexión entre estos y las pro-

piedades termodinámicas de las teoŕıas gauge. Desde entonces se ha trabajado

en agujeros negros en AdS con las propiedades de masa, carga y rotación.
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4 AGUJEROS NEGROS EN ADS

A continuación mostramos la métrica de Reissnerr-Nordstrom, pero antes gene-

ralizaremos la solución Schwarzschild-AdS a dimensiones más altas.

La métrica en coordenadas globales del agujero negro en un espacio AdS d+ 1-

dimensional con un radio de curvatura b está dado por

ds2 = −f(r)dt2 +
dr2

f(r)
+r2(dφ2 +sin2 φdΩ2

d−2), f(r) =
r2

b2
+1− 2µ

rd−2
(102)

donde µ tiene la forma

µ =
8πGM

(d− 1)V ol(Sd−1)
(103)

con M como la masa del agujero negro. El horizonte de eventos se encuentra en

r = rh tal que f(rh) = 0, mientras que la temperatura de Hawking es

TH =
dr2
h + (d− 2)b2

4πb2rh
(104)

Uno también podŕıa poner un agujero negro de Reissner-Nordstrom dentro del

espacio anti-de Sitter agregando el parámetro Q a la función f(r) [5]

f(r) =
r2

b2
+ 1− 2µ

rd−2
+

q2

r2d−4
(105)

q es un parámetro en función de la carga Q =
√

2(d− 1)(d− 2)(V ol(Sd−1))q

del potencial vectorial (parte eléctrica)

A = (−1

c

q

rd−2
+ Φ)dt (106)

donde c = (2(d−2)/(d−1))1/2 y Φ es una constante que se fija tal que At(r+ =

0). r+ es la ráız positiva más grande del polinomio f(r), el cual debe satisfacer

la siguiente relación

(
d

d− 2
)r2d−2

+ + b2r2d−4
+ ≥ q2b2 (107)

con tal de que la métrica describa un agujero negro cargado con un horizonte

sin singularidad en r = r+. Por último, el valor de Φ está dado por q/(crd−2
+ ).

Las soluciones para el agujero negro de Kerr en AdS fueron estudiadas

por primera vez en el contexto de la correspondencia AdS/CFT en [2] donde

estudian la solución Kerr-AdS en 4 y 5 dimensiones. Los únicos parámetros

que se le pueden agregar al agujero negro son Q,M y J , aśı lo establecen los

teoremas de no pelo[21].
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5 CAUSALIDAD

5. Causalidad

El concepto de causalidad, es decir, que un evento A no pueda ser afectado

por un evento B si este no se encuentra en el pasado de su cono de luz, o

que un evento B no pueda afectar a un evento A si este no se encuentra en el

futuro de su cono de luz, es esencial en una teoŕıa de la f́ısica, y en relatividad

juega un papel fundamental. En el caso de un espacio-tiempo plano, para a un

evento p se tiene la definición anterior de causalidad (en términos de eventos en

el cono de luz), mientras que en un espacio-tiempo curvo la estructura causal

vaŕıa globalmente a pesar de que localmente es de la misma naturaleza que

en el caso anterior. A continuación motivaremos la construcción de la cuña

causal introduciendo algunos conceptos usados en el estudio de la estructura

causal de un espacio-tiempo. Los conceptos asociadas a la estructura causal

(como dominios de dependencia y de influencia) son los ingredientes para la

construcción de la cuña causal.

5.1. Definiciones, resultados básicos y la Cuña Causal

Sea M un espacio-tiempo con una métrica asociada gab. En cada punto

p ∈M tenemos un espacio tangente a p, Tp, cuyo origen es el cono de luz de p,

por lo tanto el cono de luz es un subconjunto de Tp y no de M . Para definir el

futuro y el pasado de p en el cono de luz es necesario que M sea orientable en

el tiempo, es decir, que sea posible hacer una designación continua del futuro y

el pasado mientras que p vaŕıa en M . En tal caso, una curva tipo-tiempo o nula

ubicada en el el futuro del cono de luz será una curva dirigida hacia el futuro.

Todo espacio-tiempo es orientable en el tiempo si contiene un campo vectorial

(una función continua sobre M) tipo-tiempo que no sea nulo en ningún punto.

De aqúı en adelante supondremos que el espacio-tiempo es siempre orientable

en el tiempo.

Definición 1: Una curva causal γ por definición es una curva que no es

tipo-espacio, es decir, puede ser nula o tipo-tiempo.
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5 CAUSALIDAD

5.1.1. Dominio de Influencia

Definición 2: ∀p ∈ M , el futuro causal de p o dominio de influencia de p,

denotado como J+(p), se define como

J+(p) ≡ {q ∈M | ∃ una curva causal γ dirigida hacia el futuro que va de p a q}

De manera similar, el pasado causal de p, J−(p), se define en términos de las

curvas causales dirigidas hacia el pasado.

Las definiciones para J±(p) se pueden extender de un punto p una región S

Definición 3: El dominio de influencia de una región S, J [S] es la unión

de los dominios de influencia ∀p ∈ S

J±[S] =
⋃
p∈S

J±(p)

J+[S]

J−[S]

S
p

γ+

.

Figura 4: Dominio de influencia para una región S

En la sección 4 nos aseguramos de usar coordenadas que evitaran curvas

tipo-tiempo cerradas en Schwarzschild-AdS debido a que estas violaban

la condición de causalidad del espacio-tiempo al conducirnos a paradojas

como la siguiente: considera a un observador que viaja sobre una de estas

curvas S1, en algún momento este observador llegaŕıa al punto justo an-

tes de su propia partida pudiendo influenciar su salida inicial. Para ubicar

las regiones donde se viola la causalidad se hace uso de las siguientes definiciones
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Definición 4: Una región de un espacio-tiempo M donde se viola la causa-

lidad es aquella para la cual un conjunto de puntos x se encuentran conectados

consigo mismos por una curva causal γ

En un espacio-tiempo causal, la región anterior es el conjunto vaćıo. Por

lo tanto, para un punto p en una región donde se viola la causalidad, la

intersección entre el pasado y el futuro causal es diferente del vaćıo, lo cual nos

lleva a la siguiente definición

Definición 5: La región asociada a un punto p donde se viola la causalidad

está definida como

J0(p) ≡ J+(p) ∩ J−(p)

Al promover p a una región S obtenemos lo siguiente

Definición 6: La región donde se viola la causalidad está definida como

J0[S] ≡
⋃
p∈S

J0(p)

Por lo tanto para que un espacio-tiempo sea causal la región J0(M) debe ser el

conjunto vaćıo.

5.1.2. Dominio de Dependencia

Hemos descrito los dominios de influencia en los cuales nos apoyamos para

definir a un espacio-tiempo como causal, particularmente sabemos que J+[S]

contiene la colección de eventos que podŕıan ser influenciados por el conjunto

de eventos que conforman a la región S. Sin embargo, los eventos p ∈ J+[S] no

están determinados por S. Y debido que todos los puntos en S están conectados

por una curva causal con todos los eventos en J+[S], existe una región D ⊂ J

que estŕıa completamente determinada por los eventos en S, a tal región se le

conoce como desarrollo futuro de Cauchy o dominio de dependencia de S.

Definición 7: El dominio de dependencia futura de S, denotado D+[S], es

D+[S] ≡ {p ∈M | Toda curva causal pasada γ− a través de p intersecta a S}

De manera similar, el dominio de dependencia pasada de S, D−[S] se define

intercambiando a p ∈ J+[S] y a las curvas causales dirigidas hacia el pasado γ−
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por p ∈ J−[S] con curvas causales dirigidas hacia el futuro γ+. Aśı, el dominio

completo de dependencia de S, D[S], es el conjunto definido por

D[S] = D+[S] ∪D−[S] (108)

Para que la definición anterior se mantenga es necesario que las que las curvas

causales γ∓ no tengan como punto final a un punto q en el pasado (para el

caso de γ−) o a un punto q en el futuro (para el caso de γ+). D[S] representa

el conjunto completo de eventos cuyas condiciones deben estar determinadas si

conociéramos las condiciones en S.

D+[S]

D−[S]

S
p

γ−
.

Figura 5: Dominio de influencia para una región S

Cercanamente relacionado con el dominio de dependencia, tenemos al con-

cepto de hiperbolicidad global. Se dice que un espacio-tiempo es globalmente

hiperbólico si posee una superficie de Cauchy. Una superficie de Cauchy es un

conjunto cerrado, Σ, acronal (donde dos puntos cualesquiera no pueden ser uni-

dos por una curva causal) tal que D[Σ] = M . Por lo tanto, en un espacio-tiempo

globalmente hiperbólico el futuro (o pasado) del universo puede ser predicho (o

retrocedido) a partir de la evolución de la información contenida en Σ. Aśı,

podŕıamos pensar a la superficie de Cauchy como un mismo instante de tiempo

a través de todo el espacio-tiempo M .

Está sección está basada en las siguientes referencias [14], [33], [32] y [11].
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5.1.3. Cuña Causal

Consideremos un espacio-tiempo causal asintóticamente anti-de Sitter,

M̄ = M ∪ ∂M, donde M es el bulto y ∂M su frontera (tipo-tiempo)

ubicada en el infinito conforme B que a su vez es un espacio d-dimensional

con una métrica Lorentziana fija. Supongamos que B admite una foliación

en superficies de Cauchy, ΣB y tomemos una subregiónA de ΣB con frontera ∂A.

Sabemos que el dominio completo de dependencia de A, que denotaremos

♦A, está dado por

♦A = D+
B [A] ∪D−B [A] (109)

Entonces, la cuña causal, �A, es el conjunto de puntos p ∈M que se encuentran

en la intersección de los dominios de influencia futura y pasada de ♦A

�A = J−[♦A] ∩ J+[♦A] (110)

A

J+[♦A]

J−[♦A]
♦A

�A

Figura 6: Cuña Causal �A en AdS planar

La construcción de la cuña causal está motivada por el problema de la re-

construcción holográfica del espacio-tiempo en el marco de la correspondencia
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AdS/CFT, se propuso en [18] como un medio para encontrar la información con-

tenida en una región en el bulto que se puede cuantificar a partir de una región,

A, en la frontera, haciendo uso de relaciones causales. A continuación construire-

mos la cuña causal para un agujero negro en un espacio-tiempo asintóticamente

anti-de Sitter para estudiar como cambia su estructura en función del radio del

agujero negro y de la medida de la región A, lo cual representa la parte principal

de esta tesis.
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6. Cuña Causal en Schwarzschild-AdS

En la sección anterior encontramos que la cuña causal está compuesta por

curvas causales en el bulto del espacio-tiempo, es por esto que su frontera

está compuesta por geodésicas nulas. Por lo tanto, es necesario encontrar las

geodésicas nulas del espacio-tiempo en el cual construiremos la cuña causal �A.

El espacio-tiempo que usaremos será el agujero negro de Schwarzschil-AdSd+1,

en particular, el caso d = 4 en coordenadas globales.

6.1. Shwarzschild-AdS4+1 en coordenadas globales

Consideremos el agujero negro Schwarzschild-AdSd+1 100 con radio de cur-

vatura b igual a la unidad. El agujero negro estará caracterizado por su radio

del horizonte, rh, en unidades de AdS, donde rh ∈ (0,∞). Aśı, la función f(r)

y el elemento de ĺınea tendrán la siguiente forma

f(r) = r2 + 1− r2
h(r2

h + 1)

r2
, ds2 = −f(r)dt2 +

dr2

f(r)
+ r2(dφ2 + sin2φdΩ2

2)

En el caso de d=4, podemos simplificar el problema a uno 3-dimensional redu-

ciendo la geometŕıa Sd−1 en la métrica a un solo ángulo no trivial φ ∈ [0, π] el

cuál también caracterizará a la región A, φA, en la frontera. Con está reducción

es conveniente compactar la coordenada radial, r = tan ρ, tal que ρ ∈ [0, π/2) y

usar las coordenadas globales (t, ρ, φ). Después del cambio de variable tenemos

que dr2 = sec2 ρdρ2, además si introducimos la constante µ = r2
h(r2

h + 1), f(r)

toma la forma

f(r) = tan2 ρ+ 1− µ

tan2 ρ
= sec2 ρ− µ

tan2 ρ

= sec2 ρ− µcos2 ρ

sin2 ρ
× cos2

cos2
=

1

cos2
− µ cos4 ρ

cos2 ρ sin2 ρ

=
1

cos2 ρ
(1− µcos4 ρ

sin2 ρ
).

realizaremos una sustitución más en f(r) para introducir una función g(ρ),

f(r) =
g(ρ)

cos2 ρ
, donde g(r) = 1− µcos4 ρ

sin2 ρ

ahora sustituimos dr y f(r) en el elemento de ĺınea

ds2 = − g(ρ)

cos2 ρ
dt2 +

cos2

g(ρ)
sec4 ρdρ2 + tan2 ρdφ2
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para finalmente obtener la métrica de Schwarzschild-AdS4+1 reducida a un pro-

blema efectivo en solo tres coordenadas

ds2 =
1

cos2 ρ
(−g(ρ)dt2 +

dρ2

g(ρ)
+ sin2 ρdφ2) (111)

6.2. Geodésicas Nulas

Usaremos el principio variacional sobre el elemento de ĺınea para caracterizar

a las geodésicas nulas en función de las coordenadas (t, ρ, φ).

I =
1

2

∫
gµν

dxµ

dλ

dxν

dλ
dλ

Sustituimos los términos del elemento de ĺınea gµν y aplicamos la variación

I =
1

2

∫
[− g(ρ)

cos2 ρ
(
dt

dλ
)2 +

1

g(ρ) cos2 ρ
(
dρ

dλ
)2 + tan2 ρ(

dφ

dλ
)2]dλ (112)

Para encontrar como cambia una coordenada respecto de un parámetro af́ın λ, se

tiene que considerar la variación únicamente en esa coordenada, xµ → xµ+δxµ.

Comenzaremos con la coordenada t, en tal caso el único término que sobrevive

a la variación es el siguiente:

δ

[
− g(ρ)

cos2 ρ
(
dt

dλ
)2

]
= − 2g(ρ)

cos2 ρ

dt

dλ

d(δt)

dλ
(113)

Por lo tanto, para encontrar la ecuación geodésica se debe resolver la siguiente

integral

δI = −
∫

[
g(ρ)

cos2 ρ

dt

dλ

d(δt)

dλ
]dλ (114)

Procedemos a integrar por partes, usando
∫
udv = vu−

∫
vdu, tomando u y dv

de la siguiente manera

u =
g(ρ)

cos2 ρ
· dt
dλ
, dv =

d(δt)

dλ
· dλ

tal que

du =
g(ρ)

cos2 ρ

d2t

dλ2
+
dt

dλ

d

dλ
(
g(ρ)

cos2 ρ
), v = δt

La derivada del término (g(ρ)/ cos2 ρ) respecto de λ la calculamos a continuación

d

dλ
(
g(ρ)

cos2 ρ
) =

˙g(ρ) cos2 ρ dρdλ + 2g(ρ) cos ρ sin ρ dρdλ
cos4 ρ
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Una vez derivado el término lo agregamos a du

du =
g(ρ)

cos2 ρ

d2t

dλ2
+
dt

dλ
· ġ(ρ) cos2 ρ dρdλ + 2g(ρ) cos ρ sin ρ dρdλ

cos4 ρ

=
g(ρ)

cos2 ρ

d2t

dλ2
+

[
ġ(ρ) cos2 ρ+ 2g(ρ) cos ρ sin ρ

cos4 ρ

]
dt

dλ

dρ

dλ

Antes de regresar el término du a la formula para la integración por partes, hay

que recordar el producto vu se anula ya que v = δt, y por definición δt se anula

en los extremos de la integral δI. Aśı que solo nos queda

δI =

∫
udv = −

∫
du · δtdλ (115)

Debido que se buscan puntos estacionarios, queremos que δI → 0 para cualquier

δt, por lo tanto buscamos soluciones a la ecuación du = 0, la cuál es equivalente

a la ecuación geodésica

0 =
g(ρ)

cos2 ρ

d2t

dλ2
+

[
ġ(ρ) cos2 ρ+ 2g(ρ) cos ρ sin ρ

cos4 ρ

]
dt

dλ

dρ

dλ

=
d2t

dλ2
+

cos2 ρ

g(ρ)

[
ġ(ρ) cos2 ρ+ 2g(ρ) cos ρ sin ρ

cos4 ρ

]
dt

dλ

dρ

dλ

Haciendo las simplificaciones necesarias tenemos

d2t

dλ2
+ (

ġ(ρ)

g(ρ)
+ 2 tan ρ)

dt

dλ

dρ

dλ
= 0 (116)

Aqúı se observa que la ecuación es de la forma 40 con la siguiente conexión de

Christoffel

Γ0
µν =

ġ(ρ)

g(ρ)
+ 2 tan ρ (117)

Antes de resolver la ecuación (116), encontraremos la ecuación para la coordena-

da φ realizando el mismo procedimiento. En este caso el término que sobrevive

a la variación δφ es

δ

[
tan2 ρ(

dφ

dλ
)2

]
= tan2 ρ

dφ

dλ

d(δφ)

dλ
(118)

Por lo tanto la integral a resolver δI a resolver es la siguiente

δI =
1

2

∫ [
tan2 ρ

dφ

dλ

d(δφ)

dλ

]
dλ (119)

De nuevo integramos por partes con u y dv como sigue

u = tan2 ρ · dφ
dλ
, dv =

d(δφ)

dλ
· dλ

tal que

du = 2 tan ρ sec2 ρ
dφ

dλ

dρ

dλ
+ tan2 ρ

d2φ

dλ2
, v = δt
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Por lo tanto la ecuación geodésica estará dada por du = 0 (ver derivación de

ecuación geodésica para t)

d2φ

dλ2
+

2 sec2 ρ

tan ρ
· dφ
dλ

dρ

dλ
= 0 (120)

Ahora solo falta la ecuación geodésica para la coordenada ρ, la cual puede ser

encontrada una vez que encontremos ṫ y φ̇ y las sustituimos en el elemento de

ĺınea para después despejar a ρ̇. A continuación resolveremos para ṫ.

A la ecuación (116) le aplicamos el cambio de variable u = dt
dλ tal que

du

dλ
+ (

ġ(ρ)

g(ρ)
+ 2 tan ρ) · udρ

dλ
= 0 (121)

La anterior es una ecuación diferencial de primer orden y por lo tanto la podemos

resolver de la siguiente manera∫
du

u
= −

∫
(
ġ(ρ)

g(ρ)
+ 2 tan ρ) · dρ

lnu = − ln g(ρ) + 2 ln cos ρ

= ln
cos2

g(ρ)

Entonces, dt/dλ = u estará dado por la siguiente ecuación

ṫ =
cos2 ρ

g(ρ)
(122)

Para encontrar dφ/dλ tomaremos un atajo, en lugar de resolver la ecuación

diferencial (120) observamos que la coordenada φ es una coordenada ćıclica ya

que no aparece expĺıcitamente en el elemento de ĺınea (111) por lo tanto existe

una constante de movimiento asociada a φ que en este caso se trata del momento

angular `
sin2 ρ

cos2 ρ
φ̇ = tan2 ρ = `

La constante ` caracterizará a cada geodésica y puede tomar valores entre (0, 1)

(hay que recordar que ρ toma valores entre 0 y π
2 ). De la ecuación anterior

despejamos para φ̇

φ̇ = ` tan2 ρ (123)

Por último tenemos que encontrar ρ̇, lo cual es relativamente simple debido a

que ya conocemos ṫ y φ̇ a los cuales podemos sustituir en la condición de nulidad
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para una geodésica: gµνV
µV ν = 0

0 = gµν
dxµ

dλ

dxν

dλ

= − g(ρ)

cos2 ρ
(
dt

dλ
)2 +

sec2 ρ

g(ρ)
(
dρ

dλ
)2 + tan2 ρ(

dφ

dλ
)2

= − g(ρ)

cos2 ρ
· cos4 ρ

g2(ρ)
+

sec2 ρ

g(ρ)
· ρ̇2 + tan2 ρ · `2

tan4 ρ

= −cos2 ρ

g(ρ)
+

sec2 ρ

g(ρ)
ρ̇2 +

cos2 ρ

sin2 ρ
· `2

De la ecuación anterior ya podemos despejar para dρ
dλ

ρ̇ = cos2 ρ

√
1− `2 g(ρ)

sin2 ρ

Recordemos que ρ es la coordenada radial, entonces, si dρ
dλ > 0 las geodésicas

se están alejando de la singularidad en ρ = 0, y si dρ
dλ < 0 las geodésicas están

acercándose a la singularidad. Por lo tanto podemos agregar un parámetro η =

±1 a la ecuación para ρ̇ para etiquetar a las geodésicas salientes (η = +1) y a

las geodésicas entrantes (η = −1). Por lo tanto la ecuación diferencial para ρ en

términos del parámetro af́ın es la siguiente

ρ̇ = η cos2 ρ

√
1− `2 g(ρ)

sin2 ρ
(124)

6.3. Caracterización de las Geodésicas

Hemos encontrado las ecuaciones diferenciales (116, 123 y 124) para las

coordenadas de las geodésicas en el espacio-tiempo Schwarzschild-AdS 3-

dimensional, donde cada geodésica está caracterizada por su momento angular

`. Sólo las geodésicas con un momento angular suficientemente grande tienen

un punto de retorno ρ̇ = 0 en el cual la función ρ(λ) cambia de decreciente a

creciente o dicho de otra manera, el punto donde las geodésicas pasan de ser

entrantes (η = −1) a salientes (η = 1). Estos puntos de retorno están dados por

las ráıces reales del polinomio ρ̇ = 0, las cuales existen para momentos angulares

` en el rango (`0,
π
2 ), donde

`0 =

√
4µ

1 + 4µ
(125)
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El cual corresponde a la órbita circular nula. Por otra parte, la ráız más grande

del polinomio, la cual es la posición radial del punto de retorno está dada por

ρ0 = tan−1

√√√√ `2

2(1− `2)

[
1 +

√
1− 4µ(

1− `2
`2

)

]
(126)

Las geodésicas con ` < `0 no tienen punto de retorno por lo cual terminan en la

singularidad en r = 0. Hay que aclarar que en los puntos de retorno la geodésica

no se encuentra estática ya que φ̇(ρ0) 6= 0 por lo tanto śı habrá desplazamiento

angular a pesar de que no existe desplazamiento radial. Una vez determinados

los puntos de retorno debemos encontrar las integrales para las trayectorias.

Observamos que t y φ dependen de ρ por lo tanto definiremos sus integrales en

términos de una función h(ρ). Sean J(ρ) y h(ρ) de la siguiente forma

J(ρ) =

√
1− `2 g(ρ)

sin2 ρ
, tal que

dρ

dλ
= η cos2 ρ · J(ρ)

y

h(ρ) =
1

J(ρ)
, tal que cos2 ρ · dλ =

h(ρ)dρ

η

Podemos sustituir el término cos2 ρ · dλ en función de h(ρ) en la ecuación dife-

rencia (116)

dt

dλ
=
cos2ρ

g(ρ)
, tal que dt =

1

g(ρ)
(cos2 ρ · dλ) =

1

g(ρ)
· h(ρ)

η
dρ

Integramos la ecuación anterior recordando que las coordenadas están caracte-

rizadas por la geodésica con momento angular `

t`(ρ) = ti +

∫ ρf

ρi

h`(ρ̃)

η · g(ρ̃)
dρ̃ (127)

De manera similar encontramos la coordenada φ`(ρ)

dφ

dλ
=

`

sin2 ρ

cos2ρ

g(ρ)
, tal que dφ =

`

sin2 ρ
(cos2 ρ · dλ) =

`

sin2 ρ
· h(ρ)

η
dρ

φ`(ρ) = φi + `

∫ ρf

ρi

h`(ρ̃)

η · sin2 ρ̃
dρ̃ (128)

Ahora śı podemos integrar numéricamente para encontrar las coordenadas

(t`(ρ), ρ, φ`(ρ)) para cada geodésica con momento angular `.
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6.4. Construcción

Para construir la cuña causal �A en este espacio-tiempo primero hay que

construir el dominio de dependencia ♦A en su frontera. Etiquetaremos con t = 0

a la superficie de Cauchy Σ en donde colocaremos a la región A en la frontera.

Haciendo uso de la simetŕıa angular, el centro de la región A comenzará en φ = 0

y terminará en φ = φA, aśı la región en la frontera tendrá una longitud total de

2φA con el otro extremo ubicado en la coordenada angular φ = −φA. Con las

consideraciones anteriores, el dominio de dependencia en frontera estará dado

por

♦A = J+[q∨] ∩ J−[q∧]

Donde los puntos q∧,∨ son los oŕıgenes de los dominios de dependencia D+[A]

y D−[A] respectivamente. En coordenadas (t, ρ, φ) estos puntos están ubicados

en (φA,
π
2 , 0) y (−φA, π2 , 0).

A
t = 0

q∨

q∧

Figura 7: ♦A en la frontera

La cuña causal �A está delimitada por las geodésicas nulas en el bulto, las

cuales salen de los puntos q∧,∨. Sin embargo, en lugar de graficar las trayectorias

completas de las geodésicas, graficaremos la superficie holográfica causal, ΞA,

tal superficie está definida como la intersección entre las geodésicas que vienen

de q∨ y q∧[18], por ende es la región de la cuña causal que llega más lejos en

el bulto del espacio-tiempo. Las coordenadas de la superficie holográfica causal

ΞA son (t = 0, ρt=0, φt=0) para cada geodésica con momento angular ` ∈ (0, 1),

tomando en cuenta que se tienen 2 tipos de geodésicas, aquellas que tienen punto
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de retorno y las que terminan en la singularidad. A continuación haremos un

esbozo del algoritmo necesario para encontrar la superficie holográfica causal, y

presentaremos los gráficos obtenidos.

6.5. Procedimiento

Iniciaremos con las geodésicas con momento angular ` > `0, es decir aquellas

que tienen punto de retorno, el cual se calcula usando (125). Notemos que ρ0

solo dependerá del radio del horizonte del agujero negro y del momento angular.

Una vez encontrado ρ0, podemos calcular el tiempo que tarda la geodésica en

llegar desde la frontera en q∨ hasta su punto de retorno usando (127)

t`(ρ0) = −φA −
∫ ρ0

π/2

h`(ρ̃)

g(ρ̃)
dρ̃ = −φA +

∫ π/2

ρ0

h`(ρ̃)

g(ρ̃)
dρ̃ (129)

El signo negativo en la integral viene de η = −1 ya que la geodésica es entrante,

mientras que la inversión en los limites de integración es para facilitar la inte-

gración numérica. El punto de retorno podŕıa estar antes o después de t = 0,

es decir en t`(ρ0) < 0 o en t`(ρ0) > 0, su ubicación temporal dependerá de la

longitud de la región A y de rh, en el primer caso, debemos seguir integrando

t(ρ) sobre ρ hasta que lleguemos a un ρf tal que t(ρf ) > 0 (nota que ahora la

geodésica es saliente, η = 1)

t`(ρf ) = t`(ρ0) +

∫ ρf

ρ0

h`(ρ̃)

g(ρ̃)
dρ̃ > 0 (130)

Por lo tanto ρt=0 estaŕıa en la región (ρ0, ρf ), aśı la coordenada radial en la

superficie holográfica causal para un geodésica con momento angular ` será la

ráız de la función t`(ρ). Evidentemente en el caso t`(ρ0) > 0 no seŕıa necesario

seguir integrando para encontrar la ráız de t`(ρ).

De manera similar pero ahora usando (128) encontramos la coordenada angular

en ΞA, φt=0, de nuevo separando entre los casos donde t`(ρ0) < 0 y t`(ρ0) > 0.

En el primer caso, φ`(ρt=0) estará dado por la siguiente integral

φ`(ρt=0) = φi + `

∫ ρt=0

ρ0

h`(ρ̃)

sin2 ρ̃
dρ̃ (131)

donde φi es la coordenada angular desde el punto de retorno ρ0 hasta la frontera

en π/2. Por otra parte, en el segundo caso, φ`(ρt=0) estaŕıa dado por la integral

desde ρt=0 hasta la frontera.
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Para las geodésicas sin punto de retorno (` < `0), es decir aquellas que terminan

en la singularidad, el cálculo es un poco más sencillo. Iniciamos calculando el

tiempo que las geodésicas tardan en llegar desde la frontera hasta el horizonte

del agujero negro

t`(ρh) = −φA +

∫ π/2

ρh

h`(ρ̃)

g(ρ̃)
dρ̃ (132)

De nuevo nos preguntamos si la geodésica ` llega al horizonte del agujero negro

antes o después de t = 0. Si llega antes, φ`(ρt=0) y ρt=0 estarán dados por

φ`(ρt=0) = `

∫ π/2

ρh

h`(ρ̃)

sin2 ρ̃
dρ̃, ρt=0 = ρh (133)

En caso contrario, se debe encontrar la ráız de la función t`(ρ), ρt=0, para

después poder calcular φ`(ρt=0) de manera inmediata. Con la descripción

anterior ya podemos calcular los puntos de la superficie holográfica causal para

cada geodésica. Debido a la simetŕıa angular, solo calcularemos la ΞA para

los momentos angulares entre 0 y 1 e invertiremos la coordenada angular al

momento de graficar para obtener las geodésicas con momentos angulares entre

0 y -1.
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6.6. Resultados

Para un radio del horizonte rh = 0,5 y una longitud φA = 2,5 la superficie

holográfica causal ΞA presenta la siguiente estructura

A

ΞA

Figura 8: Superficie holográfica causal en el disco de Poincaré, con rh = 0,5 y

φA = 2,5, el color va de rojo (para ` = 0) hasta el violeta (para ` = 1)

Como podemos observar la cuña causal consta de una sola pieza, caso con-

trario a lo que sucede si mantenemos la misma longitud de la región φA pero

disminuimos el radio del horizonte del agujero negro. A continuación mostra-

mos el gráfico para rh = 0,2 y φA = 2,5, y notamos que la superficie holográfica

causal ahora está compuesta por dos partes desconectadas, una enrollada en

el agujero negro y la otra conectada a ∂A, lo que significa que la cuña causal

presenta un hoyo en la parte trasera del agujero negro.
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A

ΞA

Figura 9: Superficie holográfica causal en el disco de Poincaré, con rh = 0,2 y

φA = 2,5.

Para el caso rh = 0,2 hemos calculado la superficie holográfica causal varian-

do la longitud en la frontera φA desde 0.1 hasta 3 (ver Figura 10), y observamos

que existe una transición entre las cuñas causales de una sola pieza a cuñas cau-

sales compuestas por dos partes. Existe una longitud cŕıtica φ∗A para cada radio

del horizonte en la cual la cuña se parte. Para encontrarla basta con realizar una

iteración sobre la longitud φA con ρh = cte, y en cada ciclo se evaluar la coor-

denada φ`(ρt=0) para cada geodésica. El ciclo se romperá cuando φ`(ρt=0) > π

y en ese momento se recoge la longitud de A donde esto pasa. En este trabajo

presentamos un gráfico que recoge 9 parejas (ρh, φ
∗
A).
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Figura 10: Superficies holográficas causales en el disco de Poincaré, con rh = 0,2

y distintos valores para φA.

π

3π
4

π
2

π
4

π
4

π
20

φ∗A

ρh

Figura 11: Longitudes cŕıticas φ∗A en función de ρh

Para reproducir los gráficos anteriores hicimos uso de Mathematica 10.
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La cuña causal puede tener hoyos para regiones simples de A en AdS global,

para otras geometŕıas se ha encontrado como un requerimiento el que se ad-

mitan geodésicas circulares nulas (en el caso de espacios-tiempo esféricamente

simétricos) para que la cuña causal presente hoyos [19]. Aun no se sabe cual es

dual en el lado de teoŕıa de campos para la cuña causal, aśı como lo que repre-

senta esta transición de fase en su estructura, sin embargo, mientras se escrib́ıa

este trabajo de tesis apareció una propuesta donde se argumenta que la matriz

de densidad reducida causal es un dual natural a la cuña causal [8].

6.7. Conclusiones

Con la finalidad de construir la cuña causal y reproducir los gráficos en

la sección de resultados, se hizo una revisión del marco teórico necesario. Se

comenzó con una introducción a la correspondencia AdS/CFT donde también se

introdujo el espacio-tiempo anti de-Sitter, aśı como el diccionario entre variables

en el bulto y la frontera. En la sección 2 hablamos sobre el concepto de agujero

negro y las distintas soluciones a las ecuaciones de Einstein que derivan en

diferentes tipos de agujeros negros incluyendo sus diagramas conformes. Después

se habló sobre las propiedades termodinámicas de estos objetos aśı como la

necesidad de introducir el concepto de agujero negro en un espacio anti de-

Sitter. En la sección 5 se trató el concepto de causalidad y se describieron

los dominios de influencia y dependencia, claves en la construcción de la cuña

causal. Finalmente procedimos a construir la cuña causal en un espacio-tiempo

Schwarzschild-AdS en coordenadas globales, donde encontramos que, para una

longitud de la región A suficientemente grande, la cuña causal presenta una

estructura no-trivial. En la sección de resultados presentamos la reproducción

de los gráficos incluidos originalmente en [19], con lo cual se cumple el objetivo

principal de este trabajo de tesis.
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Apéndices

A. Diagramas Conformes

En relatividad general emerge la posibilidad de tener diferentes tipos de

espaciostiempo como soluciones a las ecuaciones de Einstein. Por lo tanto, seŕıa

muy útil tener una imagen informativa de la geometŕıa completa inducida por

una métrica en particular. En principio tal imagen seŕıa infinita, aśı que se debe

encontrar la manera de poner el espaciotiempo completo en una imagen finita.

Para resolver lo anterior se hace uso de las transformaciones conformes.

A.1. Transformaciones Conformes

Una transformación conforme es un cambio en la escala generado por el

producto de la métrica con una función no nula de las coordenadas del espacio-

tiempo

g̃µν = ω2(x)gµν (134)

d̃s2 = ω2(x)ds2 (135)

donde el inverso de esta transformación está dado por

gµν = ω−2(x)g̃µν (136)

Como propiedad general de las transformaciones conformes se encuentra que

ante una transformación conforme las curvas nulas permaneces invariantes, es

decir, si xµ(λ) es una geodésica nula respecto de gµν , se mantendrá nula respecto

de g̃µν , para mostrarlo recordemos la condición de nulidad para una curva

gµν
dxµ

dλ

dxν

dλ
= gµνV

µV ν = 0 (137)

donde V µ = dxµ/dλ es el vector tangencial. Observemos que la condición se

mantiene después de realizar una transformación conforme sobre gµν

g̃µν
dxµ

dλ

dxν

dλ
= ω2(x)gµν

dxµ

dλ

dxν

dλ
(138)

Debido a que los conos de luz están dados por las geodésicas nulas, podemos

asegurar que bajo transformaciones conformes los conos de luz permaneces in-

variantes. Está caracteŕıstica es compartida con las transformaciones conformes

63



A DIAGRAMAS CONFORMES

en análisis complejo, donde el ángulo entre dos vectores cualesquiera permanece

invariante. Lo anterior no significa que las geodésicas tengan la misma geometŕıa

en gµν y g̃µν como lo confirmaremos más adelante.

A.2. Diagrama Conforme para el espaciotiempo de Min-

kowski

Una vez asegurada la invarianza de los conos de luz bajo trasnformaciones

conformes, debemos encontrar una transformación con la particularidad que

respecto de las nuevas coordenadas tipo-tiempo y tipo-espacio los bordes de los

conos de luz siempre estén a 45 grados. Matemáticamente esto se puede escribir

de la siguiente manera
dT

dR
= ±1 (139)

±1 representan los valores para la pendiente de las curvas radiales nulas. Por otra

parte, para obtener el diagrama de de Penrose (o conforme) del espaciotiempo

de Minkowski primero analizamos su métrica antes de cualquier transformación

ds2 = −dt2 + dr2 + r2dΩ2 (140)

donde r2dΩ2 = r2[dθ2 + sin2θφ2] es la métrica para una esfera de radio r (la 2-

esfera, o S2). Podemos notar que las coordenadas t y r no están acotadas (−∞ <

t < ∞, 0 < r < ∞) y por lo tanto no existe manera de realizar un diagrama

finito bajo estas coordenadas. De alguna manera debemos compactificarlas para

después confirmar que preservan los valores ±1 para la pendiente de los bordes

en los conos de luz.

Comenzaremos por introducir coordenadas nulas

u = t− r (141)

v = t+ r (142)

aśı cualquier vector dentro del cono de luz puede ser escrito como una com-

binación lineal de u y v. En la figura 12 solo se muestra la parte derecha del

plano t− r ya que r > 0 como especificamos notamos anteriormente. Nota que

cualquier punto en 12 representa una 2-esfera de radio r.

Podemos resolver para la coordenada tipo-espacio en función de u y v

r =
1

2
(v − u) > 0 (143)

64



A DIAGRAMAS CONFORMES

t

r

vu

fotón saliente

fotón entrante

part́ıcula

Cono de luz

Figura 12: Minkowski en coordenadas nulas

por lo tanto v > u. En coordenadas nulas la métrica de Minkowski toma la

siguiente forma

ds2 = −1

2
(dudv + dvdu) +

1

4
(v − u)dΩ2 (144)

en este punto, el rango de t y r siguen sin ser acotados, para cambiar esto

haremos una compactificación sobre las coordenadas nulas u and v tomando

como función compactificadora (es decir, cualquier función que mapeé la recta

real a un intervalo, f : < −→ [a, b]) a arctan(x).

Sean U y V las coordenadas compactificadas

U = arctan(u) (145)

V = arctan(u) (146)

Con los nuevos rangos −π2 < U < π
2 y −π2 < V < π

2 , con V > U . Si sustituimos

U y V en ds2 para Minkowski en coordenadas nulas obtenemos

ds2 = − 1

4cos2Ucos2V
[−2(dUdV + dV dU) + sin2(V − U)dΩ2] (147)

Si regresamos a las coordenadas tipo-tiempo y tipo-espacio T = V + U

y R = V − U la métrica anterior se revela como el inverso de una métrica

relacionada de manera conforme
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ds2 = ω−2(T,R)[−dT 2 + dR2 + sin2RdΩ2] (148)

donde ω(T,R) = cosT + cosR, entonce ya podemos escribir la métrica d̃s2

la cual está relacionada conformemente con la métrica de Minkowski’s ds2

d̃s2 = ω2(T,R)ds2 = −dT 2 + dR2 + sin2RdΩ2 (149)

d̃s2 describe una variedad < × S3 conocida como el universo Estático de

Einstein, una solución estática a las ecuaciones de Einstein para un fluido per-

fecto y una constante cosmológica positiva. El espacio completo de Minkowski

es conforme a una región dentro del universo estático de Einstein. La estructura

de los infinitos conformes de la métrica anterior nos permite visualizar el espacio

de Minkowski de la siguiente manera

t, T

r, R

i−

i+

i0

I +

I −

t constante

r constante

R
=

0

T=0

vu

Figura 13: Diagrama conforme del espacio de Minkowski

Donde los puntos i+, i− representan los infinitos tipo-tiempo futuro y pasado

ubicados en (T = π,R = 0) y (T = −π,R = 0) respectivamente, mientras que i0

en (T = 0, R = π) es el infinito espacial. I + y I − son el el infinito nulo futuro

(T = π − R, 0 < R < π) y el infinito nulo pasado(T = −π + R, 0 < R < π).
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Como era de esperarse las geodésicas radiales nulas se mantienen a 45 grados

en el diagrama. Todas las geodésicas tipo-tiempo comienzan en i− y terminan

en i+, las geodésicas tipo-espacio comienzan y terminan en i0. En el caso de las

geodésicas nulas, estas comienzan en I − y terminan en I +.

Los diagramas conformes nos dan una idea de la estructura causal del espacio-

tiempo, pero en el caso de Minkowski no nos muestra mucho más de lo que ya

sab́ıamos, sin embargo en casos más complicados, por ejemplo para espacios-

tiempos curvos o con agujero negro, estos se vuelven muy útiles.
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