
CMS Physics Analysis Summary

Contact: cms-pag-conveners-bphysics@cern.ch

2018/06/01

Measurement of production cross sections times branching fraction of $B_c^+ \rightarrow J/\psi\pi^+$ and $B^+ \rightarrow J/\psi K^+$ in pp collisions at $\sqrt{s} = 7$ TeV at CMS

The CMS Collaboration

Abstract

Measurements of the differential production cross section times branching fraction of the $B_c^+ \rightarrow J/\psi\pi^+$ and $B^+ \rightarrow J/\psi K^+$ processes are presented as a function of the $B_c^+(B^+)$ transverse momentum p_T and absolute rapidity $|y|$. The measurements are based on data collected by CMS in 2011 in pp collisions at $\sqrt{s} = 7$ TeV, corresponding to an integrated luminosity of 4.77 fb^{-1} . The integrated production cross sections times branching fraction in the kinematic region of $p_T(B_c^+, B^+) > 10 \text{ GeV}/c$ and $|y|(B_c^+, B^+) < 1.5$ are measured to be $40.8 \pm 4.7 \text{ (stat.)} \pm 2.8 \text{ (syst.)} \text{ pb}$ for $B_c^+ \rightarrow J/\psi\pi^+$ and $5851.3 \pm 37.1 \pm \text{ (stat.)} \pm 446.4 \text{ (syst.)} \text{ pb}$ for $B^+ \rightarrow J/\psi K^+$. The $B^+ \rightarrow J/\psi K^+$ production is found to be described reasonably well by FONLL theoretical calculations, while the shape of $B_c^+ \rightarrow J/\psi\pi^+$ production is described well by BCVEGPY theoretical predictions.

1 Introduction

2 The $B_c^+(B_c^-)$ meson is a ground state of the $\bar{b}c(b\bar{c})$ system and contains two heavy quarks of different flavors, \bar{b} and c quarks. The $\bar{b}c$ system is an intermediate state between the charmonium and bottomonium systems. Being the carrier of the two different flavors, it provides ground for the study of heavy-quark dynamics which is different from those provided by $c\bar{c}$ and $b\bar{b}$ quarkonia.

3 In the standard model, $B^+(u\bar{b})$ is the b-quark meson with the largest production rate in hadron

4 collisions whereas the production of the B_c^+ is rarer because it needs simultaneous production

5 of $b\bar{b}$ and $c\bar{c}$ pairs. The study of heavy quark production in high energy hadronic interactions

6 plays a critical role in testing next-to-leading order (NLO) Quantum Chromodynamics (QCD)

7 calculations [1, 2] and more recent predictions by fixed order plus next-to-leading-logarithms

8 (FONLL) [3, 4]. However, the dependence of the theoretical predictions on the renormalization

9 and factorization scales and the b-quark mass m_b results in theoretical uncertainties up to 40%.

10 Effective models inspired by QCD [5] have been developed for the B_c^+ meson for two decades.

11 The complete order- α^4 approach [6–15] (where α is the strong-interaction coupling) predicts the

12 B_c^+ production to be 0.2% of the inclusive $b\bar{b}$ cross section.

13 The first heavy quark production measurements were performed by the UA1 collaboration at

14 the $SppS$ (CERN) at a center-of-mass energy of $\sqrt{s} = 630$ GeV [16, 17]. Then the CDF and D0

15 collaborations at the Fermilab Tevatron measured heavy quark production at $\sqrt{s} = 1.8$ TeV and

16 1.96 TeV [18–25] and observed the B_c^+ in the semileptonic channel $B_c^+ \rightarrow J/\psi l^+ \nu$ and hadronic

17 channel $B_c^+ \rightarrow J/\psi \pi^+$ [26–29]. After 2010, experiments at the Large Hadron Collider (LHC)

18 achieved substantial progress in the understanding of heavy quark production. The LHCb

19 collaboration has measured the relative production cross sections of b hadrons and B_c^+ in the

20 forward rapidity region [30–34]. The CMS collaboration has measured the production cross

21 sections for B^+ , B^0 , B_s , Λ_b , inclusive b hadron production and relative B_c^+ productions [35–42].

22 ATLAS has measured the B^+ and b hadrons production cross sections [43–45] and the mea-

23 surement shows different transverse momentum and rapidity dependencies compared with

24 predictions of the NLO MC generators(MCNLO+HERWIG) [45]. However, only the relative

25 production ratios of B_c^+ to B^+ or B_s^0 cross sections have been measured at LHCb and CMS.

26 The B^+ production measurement also serves as a standard candle for the B_c^+ production mea-

27 surement. Therefore, precise measurements of the B^+ and B_c^+ cross sections times branching

28 fraction at CMS will provide useful information on the production mechanism of B^+ and B_c^+

29 mesons. In this paper, the measurements of the production cross section times branching ratio

30 of $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ at 7 TeV center of mass energy are reported as a function

31 of b hadron transverse momentum p_T and rapidity $|y|$. Using the large $B^+ \rightarrow J/\psi K^+$ sample,

32 the differential cross section $d\sigma/dp_T(B^+) \times \text{BR}$ for small and large rapidity events are investi-

33 gated separately. The inclusion of charge conjugate modes is implied throughout this paper.

34 The results are compared with the theoretical predictions based on QCD.

2 CMS detector and data sample

35 The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-

36 eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and

37 strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator

38 hadron calorimeter, each composed of a barrel and two endcap sections. Muons are detected

39 in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. The

40 silicon tracker and muon systems are the relevant subdetectors for the measurement described

41 in this document. The silicon tracker, located in the 3.8 T magnetic field of the superconducting

42 solenoid, is used to measure charged particles within the pseudorapidity range $|\eta| < 2.5$. It is

47 composed of 66 million layers of $100 \times 150 \mu\text{m}^2$ silicon pixels and 9.6 million of silicon strips
 48 with pitches varying in the range from 80 to $183 \mu\text{m}$. An efficient muon system with detection
 49 planes made of drift tubes, cathode strip chambers, and resistive plate chambers is deployed
 50 for the reconstruction and identification of muons up to $|\eta| = 2.4$. The first level (L1) of the CMS
 51 trigger system, composed of custom hardware processors, uses information from the calorimeters
 52 and muon detectors to select the most interesting events in a fixed time interval of less
 53 than $4 \mu\text{s}$. The High Level Trigger (HLT) processor farm further decreases the event rate from
 54 around 100 kHz to around 300 Hz, before data storage. The detailed Monte Carlo (MC) simu-
 55 lation of the CMS detector response is based on GEANT4. A detailed description of the CMS
 56 experiment can be found in Ref. [46].

57 This analysis has been performed with the data recorded by the CMS detector in 2011 LHC
 58 run corresponding to an integrated luminosity of 4.77 fb^{-1} . We used MC samples for the val-
 59 idation of the analysis strategy, to determine the reconstruction efficiencies and to investigate
 60 the source of different systematic uncertainties. The B_c^+ signal sample was generated by the
 61 dedicated event generator BCVEGPY through the dominant hard subprocess $gg \rightarrow B_c + b +$
 62 \bar{c} [47, 49]. The B_c^+ decay, hadronization of two spectator quarks, initial state radiation (ISR) and
 63 final state radiation (FSR) were simulated by PYTHIA [48]. The B^+ MC samples were produced
 64 by PYTHIA.

65 3 Event reconstruction

66 The identification of the $B_c^+ (B^+) \rightarrow J/\psi \pi^+ (K^+)$ decay proceeds through the reconstruction
 67 of $J/\psi \rightarrow \mu^+ \mu^-$ and $B_c^+ (B^+) \rightarrow J/\psi \pi^+ (K^+)$. To identify the events in which a J/ψ decays
 68 into two muons, we use double muon triggers where a dimuon vertex is found and required
 69 to be displaced from the interaction point (beamspot) in order to reject prompt J/ψ events
 70 (displaced trigger). The displaced trigger selection criteria are: $\cos\alpha > 0.9$, where α represents
 71 the pointing angle between the dimuon momentum and the direction from the beamspot to
 72 the dimuon vertex in the transverse plane; $L_{xy}/\sigma_{L_{xy}} > 3$ to select long lived J/ψ 's, where L_{xy}
 73 is the dimuon decay length and $\sigma_{L_{xy}}$ is the corresponding uncertainty. Muons are required to
 74 have opposite charges, $|\eta^\mu| < 2.2$ and $p_T^\mu > 4 \text{ GeV}/c$. In addition the dimuon p_T must be
 75 greater than $6.9 \text{ GeV}/c$ and the distance of closest approach between the two muons must be
 76 $< 0.5 \text{ cm}$. The χ^2 probability of fitting the two muons to a common vertex must be $> 15\%$.
 77 We keep all the J/ψ candidates that have an invariant mass within $\pm 120 \text{ MeV}/c^2$ of the PDG
 78 value [50].

79 To reconstruct the B_c^+ and the B^+ mesons, the selected J/ψ candidate is combined with a track
 80 to which pion or kaon mass is assigned. The pion (kaon) track selection criteria are: normalized
 81 $\chi^2 < 3$; number of hits in pixel and tracker detectors should be greater than 1 and 10; the track
 82 $p_T > 2.3 \text{ GeV}/c$. The decay vertex is reconstructed using a kinematic vertex fit [51], which
 83 constrains the dimuon invariant mass to the nominal J/ψ mass.

84 The B_c^+ meson selection criteria have been optimized in the kinematic region $p_T > 10 \text{ GeV}/c$
 85 and $|\eta| < 1.5$ by maximizing the significance $(S/\sqrt{S+B})$ as a figure of merit, where S is the
 86 signal yield obtained from a Gaussian fit to the MC reconstructed events and B is the amount of
 87 background inferred from the $J/\psi \pi$ invariant mass sidebands in the data. The same selection
 88 criteria have been used for B^+ mesons. The resulting requirements are: the probability of the
 89 combined vertex and kinematic fit > 0.03 ; $\cos\theta > 0.98$, where θ is the angle in the xy plane
 90 between the B_c^+ momentum vector and the position vector from the beam spot to the recon-
 91 structed secondary vertex. A requirement is also placed on the B_c^+ decay length significance

92 $L_{xy}/\sigma_{L_{xy}} > 4.0$, where L_{xy} is the projection of the vector \vec{s} pointing from the beam spot to the
 93 secondary vertex onto the transverse momentum and $\sigma_{L_{xy}}$ is the corresponding uncertainty. In
 94 order to determine the best approach in cases where multiple B_c^+ candidates were identified,
 95 two comparison studies were carried out: the case in which all candidates were considered
 96 and the case where only the highest p_T candidate was selected. The difference in the signal
 97 yields was found to be 2.9% (0.7%) for B_c^+ and 3.7% (1.5%) for B^+ in data (MC) samples. Due
 98 to the small differences in the yield, we keep all B_c^+ (B^+) passing candidates in both data and
 99 MC samples.

100 Figure 1 (left) shows the $J/\psi \pi^\pm$ invariant mass distribution for data after applying all the
 101 selection criteria. The B_c^+ signal is described by a Gaussian function. In the B_c^+ inclusive bin
 102 ($p_T > 10 \text{ GeV}/c; |y| < 1.5$), the Gaussian width and the mean are allowed to float in the fit. For
 103 the B_c^+ differential bins, the Gaussian width is allowed to float while the mean value is fixed to
 104 the best fit value of the inclusive bin. The background is described by a 2nd order Chebyshev
 105 polynomial function. The fitted yield for B_c^\pm is 310 ± 36 and the mass extracted from the fit is
 106 $6272.5 \pm 2.9 \text{ MeV}/c^2$, consistent with the PDG average value [50].

107 Figure 1 (right) shows the $J/\psi K^\pm$ invariant mass distribution. The B^+ signal is described by
 108 the sum of three Gaussian functions. In the B^+ inclusive bin ($p_T > 10 \text{ GeV}/c; |y| < 1.5$), the
 109 width and the mean of the Gaussian function are allowed to float in the fit. For the B^+ differen-
 110 tial bins, the width of the Gaussian functions are allowed to float while the mean is fixed to the
 111 value of the inclusive bin. The background is parametrized by the combination of an exponen-
 112 tial function (for the combinatorial contribution) and a Gaussian which describes the partially
 113 reconstructed $B^0 \rightarrow J/\psi K^*(892)$ as shown by dashed blue and dashed red line, respectively.
 114 The contribution of the $B^\pm \rightarrow J/\psi \pi^\pm$ process is modeled by a Gaussian function (shown in
 115 green), whose parameters values are extracted from MC simulation. The fitted yield for the B^\pm
 116 is 117091 ± 347 and the mass extracted from the fit is $5279.36 \pm 0.01 \text{ MeV}/c^2$, consistent with
 the PDG average value [50].

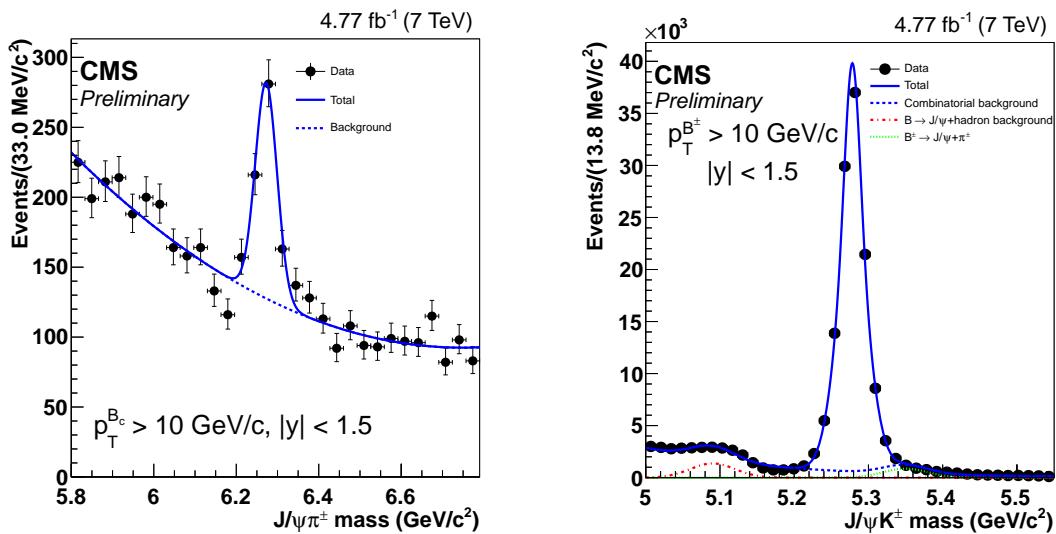


Figure 1: Invariant mass distribution of $J/\psi \pi^\pm$ (left) and $J/\psi K^\pm$ (right) for 2011 CMS data. The curves show the best maximum likelihood fit for the sample.

118 4 Measurement of the cross section times branching fraction

119 The $B_c^+ \rightarrow J/\psi\pi^+$ ($B^+ \rightarrow J/\psi K^+$) production cross section times branching fraction is mea-
 120 sured in p_T ($|y|$) bins by using the observed B_c^+ (B^+) event yield corrected by the efficiency and
 121 data luminosity, as in Equation 1:

$$\frac{d\sigma(pp \rightarrow B_c^+ + X)}{dp_T(B_c^+)} \cdot \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+) = \frac{N_{sig}}{2 \cdot \epsilon \cdot \mathcal{B}(J/\psi \rightarrow \mu\mu) \cdot \Delta p_T(B_c^+) \cdot \mathcal{L}}, \quad (1)$$

122 where \mathcal{L} is the integrated luminosity of the dataset, N_{sig} is the observed number of the B_c^+ (B^+)
 123 candidates extracted by performing an unbinned extended maximum-likelihood fit to the in-
 124 variant mass distribution of the candidates in the given p_T or $|y|$ bin, $\mathcal{B}(J/\psi \rightarrow \mu\mu) = (5.961 \pm$
 125 $0.033)\%$ is obtained from PDG [50] and Δp_T ($|y|$) is the bin width. The factor of 2 accounts
 126 for our choice of quoting the B_c^+ (B^+) cross section times branching fraction for positive charge
 127 only while N_{sig} includes both B_c^+ and B_c^- . We used the same expression as in Equation 1 for
 128 the differential cross section measurement as a function of $|y|$. To get the B_c^+ differential cross
 129 section times branching fraction, we separated the selected events into three bins with respect
 130 to p_T and $|y|$ as listed in Table 1, while for B^+ the measurement has been performed in nine p_T
 131 and $|y|$ bins as listed in Table 2. The analysis also includes 2D differential cross section times
 132 branching fraction of B^+ , which has been performed in five p_T bins for $0.0 < |y| < 0.75$ and
 133 $0.75 < |y| < 1.5$.

134 The total efficiencies (ϵ) for the $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\pi^+$ and $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ processes are
 135 computed as the product of acceptance (Acc.), reconstruction efficiency ($\epsilon_{reco.}$) and scale factors
 136 for muon and displaced trigger efficiencies (α_μ and α_{Disp}) used in order to cover the discrepancy
 137 between corresponding efficiencies in data and MC, as expressed below:

$$\epsilon = Acc. \cdot \epsilon_{reco.} \cdot \alpha_\mu \cdot \alpha_{Disp}. \quad (2)$$

138 The acceptance and reconstruction efficiencies are calculated using simulated events for the
 139 $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\pi^+$ and $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ processes. The acceptance is mainly deter-
 140 mined by the dimuon detection coverage of CMS and is defined as:

$$Acc. = \frac{N_{gen}(p_T(J/\psi) > 6.9 \text{ GeV}/c, \mu(acc.))}{N_{gen}}, \quad (3)$$

141 where $\mu(acc.)$ are the muon acceptance requirements listed in the event reconstruction sec-
 142 tion and N_{gen} is the total number of generated events with $p_T(B_c^+, B^+) > 10 \text{ GeV}/c$ and
 143 $|y| (B_c^+, B^+) < 1.5$.

144 The reconstruction efficiency is defined as:

$$\epsilon_{reco.} = \frac{N_{kin.}^{acc.}}{N^{acc.}}, \quad (4)$$

145 where $N^{acc.}$ is the total number of events passing acceptance criteria as in Equation 3 and $N_{kin.}^{acc.}$
 146 is the total number of selected events after reconstruction.

147 To determine α_μ , the single muon tracking, identification and trigger efficiencies were mea-
 148 sured individually by using prompt J/ψ data and MC samples as a function of the $p_T(\mu)$ and
 149 $|y|$ bins by the Tag-and-Probe technique and were translated to $p_T(B_c^+, B^+)$ and $|y|$ bins. The
 150 dimuon efficiency is calculated by the product of single muon efficiencies, i.e. $\epsilon_{D\mu} = \epsilon_{\mu 1} \times \epsilon_{\mu 2}$.
 151 The dimuon efficiency is calculated on an event-by-event basis similarly to the reconstruction

152 efficiency and acceptance. The total muon efficiency is computed over all events in a particular
 153 p_T and pseudorapidity range, as illustrated in Equation 5:

$$\epsilon_{\mu}^{tot.}(p_T(B_c^+), |y|(B_c^+)) = N(p_T(B_c^+), |y|(B_c^+)) / \sum_{i=0}^{i=N(p_T(B_c^+), |y|(B_c^+))} \frac{1}{\epsilon_{D\mu, i}}, \quad (5)$$

154 where $N(p_T, |y|)$ is the number of signal events in the particular $B_c^+(B^+)$ p_T or $|y|$ bin. The
 155 scale factor for muon efficiency, α_{μ} , is then calculated by the ratio of total muon efficiency in
 156 data and MC samples. The discrepancy between the muon efficiency in data and MC decreases
 157 with an increase in p_T and α_{μ} varies between 0.90 to 0.93 for B_c^+ , between 0.86 to 0.97 for B^+ in
 158 different p_T and $|y|$ bins.

159 The scale factor for the displaced trigger efficiencies, α_{Disp} , is calculated by the ratio between
 160 the relative displaced trigger efficiency as measured in data and MC. The displaced trigger
 161 efficiency is measured with respect to a dimuon trigger without requirements on the dimuon
 162 vertex position. The α_{Disp} is estimated to be varying between 1.010 to 1.013 for B_c^+ and ranges
 163 from 0.96 to 0.98 for B^+ in different p_T and $|y|$ bins.

164 5 Systematic uncertainties

165 The main sources of systematic uncertainty on the cross section times branching fraction mea-
 166 surements are uncertainties on the modeling of the mass shape, on tracking efficiencies of
 167 hadrons and muons, uncertainties in the detector alignment and in the integrated luminosity
 168 calculation. The systematic uncertainties taken into account are described below.

- 169 • Uncertainties on signal shape:

170 Biases introduced by the modeling of the signal shape are calculated as the differ-
 171 ence in signal yield per ($p_T, |y|$) bin when fitting the B_c^+ mass spectrum with either a
 172 Gaussian or Crystal Ball function, where the width of both is allowed to float in the
 173 fit. Likewise, the B^+ signal yield and shape uncertainty is determined by the differ-
 174 ence of signal yield per ($p_T, |y|$) bin when fitting B^+ mass spectrum with the sum of
 175 two or three Gaussian functions, letting the widths float freely. The uncertainty on
 176 the signal shape was found to be 0.1% for B_c^+ and varying between 0.1-0.4% for B^+
 177 for inclusive and differential bins.

- 178 • Uncertainties on background shape:

179 The uncertainty affecting the "background shape" for B_c^+ is taken as the difference
 180 in signal yield per ($p_T, |y|$) bin when fitting the background with a Chebyshev poly-
 181 nomial or an exponential function keeping the same signal model. Likewise, the B^+
 182 background shape and yield uncertainty is determined by fitting the background
 183 with the combination of either a Gaussian and exponential function or a crystal Ball
 184 function and 2nd order Chebyshev polynomial. The uncertainty on the background
 185 shape was found to be varying between 0.2-1.4% for B_c^+ and 0.2-1.0% for B^+ for
 186 inclusive and differential bins.

- 187 • Uncertainty on $p_T(|y|)$ binning:

188 For differential measurements, the uncertainty due to the energy scale is a non-
 189 negligible effect that describes how B_c^+ (B^+) events migrate from a given $p_T(|y|)$ bin
 190 at generator level to a given bin at the reconstruction level. To estimate this effect,
 191 the B_c^+ (B^+) reconstructed fitted events have been matched with the generator level
 192 events using the MC truth information for each p_T and $|y|$ bin. The difference in the

193 yields in each $p_T(|y|)$ is quoted as the uncertainty of the $p_T(|y|)$ binning varying from
194 0.1 to 0.6%.

- 195 • Statistical uncertainty of MC samples:

196 The statistical uncertainty of the reconstruction efficiency ranges between 0.7-1.3%
197 and 0.9-2.6%, evaluated for the B_c^+ and B^+ measurements, respectively.

- 198 • Statistical uncertainty of Tag-and-Probe samples:

199 The statistical uncertainties of MC and data samples used to determine the muon
200 related efficiencies using the Tag-and-Probe technique are found to be between 1.2-
201 1.4% and 1.9-2.4% for the B_c^+ and B^+ measurements, respectively.

- 202 • Uncertainty on hadron tracking efficiency:

203 The uncertainty on efficiency for reconstruction of a hadron track is 3.9%, as in [52].

- 204 • Uncertainty on muon kinematics:

205 Due to limited statistics in the MC samples used in the Tag-and-Probe technique
206 the average value of muon efficiency was used for each p_T and $|y|$ bin. To estimate
207 the efficiency variance due to the difference of the muon kinematic distribution be-
208 tween the MC samples used for Tag-and-Probe and B_c^+ (B^+) signal MC samples,
209 we re-weight the MC muon p_T distribution to describe the data. The difference of
210 the efficiencies, determined by using the samples with and without re-weighting, is
211 considered to be the uncertainty of muon kinematic distribution. This uncertainty
212 varies from 0.1 to 1.5% for inclusive and differential bins of B_c^+ (B^+) measurements.

- 213 • Uncertainty on muon tracking:

214 The uncertainty on muon tracking is taken to be 0.5% [52].

- 215 • Uncertainty on alignment:

216 The uncertainty associated with alignment of the tracker is estimated by compar-
217 ing the simulated events with distorted geometries. From this, uncertainties are
218 assigned ranging from 2.6(1.6)% to 4.2(3.3)% for inclusive and differential bins of
219 B_c^+ (B^+) measurements.

- 220 • Uncertainty on luminosity estimation:

221 An uncertainty of 4% is assigned to the luminosity estimation [53].

- 222 • PU conditions:

223 Possible systematic uncertainties due to different pileup conditions have been as-
224 sessed by dividing the data into two independent samples based on the number of
225 reconstructed primary vertices per event, and the statistical consistency of the cross
226 section measurements performed on the subsets of data has been evaluated. In the
227 B_c^+ , the two sub-samples have been found statistically consistent, thus no systemat-
228 ics have been assigned. However, in the B^+ , the systematic uncertainties due to PU
229 conditions were found to be varying in the range from 0.0 and 8.4%.

- 230 • Uncertainty on candidate arbitration:

231 A difference of 2.2% was observed in the MC and data yields while selecting all
232 B_c^+ (B^+) candidates and the case where only the highest p_T candidate was selected in
233 an event. This difference has been introduced as an uncertainty on the measurement.

234 6 Results

235 Using the number of observed B_c^+ (B^+) candidates and the total efficiencies, we get the val-
236 ues for the cross section times branching fraction of $B_c^+ \rightarrow J/\psi\pi^+$ and $B^+ \rightarrow J/\psi K^+$. The
237 prediction of branching fraction of $\mathcal{B}(B_c \rightarrow J/\psi\pi)$ has a wide spread because of the calcul-

Table 1: Measurements of integrated and differential cross section times branching fraction for $p_T(B_c^+) > 10$ GeV/c and $|y| < 1.5$. The first uncertainties are statistical and the second are systematic. The branching ratio (BR) $\mathcal{B}(B_c \rightarrow J/\psi\pi)$, used to evaluate the prediction from BCVEGPY, is 3.3×10^{-3} [54].

$p_T(B_c^+)$	n_{sig}	ϵ	$d\sigma/dp_T(B_c^+) \times \text{BR}$ (pb/GeV)	BCVEGPY (pb/GeV)
10-16	101.0 ± 23.0	0.0050 ± 0.0001	$5.48 \pm 1.25 \pm 0.42$	2.02
16-22	101.3 ± 18.1	0.0380 ± 0.0005	$0.77 \pm 0.14 \pm 0.06$	0.30
22-50	107.0 ± 18.1	0.1030 ± 0.0014	$0.06 \pm 0.01 \pm 0.01$	0.02
$ y (B_c^+)$	n_{sig}	ϵ	$d\sigma/d y (B_c^+) \times \text{BR}$ (pb)	BCVEGPY (pb)
0-0.5	99.6 ± 16.3	0.0122 ± 0.0001	$28.23 \pm 4.62 \pm 2.07$	10.20
0.5-0.9	101.6 ± 18.8	0.0139 ± 0.0002	$31.77 \pm 5.87 \pm 2.48$	9.91
0.9-1.5	99.3 ± 20.9	0.0137 ± 0.0002	$21.07 \pm 4.44 \pm 1.51$	9.03
	n_{sig}	ϵ	$\sigma \times \text{BR}$ (pb)	BCVEGPY (pb)
inclusive	$309.68 + 35.78$	0.0132 ± 0.0001	$40.78 \pm 4.71 \pm 2.84$	14.48

lations performed using different models [54]. The predicted value of the branching fraction $\mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+) = 3.3 \times 10^{-3}$ [54] has been used for the current measurement. The differential measurements $d\sigma(B_c^+)/dp_T(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+)$ and $d\sigma(B_c^+)/d|y|(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+)$ along with theoretical predictions based on BCVEGPY are listed in Table 1. Figure 2 summarizes the differential cross sections times branching fraction results as a function of the B_c^+ p_T (left) and $|y|$ (right). The integrated production cross section times branching fraction for $B_c^+ \rightarrow J/\psi\pi^+$ with $p_T(B_c^+) > 10$ GeV and $|y|(B_c^+) < 1.5$ is $(40.8 \pm 4.7 \pm 2.8)$ pb, where the first uncertainty is statistical and the second is systematic.

The theoretical predictions of the B_c^+ production cross section times branching fraction have large uncertainties for a number of reasons. The branching fraction $\mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+)$ involves the non-perturbative $B_c^+ \rightarrow J/\psi X$ transition form factors, the QCD corrections for which are large [57, 59]. The QCD corrections may also provide sizable contributions to the production cross section. The generator BCVEGPY is based on tree-level calculations of the gluon-gluon fusion production mechanism, and only the color-singlet 1S-wave and 1P-wave B_c^+ states are considered. There is a scale factor of 2.75 between theory and experiment. There are large uncertainties from the choices of the quark masses and the renormalization and factorization scales [47, 49, 55, 56]. It is also found that an appropriate choice of renormalization scale can achieve better predictions. For example, it has been found that by using the optimal scale determined by using the principle of maximum conformality [60], one can get a better B_c^+ semileptonic decay width that agrees with the measurements [59]. The shape of the measurement shows consistency with the predictions from BCVEGPY as illustrated in Figure 2, where the prediction has been normalised to the measurement with a normalisation factor of 2.75. Differential measurements $d\sigma(B^+)/dp_T(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ and $d\sigma(B^+)/d|y|(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ have also been reported. The corresponding efficiency and cross section results are listed in Table 2 for differential p_T and $|y|$ bins. The integrated $\sigma(B^+) \times \mathcal{B}$ with $p_T(B^+) > 10$ GeV and $|y|(B^+) < 1.5$ is measured to be $5851.3 \pm 37.1 \pm 446.4$ pb, where the first uncertainty is statistical and second is systematic. The differential cross section times branching fraction for B^+ are also reported for $0.0 < |y| < 0.75$ and $0.75 < |y| < 1.5$ in five p_T bins. A comparison of the measurements with theoretical approaches (PYTHIA, FONLL and NLO) has

Table 2: Measurement of integrated and differential cross section times branching fraction for $p_T(B^+) > 10$ GeV/c and $|y| < 1.5$. The first uncertainties are statistical and the second are systematic.

$p_T(B^+)$	n_{sig}	ϵ	$d\sigma/dp_T(B^+) \times BR$ (pb / GeV)
10-14	14277.3 ± 128.1	0.0072 ± 0.0002	$864.03 \pm 14.25 \pm 74.68$
14-16	14752.0 ± 129.7	0.0363 ± 0.0009	$355.46 \pm 5.76 \pm 27.35$
16-18	15148.2 ± 121.5	0.0605 ± 0.0015	$218.68 \pm 3.27 \pm 15.91$
18-20	13612.1 ± 118.7	0.0851 ± 0.0022	$139.69 \pm 2.25 \pm 10.36$
20-22	11573.4 ± 111.8	0.1082 ± 0.0030	$93.46 \pm 1.65 \pm 6.92$
22-25	13493.9 ± 120.9	0.1347 ± 0.0035	$58.33 \pm 0.96 \pm 4.17$
25-29	12353.7 ± 110.3	0.1695 ± 0.0046	$31.85 \pm 0.52 \pm 3.58$
29-36	11596.1 ± 111.3	0.2129 ± 0.0058	$13.60 \pm 0.24 \pm 0.96$
36-120	10721.0 ± 109.3	0.2644 ± 0.0075	$0.84 \pm 0.02 \pm 0.06$
$ y (B^+)$	n_{sig}	ϵ	$d\sigma/d y (B^+) \times BR$ (pb)
0-0.15	12637.7 ± 113.2	0.0312 ± 0.0009	$4724.94 \pm 77.83 \pm 352.00$
0.15-0.3	12745.3 ± 116.4	0.0336 ± 0.0009	$4420.09 \pm 74.08 \pm 332.51$
0.3-0.45	12993.2 ± 116.5	0.0334 ± 0.0009	$4534.39 \pm 74.78 \pm 358.07$
0.45-0.6	13583.0 ± 119.0	0.0365 ± 0.0010	$4337.03 \pm 70.07 \pm 483.15$
0.6-0.75	13561.3 ± 120.8	0.0378 ± 0.0010	$4182.00 \pm 68.56 \pm 304.31$
0.75-0.9	12438.3 ± 117.6	0.0346 ± 0.0001	$4191.38 \pm 72.43 \pm 321.54$
0.9-1.05	11492.5 ± 247.0	0.0353 ± 0.0010	$3793.21 \pm 142.75 \pm 283.53$
1.05-1.25	14075.1 ± 126.3	0.0366 ± 0.0009	$3361.74 \pm 55.48 \pm 274.90$
1.25-1.5	14603.2 ± 133.6	0.0350 ± 0.0009	$2917.55 \pm 48.96 \pm 214.46$
	n_{sig}	ϵ	$\sigma \times BR$ (pb)
inclusive	117091.38 ± 347.44	0.0351 ± 0.0003	$5851.34 \pm 37.09 \pm 446.39$

been made as shown in Figure 3, where the shaded region shows the theoretical uncertainty of 35%. In the case of FONLL and NLO, the calculations have been performed assuming a hadronization fraction of $f_{b\bar{b} \rightarrow B^+} = 0.337 \pm 0.002$. The FONLL B^+ cross section times branching fraction prediction is $4896.8^{+1667.6}_{-1086.7}$ (scale) ± 249.3 (mass) pb and includes uncertainties of b-quark mass, renormalization and factorization scales. In FONLL, the mass of the b-quark and the scales are set to be 4.75 ± 0.25 GeV/ c^2 and $\mu_F = \mu_R = \mu_0$, respectively [58]. The uncertainties from renormalization scale (μ_0) and factorization scale (μ_R) are estimated by varying them up and down by a factor of two ($\mu_0/2 < \mu_R$, with $\mu_F < 2\mu_0$; $1/2 < \mu_R/\mu_F < 2$) [58]. For estimating the b-quark mass uncertainty, the mass has been changed from 4.75 GeV/ c^2 to 5.00 GeV/ c^2 and 4.5 GeV/ c^2 [58]. The theoretical predictions are in good agreement with the measurements within the theoretical uncertainties. The consistency of the measurements improves towards higher p_T and $|y|$. In this analysis, the ratio between $\sigma(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)$ and $\sigma(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ has also been measured and found to be 0.0049 ± 0.0006 , consistent with CMS results in reference [42]. The B^+ cross section measurement has also been extracted for common phase space ($13 < p_T < 120$, $|y| < 1.5$) with the ATLAS measurement [45]. The result, 163.1 ± 2.27 (stat.) ± 9.13 (sys.) ± 6.5 (lumi.) pb, is found to be consistent with the ATLAS measurement of 185.6 ± 5.28 (stat.) ± 12.3 (syst) ± 3.5 (lumi.), within the total uncertainties by both experiments.

7 Summary

The production cross section times branching fractions $\sigma(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)$ and $\sigma(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ are measured at CMS. The measurement uses a dataset collected by the CMS detector in 2011 at $\sqrt{s} = 7$ TeV, which corresponds to an integrated luminosity of 4.77 fb^{-1} . The differential measurements $d\sigma(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)$ and $d\sigma(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ are reported with respect to $p_T(B_c^+, B^+)$ and rapidity $|y|$. The shape of $\sigma(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)$ measurement has been compared with the normalised theoretical predictions based on BCVEGPY and is found to be in good agreement. The $\sigma(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ measurements have also been compared with the predictions based on PYTHIA, FONLL and NLO calculations. The predictions from the NLO and FONLL theoretical framework have also been quoted with the theoretical uncertainty from the renormalization and factorization scale and b-quark mass (35%). The measurements are found to be consistent with the theoretical predictions within uncertainty. We hope the measurements may be helpful for theorists to understand and investigate the B_c^+ and B^+ production and decay mechanism further.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

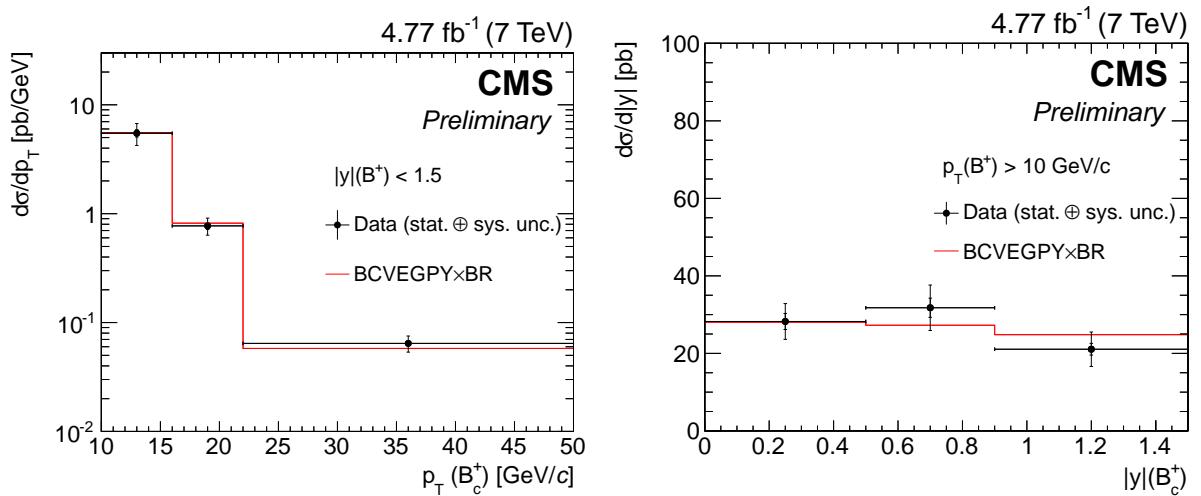


Figure 2: Differential production cross sections \times BR of $d\sigma(B_c^+)/dp_T(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+)$ (left) and $d\sigma(B_c^+)/d|y|(B_c^+) \times \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+)$ (right) at $\sqrt{s}=7 \text{ TeV}$ pp collisions. Solid points with error bars are the CMS measurements and the uncertainties are statistical and systematic, respectively. The prediction of the B_c^+ production cross section by BCVEGPY times the branching fraction $\mathcal{B}(B_c \rightarrow J/\psi\pi) = 3.3 \times 10^{-03}$ [54] is scaled by 2.75 for display purposes.

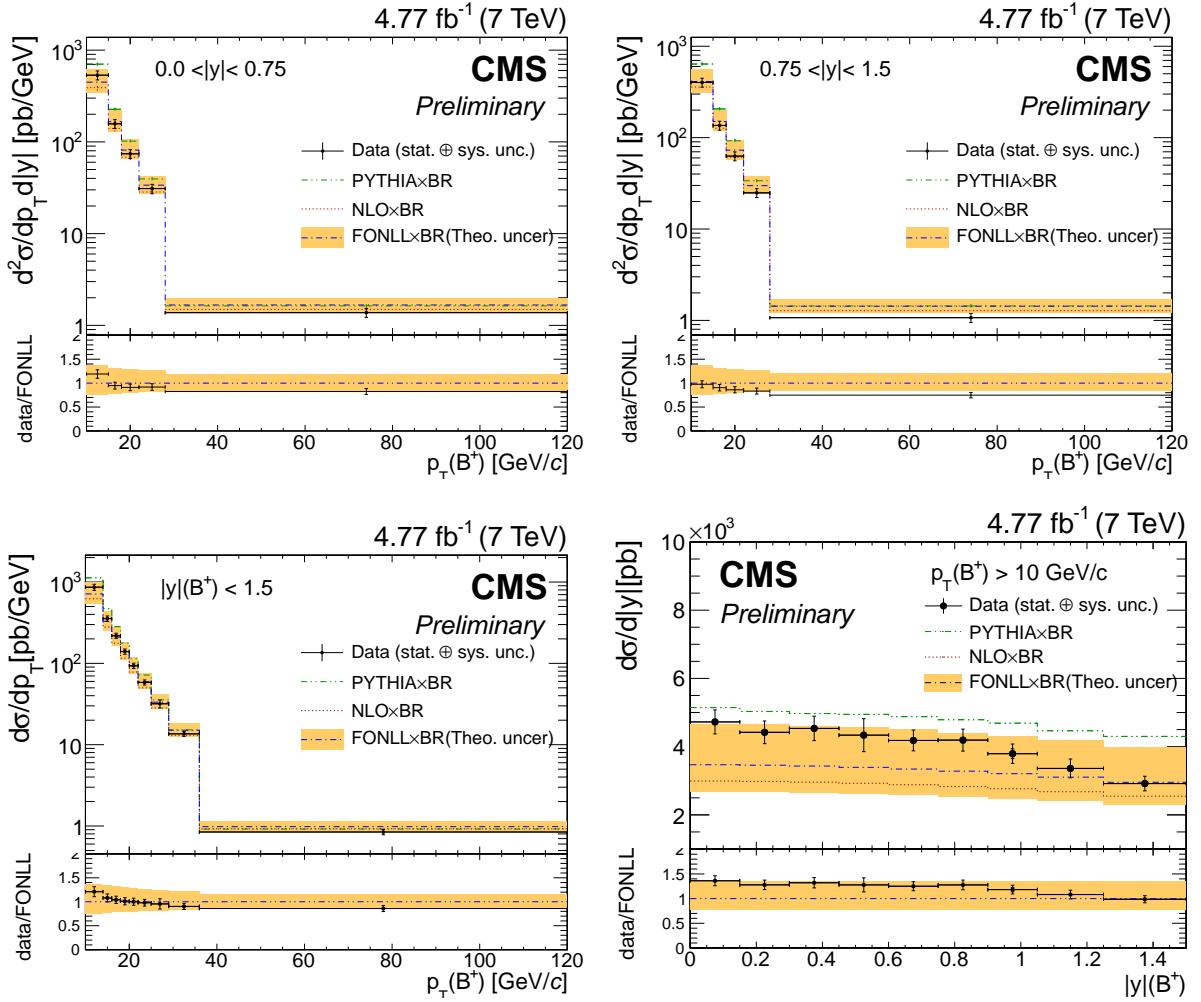


Figure 3: Top: Differential production cross sections $d\sigma/dp_T \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ for $B^+ \rightarrow J/\psi K^+$ at $\sqrt{s} = 7$ TeV pp collisions for $0.0 < |y|(B^+) < 0.75$ (left) and $0.75 < |y|(B^+) < 1.5$ (right). Solid points with error bars are the CMS measurements and the uncertainties are statistical and systematic, respectively. Bottom: Differential production cross sections of $d\sigma(B^+)/dp_T(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ and $d\sigma(B^+)/d|y|(B^+) \times \mathcal{B}(B^+ \rightarrow J/\psi K^+)$ at $\sqrt{s} = 7$ TeV pp collisions. Solid points with uncertainty bar are the CMS measurements and the uncertainties are statistical and systematic, respectively. The shaded region shows the theoretical uncertainty due to the mass of the b-quark, renormalization and factorization scales. The ratio of the measurement to the predictions from FONLL is shown in the lower part of the plots.

References

[1] P. Nason, S. Dawson and R.K. Ellis, "The total cross section for the production of heavy quarks in hadronic collisions", *Nucl. Phys. B* **303** (1988) 607.

[2] P. Nason, S. Dawson and R.K. Ellis, "The one particle inclusive differential cross section for heavy quark production in hadronic collisions", *Nucl. Phys. B* **327** (1989) 49 [Erratum *ibid. B* **335** (1990) 260].

[3] M. Cacciari, M. Greco and P. Nason, "The p_T spectrum in heavy flavor hadroproduction", *JHEP* **05** (1998) 007 [hep-ph/9803400].

[4] M. Cacciari, S. Frixione and P. Nason, "The p_T spectrum in heavy flavor photoproduction", *JHEP* **03** (2001) 006 [hep-ph/0102134].

[5] Quarkonium Working Group collaboration, "Heavy quarkonium physics", (2004). arXiv:hep-ph/0412158, and references therein.

[6] C.-H. Chang and Y.-Q. Chen, "Hadronic production of the B_c meson at TeV energies", *Phys. Rev. D* **48**, 4086 (1993).

[7] Chao-Hsi Chang *et al.*, "On hadronic production of the B_c meson", *Phys. Lett. B* **364**:78-86 (1995).

[8] Chao-Hsi Chang *et al.*, "The Projection scheme for handling large number cancellation related to gauge invariance", *Phys. Rev. D* **54**, 6963 (1996).

[9] C.-H. Chang, C.-F. Qiao, J.-X. Wang, and X.-G. Wu, "Color-octet contributions to P-wave B_c meson hadroproduction", *Phys. Rev. D* **71**, 074012 (2005).

[10] K. Kolodziej, A. Leike, and R. Ruckl, "Production of B_c mesons in hadronic collisions", *Phys. Lett. B* **355**, 337 (1995).

[11] A. V. Berezhnoy, A. K. Likhoded, and M. V. Shevlyagin, "Hadronic production of B_c mesons", *Phys. At. Nucl.* **58**, 672 (1995).

[12] A. V. Berezhnoy, V. V. Kiselev, and A. K. Likhoded, "Photonic production of S- and P-wave B_c states and doubly heavy baryons", *Z. Phys. A* **356**, 89 (1996).

[13] S. P. Baranov, "Pair production of $B_c^{(*)}$ mesons in p-p and $\gamma\gamma$ collisions"v, *Phys. Rev. D* **55**, 2756 (1997).

[14] C.-H. Chang and X.-G. Wu, "Uncertainties in estimatin hadronic production of the meson B_c and comparisons between TEVATRON and LHC", *Eur. Phys. J. C* **38**(2004) 267, arXiv:hep-ph/0309121.

[15] Y.-N. Gao, J.-B. He, P. Robbe, M.-H. Schune, and Z.-W. Yang, "Experimental prospects of the B_c studies of the LHCb experiment", *Chin. Phys. Lett.* **27**, 061302 (2010).

[16] UA1 collaboration, C. Albajar *et al.*, "Beauty production at the CERN proton-anti-proton collider", *Phys. Lett. B* **186** (1987) 237.

[17] UA1 collaboration, C. Albajar *et al.*, "Measurement of the bottom quark production cross section in proton-anti-proton collisions at $\sqrt{s} = 0.63$ TeV", *Phys. Lett. B* **213** (1988) 405.

349 [18] CDF collaboration, "Measurement of the bottom quark production cross section using
350 semileptonic decay electrons in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV", Phys. Rev. Lett. **71** (1993)
351 500-504. doi:10.1103/PhysRevLett.71.500.

352 [19] CDF collaboration, "Measurement of the B meson differential cross-section, $d\sigma/dp_T$ ",
353 in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. **75** (1995) 1451-1455.
354 doi:10.1103/PhysRevLett.75.1451.

355 [20] CDF collaboration, "Measurement of the B^+ total cross section and B^+ differential
356 cross section $d\sigma/dp_T$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV", Phys. Rev. **D65** (2002) 052005.
357 doi:10.1103/PhysRevD.65.052005.

358 [21] CDF collaboration, "Measurement of the J/ψ meson and b-hadron production cross
359 sections in $p\bar{p}$ collisions at $\sqrt{s} = 1960$ GeV", Phys. Rev. **D71** (2005) 032001.
360 doi:10.1103/PhysRevD.71.032001.

361 [22] CDF collaboration, "Measurement of the B^+ production cross section in $p\bar{p}$ collisions at
362 $\sqrt{s} = 1960$ GeV", Phys. Rev. **D75** (2007) 012010. doi:10.1103/PhysRevD.75.012010.

363 [23] D0 collaboration, "Inclusive μ and B quark production cross-sections in $p\bar{p}$ collisions at
364 $\sqrt{s} = 1.8$ TeV", Phys. Rev. Lett. **74** (1995) 3548-3552. doi:10.1103/PhysRevLett.74.3548.

365 [24] D0 collaboration, "Small angle muon and bottom quark production in $p\bar{p}$ collisions at
366 $\sqrt{s} = 1.8$ TeV", Phys. Rev. Lett. **84** (2000) 5478-5483. doi:10.1103/PhysRevLett.84.5478.

367 [25] D0 collaboration, "Cross section for b jet production in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV",
368 Phys. Rev. Lett. **85** (2000) 5068(C5073. doi:10.1103/PhysRevLett.85.5068.

369 [26] CDF collaboration, "Observation of the B_c meson in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV", Phys.
370 Rev. Lett. **81**, 2432 (1998),

371 [27] CDF Collaboration, "Observation of the B_c meson in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV", Phys.
372 ReV. **D58**, 112004 (1998).

373 [28] CDF collaboration, "Observation of the Decay $B_c^\pm \rightarrow J/\psi\pi^p m$ and Measurement of the
374 B_c^\pm Mass", Phys. Rev. Lett., **100**, 182002 (2008).

375 [29] D0 collaboration, "Observation of the B_c Meson in the Exclusive Decay $B_c \rightarrow J/\psi\pi$ ", Phys.
376 Rev. Lett. **101**, 012001 (2008).

377 [30] LHCb collaboration, "Measurement of the B^\pm production cross-section in pp collisions at
378 $\sqrt{s} = 7$ TeV", JHEP **04** (2012) 093.

379 [31] LHCb collaboration, "Measurement of $\sigma(pp \rightarrow b\bar{b}X)$ at $\sqrt{s} = 7$ TeV in the forward re-
380 gion", Phys. Lett. **B 694** (2010) 209.

381 [32] LHCb Collaboration, "Measurements of B_c^+ production and mass with the $B_c^+ \rightarrow J/\psi\pi^+$
382 decay", Phys. Rev. Lett. **109**, 232001 (2012).

383 [33] LHCb Collaboration, "First observation of the decay $B_c \rightarrow J/\psi\pi^+\pi^-\pi^+$ ", Phys. Rev. Lett.
384 **108**, 251802 (2012).

385 [34] LHCb Collaboration, "Measurements of B_c^+ production Production in Proton-Proton Col-
386 lisions at $\sqrt{s} = 8$ TeV", Phys. Rev. Lett. **114**, 132001 (2015).

387 [35] CMS collaboration, "Measurement of the B^+ production cross section in pp collisions at
388 $\sqrt{s} = 7$ TeV", Phys. Rev. Lett. **106** (2011) 112001.

389 [36] CMS collaboration, " B^0 Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV", Phys.
390 Rev. Lett. **106** (2011) 252001.

391 [37] CMS collaboration, "Measurement of the strange B meson production cross section with
392 $J/\psi\phi$ decays in pp collisions at $\sqrt{s} = 7$ TeV", Phys. Rev. **D 84** (2011) 052008.

393 [38] CMS collaboration, "Measurement of the Λ_b cross section and the $\bar{\Lambda}_b$ to Λ_b ratio with Λ_b
394 to $J/\psi\Lambda$ decays in pp collisions at $\sqrt{s} = 7$ TeV", Phys. Lett. **B 714** (2012) 136.

395 [39] CMS collaboration, "Inclusive b-hadron production cross section with muons in pp colli-
396 sions at $\sqrt{s} = 7$ TeV", JHEP **03** (2011) 090.

397 [40] CMS collaboration, "Measurement of the cross section for production of $b\bar{b} X$ decaying to
398 muons in pp collisions at $\sqrt{s} = 7$ TeV", JHEP 06 (2012) 110.

399 [41] CMS collaboration, "Inclusive b-jet production in pp collisions at $\sqrt{s} = 7$ TeV", JHEP **04**
400 (2012) 084.

401 [42] CMS Collaboration, "Measurement of the ratio of the production cross section times
402 branching fraction between the $B_c \rightarrow J/\psi\pi$ and the $B^+ \rightarrow J/\psi K$ and of branching frac-
403 tions $B_c \rightarrow J/\psi\pi\pi\pi$ over $B_c \rightarrow J/\psi\pi$ in CMS at $\sqrt{s} = 7$ TeV", JHEP **1501** (2015) 063.

404 [43] ATLAS collaboration, "Measurement of the b-hadron production cross section using de-
405 cays to $D^*\mu^- X$ final states in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector", Nucl.
406 Phys. **B 864** (2012) 341.

407 [44] ATLAS collaboration, "Measurement of the inclusive and dijet cross-sections of b-jets in
408 pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector", Eur. Phys. J. **C 71** (2011) 1846.

409 [45] ATLAS collaboration, "Measurement of the differential cross-section of B^+ meson produc-
410 tion in pp collisions at $\sqrt{s} = 7$ TeV at ATLAS", JHEP **10** (2013) 042.

411 [46] CMS collaboration, "The CMS experiment at the CERN LHC", JINST **3** (2008) S08004,
412 doi:10.1088/1748-0221/3/08/S08004.

413 [47] J. Chang, C Wang and X.Wu, BCVEGPY2.0: "An upgraded version of the genera-
414 tor BCVEGPY with the addition of hadroproduction of the P-wave B_c states", Com-
415 put.Phys.Communication **174** (2006) 11, doi:10.1016/j.cpc.2005.09.008.

416 [48] Sjostrand, Torbjorn and Mrenna, Stephen and Skands, Peter Z., "PYTHIA 6.4 Physics and
417 Manual", JHEP05 (2006) 026.

418 [49] Chao-Hsi Chang, Jian-Xiong Wang and Xing-Gang Wu, "An Upgraded version of the gen-
419 erator BCVEGPY2.0 for hadronic production of B(c)meson and its excited states", Com-
420 put.Phys. Commun. **175**, 624 (2006).

421 [50] C. Patrignani *et al.*, "Particle Data Group", Chin. Phys. C, 40, 100001 (2016).

422 [51] G.E. Forden and D.H. Saxon, "Improving vertex position determination using a kinematic
423 fit", Nucl. Instrum. Meth. A 248 (1986) 439

424 [52] CMS collaboration, "Measurement of Tracking Efficiency", CMS Physics Analysis Sum-
425 mary CMS-PAS-TRK-10-002, 2010. <https://cds.cern.ch/record/1279139>

426 [53] CMS Collaboration, "Absolute Calibration of Luminosity Measurement at CMS: Summer
427 2011 Update", CMS Physics Analysis Summary CMS-PAS-EWK-11-001, 2011. <https://cds.cern.ch/record/1376102>

429 [54] C.-F. Qiao, P. Sun, D. Yang, and R.-L. Zhu, " B_c exclusive decays to charmonium and a light
430 meson at next-to-leading-order accuracy", Phys. Rev. **D89** 034008 (2014).

431 [55] C. Chang, C. Driouchi, P. Eerola, and X. Wu, "BCVEGPY: an event generator for
432 hadronic production of the B_c meson", Comput. Phys. Communication **159** (2004) 33,
433 doi:10.1016/j.cpc.2004.02.005

434 [56] Chao-Hsi Chang *et al.*, "Hadronic Production of the P-wave excited B_c states $B^*(cJ, L = 1)$ ", Phys. Rev. **D70**:114019(2004); Chao-Hsi Chang *et al.*, "The color-octet contributions to
435 P-wave B_c meson hadron production", Phys. Rev. **D71**:074012(2005).

437 [57] C. F. Qiao and R. L. Zhu, "Estimation of semileptonic decays of B_c meson to S-wave char-
438 monia with nonrelativistic QCD", Phys. Rev. D **87**, 014009 (2013).

439 [58] M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P. Nason and G. Ridolfi, "Theo-
440 retorical predictions for charm and bottom production at the LHC", JHEP **1210** (2012) 137
441 [arXiv:1205.6344 [hep-ph]].

442 [59] J. M. Shen, et al., "QCD corrections to the B_c to charmonia semileptonic decay", Phys. Rev.
443 D **90**, 034025 (2014).

444 [60] S. J. Brodsky and X. G. Wu, Phys. Rev. **D85**, 034038 (2012); S. J. Brodsky and X. G. Wu,
445 Phys. Rev. Lett. **109**, 042002 (2012); M. Mojaza, S. J. Brodsky and X. G. Wu, Phys. Rev. Lett.
446 **110**, 192001 (2013); S. J. Brodsky, M. Mojaza and X. G. Wu, Phys. Rev. **D89**, 014027 (2014).