
 

基于决策树方法的奇A核基态自旋预测*

温湖峰 1)#    尚天帅 1)#    李剑 1)†    牛中明 2)    杨东 1)‡    

薛永和 1)    李想 1)    黄小龙 3)

1) (吉林大学物理学院, 长春　130012)

2) (安徽大学物理与光电工程学院, 合肥　230601)

3) (中国原子能科学研究院, 核数据重点实验室, 北京　102413)

(2023 年 4 月 4日收到; 2023 年 5 月 9日收到修改稿)

Z = 59

Z = 77 N = 41 N = 59

作为原子核的基本性质, 基态自旋一直是原子核数据与核结构基础研究领域的热点. 本文采用决策树方法

对核素图上的奇质量数原子核 (奇 A 核), 包括奇质子数原子核 (奇 Z 核)与奇中子数原子核 (奇 N 核), 进行了深

入的研究, 并分别训练了奇 Z 核与奇 N 核的基态自旋预测模型. 其中在以 75%∶25%的比例随机划分训练集

与验证集的情况下, 奇 Z 核的训练集和验证集的正确率分别达到 98.9%和 79.3%; 奇 N 核的训练集和验证集

的正确率分别达到 98.6%和 71.6%. 同时, 通过 1000次随机选择训练集和验证集进行重复验证, 得到的正确率

的标准误差均小于 5%, 进一步验证了决策树的可靠性和泛化性能; 另一方面, 决策树的正确率远高于核结构研

究中常用的理论模型, 如 Skyrme-Hartree-Fock-Bogoliubov (SHFB)理论、协变密度泛函理论 (CDFT)、 有限程

液滴模型等. 接下来, 以所有自旋确定的奇 Z 核和奇 N 核为学习集, 对共计 254和 268个自旋未确定但有推

荐值的奇 Z 核和奇 N 核的基态自旋值进行了预测, 预测集符合率分别达到 68.5%和 69.0%. 最后, 选择   ,

 ,   以及   四条奇质量数链, 讨论了决策树的学习 (预测)结果与相应原子核的实验 (推荐)

值, 以及 3种理论模型所给出结果的异同, 进一步展示了决策树在原子核基态自旋方面的研究与应用价值.
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 1   引　言

原子核的自旋, 即原子核的总角动量, 是描述

原子核性质的最基本和最重要的物理量之一. 原子

核的总角动量由组成原子核的质子和中子的自旋

及轨道角动量贡献, 反映了原子核的内禀结构特

性, 是检验和发展原子核理论模型的重要依据. 如

通过研究原子核基态自旋及其关联效应 (例如磁

矩), 可以更清晰地认识原子核的内部结构和核力

作用下的壳层演化规律, 进一步探索核力性质及在

核力作用下的原子核量子多体体系性质 [1,2]. 另一

方面, 对原子核自旋自由度的准确研究, 也是原子

核数据领域的重要需求. 如原子核的自旋是获取原

子核衰变绝对强度的重要物理量, 而原子核衰变特

征 g 射线绝对强度是禁核试核查和反应堆运行

必需的数据. 事实上, 大量裂变产物核素的射线绝

对强度, 即归一化因子, 难以通过实验一一测量,
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而计算绝对强度的常用方法依赖母核与子核的基

态自旋 [3–5].

由于偶偶原子核基态自旋为零, 对奇 A 核的

基态自旋研究和关注最多. 一方面奇质量数体系结

构相对简单, 规律性较强; 另一方面足够反映出背

后的物理机理. 实验上, 随着放射性束流的产生以

及同位素分离技术的发展, 对远离稳定线核素的实

验研究成为可能, 许多奇 A 核的基态性质包括自

旋值可以被确定, 但仍有相当多的原子核在测量方

面存在困难 [6]. 理论上, 尽管最近几十年发展了很

多成功的原子核结构理论方法, 但是对原子核基态

自旋的描述仍主要针对特定区域或者个别原子核

中的结构现象. 相比于原子核质量等基态性质的精

确描述, 对基态自旋的描述仍然让人不满意, 特别

是缺少微观系统的描述.

目前, 描述原子核结构性质最常用的微观理论

方法主要有第一性原理 (ab-initio)[7–10]、组态相互

作用壳模型 [11] 和密度泛函理论 [12]. 第一性原理方

法从真实核力出发对原子核进行描述, 但是由于计

算量非常大, 目前它们只适用于非常轻的原子核;

组态相互作用壳模型方法在一个截断的模型空间

内对原子核进行研究, 但是模型空间的维数会随着

原子核价核子数目的增加而迅速变大, 这强烈地限

制了它对更重原子核的描述; 密度泛函理论方法,

包括非相对论的 Skyrme-Hartree-Fock-Bogoliubov

方法和相对论的协变密度泛函理论方法 [13–16] 等,

基于一个普适的能量密度泛函, 该方法可以对核素

图中几乎所有原子核的基态和激发态性质给出统

一的描述, 已经成为核结构研究的标准理论方法之

一. 尽管密度泛函理论方法能系统地研究核素图上

的原子核基态自旋, 但它们的准确率仍有较大的提

升空间. 比如 SHFB模型对 344个奇 Z 核和 290个

奇 N 核基态自旋预测值与实验值的符合率分别为

53.49%和 29.31%[17]; CDFT模型对 349个奇 Z 核

和 366个奇 N 核基态自旋预测值与实验值的符合

率分别为 51.29%和 40.98%[18]. 另一方面, 对原子

核质量能够高精度描述的宏观-微观方法有限程液

滴模型 (FRDM), 其对 350个奇 Z 核和 364个奇

N 核基态自旋预测值与实验值的符合率分别为

48.68%和 46.98%[19], 与微观方法相差不大. 综上

所述, 不管是微观方法还是宏观-微观方法, 对奇

Z 核和奇 N 核的基态自旋描述符合率在 50%左

右, 使用微观理论方法进行原子核基态自旋系统的

研究仍然存在着挑战. 迫切需要一种更有效的计算

方法, 来描述已有原子核的基态自旋规律并预测未

测量的原子核基态自旋值.

机器学习方法有强大的数据处理和预测能力,

可以对任何可测量的函数逼近至一定的期望精度 [20].

目前, 机器学习已被广泛地应用于原子核结构和反

应相关性质的研究 [21], 如原子核的基态性质, 包括

核质量 (结合能)[22–38]、电荷半径 [25,39–45]、磁矩 [46]、

分离能 [23,25,33,38]、稳定性 [47,48]、密度分布 [49–51]、放射

性核衰变分支比 [48,52] 等 . 此外还有激发态 [53–56]、

a 衰变 [29,30,57–60]、b 衰变 [52,61–64]、核反应截面 [65–71]、

裂变势垒 [72,73]、巨偶极共振 [74]、b 衰变中子发射率 [75]、

核系统密度泛函 [76] 和核数据评价 [77] 等.
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早在 1993年, Gernoth等 [34] 就用前馈神经网

络学习了原子核的基态自旋: 他们使用前馈神经网

络对奇 Z 核进行训练并验证, 训练集和验证集的

奇 Z 核个数分别为 401和 41, 正确率分别为 99.5%

和 73.2%. 然而用上述神经网络预测奇 N 核基态自

旋的正确率只有 24%; 同样地 , 学习了 417个奇

N 核基态自旋的神经网络在预测当时新发现的

22个奇 N 核时正确率达到 83%, 而用此神经网络

预测奇 Z 核基态自旋的正确率只有 10%左右. 这

说明奇 Z 核基态自旋的分布规律与奇 N 核存在不

同, 因此有必要将奇 Z 核和奇 N 核分开学习. 此

后, Clark和 Li[37] 于 2006年利用支持向量机 (SVM)

方法同样研究了核基态自旋并得到了相当高的准

确率 (在训练集和测试集上能分别达到 90%和

84%), 这进一步说明了机器学习方法在处理核基

态自旋问题时的成功. 相比之下, 宏微观方法预测

上述 22个奇 N 核的正确率仅有 62%[78]. 这说明在

精度和预测能力方面, 神经网络模型可以与传统的

唯象理论方法相媲美甚至将之超越. 然而一方面文

献的数据集中包含非基态原子核的自旋, 另一方面

核基态自旋数据随着实验的进步在更新, 如上述

Gernoth等 [34] 的工作中, 他们预测的 22个奇 N 核

的基态自旋值在当时并未完全确定, 当时   基

态自旋推荐值为   , 而现在其基态自旋值确定

为   ; 另外, Clark和 Li[37] 的工作中也使用了当

时未被实验确定的核基态自旋值, 这可能对结果造

成了一些影响. 尽管这些文献中给出了比较好的预

测结果, 随着基态自旋确定的奇 A 核数量不断增

加以及机器学习方法的改进, 仍有必要进一步研究

以得到更加可靠的结果.
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决策树 (DT)方法在机器学习领域中通常用于

处理分类问题. 决策树模型保留了可解释性, 是支持

决策过程可视化的白盒模型, 便于结合物理图像分

析奇 A 核的基态自旋. 此外, 决策树还是构建其他

表现更好的回归模型 (如 Random Forest[79], XG-

boost[80])的关键. 为了进一步探索机器学习方法的

可靠性和奇 A 核基态自旋的规律性, 本文使用决

策树方法研究原子核的基态自旋, 并与传统方法比

较. 文章第 2节将介绍决策树方法和数据集、输

入、输出等量的选取, 第 3节对决策树学习结果进

行讨论, 第 4节是总结和展望.

 2   决策树方法简介

假设想要研究一个过程 f, 其将某些输入 X 转

换成输出 Y. 也就是说 f 是一个函数, 满足 

f : X → Y, (1)

f̃ f̃

Ỹ

其中输入 X 可以是高维矩阵, 输出 Y 可以是连续

值或离散值, 连续值属于回归问题, 离散值则属于

分类问题. 机器学习方法将函数 f 视为一个映射

X 到 Y 的黑盒, 放弃找到函数 f 的具体形式, 而去

构造一个新的过程   .    和 f 具有相同的输入 X,

输出值用  来表示: 

f̃ : X → Ỹ . (2)

f̃

f̃

过程  通常依赖于输入 X、参数 (在算法迭代

过程中可以改变的系数)、超参数 (在学习之前设置

的参数). 不同模型的学习效果也不尽相同. 为了比

较不同模型的学习效果, 也就是  与 f 的符合程度,

需要定义一个评价标准. 分类问题中最常用的评价

标准就是正确率: 

P (Ỹ = Y ) =
1

M

M∑
i=1

δỸiYi
, (3)

δỸiYi
其中 M 为样本个数;   是克罗内克函数,
 

δỸiYi
=

{
1, Ỹi = Yi,

0, Ỹi ̸= Yi.
(4)

f̃一般来说, 模型的正确率越大,    与 f 的符合程度

越好, 学习效果也就越好.

f : X → Y

决策树是常用的机器学习算法之一. 在决策树

中, 函数  近似为 n 步的阶梯函数 [81]: 

f̃ =

n∑
i=1

αiI(Ωi), (5)

Ωi ⊆ X,X ⊂ Rd Ωi Rd

I(Ωi)

其中   , 而且   是   中的半平面 ,

d 是特征数.   是指示函数: 

I(Ωi) =

{
1, x ∈ Ωi,

0, x /∈ Ωi.
(6)

Ωi

对于这样一个划分过程, 我们称划分前的集合为根

结点, 划分后的集合  为叶结点. 任何一个可测量

的函数都可以用阶梯函数来拟合 [82]. 因此, 只要函

数 f 是可测量的, 这种近似就是合理的. 于是, 通过

使用足够的阶梯函数, 理论上能拟合任何函数.

αi Ωi为了得到 (5)式中最佳的系数   和   , 本文

使用基尼指数作为划分标准: 

Gini(p) =
K∑

k=1

pk(1− pk) = 1−
K∑

k=1

p2k, (7)

pk

αi Ωi

其中 K 为数据集种类数量, 数据处于第 k 类的概

率为  . 基尼指数可以表示样本的不确定大小, 基

尼指数越大, 样本的不确定性越大. 决策树方法通

过比较不同划分方式划分后集合的基尼指数, 选择

基尼指数最小的划分方式, 如此就得到了最佳的系

数  和  .

随着划分次数的增加, 模型的复杂度也随之增

加. 当模型的复杂度达到一定程度时, 容易导致过

拟合现象, 也就是模型在训练集数据上正确率很

高, 然而在验证集正确率较低. 这时就需要通过调

节最大树深, 也就是整个数据集合得到叶结点所需

的最大阶梯函数个数, 使模型既具有较高的正确率

又尽量避免过拟合.

2I

本文使用 python的 scikit-learn库来建立决

策树模型 [83], 输入选择质子数 Z 和中子数 N, 为了

方便起见, 输出选择两倍自旋  . 划分标准选择为

基尼指数.

 3   结果讨论

本文所学习的数据来源于 NNDC网站 [84]. 总

共有 741个自旋确定的奇 A 核, 其中 363个为奇

Z 核, 其余 378个为奇 N 核. 由于奇 Z 核和奇 N 核

的基态自旋分布规律有所不同, 本文将其分开学习

并建立不同的模型.

图 1给出了奇 Z 核、奇 N 核的基态自旋分布

情况. 可以看出, 奇 A 核的自旋分布具有分块分布

的特性. 对于奇 Z 核, 同一条同位素链的原子核基

态自旋大多相同, 这一点在质子数为幻数附近的同
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Z = 49

9/2 Z = 51 N < 72

I = 5/2 N ⩾ 82 I = 7/2

73
35Br 1/2
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位素链上尤为明显. 例如,   同位素链基态自

旋全为  ,   同位素链在  时基态自旋

 ,   时基态自旋  . 对于奇 N 核

也是如此, 当中子数在幻数附近时, 同中异位素链

上原子核自旋基本相同. 当核子数远离幻数时, 由

于价核子轨道能级的变化, 同位素链和同中异位素

链上的自旋并不完全相同, 可能会有多个取值. 此

外, 在某些区域原子核基态自旋的分布规律较弱,

例如  的基态自旋为  , 然而邻近周围并没有

自旋为  的原子核. 尽管个别原子核的不规律性

增大了决策树方法的学习难度, 但整体上分块分布

的规律性为决策树取得较好的成果提供了可能.
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图 1    奇 A 核基态自旋实验值分布, 用不同颜色表示不同

自旋值　(a)奇 Z 核; (b)奇 N 核

Fig. 1. Experimental  ground-state  spin  of  odd-A  nuclei:

(a) Odd-Z nuclei; (b) odd-N nuclei. Different values are rep-

resented by different colors.
 

为了检验决策树的学习能力, 将全部奇 Z 核

和奇 N 核分别以 75%∶25%的比例随机划分为训

练集和验证集, 再用不同最大树深的决策树模型进

行训练 , 最终得到图 2. 首先 , 在树深为 11时奇

Z 核的训练集和验证集正确率分别为 98.9%和

79.3%; 奇 N 核为 98.6%和 71.6%. 此时决策树模

型不光在训练集有极高的正确率, 在验证集的正确

率也在 70%以上 , 特别是奇 Z 核的正确率接近

80%; 其次, 训练集和验证集的正确率在最大树深

大于 11后均趋于稳定. 从图 2可以得出以下结论:

当训练集的正确率接近 100%时, 验证集的正确率

也将趋于稳定. 此外, 决策树方法训练出的模型与

SHFB, CDFT和 FRDM等相比有更高的正确率.

考虑到目前的工作只对数据集进行了单次随

机划分, 不能排除偶然因素的影响. 于是取最大树

深为 11的决策树模型, 在其他参数相同的情况下,

进行 1000次随机重复验证, 得到表 1.

在表 1中, 奇 Z 核和奇 N 核训练集的正确率

平均值均高于 96%, 奇 Z 核验证集的正确率平均

值达到 72.3%, 奇 N 核验证集的正确率平均值为

67.1%. 将表 1中的正确率与图 2比较可发现, 奇

Z 核和奇 N 核训练集的正确率相比图 2只降低

了不到 3%, 奇 Z 核验证集的正确率降低了 7%,

 

1.0
(a)

(b)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

正
确

率

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 2 4 6 8 10 12 14
正

确
率

最大树深

训练集
验证集

训练集
验证集

图 2    训练集和验证集的正确率随最大树深的变化　(a)奇 Z

核; (b)奇 N 核

Fig. 2. Change of accuracy of training set and validation set

with the maximum depth of decision tree: (a) Odd-Z nuclei;

(b) odd-N nuclei. 

 

表 1    最大树深为 11时取 1000次随机重复验证,

分别得到奇 Z 核和奇 N 核的训练集与验证集正确

率平均值和正确率标准误差
Table 1.    Average and standard error of the accur-

acy of  the  training  set  and  the  validation  set   ob-

tained  by  1000 random  repetitions  for  odd-Z  nuclei

and odd-N nuclei, respectively.

奇Z核 奇N核

训练集 验证集 训练集 验证集

平均值 97.6% 72.3% 96.5% 67.1%

标准误差 1.7% 4.5% 2.4% 4.9%
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奇 N 核验证集的正确率仅降低了 3.5%. 此外, 表 1

同时给出了标准误差, 由下式得出: 

σ =

√√√√ 1

Q

Q∑
i=1

(Pi − P̄ )2, (8)

Pi

Q = 1000; P̄

其中  是第 i 次重复验证的验证集正确率; Q 是随

机重复验证的次数, 本文中  是 1000次

随机重复验证得到的验证集正确率的平均值. 由此

公式计算出的标准误差均小于 5%, 这一结果说明

训练集与验证集的划分对正确率的影响有限, 决策

树方法在处理原子核基态问题时有较高的稳定性.

前面通过随机划分数据集并多次重复验证的

方式对决策树模型进行了检验, 证明决策树模型具

有较高的可靠性. 现分别选取全部 363个奇 Z 核、

378个奇 N 核为学习集, 通过改变最大树深, 得到

图 3. 可以看出, 奇 Z 核和奇 N 核的学习集正确率

随最大树深变化曲线基本相同, 在最大树深为 11

时正确率分别为 97.5%和 98.4%, 并且在树深大

于 11时学习集正确率增长均比较缓慢. 结合图 2

中训练集和验证集的正确率变化趋势, 综合考虑学

习集正确率并防止过拟合, 可以认为这里选择最大

树深为 11的决策树模型是最优的.
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图 3    学习集正确率随最大树深的变化

Fig. 3. Change of accuracy of learning set with the maxim-

um depth of decision tree.
 

接下来, 在将所有具有实验数据的原子核作为

学习集的基础上, 对所有给出推荐值的原子核进行

预测, 并且对所有内插核的基态自旋进行预言, 分

别共计有 254和 268个自旋未确定的奇 Z 核和奇 N

核. 图 4给出了决策树模型预测的基态自旋值与学

习集中实验值的符合情况, 并给出与推荐值的符合

情况, 同时标注了预测集中没有给出推荐值的原子

核在核素图中的分布. 将决策树模型的预测结果与

17
9 F 133

57 La 143
59 Pr

145
59 Pr 159

69 Tm 161
69 Tm 167

71 Lu 169
71 Lu 171

71 Lu
65
30Zn 72

30Zn 187
76 Os 221

88 Ra 225
88 Ra 233

90 Th

给出的推荐值比较后, 奇 Z 核和奇 N 核的符合率

分别为 68.5%和 69.0%. 从图 4可以看出, 在学习

集上仅有少数几个原子核的基态自旋不能被决策

树学习到, 它们分别是奇 Z 核的  ,   ,   ,

 ,    ,    ,    ,    ,    以及奇

N 核的   ,    ,    ,    ,    ,    .

这些原子核的分布情况也不相同, 在奇 Z 核的数

据集上, 这些学习效果不理想的核大致按同位素链

分布且相邻, 这很有可能是同位素链上带头自旋的

竞争引起的; 而在奇 N 核的数据集上, 这些核的分

布没有明显的规律. 预测集上, 接近 70%的正确率

较随机划分数据集的情况降低. 一方面, 这里采用

的推荐值有很强的不确定性, 这会导致有一部分推

荐值偏离决策树在学习集上寻得的规律; 另一方

面, 大部分预测集分布在学习集的两端, 属于外推

预测, 而决策树方法由其数学原理限制, 外推预测

能力并不优秀. 综上所述, 决策树方法在预测集上

的表现符合预期.
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图 4    基于最大树深为 11的决策树模型得到的原子核基

态自旋学习集和预测集的结果 , 其中与实验值相同 (不

同 )的用红色实心 (空心 )圆圈表示 ; 与推荐值相同 (不

同)的用蓝色实心 (空心)方块表示 ; 没有推荐值的用蓝色

实心三角表示　(a)奇 Z 核; (b)奇 N 核

Fig. 4. Learning  set  and  prediction  set  of  the  ground-state

spin  based  on  the  decision  tree  model  with  the  maximum

depth  of  11:  (a)  Odd-Z  nuclei;  (b)  odd-N  nuclei.  The  one

same (different) as the experimental value is represented by

a  red  solid  (hollow)  circle;  the  one  same  (different)  as  the

recommended  value  is  represented  by  blue  solid  (hollow)

square;  those  with  no  recommended  value  are  represented

by blue solid triangles. 
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Z = 59 Z = 77

N = 41 N = 59

为了进一步研究图 4中部分学习集上原子核

的学习误差, 选取   和   的同位素链以

及   和   的同中异位素链, 将这 4条链

上的决策树学习 (预测)结果与它们的实验 (推荐)

值以及 3种理论模型 (SHFB,  CDFT,  FRDM)

的计算结果进行比较, 结果如图 5所示.

Z = 59 Z = 77

N = 41 N = 59

173 Ir(Z = 77, N = 96)

(3/2) (5/2)

Z = 59

d5/2 g7/2
5/2+ 7/2+

图 5中每一行分别是实验值或 NNDC网站中

给出的推荐值、决策树模型预测值、SHFB预测

值、CDFT预测值以及 FRDM预测值; 左侧两列

是   和   的同位素链 , 右侧两列是

 和  的同中异位素链. 值得注意的是,

对于原子核   , NNDC网站给

出的推荐值分别有   和   两个, 因此在图 5

中该处有两个值. 从图 5可以看出: 对于很少出现

的现象, 由于可供学习的物理信息不足, 当前的决

策树方法无法很好地再现; 对于  的 Pr同位

素链, 在 137Pr之后可能存在质子   轨道和  

轨道的竞争, 导致带头自旋产生   与   的竞

N = 41
71
30Zn

N = 41 νg9/2

I = 9/2

1/2

N = 50

9/2+

争关系. 由于本文使用的决策树模型采取了限制树

深的方法来避免过拟合, 它会更优先考虑周围原子

核的整体状态, 因此在这种竞争关系的符合情况上

存在弱势 ; 另外 , 对于   同中异位素链 , 在

 处出现了显著的变化. 关于 71Zn基态自旋的

特殊性, 文献 [85]中给出了详细的讨论. 在 Zn同

位素链中, 从   开始填充   轨道时, 在不

存在变形或相关性的情况下, 奇数 Zn同位素的基

态自旋  将是预期的. 但是 71Zn并不符合预

期, 它的基态自旋被实验证实为   . 文献 [85]提

出, 这是  壳层幻数性质的证据, 并表明较轻

的 Zn同位素在基态表现出了显著的相关性, 从而

导致非平凡的基态自旋, 而   态在 71Zn中似乎

是同质异能态. 对于机器学习而言, 由于这样的演

化趋势仅发生在微小的范围内, 决策树方法无法给

出令人满意的结果. 这些现象在其他 3个理论模型

中也无法被预测. 另外, 在图 5的所有 4条链中,

决策树方法对质子数或中子数的改变相比于其他
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Z = 59 Z = 77 N = 41 N = 59图 5    基于决策树得到的质子数   、   的同位素链, 以及中子数   、   的同中异位素链原子核的基态自旋

值, 并与 SHFB、CDFT、FRDM预测结果和相应实验值、推荐值结果的比较

Z = 59 Z = 77 N = 41 N = 59Fig. 5. The ground-state spin of    and    isotopic chains (left) and    and    isotonic chains (right) are ob-

tained based on the decision tree, and compared with the predicted results of SHFB, CDFT, FRDM and the corresponding experi-

mental and recommended values. 
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3个理论方法更敏感. 此外, 决策树用较低的计算

成本取得了比其他 3个理论模型更可靠的结果.

 4   总结展望

由于现有理论对原子核基态自旋的系统描述

不够准确, 本文利用决策树方法学习原子核的基态

自旋, 通过划分数据集并随机重复验证的方式, 验

证了决策树方法在这方面的可靠性. 在将所有实验

值作为学习集的情况下, 决策树方法在奇 Z 核和

奇 N 核上的正确率分别达到 97.5%和 98.4%, 远

高于 SHFB, CDFT, FRDM这 3种理论模型的预

测结果. 与其他理论模型比较, 决策树方法用较低

的计算量得到了较高的准确性, 体现了它的优势.

最后, 本文还预测了实验上基态自旋不确定的核与

它们的内插核的基态自旋. 虽然本文的正确率比

SHFB, CDFT, FRDM这 3种理论模型高很多, 但

仍有一些提高的空间: 在输入方面可以增加一些包

含更多信息的物理量, 例如核子数与幻数的差值等;

在算法方面可以采用更加高级的算法, 例如随机森

林、Light GBM决策树. 此外还可以直接学习奇

A 核的基态自旋, 研究奇 A 核基态自旋的分布规律.

使用机器学习研究原子核的基态自旋存在着

较大的意义: 从数据方面而言, 机器学习方法对原

子核基态自旋预测工作可以取得较高的正确率, 可

以给予实验工作一定帮助, 并且随着原子核基态自

旋实验数据的增加, 机器学习方法的正确率也将随

之增加, 两种相辅相成. 在物理意义上, 可以在机

器学习过程中增加特定的物理信息, 通过观察预测

结果的变化来得到这个物理量是否和原子核基态

自旋有关联. 最终通过对实验规律的总结和物理信

息的把握, 对现有理论给出比较好的修正.
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Abstract

Ground-state spin, as a fundamental parameter of nucleus, has consistently been a hot topic in research on

nuclear data and structure. In this paper, we extensively investigate the odd-mass nuclei (odd-A nuclei) on the

nuclide chart by using decision trees, including odd-proton nuclei (odd-Z nuclei) and odd-neutron nuclei (odd-N

nuclei), and train ground-state spin prediction models of odd-Z nuclei and odd-N nuclei. In the case of randomly

dividing the training set and validation set in a ratio of 75% to 25%, the accuracy rate of the training set and

validation set for odd-Z nuclei reach 98.9% and 79.3%, respectively. The accuracy rate of the training set and

validation  set  for  the  odd-N nuclei  reach  98.6% and 71.6%,  respectively.  At  the  same time,  by  1000  random

selections of training set and validation set, after being validated repetitively, the standard error of the accuracy

rate  obtained  can  be  less  than  5%,  further  verifying  the  reliability  and  generalization  performance  of  the

decision  tree.  On the  other  hand,  the  accuracy  rate  of  decision  tree  is  much higher  than  those  of  theoretical

models  commonly  used  in  nuclear  structure  research,  such  as  Skyrme-Hartree-Fock-Bogoliubov,  covariant

density functional theory, and finite range droplet model. Next, by taking all spin-determined odd-Z nuclei and

odd-N nuclei as a learning set, the ground-state spin values for 254 spin undetermined but recommended odd-Z

nuclei  and  268  spin  undetermined  but  recommended  odd-N  nuclei  are  predicted,  with  the  predicted  set

coincidence rates reaching 68.5% and 69.0%, respectively. Finally, four odd-mass number chains, i.e. Z = 59, Z =

77, N = 41, and N = 59, are selected to compare the learning (prediction) results of the decision tree with the

experimental (recommended) values of the corresponding nuclei, and to discuss the differences and similarities

in the results given by the three theoretical models, thereby further demonstrating the research and application

value of the decision tree in the ground-state spin of nuclei.
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