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Università di Roma La Sapienza
Dipartimento di Scienze di Base e Applicate

per l’Ingegneria

Tesi di dottorato

The beam coupling impedance model of
CERN Proton Synchrotron

Author:

Serena Persichelli

Coordinator:

Prof. Luigi Palumbo

Advisors:

Prof. Mauro Migliorati

Dr. Benoit Salvant

Prof. Vittorio Vaccaro

Dottorato di Ricerca in Elettromagnetismo e Modelli Matematici per l’Ingegneria

Ciclo XXVII

April 2015

http://www.university.com
http://www.university.com
http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
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Estratto

The beam coupling impedance model of CERN Proton Synchrotron

by Serena Persichelli

L’attività di ricerca descritta in questo lavoro di tesi riguarda lo sviluppo di un model-

lo di beam coupling impedance per il CERN Proton Synchrotron (PS), nel contesto del

progetto LHC Injector Upgrade. I risultati dello studio hanno permesso una migliore

comprensione dei limiti di instabilità della macchina, aiutando a prevedere gli effetti del-

l’aumento di corrente del fascio previsto dal progetto di upgrade di LHC. La conoscenza

del modello di impedenza permette inoltre di migliorare la stabilità dei fasci iniettati nel-

la catena di accelerazione dell’LHC, in previsione degli aumenti di energia delle collisioni

programmati per gli esperimenti di fisica delle particelle. Per determinare i modelli di

beam coupling impedance longitudinali e trasversi del Proton Synchrotron, i dispositivi

istallati nella macchina, e considerati le più importanti sorgente di impedenza, sono stati

individuati e studiati. I dispositivi sono successivamente stati modellizzati con appositi

CAD 3D per effettuare simulazioni elettromagnetiche. In alcuni casi è stato inoltre possi-

bile effettuare misure RF su banco, al fine di confrontare l’impedenza simulata con quella

misurata. Infine, le impedenze dei vari dispositivi analizzati sono state sommate per ot-

tenere un andamento totale dell’impedenza (longitudinale e trasversale) in funzione della

frequenza. Tale andamento rappresenta il modello di impedenza teorico della macchi-

na. Il modello teorico è stato confrontato con le misure, con l’obiettivo di verificarne

l’accuratezza rispetto al caso reale. I risultati ottenuti hanno mostrato un buon accor-

do sia sul piano longitudinale che trasversale, ed hanno permesso di stabilire un preciso

budget di impedenza per il PS, raggiungendo cos̀ı gli obiettivi del progetto di ricerca

assegnato. In questo lavoro viene inoltre descritto lo sviluppo di un modello elettromag-

netico teorico per la stima dell’impedenza longitudinale generata da un fascio di particelle

quando incontra una brusca discontinuità (step) tra due camere a vuoto di sezione ellittica

cofocali. L’obiettivo è quello di ottenere un modello da ricondurre al caso reale del PS,

nel quale sono presenti un centinaio di transizioni brusche tra camere di sezione circolare

ed ellittica. Inoltre è stata sviluppata una nuova espansione della funzione di Green nello

spazio libero in coordinate ellittiche.
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Introduction

The research activity described in this thesis work is mainly dedicated to developing a

longitudinal and a transverse beam coupling impedance model for the CERN Proton Syn-

chrotron (PS), in the framework of the Large Hadron Collider (LHC) Injector Upgrade

(LIU) project. The study allows a better understanding of the instability threshold of the

machine, helping predicting the effects of the current increase planned for the upgrade

program. Furthermore, the knowledge of the machine beam coupling impedance model

allows improving the stability of beams injected into the LHC chain, in prevision for the

particle collision energy increase in program for LHC physics experiments.

In order to build the beam coupling impedance models of the Proton Synchrotron, sev-

eral accelerator devices installed in the machine, and considered as significant sources of

impedance, have been identified and studied. The devices have been modeled with 3D

Computer-Aided Design (CAD) software in order to perform electromagnetic simulations.

In some cases, RF bench measurements have also been performed, in order to cross-check

the result from simulations. Finally, the impedances of the devices have been summed

together, obtaining a total impedance (longitudinal and transverse) as a function of the

frequency, describing the theoretical impedance model (longitudinal and transverse) of

the machine. The theoretical model has been compared with beam based measurements.

Experimental results show a good agreement both on the longitudinal and transverse

plane, allowing to establish a precise impedance budget for the PS.

The second part of this thesis work is focused on the development of a novel elliptical co-

ordinates expansion of the electromagnetic field produced by the interaction of a particle

beam traveling inside a tube of elliptical cross section. In order to match the elliptical

coordinates system, we needed to introduce a set of functions, called Mathieu functions.

A novel analytical formula (based on of the mode matching theory) for the evaluation of

the longitudinal beam coupling impedance of a step transition between two semi-infinite

elliptical waveguides, has also been developed.
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Electromagnetic simulations

Several devices have been simulated in order to estimate the beam coupling impedance

produced by the interaction between particle beams and vacuum chambers in circular

accelerator machines. The beam coupling impedance is defined as the Fourier transform of

the wake field produced by the interaction of a charge with the surrounding environment.

When possible, the simulated impedance has been compared with theoretical models

available in literature. The examined devices include eleven injection and extraction

kicker magnets with different geometries and several types of RF cavities and mechanical

components of the beam chamber (vacuum pumps and valves, flanges, bellows). All

devices have been checked during dedicated machine surveys; lately, mechanical models

on paper, when available, have been retrieved in order to help the building of a 3D model

for simulations.

During the LHC complex Long Shutdown (LS1) and the previous months, some new

machine devices to be installed at the beginning of 2014 have been studied. The aim

of these studies was to assess the impact of the new elements on the impedance budget.

Several months have been dedicated to the study of the impedance of a new dummy

extraction septum. The mechanical design stages have been followed up. The insertion

of sliding contacts for high order modes damping has been proposed and accepted in the

final design of the installed device. Bench measurements took place in order to test the

performance of the sliding contacts before installation. The dummy septum is currently

working in the machine under nominal operation beam conditions, without impedance or

heating related issues.

Impedance studies have been carried out for the new longitudinal damper loaded with

Finemet R©, a dispersive material for high order modes damping. Also in this case, the

simulated impedance has been compared with the results of bench measurements, showing

a good agreement and no major issues foreseen from the impedance point of view. The

damper is currently installed in the machine, where one of the cells has been connected

to the amplifier for tests. At last, the impedance of the new PS stripline pickup has

been studied. The device is currently installed and has been used for the tune shift

measurements described in the thesis.

Beam based measurements

To estimate the longitudinal impedance of the PS, two beam based measurement cam-

paigns have been carried out at the beginning of 2012. Measurements consist in acquiring

an observable called incoherent quadrupolar synchrotron frequency shift. Such a parame-

ter is proportional to the imaginary part of the longitudinal effective impedance through

a constant that depends on machine characteristics. The two measurement campaigns
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highlighted that the measured longitudinal impedance exhibits a 90% agreement with

respect to the longitudinal impedance calculated with theoretical simulations.

In order to measure the imaginary part of the transverse effective impedance of the ma-

chine, two campaigns took place in 2012-2013 (before the LHC complex Long Shutdown)

and in 2014 (after the LHC complex Long Shutdown). The first campaign allowed a

preliminary knowledge of the transverse impedance, showing a 65% agreement with the

theoretical model. The second measurement campaign was mainly focused on the in-

vestigation of the dependency of the impedance model on a machine parameter called

chromaticity. On the longitudinal plane measurements were performed only for extrac-

tion energy, whereas on the transverse plane, measurements were repeated for injection,

extraction and two intermediate energies.

Finally, measurements of the PS beam spectrum and shape have been performed with RF

instrumentation, both for the single and the multi bunch case. This campaign aimed at

obtaining a reference for impedance resonance modes of the machine devices, considered

potentially harmful. Therefore, resonances falling inside the beam spectrum (that can be

sources of heating and power loss) can be identified.

Green function in elliptical coordinates and the mode matching technique

During the PS impedance studies, difficulties in the calculation of the beam coupling

impedance of a step transition between two elliptical waveguides of different cross-section,

have been encountered. This particular structure encounters some problems when simu-

lated with 3D software, and theoretical methods were not available to solve this specific

problem. Due to the high number (about one hundred) of step transitions between circu-

lar and elliptical vacuum pipes currently present in the PS, a theoretical model based on

the mode matching technique was developed.

Before approaching this problem, we developed a novel expansion in elliptical coordinates

of the field generated by a particle beam traveling in the center of an elliptical chamber.

The solution, expressed in separate function of elliptical variables, has been calculated

separating the contribution of the Green function in free space (direct field) and the field

scattered by the charge on the elliptical boundary (indirect field). The Green function

expressed in elliptical coordinates matches the analogous solution in circular coordinates

available in literature, and is rapidly convergent thanks to the chosen expansion of the

Mathieu functions. The field generated by the step transition between two elliptical

waveguides, can be calculated superimposing the field of the charge previously expanded

in elliptical coordinates, and the radiated field from the discontinuity. Expressing the

radiated field as the product of a modal function for a modal coefficient, and imposing

the condition of continuity of the tangential electric and magnetic fields at the interface,



we obtain a set of linear equations for the unknown modal coefficients. Because of the

functional form of the modal modes, the problem reduces determining a set of modal

amplitudes associated with the field expansions in the two regions, where the beam field

represents the known coefficients of the system. The solution of this matching system al-

lows to calculate the amplitude of the radiated electric field. The longitudinal impedance

consists in the Fourier transform of the field itself. The matching system has been im-

plemented in Matlab, even if a library of elliptical Mathieu functions is not available. In

addition, the study of the solutions of Mathieu equations, the eigenvalue problem and the

implementation in Matlab of the elliptical functions have been performed.



Part I

The longitudinal and transverse

beam coupling impedance models

of the CERN Proton Synchrotron
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Chapter 1

Beam coupling impedance in

particle accelerators

1.1 Beam coupling impedance concept

In order to understand the main goal of this thesis work, we need to introduce a com-

mon problem for all the accelerators, that is the beam instability generated by unwanted

physical phenomena, limiting the beam current and the luminosity of the collisions. In-

stabilities act negatively on the operation and performance of machines, causing the loss

of part or the totality of the beam and compromising the success of experiments and

collisions.

One of the main cause of beam instability is the electromagnetic interaction between

the particle beam and the external environment, represented by the vacuum chamber.

The study of this phenomena leads to the introduction of a new concept, that is the

beam coupling impedance in particle accelerators [1] [2] [3]. This concept allows for useful

stability predictions that lead to correctly design the machine parameters and improve

performances.

To approach the concept of beam coupling impedance, let us consider the loop diagram

in Fig. 1.1. An external noise field represents a forcing term that enters into the beam

dynamic equation (region 1): the noise field can modulate an unperturbed particle beam,

producing a variation in the beam current. This perturbation in the beam can be con-

sidered a further source of electromagnetic fields (region 2): perturbation represents a

new forcing term entering the equation of beam dynamic, and creates a new disturbance

in the current which is added to the first one. This may create a loop process that can

lead to degradation or loss of the beam, unless a stabilization mechanism intervenes. The

8
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Figure 1.1: Flow chart of the beam coupling impedance concept.

beam coupling impedance can be defined as the transfer function between a possible per-

turbation in the beam current and the electromagnetic field produced by the interaction

between the beam itself and the accelerator devices. It is calculated as the integer of the

perturbed electric field along the orbit of the beam, divided by the value of the perturbing

current:

ZL =

2πR∫
0

Ep · dl

Ip
. (1.1)

Observing region 1 in Fig. 1.1, we understand that, in order to preserve the stability of the

beam, the longitudinal beam coupling impedance must satisfy the following relationship

ZL < K
∆2
p

I0
, (1.2)

where ∆p is the pulse dispersion of the beam, I0 is the current of the beam an K is a known

constant that depends on the parameters of the accelerator. Experiments and collisions in

modern circular machines require high collimated beams (small ∆p) and high intensities

(high I0): for this reason the beam coupling impedance budget of any new machine must

be considered during preliminary studies. In particular, when designing a new machine

or when the installation of a new device on an existing machine is needed, one should

carefully evaluate its contribution to the beam coupling impedance of the machine. For
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Figure 1.2: Scheme of source (S) and test (T) particle for impedance calculation.

a better understanding of the beam coupling impedance concept, let us consider a beam

circulating inside an accelerator device as shown in Fig. 1.2. The interaction between

the beam and the surrounding environment can be represented by the superposition of

two terms: the external fields Eext and Hext generated, for instance, by the RF cavities,

and the induced (or wake) fields Ewake and Hwake, generated by the interaction of the

beam with the vacuum chamber. Figure 1.2 shows a source particle (S) and a test particle

(T) that are traveling along the axis of a beam chamber, crossing a discontinuity inside

the chamber itself. The source particle excites an electromagnetic field that acts back on

the test particle. To describe the problem, we can adopt a cylindrical coordinate system,

where û = uû0 is the transverse coordinate and ẑ = zẑ0 is the longitudinal coordinate. The

test particle is positioned in (ûT , zT ), and is following at a distance s the source particle in

position (ûS , zS = βct), where β is the relativistic factor and c the speed of light. To have

an information about the scattered field impact on longitudinal and transverse dynamics,

we can calculate the change in transverse and longitudinal momentum of the test particle,

if the velocity of the source and the test particle is constant along the device. The change

of momentum is given by [4]:

∆p (uS , uT , s) =

+∞∫
−∞

F (uS , uT , zT = zS − s, zS) dt, (1.3)

where F = q(E + βµ0c ẑ0 × H) is the Lorentz force, µ0 the vacuum permeability and

q the particle charge. The projection components of the momentum variation in the

longitudinal and transverse plane are given by

∆pl(uS , uT , s) =

+∞∫
−∞

El(uS , uT , zT ) dt (1.4)
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and

∆pt(uS , uT , s) = q

+∞∫
−∞

û0 · Et(uS , uT , zT , zS) + µ0β ẑ0 ×Ht(uS , uT , zT , zS) dt, (1.5)

where zS = βct and zT = zS − s. Finally, we can define the longitudinal wake function as

Wl(uS , uT , s) = − βc
qQ

∆pl(uS , uT , s), (1.6)

and the transverse wake function as

Wt(uS , uT , s) = − βc
qQ

∆pt(uS , uT , s), (1.7)

where q is the charge of the test particle and Q is the charge of the source particle. E-

quations 1.6 and 1.7 represent the Green function response to a beam impulse excitation,

and they are usually referred as wakefields.

If we consider the effects of wakefields on the longitudinal beam motion, we could ne-

glect, as first order approximation, the transverse test and source positions, and consider

particles aligned on the closed orbit, i.e. uS = 0 and uT = 0. Expanding the transverse

wakefield along test and source transverse position, we observe the effect of wakefields on

the transverse beam motion [4]:

Wt(uS , uT , s) ≈Wt(0, 0, s) + ∆tWt(0, uT , s)uS + ∆tWt(uS , 0, s)uT . (1.8)

The first term of the expansion is zero when the wakefield integration path corresponds to

the geometrical symmetry axis of the device, which happens for axi-symmetric structures.

The second term is called driving (or dipolar) wakefield, since the test particle is driven by

the source particle displacement and feels a transverse force independently from its posi-

tion. The third term is called detuning (or quadrupolar) wakefield, since the test particle

feels a transverse detuning force linearly proportional to its displacement. Finally, the

beam coupling longitudinal and transverse impedance is defined as the Fourier transform

of the longitudinal and transverse wakefield, respectively:

Zl(uS , uT , ω) =

+∞∫
−∞

Wl(uS , uT , s) e
jωs
βc
ds

βc
(1.9)

Zt(uS , uT , ω) = −j
+∞∫
−∞

Wt(uS , uT , s) e
jωs
βc
ds

βc
. (1.10)



Chapter 1. Beam coupling impedance in particle accelerators 12

The longitudinal and transverse wakefields can be also be expressed in term of the

impedance, as follow:

Zl(uS , uT , s) =
1

2π

+∞∫
−∞

Wl(uS , uT , s) e
−jωs
βc dω (1.11)

Zt(uS , uT , s) =
j

2π

+∞∫
−∞

Wt(uS , uT , s) e
−jωs
βc dω. (1.12)

The choice of using the wakefield concept instead of the beam coupling impedance, can

be more suitable depending on the case under study.

1.2 Wakefield and impedance of a resonance

Accelerator devices like cavities, collimators, beam instrumentation etc., may support the

excitation of parasitic or trapped modes. These modes generate resonances that can be

described as parallel RLC circuits. An example of such a circuit is shown in Fig. 1.3,

where I the beam current, R is the shunt impedance, C is the capacitance and L is the

inductance. Such a system can be represented by the following homogeneous differential

Figure 1.3: A parallel RLC circuit schematic.

equation [5]

V̈ +
ωr
Q
V̇ + ω2

rV =
ωrRs
Q

İ, (1.13)

where ωr is the angular frequency of the resonance and Q is the quality factor. The

solution of the above equation is a damped oscillation

V (t) = e−αt
[
A cos

(
ωr

√
1− 1

4Q2
t

)
+B sin

(
ωr

√
1− 1

4Q2
t

)]
, (1.14)

where α is the damping rate and A and B are the amplitudes of the oscillation. We can

now calculate the response of a resonance, modelled as a RLC circuit, to an impulsive
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current I(t) = qδ(t). The charge q induces the following voltage on the capacitor

V (0+) =
ωrRs
Q

q, (1.15)

resulting in energy stored in the capacitor, which must be equal to the energy lost by the

charge. This energy is given by

U =
1

2
V (0+)q = kq2. (1.16)

We introduce the parasitic mode loss factor k that represents the energy loss normalized

by the point charge q, and is given by (electric convention)

k =
ωrRs
2Q

. (1.17)

After imposing starting conditions, we obtain that the voltage in the resonant circuit,

excited in t = 0 by an impulsive current, becomes

V (t) = 2qke−αt

cos(ωr√1− 1

4Q2
t

)
−
sin
(
ωr
√

1− 1
4Q2 t

)
2Q
√

1− 1
4Q2

 . (1.18)

This voltage induced by the source charge, is seen by the test charge q′, passing in the

cavity at the time t and gaining or losing the energy U = q′V (t). This energy, divided by

the two charges, is the wake potential of a point charge, and it is approximated by

w(t) = 2ke−αt

cos(ωr√1− 1

4Q2
t

)
−
sin
(
ωr
√

1− 1
4Q2 t

)
2Q
√

1− 1
4Q2

 . (1.19)

When Q� 1 (high quality resonance), the wake potential is simply given by

w(t) ≈ 2ke−αtcos(ωrt). (1.20)

In order to compute the coupling impedance of a resonance, we consider now an harmonic

excitation I = Î cos(ωt), which is described by the following differential equation:

V̈ +
ωr
Q
V̇ + ω2

rV = −ωrRs
Q

Îω sin(ωt). (1.21)

The solution is given by

V (t) = ÎRs
cos(ωt)−Qω2

r−ω2

ωrω
sin(ωt)

1−Q2
(
ω2
r−ω2

ωrω

)2 . (1.22)
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The cosine term (in phase with the current and has the meaning of an energy gain) is

called resistive, while the sine term (out of phase with respect to the current and has the

meaning of an energy loss) is called reactive. The coupling impedance of the resonance is

calculated as the ratio between the voltage and the current, and has a resistive part given

by

Zr(ω) = Rs
1

1 +Q2
(
ω2
r−ω2

ωrω

)2 , (1.23)

while the reactive part is given by

Zi(ω) = Rs
Qω2

r−ω2

ωrω

1 +Q2
(
ω2
r−ω2

ωrω

)2 . (1.24)

In complex notation, the longitudinal coupling impedance is then given by

ZL(ω) =
Rs

1 + jQ
(
ω2
r−ω2

ωrω

) . (1.25)

In case of a short range wake field, assuming Q ≈ 1, the longitudinal impedance given by

Eq. 1.25 can also be used as simplified impedance model for the whole machine, the so

called broad band impedance. This formula, characterized by a small number of parame-

ters, allows for analytical evaluation of single bunch stability limits or instability growth

rates, as shown in Chapter 5.





Chapter 2

The CERN Proton Synchrotron

The CERN accelerator complex comprises a chain of linear and circular machines that

accelerate protons and ions to increasingly higher energies. In the last element of this

acceleration chain, particle beams are accelerated up to the energy of 4 TeV, but the

complex includes also several experiments that need beams at lower energies. At the

beginning of the proton accelerating chain, LINAC 2 accelerates the beam to the energy

of 50 MeV, injecting it in a circular machine called Proton Synchrotron Booster (PSB),

which accelerates the protons to 1.4 GeV. After that, the beam is accelerated by the

Proton Synchrotron (PS) at the energy of 25 GeV and by the Super Proton Synchrotron

(SPS) to the energy of 450 GeV. The protons are finally transferred to the two beam

pipes of the Large Hadron Collider (LHC), where the two beams circulate clockwise and

anticlockwise, respectively. When the nominal energy of 7 TeV is reached, the beams col-

lide in four detectors – ALICE, ATLAS, CMS and LHCb – where the total energy at the

collision point can reach 8 TeV. The CERN accelerator complex includes the Antiproton

Decelerator (AD) and the Online Isotope Mass Separator (ISOLDE) facility, and feeds the

Compact Linear Collider (CLIC) test area, as well as the neutron time-of-flight facility

(nTOF). Protons are not the only particles accelerated in the LHC. Lead ions for the

LHC enter into LINAC 3 before being collected and accelerated in the Low Energy Ion

Ring (LEIR), then following the injection scheme as the protons to reach high energy.

This thesis work is focused on the study of the CERN Proton Synchrotron: in this chap-

ter, a brief description of the main machine parameters and types of beam is provided.

Moreover, in order to introduce the devices that have been studied in Chapters 3 and 4,

in the framework of the determination of the beam coupling impedance models, a short

description of machine elements like magnets, cavities, vacuum equipments, is also pro-

vided.

16
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2.1 Description of the machine

The CERN Proton Synchrotron was built in 1959 [6]. At that time, it was the first circular

proton machine providing strong focusing and accelerating particle beams at the energy

of 24 GeV. At the beginning of its activities, the PS was the only circular accelerator at

CERN The injection, at the energy of 50 MeV, was provided by the linear accelerator

LINAC 1. The PS Booster was built only at the end of the 70s, in order to work as

PS injector. The PS operation as LHC injector started in 2008, when a particle beam

circulated into the 26 km ring for the first time. After more than 50 years of reliable

operation, the PS is still considered a fundamental scientific tool for beam dynamics

studies and experiments. Today we consider part of the PS accelerator complex also

the two linear accelerators LINAC 2 and LINAC 3, and three smaller circular machine,

namely PS Booster, LEIR (Low Energy Ions Ring), and Antiproton Decelerator (AD). A

sketch of the complex is shown in Fig. 2.1, while in table 2.1 some important parameters

of the PS are summarized.

The PS is a circular machine with a diameter of 628 m, made of 100 straight sections

Figure 2.1: Proton Synchrotron complex layout.

and 100 magnet units [6]. The main magnet system consists of 100 combined function

magnet units (MU), each composed of a focusing (F) half-unit and a defocusing (D)

half-unit. A half-unit comprises five adjacent magnet blocks, each 417 mm long; the

single MU is then made by ten blocks (five focusing and defocusing), excited by the same

coil. Accelerating cavities, beam diagnostic devices and injection and extraction elements

are installed are installed in straight sections, that are placed between two subsequent

magnet units. Moreover, correction magnetic lenses are also usually placed in the straight

sections between two main magnet units. The use of the combined function magnets

requires special pole profiles to provide a correct bending and focusing of the particle

beam. In order to introduce a current distribution that generates additional low amplitude
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Table 2.1: Main parameters of the PS machine for the 25 ns bunch spacing.

Machine parameter Injection Top

Circumference [m] 628.32 628.32
Kinetic energy [GeV] 1.3892 25.0787
Momentum [GeV/c] 2.13 26

Gamma 2.4806 27.7286
Beta 0.915145 0.999349

Revolution frequency [Hz] 436647.3424 476824.1330
RF frequency [MHz] 3.0565 10.0133
Harmonic number 7 21

Synchrotron frequency [Hz] 600 230
Qs 0.00137 0.00048

Working point (Qx, Qy) 6.21, 6.24 6.21, 6.24
Gamma transition 6.1 6.1

RMS bunch length [cm] 1206.6413 26.8142

magnetic field for main field distortion compensation, the so-called Pole Face Windings

(PFW) are placed on the magnet poles. These correction devices, together with the

Figure-of-Eight Loop (F8L), act along the whole main magnet unit, providing a way to

control the betatron tune and the chromaticity. Quadrupolar and octupolar distortions

are corrected with lenses installed in the straight section, while PFW are dedicated to

correct sextupolar field components resulting from saturation and the leakage field at

high field levels. In the following sections, a brief description of some important devices

installed in the machine (and considered in the computation of the PS impedance model

in Chapter 3 and 4), is given. Also a short description of the main types of PS beams,

together with some beam spectra measurement results, are provided.

2.1.1 Kicker magnets and septa

Injection and extraction systems are used to insert beams in the expected trajectory

with the correct phase space parameters, while minimizing the beam losses. A septum

is a device that can separate two regions in cavity-like structure, creating two regions

of homogeneous (electric or magnetic) field [7]. In this way a septum provides a space

separation of circulating and injected/extracted beam. On the contrary, a kicker magnet

provides a separation of beam to be injected and extracted based on time selection [8].

Septa provide slower field rise and fall times, but stronger field than kicker magnets. The

latter provide fast field rise and fall times, but relatively weak fields. In the PS, a com-

bination of septa and kicker magnets is used for injection and extraction of beams, using

several techniques like single-turn injection and extraction. In the single-turn (fast) in-

jection, a septum deflects the beam into the closed orbit in the center of the kicker, while

the kicker compensates for the remaining angle. The kicker field must rise from zero to
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Figure 2.2: Design of kickers KFA28 (left) and KFA13 (right). KFA28 is designed with
frame shape ferrite and an aluminium insert; KFA13 is designed C-shape ferrite with

longitudinal segmentation.

full field in the time interval between the beam is circulating and the start of injection;

the field falls from full field to zero between the end of injection and the circulating beam.

Single-turn (fast) extraction is the process of ejecting a particle beam into a transfer line

or a beam dump, at the appropriate time. It is based on time selection of the beam to

be extracted, meaning that the kicker magnet deflects the entire beam into the septum

in a single turn. The extracted beam passes through the homogeneous field region of the

septum, while the circulating beam, before extraction, is in the field-free region of the

septum (space separation of circulating and extracted beam). The septum then deflects

the entire kicked beam into the transfer line.

Fast kicker in the PS are magnets, based on ferrite-loaded transmission line, with a

rectangular-shaped aperture. The magnetic flux density in the aperture Bv of the kicker

is given by

Bv = µ0

(
NI

Va

)
, (2.1)

where µ0 is the permeability in free space, N is the number of turns, I is magnet current,

and Va is the distance between the inner edges of the ferrite. Beams in high intensity

accelerators are, in general, very sensitive to longitudinal and transverse beam coupling

impedance coming from kickers, due to their ferrite yoke. In particular, heating of the

ferrite beyond the Curie temperature could be provoked by the coupling impedance. The

longitudinal impedance can be significantly reduced by serigraphy of ferrites, insertion

of beam screens within the kicker magnet aperture and the use of striplines instead of a

ferrite loaded magnet. The following kickers are currently installed in the PS machine [9]:

• injection kicker KFA45 in SS45: delay line design, the ferrite is split longitudinally

in eight cells. Each cell is 25 mm long: 20 mm of ferrite and 5 mm of aluminium.

• extraction kicker KFA71/79 in SS71 and SS79: delay line design, the ferrite is split

longitudinally in nine cells. Each cell is 24 mm long: 19 mm of ferrite and 5 mm of

aluminium (see Fig. 2.2 on the right).
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• CT extraction kicker BFA9/21 (pedestal and staircase) in SS9 and SS21: lumped

magnets, i.e., the ferrite is not split longitudinally in many cells.

• injection kicker for ions KFA28 in SS28: lumped magnets, i.e., the ferrite is not split

longitudinally in many cells. An aluminium insert is added to reduce the impedance

seen by the beam (see Fig. 2.2 on the left).

• multi-turn extraction kickers KFA13 and KFA21 in SS13 and SS21: similar to ex-

traction kicker KFA71/79 (see Fig. 2.2 on the right);

• multi-turn extraction kicker KFA4 in SS4: delay line design, the ferrite is split

longitudinally in twenty-four cells. Each cell is 24 mm long: 19 mm of ferrite and

5 mm of aluminium. The modules have been retrieved from the extraction kickers

for leptons.

In Table 2.2 the geometrical parameters of the eleven PS kickers are summarized. a

and b are the horizontal and vertical aperture, h is the height of the ferrite and L is

the longitudinal size of the kicker. In particle accelerators we can distinguish between

Table 2.2: Geometry of PS kickers.

a [mm] b [mm] h [mm] L [m]

PI.KFA04 (A) 56 37 40 0.615
PE.KFA13 (A) 73.5 26.5 100 0.666
PE.KFA21 (A) 73.5 26.5 100 0.666
PI.KFA45 (A) 75 26.5 40 0.884
PE.KFA71 (A) 73.5 26.5 100 1.998
PE.KFA79 (A) 73.5 26.5 100 0.666
PI.KFA28 (B) 79.5 35 15 0.925

PE.BFA09P (B) 79 26.25 20 0.54
PE.BFA21P (B) 79 26.25 20 0.54
PE.BFA09S (C) 79 26.25 20 0.54
PE.BFA21S (C) 79 26.25 20 0.54

Figure 2.3: Magnetic septum SMH16.
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electrostatic septa and magnetic septa. An electrostatic septum is a DC device with very

thin (typically in the order of 100 µm) separation between the zero field and high field

regions. A magnetic septum is either a pulsed or DC dipole magnet with a thin (typically

in the order of 2-20 mm) separation between the zero field and high field regions. Ten

septa, with different purposes, are currently installed in the PS machine:

• Magnetic septum SMH16 for proton ejection to SPS;

• Electrostatic septum SEH23 for proton extraction to East Hall;

• Magnetic septum SMH26 for ion injection from LEIR and antiproton ejection to-

wards LEAR;

• Electrostatic septum SEH31 for proton extraction towards SPS.

• Magnetic septum SMH42 for proton injection from the Booster;

• Magnetic septum SMH57 for slow extraction to East Hall;

• Magnetic septum SMH58 for electron ejection to SPS;

• Magnetic septum SMH61 for slow extraction to East Hall;

• Magnetic septum SMH74 for electron injection from LPI;

• Magnetic septum SMH92 for positron injection from LPI.

In Fig. 2.3 the magnetic septum SMH16 is shown: the maximum field is 1.2 T for a pulsed

current of 28.5 kA, while the fringe field is less than 1/1000 of the gap field at a 50 mm

distance from the septum conductor. Due to the very high level of radiation produced

by the septum SMH16, a protection septum has been installed during LS1 in the straight

section 15; the design of this device is discussed in details in Chapter 5.

2.1.2 RF cavities

In order to generate bunch trains for LHC, the PS is equipped with several RF systems

for longitudinal beam manipulations, operating at the frequencies of 10, 20, 40, 80 and

200 MHz. The combined use of a 10 MHz system (working on harmonic 21) and a 20 MHz

system (working on harmonic 42), followed by a 40 MHz system (working on harmonic

84) and a 80 MHz system (working on harmonic 168) allows to produce the desired beam

pattern and filling scheme. The nominal filling scheme for LHC requires bunch trains

of 25 ns bunch spacing [10]; four bunches are sent from the PSB and captured on four

consecutive buckets on h=7 in the PS. On the following cycle, two more bunches are
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provided (double batch filling). The 25 ns bunch spacing is then generated at extraction,

when the bunches are shorter than 5 ns to fit the SPS 200 MHz RF system. This is

achieved just before PS ejection at 25 GeV by debunching and rebunching the beam

on h=84, followed by bunch rotation. An alternative method that allows to avoid the

process of debunching and rebunching, consists in changing the number of bunches by

using multiple splitting: captured on h=7 in the PS, the bunches are split in three at

1.4 GeV (triple splitting) and accelerated on h=21. At 25 GeV, each bunch is split twice

in two (double splitting) by the 20 MHz system, so that finally 72 bunches are created on

harmonic 84. Finally the 80 MHz systems shorten the bunches to 4 ns, in order to fit into

the SPS 200 MHz buckets. The change from the debunching-rebunching scheme to the

multiple splitting required the installation of a 20 MHz RF system.

The 75 ns bunch spacing scheme was used in the early period of operation of LHC, to

minimize the electron cloud effects. The six bunches were split into two at injection energy,

providing 12 bunches in h=14. Acceleration is done on this harmonic up to 25 GeV. At

this energy, bunches are again split into two from the 13.3 MHz system (24 bunches in

h=28). The RF system on h=84 (3x28) reduces to zero the voltage at h=28. Just before

extraction, bunches are rotated by modulating the voltages at 40 and 80 MHz (h=84 and

h=168) like for the nominal LHC beam.

2.1.2.1 40 and 80 MHz cavities

Figure 2.4: Design of the 40 MHz (right) and 80 MHz (left) cavities for simulations.

The 40 MHz cavity has been designed and built at CERN as part of the preparation of

the PS as injector for LHC [11], with the aim of providing a bunch spacing of 25 ns. The

cavity was designed with an R/Q of 33 Ω and an unloaded Q of 18200. It is provided
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of a mushroom shaped gap electrode which makes capacitive coupling possible, and two

tuners for regulation of the resonance frequency and compensation of slow temperature

and atmospheric pressure variations. The shape of the cavity is shown in Fig. 2.4 on the

right.

While the requested bunch spacing is obtained with the 40 MHz system, the nominal

bunch length is obtained using the 80 MHz systems. Two 80 MHz cavities were installed

and commissioned during 1998 as part of the preparation of the PS as injector for LHC [12].

The mechanical design is similar to that of the 40 MHz cavity with many common parts.

In contrast to the 40 MHz, the 80 MHz cavity, equipped with a cooling water circuits, was

designed to enable long pulse operation. An R/Q of 56 Ω with an unloaded Q of 22600,

has been designed. A magnetic coupling loop was adopted since the gap electrode is much

smaller than the 40 MHz, and a capacitive antenna would have been excessively long. The

tuners of the 80 MHz cavity, for resonance frequency regulation, are capacitively coupled

piston. The shape of the cavity is shown in Fig. 2.4 on the left.

2.1.2.2 10 MHz cavities

The PS 10 MHz system [13] includes eleven cavities located in straight sections 11, 36,

46, 51, 56 ,66, 76, 81, 86, 91 and 96, for a total of ten cavities plus an additional spare

(located in SS11). Working at frequencies from 2.8 MHz to 10.01 MHz, the cavities are

needed to form the bunches after injection, accelerate them to the desired energy and

perform bunch splitting and rotation before extraction. Every cavity is split into two

resonators (sections), in order to deal with the voltage limit (10 kV) for the gap relays

that are used to shorten the accelerating gap outside the RF pulse. As a consequence, a

single 10 MHz cavity consists of two ferrite loaded 1/4 wave lines, with a capacitive gap at

the input end. The ferrite rings are made of Ferroxcube 4E1 (µ = 14) and provided with

a water-cooled copper disks. Each cavity has a total of nineteen rings, with a 440 mm

outer diameter, 250 mm inner diameter, and 33.3 mm thickness. The cavity ferrite loss

resistance is very high for low level signals at LF (3 MHz), providing a cavity unloaded Q

of 130, that is reduced to 30 when connected to the amplifier. Tuning is performed by a

PLC that moves two variable vacuum capacitors, connected in parallel to the gaps. The

design of the cavity is shown in Fig. 2.5.

2.1.2.3 200 MHz cavities

The decision to build the SPS, taken in 1972, significantly increased the requirements on

the PS, which was requested to deliver high-intensity beam bunched at the SPS frequency

of 200 MHz. In this context, the 200 MHz system was built to be used as pre-modulation
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Figure 2.5: Design of the 10 MHz cavity for simulations.

of the extracted beam [14]. In this framework, tests with beam quickly revealed an

unacceptable longitudinal blow-up during debunching, due to longitudinal microwave in-

stability. It was soon realized, however, that the newly installed 200 MHz cavities could

provide a mitigation to that problem [6]. It was observed that, driving some 200 MHz

cavities with a phase modulated signal at an harmonic of the accelerating RF frequency,

the longitudinal emittance of the bunches could be blown up in a controlled way during

the early part of the acceleration cycle. In this way, it was possible to keep the beam

below the instability threshold. The longitudinal emittance of the bunches in the CERN

PS must be increased before transition crossing to avoid beam loss due to a fast vertical

instability [15]. This controlled blow-up is essential for all high-intensity beams in the

PS, including those for transfer to the LHC. The 200 MHz system is made of six cavities

located in SS06 (see Fig. 2.6). Each cavity is equipped with two magnetic loops (see

Fig. 2.7 on the right) and three PIN diodes lines terminated by a 50 Ω load, which allow

their Q and shunt impedance to be reduced by more than an order of magnitude (diodes

are either open, which terminates the line with the 50 Ohm in parallel, or closed, which

can be modeled as a short circuit). The designed R/Q is 28.5 Ω. Table 2.3 are summarizes

the values of unloaded Q and shunt impedance designed for the different work conditions

of the single 200 MHz cavity. Before applying RF power and getting voltage across the

gap, damping is suppressed by short-circuiting the resistive loads with PIN diodes. When

driven by the RF amplifier, the equivalent impedance of the cavity is minimized by ad-

justing the length of the feeder line. Each cavity is equipped with four cylindrical tuners

for resonance frequency regulation (see Fig. 2.7 on the left).
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Figure 2.6: Model of the 200 MHz cavities for simulations.

Figure 2.7: 200 MHz cavity tuners (left) a the magnetic coupler for the fundamental
mode (right).

Table 2.3: Values of unloaded Q and shunt impedance designed for the different work
conditions of the single 200 MHz cavity.

Q0 Rs [kΩ]

Naked cavity 1900 54140
Operational cavity 1000 28500

Terminated with 1 line 50 Ω 328 9350
Terminated with 2 line 50 Ω 200 5700
Terminated with 3 line 50 Ω 130 3700

2.1.3 Beam chambers and vacuum instrumentation

2.1.3.1 The PS beam chamber and its features

The typical beam chamber in the PS has an elliptical cross-section of vertical half-aperture

35 mm and horizontal axis half-aperture of 73 mm (Fig. 2.8 on the left). Another com-

mon beam chamber geometry presents a rectangular-like shape, also called racetrack, with

vertical half-aperture of 36 mm and horizontal half-aperture of 92 mm (Fig. 2.8 on the
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right). In this type of chambers the beam is usually circulating in the geometrical center

Figure 2.8: Mechanical drawings of two more common PS vacuum chambers. CDD
reference: PS VCS0024, STDVFCON0063.

of the tube, while in sections where the beam is injected and extracted the beam chamber

has usually a larger horizontal aperture and an asymmetric elliptical cross section, which

allows the beam to move on the horizontal axis of the tube. For example, in PS sections

43, 60 and 62 we can find some example of asymmetric beam chambers that allows in-

jection and extraction of particle beams. A particular feature of only these three straight

sections of the PS are the horizontally not aligned beam chambers, which result in poten-

tial coupling impedance related issues. An example is shown in Fig. 2.9. Different types

Figure 2.9: Mechanical models horizontal misaligned 43 of section: front view (left)
and upper view (right). CDD reference: PS VCBCG0001.

of beam chamber are usually connected in the straight sections with bellows and flanges.

Bellows are used in accelerator vacuum system to perform several functions, like fixing

transverse offset in beam line hardware, providing flexibility for installation of devices, re-

ducing stress on vacuum joints, providing expansion or contraction during thermal cycles.

Depending on the purpose, bellows present a certain number of undulations, a maximum

extended length and a minimum compressed length. In the PS about 230 unshielded

bellows are currently installed, matching beam tubes of different cross-sections. Devices
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Figure 2.10: 3D model of the horizontally misaligned PS SS60 where are installed three
flanges, a VVS and a bellow.

like kickers, cavities, instrumentation and septa usually have a circular tank, connected

to a elliptical or rectangular beam pipe through flanges, which result in a step transition.

This is clearly visible from the horizontal and vertical apertures plot shown in Fig. 2.11.
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Figure 2.11: Horizontal and vertical physical apertures of the PS vacuum chamber.

2.1.3.2 Vacuum pumps and valves

When the PS was designed and built, the vacuum system consisted of 100 pumping groups

(one for each straight section), each one composed of a rotary pump and an oil diffusion

pump [16]. The pressures reached at that time were in the order of 10−4 Pa. Due to

the problems caused on the beam by the heavy hydrocarbon molecules, in the late ’60s,

the change to ion pumps was made. After mid ’80s, when all 100 magnets received new

vacuum chambers made of vacuum fired 316L+N stainless steel, it was possible to get an

average pressure of 10−6 Pa under static conditions. The pumps currently installed in the

PS are made of a circular tube intercepting transversally the beam chamber, as shown in

Fig. 2.12. In particular, the beam chamber is entering inside the vacuum pumps for few
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millimeters on both sides. A sketch of two vacuum pump connections with the beam pipe

is shown in Fig. 2.12 [17]. For each of the ten sectors of the PS, a sector gate valve (VVS)

is installed, in order to prevent leak propagation and allow mechanical interventions. To

avoid leaks, an interlock signal is sent to the VVS controller when several pressure readings

rise above a given threshold in the same vacuum sector; the valve will then confine the

leakage in the vacuum sector. A picture of a PS VVS is shown in Fig. 2.13.

!"#$%
!"#$%

&#'(($%)($)%

&#'(($%)($)%

Figure 2.12: Sketch of two vacuum pump connections with the beam pipe.

Figure 2.13: Picture of a PS sector valve.

2.1.3.3 Flanges

For several particle accelerator devices like RF cavities, septa or beam instrumentation,

the vacuum chamber is connected to the ground, creating a loop between the vacuum

chamber and its ground connection. Fast variation of the magnetic field in circular ma-

chine may therefore induce currents in the loops, that are source of unwanted field distur-

bances, and can provoke harmful effects on the beam orbit. In the PS machine, in the late

’80, low energy current loops of several tens of Amperes have been detected, resulting in

the loss of 50-100% of the beam [18]. Most of the time is practically impossible to avoid

the ground connections thus, to overcome the problem, the vacuum chamber of a given
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Figure 2.14: 3D model for simulations of a SPS 273 flange installed in the PS.

sector can be interrupted (one sector for each ground connection) and reconnected with

an isolated flange [19]. By flange we mean two thin circular metallic plates, kept at a few

millimeters distance by an external collar. The plates, pierced with a hole of the dimension

of the beam chamber, is then welded at the interruption of the chamber. The isolation is

obtained with a thin ceramic layer (0.2 mm width) placed on one of the two plates. The

isolated flange forms a capacitor, which inserted in series with the ground loop, consti-

tutes a parallel RLC equivalent circuit. In this circuit, the low frequency inductance L is

given by the beam line and earth leads, the capacitance C is given by the thin insulating

ceramic and the flange electrodes, and the resistor R represents all the loss mechanisms

in the circuit (conductor resistance, eddy current and hysteresis losses in the portion of

the beam line going through magnets and radiation) [20]. The measured values for the

equivalent circuit are C=1000 pF, L=10 µH, R=100 Ω, yielding to a resonant frequency of

1.5 MHz with Q=1 [18]. Such a resonator is traversed by the beam image current flowing

along the vacuum chamber, leading to beam coupling impedance and related instabilities.

To decrease the impact of these unwanted effects,a so-called RF-bypass [21] consists of a

large capacitor C1 = 0.4 µF in series with a small resistor R1 = 1 Ω, was connected in

parallel to each flange. The effect of the RF by-pass is to shift the resonant frequency to

a much lower value (100 kHz), reducing the coupling impedance of the device. In general,

the PS beam pipe is grounded on the downstream side of the magnet. All the 100 PS

straight sections have two isolated flanges upstream and downstream of the magnet unit:

looking from the inside of the ring, the upstream flange separates the element from the

ground of the straight section magnet and the downstream flange disconnects the main

magnet from the next straight section. Not all the 200 flanges are provided with an RF

bypass: in general, the downstream flange has always an RF bypass to separate its DC-

wise from the next main magnet. However if the beam pipe of a straight section is floating

with respect to ground, the upstream flange connection is short-circuited by a metallic

part. Otherwise, if the beam pipe of a straight section is already grounded (for example

where there is a cavity), the flanges on either side have an RF bypass.
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Figure 2.15: Flange disk with ceramic layer (left); one of the isolated PS flange provided
by RF bypass installed in the ring (right).

Figure 2.16: Mechanical models of the PS type collar (left) and SPS type collar (right).
CDD references: 8095.0277.1B

.

More flanges, not isolated and not provided with RF bypass or short circuit, are welded

in the straight sections to connect devices to the beam chamber, and are usually referred

as metallic. Five different types of flanges, for a total of 259 elements, are currently

installed in the machine:

• PS 195, 179 elements, external diameter 195 mm;

• PS 250, 56 elements, external diameter 250 mm;

• SPS 273, 9 elements, external diameter 332 mm;

• SPS 159, 8 elements, external diameter 206 mm;

• SPS 219, 7 elements, external diameter 266 mm;

PS and SPS flanges type can be distinguished thanks to the shape of the external col-

lar [22], which is round in the case of the SPS and triangular in the case of PS, as shown

in Fig. 2.16. The two plates of every type of isolated or metallic flange are separated by
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an aluminium gasket of 2.5 mm width; the two plates are then connected together by

the metallic collar, as shown in Fig. 2.14. This design creates a cavity-like structure of

2.5 mm length. In addition, some flanges type present an additional hollow in the inside

part of the plates: as shown in Fig. 2.14, SPS 273 presents a step of 7.5 mm on each

disk, generating an internal cavity of 17.5 mm length. The type PS 195 includes a step of

1 mm each disk, creating a cavity of 4.5 mm length. For isolated flanges, the ceramic layer

is also covering a part of the external surface of the disk. The collar pushing together

the two plates is in contact with the isolator itself on one side, and not with metal Thus

leaves some of the electromagnetic fields generated by the interaction of the beam with

the cavity radiating outside the structure. The RF bypass is then installed in the proper

way to intercept this radiation.

2.2 PS as LHC injector: the upgrade program

The LHC injectors upgrade (LIU) project [23] [24], started in 2010, has the objective

of providing reliable beams with the challenging characteristics required by the High

Luminosity LHC [25] until at least 2030, having as final goal the reduction of the statistical

error in the measurements at the interaction points of LHC. For a given event at the LHC

interaction points, if N is the number of observations, the error is proportional to 1/
√
N .

An increase of the number of observations would improve the statistical significance of the

data. In this framework, the High Luminosity LHC project is aimed at establishing the

necessary changes in the machine in order to improve collisions statistics. In particular

we can define a parameter called luminosity L that depends on beam parameters as

follows [26]:

L =
N2
pnbfrefγ

4π
√

(εxβxεyβy)
F, (2.2)

where Np is the number of protons per bunch, nb the number of bunches, frev the revo-

lution frequency,
√
εjβj the transverse beam dimension at the interaction point and F a

factor due to the crossing angle between the colliding beam trajectories. An increase in

the luminosity has the effect of increasing the number of events, according to

L =
Ne

σe
, (2.3)

where Ne is the number of collisions per second and σe is the event cross-section.

At the beginning of 2012, a peak luminosity of 6 ·1033 cm−2s−1 was reached in the LHC at

the energy of 4 TeV: the final goal of the HL-LHC [27] is to achieve a value of 1035 cm−2s−1,

ten times more than the design value of the LHC. This requirement can only be reached

by performing an upgrade of the total LHC injector chain. As a consequence, the LHC
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Injectors Upgrade (LIU) project was started in order to consider the necessary changes

and their possible implementations in the different machines of the chain.

During the PS upgrade, that consists in increased luminosity producing high intensity

and high brightness beams, some major issues have been encountered. At the injection

energy of 1.4 GeV, unwanted effects from space charge were observed. The first four

bunches injected from PSB are kept at injection energy for 1.2 seconds, and since the

beam encounters several resonances, this results in transverse emittance blow up. One

of the main purposes of the LIU project becomes the increase of the PS injection energy

from 1.4 GeV to 2 GeV, that would reduce consistently the space charge effects. Other

major issues in the machine are the Head-Tail instability, that may determine beam loss

effects, and the vertical TMCI instability, that may arise at transition crossing for high

intensity beams. Electron cloud is also of concern, since their formation was observed

soon before ejection at 26 GeV, but without any effect on beam quality.

2.3 Beams in the CERN PS

Several types of operational and LHC-type beams are prepared in the PS machine:

• AD: 26 GeV/c proton beam sent to the Antiproton Decelerator target;

• TOF: 20.3 GeV/c beam towards the n-TOF (neutron-Time Of Flight) facility beam

line with very high nominal intensity (7.5E12 ppb);

• SFTPRO: 14 GeV/c beam provided to SPS Fixed Target PROton physic;

• EASTA/EASTB/EASTC: beams dedicated to specific experiments for the North

target of the East area.

• LHCINDIV: typical beam required in the commissioning filling patterns and MD

for the LHC, 26 GeV/c;

• LHC25/LHC50/LHC75: Provide the LHC with 25-50-75 ns bunch spaced physics

beam, 26 GeV/c.

Particle beams are injected, accelerated and extracted during one or more magnetic cycle

basic periods, whose duration in the PS is a multiple of 1.2 seconds. The proton beam is

usually kept on a flat bottom plateau, experiencing a constant magnetic field for a period

of at least 30 ms, in order to reach an equilibrium state in the transverse and longitudinal

planes, compensating for possible injection errors [28]. The beam is then accelerated to be

extracted toward the SPS or a specific experiment thanks to a magnetic field rate dB/dt

of about 21 G/ms.
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2.3.1 PS beam spectra

RF measurement of beam spectra have been performed in order to have a better knowl-

edge of the characteristics of the PS beams in relation with parameters used for impedance

calculation. In this section the measurements performed for single bunch beams (TOF

and LHC50) and for multibunch beams (LHCINDIV) are showed. The aim of this mea-

surement campaign was to collect beam spectra in different timing of the PS magnetic

cycle, to have a reference for heating and power loss calculation. Spectra have been ac-

quired with a signal analyzer, measuring at the same time the main beam parameters and

the bunch length 4σ. Measurements revealed that high order modes in PS devices can be

a potential source of heating related issues, only if they are falling inside the main lobe of

the beam spectrum. For instance, at extraction energy, only the parasitic modes with a

frequency that is lower than about 150 MHz should represent potential sources of power

loss.
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Figure 2.17: Single bunch LHC IN-
DIV spectrum measured at C171 (flat

top), 6 · 1010 ppb, 4σ = 80 ns.
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Figure 2.18: Single bunch LHC INDI-
V spectrum measured at C432 (transi-

tion), 6 · 1010 ppb.
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Figure 2.19: Single bunch LHC INDI-
V spectrum measured at C1254 (6 ms

before extraction), 6 · 1010 ppb.

0 20 40 60 80 100 120 140 160
−100

−80

−60

−40

−20

Frequency [MHz]

[d
B

]

Figure 2.20: Single bunch TOF spec-
trum measured at C300 (flat top),

94 · 1010 ppb, 4σ = 90 ns.
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Figure 2.21: Multi bunch LHC50
spectrum measured at C198 (after first
injection), intensity 6.7 · 1012 ppb, 6

bunches in h = 7.
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Figure 2.22: Multi bunch LHC50
spectrum measured at C1398 (after sec-
ond injection), intensity 6.7 · 1012 ppb,

6 bunches in h = 7.

0 10 20 30 40 50 60 70 80
−100

−80

−60

−40

−20

0

20

Frequency [MHz]

[d
B

]

Figure 2.23: Multi bunch LHC50
spectrum measured at C1505 (end of
flat bottom), intensity 6.7 · 1012 ppb, 18

bunches in h = 21.
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Figure 2.24: Multi bunch LHC50
spectrum measured at C1625 (5 ms be-
fore transition), intensity 6.7 · 1012 ppb,

18 bunches in h = 21.
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Figure 2.25: Multi bunch LHC50
spectrum measured at C2205 (flat bot-
tom), intensity 6.7·1012 ppb, 18 bunches

in h = 21.
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Figure 2.26: Multi bunch LHC50
spectrum measured at C2454 (6 ms be-
fore extraction), intensity 6.7 ·1012 ppb,

36 bunches in h = 48.





Chapter 3

The PS transverse impedance

model

For the future operation at higher intensities and beam brightness required by the LIU

project, it is of fundamental importance to detect the main sources of impedance in the

machine and estimate with precision the transverse coupling impedance model. Some

transverse instabilities that, kept under control, are not critical for the operation, have

been observed in the machine: for example, the transverse damper currently installed

in the PS is sufficient to damp the injection instabilities, and transition crossing should

also be possible without major issues. However, a careful follow-up of the transverse

impedance of the machine allows the possibility to accelerate high-intensity beams with

lower longitudinal emittance through transition, and to minimize the interplay with space

charge at injection energy.

3.1 Tune shift measurements for transverse impedance de-

termination

Measuring the betatron coherent frequency shift with intensity, gives informations on the

total reactive transverse impedance according to Sacherer’s theory [29]. The number of

betatron oscillation per turn of the bunch center of mass is called coherent betatron tune,

and it is defined as

Q0 =
ωβ
ω0
, (3.1)

where ω0 is the machine revolution frequency and ωβ is the betatron frequency. If the

tune is an integer number, the particles follow the same trajectory every turn, and the

amplitude of the betatron oscillations will increases resonantly until the particles are lost

36



Chapter 3. The PS transverse impedance model 37

by hitting the vacuum pipe. For example, the LHC is designed to collide protons with a

betatron tune of 59.31: every turn the particles perform 59 (integer tune) full betatron

oscillation and a further 0.31 of a period (fractional tune). When the trajectory repeats

every two turns (1/2 integer resonance) or every three turns (1/3 integer resonance), these

resonances become weaker the order.

The transverse horizontal and vertical tunes Qx and Qy can be measured in the PS with a

Base Band Tune system based on diode detectors, known as the BBQ [30]. High amplitude

short pulses obtained from a beam position monitor (BPM) are sent to diode detector

which converts the modulation of the BPM pulses, related to beam oscillations, into a

signal in the audio frequency range. This signal is then processed in order to obtain the

tune content. BBQ measurements are performed on a single circulating bunch of particles.

The transverse position of the bunch is acquired every turn by the BPM, while the tune

is obtained from a Fast Fourier Transform (FFT) on the transverse motion of the beam

centroid. To perform tune measurements, a chirp signal is emitted to excite the beam.

Varying the intensity of the bunch, that correspond to the total number of proton (ppb),

allows to observed a tune shift that is linear with the intensity. The intrinsic error of

this technique is proportional to 1/Nturns, with Nturns the number of turns during which

the beam position has been measured with the BPM. The beam position can be acquired

with two different monitors, one of that is described in details in Chapter 5.

For a Gaussian bunch of r.m.s. bunch length σz traveling with velocity v = βc, the

coherent tune shift ∆Q is proportional to the imaginary part of the transverse effective

impedance Zefft by [31]

∆Q = − βeI0

4σz
√
πω2

0 γ Q0 m0
Im[Zefft ], (3.2)

where I0 is the bunch current, Q0 is the zero current betatron tune, γ is the relativistic

factor, e the particle charge, ω0 the angular revolution frequency and m0 the particle mass

at rest. The effective transverse impedance is defined as the impedance weighted by the

transverse bunch spectrum centered at the chromatic frequency ωξ:

Zefft =

∑∞
p=−∞ Zt(ω

′)h(ω′ − ωξ)∑∞
p=−∞ h(ω′ − ωξ)

, (3.3)

where ω′ = ω0(p + Q0) with p an integer, ωξ = ω0 Q0 ξ/η, with ξ the chromaticity and

η the slippage factor, and the power spectrum of the Gaussian zero azimuthal bunch

mode is h(ω) = exp−(ω2σ2
z/c

2). If the bunch length does not change with intensity,

Eq. 3.2 predicts a tune shift linear with bunch intensity, with a slope proportional to the

imaginary part of the transverse total effective impedance. The detail of the theory of

transverse bunched beam instabilities and the beam-impedance interaction developed by

Sacherer can be found in [29] and [31].
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3.1.1 Chromaticity

The tune variation ∆Q/Q with the momentum is a machine parameter called chromaticity

and it is defined as

ξ =
∆Q/Q

∆p/p
, (3.4)

where p is the particle momentum in the closed orbit and ∆p is the momentum deviation.

For circular machine, chromaticity could have a negative impact on beam dynamics,

introducing tune spread and unwanted effects like head-tail instabilities. It was observed

that, above transition, head-tails instability growth rate are usually faster for negative

than for positive chromaticity values, vanishing for zero chromaticity. Therefore circular

machine like the PS usually operates, above transition, with zero or slightly positive

chromaticity. We can also define natural chromaticity the effect that is only due to the

elements of the linear lattice like quadrupoles. Natural chromaticity of a strong focusing

circular accelerator is always negative and cannot be zero.

Horizontal and vertical chromaticities in the PS can be measured by acquiring the tune

shift while varying ∆p/p. In practice, introducing a radial offset, a momentum offset is

generated, leading to a variation of the revolution frequency of the beam. The tune can

be written as a Taylor series of ∆p/p

Q(∆p/p) = Q0 +Q′∆p/p+
Q′′

2!
(∆p/p)2 + ...+

Qn

n!
(∆p/p)n, (3.5)

where Q0 is the unperturbed tune and Qn are the higher order terms of the tune spread.

The chromaticity is calculated applying a polynomial fit on the measured data: from the

linear term we can calculate the linear chromaticity as

ξ =
Q′

Q0
. (3.6)

3.1.2 Control of the working point

While performing beam based measurements, choosing a good working point [32] is an

essential aspect in order to obtain stable beams and reliable operation in general. In the

case of the PS, bending and focusing of the beam is provided by the main magnet units;

the working point, in absence of any auxiliary magnets or coils, is determined by the mo-

mentum of the beam. The bare machine at 2 GeV is working in linear condition (natural

working point), with measured tunes of Qx =6.253 and Qy =6.285, and chromaticities of

ξx =-0.83 and ξ =-1.12. Since there is no freedom in the choice of the parameters, the

machine usually does not operate in this configuration. In order to correct the effects of

linear and second order chromaticity in circular machines, the magnetic field higher order
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components are needed to be kept under control. Dedicated magnets and auxiliary wind-

ings, such as the PFW in the PS (see Chapter 2), usually play this role. The PS PFW,

consisting of four extra auxiliary coils per magnet mounted on the iron poles (two coils for

the focusing and two for the defocusing yoke) are used to control the working point and

chromaticity. In addition, the figure-of-eight loop creates opposite fields in the two yokes.

In this way, the horizontal and vertical tunes, horizontal and vertical chromaticities, and

eventually another parameter (for example the non linear horizontal chromaticity), can

be controlled by five parameters. The relationship between the current variation in the

circuit and the parameter was calculated from the measurement of the working point vari-

ation with respect to a programmed variation of the PFW or figure-of-eight loop currents.

The matrix describing the effects of the five currents is available for the PS machine.

3.2 Tune shift measurements at zero chromaticity

3.2.1 Injection energy

An upgrade of the extraction energy from the PS Booster from 1.4 GeV to 2 GeV is

planned for the next years with the aim of reducing direct space charge effects in the PS.

This should enable to increase the beam brilliance throughout the LHC injector chain

so that the LHC can reach the higher luminosities goals that should be reached by the

LIU and HL-LHC project. For this reason, tune shift measurements have been performed

at the energy of 2 GeV [33]. The single bunch beam parameters are summarized in

Table 3.1. The measured vertical tune shift as a function of the beam intensity is shown

in Fig 3.2. The tune is decreasing when the beam intensity increases in the bunch:

following Sacherer [29] equation, the effective impedance (including the indirect space

charge) creates this defocusing effect. The vertical tune shift ∆Qy is more significant

than the horizontal tune shift ∆Qx due to the elliptical shape of the PS beam chamber,

making difficult a correct estimation of the horizontal effective impedance. For this reason

we are going to show only the results of the measurement of vertical tune shifts. The

measurements have been performed in several MD sessions, with a dedicated PS MD

beam provided by a long plateau at the kinetic energy of 2 GeV, as shown in Fig. 3.1.

The beam coming for the PS Booster is always a TOF-type beam, that allows very high

values of intensity.

3.2.2 Intermediate energies

In order to have a better understanding of the transverse effective beam coupling impedance

and the indirect space charge contributions, two intermediate energies of 7 and 13 GeV
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Table 3.1: Beam parameters for tune shift measurements at kinetic energy of 2 GeV.

Kinetic energy [GeV] 2
Lorentz factor γrel 3.13

Slip factor η -0.075
Harmonic number 8

Full bunch length 4σ [ns] 120
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Figure 3.1: Magnetic field applied along the cycle used for tune shift measurements at
2 GeV.
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Figure 3.2: Vertical tune shift as a function of beam intensity measured at 2 GeV.

have been considered for tune shift measurements. The single bunch beams parameters

are summarized in Tables 3.2 and 3.3. The measured vertical tune shifts as a function of

the beam intensity are shown in Fig. 3.3 and 3.4. The measurements have been performed

in several MD sessions on a dedicated MD cycle with several long plateaux at different

energies.
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Table 3.2: Beam parameters for tune shift measurements at kinetic energy of 7.25 GeV.

Kinetic energy [GeV] 7.25
Lorentz factor γrel 8.72

Slip factor η -0.013
Harmonic number 8

Full bunch length 4σ [ns] 55

Table 3.3: Beam parameters for tune shift measurements at kinetic energy of 13.09 GeV.

Kinetic energy [GeV] 13.09
Lorentz factor γrel 14.95

Slip factor η 0.022
Harmonic number 8

Full bunch length 4σ [ns] 155
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Figure 3.3: Vertical tune shift as a function of beam intensity measured at 7.25 GeV.
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Figure 3.4: Vertical tune shift as a function of beam intensity measured at 13.09 GeV.

3.2.3 Extraction energy

In order to have a better understanding of indirect space charge contribution, the extrac-

tion energy of 25 GeV have been considered for tune shift measurements. In Table 3.4
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Table 3.4: Beam parameters for tune shift measurements at kinetic energy of 25.48 GeV.

Kinetic energy [GeV] 25.48
Lorentz factor γrel 28.16

Slip factor η 0.052
Harmonic number 8

Full bunch length 4σ [ns] 45
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Figure 3.5: Magnetic field applied along the cycle used for tune shift measurements at
25 GeV.
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Figure 3.6: Vertical tune shift as a function of beam intensity measured at 25.48 GeV.

are summarized the single bunch beam parameters. The measured vertical tune shift

as a function of the beam intensity is shown in Fig. 3.6. The measurements have been

performed during several MD sessions on a dedicated MD cycle, cloned by the standard

AD cycle, provided by a long extraction energy plateau, as shown in Fig. 3.5. The beam

coming for the PS Booster is always a TOF-type, that allows very high values of intensity.

In Table 3.5 are finally summarized the imaginary part of the vertical effective impedance

measured at different energies and zero chromaticity.
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Table 3.5: Imaginary part of the vertical effective impedance measured at different
energies at zero chromaticity.

Ekin [GeV] Zeffy [MΩ/m] 4σ [ns] ξy

2 8.19 ± 0.18 120 -0.12
7.25 3.51 ± 0.13 55 -0.02
13.09 3.06 ± 0.12 55 -0.02
25.48 2.23 ± 0.05 45 0.02

3.3 Tune shift measurements with chromaticity scan

Several MD sessions have been dedicated to investigate the changing in the imaginary

part of the effective impedance with the vertical chromaticity. Measurements of the tune

shift with beam intensity have been acquired at four energies, setting different vertical

chromaticities on the machine working point. To perform this measurement, a verti-

cal chromaticity value was initially set on the working point application. Vertical and

horizontal tunes and horizontal chromaticity were kept to fixed value, far from possible

resonances. The setting was then remotely sent through the working point application

in the CERN control center to the PFW and to the figure-of-eight loop in the ring. A

measurement of the vertical chromaticity was performed after each change in the working

point to asses the effective value, that may not entirely corresponds to the one set on

the working point application. Four sets of measurements were performed at the energies

of 2, 7, 13 and 25 GeV. For each energy, about ten values of vertical chromaticity have

been set on the working point and lately measured with a dedicated application. The

possibility of pushing the chromaticity to values far from zero, as well setting a negative

chromaticity for below transition energies, was limited by stability of the beam in the

specific cycle and by the beam losses in the machine. After each chromaticity measure-

ments, a tune shift scan with intensity was performed in order to calculate the effective

vertical impedance for the given chromaticity. The four sets of tune shifts measurements,

acquired of the flat energy plateaux of three different cycles, show the same increasing

trend of the vertical effective impedance with the chromatic frequency. This behavior

could be explained by the presence of an unidentified machine element with a significant

resonance around 100 MHz in the beam coupling impedance. In Fig. 3.7 the impedance

scan with chromatic frequency at different energies, is shown, where we can also identify

the zero chromaticity impedances presented in the previous section.

3.4 Transverse impedance budget from simulations

In addition to impedance measurements, theoretical estimations based on numerical codes

or analytical formulas have been performed in order to monitor and compare the impedance
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Figure 3.7: Imaginary part of the effective vertical impedance scan with chromatic
frequency at different energies.

model with the measured impedance budget. The purpose of the study is to obtain an

impedance budget that could explain the results from beam based measurements, by sum-

ming the transverse impedances of each machine element calculated analytically and with

electromagnetic simulations: in this way we can compute the frequency dependence of

the total machine impedance, and thereby the total effective impedances that would be

expected by the model.

3.4.1 Indirect Space charge and resistive wall

The observed difference in the effective impedance in the vertical plane between tune shift

measurements at different energies can be explained by the effect of the coherent indirect

space charge, induced by a beam inside a perfectly conducting infinitely smooth beam

pipe. Calculations were performed with the code described in [34]. A machine made of

stainless steel 316 LN (about 70% of the total length) and of Inconel X750 alloy (about

20%) has been considered for resistive wall calculations. Both a round chamber model

(35 mm radius) and parallel plates model have been taken into account. The transverse

effective impedance obtained for the resistive wall case is very close for the two geometries:

0.29 MΩ/m for the round chamber and 0.35 MΩ/m for a parallel plates model. For the

parallel plates, on the vertical plane, the dipolar and quadrupolar impedance contributions

have the same sign: the total vertical impedance is therefore increased by a factor 1.2

with respect to the round chamber case. Instead, on the horizontal plane, the parallel

plates model gives zero total impedance due to the perfect compensation of dipolar and

quadrupolar components of the impedance. If we take into account also the indirect space

charge contribution, approximating the PS elliptic beam chamber as two parallel plates,

the contribution to the imaginary part of the total effective vertical impedance is 6 MΩ/m

at 1.4 GeV and 3.7 MΩ/m at 2 GeV. If we consider a round chamber of 35 mm radius, the
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Table 3.6: Indirect space charge and resistive wall contributions to the total vertical
effective impedance at different kinetic energies for round chamber and parallel plates.

1.4 GeV 2 GeV 25 GeV

Flat 6.0 MΩ/m 3.7 MΩ/m < 0.5MΩ/m
Round r=35 mm 4.9 MΩ/m 3.0 MΩ/m < 0.5MΩ/m

contribution is 4.9 MΩ/m and 3 MΩ/m for the two energies. At 25 GeV, the contribution

to the impedance of the coherent indirect space charge becomes negligible. In Table 3.6

the results of the indirect space charge and resistive wall contributions are summarized.

The total vertical impedance of the PS indirect space charge and resistive wall, calculated

at 2 GeV in the round chamber case, is shown in Fig. 3.8. Approximating the elliptical

PS chamber with a circular one, we obtain that the indirect space charge and resistive

wall contribution explains about 36% of the total effective vertical impedance measured

at 2 GeV.
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Figure 3.8: Total vertical impedance of the PS space charge and resistive wall calculated
at 2 GeV for the round chamber case.

3.4.2 Kicker magnets

Kicker magnets are predicted to be a very important source of transverse impedance in the

PS. CST Particle Studio [35] simulations, and calculations with the Tsutsui theoretical

formula [36], have been performed for all the eleven PS kickers, showing very good agree-

ment in the transverse and longitudinal plane. A comparison between simulations and

measurements has also been done for the kicker KFA13 [37], revealing a good agreement,

in particular on the vertical plane. Summing the total imaginary part of the transverse

impedance (dipolar and quadrupolar contribution) obtained with CST Particle Studio for

all the PS kickers, we obtain that their contribution to the machine impedance budget,

weighted by the β function defined in the lattice and calculated at the energy of 2 GeV, is
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less than 0.03 MΩ/m in the horizontal plane, and about 1.4 MΩ/m in the vertical plane.

Kickers magnets can explain about the 17% of the vertical impedance measured at 2 GeV.

In Fig. 3.9 and 3.10 the horizontal and vertical impedance models of the kickers is shown.
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Figure 3.9: Total horizontal impedance of the PS kickers simulated with CST Particle
Studio.
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Figure 3.10: Total vertical impedance of the PS kickers simulated with CST Particle
Studio.

3.4.3 RF cavities

Impedance studies and electromagnetic computations have been performed for the cavi-

ties installed in the PS. The current impedance budget includes the contribution of the

10 MHz, 40 MHz, 80 MHz, and the 200 MHz cavities, weighted by the β function defined

in the lattice. 2D models of the 40 and 80 MHz cavity were first implemented with the

code ABCI [38], starting from the design described in [39]. At a later stage, a 3D model
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has been realized in CST Particle Studio. The models do not include couplers and tun-

ing system of the cavities. In Fig. 3.11 the low frequency imaginary part of the vertical

impedance is shown for the 10, 40 and 80 MHz cavities: the imaginary part is negative in

agreement with CST Particle Studio convention. Results from simulations show that RF

cavities do not have a strong impact on the transverse impedance and they can explain

less than 1% of the vertical impedance measured at 2 GeV. As an output of the impedance

studies, 3D models are currently available for the first time for almost all PS cavities.
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Figure 3.11: Imaginary part of the vertical impedance for the 10, 40 and 80 MHz
cavities simulated with CST Particle Studio (CST output convention is negative for

positive transverse impedances).

3.4.4 Vacuum equipment

Vacuum equipment and features in the PS beam line like pumps, sector valves, bellows,

steps and metallic (not isolated) flanges are included in the model as distributed elements,

meaning that these impedances are not weighted by the β function defined in the lattice.

Currently the impedance budget includes the contribution of many elements, summarized

in Table 3.7. Even if the impedance of the single element is predicted to be small, the sum

of many distributed elements can explain about 7% of the vertical impedance measured at

2 GeV. In Fig. 3.12 the low frequency imaginary part of the vertical impedance is shown

the valves, bellows, pumps and steps, while in Fig. 3.13, the low frequency imaginary part

of the vertical impedance for metallic flanges, is shown. The imaginary part is negative

in agreement with CST Particle Studio convention.
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Figure 3.12: Imaginary part of the vertical impedance of bellows (273 elements), vac-
uum pumps (100 elements) and sector valves (10 elements) simulated with CST Particle

Studio.
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Figure 3.13: Imaginary part of the vertical impedance of PS metallic not isolated
flanges simulated with CST Particle Studio.

Table 3.7: Effective horizontal and vertical impedances calculated for vacuum equip-
ment.

Number of elements Zeffx [MΩ/m] Zeffy [MΩ/m]

Vacuum pumps 100 0.003 0.232
Bellows 237 0.011 0.208

Step transitions 60 0.040 0.070
Sector valves 10 0.004 0.015

Metallic flange PS 195 33 0.003 0.010
Metallic flange PS 250 5 0 0.001
Metallic flange SPS 219 2 0.001 0.016
Metallic flange SPS 273 4 0 0.001

Conclusions

In this chapter we described the PS transverse impedance model evaluated with beam

based measurements and numerical simulations. Measurements of the vertical and hor-

izontal tune shift as a function of beam intensity provide a value for the horizontal and
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Table 3.8: Contribution to the vertical effective impedance budget measured at 2 GeV
of the machine elements.

Zeffy [MΩ/m] Percentage

Space charge 3 36 %
Resistive wall 0.3 3.5 %

Kickers 1.4 17%
Vacuum 0.55 6.7%
Cavities 0.8 1 %

vertical imaginary part of the effective impedance at different energies. At zero chromatic-

ity the measured vertical impedance is 8.2 MΩ/m at injection energy and 2.2 MΩ/m at

extraction energy. This represents the vertical impedance budget of the machine at a giv-

en energy. The difference in the two sets of measurements can be explained by the effect

of the indirect space charge. A scan of the imaginary part of the vertical impedance with

chromaticity has been performed, revealing an increasing trend with chromaticity for all

the set of measurements at different energies. These results, if confirmed, would suggest

the presence of an undefined machine elements introducing a low frequency resonance, that

was not yet predicted with simulations. The measured transverse effective impedance has

been compared with numerical simulations, performed for the single machine elements

3D models implemented in CST Particle Studio. Resistive wall and indirect space charge

impedance were studied with the help of available analytical and numerical codes. The

current impedance model, built during this work and obtained with simulations, accounts

for the 65% of the vertical impedance obtained with tune shift measurements at the en-

ergy of 2 GeV. The contribution of the elements is summarized in Table 3.8. The 35%

missing could come from the isolated flanges connected to RF bypass, from beam instru-

mentation and/or from electrical and power connections in the machine. The total PS

wake functions is shown in Fig. 3.14, while the total transverse impedance model is shown

in Fig. 3.15.
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Figure 3.14: Horizontal and vertical dipolar and quadrupolar components of the PS
wake function.
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Figure 3.15: Horizontal and vertical dipolar and quadrupolar components of the PS
impedance model.





Chapter 4

The PS longitudinal impedance

model

The knowledge of the longitudinal beam coupling impedance model of the PS is of fun-

damental importance in the frame of the LHC Injector Upgrade program to understand

the limitation in terms on longitudinal instabilities of the machine. As in the case of

the transverse impedance model determination, shown in in Chapter 3, the measured

longitudinal coupling impedance can be compared to the theoretical impedance obtained

calculating the contributions of each relevant component installed in the machine with

simulation and numerical estimations. The determination of the PS longitudinal broad-

band impedance was addressed for the first time in the late ’70, where a measurements

campaign, based on longitudinal stability during debunching and on quadrupole beam

transfer functions, showed a longitudinal impedance of about 25 Ω [40] [41]. Nevertheless,

this study has been approached again in 2012, when important hardware changes and

new devices installations were foreseen in the coming two years. The aim of the 2012

longitudinal impedance studies were in fact to establish an accurate budget to predict the

impedance contribution of the new elements to be installed and identify the main sources

of longitudinal impedance in the machine.

4.1 Measurements of quadrupole synchrotron frequency

Measurements of quadrupole synchrotron frequency at a fixed momentum of 26 GeV/c

and single-harmonic of 40 MHz were performed in order to establish the imaginary part of

the longitudinal broadband impedance of the PS [17] [42]. A single bunch with an intensity

of Np = 4.5 · 1011 protons was injected from the PS Booster and accelerated in the PS

on the harmonic h=16 of the revolution frequency to a momentum of 26 GeV/c. On the

52
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flat-top, the bunch was first synchronized to a fixed revolution frequency of 476.82 kHz,

allowing to pulse a higher-harmonic RF cavity at 40 MHz, that is the harmonic h=84 of

the revolution frequency. The bunch was handed over from h=16 (7.629 MHz) to h=84

(40.052 MHz) about 150 ms before extraction. This rebucketing to the 40 MHz RF system

was completed 140 ms before extraction. Aside from a 5 ms time window for longitudinal

emittance measurements, about 130 ms were left under stationary conditions to perform

the beam transfer function (BTF) measurement. During that time, the bunch was held

with a constant 40 MHz RF voltage of about 50 kV or 100 kV at h=84.

4.1.1 Quadrupole synchrotron frequency measurement setup

The spectrum of the incoherent quadrupole synchrotron frequency has been obtained by

measurement of the longitudinal BTF with the set-up sketched in Fig. 4.1. A bandwidth

Figure 4.1: Longitudinal quadrupole beam transfer function (BTF) measurement setup.

limited white noise (up to 2 kHz) was generated by the internal source of an Agilent

89410A Vector Network Analyser (VNA). The bandwidth was chosen to fully cover the

quadrupole synchrotron frequency and to achieve the best possible resolution within the

30 ms time window for the measurements. The noise signal was gated in order to affect

only the beam during the well-defined duration of the measurement and was added as an

amplitude modulation to the voltage program of the 40 MHz cavity. The peak amplitude

of the noise was independent of the voltage in the 40 MHz cavity. A copy of the noise

signal used for amplitude modulation was directly fed to the reference channel of the

VNA. A combination of a wall current monitor (WCM) followed by a peak detector

have been used to measure the longitudinal beam signal. The attenuation of the beam

signal was chosen to get optimum signal amplitude to the peak detection circuit and
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Figure 4.2: Amplitude and phase of the quadrupole BTF for a bunch of 9·1010 particles
kept by 95 kV at 40 MHz.

avoid saturation. The peak-detected beam signal was then fed to the second channel

of the VNA (see Fig. 4.1). Amplitude and phase of the quadrupole BTF are then read

on the VNA by calculating the vectorial ratio of peak-detected beam signal and noise

excitation, averaging measurements on many acceleration cycles. A typical quadrupole

synchrotron frequency spectrum is shown in Fig. 4.2. The zero-amplitude quadrupole

synchrotron frequency is given by the discontinuity of the phase curve following the 180o

phase advance. The small peak in both amplitude and phase, at half that frequency, is a

direct observation of the synchrotron frequency due to residual oscillations.

4.1.2 Longitudinal impedance from measurements

Two series of single bunch measurements were performed during two different MD sessions

using different peak voltages, while the momentum of 26 GeV/c was chosen to minimize

the effects of space charge. Each measurement was taken by averaging over 16 acceleration

cycles with approximately the same intensity and longitudinal emittance. Longitudinal

bunch shapes were also acquired during measurements. Two different types of fit (Gaus-

sian or parabolic) were used to determine the bunch length from the shape. Both models

fit well the measured bunch profile. To extract the low-frequency longitudinal impedance,

we need to introduce the longitudinal equation of motion of a single particle in presence
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of the self-induced wakefields [43]:

τ̈ + ω2
s0τ =

eNpω
2
s0

2πVRFh cosφs

∞∑
p=−∞

Z(pω0)σ0(pω0)eipω0τ , (4.1)

where τ is the position of the particle with respect to the synchronous one, ωs0 the nat-

ural synchrotron frequency, h the harmonic number, φs the synchronous phase (cosφs < 0

above transition), ω0 the revolution frequency, Z(ω) the longitudinal broadband impedance,

and σ0(ω) the bunch spectrum of the stationary distribution. For a Gaussian distribution

with standard deviation σG, the bunch spectrum is given by

σ0(ω) = e−
ω2σ2G

2 , (4.2)

whereas, for a parabolic line density of total length τb, it is given by

σ0(ω) = 3
sin(ωτb/2)− ωτb/2 cos(ωτb/2)

(ωτb/2)3
. (4.3)

In the absence of wakefields, a linear synchrotron motion is assumed. In that situation,

RF voltage is linear within the bunch duration and all the particles oscillate at the same

frequency ωs0 independently of their amplitude. The effect of stationary wakefields is

to introduce an incoherent synchrotron frequency shift in the synchronous phase, and

other non-linear terms that produce a synchrotron frequency spread. This can be easily

understood expanding the term eipω0τ [43]:

τ̈ + ω2
s0τ =

eNpω
2
s0

2πVRFh cosφs

∞∑
p=−∞

Z(pω0)σ0(pω0)

(
1 + ipω0τ −

(pω0τ)2

2
+ . . .

)
. (4.4)

The constant term on the right side of Eq. (4.4) produces a phase shift in combination

with the real part of the impedance, which is an even function of the frequency, and it is

given by

∆φ = hω0∆τ =
eNpω0

2πVRF cosφs

∞∑
p=−∞

Re [Z(pω0)]σ0(pω0) . (4.5)

The phase shift given by the above expression is based on the linear expansion of the

equation of motion and has to be considered as an approximation. In fact, if we use, for

example, a broadband resonator characterized by a shunt resistance Rs, a quality factor

Q and a resonant frequency ωr, with a Gaussian distribution, by replacing the summation

with an integral, we obtain

∆φ =
πeNpRs

VRF cosφs
√
Q2 − 1/4

Re

[
ω1e
−ω

2
rσ

2
G

2 Erf(−iωrσG√
2

)

]
, (4.6)
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where

ω1 =
ωr
Q

(
i

2
+

√
Q2 − 1

4

)
. (4.7)

By using instead the loss factor of a Gaussian bunch coupled with a resonator impedance [44],

the correct synchronous phase shift is slightly modified as

∆φ =
eNpRs

2VRF cosφs
√
Q2 − 1/4

Re
[
ω1e
−ω2

rσ
2
GErf(−iωrσG)

]
. (4.8)

Equation (4.4) can also be used to obtain an approximate expression of the incoherent

synchrotron frequency shift. In fact, if we consider the first order term in τ of Eq. (4.4),

the oscillation frequency of a particle in the bunch becomes

ω2
s = ω2

s0

(
1 +

eNpω0

2πVRFh cosφs

∞∑
p=−∞

Im[Z(pω0)]pσ0(pω0)

)
, (4.9)

that is
ω2
s − ω2

s0

ω2
s0

=
eNpω0

2πVRFh cosφs

∞∑
p=−∞

Im[Z(pω0)]pσ0(pω0) . (4.10)

If the incoherent frequency shift is small compared to the unperturbed synchrotron fre-

quency we obtain

ωs − ωs0
ωs0

=
∆ωs
ωs0

=
∆fs
fs0
' eNpω0

4πVRFh cosφs

∞∑
p=−∞

Im[Z(pω0)]pσ0(pω0) . (4.11)

In the case of a pure inductive broadband impedance, we finally obtain

∆fs
fs0

=
eNpω0

4πVRFh cosφs

Im[Z(p)]

p

∞∑
p=−∞

p2σ0(pω0) , (4.12)

which relates the incoherent dipole synchrotron frequency to the inductive machine impedance

Im[Z(p)]/p. We finally obtain the following expression for the quadrupole frequency:

∆f2s

fs0
=

eNpω0

2πVRFh cosφs

Im[Z(p)]

p

∞∑
p=−∞

p2σ0(pω0) . (4.13)

As for the synchronous frequency shift, if we consider a Gaussian distribution, and ap-

proximate the summation with an integral, we get

f2s

fs0
= 2 +

eNp√
2πVRFh cosφsω2

0σ
3
G

Im[Z(p)]

p
= 2− X̃ Im[Z(p)]

p
. (4.14)

The normalized incoherent quadrupole synchrotron frequency as a function of X̃ for the

two sets of measurements are shown in Fig. 4.3 and 4.4. The slope of the linear regression,
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obtained with the method of least squares, gives directly the broadband longitudinal

impedance of the machine Im[Z(p)]/p = (9.1 ± 2.1) Ω and Im[Z(p)]/p = (11.3 ± 1.9) Ω,

respectively. In order to obtain an exact solution of the equation of motion (4.1), a
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Figure 4.3: Quadrupole frequency shift and linear fit with Gaussian distribution func-
tion for the first set of measurements.
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Figure 4.4: Quadrupole frequency shift and linear fit with Gaussian distribution func-
tion for the second set of measurements.

parabolic line density interacting with a pure inductive impedance was considered. In

this case the infinite summation on the right side of Eq. (4.1) can be expressed in closed

form
∞∑

p=−∞
pσ0(pω0)eipω0τ = i

3πτ

ω2
0(τb/2)3

, (4.15)

and it gives a coherent force linear with τ , such that the single particle equation of motion

can be reduced to

τ̈ + ω2
s0τ = − 3eNpω

2
s0

2VRFh cosφsω2
0(τb/2)3

Im[Z(p)]

p
τ , (4.16)
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which gives a quadrupole synchrotron frequency shift of

f2s

fs0
= 2 +

12eNp

VRFh cosφsω2
0τ

3
b

Im[Z(p)]

p
= 2− X̃ Im[Z(p)]

p
. (4.17)

If we compare Eq. (4.14) with Eq. (4.17), by considering τb ' 4σG, we observe that

the parabolic line density, with the exact solution of the equation of motion, predicts a

frequency shift about two times less than the one obtained with the first order expansion

and a Gaussian distribution. This factor two has also been found in [43]. The normalized

synchrotron frequencies versus X̃ when applied a parabolic fit to the measured bunch

profiles are shown in Fig. 4.5 and 4.6. The longitudinal broadband impedance is estimated

to be Im[Z(p)]/p = (17.6 ± 3.6) Ω and Im[Z(p)]/p = (21.0 ± 4.0) Ω .
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Figure 4.5: Quadrupole frequency shift and linear fit with parabolic line density for
the first set of measurements.
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Figure 4.6: Quadrupole frequency shift and linear fit with parabolic line density for
the second set of measurements.
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4.2 Longitudinal impedance budget from simulations

4.2.1 Space charge

Measuring at the kinetic energy of 25 GeV allowed to reduce the contribution of the direct

space charge to the broadband impedance, that has a capacitive effect above transition.

The space charge impedance due to the non relativistic velocity of the charges (v = βc)

in a circular pipe of radius b can be written in the form [3]

Z(p)

p
= −i Z0

βγ2
gl, (4.18)

where Z0=377 Ω is the impedance of the free space, γ is the relativistic Lorentz factor, and

gl is a geometric constant depending on the transverse bunch distribution. In particular,

for a uniform disk distribution of radius a we obtain

gl = ln
b

a
+

1

2
. (4.19)

In case of the PS elliptic vacuum chamber, we substitute b with an equivalent radius

of 43 mm. The contribution to the total broadband impedance due to the direct space

charge at the kinetic energy of 25 GeV is about 2 Ω, the same order of magnitude as the

uncertainty of the measurement results.

4.2.2 Resitive wall

For a circular pipe of radius b with high conductivity σc, such that c2/(ω2b) and b bigger

than the skin depth δ, the longitudinal coupling impedance is given by the following

formula:
Z(p)

p
=
Z0δ

2b
[1 + i · sgn(ω)]. (4.20)

For the elliptic vacuum chamber case, b represents the minor semi-axis, while the impedance

is multiplied by a form factor that depends on the ellipticity of the beam pipe. For the PS

case, the form factor is estimated to be 0.96. The skin depth depends on the pipe material:

stainless steel 316 LN with conductivity σc = 1.3·106 S/m was considered for 70% of the

machine and Inconel X750 alloy with conductivity σc = 8.3·105 S/m for about 20% of the

machine. The impedance contribution due the resistive wall is shown in fig. 4.7 for both

materials as a function of frequency. The impedance calculated at the machine revolution

frequency is Z(p)/p=2.2(1 + i) Ω for stainless steel 316 LN, and Z(p)/p=0.8 (1 + i) Ω for

Inconel X750 alloy.
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Figure 4.7: Resistive wall impedance for the PS vacuum chamber.

4.2.3 Kickers

A very important contribution to the total longitudinal PS impedance is given by the

eleven ferrite loaded kickers. The longitudinal impedance has been evaluated with CST

Microwave Studio [35] simulations and compared with Tsutsui theoretical formula [36].

The sum of kickers longitudinal impedances, shown in Fig. 4.8, represents a good approx-

imation of the longitudinal impedance model of the machine.
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Figure 4.8: Total longitudinal impedance of the PS kickers.

4.2.4 Vacuum equipment

As for the transverse impedance model described in Chapter 3, some vacuum equipment

like vacuum pumps, bellows and step transition are included in the longitudinal impedance

model. The devices have been simulated with CST Particle Studio and the impedance of

the single object has been multiplied for the number of elements installed in the machine.
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Figure 4.9: Real part of longitudinal
impedance of a vacuum pump.
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Figure 4.10: Imaginary part of longi-
tudinal impedance of a vacuum pump.
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Figure 4.11: Real part of longitudinal
impedance of a bellow.
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Figure 4.12: Imaginary part of longi-
tudinal impedance of a bellow.
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Figure 4.13: Real part of longitudinal
impedance of a step transition.
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Figure 4.14: Imaginary part of longi-
tudinal impedance of a step transition.

The connection region between the beam pipe and the vacuum pump give an important

contribution to the geometrical impedance. Indeed the connection is not a simple hole,

and there and the port of the pumps are not provided by RF shielding. Moreover, the

length of the cylindrical pipe connecting the beam pipe to the vacuum pump does not

affect, at first order, the coupling impedance. At low frequencies, the imaginary part of

the longitudinal impedance is purely inductive and gives a contribution of Z(p)/p=2.8 Ω

(accounted for 100 elements). In Figures 4.9 and 4.10 is show the longitudinal impedance

of a vacuum pump.

For the calculation of the longitudinal coupling impedance of The PS bellows, we con-

sidered the following formula, valid for a pillbox of width w much lower that the height

h:
Z(p)

p
= i

ncω0Z0

2πbc

(
wh− w2

2π

)
, (4.21)
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with nc the number of corrugations per bellow. We have assumed w = 3 mm, h = 14

mm, 8 corrugations per bellow, and approximately 200 elements. At low frequencies, the

imaginary part of the longitudinal impedance is purely inductive and, considering a circu-

lar pipe cross section, is about Z(p)/p=1.1 Ω. This results has been compared with CST

Particle Studio simulations, that gave a total inductive impedance of Z(p)/p = 0.85 Ω,

very close to the one evaluated by using the analytic formula. The longitudinal impedance

of a bellow is show in Figures 4.11 and 4.12. An important source of geometrical longi-

tudinal impedance is given by step transitions between chamber of elliptical and circular

cross-section. Simulations with CST Particle Studio gave an impedance of Z(p)/p=0.96 Ω

(about 60 transitions considered in calculation). The longitudinal impedance of a step

transition between an elliptical pipe of vertical aperture of 35 mm a cylindrical pipe of

radius 73 mm is show in Figures 4.13 and 4.14.

4.2.5 RF cavities

Electromagnetic computations have been performed for some of the cavities installed in

the PS; in Table 4.1 are summarized fundamental mode resonance parameters for all the

cavities included in the longitudinal model. Bench measurements have been performed

Table 4.1: RF cavities fundamental mode resonance parameters.

Frequency (MHz) Q R/Q Number

7.6 5 30 10
20 4.6 43.5 1
40 70 33 1
80 100 56 2

for the 200 MHz to verify the resonance parameters for different configurations of the

diodes. The measurements have been performed during the shutdown connecting one of

the cavities installed in the ring with a VNA, that allows to measure the transmission

scattering parameter S21 and calculate the loaded quality factor QL and the main reso-

nance frequency. Since the 200 MHz cavities have no mechanical system to close the gaps,

each of them is equipped with three λ/4 lines with PIN diodes in parallel to termination

resistors at their ends. When the PIN diodes are in an open status, the three lines just

couple the terminations to the cavity, significantly reducing it’s quality factor. When the

PIN diodes are in a closed status, their short circuit is transformed to a high impedance

at the coupling surface to the cavity and the cavity has a high quality factor when in

use. The amplitude of S12 of the fundamental mode with reversed diodes (open status)

is shown in Fig. 4.15: in this case, when the cavity is able to see all the three loads, the

quality factor is QL = 134 at a frequency of 200.7 MHz. The amplitude of S12 of the
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Figure 4.15: Amplitude of S12 of the fundamental mode of the 200 Mhz cavity with
reversed diodes measured with VNA.
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Figure 4.16: Amplitude of S12 of the fundamental mode of the 200 Mhz cavity with
short circuited diodes measured with VNA.

fundamental mode with short circuited diodes is shown in Fig. 4.16: the quality factor is

QL = 971 at a frequency of 199.9 MHz. In both cases the quality factor is in agreement

with the design parameters of the cavity. As for the transverse case, results from simu-

lations show that RF cavities do not have a strong impact on the longitudinal coupling

impedance and their contribution to the broadband impedance is mainly resistive.

Conclusions

The longitudinal beam coupling impedance model of the CERN PS has been developed

with beam based measurements, simulations, RF measurements, analytical formula. The

measurement of the incoherent quadrupole frequency shift as a function of the single

bunch intensity provided the inductive broadband longitudinal coupling impedance. The

longitudinal budget of Z(p)/p = 18.4±2.2 Ω is in agreement with measurements performed

on the machine about 10 years ago. An analysis of several contributors to the total
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broadband impedance like kicker magnets, RF cavities, vacuum equipment, resistive wall

and space charge resulted in excellent agreement with the measurement, explaining almost

the 90% of the measured longitudinal impedance. The different machine contributions are

summarized in Table 4.2. The wake potential, calculated from the inductive impedance

and shown in Fig. 4.17, can be used as input in beam dynamics simulations of the PS.

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

z [m]

W
L
[V

/p
C

]

Figure 4.17: Longitudinal wake potential of a 2.3 ns Gaussian bunch given by the total
simulated impedance budget.

Table 4.2: Contributions of the machine elements included in the longitudinal coupling
impedance budget.

Machine element Z(p)/p [Ω]

Space charge -1.9

Kicker magnets 13.8

Vacuum pumps 2.8

Resistive wall 0.09

Steps 0.96

Bellows 0.85





Chapter 5

Impedance studies of machine

elements installed during LS1

5.1 Dummy septum

5.1.1 Introduction and context

The challenge of the LHC injectors upgrade program is to produce higher intensity and

brightness proton beams for collision in the LHC. In this framework, the PS Multi-turn

extraction [9] was proposed with the aim of mitigating losses due to the shaving process

that is at the heart of the Continuous Transfer (CT) technique, that has been used for

years to transfer beams from the PS to the SPS. During the commissioning phase of the

PS Multi-Turn Extraction (MTE) and the following operational period, a number of lim-

itations have been observed; one of particular relevance, the high level of activation of the

magnetic extraction septum in straight section 16 (see Chapter 2). The activation of the

magnetic septum is the result of particles lost during the rise time of the extraction kick-

ers. These losses are unavoidable due to the longitudinal structure of the beam required

by the SPS. These issues have been addressed in many ways, and the adopted solution

consists in installing a dummy septum in the straight section 15 of the PS ring [45]. By

“dummy septum”, we mean a protection passive device, provided by a thin copper blade

intercepting the beam during the rise time of the kickers. The blade is not generating

any deflection and does not interfere with the circulating beam during injection and ac-

celeration, but during the five extraction turns, it absorbs the particles that would be

otherwise intercepted by the magnetic septum blade. The activation of the extraction

magnetic septum in section 16 will then be reduced. The protection septum must act in

66
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the same passive way for any kind of beam produced by the PS, and for extraction tech-

niques different from MTE. The new device will then be enclosed in a concrete shielding,

in order to minimize the level of radiation in the area.

5.1.2 Dummy septum design

The dummy septum model used in CST simulations is shown in Fig 5.1 (left). The position

of the absorbing particles blade can be adjusted by means of a remote displacement system,

allowing for an accuracy of 0.1 mm [46]. The blade can be placed between 80 and 100 mm

from the PS orbiting beam during operation. Moreover, when the septum is not used,

the blade can be moved to the parking position. The blade is mounted on a solid copper

support table that is also designed for transferring heating released by the beam in the

blade via a copper conductor connected to a water cooling. A stainless steel RF beam

screen has been integrated and connected to the upstream and downstream ends of the

tank using multi-contacts. Finally, a beam observation system has been designed, in order

to measure the position of the extracted beam and to adjust precisely the extraction blade

position.

To perform impedance simulations, several aspects of the beam operation of the dummy

septum were considered. During operation, the beam circulates in a nominal position

displaced by 27 mm from the geometrical center of the septum. During extraction, the

beam moves from the circulating position to few millimeters from the copper blade in

about 6 ms. The beam then circulates close to the blade for only few turns before

extraction. The design of the septum used for simulations considers the blade positioned

at 90 mm from the nominal circulating beam. The mechanical drawings is shown in

Fig. 5.1 (right).

Figure 5.1: Dummy septum simplified model used for CST simulations (left) and dum-
my septum mechanical model with blade in nominal position with respect to the orbiting

beam (right).
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Figure 5.2: Dummy septum tank and
motor allocation.

Figure 5.3: Inside view with BTV,
blade and screen installed.

Figure 5.4: Inside view with blade and
support table installed.

Figure 5.5: Beam Screen before with
sliding fingers before installation.

5.1.3 Impedance aspects

Sharp resonances, namely trapped modes, are generated by the electromagnetic interaction

of the field produced by the particle beam with the internal equipment of the dummy

septum. Simulations and theoretical calculations have been performed in order to evaluate

longitudinal and transverse coupling impedances due to trapped modes [47], and their

impact on the stability of the beam. The final outcome of these studies represented the

basis for acceptance of septum installation in section 15 of the PS ring. The importance of

the study is justified by the fact that the septum should require essentially no maintenance

and, in the event of damage, a spare will be available for replacement. In fact, the very

high level of activation expected in the device, is going to exclude many long repairing

interventions.

Since all discontinuities inside the dummy septum can be potential sources of trapped

modes, the model used in simulation must be as close as possible to the real object.

The analysis has been performed on simplified 3D geometries imported from mechanical

CATIA drawings [48], assuming that geometry simplifications have a negligible impact on
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final results. In particular the beam observation screen, the holes in the RF beam screen

and the screws inside the tanks are elements that have been neglected during simulations.

CST Particle Studio Wakefield Solver has been used to perform time domain simulations,

of the wake potential generated by a Gaussian bunch circulating inside the septum. The

beam coupling impedance components are then evaluated by Particle Studio from the

Fourier transform of the wake potential. To crosscheck results obtained with Particle

Studio (time domain), CST Microwave Studio (frequency domain) simulations have been

performed. The evaluation of the frequencies of eigenmodes resonating in the structure

is done by the Eigenmode solver, while Q factor, shunt impedance Rs, and R/Q are

obtained from the post-processing. The correct evaluation of the resonance parameters

is fundamental to obtain good accuracy in the estimation of the impact of the mode on

coupled bunch instability.

In section 5.1.4 we show that beams circulating in the septum generate trapped modes,

producing narrow resonances in the coupling impedance; trapped modes’ frequencies also

correspond to the eigenfrequencies of the closed structure. Since low-frequency trapped

modes are a potential source of coupled bunch instability for the PS, two different solutions

for reducing their impact on the stability of the beam have been considered, and they are

discussed in section 5.1.7.

5.1.4 Impedance simulations

To perform longitudinal impedance simulations in CST Particle Studio, both the beam

and the integration path need to be placed on the same axis position. Then, the longitudi-

nal impedance can be evaluated at different distances from the location of the blade. From

simulations, excitation of trapped modes in the longitudinal and transverse impedance,

due to the passage of a beam of r.m.s. bunch length of 26 cm, has been observed. This

bunch length corresponds to the shorter bunch for the PS at flat bottom, and has been

chosen to obtain a good resolution in the desired frequency range. Trapped modes fre-

quencies, which also correspond to the eigenvalue of the closed structure, do not depend on

the beam position. On the contrary, the amplitudes of several peaks are increasing while

the relative distance between the beam and the blade is decreasing. Before extraction,

while the beam covers 90 mm in about 6 ms to approach the blade, a significant increase

of shunt impedance for some trapped mode has been observed. During extraction, when

the beam is close to the blade at a minimum distance of 5 mm, the maximum of the

impedance peaks’ amplitude is reached. This effect is due to the strong electromagnetic

field trapped at the edges of the blade after the passage of the beam.

Since the inner geometry of the dummy septum is strongly asymmetric, all trapped modes

excited by the passage of the beam, have both longitudinal and transverse components.
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Table 5.1: Main parameters of CST Particle Studio simulations for the longitudinal
coupling impedance simulation.

Bunch length 26 cm
Wake length 100 m

Frequency max 700 MHz
Number of mesh cells 812.360 hexahedral

Method of field integration Direct

The dipolar impedance can be evaluated with CST Particle Studio by shifting the beam

in the transverse direction and by performing the integration of the field along the central

axis. Similarly, the quadrupolar impedance can be obtained by shifting the integration

path while keeping the beam in the center. The dipolar (resp. quadrupolar) component

is then calculating subtracting from the simulated dipolar (resp. quadrupolar) transverse

impedance the same term evaluated in the center and then dividing by the displacemen-

t [49]. For the transverse impedance, the same increase in the amplitude of the peaks

while the beam is approaching the blade has been observed. For this reason, only nu-

merical examples of the longitudinal component of the impedance are shown, since the

transverse one shows a similar behavior. Figure 5.6 shows the real part of the longitudinal
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Figure 5.6: Longitudinal beam coupling impedance at extraction evaluated with CST
Particle Studio 2012.

impedance excited by a bunch of r.m.s. length 26 cm and charge 1 nC, circulating 5 mm

away from the axis of the copper blade. The wake potential has been evaluated through

the Direct Integration Method using a wake length of 100 m. Perfect electric conductor

(PEC) has been defined on all the outer surfaces, except for the beam entrance and exit

planes that have been defined as open boundaries (perfect matching layer) due to the

beam pipe aperture. No symmetry planes have been used. The parameters used in simu-

lation are summarized in Table 5.1. Resonant parameters of the dummy septum can be

rapidly calculated post-processing the Eigenmode simulation. As shown in Table 5.2, the

first trapped mode excited by the beam resonates at 118 MHz with a Q factor of 2616
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Table 5.2: Resonant parameters of the first ten eigenmodes.

Frequency [MHz] Q Rs[Ω] orbit Rs[Ω] extraction

118 2655 62 36176
295 3975 76 74899
331 3947 7 5153
362 4727 2 2909
420 4987 13 10109
441 4885 22 18914
495 5777 3 2097
533 7597 9 8852
616 3585 3 2145
656 5805 18 13988

and, since Q depends only from the geometry, it will be constant for the same mode while

the beam is moving from the nominal position towards the blade during extraction. The

shunt impedance of the 118 MHz mode has been evaluated in the case of a beam placed in

nominal position and in the case of a beam at 5 mm from the blade at extraction: in the

latter case it has been estimated to be approximately 36 kΩ. Between the nominal and

the extraction positions, the shunt impedance increases of a factor 600. The amplitude

of the impedance’s peaks does not correspond to the shunt impedance of each resonance,

since the saturation of the peaks is reached when the simulation is performed with a wake

length of about 7 km, calculated as WLmax = ∆f
clight

. Such a time consuming simulation

has been performed and fits with the shunt impedance evaluated by the Eigenmode solver.

Only numerical examples of the longitudinal impedance obtained with a wake length of

100 m are shown, as qualitative output of CST Particle Studio.

For the PS, we assume that only resonant modes with a frequency lower than 200 MHz

represent potential issues for coupled bunch instability: the growth rate of an instability

increases significantly while the frequency of the mode is diminishing. For this reason,

the mode at 118 MHz has been studied in more detail in section (5.1.5), while the oth-

er trapped modes at higher frequencies are not expected to be source of coupled bunch

instability.

5.1.5 Coupled bunch instability evaluation

Longitudinal coupled bunch (CB) oscillations represent a major source of instability, lim-

iting the beam intensity and brightness that can be delivered from the CERN PS. Low

frequency trapped modes with high Q factor and shunt impedance are potential source

of this instability for the PS [50] [51]. To deeply investigate the possible impact of the

118 MHz mode, the coupled bunch instability growth rate has been calculated with the
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Table 5.3: PS-LIU parameters (25 ns bunch spacing) considered for coupled bunch
calculations.

Energy [GeV] 13 26

RF voltage [kV] 165 100
Harmonic number 21 84

Number of bunches 18 72
Charge per bunch [C] 1.28·10−7 3.2·10−8

Slippage factor 0.0163 0.0215
rms bunch length [ns] 3 3

following formula, which is valid for a mode fully coupled with the multi-bunch spec-

trum [52]:

α =
c2ηcqNb

2L2E0ωs
ωrRe(Z(ωr)), (5.1)

where ηc is the slippage factor, q is the bunch charge, Nb is the number of bunches, L

the length of the machine, E0 the beam energy, ωs the synchrotron frequency, and ωr the

resonance frequency. Resonant parameters are taken into account for the calculation of

the broad-band impedance

Z(ωr) =
Rs

1 + iQ( ωωr −
ωr
ω )
. (5.2)

Since the septum is going to work in all operational conditions and with several types

of beam, growth rates should be evaluated at different beam energies, assuming worst

case scenarios. The beam parameters that have been considered for the estimation are

summarized in Table 5.3. Furthermore, to be closer to the real conditions, the actual

Gaussian shape of the bunch has to be taken into account. Therefore, the shunt impedance

Rs, evaluated with CST Microwave Studio, has to be corrected with the following form

factor:

Rs
′

= Rse
−(ωrσb). (5.3)

When such a correction is taken into account, the amplitude of the shunt impedance

is drastically reduced. In Table 5.4, the values of growth rate for the 118 MHz mode,

evaluated both at intermediate (13 GeV) and extraction (26 GeV) energies, for different

beam positions from the geometrical center of the septum, are summarized.

Table 5.4: Coupled bunch instability growth rates evaluated for different beam position
inside the septum.

Displacement [mm] Rs[Ω] Rs
′
[Ω] α[s−1] 13 GeV α[s−1] 26 GeV

0 640 10 0.15 0.08
20 3385 53 0.82 0.43
40 14762 231 3.59 1.87
60 49215 770 11.97 6.25
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5.1.6 Contribution to the total Proton Synchrotron Impedance budget

The imaginary part of the longitudinal impedance beam coupling of the PS has been

evaluated with measurement campaigns [17] [42] to be

Z(p)

p
= 18.4± 2.2 Ω, (5.4)

as discussed in Chapter 4. In order to calculate the contribution of the dummy septum to

the total PS impedance budget, simulations with very long bunch length were performed.

This choice allows to identify the low frequency inductive impedance. A long bunch,

circulating in nominal position in the septum, excites an imaginary part of the longitudinal

impedance that is purely inductive, giving an effective impedance of Z(p)
p = 0.001 Ω. In

comparison with the measured value, the contribution of the dummy septum to the PS

longitudinal impedance budget is expected to be negligible. When the bunch circulates

at 5 mm from the blade before extraction, the effective impedance is Z(p)
p = 0.12 Ω,

much larger than in the previous case. Nevertheless, at extraction, the contribution of

the dummy septum to the PS longitudinal impedance budget is less than 1%. For the

sake of comparison, the 200 MHz cavities complex of the PS provides a contribution of

about 4% of the total longitudinal impedance. Hence, no issue is expected under any of

the operational conditions foreseen.

5.1.7 Mode damping proposals

In the unlikely event of unexpected failure or damage of the dummy septum after installa-

tion and shielding, repairing action and intervention will be complicated and potentially

dangerous. This fact justifies the interest in finding preventive measures, for example

reducing the impact of a mode that, from simulation results, is not predicted to be an

issue for the stability of the beam. For this reason, two proposals of modifications of the

inner design have been studied with the aim of damping the 118 MHz mode. Since the

resonance at 118 MHz is mainly localized in the gap between the RF beam screen and

the support table, the first solution consists of inserting sliding contacts among them:

closing the gap has the effect of canceling the mode at 118 MHz, as shown in fig. 5.7.

Similarly, a small amount of energy is also trapped at the edge of the blade, in the 3 mm

gap between the impedance screen and the blade itself. To avoid that resonance, it would

be necessary to create contacts between the two object, filling the gap. Unfortunately,

this last solution, cannot be easily implemented. The second solution consists in insert-

ing a block of ferrite TT2-111R, a material with good electromagnetic performances in

the frequency range of interest. This solution would not have the effect of damping the
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Figure 5.7: Longitudinal coupling impedance at extraction evaluated with CST Particle
Studio after the insertion of sliding contacts between the screen and the support table.

mode, but would reduce the shunt impedance Rs and Q of the mode itself and, as a con-

sequence, the impact of coupled bunch instability. Several studies have been performed

using CST Particle Studio, using different dimensions and positions of the ferrite. As

a general rule, the brick of ferrite should be placed inside the tank where the magnetic

field is stronger; therefore, we suggested to position a brick of 24x7x395 mm3 between the

displacement system and the impedance screen, as shown in Fig. 5.9. With this solution,

the shunt impedance reduction of the 118 MHz mode at extraction has been estimated

to be about a factor 600. For power loss estimation we consider the following formula for

sharp resonances [53]:

Pl = 2(MIb)
2Rs10

PdB(fr)

10 (5.5)

where MIb is the total beam current, Rs is the shunt impedance and PdB(fr) is the power

in dB read from the beam power spectrum at the frequency fr (see Chapter 2 for beam

spectra measurements). Since the 118 MHz mode falls inside the PS bunch extraction

spectrum with power of -20 dB, the deposited heating would be about 3.6 W and the

foreseen cooling system should easily cope with it.

As an outcome of these studies, the decision has been taken to install the sliding contacts

between the RF beam screen and the support table. A picture of the sliding fingers

mounted on the screen before installation in shown in Fig. 5.5. The option of installing a

block of ferrite is left as a fall back solution to be implemented only in case of failure of

the sliding contacts. Therefore, the blade displacement system has been equipped with a

support that could be used to house the ferrite block.
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Figure 5.8: Comparison between longitudinal impedance evaluated with CST Particle
Studio with and without ferrite.

Figure 5.9: Magnetic field lines on a transversal cut in the dummy septum with the
ferrite block insertion.

5.1.8 RF impedance measurements

Coupling impedance RF measurements have been performed to confirm the results of

numerical simulations, to test the effectiveness of the sliding contacts, and to assess the

need of ferrite. Two measurement campaigns were performed at the end of 2013 and at the

beginning of 2014, respectively. After the first set of measurements, due to an oil leakage,

the septum was opened, cleaned and assembled again. Because of a mechanical break

down, also the sliding fingers were replaced before the second set of measurements was

carried out. The well-known technique based on the coaxial wire method [54] has been

used, allowing to excite in the device under test an electromagnetic field similar to the

one generated by an ultra-relativistic point charge. The impedance has been measured

stretching a metallic wire of 0.5 mm radius inside the septum, modeling a TEM-like

coaxial line; the wire was then connected to two matching resistors to consider the effect

of the mismatch at the beginning and at the end of the perturbed transmission line. Two

carbon resistances of 276 Ω and 281 Ω were welded to a suco-box of 16 mm length on
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one side, and to the stretched wire on the other side, as shown in Fig. 5.10. This setup

allows measuring the transmission coefficient S12 by means of a Vector Network Analyser

(VNA). Using special flanges and 10 dB attenuators, the impedance for three positions of

the wire/beam with respect to the extraction blade has been measured, while the position

of the blade was fixed at 90 mm from the nominal orbit beam position, and the beam

monitor (BTV) was placed in out position, for both set of measurements. Figure 5.11

Figure 5.10: Measurement setup for dummy septum impedance measurements. On the
left, a suco box connected to the septum flange and welded to the stretched wire through
a matching resistor; on the right, the flange with three holes to allow different position

for the wire.

shows the comparison of the impedance measurement for the three wire positions during

the second set of measurements. The first trapped mode is excited with a frequency of

270 MHz, thus indicating that the sliding fingers are working as expected on cancelling

the mode at 118 MHz. Moreover, 270 MHz is predicted to be too high frequency to

be source of coupled bunch instability in the PS, even with a Q factor of 3413, shunt

impedance calculated at extraction of 21.6 kΩ and power loss at extraction of 9 W.

Also in this case the foreseen cooling system should easily cope with power loss. From

Eigenmode simulations is it clear that this mode is generated by resonances trapped at

the gap between the impedance screen and the copper blade, and increases in amplitude

when the wire/beam is set closer to the blade, as shown in Fig. 5.11. Measurements have

also been compared with realistic simulations performed with CST Microwave Studio

Frequency domain solver. The measurement setup is simulated adding the metallic wire

in the geometry and calculating the scattering parameters at the input and output port

of the device under test. As shown in Fig. 5.12, measurements and simulations agree

on the frequency of the first trapped mode resonating in the septum. The second peak

not visible in the simulation, is due to the presence and to the position of the BTV in

the assembly. Nonetheless, measurement results confirm that the dummy septum can be

safely installed in the PS ring and that the insertion of ferrite is not needed.
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Figure 5.11: The S21 transmission coefficient measured for three positions of the wire
respect to the extraction blade.
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Figure 5.12: The S21 transmission coefficient measured at extraction compared with
CST Microwave Studio simulation in frequency domain.

5.2 Finemet loaded longitudinal damper

5.2.1 Introduction

In the framework of the LHC Injectors Upgrade (LIU) a new longitudinal damper cavity

has been designed [55] [56] to operate as coupled bunch feedback for the CERN Proton

Synchrotron (PS), providing a correction of the RF voltage to the circulating bunches

and avoiding the generation of coupled bunch oscillation. Before the installation of the

new damper, the coupled-bunch feedback was provided by a dedicated 10 MHz cavity (see

Chapter 2), operating as longitudinal kicker. The design of the new damper, driven by a

solid state amplifier, is based on the wideband frequency characteristics of Finemet R© [57]

magnetic alloy. Beam coupling impedance studies for the new elements were performed

before installation in the PS, in order to determine the contribution of the new device

to the current coupling impedance budget of the machine, to exclude the excitation of
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trapped modes due to the interaction between the beam and the cavity, to assess the

impact on the stability of the beam, and to explore the electromagnetic characteristics of

Finemet R© .

5.2.2 Longitudinal impedance calculation

The Finemet R© loaded longitudinal damper has been initially modeled in CST Particle

Studio as a single cell cavity [58] [59]. This model consists of a beamline section with an

alumina gap of 3 mm and two Finemet R© rings of 165 mm radius and 25 mm thickness,

enclosed into a metallic squared tank. Finemet R© has been put in contact with the tank

of the damper through two support copper disks. Such a cavity system forms two λ/4

resonators excited in counter-phase. The single cell model used for impedance simulations

is shown in Fig. 5.13. Finemet R© dispersive parameters have been defined in CST import-

ing µ1 and µ2 measured data. CST offers the possibility of defining and automatically

fitting a specific magnetic material dispersion curve from uploaded data: several different

magnetic dispersion fit models can be chosen, but in this case a general N-th order has

been selected. The relative permittivity of Finemet R© has then been set up as εr = 25. A

comparison between the Finemet R© measured and fitted µ1 and µ2 parameters is shown

in Fig. 5.14.

For CST Particle Studio 2012 simulations, the bunch length was chosen in order to obtain

a good resolution in the desired frequency range, according to the relationship f = c
1.69σb

,

while the length of the wake has been fixed long enough to obtain impedance peaks with

saturated amplitude. A bunch length of 50 cm and bunch charge of 1 nC has been consid-

ered. The wake potential has been evaluated through the Indirect Test Beam integration

method using a wake length of 600 m. The indirect method computes the longitudinal

wakes generated by the interaction of test beams with the wall of the beam tube to get

the longitudinal wake everywhere in the cross section of the cavity and it is considered

the most accurate calculation method. Perfect electric conductor (PEC) has been defined

on all the surface as boundary condition, excepted for the Z plan (beam entrance and exit

plane) that has been defined open due to the beam pipe aperture. XZ and YZ symmetries

have been used to reduce by a factor four the computational time. The main parameters

of the simulation are summarized in Table 5.5.

In the low frequency longitudinal impedance one can identify the first accelerating mode

of the cavity; the real part of the longitudinal impedance is about 350 Ω at a frequency

of 4‘MHz. Results from simulations have been compared to the longitudinal impedance

obtained with bench measurements of the single cell prototype. Measurements and simula-

tions show good agreement for frequencies higher than 4 MHz, while for lower frequencies

small discrepancies are due to the low accuracy in the fitting of the dispersive parameters
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Figure 5.13: CST model of the one cell prototype of the Finemet R© loaded longitudinal
damper.

Table 5.5: Main parameters of CST Particle Studio simulations for the single cell
damper.

Bunch length 50cm
Wake length 600m

Frequency max 200MHz
Number of mesh cells 112.860 hexahedral

Method of field integration Indirect Test Beam

performed by CST Particle Studio. A comparison between measured and simulated lon-

gitudinal coupling impedance is shown in Fig. 5.15.

Furthermore, the strong damping effect of Finemet can be observed from simulations: no

excitation of parasitic or trapped modes has been detected. The final model of the
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Figure 5.14: Comparison between Finemet R© measured and fitted dispersive parame-
ters µ1 and µ2.

longitudinal damper, made of six Finemet R© loaded cells, is shown in Fig. 5.16. The

model has been obtained repeating six times the single cell model, allowing to obtain
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Figure 5.15: Longitudinal impedance of the single cell damper.

Table 5.6: Main parameters of CST Particle Studio simulations for the six cells
Finemet R© loaded longitudinal damper.

Bunch length 50cm
Wake length 600m

Frequency max 345MHz
Number of mesh cells 3,000,816 hexahedral

Method of field integration Indirect Test Beam

Figure 5.16: CST model of the six cells Finemet R© loaded longitudinal damper.

a good model for simulation and avoiding all the issues connected to import a complex

drawing from a mechanical CAD. The model does not include transitions between the

circular pipe of the cavity and the elliptical pipe of the PS: no changes on the impedance

have been predicted because of the tapers, thanks to the large bunch length circulating

in the PS (26 cm-12 m), as will be discussed in Chapter 6. The main parameters of the

six cells simulation are resumed in Table 5.6, while the longitudinal coupling impedance

is shown in Fig. 5.17. The first accelerating mode of the cavity is clearly visible from

the longitudinal impedance. PS bunches circulating in the center of the cavity can excite

a longitudinal impedance, the real part of which has a maximum of 2 kΩ at 4 MHz.

Parasitic or trapped modes have not been detected.
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Figure 5.17: Longitudinal impedance of the six cells damper.
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Figure 5.18: Measured longitudinal impedance of the single cell as seen by the beam
when going through one gap connected to the amplifiers with 4 ns cables.

5.2.2.1 Connection Lines Effect on the Impedance

The longitudinal impedance seen by a beam circulating inside the damper is defined not

only by the cavity impedance, but also by the effects of the amplifier output impedance and

the connected transmission lines. The longitudinal impedance of the single cell prototype

connected to the amplifiers through 4 ns cables has been measured, and is shown in

Fig. 5.18. This response shows a broadening and a further reduction in the longitudinal

impedance with respect to Fig. 5.15. By comparing the results with and without the

effects of the power amplifier and the transmission lines, the contribution of the damper

to the total impedance budget allows to conclude that the damper can be safely installed

in the PS ring. An additional reduction of the cell impedance will be provided by means

of a one-turn feedback loop.
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Figure 5.19: Comparison between the dipolar impedance of the longitudinal damper
and the sum of the horizontal impedances of the PS kickers.

Table 5.7: Main parameters of CST Particle Studio transverse simulations for the six
cells longitudinal damper.

Bunch length 200 cm
Wake length 800 m

Frequency max 511 MHz
Number of mesh cells 3,000,816 hexahedral

Method of field integration Indirect Test Beam

5.2.3 Transverse impedance calculation

The transverse dipolar impedance can be evaluated with CST Particle Studio shifting the

beam in the transverse direction and performing the integration of the field along the axis

of the cavity. The dipolar component is then obtained by dividing the simulated trans-

verse wake potential by this displacement. Being the structure symmetric is sufficient to

compute the dipolar impedance shifting the beam in only one transverse direction. For

this simulation XZ symmetry has been used, allowing a factor two reduction in the number

of mesh cells. Simulations have been performed for both the single cell and the six cells

models, considering different shifts of the beam from the center to verify linearity. The

main parameters are summarized in Table 5.7. Simulation results confirm that the first

accelerating mode of the cavity does not have a transverse component. Figure 5.19 shows

that a broad parasitic mode at the frequency of 400 MHz is now excited as the dipolar

impedance. The absence of excitation of this mode in the longitudinal impedance is prob-

ably due to the TE-like configuration of the field. In this plot, the transverse impedance

of the longitudinal damper has been compared to the total horizontal impedance of the

eleven kickers installed in the machine: the contribution to the transverse impedance bud-

get of the machine is predicted to be negligible. The effective vertical coupling impedance

of the six-cells device is 6 kΩ/m. Impedance simulations and measurements confirmed
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Figure 5.20: Longitudinal damper after installation in SS01 of the PS ring.

that the longitudinal damper could be safely installed in the PS machine. In Fig. 5.20 a

picture of the damper after installation in the ring is shown.

5.3 Tune Stripline Beam Position Monitor

5.3.1 Introduction

Beam position monitors are very common devices in particle accelerators for measuring

the horizontal and vertical position of the circulating beams. For high energy circular

accelerators like the PS, a large number of beam position monitors is usually required,

introducing a significant contribution to the total coupling impedance of the machine.

Therefore, an impedance study has been requested for the approval of the new stripline

pickup to be installed during LS1 in straight section 72.

The new beam monitor is a cylindrical pickup provided by four striplines, connected

trough ports to the external tank of the device. The model used for beam coupling

impedance simulations is shown in Fig. 5.21, while a picture of the pickup before instal-

lation is shown in 5.22 [60]. Each stripline has a length l = 0.779 m and subtends an

angle φ0 to the transverse axis of the beam pipe. The system composed by the stripline

and the beam pipe can be treated as a section of transmission line with a characteristic

impedance Zs =
√
L/C, where L and C are the inductance and capacitance per unit

length. Signals can propagate in the transmission line with velocity βsc = 1√
LC

. The four

striplines are connected through ports to a transmission line of the same characteristic

impedance, meaning that the signals induced on the stripline can propagate through one

of the ports into a transmission line without reflections. This is equivalent to terminating

each end of the stripline by a resistance of Zs = 50 Ω.
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Figure 5.21: 3D model of the stripline beam position monitor used for implemented in
CST Microwave Studio.

Figure 5.22: Pickup before installation.

5.3.2 Impedance calculation

The longitudinal beam coupling impedance of the device can be calculated with the fol-

lowing analytical formula [61] :

ZL = 4Zs

(
φ0

2π

)2(
sin2 ωl

c
+ j sin

ωl

c
cos

ωl

c

)
. (5.6)

It is clear that, if the stripline is matched at both terminations, we cannot observe the

generation of parasitic modes. Nevertheless, at high frequencies, the stripline can support

standing wave resonances having a node at the middle of the stripline, where the termina-

tion does not absorb any power. Moreover, resonances could occur whenever the length

of the stripline is an half-integer multiple of the wavelength. Such resonances cannot

therefore be damped by the matched transmission line. At low frequencies ω
2π �

c
4l , the

longitudinal beam coupling effective impedance is given by [61]

ZL
n
≈ jZs

(
φ0

π

)2 l

R
, (5.7)
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Table 5.8: Main parameters of CST Particle Studio simulations for the longitudinal
impedance simulation of the beam position monitor.

Bunch length 18 cm
Wake length 300 m

Frequency max 560 MHz
Number of mesh cells 204.918 hexahedral

Method of field integration Direct
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Figure 5.23: Longitudinal coupling impedance of the stripline beam position monitor
calculated with CST Particle Studio.

while the transverse beam coupling effective impedance is given by

ZT ≈ j
(

8Zsl

π2R2

)
sin2 φ0

2
, (5.8)

where R is the beam pipe radius. Electromagnetic simulations of the new pickup have

been performed using CST Particle Studio with the aim of excluding the excitation of low

frequency resonances and to determine the impact of the new device on the total machine

impedance. Table 5.8 summarizes the main parameter used in simulations. Thanks to

the symmetry of the structure, only a quarter of the model has been considered, reducing

the computational time of a factor four. In Fig. 5.23 the longitudinal impedance is shown.

On the real part, the distance between two crests is about 180 MHz, corresponding to

λ=1.6 m, about twice the length of one stripline. The imaginary part cannot be treated

as an inductive impedance, but the effective longitudinal coupling impedance can be

evaluated for a certain frequency 2πf = 1
σb

, with σb the bunch length. We have that,

for σb=26 cm (minimum bunch length in the PS) the effective impedance contribution is
Z
n = 0.0052 Ω, about the 0.2% of the total longitudinal impedance budget. Transverse

coupling impedance is shown in Fig. 5.24. Also the effective transverse impedance is

predicted to be negligible with respect to the transverse budget.
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Figure 5.24: Transverse coupling impedance of the stripline beam position monitor
calculated with CST Particle Studio.

5.4 Conclusions

Coupling impedance studies, including simulation, RF measurements and theoretical cal-

culations, have been performed for three new devices, before their installation in the

machine in the period 2013-2014. This studies helped to understand the contribution

of the single elements on the longitudinal and transverse impedance models discussed in

Chapters 4 and 5. In the case of the dummy septum, some modification of the design

have been suggested in order to reduce the impact on the coupled bunch instability. The

final contribution to the impedance of the three devices was predicted to be negligible,

and the three devices have been correctly installed in the machine where are successfully

working under normal operational condition.
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Chapter 6

Green functions in elliptical

vacuum chambers

The second part of this thesis work is aimed to determine an analytical formula for the

longitudinal beam coupling impedance of a step transition between two beam chambers

with the mode matching method. The electromagnetic interaction of a charged particle

beam with an abrupt step transition connecting two vacuum tanks produces an exchange

of energy between the particle beam and the surrounding medium. This interaction can

be described by means of the beam coupling impedance [1]. We assume that the cross

sections of the step transition are confocal ellipses. In order to calculate the coupling

impedance by means of analytical-numerical methods it is necessary to express the Green

function and the eigenmodes of the elliptical chamber in elliptical coordinates, expanded

as function of separate variables.

Introduction

Let us consider a δ distribution particle beam crossing an abrupt step transition between

two beam chambers of elliptical cross-section. The electromagnetic field generated in the

step transition is given by the superimposition of two terms: the first term is the source

field of the particle beam traveling in the chamber, while the second term is represented

by the source field that is radiated back from the discontinuity. This type of problem, in-

volving two separate regions, can be addressed with the so-called mode matching method.

Expressing the radiated field from the discontinuity as the product of a modal function for

a modal coefficient, and imposing the condition on continuity of the tangential electric and

magnetic fields at the interface, we obtain a set of linear equations for the unknown modal

coefficients. Because of the functional form of the modal modes, the problem reduces in

90
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determining a set of modal amplitudes associated with the field expansions in the two

regions, where the primary field represents the known coefficients of the system. Solving

this matching system allows to calculate the amplitude of the radiated electric field, and

the longitudinal impedance is the Fourier transform of the field itself. In order to develop

the matching system and calculate the coupling impedance, we need to calculate an ex-

pression in elliptical coordinates of the source field of the particle beam traveling in the

chamber. For this purpose, in this chapter we are going to determine a novel formulation

of the Green function in the free space expressed in elliptical coordinates. Moreover, the

novel formulation is provided in separate functions of the elliptical coordinate variables.

This formulation allows to calculate the indirect field, that is the response of the Green

function to an elliptical boundary. Summing the contribution of the Green function (di-

rect or primary field) and the scattered (indirect) field from the boundary, we can fully

describe the electric field produced by the interaction of a δ distribution particle beam

traveling inside a tube of elliptical cross section. In order to match the particle distribu-

tion with the elliptical geometry, we need to introduce a set of functions, called Mathieu

functions. Mathieu functions were introduced by their originator in 1868, when he deter-

mined the vibrational modes of an elliptical membrane with an elliptic boundary. Papers

and books on the computation of Mathieu functions can be found in literature and include

references [62], [63], [64] [65], [66], [67], while the fundamental reference works on Mathieu

functions are in the books by McLachlan [68]. The computation of Mathieu functions is

far from trivial and, in addition, built in library routines for Mathieu functions are not

widespread. An available source of software for the computation of Mathiueu functions

is described in [65]. Nevertheless, it seems not to exist a single repository where official

software and information about the computation of Mathieu functions can be found. The

absence of explicit integral formula makes asymptotic analysis more difficult for Math-

ieu functions than for Bessel functions. In particular, we are going to show that the

two-parameter dependence of the Mathieu functions and the non existence of an explicit

formula for their evaluation, contribute to complicate calculation of eigenfunctions of the

wave equation, arising by separating variables in elliptic coordinates.

6.1 Theory and applications of Mathieu functions

6.1.1 The wave equation in elliptical coordinates

Let us consider the wave equation for the longitudinal component of the electric field for

a transverse magnetic (TM) field propagating in a generic waveguide

∆2
tEz = (k2

0 − k2
z)Ez, (6.1)
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where k = ω/c is the wave number in free space and kz is the propagation constant.

For an an elliptical cross section waveguide it is convenient to use confocal elliptical

Figure 6.1: Elliptic Cylindrical Coordinates. The ϕ coordinates are the asymptotic
angle of confocal hyperbolic cylinders symmetrical about the x-axis. The µ coordinates

are confocal elliptic cylinders centered on the origin.

coordinates. In an elliptical coordinate system we can define the angular coordinate ϕ as

a set of hyperbolas having the same foci, and the radial coordinate µ as a set of confocal

ellipses. This nomenclature becomes obvious observing in Fig. 6.1 the similarity between

the elliptic coordinates and the polar coordinates. The elliptic variable ϕ has a domain

0 6 ϕ 6 2π and plays a similar role to a polar angle. The variable µ, in the domain

0 6 µ 6 ∞, behaves like a radial variable. F is the focal distance of the ellipse, and is

related to the semi major and semi minor axes a and b by

F =
√
a2 − b2. (6.2)

The line joining the foci corresponds to µ = 0. The polar coordinates can be considered

a special case of the elliptic coordinate in the limit F → 0, when the foci of the elliptic

coordinate collapses into the origin. In this limit, the angular and radial Mathieu equations

become harmonic and Bessel equation, respectively. It is useful to parametrize an ellipse

in terms of its eccentricity e, defined by

e =

√
a2 − b2
a

. (6.3)
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The relation between elliptical and Cartesian coordinates is given by [62]{
x = F coshµ cosϕ

y = F sinhµ sinϕ.
(6.4)

It is also useful to introduce a scale coefficient h(µ, ϕ) for the elliptical coordinate, defined

as

h(µ, ϕ) = F
√
cosh2µ− cos2ϕ. (6.5)

The two-dimensional Laplacian in this coordinates system can be written as [69]:

∇2
t =

1

F 2(cosh2µ− cos2ϕ)

(
∂2

∂µ2
+

∂2

∂ϕ2

)

=
2

F 2(cosh2µ− cos2ϕ)

(
∂2

∂µ2
+

∂2

∂ϕ2

)
=

1

h2(µ, ϕ)

(
∂2

∂µ2
+

∂2

∂ϕ2

)
. (6.6)

If we substitute the above Laplacian definition in Eq. 6.1, we obtain the wave equation in

elliptical coordinates [62]:

2

F 2(cosh2µ− cos2ϕ)

(
∂2

∂µ2
+

∂2

∂ϕ2

)
Ez − k2

tEz = 0, (6.7)

where k2
t = k2

0 − k2
z are the eigenvalues of the elliptical waveguide. A formal solution of

Eq. 6.7 can be obtained with the method of variable separations. If we apply the method,

Ez can be written in the form U(ϕ)V (µ) e−ikzz and we can rewrite the equation above

as:
1

U

∂2

∂µ2
− k2

t

2
F 2 cosh 2µ = − 1

V

∂2

∂ϕ2
− k2

t

2
F 2 cos 2ϕ. (6.8)

Separating variables of the wave equation gives two ordinary differential equations, in-

volving a separation constant a and a frequency dependent parameter q. We will show

that the two parameters dependence makes the computation of Mathieu functions more

involved than, for example, Bessel functions. We can then rewrite Eq. 6.8 as two sepa-

rate equations, considering that left and right-hand sides must be equal to the separation

constant a:
d2U

dµ2
+ (a− 2q cosh 2µ)U = 0 (6.9)

d2V

dϕ2
− (a− 2q cos 2ϕ)V = 0 (6.10)

where

q =
k2
tF

2

4
(6.11)

are the eigenvalues of the elliptical waveguides, depending by the geometry. Equation-

s 6.9 and 6.10 are known as Modified Mathieu Equation and Ordinary Mathieu Equation,
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respectively. Their solutions, that we are going to deduce in the next section, are known

as Modified Mathieu Functions and Ordinary Mathieu Functions, respectively.

6.1.2 Solution of the Mathieu equations

The periodic solution of Eq. 6.10 can be obtained with a Fourier series expansion

V (q, ϕ) =

∞∑
k=0

[Ak(q) cos(kϕ) +Bk+1(q) sin(k + 1)ϕ], (6.12)

where k is the number of expansion terms and Ak and Bk+1 are the Fourier coefficients.

This solution can be separated into two parts as follows:

cer(q, ϕ) =
∞∑
k=0

Ak(q) cos(kϕ) (6.13)

ser+1 =
∞∑
k=1

Bk(q) sin[(k + 1)ϕ], (6.14)

where cer and ser+1 are known as the even Mathieu function of r-th order and the odd

Mathieu function of the (r+1)-th order, respectively. The notation ce and se comes from

“cosine-elliptic” and “sine-elliptic”.

If we substitute Eq. 6.12 in 6.10, we obtain recurrence relations for the Fourier coefficients

Ak and Bk+1 for a given characteristic value ar and br:

ce2n [k ≥ 2] :

aA0 − qA2 = 0

(a− 4)A2 − q(2A0 +A4) = 0

(a− 4k2)A2k − q(A2k−2 +A2k+2) = 0

(6.15)

ce2n+1 [k ≥ 1] :
(a− 1)A1 − q(A1 +A3) = 0

(a− (2k + 1)2)A2k+1 − q(A2k−1 +A2k+3) = 0
(6.16)

se2n+2 [k ≥ 2] :
(b− 4)B2 − qB4 = 0

(b− (2k)2)B2k − q(B2k−2 +B2k+2) = 0
(6.17)

se2n+1 [k ≥ 1] :
(b− 1)B1 − q(B3 −B1) = 0

(b− (2k + 1)2)B2k+1 − q(B2k−1 +B2k+3) = 0.
(6.18)

In order to obtain a periodic solutions for the above recurrence relations, the characteris-

tics values a and b must satisfy the following continued fractions [69]:

V0 =
2

V 2−
1

V 4−
1

V 6−
...; (Roots = a2n) (6.19)
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V1 − 1 =
1

V 3−
1

V 5−
1

V 7−
...; (Roots = a2n+1) (6.20)

V2 =
1

V 4−
1

V 6−
1

V 8−
...; (Roots = b2n+2) (6.21)

V1 + 1 =
1

V 3−
1

V 5−
1

V 7−
...; (Roots = b2n+1). (6.22)

Once the characteristic values are calculated by solving continued fractions, the recurrence

equations should be applied to obtain Fourier coefficients of Eq. 6.12.

For a given order n, there are four categories of periodic Mathieu functions that are

solutions of 6.10. The (angular) ordinary Mathieu functions can be expressed as follows:

ce2n(ϕ, q) =
∞∑
k=0

A
(2n)
2k cos(2kϕ)

ce2n+1(ϕ, q) =
∞∑
k=0

A
(2n+1)
2k+1 cos(2k + 1)ϕ

se2n+1(ϕ, q) =
∞∑
k=0

B
(2n+1)
2k+1 sin(2k + 1)ϕ

se2n+2(ϕ, q) =
∞∑
k=0

B
(2n+2)
2k+2 sin(2k + 2)ϕ

(6.23)

As a consequence of orthogonality property of the sine and cosine series, cer and ser+1

are orthogonal functions [68]:

∫ 2π

0
cem(q, z) cep(q, z) dz =

∫ 2π

0
sem(q, z) se(q, z) dz =

{
0 m 6= p

π m = p
(6.24)

By substituting 6.23 in Eq. 6.24, we obtain the following normalization condition for the

Fourier coefficients:

2A2
0 +

∞∑
k=0

(A2k)
2 =

∞∑
k=0

(A2k+1)2 =

∞∑
k=0

(B2k+2)2 =

∞∑
k=0

(B2k+1)2 = 1. (6.25)
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Solutions of Eq. 6.9 can be obtained from 6.10 by setting the change of variable ϕ = jµ,

and are called (radial) modified Mathieu functions, defined as

Ce2n(µ, q) =
∞∑
r=0

A
(2n)
2r cosh(2rµ)

Ce2n+1(µ, q) =
∞∑
r=0

A
(2n+1)
2r+1 cosh(2r + 1)µ

Se2n+1(µ, q) =
∞∑
r=0

B
(2n+1)
2r+1 sinh(2r + 1)µ

Se2n+2(µ, q) =
∞∑
r=0

B
(2n+2)
2r+2 sinh(2r + 2)µ,

(6.26)

where Cer and Ser+1 are known as the even modified Mathieu function of r-th order and

the odd modified Mathieu function of the (r + 1)-th order, respectively.

The spatial solution of of the wave equation 6.7 is given by a combination of even and

odd Mathieu functions:

W (µ, ϕ) =
∞∑
r=0

{
Cer(q, µ) cer(q, ϕ)

Ser+1(q, µ) ser+1(q, ϕ)

}
. (6.27)

The solution of the wave equation, to satisfy the boundary conditions, has to be null on

the contour of the ellipse {
Cer(q, µ0)

Ser+1(q, µ0)

}
= 0, (6.28)

where µ0 is the radial coordinate of the elliptical boundary, that can be calculated as

e =
1

coshµ0
, (6.29)

where e is the eccentricity of the elliptical waveguide. Finally, the field components of

the TM mode in an elliptical waveguide can be derived from the spacial TM solution,

corresponding to the longitudinal electric field [70] [71]:

Ez = α U(µ)V (ϕ) (6.30)

Eµ = − ikzα U
′(µ)V (ϕ)

k2
tF
√

cosh2 µ− cos2 ϕ
(6.31)

Eϕ = − ikzα U(µ)V ′(ϕ)

k2
tF
√

cosh2 µ− cos2 ϕ
(6.32)

Hµ = − Eϕ
ZTM

=
iωεα U(µ)V ′(ϕ)

k2
tF
√

cosh2 µ− cos2 ϕ
(6.33)
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Hϕ =
Eµ
ZTM

= − iωεα U ′(µ)V (ϕ)

k2
tF
√

cosh2 µ− cos2 ϕ
(6.34)

Hz = 0, (6.35)

where ZTM is the characteristic impedance of the TM mode and α is the field amplitude.

Plots of the Mathieu angular and radial functions and their derivative are shown in Fig-

ures 6.2 and 6.3. The functions were derived with the Matlab toolbox described in [65]

and normalized as in Eq. 6.25. In these examples, the geometry of the PS elliptical beam

chamber has been considered. It can be easily seen that, in the limit F → 0, the angular

and radial Mathieu equations becomes harmonic and Bessel equation, respectively. As a

consequence, the angular Mathieu function is transformed into the trigonometric function

cosϕ and sinϕ, while the radial Mathieu function become the Bessel function.

Several categories of physical problems can be described by Mathieu equations, like vibra-

tional modes in an elliptical membrane, the propagating modes in elliptical waveguides

and water oscillations in lakes of elliptical shapes. Moreover, Mathieu functions are so-

lutions of problems involving periodic motions, like the trajectory of an electron in a

periodic array of atoms, quantum pendolum mechanics and floating vessel oscillations. In

the following sections we are going to use the Mathieu equations to derive in elliptical

coordinates a novel expression of the primary field, produced of the interaction between

a circular beam and an elliptical chamber.

6.1.3 Calculation of eigenfrequencies

Calculation of cut-off frequencies in an elliptical waveguide requires the determination of

the zeros of the modified Mathieu functions of the first kind Ce(µ, q) and Se(µ, q) and

their derivatives [66] [67]. The most direct method of calculating these frequencies is by

numerical integration of Equations 6.9 and 6.10. Because the two separation constants q

and a appear in both equations, the problem has to be solved for both sets of eigenvalues

simultaneously, by looking for combinations of q and a which satisfy the angular and

radial boundary conditions at the same time. The mode frequencies is then obtained by

fnm =
c

2π

√
qnm
F 2

+ k2
z , (6.36)

where n is the index of the angular Mathieu function, indicating the number of oscillations

between 0 and 2π, and m is the index of the radial solution corresponding to the m-th

root of Un(q, µ0) = 0 (for TM modes) or U ′n(q, µ0) = 0 (for TE modes).
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Figure 6.2: Angular and radial even Mathieu functions and their derivative calculated
for the mode TM c

01 for the main beam chamber of the PS.

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

φ[rad]

s
e

n
(φ

,q
)

n=25; a= 0.073 m; b= 0.035 m; q=2.6012; freq=2.40 GHz

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

0.2

0.4

0.6

µ[rad]

S
e

n
(µ

,q
)

n=25; a= 0.073 m; b= 0.035 m; q=2.6012; freq=2.40 GHz

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

φ[rad]

d
s
e

n
(φ

,q
)

n=25; a= 0.073 m; b= 0.035 m; q=2.6012; freq=2.40 GHz

0 0.5 1 1.5 2 2.5
−4

−2

0

2

4

µ[rad]

 d
S

e
n
(µ

,q
)

n=25; a= 0.073 m; b= 0.035 m; q=2.6012; freq=2.40 GHz

Figure 6.3: Angular and radial odd Mathieu functions and their derivative calculated
for the odd mode TEs

11 for the main beam chamber of the PS.
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The analysis leads to an eigenvalue problem involving an infinite set of eigenvalues qnm.

Some common applications for this boundary value problem is the propagation of elec-

tromagnetic or acoustic waves in cylindrical pipes of elliptic cross-section. The Dirichlet

boundary condition on W (µ, ϕ) applies to the axial component of the electric field in-

tensity for TM modes in waveguides, as well as to the velocity potential of an acoustic

mode propagating down a waveguide with acoustically soft walls. If W (µ, ϕ) represents

the axial component of the magnetic field intensity for TE modes, or the acoustic velocity

potential for sound waves propagating down an acoustically hard wall, then the Neumann

boundary condition holds. It has been shown in [72] the existence of special eigenmodes of

the elliptical waveguide, called the whispering gallery and bouncing ball modes. The whis-

pering gallery mode in acoustics was observed by Lord Rayleigh in 1910, showing that, at

certain high frequencies, sound waves exhibit a particle behavior like a ball sliding along

the boundary. Consequently, a person who speaks near the wall of a convex room can

be heard across the room near the wall, but not in the interior of the room. Moreover,

Figure 6.4: Perspective view (right) and contour plot (left) of a bouncing ball mode
TMe

0,4.

Figure 6.5: Perspective view (right) and contour plot (left) of a whispering gallery
mode TMe

12,1.

in quantum mechanics, it is well known that at high energy levels, the distribution of

electrons (or “electron clouds”) will be uneven in a bounded open domain, where one can

capture an electron with the largest probability only on a proper subdomain. In this type

of subdomain, where the eigenfunctions are asymptotically zero except in a thin layer n-

ear the boundary, a whispering gallery mode can propagate. Another type of subdomain,

formed by a thin strip around the line segment which is the shortest diameter of the

domain, supports a bouncing ball mode, displaying the behavior of a particle bouncing
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back and forth on the wall of a waveguide. The eigenfunction decays exponentially fast

across the bounding curves of these strips, becoming negligible on the non shaded regions,

that corresponds to classically forbidden regions. Both types of modes reflect a strong

matter-wave dualism of electrons or other subatomic particles in quantum mechanics.

6.2 Primary fields in elliptical coordinates

In this section we want to develop a novel expression, in elliptical coordinates and separate

functions of the elliptical variables ϕ and µ, of the electric field E0
z , generated by a δ beam

distribution traveling in an elliptical waveguide. To do that we need to find an expression

for the Green function which matches the elliptical system of coordinates. Let us consider

the following wave equation for the TM mode:

∇2
tE

0
z −

k2
0

β2γ2
E0
z = Gδ(P − P0), (6.37)

where E0
z is the longitudinal component of the electric field, jk0/βγ is the transverse

wave number, δ is the bi-dimensional Dirac function, P0 is the position of the particle in

the chamber and where G is a constant depending by the beam parameters and can be

calculated as [73]

G = −jZ0
Qk0

β2γ2
, (6.38)

where Q is particle beam charge, and Z0 is the characteristic impedance in free space. E0
z

is given by the superposition of a field produced by the particle beam traveling in the free

space, and a term scattered by the elliptical boundary, that acts back on the beam itself.

We can then divide the solution of the wave equation in two scalar solutions:

E0
z = Esz + Eiz. (6.39)

The first scalar solution Esz represent the direct (or primary) component of the field, and

has to satisfy the inhomogeneous wave equation in free space and verify the conditions of

radiation in the free space:

∇2
tE

s
z −

k2
0

β2γ2
Esz = Gδ(P0), (6.40)

The direct field is represented by a δ function in the origin.

The second scalar solution Eiz is the indirect component of the source field, that is the

field scattered from the elliptic contour. The indirect field has to satisfy the homogeneous

wave equation in free space

∇2
tE

i
z −

k2
0

β2γ2
Eiz = 0, (6.41)
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and verify the conditions of radiation in the free space, showing a finite value in the origin.

We are going to calculate separately the two contributions of E0
z field, considering that the

sum of the direct and indirect field must satisfy the boundary condition on the contour

of the elliptical waveguide.

6.2.1 Direct field (primary field)

An expression of the direct field generated by a δ distribution in a circular waveguide,

that is a solution of Eq. 6.40, is given by [73]

Esz = GK0

(
k0r

βγ

)
, (6.42)

where r is the radius of the circular geometry and K0 is the zero order modified Bessel

function. This expression allows to calculate the Green function in free space in circular

coordinates. We want to develop an analogous expression in elliptical coordinates. To do

that we can substitute the variable r with the elliptical variables ϕ and µ:

Esz = GK0

(
k0F

βγ

√
sinh2µ+ cos2ϕ

)
. (6.43)

We have to develop the modified Bessel function K0 in separate functions of the elliptic

variables µ and ϕ, using the half angle formula

K0

(
k0F

βγ

√
sinh2µ+ cos2ϕ

)
= K0

(
k0F

2βγ

√
e−2µ + e2µ − 2 cos(2ϕ+ π)

)
, (6.44)

and considering Gegenbauer’s addition theorem [74] for modified Bessel functions (z1 <

z2):

K0

(
k0F

2βγ

√
z2

1 + z2
2 − 2z1z2 cosϕ

)
=

∞∑
n=0

εnIn(z1)Kn(z2) cosnϕ (6.45)

where

εn =
2

1 + δn,0
, (6.46)

being δn,0 the Kronecker delta (equal to 1 for n = 0 and equal to 0 elsewhere). In and

Kn are the Modified Bessel function of first and second kind and n-th order, respectively.

Using Gegenbauer’s theorem, we have obtained an expression of Esz given by two separate

functions of µ and ϕ:

Esz =

∞∑
n=0

(−1)nεnIn

(
k0F

2βγ
e−µ
)
Kn

(
k0F

2βγ
eµ
)

cos 2nϕ. (6.47)
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We want now to express Eq. 6.47 in term of Mathieu’s functions, expanding cos 2nϕ in

terms of angular Mathieu functions for negative values of the eigenvalue q:

εn cos 2nϕ =
∞∑
l=0

S
(2n)
2l ce2l(ϕ,−q). (6.48)

We can multiply both sides of Eq. 6.48 for the Mathieu function ce2p (ϕ, −q) and integrate

between 0 and 2π:

εn

∫ 2π

0
cos 2nϕ ce2p(ϕ,−q) dϕ =

∞∑
l=0

S
(2n)
2l

∫ 2π

0
ce2l(ϕ,−q) ce2p(ϕ,−q) dϕ. (6.49)

Let us now consider the orthogonality properties of Mathieu’s functions [68]. Being∫ 2π

0
ce2l(ϕ,−q) ce2p(ϕ,−q) dϕ = π, (6.50)

Equation 6.49 becomes

εn

∫ 2π

0
cos 2nϕ ce2p(ϕ,−q) dϕ = πS

(2n)
2p . (6.51)

If we consider the following expansion for the angular Mathieu functions for a negative

value of the eigenvalue q [68]

ce2p(ϕ,−q) = (−1)p
∞∑
m=0

(−1)mA
(2p)
2m cos 2mϕ (6.52)

we obtain the following identity:

εn

∫ 2π

0
cos 2nϕ (−1)p

∞∑
m=0

(−1)mA
(2p)
2m cos 2mϕ dϕ = πS

(2n)
2p . (6.53)

The integral is always zero for n 6= m. The sign of summation disappears and all the

terms are calculated in n = m:

εn

∫ 2π

0
cos 2nϕ cos 2nϕ dϕ = εn

{
π n > 0

2π n = 0
(6.54)

Finally Eq. 6.48 becomes

2π(−1)n+pA
(2p)
2n = πSnp , (6.55)

where the harmonic function has been developed in Mathieu functions as follows

εn cos 2nϕ = 2 (−1)n
∞∑
l=0

(−1)lA
(2l)

2n ce2l (ϕ,−q) . (6.56)
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Equation 6.43 can be rewritten as

Esz = 2G
∞∑
l=0

(−1)l ce2l (ϕ,−q)
∞∑
n=0

A
(2l)
2n In

(
k0F

2βγ
e−µ
)
Kn

(
k0F

2βγ
eµ
)
, (6.57)

and if we consider Eq. 2.18.(2) in [68], we obtain the following novel expression for the

Green function in free space in elliptical coordinates and separate functions of ϕ and mu

Esz = 2G
∞∑
l=0

ce2l

(π
2
− ϕ, q

) ∞∑
n=0

A
(2l)
2n In

(
k0F

2βγ
e−µ
)
Kn

(
k0F

2βγ
eµ
)
, (6.58)

where A
(2l)
2n are the Fourier expansion coefficients of the even Mathieu function of order

(2n)-th. We verified that the Green function in free space, expanded in elliptical coordi-

nates and represented by Eq. 6.58, is rapidly convergent thanks to the expansion in terms

of Mathieu and Bessel functions.

Let us consider now the following expansion of the radial Mathieu function Fek2l(µ,−q) [68]

for negative values of the eigenvalue q:

Fek2l (µ,−q) =
p′2l

πA
(2l)
0

∞∑
n=0

A
(2l)
2n In

(
k0F

2βγ
e−µ
)
Kn

(
k0F

2βγ
eµ
)
, (6.59)

where

p′2l = (−1)lp2l = (−1)l
ce2l(0, q) ce2l(

π
2 , q)

A
(2l)
0

, (6.60)

and A
(2l)
0 are the expansion Fourier coefficients of the even Mathieu function of zero order.

If we substitute the expansion of function Fek2l(µ,−q) in Eq. 6.64, the Green function

can be written in a more compact form

Esz = 2πG
∞∑
l=0

(−1)lA
(2l)

0

p2l
ce2l

(π
2
− ϕ, q

)
Fek2l (µ,−q). (6.61)

For the Green function calculation, several expansions of the function Fek2l(µ,−q) have

been considered [68]. Nevertheless, has been observed that the expansion 6.59, because of

the product between the modified Bessel functions In andKn, provides the best convergent

behavior. Since the Green function in free space must exhibit the same configuration

independently from the coordinate system that has been adopted, we can compare the

new expansion 6.64 in elliptical coordinates with the existing expansion 6.43 in circular

coordinates. To compare the two expansions we need to transform Eq. 6.58 in function of

the circular radial coordinate r and not on the elliptical radial coordinate µ. Calculating

the direct field in the angular coordinates ϕ0 = π/2 and substituting in Eq. 6.4, we obtain
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that

r = F sinhµ =
F

2

(
eµ − e−µ

)
. (6.62)

After some manipulations, we can apply the following variables substitution

Feµ =
√
r2 + F 2 + r

Fe−µ =
√
r2 + F 2 − r

(6.63)

in Eq. 6.58, obtaining

Esz = 2G

∞∑
l=0

ce2l

(π
2
− ϕ, q

) ∞∑
n=0

A
(2l)
2n In

(
k0(
√
r2 + F 2 + r)

2βγ

)
Kn

(
k0(
√
r2 + F 2 − r)

2βγ

)
.

(6.64)

that can be directly compared with the expansion in 6.43.

In Fig. 6.6 are shown some examples of the Green function in free space calculated with

Eq. 6.43 (black line) and 6.64 (red line). The two curves converge in most of the situations

for small values of the summation index n. A better convergence is obtained for small

dimension of the radius and low frequencies.

6.2.2 Indirect field (Scattered field)

The indirect component of E0
z can be represented as an expansion of Mathieu radial and

angular functions

Eiz = 2πG
∞∑
l=0

M2l ce2l

(π
2
− ϕ, q

)
Ce2l (µ,−q), (6.65)

where M2l is an unknown amplitude. The total field produced by the beam in the ellip-

tical vacuum chamber is, therefore, given by the sum of the direct and indirect field, as

following:

Esz + Eiz = 2πG

∞∑
l=0

(−1)lA
(2l)

0

p2l
ce2l

(π
2
− ϕ, q

)
Fek2l (µ,−q)

+2πG

∞∑
l=0

M2l ce2l

(π
2
− ϕ, q

)
Ce2l (µ,−q).

(6.66)
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Figure 6.6: Green functions (direct component of the source field) in free space calcu-
lated with Eq. 6.43 (black line) Eq. 6.64 (red line).
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In a generic elliptic waveguide, the previous equation has to satisfy the boundary condi-

tions on the elliptic surface µ = µ1 for every value of ϕ:

2πG
∞∑
l=0

(−1)lA
(2l)

0

p2l
ce2l

(π
2
− ϕ, q

)
Fek2l (µ1,−q)

+2πG

∞∑
l=0

M2l ce2l

(π
2
− ϕ, q

)
Ce2l (µ1,−q) = 0.

(6.67)

Being Mathieu’s function a complete set of orthogonal functions, Eq. 6.67 must verify

(−1)lA
(2l)

0

p2l
Fek2l (µ1,−q) = −M2l Ce2l (µ1,−q) , (6.68)

or rather

M2l = −
(−1)lA

(2l)

0

p2l

Fek2l (µ1,−q)
Ce2l (µ1,−q)

. (6.69)

Knowing the amplitude M2l allows to calculate the expression of the indirect (scattered)

field:

Eiz = −2πG
∞∑
l=0

(−1)lA
(2l)

0

p2l

Fek2l (µ1,−q)Ce2l (µ,−q)
Ce2l (µ1,−q)

ce2l

(π
2
− ϕ, q

)
. (6.70)

Using the definition of the function Fek2l(µ,−q) in Eq. 6.59 we obtain

Eiz = −2G
∞∑
l=0

Ce2l (µ,−q)
Ce2l (µ1,−q)

ce2l

(π
2
− ϕ, q

) ∞∑
n=0

A
(2l)
2n In

(
k0F

2βγ
e−µ1

)
Kn

(
k0F

2βγ
eµ1
)
,

(6.71)

that represents the Green function response to the elliptical boundary in elliptical coor-

dinates and separate functions of ϕ and µ.

6.2.3 Total field in elliptic coordinates

The total field E0
z scattered by a δ beam distribution in a vacuum chamber of elliptic cross

section is expressed in term of expansion of Mathieu functions ce2l (ϕ, −q), Fek2l(µ,−q)
and Ce2l(µ,−q) for negative values of the eigenvalue q. The final expansion of the total

field is given by

E0
z = 2πG

∞∑
l=0

(
A

(2l)
0

p2l

)2

ce2l (ϕ, −q)
(
Fek2l (µ,−q)−

Fek2l (µ1,−q)Ce2l (µ,−q)
Ce2l (µ1,−q)

)
,

(6.72)

that satisfies the boundary conditions on the contour of the ellipse. In Fig. 6.7 some

examples of the total field, calculated as a function of the coordinate ϕ for a given value of
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µ, are shown. PS machine parameters have been chosen for the calculation of the constant

parameter G: in particular, the parameter γ = 2.4 corresponds to the PS injection energy,

while γ = 27.7 corresponds to top energy. The dimensions of the elliptical waveguide has

been chosen to be a = 7.3 cm and b = 3.5 cm, that is the dimension of a standard beam

tube of the PS machine. Thanks to the expansion of the function Fek2l(µ,−q) in term

of modified Bessel function of the first and second kind, Eq. 6.72 converges in all the

cases considered for values of the summation index n smaller that 100. Moreover, a faster

convergence is assured for small values of the eigenvalue q.

Conclusions

In this chapter, a novel formulation for the field produced by a δ beam distribution trav-

eling inside a tube of elliptical cross section, has been determined. The solution, in terms

of Mathieu and modified Bessel functions, is rapidly convergent and has been obtained

separating the contribution of the Green function, that is the field of the charge generated

in free space (direct field) from the contribution of the field scattered by the charge on

the elliptical boundary (indirect field). The novel expansion of the direct field, expressed

in elliptical coordinates, has been compared with the expansion in circular coordinates,

showing very good agreement for different combinations of parameters and summation

order. This new result allows a better understanding of the electromagnetic propagation

and scattering phenomena that occur in elliptical beam chambers while crossed by a par-

ticle beam. Moreover, the total field represents the known term of a system of equations

for the calculation of the longitudinal impedance of a step transition between two elliptical

beam chambers. The calculation of the primary field in elliptical coordinates an separate

function of the elliptical variables, is then a necessary requirement for the step transition

impedance calculation, that is shown in the next chapter.
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Figure 6.7: PS parameters dependency of the primary field calculated in function of
the elliptical coordinate ϕ for a given value of µ0.





Chapter 7

Beam coupling impedance of

elliptical-elliptical step transitions

7.1 Fields and impedance of a circular step transition

Let us consider a particle beam traveling in a tube with circular cross section, encountering

an obstacle represented by a step transition to another beam pipe with smaller or larger

circular cross section, as shown in Fig. 7.1. When the beam crosses the discontinuity in

the vacuum chamber, scattered fields are generated by the sharp edges. This diffracted

field is such to restore the boundary condition at the pipe walls, generating an energy

loss. Two different effects contribute to the energy loss in the vacuum chamber with step

transitions. In the so called step-out case, when the charge crosses the discontinuity from

a smaller to a larger tube, the primary field has to restore the boundary conditions filling

the extra space a ≤ r ≤ b between the two pipes, where a is the radius of the smaller tube

and b the radius of the larger tube. At the same time, the scattered field, generated by

Figure 7.1: Step-out discontinuity in a beam pipe.

110
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the radiation phenomena at the sharp edge, propagates into the pipes. Both these effects

lead to an energy loss that can be put as [? ]:

q2kout = U(a < r < b) + Erad, (7.1)

where q is the beam charge, kout is the loss factor, U(a < r < b) is the energy necessary

to fill the extra region after the discontinuity and Erad is the energy radiated at the edges

that has to restore the boundary conditions. In the step-in case, when the charge crosses

the discontinuity from a bigger to a smaller tube, the effects that lead to an energy loss

can be put as

q2kin = −U(a < r < b) + Erad, (7.2)

where the negative sign is due to a gain of energy with respect to the step-out case. The

radiated energy is reflected back with respect to the particle motion without changing its

kinetic energy, so it is verified that

q2kin ≈ 0 (7.3)

and

U(a < r < b) ≈ Erad, (7.4)

meaning that the energy lost for the radiation process is compensated by the energy gained

from the fact that the field has to fill a smaller region. In general, the radiated field Erad

depends by the bunch length of the particle beam. The effects are usually significant only

in high frequency ranges, excited by short bunches. Table 7.1 shows that the loss factor

in the vacuum chamber is higher in the case of the step out discontinuity, but decreases

increasing the length of the bunch. We considered two different case: a step-in transition

from a circular cross section of radius a = 4 cm and length 20 cm to a cross section of

radius b = 2 cm and length of 50 and the opposite case of a step-out transition. The

σb [cm] k [V/pC] Step-in k [V/pC] Step-out

1 1.546547 · 10−1 −5.203049 · 10−1

2 1.471847 · 10−1 −1.992717 · 10−1

3 1.128623 · 10−1 −1.170020 · 10−1

Table 7.1: Comparison between loss factors k in the step-in and step-out case for
different bunch lengths σb (values calculated with CST Particle Studio).

sign of the loss factor is here considered positive when the wake potential curve shows a

gain of energy and negative in case it shows a loss of energy. In the step-in case the real

part of the impedance has an initial negative value (gain of energy), and vanishes at high

frequencies above cut-off that, as shown in Fig. 7.2. Just after the beam pipe cut-off, the

impedance shows a resonant peak, corresponding to the fundamental mode TM10, and

then reaches a constant asymptotic value for high frequencies. In the step-out case, the
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Figure 7.2: Longitudinal coupling impedance for a 1 cm length Gaussian bunch passing
into a step-in transition calculated with CST Particle Studio.
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Figure 7.3: Longitudinal coupling impedance for a 1 cm length Gaussian bunch passing
into a step-out transition calculated with CST Particle Studio.

real part of the impedance has a positive value (loss of energy), as shown in Fig. 7.3.

The asymptotic behavior of the real part of the impedance is:

ZinL ' 0 (7.5)

for the step-in case, and

ZoutL ' Z0

π
ln

(
b

a

)
(7.6)

for the step-out case.

Let us consider now a structure with two symmetric step transitions, as shown in Fig. 7.4.

A bunch that looses energy in a step-out transition can regain the same amount of energy

passing through a following step-in. Therefore, if a long bunch crosses a pipe enlargement

formed by a step-out and step-in sequence with same radii, the total energy loss will be

almost zero (see Table 7.2). In Fig. 7.5 the coupling impedance of a step-out and step-in

sequence with same radii (a=2 cm, b=4 cm), is shown.
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Figure 7.4: Symmetric step discontinuity in a beam pipe.
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Figure 7.5: Longitudinal beam coupling impedance of a symmetric step discontinuity.

Table 7.2: Loss factors k of a structure with two symmetric step transitions calculated
with different bunch lengths σb with CST Particle Studio.

σb [cm] k [V/pC] Step-out-in

1 3.909115 · 10−1

2 4.993004 · 10−2

3 3.832365 · 10−3

7.2 Tapers

Using gradual tapers as the one shown in Fig. 7.6, instead of the abrupt step transitions

in particle accelerators tube, the total energy loss may be reduced: long tapers allow to

eliminate the sharp edges reducing the radiated energy Erad to zero. For a point charge

we have [75]:

kouttaper ∼
U(a < r < b)

q2
=

1

2
koutstep (7.7)

and

kintaper ∼ −
U(a < r < b)

q2
= −1

2
kinstep. (7.8)
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Figure 7.6: Step in discontinuity with a gradual smooth taper.

It means that, in the limit of long tapers, the loss factor of a taper-out reaches half the

value of the loss factor for a step-out. This is true only for short bunches: for long bunches,

when the diffraction effects become negligible, the loss factor tends to be almost the same

of the case of the abrupt discontinuity, approaching an asymptotic value corresponding

to the case of no radiation. For example, in the 3 cm bunch length case, the whole bunch

spectrum lies below the beam pipe cut-off and no radiation occurs. It can be shown that,

Table 7.3: Comparison between loss factors k expressed in V/pC for a bunch with
different lengths σb passing by an abrupt discontinuity or a smooth one (values calculated

with CST Particle Studio).

σb [cm] Step-in Step-out Taper-in Taper-out

1 1.546547 · 10−1 −5.203049 · 10−1 3.237683 · 10−1 −3.684204 · 10−1

2 1.471847 · 10−1 −1.992717 · 10−1 1.751072 · 10−1 −1.753412 · 10−1

3 1.128623 · 10−1 −1.170020 · 10−1 1.178151 · 10−1 −1.170970 · 10−1

for a short bunch length, the dependence of the longitudinal loss factor of a one-sided

taper on its angle can be approximated by the formula [75]:

k =
Z0c

2σπ3/2

[
1− η̃1

2

]
ln
b

a
, (7.9)

where

η̃1 = min

{
1,

gσ

(b− a)2

}
. (7.10)

The longitudinal beam coupling impedance of a smooth transition with a 10 cm length

taper between two circular tubes of radius a=2 cm and b=4 cm, is shown in Fig.7.7. It

must be considered, however, that in circular accelerator, a taper-out transition is usually

followed by a taper-in. As it can be easily seen, in a structure with long symmetric tapers,

total losses are reduced practically to zero:

kouttaper + kintaper ' 0. (7.11)
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Figure 7.7: Longitudinal beam coupling impedance of 10 cm length tapered transition
between two circular tubes of radius a=2 cm and b=4 cm, excited by a bunch of σ=1 cm.

7.3 Simulations with realistic dimensions of the PS pipe

In this section, realistic dimensions of the PS beam pipe and bunch length are taken into

account to calculate the impedance of a typical step transition that can be found in the

machine. A bunch of 1 cm length travels in a transition between an elliptic beam pipe

(major semi-axis 7.3 cm, minor semi-axis 3.5 cm, eccentricity=0.87) of 5 m length and a

circular pipe (radius=10 cm) of 1.2 m length. The cut-off frequency of the TM01 mode of

the cylindrical pipe is about 1.148 GHz, while the fundamental mode of the elliptical pipe

is the even mode TEc11, corresponding to a cut-off frequency of 1.22 GHz. In Fig. 7.8 the

longitudinal impedance is shown, where one can easily distinguish the cut-off frequency

of the circular pipe. If the tube radius were smaller than the major ellipse semi-axis, the

cut-off frequency of the step transition would be represented by the even mode TM c
01, at

the frequency of 2.53 GHz. Longitudinal impedance can be determined placing perfect

magnetic walls on the XZ and YZ planes of the structure: in this way the force lines of the

magnetic field are always perpendicular to the magnetic walls, and the symmetry of the

structure allows to reduce by a factor 4 the computation time. This configuration with the

beam in the center of symmetry does not allow to excite TE modes, even if, for elliptical

waveguide, the even mode TEc11 is always the fundamental one. The dimensions of the PS

circular chamber, that rarely presents a vertical semi-aperture smaller that 10 cm, avoids

any high order modes excitation in the range 0-1.14 GHz generated by the transitions.
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Figure 7.8: Longitudinal beam coupling impedance of a step transition between an
elliptic beam pipe (major semi-axis 7.3 cm, minor semi-axis 3.5 cm) of and a circular

beam pipe (radius=10 cm).

7.4 Analytical determination of the impedance of a step

transitions between two elliptical beam tubes

In this section we show an analytical method for the evaluation of the longitudinal beam

coupling impedance of a step transition between two semi-infinite elliptical waveguides,

by means of the mode matching theory [76] [77].

Let us consider a charged particle traveling in the positive direction of the z-axis of a

perfectly conducting vacuum chamber with elliptical cross section. A radiation process

will occur because of the discontinuities present near the trajectory of the particle beam.

The total diffracted field in the step transition can be described by the superimposition

of two terms:

Etot = Erad + E0, (7.12)

where E0 is the field that produced by the charge itself (see Chapter 6) and Erad is the

radiated field from the junction, that is a traveling wave. The sum of this two terms has

to satisfy the boundary conditions on the contour and the continuity condition at the

interface between the two waveguides.

The field generated by the particle beam, scattered by the discontinuity, will act back

on the beam itself, provoking a perturbation on the beam dynamics. This effect can be

described by the longitudinal beam coupling impedance, that is defined as [76]

ZL(k) = −1

q

 0∫
−∞

Erad1z (r = 0, z)e
j kz
β dz +

+∞∫
0

Erad2z (r = 0, z)e
j kz
β dz

 , (7.13)

where q is the particle charge, k = ω/c is the wave number, Erad1z and Erad2z are the longitu-

dinal components of the electric field in frequency domain radiated by the step transition
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Figure 7.9: Step-out transition system between two elliptical waveguides.

in the first and second waveguide. The inverse Fourier transform of the longitudinal

impedance describes the longitudinal wake potential

WL(τ) =
1

2πε0Z0

+∞∫
−∞

ZL(k) ejckτdk, (7.14)

where Z0 is the characteristic impedance in free space and ε0 is the permittivity in free

space.

The mode matching theory has been chosen to solve the problem. Representing the fields

as functional modes allowed to reduce the problem to determine a set of modal amplitudes

associated to the modes in the different regions. Using the condition of continuity of the

tangential field at the interface, and the orthogonality properties of the modes, we obtain

an infinite set of linear equations for the unknown modal amplitudes. Once calculated

the modal amplitude of the radiated fields Erad1z and Erad2z , we can calculated the coupling

impedance of the step transition with Eq. 7.13.

7.4.1 Representation of the fields

Let us consider the geometry shown in Fig. 7.9. In order to calculated the longitudinal

impedance for the step transition between two elliptical waveguides, we need to compute

the radiated electric field Erad1z and Erad2z in the two regions using the mode matching tech-

nique. The first step is to expand the unknown fields in the two regions in their respective

normal modes. Since the functional form of the normal modes in elliptical waveguide

is known, the problem reduces to determine a set of modal amplitudes associated with

the fields in the two regions. A particle traveling along the z-axis of an infinite elliptical

waveguide may sustain both TE and TM modes. In the elliptical geometry, the source
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satisfies both x and y specular symmetry; the symmetry with respect to the plane y = 0

is satisfied using the Mathieu functions ce(ϕ, q) and Ce(µ, q), while the symmetry with

respect to the plane x = 0 is satisfied using only even index of the Mathieu functions.

The vector modal functions of an elliptical waveguide supporting a TM mode are given

by

e
(z)
2n (qTM1,22n,m) = ce2n(ϕ, qTM1,22n,m) Ce2n(µ, qTM1,22n,m) (7.15)

h
(z)
2n (qTM1,22n,m) = 0, (7.16)

where ce2n(ϕ, q) and Ce2n(µ, q) are the even angular and radial Mathieu functions and

qTM1,22n,m
are the TM eigenvalues in the first and second waveguide, respectively. The vector

modal functions of an elliptical waveguide supporting a TE mode are given by

e
(z)
2n+2(qTE1,22n+2,m

) = 0 (7.17)

h
(z)
2n+2(qTE1,22n+2,m

) = se2n+2(ϕ, qTE1,22n+2,m
) Se2n+2(µ, qTE1,22n+2,m

), (7.18)

where se2n(ϕ, q) and Se2n(µ, q) are the even radial Mathieu functions and qTE1,22n+2,m
are

the TE eigenvalues in the first and second waveguide, respectively. The electric and

magnetic fields in the two waveguides can be represented by means of the following modal

expansions calculated in z=0:

Etot
t =


E0

1,t +
∞∑
m=1

∞∑
n=0

α12n,me
(t)
2n

(
qTM12n,m

)
+
∞∑
m=1

∞∑
n=0

β12n+2,me
(t)
2n

(
qTE12n+2,m

)
E0

2,t +
∞∑
m=1

∞∑
n=0

α22n,me
(t)
2n

(
qTM22n,m

)
+
∞∑
m=1

∞∑
n=0

β22n+2,me
(t)
2n

(
qTE22n+2,m

) (7.19)

Htot
t =


H0

1,t +
∞∑
m=1

∞∑
n=0

α12n,mh
(t)
2n

(
qTM12n,m

)
+
∞∑
m=1

∞∑
n=0

β12n+2,mh
(t)
2n

(
qTE12n+2,m

)
H0

2,t +
∞∑
m=1

∞∑
n=0

α22n,mh
(t)
2n

(
qTM22n,m

)
+
∞∑
m=1

∞∑
n=0

β22n+2,mh
(t)
2n

(
qTE22n+2,m

) (7.20)

where e
(t)
2n

(
qTM12n,m

)
, e

(t)
2n

(
qTM22n,m

)
, h

(t)
2n

(
qTE12n+2,m

)
, h

(t)
2n

(
qTE22n+2,m

)
are the modal functions

and α12n,m , α22n,m , β12n+2,m , β22n+2,m are the modal expansion coefficients. The component

of the field produced by the charge in the infinite waveguide are given by:

E0
t =


2πG

∞∑
n=0

A
(2n)
0
p2n
{e(t)

2n + e
(t)
1,2n}

2πG
∞∑
n=0

A
(2n)
0
p2n
{e(t)

2n + e
(t)
2,2n}

(7.21)

H0
t =


2πG

∞∑
n=0

A
(2n)
0
p2n
{h(t)

2n + h
(t)
1,2n}

2πG
∞∑
n=0

A
(2n)
0
p2n
{h(t)

2n + h
(t)
2,2n}

(7.22)
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where e
(t)
2n and h

(t)
2n are the modal function associated to the direct field in free space

and e
(t)
1,2 2n and h

(t)
1,2 2n are the modal function associated to the indirect field in the two

waveguides. To apply the mode matching technique, we have to impose the conditions of

continuity of the tangential component of the electric and magnetic fields at the interface

z=0:

Et(ϕ, µ; z = 0+) =

Et(ϕ, µ; z = 0−) in D1

0 in D2 −D1

(7.23)

Ht(ϕ, µ; z = 0+) = Ht(ϕ, µ; z = 0−) in D1, (7.24)

where D1 and D2 are the transverse sections of the two waveguides.

7.4.2 Equation 1 (electric field): projection with TM modes

In this section we determine the first equation of the matching system. Let us apply the

condition of continuity of the tangential electric field 7.23 at the interface between the

two elliptical beam pipe of different cross section:

E0
1,t +

∞∑
m=1

∞∑
n=0

α12n,me
(t)
2n

(
qTM12n,m

)
+

∞∑
m=1

∞∑
n=0

β12n+2,me
(t)
2n

(
qTE12n+2,m

)
=

E0
2,t +

∞∑
m=1

∞∑
n=0

α22n,me
(t)
2n

(
qTM22n,m

)
+

∞∑
m=1

∞∑
n=0

β22n+2,me
(t)
2n

(
qTE22n+2,m

)
.

(7.25)

We apply the Ritz-Galerking method to both sides of the previous equation, that consists

in scalar multiply for the modal function of second waveguide e
(t)
2r

(
qTM22r,s

)
and integrate

the two members of the equation in D1 end D2, respectively, obtaining

∫
D1

E0
1,t · e

(t)
2r (qTM22r,s) dS +

∫
D1

∞∑
m=1

∞∑
n=0

α12n,me
(t)
2n(qTM12n,m) · e(t)

2r (qTM22r,s) dS+ (7.26)

∫
D1

∞∑
m=1

∞∑
n=0

β12n+2,me
(t)
2n+2(qTE12n+2,m

) · e(t)
2r (qTM22r,s) dS =

∫
D2

E0
2,t · e

(t)
2r (qTM22r,s) dS +

∫
D2

∞∑
m=1

∞∑
n=0

α22n,me
(t)
2n(qTM22n,m) · e(t)

2r (qTM22r,s) dS+

∫
D2

∞∑
m=1

∞∑
n=0

β22n+2,me
(t)
2n+2(qTE22n+2,m

) · e(t)
2r (qTM22r,s) dS.

We now show how to manipulate the six terms of the first matching equation in order to

have a simple form to implement with numerical tools. Let us analyze the second term of

the first member of Eq. 7.26. If we consider the following identity (see Appendix A)

1

(qr − qs)

∮
L

(
qrVr

∂Vs
∂n
−qsV s

∂Vr
∂n

)
dl =

∫
D
∇tV r · ∇tVs dϕ dµ, (7.27)
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it is verified that ∫
D1

e
(t)
2n

(
qTM12n,m

)
· e(t)

2r

(
qTM22r,s

)
dS = (7.28)

−
(
F

2

)4 kTMz2,2r,sk
TM
z1,2n,m(

qTM12n,m
− qTM22r,s

)
qTM12n,m

∮ 2π

0

e(z)
2r

(
qTM22r,s

) ∂e(z)
2n

(
qTM12n,m

)
∂µ


µ=µ1

dϕ.

Let us consider now the following identity∫
D

ẑ · (∇tU r×∇tVs) dS = −
∮
L
Ur∇tVs·d̂l=−

∮
L
Ur
∂Vs
∂l

dl. (7.29)

The third term of the first member of Eq. 7.26 becomes∫
D1

e
(t)
2n+2

(
qTE12n+2,m

)
· e(t)

2r

(
qTM22r,s

)
dS = (7.30)

−
(
F

2

)4 Z0 k0 k
TM
z2,2r,s

qTE12n+2,m
qTM22r,s

∮ 2π

0

h(z)
2n+2

(
qTE12n+2,m

)∂e(z)
2r

(
qTM22r,s

)
∂ϕ


µ=µ1

dϕ.

We analyze now the second term of the second member of Eq. 7.26, that using the iden-

tity 7.27 can be written as: ∫
D2

e
(t)
2r (qTM22r,s) · e

(t)

2n
(qTM22n,m) dS (7.31)

= −
(
F

2

)4
(
kTMz2,2r,s
qTM22r,s

)2 ∫
D2

∇te(z)
2r (qTM22r,s) · ∇te

(z)
2n (qTM22n,m) dS.

We need to consider the following identity

1

(qr − qs)

∮
L

(
qrVr

∂Vs
∂n
−qsV s

∂Vr
∂n

)
dl =

∫
D
∇̃tV r · ∇̃tVs dϕ dµ, (7.32)

where the gradients are defined as follow:

∇̃t = µ̂
∂

∂µ
+ϕ̂

∂

∂ϕ
=

1

F
√
cosh2µ− cos2ϕ

(
µ̂
∂

∂µ
+ϕ̂

∂

∂ϕ

)
=

1

h (µ, ϕ)

(
µ̂
∂

∂µ
+ϕ̂

∂

∂ϕ

)
.

(7.33)

For n 6= r and m 6= s, that means qTM22n,m
6= qTM22r,s

, the integral in Eq. 7.31 is equal to zero,

because the eigenvalue on the elliptic boundary µ = µ2 is zero. If n = r and m = s, that

means qTM22n,m
= qTM22r,s

, if we consider the following identity

∫
D
∇tV r · ∇tVsdS = 2qs

∫
D
VrV s (cosh 2µ− cos 2ϕ) dϕ dµ, (7.34)



Chapter 7. Beam coupling impedance of elliptical-elliptical step transitions 121

we obtain ∫
D2

∇te(z)
2r

(
qTM22r,s

)
·∇te(z)

2r

(
qTM22r,s

)
dS = 2 qTM22r,sσ2r,s (7.35)

where

σ2r,s =

∫
D2

[
e

(z)
2r

(
qTM22r,s

)]2
(cosh 2µ− cos 2ϕ) dϕ dµ, (7.36)

resulting in an diagonal matrix.

We finally analyze the last term of second member. With some manipulations it can be

written as ∫
D2

∇te(z)
2r (qTM22r,s) · ẑ×∇th

(z)
2n+2(qTE22n+2,m

)dS. (7.37)

If we apply the identity 7.29, considering the properties of e
(z)
2r

(
qTM22r,s

)
and h

(z)
2n+2

(
qTE22n+2,m

)
on the contour of the ellipse, we obtain that the term is null. As consequence, the second

member of Eq. 7.26 is made by the unknown vector α22r,s multiplied for a known diagonal

matrix. Finally, the first matching equation of the system is given by:∫
D1

E0
1,t · e

(2t)
2r (qTM22r,s) dS+ (7.38)

−
(
F

2

)4 ∞∑
n=0

∞∑
m=1

α12n,m

kTMz2,2r,sk
TM
z1,2n,m

(qTM12n,m
− qTM22r,s

)qTM12n,m

∮ 2π

0
e

(z)
2r

(
qTM22r,s

) ∂e(z)
2n

(
qTM12n,m

)
∂µ

∣∣∣∣∣∣
µ=µ1

dϕ+

−
(
F

2

)4 ∞∑
n=0

∞∑
m=1

β12n+2.m

kTMz2,2r,sk0Z0

qTE12n+2,m
qTM22r,s

∮ 2π

0
h

(z)
2n+2

(
qTE12n+2,m

) ∂e(z)
2r

(
qTM22r,s

)
∂ϕ

∣∣∣∣∣∣
µ=µ1

dϕ

=

∫
D2

E0
2,t · e

(t)
2r

(
qTM22r,s

)
dS − α22n,m

(
F

2

)4
(
kTMz2,2r,s
qTM22r,s

)2

2 qTM22r,s σ2r,s.

7.4.3 Equation 2 (electric field): projection with TE modes

To obtain the second matching equation of the system we apply the Ritz-Galerking method

to both sides of Eq. 7.25: we scalar multiply for the modal function of second waveguide
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ẑ×∇th(z)
2r+2(qTE2r+2,s

) and integrate in D1 end D2, respectively:

∫
D1

E0
1,t · ẑ×∇th

(z)
2r+2(qTE2r+2,s

) dS+ (7.39)∫
D1

∞∑
m=1

∞∑
n=0

α12n,me
(t)
2n(qTM12n,m) · ẑ×∇th(z)

2r+2(qTE2r+2,s
) dS+

∫
D1

∞∑
m=1

∞∑
n=0

β12n+2,me
(t)
2n+2(qTE12n+2,m

) · ẑ×∇th(z)
2r+2(qTE2r+2,s

) dS =∫
D2

E0
2,t · ẑ×∇th

(z)
2r+2(qTE2r+2,s

) dS+∫
D2

∞∑
m=1

∞∑
n=0

α22n,me
(t)
2n(qTM22n,m) · ẑ×∇th(z)

2r+2(qTE2r+2,s
) dS+

∫
D2

∞∑
m=1

∞∑
n=0

β22n+2,me
(t)
2n+2(qTE22n+2,m

) · ẑ×∇th(z)
2r+2(qTE2r+2,s

) dS.

The second term of the first member and the second term of the second member of

Eq. 7.39, similarly to Eq. 7.37, are always zero.

Let us analyze now the third term on the first member. If we consider Eq. 7.27, after

some manipulation we obtain that∫
D1

[
ẑ×∇th(z)

2n+2

(
qTE12n+2,m

)]
·
[
ẑ×∇th(z)

2r+2

(
qTE2r+2,s

)]
dS = (7.40)

qTE12n+2,m(
qTE12n+2,m

− qTE2r+2,s

) ∮ 2π

0

h(z)
2n+2

(
qTE12n+2,m

) ∂h(z)
2r+2

(
qTE2r+2,s

)
∂µ


µ=µ1

dϕ.

Let us consider the third term of the second member: the integral is always zero for

qTM12n,m
6= qTM12r,s

, that occurs when n 6= m and r 6= s. When n = m and r = s we obtain

∫
D2

[
ẑ×∇th(z)

2r+2

(
qTE2r+2,s

)]
·
[
ẑ×∇th(z)

2n+2

(
qTE22n+2,m

)]
dS = 2qTE2r+2,s θ2r+2,s (7.41)

where

θ2r+2,s =

∫
D2

[
h

(z)
2r+2

(
qTE2r+2,s

)]2
(cosh 2µ− cos 2ϕ) dϕ dµ. (7.42)
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With some manipulations we obtain the second matching equation of the system:∫
D1

E0
1,t · ẑ×∇th

(z)
2r+2

(
qTE2r+2,s

)
dS+ (7.43)

j

(
F

2

)2 ∞∑
n=0

∞∑
m=1

β12n+2,m

k0Z0(
qTE12n+2,m

− qTE2r+2,s

) ∮ 2π

0

h(z)
2n+2

(
qTE12n+2,m

) ∂h(z)
2r+2

(
qTE2r+2,s

)
∂µ


µ=µ1

dϕ =

∫
D2

E0
2,t · ẑ×∇th

(z)
2r+2

(
qTE2r+2,s

)
dS − j

(
F

2

)2

2k0Z0θ2r+2,s β22r+2,s
+

j

(
F

2

)2 ∞∑
n=0

∞∑
m=1

α22n,m

kTMz2,2n,m
qTM22n,m

∮ 2π

0

h(z)
2r+2

(
qTE2r+2,s

) ∂e(z)
2n

(
qTM22n,m

)
∂ϕ

dϕ


µ=µ2

.

7.4.4 Equation 3 (magnetic field): projection with TM modes

Let us apply the condition of continuity of the tangential magnetic field 7.24 at the

interface z=0 between the two elliptical beam pipes of different cross section:

H0
1,t +

∞∑
m=1

∞∑
n=0

α12n,mh
(t)
2n

(
qTM12n,m

)
+

∞∑
m=1

∞∑
n=0

β12n+2,mh
(t)
2n

(
qTE12n+2,m

)
=

H0
2,t +

∞∑
m=1

∞∑
n=0

α22n,mh
(t)
2n

(
qTM22n,m

)
+

∞∑
m=1

∞∑
n=0

β22n+2,mh
(t)
2n

(
qTE22n+2,m

)
.

(7.44)

To obtain the third matching equation of the system we apply the Ritz-Galerking method

to both sides of Eq. 7.44: we scalar multiply for the modal function of the first waveguide

h
(t)
2r (qTM12r,s

) and integrate in D1:

∫
D1

H0
1,t · h

(t)
2r

(
qTM12r,s

)
dS+ (7.45)∫

D1

∞∑
m=1

∞∑
n=0

α12n,mh
(t)
2n(qTM12n,m) · h(t)

2r (qTM12r,s) : dS+

∫
D1

∞∑
m=1

∞∑
n=0

β12n+2,mh
(t)
2n+2(qTE12n+2,m

) · h(t)
2r (qTM12r,s) dS =∫

D2

H0
2,t · h

(t)
2r (qTM12r,s) dS+∫

D2

∞∑
m=1

∞∑
n=0

α22n,mh
(t)
2n(qTM22n,m) · h(t)

2r (qTM12r,s) dS+

∫
D2

∞∑
m=1

∞∑
n=0

β22n+2,mh
(t)
2n+2(qTE22n+2,m

) · h(t)
2r (qTM12r,s) dS
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With some manipulations we obtain∫
D1

H0
1,t · h

(t)
2r

(
qTM12r,s

)
dS− (7.46)(

F

4

)4 ∫
D1

∞∑
m=1

∞∑
n=0

k2
0

qTM12n,m
qTM12r,s

Z0
α12n,m

[
∇te(z)

2n

(
qTM12n,m

)]
·
[
∇te(z)

2r

(
qTM12r,s

)]
dS+

(
F

4

)4 ∫
D1

∞∑
m=1

∞∑
n=0

kTEz1,2n+2,m

qTE12n+2,m

k0

qTM12r,s

β12n+2,m

[
∇th(z)

2n+2

(
qTE12n+2,m

)]
·
[
ẑ×∇te(z)

2r

(
qTM12r,s

)]
dS =∫

D1

H0
2,t · h

(t)
2r

(
qTM12r,s

)
dS−(

F

4

)4 ∫
D1

∞∑
m=1

∞∑
n=0

k2
0

qTM12r,s
qTM22n,m

Z0
α22n,m

[
∇te(z)

2r

(
qTM12r,s

)]
·
[
∇te(z)

2n

(
qTM22n,m

)]
dS−

(
F

4

)4 ∫
D1

∞∑
m=1

∞∑
n=0

kTEz2,2n+2,m

qTE22n+2,m

k0

qTM12r,s

β22n+2,m

[
∇th(z)

2n+2

(
qTE22n+2,m

)]
·
[
ẑ×∇te(z)

2r

(
qTM12r,s

)]
dS.

The third terms of the first and second members are zero because of the properties of

electric and magnetic fields on the boundaries.

Let us consider the second term of the first member: the integral is always zero when

qTM12n,m
6= qTM12r,s

, that occurs when n 6= m or r 6= s. Otherwise the integral is equal to

∫
D1

[
∇te(z)

2r

(
qTM12r,s

)]
·
[
∇te(z)

2r

(
qTM12r,s

)]
dS = 2qTM12r,sϑ2r,s, (7.47)

where

ϑ2r,s =

∫
D1

[
e

(z)
2r

(
qTM12r,s

)]2
(cosh 2µ− cos 2ϕ) dϕ dµ. (7.48)

If we consider Eq. 7.27, after some manipulations the second term of the second member

becomes ∫
D1

h
(t)
2r

(
qTM12r,s

)
· h(t)

2n

(
qTM22n,m

)
dS = (7.49)

−
(
F

2

)4 k0
2

qTM12r,s

(
qTM12r,s

− qTM22n,m

) ∮ 2π

0

e(z)
2n

(
qTM22n,m

) ∂e(z)
2r

(
qTM12r,s

)
∂µ


µ=µ1

dϕ. (7.50)

The third matching equation is given by∫
D1

H0
1,t · h

(t)
2r

(
qTM12r,s

)
dS −

(
F

2

)4 2k2
0

Z0
α12r,sϑ2r,s = (7.51)∫

D1

H0
2,t · h

(t)
2r

(
qTM22r,s

)
dS−

(
F

2

)4 k2
0

Z0

∞∑
n=0

∞∑
m=1

α22n,m

1

qTM12r,s

(
qTM12r,s

− qTM22n,m

) ∮ 2π

0

e(z)
2n

(
qTM22n,m

) ∂e(z)
2r

(
qTM12r,s

)
∂ϕ


µ=µ1

dϕ.
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7.4.5 Equation 4 (magnetic field): projection with TE modes

To obtain the forth matching equation of the system we apply the Ritz-Galerking method

to both sides of Eq. 7.44: we scalar multiply for the modal function of the first waveguide

h
(t)
2r+2

(
qTE12r+2,s

)
and integrate in D1. We obtain the following equation:

∫
D1

H0
1,t · h

(t)
2r+2

(
qTE12r+2,s

)
dS+ (7.52)∫

D1

∞∑
m=1

∞∑
n=0

α12n,mh
(t)
2n(qTM12n,m) · h(t)

2r+2

(
qTE12r+2,s

)
dS+

∫
D1

∞∑
m=1

∞∑
n=0

β12n+2,mh
(t)
2n+2(qTE12n+2,m

) · h(t)
2r+2

(
qTE12r+2,s

)
dS =∫

D1

H0
2,t · h

(t)
2r+2

(
qTE12r+2,s

)
dS+∫

D1

∞∑
m=1

∞∑
n=0

α22n,mh
(t)
2n(qTM22n,m) · h(t)

2r+2

(
qTE12r+2,s

)
dS+

∫
D1

∞∑
m=1

∞∑
n=0

β22n+2,mh
(t)
2n+2(qTE22n+2,m

) · h(t)
2r+2

(
qTE12r+2,s

)
dS.

Let us consider the identity 7.29: the second term of the first member is zero, being zero

the electric field on the boundary. The integral of the third term of the first member is

zero when qTE12n+2,m
6= qTE12r+2,s

, that occurs when n 6= m or r 6= s. Otherwise the integral

becomes∫
D1

[
∇th(z)

2n+2

(
qTE12n+2,m

)]
·
[
∇th(z)

2r+2

(
qTE12r+2,s

)]
dS = 2qTE12r+2,s

ρ2r+2,s, (7.53)

where

ρ2r+2,s =

∫
D1

[
h

(z)
2r+2

(
qTE12r+2,s

)]2
(cosh 2µ− cos 2ϕ) dϕdµ. (7.54)

If we apply the identity 7.29, the second term of the second member, after some manipu-

lation, becomes ∫
D1

[
ẑ×∇te(z)

2n

(
qTM22n,m

)]
·
[
∇th(z)

2r+2

(
qTE12r+2,s

)]
dS = (7.55)

∮ 2π

0

e(z)
2n

(
qTM22n,m

) ∂h(z)
2r+2

(
qTE12r+2,s

)
∂ϕ


µ=µ1

dϕ.
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Similarly, applying the identity 7.27, the third term of the second member, becomes∫
D1

[
∇th(z)

2n+2

(
qTE22n+2,m

)]
·
[
∇th(z)

2r+2

(
qTE12r+2,s

)]
dS = (7.56)

− 1

qTE22n+2,m
− qTE12r+2,s

∮ 2π

0

qTE12r+2,s
h

(z)
2r+2

(
qTE12r+2,s

) ∂h(z)
2n+2

(
qTE22n+2,m

)
∂ϕ


µ=µ1

dϕ.

Finally, the fourth matching equation can be written as follow

∫
D1

H0
1,t · h

(t)
2r+2

(
qTE12r+2,s

)
dS −

(
F

2

)4
(
kTEz1,2r+2,s

qTE12r+2,s

)2

2β12r+2,sq
TE
12r+2,s

ϑ2r+2,s = (7.57)∫
D1

H0
2,t · h

(t)
2r+2

(
qTE12r+2,s

)
dS+

(
F

2

)4 ∞∑
n=0

∞∑
m=0

k0k
TE
z1,2r+2,s

qTE12r+2,s
qTM22n,m

Z0
α22n,m

∮ 2π

0

e(z)
2n

(
qTM22n,m

) ∂h(z)
2r+2

(
qTE12r+2,s

)
∂ϕ


µ=µ1

dϕ−

(
F

2

)4 ∞∑
n=0

∞∑
m=1

kTEz2,2n+2,m
k
TE

z1,2r+2,s
β22n+2,m

qTE22n+2,m

(
qTE22n+2,m

− qTE12r+2,s

) ∮ 2π

0

h(z)
2r+2

(
qTE12r+2,s

) ∂h(z)
2n+2

(
qTE22n+2,m

)
∂ϕ


µ=µ1

dϕ.

7.5 Known coefficients of the system

7.5.1 Equation 1 (electric field)

Let us calculate the known terms of Eq. 7.25: we have to scalar multiply both members

of the equation for the modal function of second waveguide e
(t)
2r

(
qTM22r,s

)
and integrate the

two members in D1 end D2, respectively. After some manipulations, the known term of

the first matching equation is given by∫
D1

E0
1, · e

(t)
2r

(
qTM22r,s

)
dS −

∫
D2

E0
2,t · e

(t)
2r

(
qTM22r,s

)
dS = (7.58)

= −2πG

(
F

2

)4 kTMz kTMz2,2r,sCe2r

(
qTM22r,s

, µ1

)
qTM

(
qTM + qTM22r,s

) ∞∑
n=0

A
(2n)
0

p2n

w2n

Ce2n(−qTM , µ1)
F (2n, 2r, s)

where w2n is a wronskian, given by

w2n = Fek2n(−qTM , µ1)Ce
′
2n(−qTM , µ1)− Ce2n(−qTM , µ1)Fek

′
2n(−qTM , µ1) (7.59)

and

F (2n, 2r, s) =

∫ 2π

0
ce2n

(
−qTM , ϕ

)
ce2r

(
qTM22r,s , ϕ

)
dϕ. (7.60)
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After some manipulations we can also write a simpler form for the known term of the first

matching equation:∫
D1

E0
1,t · e

(t)
2r

(
qTM22r,s

)
dS −

∫
D2

E0
2,t · e

(t)
2r

(
qTM22r,s

)
dS = (7.61)

= −2G

(
F

2

)4kTMz kTMz2,2r,sCe2r

(
qTM22r,s

, µ1

)
qTM

(
qTM + qTM22r,s

) ∞∑
n=0

(−1)nce2n(qTM , 0)Ce2n(−qTM , 0)

Ce2n(−qTM , µ1)
F (2n, 2r, s)

7.5.2 Equation 2 (electric field)

To obtain an explicit expression for the known terms of the second matching equation,

we have to scalar multiply both member of Eq. 7.25 for the modal function of second

waveguide ẑ×∇th
(z)
2r+2(qTE22r,s

) and integrate the two members in D1 end D2, respectively.

After some manipulations, we obtain that the known term of the second matching equation

is zero.

7.5.3 Equation 3 (magnetic field)

To obtain an explicit formula for the known terms of the third matching equation, we had

to scalar multiplied both member of Eq. 7.44 for the modal function of first waveguide

h
(t)
2r

(
qTM12r,s

)
, and integrate both in D1. After some manipulations, we obtain that the

known term of the third matching equation is given by:∫
D1

H0
1,t · h

(t)
2r

(
qTM12r,s

)
dS −

∫
D1

H0
2,t · h

(t)
2r

(
qTM12r,s

)
dS = (7.62)

= −2πG

(
F

2

)4( k2
0

Z0

) Ce′2r

(
qTM12r,s

, µ1

)
qTM12r,s

(
qTM + qTM12r,s

) ∞∑
n=0

A
(2n)
0

p2n

g2n

Ce2n (−qTM , µ2)
V (2n, 2r, s)

where

g2n = Fek2n

(
−qTM , µ1

)
Ce2n

(
−qTM , µ2

)
− Fek2n

(
−qTM , µ2

)
Ce

2n

(
−qTM , µ1

)
(7.63)

and V (2n, 2r, s) is given by the following integral

V (2n, 2r, s) =

∫ 2π

0
ce2n

(
−qTM , ϕ

)
ce2r

(
qTM12r,s , ϕ

)
dϕ. (7.64)



Chapter 7. Beam coupling impedance of elliptical-elliptical step transitions 128

7.5.4 Equation 4 (magnetic field)

To obtain an explicit formula for the known terms of the fourth matching equation, we

have to scalar multiply both member of Eq. 7.39 for the modal function of first waveguide

h
(t)
2r+2

(
qTE12r+2,s

)
and integrate both the two members in D1. After some manipulations,

we obtain that the known term of the forth matching equation is given by:∫
D1

H0
1,t · h

(t)
2r+2

(
qTE12r+2,s

)
dS −

∫
D1

H0
2,t · h

(t)
2r+2

(
qTE12r+2,s

)
dS = (7.65)

= 2πG

(
F

2

)4 k0k
TE
z1,2r+2,s

Z0 qTMqTE12r+2,s

Se2r+2(qTE12r+2,s
, µ1)

∞∑
n=0

A
(2n)
0

p2n

g2n

Ce2n(−qTM , µ2)
W (2r + 2, s, 2n)

where the integral W (2r + 2, s, 2n) is given by

W (2r + 2, s, 2n) =

∫ 2π

0
ce2n(−qTM , ϕ)se′2r+2

(
qTE12r+2,s

, ϕ
)
dϕ. (7.66)

7.5.5 Mode Matching system summary

Equation I

2G
kTMz Ce2r

(
qTM22r,s

, µ1

)
qTM

(
qTM + qTM22r,s

) ∞∑
n=0

{
(−1)n

ce2n

(
qTM , 0

)
Ce2n

(
−qTM , 0

)
Ce2n (−qTM , µ1)

F (2n, 2r, s)

}
+

(7.67)

∞∑
n=0

∞∑
m=1

α12n,m

kTMz1,2n,m(
qTM12n,m

− qTM22r,s

)
qTM12n,m

∮ 2π

0
e

(z)
2r

(
qTM22r,s

) ∂e(z)
2n

(
qTM12n,m

)
∂µ

∣∣∣∣∣∣
µ=µ1

dϕ+

k0Z0

∞∑
n=0

∞∑
m=1

β12n+2,m

1

qTE12n+2,m
qTM22r,s

∮ 2π

0
h

(z)
2n+2

(
qTE12n+2,m

) ∂e(z)
2r

(
qTM22r,s

)
∂ϕ

∣∣∣∣∣∣
µ=µ1

dϕ

= 2 α22r,s

kTMz2,2r,s
qTM22r,s

σ2r,s

Equation II

∞∑
m=1

∞∑
n=0

β12n+2,m

1(
qTE1n+2,m

− qTE2r+2,s

) ∮ 2π

0
h

(z)
2n+2

(
qTE12n+2,m

) ∂h(z)
2r+2

(
qTE22r+2,s

)
∂µ

∣∣∣∣∣∣
µ=µ1

dϕ

(7.68)

= 2β22r+2,sθ2r+2,s
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Equation III

−2πG
Ce′2r

(
qTM12r,s

, µ1

)
qTM12r,s

(
qTM+qTM12r,s

) ∞∑
n=0

{
A

(2n)
0

p2n

g2n

Ce2n (−qTM , µ2)
V (2n, 2r, s)

}
− (7.69)

∞∑
n=0

∞∑
m=1

α22n,m

1

qTM12r,s

(
qTM12r,s

− qTM22n,m

) ∮ 2π

0
e

(z)
2n

(
qTM22n,m

) ∂e(z)
2r

(
qTM12r,s

)
∂µ

∣∣∣∣∣∣
µ=µ1

dϕ

= 2α12r,sϑ2r,s

Equation IV

2G
k0

Z0

Se2r+2

(
qTE12r+2,s

, µ1

)
qTMqTE12r+2,s

∞∑
n=0

{
A

(2n)
0

p2n

g2n

Ce2n (−qTM , µ2)
W (2n, 2r + 2, s)

}
− (7.70)

k0

Z0

∞∑
m=1

∞∑
n=0

α22n,m

1

qTE12r+2,s
qTM22n,m

∮ 2π

0
e

(z)
2n
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The matching system could be summarized as follow:
F + T1α1 + S1β1 = D1α2

S2β1 = D2β2

V +D3α1 = P3α2

W +D4β1 = P4α2 +Q4β2

(7.71)

where

• T1, S1, S2, P3, P4, Q4 are tensors of dimension (n×m)× (r × s);

• F , W , V , are known vectors of dimension (r × s)× 1;

• D1, D2, D3, D4, are diagonal matrices of dimension (r × s)× (r × s);

• α1, α2, β1, β2, are unknown vectors of dimension (n×m)× 1.
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7.6 Longitudinal coupling impedance calculation

Solving the system of four equations we obtain the four modal amplitudes α12n,m , α22n,m ,

β12n+2,m , β22n+2,m of the electromagnetic field scattered by the step discontinuity. Once

obtained the amplitudes, we can calculate, in the center of the elliptic tube, the radiated

field in the two regions as

Eradz (ω; z) =


∞∑
n=0

∞∑
m=1

α12n,mce2n(π2 , q
TM
12n,m

)Ce2n(0, qTM12n,m
) exp

[
j
(
ωt+ z

√
k2

0 − k2
12n,m

)]
∞∑
n=0

∞∑
m=1

a22n,mce2n(π2 , q
TM
22n,m

)Ce2n(0, qTM22n,m
) exp

[
j
(
ωt− z

√
k2

0 − k2
22n,m

)]
(7.72)

To calculate the longitudinal coupling impedance, we can substitute the above identity in

Eq. 7.13. We obtain (dependency from the variables ϕ and µ has been omitted)

ZL(k) = −1

q

∫ 0

−∞

∞∑
n=0

∞∑
m=1

α12n,mce2n

(
qTM12n,m

)
Ce2n

(
qTM12n,m

)
exp

[
jz

(
k0

β
+
√
k2

0 − k2
12n,m

)]
dz−

(7.73)

+
1

q

∫ ∞
0
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n=0

∞∑
m=1

a22n,mce2n

(
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)
Ce2n

(
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)
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[
jz

(
k0

β
−
√
k2

0 − k2
22n,m

)]
dz,

where q is the particle charge. Let us suppose that propagation constant presents a small

negative imaginary part kz = β − jα. With some manipulations, the first integral of the

coupling impedance equation becomes:

limα→0

∫ 0

−∞

∞∑
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∞∑
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(
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)
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(
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)]
dz =

(7.74)
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Similarly, the second integral becomes

limα→0

∫ ∞
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Finally we obtain a simple expression that allows to calculate the longitudinal beam

coupling impedance of a step transition between two co-focal elliptical waveguides:

ZL (k) = −
∞∑
n=0

∞∑
m=1

α12n,m

ce2n(π2 , q
TM
12n,m

)Ce2n(0, qTM12n,m
)
[
k0
β −

√
(k2

0 − k2
12n,m

)
]

jq

[(
k0
β

)2
− k2

0 + k2
12n,m

] (7.76)

−
∞∑
n=0

∞∑
m=1

α22n,m

ce2n

(
π
2 , q

TM
22n,m

)
Ce2n

(
0, qTM22n,m

) [
k0
β +

√
(k2

0 − k2
22n,m

)
]

jq

[(
k0
β

)2
− k2

0 + k2
22n,m

] .

Equation 7.76 allows a fast calculation of the longitudinal beam coupling impedance, due

to the rapidly convergence Mathieu functions.

Conclusions

In this chapter we determined an analytical formula for the longitudinal beam coupling

impedance of a step transition between two beam chambers of elliptical cross-section. This

type of problem, involving two separate regions, was addressed with the mode matching

method. The radiated field from the discontinuity has been expressed as the product of

a modal function for a modal coefficient. Imposing the condition on continuity of the

tangential electric and magnetic fields at the interface, a set of linear equations for the

unknown modal coefficients is obtained. The problem reduces in determining a set of

modal amplitudes associated with the field expansions in the two regions, where the novel

field expansion calculated in Chapter 6 represents the known coefficients of the system.

The amplitudes of the radiated electric field in the two regions are calculated solving

the four equations system, and the longitudinal impedance is calculated with the Fourier

transform of the field itself. The formula for the longitudinal beam coupling impedance of

the elliptical step transition is provided. Nevertheless, further numerical studies on matrix

truncation are in progress, in order to provide an efficient method of calculation of the

impedance that can be used in addition or in substitution to electromagnetic simulations.



Conclusions

In this thesis work we developed the longitudinal and transverse beam coupling impedance

model of the CERN Proton Synchrotron (PS), in the framework of the LHC Injector Up-

grade (LIU) project. The knowledge of the coupling impedance models, such as the

impedance of some critical elements, allows a better understanding of the instability

threshold of the machine, and helps predicting the effects of the current increase planned

for the upgrade program. The two coupling impedance models have been determined

with beam based measurements and simulations of machine devices. Eleven injection and

extraction kicker magnets with different geometries, several types of RF cavities and me-

chanical components of the chamber (vacuum pumps, valves, flanges, bellows) have been

examined. Finally, the impedances of the devices have been summed together, obtaining

the total impedance (longitudinal and transverse) as a function of frequency, representing

the impedance model (longitudinal and transverse) of the machine. For the longitudinal

case, beam based measurements of the incoherent quadrupolar synchrotron frequency shift

as a function of beam intensity have been carried out at the beginning of 2012. The longi-

tudinal impedance of Z(p)/p = 18.4±2.2 Ω is in agreement with measurements performed

on the machine about 10 years ago. An analysis of several contributors to the impedance

resulted in excellent agreement with the measurement, explaining almost the 90% of the

measured longitudinal impedance. This accurate model developed for the longitudinal

broadband impedance can be used to for beam dynamics simulations of the machine. In

order to determine the transverse impedance model, beam based measurements of the

tune shift as a function of beam intensity have been carried out at the beginning of 2012

and in 2014, after the machine shut down. The measured vertical impedance at zero

chromaticity is 8.2 MΩ/m at injection energy and 2.2 MΩ/m at extraction energy. The

difference in the two measurements can be explained by the effect of the indirect space

charge. A scan of the imaginary part of the vertical impedance with chromaticity has

been performed, revealing an increasing trend for all the sets of measurements. This

result could suggest the presence of undefined machine elements introducing a low fre-

quency resonance not detected so far. The impedance model obtained with simulation is

in fairly good agreement with the measured values, and justifies, for example, about the
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65% of the vertical impedance obtained with tune shift measurements at the energy of

2 GeV. Measurements of the PS beam spectrum and shape have been performed with RF

instrumentation, both in the single and in the multi-bunch case. This campaign allowed

to obtain a reference for impedance resonance modes of the machine devices, considered

potentially dangerous for the instabilities: resonances falling inside the beam spectrum

can be a source of heating and power losses and, therefore, need to be identified.

Beam coupling impedance studies, that included simulation, RF measurements and the-

oretical calculations, have been performed for three new devices, before their installation

in the machine in 2013-2014. This studies helped to understand the contribution of these

elements to the longitudinal and transverse impedance budget. The impedance studies

for the dummy septum, a radiation protection passive device installed in section 16 of

the PS, followed-up all mechanical design stages. Due to impedance and heating related

issues revealed by the study, the insertion of sliding contacts for high order modes damp-

ing has been proposed and accepted in the final design of the installed device. Bench

measurements took place in order to test the performance of the sliding contacts before

installation. The dummy septum is currently working in the machine under nominal op-

eration beam conditions without impedance related issues. Impedance studies have been

carried out for the new longitudinal damper loaded with Finemet R©, comparing simula-

tions and bench measurements. The device was designed to reduce the impact of coupled

bunch instability in the PS, and it is currently installed in the straight section 01. As

last, the impedance of the new PS beam position monitor has been studied. The device,

that was designed as a stripline pickup, is currently installed in straight section 72 and

has been used for the tune shift measurements described in Chapter 3.

In the second part of this thesis work, a novel formulation of the field produced by a δ

beam distribution traveling inside a tube of elliptical cross section, has been determined.

The solution, in the form of Mathieu and Bessel functions, is rapidly convergent and has

been obtained separating the contribution of the Green function generated in free space

(primary field) and the field scattered by the charge on the elliptical boundary (indirect

field). The novel expansion of the longitudinal electric field is expressed in elliptical co-

ordinates and in separate functions of the elliptic variables. The new expansion of the

Green function in elliptical coordinates has been compared with the formula in circular

coordinates, showing very good agreement for different combinations of parameters and

summation orders. These new results allow a better understanding of the electromagnet-

ic propagation and scattering phenomena that occur in elliptical beam chambers while

crossed by a particle field.

In this frame, considering the high number of step transitions between circular and ellipti-

cal waveguide currently present in the PS, a novel analytical formula for the evaluation of

the longitudinal beam coupling impedance of a step transition between two semi-infinite

elliptical waveguides, by means of the mode matching theory, has also been developed.
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The diffracted field from the junction has been expressed as the product of a modal func-

tion for a modal coefficient; imposing the condition on continuity of the tangential electric

and magnetic fields at the interface, we obtained a set of linear equations for the unknown

modal coefficients. Solving the matching system, where the primary field expressed with

the new expansion represents the known term, allows to calculate the longitudinal beam

coupling impedance of the step transition. The analytic formula to compute the longitudi-

nal beam coupling impedance of the step transition is provided. Further numerical studies

on matrix truncation are in progress, in order to provide an efficient method of calcula-

tion of the impedance that can be used in addition or in substitution to electromagnetic

simulations.





Appendix A

Simil-Green formula

The starting formula is the following:

∇t · (ẑ × (Ur∇tVs) (A.1)

where we apply the rule of mixed product ∇ · (A×B) = B · ∇ ×A−A · ∇ ×B.

Being ∇t × ẑ = 0. we obtain:

∇t · (ẑ × (Ur∇tVs) = Ur∇tVs · ∇t × ẑ − ẑ · ∇t × Ur∇tVs = −ẑ · ∇t × Ur∇tVs. (A.2)

We consider now the following identity:

∇× (ΦA) = ∇Φ×A+ Φ∇×A. (A.3)

We have that:

∇t ·(ẑ×(Ur∇tVs) = −ẑ ·∇t×Ur∇tVs = −ẑ · [∇tUr ×∇tVs + Ur∇t ×∇tVs] = −ẑ ·(∇tUr×
∇tVs).
That leads to∫

s

∇t · (ẑ × (Ur∇tVs)dS = −
∫
s

ẑ · ∇t × Ur∇tVsdS = −
∫
s

ẑ · (∇tUr ×∇tVs)dS (A.4)

If we consider the following rule ∇ · (ΦA) = Φ∇ ·A+∇Φ ·A we can verify the following

identity:

∇t · [Vs(ẑ ×∇tUr)] = Vs∇t · (ẑ × ∇tUr) +∇tVs · (ẑ × ∇tUr). Being the first term of the

second member zero:

∇t · [Vs(ẑ ×∇tUr)] = ∇tVs · (ẑ ×∇tUr) = ẑ · ∇tUr ×∇tVs,
then∫
s∇t · (ẑ × (Ur∇tVs)dS = −

∫
s ẑ · (∇tUr ×∇tVs)dS = −

∫
s∇tVs · (ẑ ×∇tUr)dS∗
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We apply the diverge theorem in two dimensions at the integer at the first member:∫
s∇t · (ẑ × (Ur∇tVs)dS =

∮
l n̂ · [ẑ × (Ur∇tVs)] dl =

∮
l Ur∇tVs · (n̂× ẑ)dl =

∮
l Ur∇tVsd~l =∮

l Ur
∂Vs
∂l dl

We obtain that:∫
s ẑ · (∇tUr ×∇tVs)dS = −

∮
l Ur

∂Vs
∂l dl

Solving the integer by parts, and being UrVs = 0 between 0 and 2π, we obtain:∮
l Ur

∂Vs
∂l dl = −

∮
Vs

∂Ur
∂l dl

To conclude we demonstrated the following identity:∫
s

ẑ · (∇tUr ×∇tVs)dS = −
∮
l

Ur
∂Vs
∂l

dl =

∮
Vs
∂Ur
∂l

dl. (A.5)
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Primary field components

Direct field components
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Indirect field components, waveguide I z<0
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Indirect field components, waveguide II z>0
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Scattered field components

Waveguide I, z<0 (TM modes)
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Waveguide II, z>0 (TM modes)
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Waveguide I, z<0 (TE modes)
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Waveguide II, z>0 (TE modes)
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