International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072056 doi:10.1088/1742-6596/331/7/072056

Visual Physics Data Analysis in the Web Browser

M. Brodski, M. Erdmann, R. Fischer, A. Hinzmann, T. Klimkovich,
D. Klingebiel, M. Komm, G. Miiller, J. Steggemann, T. Winchen
RWTH Aachen University, Physikalisches Institut 3A, 52062 Aachen, Germany

E-mail: erdmann@physik.rwth-aachen.de

Abstract. The project VISPAQWEB provides a novel graphical development environment
for physics analyses which only requires a standard web browser on the client machine. It
resembles the existing analysis environment available from the project Visual Physics Analysis
VISPA, including the connection and configuration of modules for different tasks. High level
logic can be programmed using the Python language, while performance-critical tasks can be
implemented in C++ modules. The use cases range from simple teaching examples to highly
complex scientific analyses.

1. Introduction

In the last couple of years web based applications, e.g. online steet maps or modern web based
mail clients, became increasingly popular. Compared to conventional desktop applications they
have two major advantages. There is no need to install the software locally, and the applications
have access to all the resources provided by the server and the connected computing center.
Both advantages apply to analysis software as well. Experiment specific software for example
can have special requirements, both in software as in hardware, and therefore can be hard to
install on the physicists laptop. Nevertheless it is often convenient to have access to these
resources over the internet as many collaborations are spread around the world. Established
solutions like SSH and VNC have some limitations, e.g., high bandwith requirements or the need
for system accounts. Especially the possibility to grant access without system accounts allows
setups for teaching or demonstration purposes where non privileged users need access to these
resources. As a result of the ongoing competition for the fastest JavaScript [1] engine between
web browser developers, we now have a very fast and efficient language at hand which allows
complex applications to be executed within the web browser. Together with many mature and
feature rich open source libraries the effort required to implement highly interactive graphical
user interfaces is minimized. Using these technologies we have developed a web based application
prototype as competitive reimplementation of the VISPA [2, 3] desktop application. The VISPA
project constitutes a development environment for data analysis, e.g., in high energy physics.
In the following sections we first introduce VISPA and the underlying analysis framwork PXL
[4, 5] and we then describe the main features of the web based analysis software VISPAQWEB
[6].

2. VISPA and PXL
VISPA (Visual Physics Analysis) is a graphical development environment which enables
physicists to prototype, execute, and verify data analysis of any complexity. The key idea

Published under licence by IOP Publishing Ltd

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072056 doi:10.1088/1742-6596/331/7/072056

of VISPA is to develop physics analyses in a flow based manner, where modules with incoming
and outgoing data ports are connected and configured. It provides a multipurpose window
with visual tools to design and execute modular analyses, create analysis templates, and browse
physics event data. VISPA and PXL are utilized in high energy and astroparticle physics and
may be extended to other fields of research. The underlying framework PXL (Physics eXtension
Library) is a C++ class collection for high level analyses, with specializations for high energy
and astroparticle physics. It is intended for experiment independent data handling and has been
continuously developed since 2006 as the successor of the PAX toolkit [7]. The library includes
classes representing physics objects, convenience containers, a robust and fast 1/O format and
a complete Python [8] interface. Additionally it provides the infrastructure for module based
analyses. This module system is optimized for a flow based analysis design typically found in
particle physics analyses where each event is processed individually.

3. Client-Server Architecture

VISPA@QWERB is developed using the typical client server architecture (Fig. 1). All data and
analyses are located on the server while the client requests information for each element of the
analysis when needed, that way only the information needed for presentation is send to the
client using AJAX, Asynchronous JavaScript and XML [9]. The server encodes the requested
information into JSON (JavaScript Object Notation) [10], a text based data format, and sends
it to the client. All changes the user makes to the analysis are as well transmitted to the
server via JSON. Those changes are then validated and applied to the actual analysis by the
server. The server is programmed in Python using the built-in webserver and the PXL Python

Ajax-Request
JSON Client (Browser)
Server JavaScript

Python, PXL

G =
S
erver Internet B User

==

Figure 1. Client Server architecture implemented in VISPAQWEB.

bindings. Essential systems are the components that associate analysis instances with users and
that handle the concurrent execution of analyses. The client is programmed using HTML/CSS
and JavaScript, facilitating several JavaScript libraries.

4. Virtual Filesystem
VISPAQWEB implements a virtual fileystem where each user has read/write access to his own
private folder and read only access to global data. For convenience and for security reasons the

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072056 doi:10.1088/1742-6596/331/7/072056

user does not have access to the complete servers filesystem. Instead every user has his own
working directory, where he can upload data and source files to. Also stored in this directory are
source files created with the offered online editor, as well as output files of the analyses executed
on the server. Additionally the user has read access to a global directory containing scripts and
data shared by all users. All files can be downloaded to the local computer.

Browser X
[create File | Create Folger | X Delete ViewEdit @1 Download »¥ sync @l Upload
Import files to session directory £

Juser Files
4 — global # files

=] layoutTest pxlia
_Ipics
| some data

4 [Jglobal compare.py
globaltest pxlio pics

globaltest2. pxlio 4| _Jsomedata
Jsplt

4! some scripts = | some scripts
=] count_script py
=] extractpy
= selection_scriptpy
::'] split_3streams_script.py

= testpxiio -

compare xmi

cuts.py

cuts xml

cuts_datapy

cuts_me.py

data_reconstructdijets.pxlio

dijetplot py

dijetplotxm

jobuxm -

add startimport close user/compare.py

select close

Figure 2. Files from the shared global

folder are imported into the user folder. Figure 3. The file open dialog showing the
user folder and the global folder.

5. Designing a Physics Analysis

A central functionality of VISPAQWERB is designing physics analyses. It therefore resembles
most of the features and concepts known from the VISPA Qt [11] based desktop application
where instead of textual programming the analysis flow is designed by connecting and configuring
different modules. On the left side of the window (Fig. 4), a list with the available modules is

[PXljs
Analysis > View = Help~
Analysis || Editor

Modules <« Properties »

AutoDecayReconstruction Name -~ Value

filename:
File Input

=2 Buffer size 1048576
Objects/file sectior 1000
Compression level 1
File Output

i 2 T I
- 3 = o il e
out in out in out

b C
PyDecide

®

a a
File Input PyAnalyse File Output

Figure 4. Designing analysis with VISPAQWEB

displayed. This list is dynamically loaded from the server. Modules can be added via drag and
drop to the current analysis, displayed in the center of the window. Each module has sinks, for
incoming data elements, and sources, for outgoing data elements. Each source can be connected
to one sink while each sink can have multiple incoming connections. The data elements are
created in special input modules and then sequentially passed to the connected modules. On

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072056 doi:10.1088/1742-6596/331/7/072056

the right side of the window the properties of a module selected by the user are listed. They
can be modified and are synchronized with the server. For options representing filenames a file
selection dialog showing the virtual filesystem on the server is provided.

6. Editing Analysis Scripts

In order to cope with complex and innovative physics analyses, we incorporated high level
scripting modules which can be edited by the user (Fig. 5). These scripts are written in the
Python programming language, and can be edited online with the provided browser based editor.
In these scripts PXL as well as ROOT [12] and every other software which is available in Python
can be used. The major advantages are the platform independence and the simplicity of the
Python language, so custom analysis steps can be added easily.

|| PXjs
Analysis ¥ View~ Help~

Analysis Editor

user/compare.py "user!dijetpht.w

from pxl.hep import * .
from pxl.core import *

from ROOT import TCanvas, TH1F, THStack, kGreen, kBElue, kRed

import math

Q9 [0 | 2

m

class Bnalyse:

def init (self, pxlModule):
self.cnt=0
self.accepted=0
self.logger—Loggex ("dijetplot.py")

def begindob(self, *args):
self.h dijetmass =TH1F("h_dijetmass", "Dijetmass",100,0, 400)
self.h_strange =TH1F("h_strange","",100,0,400)
self.h strange.GetXaxis().SetTitle ("mass/GsV")
self.logger (LOG_LEVEL_ERROR, "beginJob™)

def analyse (self,ob3):
event = toEvent (obj)
eventviews — event.getObjects0fType (EventView)

<[e] »

Position: Ln2 Ch23 Total: Ln 50, Ch 1683 Y]

Fertig &

Figure 5. Script editor of VISPAQWEB

7. Browsing and Verifying Data

Another important aspect of visual physics analysis is the visualization of data. In many
situations the physicist needs to know the exact contents of data files. Therefore VISPAQWEB
allows users to quickly browse the input and output files of the analysis (Fig. 6). In the
left column of the window the list of objects contained in the current event is shown. In the
center view a visual representation of the selected object is presented, where particle decays are
layouted automatically. On the right column the properties of each selected object are listed.
Only the data for the currently displayed event is loaded. In this way it is possible to open files
of arbitrary size. PXL I/O files have the unique feature to be readable even if the analysis does
not finish successfully.

8. Conclusion

We presented an experiment independent analysis software based on modern web technologies.
In its current state it resembles the core features of the desktop equivalent VISPA and allows
users to design and execute a simple high energy physics analysis.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072056 doi:10.1088/1742-6596/331/7/072056

|| PXLjs

Analysis ¥ View~ Help~

Analysis Editor global/some data/madgraph-ttbar_10.pxlio global/some data/madgraph-Higgs-m120_10.pxlio '* || global/some datafmadgraph-assocated-Higgs_10.p

a Event 2 En Event Properties

-

Name = Value

Generator
MName z
4 —] Generator

=lb
=b
=H
=z
=h
=mu
=mu
= mu
= mu
4 —)Reconstructed
=] Muon Pt 25121069
B Muon Px 20305045
=] Muon
=] Muon
=IWET Reconstructed Fz ~41.865659
Theta 2.601144

Charge 0

E 99.993571

Et 51448788

Eta -1.28373854247
Id b837b9d1-ca2b-
Mass 87 263467

m
m

P 4882419
Phi -0.629559

Py -14.790985

UserRecords
Muon Muon MET Muon Muon

« i v « m v
http://localhost:8080/ #

Figure 6. Browsing data files with VISPAQWEB

9. Acknowledgements

We are very grateful for financial support of the Ministerium fur Innovation, Wissenschaft,
Forschung und Technologie des Landes Nordrhein-Westfalen, the Bundesministerium fur Bildung
und Forschung (BMBF), the Deutsche Forschungsgemeinschaft (DFG), and the Helmholtz
Alliance Physics at the Terascale.

References

[1] ECMAScript language, ECMA-262 standard (Edition 3), http://www.ecmascript.org/

[2] VISPA (Visual Physics Analysis), http://vispa.sourceforge.net/

[3] M. Brodsky et al. Visual Physics Analysis - Applications in High Energy and Astroparticle Physics, Proc. of
13th Int. Workshop on Adv. Comp. and Anlys. Techn. in Phys. Res. (ACAT2010), Jaipur, India, Feb. 2010

[4] PXL (Physics Extension library), http://pxl.sourceforge.net/

[5] O. Actis et al. Visual Physics Analysis (VISPA) - Concepts and First Applications, Proc. 34th Int. Conf. High
Energy Physics (ICHEP 2008), Philadelphia, Pennsylvania [arXiv:0810.3609]

[6] M. Komm Development of the VISPAQWEB Program and Measurement of the Dijet Mass with CMS, Jul.
2010, B.Sc. thesis, RWTH Aachen University

[7] S. Kappler et al. The PAX toolkit and its applications at Tevatron and LHC, IEEE Trans. Nucl. Sci. 53 (2006)
506 [arXiv:physics/0512232]

[8] G. van Rossum et al. Python Language Website, http://www.python.org/

9] J. J. Garrett Ajax: A New Approach to Web Applications, Feb 2005,
http://www.adaptivepath.com/ideas/essays/archives/000385.php

[10] D. Crockford RFC 4627 The application/json Media Type for JavaScript Object Notation (JSON),
http://www.ietf.org/rfc/rfc4627.txt

[11] Nokia Corporation Qt 4.6 Whitepaper, http://developer.qt.nokia.com/wiki/QtWhitepaper

[12] R. Brun, F, Rademakers ROOT - An Object Oriented Data Analysis Framework, Proc. AIHENP’96
Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
http://root.cern.ch/.

