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Abstract

The relative jet energy corrections are applied to raw jet energies measured
in the calorimeter to make the calorimeter response to jet energies uniform in
η. In Run 1, the missing ET projection fraction (MPF) was used to obtain the
corrections; however, in Run 2 the pT balancing of the leading two jets (∆pT ) in
dijet events has been used. In this note, the corrections obtained from the two
methods are compared. The corrections obtained from the two methods are found
to be different by ∼ 2 % in the region of 1 . η . 2, which can be explained by the
difference between central and plug jets in the energy leakage outside the jet cone
due to cascade showers in the calorimeter. The leakage effect is taken into account
by the ∆pT method, but not by the MPF method; therefore, the ∆pT method is
the more appropriate method to use to obtain the relative jet energy corrections.
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1 Introduction

The raw jet energies measured in the calorimeters have to be corrected for detector effects
before they are compared to predictions from the theoretical models. The generic jet
energy corrections to be applied to jets in the CDF Run 2 data were obtained and
described in detail elsewhere [1, 2]. Briefly, the generic jet energy corrections include:

• Relative energy corrections which correct jets back to an equivalent jet in the η
range of 0.2 < |η| < 0.6 to make the calorimeter response uniform in η,

• Multiple pp̄ interaction corrections which subtract the energy due to additional pp̄
interactions from the jet energy,

• Absolute jet energy corrections which convert the calorimeter cluster pT to the∑
pT of particles in the cone (calorimeter energy to particle energy),

• Underlying event corrections which subtract the energy due to underlying event
(fragmentation of partons which are not associated with the hard scattering) from
the jet energy,

• Out-of-cone corrections which accounts for the energy that leaks outside the jet
cone due to fragmentation effects and soft gluon radiation.

The generic jet energy corrections are comprised of several steps in order to allow people
to use a subset of them depending on their physics analyses.
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This note presents a study of the relative jet energy corrections which correct jets
for any variation with detector-η. The corrections are obtained using the property that
two jets should be balanced in pT apart from the effects of a soft third jet. In order to
obtain the corrections, we define a jet with 0.2 < |η| < 0.6 as a trigger jet and define
the other jet as a probe jet. When both jets are in the region of 0.2 < |η| < 0.6, the
trigger and probe jets are assigned randomly. The pT balancing fraction ∆pT f is then
formed:

∆pT f ≡ ∆pT

pave
T

=
pprobe

T − ptrigger
T

(pprobe
T + ptrigger

T )/2
. (1)

The correction factor to make, on average, the pprobe
T scale equal to ptrigger

T is given by:

β(∆pT ) ≡ pprobe
T

ptrigger
T

=
2+ < ∆pT f >

2− < ∆pT f >
(2)

This method is referred to as the ∆pT method throughout this note. Please note that,
for convenience, the definition of β is inversed with respect to the one in Ref. [3].

In Run 1, the missing ET projection fraction (MPF) along the probe jet defined as

MPF =

−→
E/T ·

−−−→
pprobe

T

(pprobe
T + ptrigger

T )/2
(3)

was used to obtained to the relative jet energy corrections [3, 4]. If there is no soft gluon
radiation and the underlying event is perfectly balanced in the transverse plane,

−→
E/T ·

−−−→
pprobe

T = ptrigger
T − pprobe

T , (4)

so that the the correction factor is

β(MPF ) ≡ pprobe
T

ptrigger
T

=
2− < MPF >

2+ < MPF >
. (5)

This MPF method has been claimed to be “less dependent on how well the third jet is
clustered and results in a better dijet balancing resolution” (see CDFnote-835 [5]). This
can be easily understood by considering a situation such as the one shown in figure 1.
When there is a third jet as shown in figure 1, obviously the leading two jets do not
balance; however, the missing ET should be still zero. Therefore, the MPF method is
expected to have a better balancing resolution and be less sensitive to third jet effects.

Nevertheless, the MPF method has not been used in Run 2 because the missing ET

in the CDF Run 2 data was not well understood when the Run 2 jet correction studies
were started. Now, the missing ET in the CDF Run 2 data is much better understood
(see e.g. CDFnote-6112); therefore, it would be nice to compare the corrections from the
∆pT and MPF methods and see which method yields the better and more appropriate
corrections.
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Figure 1: Schematic drawing of two high pT jets associated with a soft gluon radiation
in the transverse plane.

2 Data sets and event selections

In this study, the stntuples for the four data sets, Jet 20, Jet 50, Jet 70 and Jet 100
processed with the offline version 4.10.4 are used. The run interval used is 138819-165439
which corresponds to the period of February 9, 2002 to June 30, 2003. The following
event selections, which are basically the same as those used to obtain the generic jet
energy corrections [1, 2], were applied to the data samples in this study unless otherwise
noted. In order to study the dependence of the jet corrections on the event selections, the
cut thresholds are changed in some cases. In those cases, the applied cuts are explicitly
mentioned.

1. Good runs (using the good run list for “QCD no silicon” version 4.0 from the DQM
group [6]),

2. Number of jets, Njets ≥ 2,

3. Missing ET significant, E/T /
√∑

ET < 3,

4. At least one jet with 0.2 < |detector-η| < 0.6,

5. |zvertex| < 60 cm,

6. The azimuthal angle between the leading two jets, ∆φ(jet1, 2) > 2.5 radians,

7. Average pT of the leading two jets,
pave,min

T < pave
T (jet1, 2) ≡ (pjet1

T + pjet2
T )/2 < pave,max

T GeV/c,

8. pT of the third jet, pT (jet3) < pjet3,max
T GeV/c.

Distributions of number of jets, missing ET significance, zvertex and ∆φ(jet1, 2) before
and after the selection cuts are shown in figures 2, 3, 4 and 5 for the Jet 20, 50, 70 and
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Table 1: Selection cuts used for the four different data sets.

Data Set pave,min
T (GeV/c) pave,max

T (GeV/c) pjet3,max
T (GeV/c)

Jet 20 25 55 8

Jet 50 55 75 8

Jet 70 75 105 10

Jet 100 105 200 10

100 data samples (cone size R = 0.7), respectively. Distributions of pave
T (jet1, 2) and pT

of the leading three jets are also shown in figures 2, 3, 4 and 5. The cut thresholds on
pave

T (jet1, 2) and pT (jet3), i.e. pave,min
T , pave,max

T and pjet3,max
T depend on the data set and

are given in table 1.
The ∆φ and pT (jet3) cuts are applied to select events with smaller third jet activities

which will spoil the pT balancing between the leading two jets. The effect of the pT (jet3)
cut can be seen in figures 6, 7, 8 and 9. In these figures, it is seen that the missing ET

vector is running in the direction of the next-to-leading jet more frequently than in the
leading jet direction as naively expected. The tendency becomes more prominent as the
cut on pT (jet3) becomes tighter. The number of events which pass each selection cut
are summarized in table 2.
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Table 2: Number of events after each event selection cut for the four different data sets
and three different jet cone sizes.

Jet 20 Jet 50
R = 0.7 R = 0.4 R = 1.0 R = 0.7 R = 0.4 R = 1.0

Good runs 7,181,798 3,139,922
Njets ≥ 2 7,154,050 7,140,464 7,155,421 3,108,559 3,108,894 3,106,798

E/T /
√∑

ET < 3 7,144,660 7,126,839 7,146,560 3,079,539 3,079,538 3,079,539
1 jet, 0.2 < |η| < 0.6 2,518,017 2,499,902 2,497,898 1,340,425 1,331,713 1,338,635
|zvertex| < 60 (cm) 2,371,696 2,355,283 2,353,451 1,264,751 1,256,347 1,263,190
∆φ(jet1, 2) > 2.5 1,969,357 1,869,984 1,974,886 1,187,996 1,159,730 1,194,700
pave

T (jet1, 2) cut 509,068 244,886 852,659 321,152 196,764 442,657
pT (jet3) < pjet3,max

T 222,788 147,095 268,055 113,369 88,289 129,140
pT (jet3) < 5 GeV/c* 100,297 81,137 129,221 54,556 49,058 68,360

Jet 70 Jet 100
R = 0.7 R = 0.4 R = 1.0 R = 0.7 R = 0.4 R = 1.0

Good runs 1,424,112 1,720,717
Njets ≥ 2 1,386,223 1,386,932 1,383,850 1,578,861 1,582,805 1,569,491

E/T /
√∑

ET < 3 1,353,443 1,353,443 1,353,443 1,467,882 1,467,882 1,467,882
1 jet, 0.2 < |η| < 0.6 648,676 645,036 648,742 786,945 782,861 787,768
|zvertex| < 60 (cm) 612,011 608,647 612,269 742,360 738,607 743,158
∆φ(jet1, 2) > 2.5 586,184 575,587 589,420 720,476 710,620 724,454
pave

T (jet1, 2) cut 187,990 122,980 245,218 294,804 205,009 369,177
pT (jet3) < pjet3,max

T 62,923 50,467 71,939 96,308 77,689 112,728
pT (jet3) < 5 GeV/c* 31,235 28,501 39,742 49,645 44,720 64,489
∗ This cut is applied only when the dependence on the pjet3

T cut is studied.
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3 Comparisons between the ∆pT and MPF methods

In this section, comparisons between the relative jet energy corrections from the ∆pT

and MPF methods are presented. Details of the two methods are described in Section 1.
The ∆pT f and MPF are defined in Eqs. (1) and (3), respectively.

3.1 Shape of the ∆pTf and MPF distributions

Figures 10 and 11 show −MPF and ∆pT f distributions3 for all the detector-η bins in
the Jet 20 data (cone size R = 0.7). In all the detector-η bins, MPF distributions are
narrower than ∆pT f distributions, which is consistent with results from the study in
Run 0 [5]. Figure 12 shows the enlarged version of one of the plots in figure 10 and the
RMS of the MPF and ∆pT f distributions as a function of detector-η. The RMS of the
MPF distributions is smaller than that of the ∆pT f distributions by roughly 20% for
the cone size of R = 0.7 in the Jet 20 data.

3.1.1 For different cone sizes

Figures 13 and 14 are the same as figures 12 but for the cone sizes of R = 0.4 and 1.0,
respectively. In both cases, the RMS of the MPF distributions is again smaller than
that of the ∆pT f distributions. The difference in the RMS is about 30 % for the cone
size of R = 0.4 and about 15 % for R = 1.0. This can be explained by the fact that the
smaller cone size is more sensitive to the soft gluon radiation.

3.1.2 Dependence on the ∆φ(jet1, 2) and pT (jet3) cuts

Please note that the selection cuts ∆φ(jet1, 2) > 2.5 and pT (jet3) < 8 GeV/c are applied
to event used in figures 10-14 to reduce the effect of the gluon radiation. Figure 15 is
the same as figure 12 but the ∆φ(jet1, 2) > 2.5 and pT (jet3) < 8 GeV/c cuts are not
applied. When these two selection cuts are not applied, ∆pT f distributions become
wider; on the other hand, MPF distributions do not change significantly.

3.1.3 For different jet pT ’s

Comparisons between the MPF and ∆pT f distributions and the RMS of them as a
function of detector-η for the Jet 50, 70 and 100 data are shown in figures 16, 17 and
18, respectively. The difference between the MPF and ∆pT f distributions is smaller at
higher jet pT ’s; however, the RMS of the MPF distributions is always systematically
smaller than that of the ∆pT distributions, and the difference is larger for smaller cone
sizes.

3 When there is no soft gluon radiation etc, ∆pT f = −MPF ; therefore, −MPF distributions are
compared with ∆pT f distributions. However, −MPF distributions are sometimes referred to as MPF
distributions for simplicity.
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3.2 Relative jet energy corrections from the ∆pT and MPF
methods

Figure 19 shows the correction factors β(MPF ) and β(∆pT ), which are obtained from
the MPF and ∆pT methods, as a function of detector-η for the Jet 20 data (cone size
R = 0.7). The ratio of β(MPF ) to β(∆pT ) is also shown in figure 19. It was found that
the correction factor β is different between the MPF and ∆pT methods by approximately
2 % in the region of 1 . η . 2 and the difference is larger at higher |η|’s. Figures 20 and
21 are the same as figure 19 but for the cone sizes of R = 0.4 and R = 1.0, respectively.
The difference between β(MPF ) and β(∆pT ) is larger for smaller cone sizes.

3.2.1 For different jet pT ’s

Figures 22, 23 and 24 are the same as figures 19-21 but for the Jet 50, Jet 70 and Jet 100
data, respectively. The difference between β(MPF ) and β(∆pT ) is smaller at higher jet
pT ’s; however, β(MPF ) is always systematically larger than β(∆pT ) and the difference
between β(MPF ) and β(∆pT ) is larger for smaller cone sizes.

3.2.2 Dependence on the ∆φ(jet1, 2) and pT (jet3) cuts

Figures 25 and 26 show β(MPF ) and β(∆pT ) distributions with and without the
∆φ(jet1, 2) > 2.5 cut for the Jet 20 data (cone size R = 0.7). The differences in
both β(MPF ) and β(∆pT ) with/without the ∆φ(jet1, 2) > 2.5 cut are smaller than
1 % for the entire η region.

In figures 27 and 28, β(MPF ) and β(∆pT ) distributions without any pT (jet3) cut
and with the pjet3

T < 8 and 5 GeV cuts are shown as a function of detector-η. In the
region of |η| . 2.4, the difference in β due to the change in the the pjet3

T cut is within
∼ 1 % for both β(MPF ) and β(∆pT ); however, in the region of |η| & 2.4 the change in
β(∆pT ) is larger than that in β(MPF ).

Figures 29 and 30 are the same as figure 28 but for the cone size R = 0.4 and R = 1.0,
respectively. Similarly to the case of the cone size R = 0.7, the difference in β due to
the change in the pjet3

T cut is within 1 − 2 % for both β(MPF ) and β(∆pT ) in the
region of |η| . 2.4, but the difference in β(∆pT ) becomes larger than that in β(MPF )
at |η| & 2.4.

We expect that the widths of β(∆pT ) distributions become larger when the cut on
pT (jet3) is looser because of third jet activities; however, it is not very obvious why the
mean β(∆pT ) values at |η| & 2.4 depend on the pT (jet3) cut. Although it is beyond
the scope of this note to study dijet balancing at |η| & 2.4 in more detail, it might be
interesting to address this issue sometime later.

3.2.3 Difference between β(MPF ) and β(∆pT )

The bottom plot of figure 31 shows the ratio of β(MPF )/β(∆pT ) as a function of
detector-η without any pT (jet3) cut and with the pT (jet3) < 8 GeV and 5 GeV cuts
for the Jet 20 data (cone size R = 0.7). When the cut on pT (jet3) becomes tighter, the
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difference between β(MPF ) and β(∆pT ) at high |η|’s becomes smaller; however, about
2 % of difference in the region of 1 . |η| . 2 (and larger difference at |η| & 2) stays.
The difference between β(MPF ) and β(∆pT ) at high |η|’s is larger for the cone size of
R = 0.4 and smaller for the cone size of R = 1.0 as one can see in figures 32 and 33.

One of the possible explanations for this finding is that jets in the forward (plug
calorimeter) region have more energy leakage outside the jet cone due to showering
in the calorimeter. This is not surprising considering the fact that jets with a fixed
R =

√
∆η2 + ∆φ2 are smaller in X − Y space at higher |η|’s as shown in figure 34 and

the size of hadron showers (see e.g. Ref. [7]4). Showering in the calorimeter can cause
energy leakage outside the jet cone more easily for jets at higher |η|’s.

The ∆pT method compares the
∑

ET ’s inside the cones of the trigger jet and probe
jet, while the MPF method utilizes the vector sum of all the calorimeter tower ET ’s. It
means that the leakage effect is taken into account by the ∆pT method, but not by the
MPF method. If forward jets have more leakage outside the jet cone than central jets,
β(∆pT ) should be smaller than β(MPF ) at high |η|’s, and forward jet energies corrected
by the ∆pT method should be larger than those corrected by the MPF method. To check
the conjecture that forward jets have more leakage outside the jet cone than central jets
due to showering in the calorimeter, the energy leakage outside the jet cone is studied
as a function of η in the next section.

4 Energy leakage outside the jet cone vs detector-η

To check if jets in the forward (plug calorimeter) region have more energy leakage outside
the jet cone due to showering in the calorimeter, jet shape observed in the calorimeter
is studied as a function of detector-η in this section.

First, we measure the energy density ρ(r) defined as

ρ(r) =

∑
ET (r −∆r/2, r + ∆r/2)∑

ET (0, R)
, (6)

where r is a distance from the jet centroid, R is the jet cone radius, and the summa-
tions are carried out over all the calorimeter towers within the annuli specified in the
parentheses. Please keep in mind that ρ(r) includes the contribution of the energy due
to underlying event. Figures 35 and 36 show ρ(r) distributions for each detector-η bin
for the Jet 20, 50, 70 and 100 data samples. In these distributions, jets of the cone size
R = 0.4 are used and ρ(r) is shown over the range of 0 ≤ r ≤ 1.3.

4 In Ref. [7], the width of a shower that contains > 99 % of the visible energy at the shower peak is
parametrized by

W (E) = −17.28 + 14.28 ln E(GeV) cm,

or
W (E) = −4.03 + 6.39

√
E(GeV) cm.
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To evaluate the energy deposited outside the jet cone quantitatively, we form a ratio
of the

∑
ET in the annulus of R ≤ r < 1.3 to that of r < R,

fOOC =

∑
ET (R, 1.3)∑
ET (0, R)

. (7)

Please note that the sums in both the denominator and numerator of Eq. (7) include the
contribution of the underlying event energy and the sum in the numerator is not only
due to the energy deposited outside the cone R due to showering. However, assuming
that the underlying event energy is flat in η, the variation in fOOC along η indicates
the change of the energy leakage outside the jet cone as a function of η.

The value of fOOC of each distribution is shown in each plot in figures 35 and 36.
Figures 37 and 38 show fOOC versus detector-η for the cone size R = 0.4 for the Jet 20,
50, 70 and 100 data samples. Figures 37 and 38 are the same except for the vertical
scale. In figure 37, the vertical scale is fixed to 0.0− 0.9 to show the difference between
the four data sets; on the other hand, in figure 38 the vertical scale is adjusted for each
plot to show the shape of the distribution better. One can see that fOOC is about 3 %
larger in the region 1 . |η| . 2 than in the central region and becomes even larger at
|η| & 2.

Figures 39 and 40 are the same as figure 38 but for the cone size of R = 0.7 and
R = 1.0, respectively. One can see that fOOC is about 2 % larger in the region
1 . |η| . 2 than in the central region for the cone size R = 0.7, and for the cone size
R = 1.0 the change in fOOC is within ±2 %. These findings are consistent with what
we expected in section 3.2.3 from the difference between β(MPF ) and β(∆pT ).

5 Conclusions

In this note, the relative jet energy corrections obtained from the MPF and ∆pT methods
are compared. The corrections obtained from the two methods are found to be different
by ∼ 2 % in the region of 1 . η . 2, which can be explained by the difference between
central and plug jets in the energy leakage outside the jet cone due to showering in the
calorimeter. The leakage effect is taken into account by the ∆pT method, but not by
the MPF method; therefore, the ∆pT method is the more appropriate method to use to
obtain the relative jet energy corrections.
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Figure 2: Distributions of number of jets, missing ET significance, zvertex, the azimuthal
angle between the leading two jets ∆φ(jet1, 2), the average pT of the leading two jets
pave

T (jet1, 2), pT of the leading three jets, before and after each event selection cut for
the Jet 20 data sample.
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Figure 3: Distributions of number of jets, missing ET significance, zvertex, the azimuthal
angle between the leading two jets ∆φ(jet1, 2), the average pT of the leading two jets
pave

T (jet1, 2), pT of the leading three jets, before and after each event selection cut for
the Jet 50 data sample.
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Figure 4: Distributions of number of jets, missing ET significance, zvertex, the azimuthal
angle between the leading two jets ∆φ(jet1, 2), the average pT of the leading two jets
pave

T (jet1, 2), pT of the leading three jets, before and after each event selection cut for
the Jet 70 data sample.
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Figure 5: Distributions of number of jets, missing ET significance, zvertex, the azimuthal
angle between the leading two jets ∆φ(jet1, 2), the average pT of the leading two jets
pave

T (jet1, 2), pT of the leading three jets, before and after each event selection cut for
the Jet 100 data sample.
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Figure 6: Distributions of ∆φ between the missing ET and the leading three jets (cone
size R = 0.7) with the different cuts on pT (jet3) for the Jet 20 data.
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Figure 7: Distributions of ∆φ between the missing ET and the leading three jets (cone
size R = 0.7) with the different cuts on pT (jet3) for the Jet 50 data.
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Figure 8: Distributions of ∆φ between the missing ET and the leading three jets (cone
size R = 0.7) with the different cuts on pT (jet3) for the Jet 70 data.
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Figure 9: Distributions of ∆φ between the missing ET and the leading three jets (cone
size R = 0.7) with the different cuts on pT (jet3) for the Jet 100 data.
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Figure 10: Distributions of −MPF and ∆pT f in detector-η bins on the negative η side
for the Jet 20 data (cone size R = 0.7).
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Figure 11: Distributions of −MPF and ∆pT f in detector-η bins on the positive η side
for the Jet 20 data (cone size R = 0.7).
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Figure 12: (top) Distributions of −MPF and ∆pT f in the detector-η bin of −0.723 <
η < −0.616 for the Jet 20 data (cone size R = 0.7). (bottom) The RMS of the MPF
and ∆pT f distributions as a function of detector-η.
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Figure 13: (top) Distributions of −MPF and ∆pT f in the detector-η bin of −0.723 <
η < −0.616 for the Jet 20 data (cone size R = 0.4). (bottom) The RMS of the MPF
and ∆pT f distributions as a function of detector-η.
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Figure 14: (top) Distributions of −MPF and ∆pT f in the detector-η bin of −0.723 <
η < −0.616 for the Jet 20 data (cone size R = 1.0). (bottom) The RMS of the MPF
and ∆pT f distributions as a function of detector-η.

24



fTp∆-MPF, 
-1.5 -1 -0.5 0 0.5 1 1.5

N
u

m
b

er
 o

f 
E

ve
n

ts
 / 

0.
05

0

200

400

600

800

1000

1200

1400

1600
 < -0.616η-0.723 < 

fTp∆-MPF     
Mean  =  0.005   -0.007
RMS   =   0.225   0.355

fTp∆  
 -MPF

JET20,  R=0.7 < -0.616η-0.723 < 

η
-3 -2 -1 0 1 2 3

f
T

p∆
R

M
S

 o
f 

M
P

F
 o

r 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
f (black)Tp∆RMS of MPF (red) and 

fTp∆
MPF

f (black)Tp∆RMS of MPF (red) and 

Figure 15: (top) Distributions of −MPF and ∆pT f in the detector-η bin of −0.723 <
η < −0.616 for the Jet 20 data (cone size R = 1.0). (bottom) The RMS of the MPF
and ∆pT f distributions as a function of detector-η.
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(a) Cone size R = 0.7
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(b) Cone size R = 0.4
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(c) Cone size R = 1.0

Figure 16: (top) Distributions of −MPF and ∆pT f in the detector-η bin of −0.723 <
η < −0.616, and (bottom) the RMS of the MPF and ∆pT f distributions as a function
of detector-η for the Jet 50 data for the cone sizes of R = 0.7 (a), 0.4 (b) and 1.0 (c).
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(a) Cone size R = 0.7
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(b) Cone size R = 0.4
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(c) Cone size R = 1.0

Figure 17: (top) Distributions of −MPF and ∆pT f in the detector-η bin of −0.723 <
η < −0.616, and (bottom) the RMS of the MPF and ∆pT f distributions as a function
of detector-η for the Jet 70 data for the cone sizes of R = 0.7 (a), 0.4 (b) and 1.0 (c).
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Figure 18: (top) Distributions of −MPF and ∆pT f in the detector-η bin of −0.723 <
η < −0.616, and (bottom) the RMS of the MPF and ∆pT f distributions as a function
of detector-η for the Jet 100 data for the cone sizes of R = 0.7 (a), 0.4 (b) and 1.0 (c).
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Figure 19: (top) The correction factors β(MPF ) (red circles) and β(∆pT ) (black tri-
angles) from the MPF and ∆pT methods as a function of detector-η, and (bottom) the
ratio of β(MPF ) to β(∆pT ) as a function of detector-η for the Jet 20 data (cone size
R = 0.7).
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Figure 20: (top) The correction factors β(MPF ) (red circles) and β(∆pT ) (black tri-
angles) from the MPF and ∆pT methods as a function of detector-η, and (bottom) the
ratio of β(MPF ) to β(∆pT ) as a function of detector-η for the Jet 20 data (cone size
R = 0.4).

30



η
-3 -2 -1 0 1 2 3

η
-3 -2 -1 0 1 2 3

 β

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
>2.5 (default)φ∆(jet3)< 8 GeV, Tp JET20,  R=1.0

(MPF)β
)Tp∆(β

>2.5 (default)φ∆(jet3)< 8 GeV, Tp

η
-3 -2 -1 0 1 2 3

η
-3 -2 -1 0 1 2 3

) Tp
∆(β

(M
P

F
) 

/ 
β

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
)Tp∆(β(MPF) / β )Tp∆(β(MPF) / β

Figure 21: (top) The correction factors β(MPF ) (red circles) and β(∆pT ) (black tri-
angles) from the MPF and ∆pT methods as a function of detector-η, and (bottom) the
ratio of β(MPF ) to β(∆pT ) as a function of detector-η for the Jet 20 data (cone size
R = 1.0).
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Figure 22: (top) The correction factors β(MPF ) (red circles) and β(∆pT ) (black tri-
angles) from the MPF and ∆pT methods as a function of detector-η, and (bottom) the
ratio of β(MPF ) to β(∆pT ) as a function of detector-η for the Jet 50 data.32
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Figure 23: (top) The correction factors β(MPF ) (red circles) and β(∆pT ) (black tri-
angles) from the MPF and ∆pT methods as a function of detector-η, and (bottom) the
ratio of β(MPF ) to β(∆pT ) as a function of detector-η for the Jet 70 data.33
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Figure 24: (top) The correction factors β(MPF ) (red circles) and β(∆pT ) (black tri-
angles) from the MPF and ∆pT methods as a function of detector-η, and (bottom) the
ratio of β(MPF ) to β(∆pT ) as a function of detector-η for the Jet 100 data.
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Figure 25: (top) β(MPF ) as a function of detector-η without any ∆φ(jet1, 2) cut (red
circles) and with the ∆φ(jet1, 2) > 2.5 (rad) cut (black triangles) for the Jet 20 data
(cone size R = 0.7). No pT (jet3) cut is applied to these distributions. (middle) Same
as (a) but for β(∆pT ). (bottom) The ratio of β with the ∆φ(jet1, 2) > 2.5 (rad) cut to
that without the ∆φ(jet1, 2) cut as a function of detector-η for the MPF method (blue
circles) and ∆pT method (magenta triangles).
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Figure 26: Same as plots in figure 25, but the pT (jet3) > 8 GeV cut is applied to these
distributions.
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Figure 27: (a) β(MPF ) as a function of detector-η without any pT (jet3) cut (red circles),
and with the pT (jet3) < 8 GeV (black upward triangles) and 5 GeV (blue downward
triangles) cuts for the Jet 20 data (cone size R = 0.7). The ∆φ(jet1, 2) > 2.5 (rad) cut
is not applied to these distributions. (b) The ratio of β(MPF ) without any pT (jet3)
cut to that with the pT (jet3) < 8 GeV cut (red circles), and the ratio of β(MPF ) with
the pT (jet3) < 5 GeV cut to that with the pT (jet3) < 8 GeV cut (blue triangles) as a
function of detector-η. (c,d) same as (a,b) but for β(∆pT ).
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Figure 28: Same as plots in figure 27, but the ∆φ(jet1, 2) > 2.5 (rad) cut is applied to
these distributions.
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Figure 29: Same as plots in figure 28 but for the cone size R = 0.4.
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Figure 30: Same as plots in figure 28 but for the cone size R = 0.4.
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Figure 31: (a) β(MPF ) as a function of detector-η without any pT (jet3) (red circles)
cut, and with the pT (jet3) < 8 GeV (black upward triangles) and 5 GeV (blue downward
triangles) cuts for the Jet 20 data (cone size R = 0.7). The ∆φ(jet1, 2) > 2.5 (rad) cut
is not applied to these distributions. (b) Same as (a) but for β(∆pT ). (b) The ratio of
β(MPF ) to β(∆pT ) as a function of detector-η without any pT (jet3) cut (red circles),
with the pT (jet3) < 8 GeV cut (black upward triangles), and with the pT (jet3) < 5
GeV cut (blue downward triangles).
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Figure 32: (a) β(MPF ) as a function of detector-η without any pT (jet3) (red circles)
cut, and with the pT (jet3) < 8 GeV (black upward triangles) and 5 GeV (blue downward
triangles) cuts for the Jet 20 data (cone size R = 0.4). The ∆φ(jet1, 2) > 2.5 (rad) cut
is not applied to these distributions. (b) Same as (a) but for β(∆pT ). (b) The ratio of
β(MPF ) to β(∆pT ) as a function of detector-η without any pT (jet3) cut (red circles),
with the pT (jet3) < 8 GeV cut (black upward triangles), and with the pT (jet3) < 5
GeV cut (blue downward triangles).
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Figure 33: (a) β(MPF ) as a function of detector-η without any pT (jet3) (red circles)
cut, and with the pT (jet3) < 8 GeV (black upward triangles) and 5 GeV (blue downward
triangles) cuts for the Jet 20 data (cone size R = 1.0). The ∆φ(jet1, 2) > 2.5 (rad) cut
is not applied to these distributions. (b) Same as (a) but for β(∆pT ). (b) The ratio of
β(MPF ) to β(∆pT ) as a function of detector-η without any pT (jet3) cut (red circles),
with the pT (jet3) < 8 GeV cut (black upward triangles), and with the pT (jet3) < 5
GeV cut (blue downward triangles).
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Figure 35: Distributions of ρ(r) for the Jet 20, Jet 50, Jet 70 and Jet 100 data sets for
detector-η bins on the negative η side.
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Figure 36: Distributions of ρ(r) for the Jet 20, Jet 50, Jet 70 and Jet 100 data sets for
detector-η bins on the positive η side.
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Figure 37: fOOC as a function of detector-η for the cone size R = 0.4 for the Jet 20,
50, 70 and 100 data samples.
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Figure 38: fOOC as a function of detector-η for the cone size R = 0.4 for the Jet 20,
50, 70 and 100 data samples. The data points shown in this figure are the same as those
in figure 37; however, the vertical scale of each plot is adjusted in this figure so that one
can see the shape of the distributions better.
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Figure 39: fOOC as a function of detector-η for the cone size R = 0.7 for the Jet 20,
50, 70 and 100 data samples.
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Figure 40: fOOC as a function of detector-η for the cone size R = 1.0 for the Jet 20,
50, 70 and 100 data samples.
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