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Abstract

The relative jet energy corrections are applied to raw jet energies measured
in the calorimeter to make the calorimeter response to jet energies uniform in
7. In Run 1, the missing Ep projection fraction (MPF) was used to obtain the
corrections; however, in Run 2 the pr balancing of the leading two jets (Apr) in
dijet events has been used. In this note, the corrections obtained from the two
methods are compared. The corrections obtained from the two methods are found
to be different by ~ 2 % in the region of 1 < n < 2, which can be explained by the
difference between central and plug jets in the energy leakage outside the jet cone
due to cascade showers in the calorimeter. The leakage effect is taken into account
by the Apr method, but not by the MPF method; therefore, the Apyr method is
the more appropriate method to use to obtain the relative jet energy corrections.
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Introduction

The raw jet energies measured in the calorimeters have to be corrected for detector effects
before they are compared to predictions from the theoretical models. The generic jet
energy corrections to be applied to jets in the CDF Run 2 data were obtained and
described in detail elsewhere [1, 2]. Briefly, the generic jet energy corrections include:

Relative energy corrections which correct jets back to an equivalent jet in the n
range of 0.2 < |n| < 0.6 to make the calorimeter response uniform in 7,

Multiple pp interaction corrections which subtract the energy due to additional pp
interactions from the jet energy,

Absolute jet energy corrections which convert the calorimeter cluster pr to the
> pr of particles in the cone (calorimeter energy to particle energy),

Underlying event corrections which subtract the energy due to underlying event
(fragmentation of partons which are not associated with the hard scattering) from
the jet energy,

Out-of-cone corrections which accounts for the energy that leaks outside the jet
cone due to fragmentation effects and soft gluon radiation.

The generic jet energy corrections are comprised of several steps in order to allow people
to use a subset of them depending on their physics analyses.



This note presents a study of the relative jet energy corrections which correct jets
for any variation with detector-n. The corrections are obtained using the property that
two jets should be balanced in pr apart from the effects of a soft third jet. In order to
obtain the corrections, we define a jet with 0.2 < |n| < 0.6 as a trigger jet and define
the other jet as a probe jet. When both jets are in the region of 0.2 < |n| < 0.6, the
trigger and probe jets are assigned randomly. The pr balancing fraction Apzf is then

formed: \ s
A B APT B pé)ﬂro e p[]fzgger |
pr = _ave robe trigger : ( )
Pr (0™ + pr )/2
The correction factor to make, on average, the pir® scale equal to pir™9“" is given by:
probe
jZ 2+ < Aprf >
B(Apr) = = = (2)
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This method is referred to as the Apr method throughout this note. Please note that,
for convenience, the definition of 5 is inversed with respect to the one in Ref. [3].
In Run 1, the missing Er projection fraction (MPF) along the probe jet defined as

—_

- robe
MPF = rofT : g"igger (3)
(™ + py )/2
was used to obtained to the relative jet energy corrections [3, 4]. If there is no soft gluon

radiation and the underlying event is perfectly balanced in the transverse plane,
77 probe tri b
Tooe T, er To0e
Br-pr ™ = pr ¥ — o, (4)

so that the the correction factor is

probe
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gmpry=tr__ === -
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(5)

This MPF method has been claimed to be “less dependent on how well the third jet is
clustered and results in a better dijet balancing resolution” (see CDFnote-835 [5]). This
can be easily understood by considering a situation such as the one shown in figure 1.
When there is a third jet as shown in figure 1, obviously the leading two jets do not
balance; however, the missing Fr should be still zero. Therefore, the MPF method is
expected to have a better balancing resolution and be less sensitive to third jet effects.

Nevertheless, the MPF method has not been used in Run 2 because the missing Er
in the CDF Run 2 data was not well understood when the Run 2 jet correction studies
were started. Now, the missing Er in the CDF Run 2 data is much better understood
(see e.g. CDFnote-6112); therefore, it would be nice to compare the corrections from the
Apr and MPF methods and see which method yields the better and more appropriate
corrections.
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Figure 1: Schematic drawing of two high py jets associated with a soft gluon radiation
in the transverse plane.

2 Data sets and event selections

In this study, the stntuples for the four data sets, Jet_20, Jet_50, Jet_70 and Jet_100
processed with the offline version 4.10.4 are used. The run interval used is 138819-165439
which corresponds to the period of February 9, 2002 to June 30, 2003. The following
event selections, which are basically the same as those used to obtain the generic jet
energy corrections [1, 2|, were applied to the data samples in this study unless otherwise
noted. In order to study the dependence of the jet corrections on the event selections, the
cut thresholds are changed in some cases. In those cases, the applied cuts are explicitly
mentioned.

1. Good runs (using the good run list for “QCD no silicon” version 4.0 from the DQM
group [0]),

2. Number of jets, Njes > 2,

3. Missing Er significant, r/\/> Er < 3,

4. At least one jet with 0.2 < |detector-n| < 0.6,

5. |Zvertez] < 60 cm,

6. The azimuthal angle between the leading two jets, A¢(jetl,2) > 2.5 radians,

7. Average pr of the leading two jets,
p%ve,mzn < p%“e(jetl, 2) = (p%_’etl _i_p%_‘etQ)/z < p;ﬂve,max GGV/C,

8. pr of the third jet, pr(jet3) < pl™>™** GeV /.

Distributions of number of jets, missing Er significance, zyerer and A¢(jetl, 2) before
and after the selection cuts are shown in figures 2, 3, 4 and 5 for the Jet_20, 50, 70 and
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Table 1: Selection cuts used for the four different data sets.

Data Set p%”e’mm (GeV/e) pp ™™ (GeV/c) p%et&maz (GeV/c)

Jet_20 25 55 8
Jet_50 95 75 8
Jet_70 75 105 10
Jet_100 105 200 10

100 data samples (cone size R = 0.7), respectively. Distributions of p§’(jetl,2) and pr
of the leading three jets are also shown in figures 2, 3, 4 and 5. The cut thresholds on
pe(jetl, 2) and pr(jet3), i.e. pi™™, pire™® and piS> " depend on the data set and
are given in table 1.

The A¢ and pr(jet3) cuts are applied to select events with smaller third jet activities
which will spoil the pr balancing between the leading two jets. The effect of the pr(jet3)
cut can be seen in figures 6, 7, 8 and 9. In these figures, it is seen that the missing Frp
vector is running in the direction of the next-to-leading jet more frequently than in the
leading jet direction as naively expected. The tendency becomes more prominent as the
cut on pr(jet3) becomes tighter. The number of events which pass each selection cut

are summarized in table 2.



Table 2: Number of events after each event selection cut for the four different data sets

and three different jet cone sizes.

Jet_20 Jet_50

R=07 R=04 R=10| R=07 R=04 R=1.0

Good runs 7,181,798 3,139,922
Nijets > 2 7,154,050 7,140,464 7,155,421 | 3,108,559 3,108,894 3,106,798
Br/\/> Er <3 7,144,660 7,126,839 7,146,560 | 3,079,539 3,079,538 3,079,539
1jet, 0.2 < |n| < 0.6 | 2,518,017 2,499,902 2,497,898 | 1,340,425 1,331,713 1,338,635
|Zvertez| < 60 (cm) 2,371,696 2,355,283 2,353,451 | 1,264,751 1,256,347 1,263,190
Ap(jetl,2) > 2.5 1,969,357 1,869,984 1,974,886 | 1,187,996 1,159,730 1,194,700
PFe(jetl,2) cut 509,068 244,886 852,659 321,152 196,764 442,657
pr(jetd) < p];tg’max 222,788 147,095 268,055 113,369 88,289 129,140
pr(jetd) <5 GGV/C* 100,297 81,137 129,221 54,556 49,058 68,360

Jet_70 Jet_100
R=07 R=04 R=10| R=07 R=04 R=1.0

Good runs 1,424,112 1,720,717
Njets > 2 1,386,223 1,386,932 1,383,850 | 1,578,861 1,582,805 1,569,491
Fr/\/> Er <3 1,353,443 1,353,443 1,353,443 | 1,467,882 1,467,882 1,467,882
1 jet, 0.2 < |n| < 0.6 648,676 645,036 648,742 786,945 782,861 787,768
|Zvertex| < 60 (cm) 612,011 608,647 612,269 742,360 738,607 743,158
A¢p(jetl,2) > 2.5 586,184 575,587 589,420 720,476 710,620 724,454
pé(jetl, 2) cut 187,990 122,980 245,218 294,804 205,009 369,177
pr(jetd) < ;t?”max 62,923 50,467 71,939 96,308 77,689 112,728
pr(jet3) <5 GeV/c#< 31,235 28,501 39,742 49,645 44,720 64,489

* This cut is applied only when the dependence on the p/ &

cut is studied.



3 Comparisons between the Apr and MPF methods

In this section, comparisons between the relative jet energy corrections from the Apr
and MPF methods are presented. Details of the two methods are described in Section 1.
The Aprf and MPF are defined in Egs. (1) and (3), respectively.

3.1 Shape of the Apyf and MPF distributions

Figures 10 and 11 show —MPF and Apyf distributions® for all the detector-n bins in
the Jet 20 data (cone size R = 0.7). In all the detector-n bins, MPF distributions are
narrower than Aprf distributions, which is consistent with results from the study in
Run 0 [5]. Figure 12 shows the enlarged version of one of the plots in figure 10 and the
RMS of the MPF and Aprf distributions as a function of detector-n. The RMS of the
MPF distributions is smaller than that of the Apzf distributions by roughly 20% for
the cone size of R = 0.7 in the Jet_20 data.

3.1.1 For different cone sizes

Figures 13 and 14 are the same as figures 12 but for the cone sizes of R = 0.4 and 1.0,
respectively. In both cases, the RMS of the MPF distributions is again smaller than
that of the Apzf distributions. The difference in the RMS is about 30 % for the cone
size of R = 0.4 and about 15 % for R = 1.0. This can be explained by the fact that the
smaller cone size is more sensitive to the soft gluon radiation.

3.1.2 Dependence on the A¢(jetl,2) and pr(jet3) cuts

Please note that the selection cuts A¢(jetl,2) > 2.5 and pr(jet3) < 8 GeV/c are applied
to event used in figures 10-14 to reduce the effect of the gluon radiation. Figure 15 is
the same as figure 12 but the A¢(jetl,2) > 2.5 and pr(jet3) < 8 GeV/c cuts are not
applied. When these two selection cuts are not applied, Apyf distributions become
wider; on the other hand, MPF distributions do not change significantly.

3.1.3 For different jet pr’s

Comparisons between the MPF and Aprf distributions and the RMS of them as a
function of detector-n for the Jet_50, 70 and 100 data are shown in figures 16, 17 and
18, respectively. The difference between the MPF and Apyf distributions is smaller at
higher jet pr’s; however, the RMS of the MPF distributions is always systematically
smaller than that of the Apy distributions, and the difference is larger for smaller cone
sizes.

3 When there is no soft gluon radiation etc, Apyf = —M PF; therefore, —MPF distributions are
compared with Apy f distributions. However, —MPF distributions are sometimes referred to as MPF
distributions for simplicity.



3.2 Relative jet energy corrections from the Ap;y; and MPF
methods

Figure 19 shows the correction factors (M PF') and S(Apr), which are obtained from
the MPF and Apr methods, as a function of detector-n for the Jet_20 data (cone size
R =0.7). The ratio of 5(MPF') to 3(Apr) is also shown in figure 19. It was found that
the correction factor 3 is different between the MPF and Ap; methods by approximately
2 % in the region of 1 <7 < 2 and the difference is larger at higher |n|’s. Figures 20 and
21 are the same as figure 19 but for the cone sizes of R = 0.4 and R = 1.0, respectively.
The difference between (M PF') and 3(Apr) is larger for smaller cone sizes.

3.2.1 For different jet pr’s

Figures 22, 23 and 24 are the same as figures 19-21 but for the Jet_50, Jet_70 and Jet_100
data, respectively. The difference between 3(M PF') and 3(Apr) is smaller at higher jet
pr’s; however, B(M PF) is always systematically larger than 3(Apz) and the difference
between B(MPF) and S(Apr) is larger for smaller cone sizes.

3.2.2 Dependence on the A¢(jetl,2) and pr(jet3) cuts

Figures 25 and 26 show B(MPF) and [(Apr) distributions with and without the
Ag(jetl,2) > 2.5 cut for the Jet_20 data (cone size R = 0.7). The differences in
both S(MPF) and B(Apr) with/without the A¢(jetl,2) > 2.5 cut are smaller than
1 % for the entire 7 region.

In figures 27 and 28, S(M PF) and B(Apr) distributions without any pr(jet3) cut
and with the p/® < 8 and 5 GeV cuts are shown as a function of detector-n. In the
region of |n| < 2.4, the difference in 3 due to the change in the the ;tg cut is within
~ 1 % for both f(M PF) and B3(Apr); however, in the region of |n| 2 2.4 the change in
B(Apr) is larger than that in (M PF).

Figures 29 and 30 are the same as figure 28 but for the cone size R = 0.4 and R = 1.0,
respectively. Similarly to the case of the cone size R = 0.7, the difference in § due to
the change in the p’* cut is within 1 — 2 % for both (M PF) and B3(Apr) in the
region of |n| < 2.4, but the difference in F(Apz) becomes larger than that in (M PF)
at |n| 2 2.4.

We expect that the widths of B(Apy) distributions become larger when the cut on
pr(jet3) is looser because of third jet activities; however, it is not very obvious why the
mean ((Apr) values at || 2 2.4 depend on the pr(jet3) cut. Although it is beyond
the scope of this note to study dijet balancing at |n| 2 2.4 in more detail, it might be

interesting to address this issue sometime later.

3.2.3 Difference between (M PF) and ((Apr)

The bottom plot of figure 31 shows the ratio of G(MPF)/B(Apr) as a function of
detector-n without any pr(jet3) cut and with the pr(jet3) < 8 GeV and 5 GeV cuts
for the Jet_20 data (cone size R = 0.7). When the cut on pr(jet3) becomes tighter, the
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difference between S(M PF') and S(Apr) at high |n|’s becomes smaller; however, about
2 % of difference in the region of 1 < || < 2 (and larger difference at |n| 2 2) stays.
The difference between 3(MPF') and (Apr) at high |n|’s is larger for the cone size of
R = 0.4 and smaller for the cone size of R = 1.0 as one can see in figures 32 and 33.

One of the possible explanations for this finding is that jets in the forward (plug
calorimeter) region have more energy leakage outside the jet cone due to showering
in the calorimeter. This is not surprising considering the fact that jets with a fixed
R = \/An? + A¢? are smaller in X — Y space at higher |n|’s as shown in figure 34 and
the size of hadron showers (see e.g. Ref. [7]'). Showering in the calorimeter can cause
energy leakage outside the jet cone more easily for jets at higher |n|’s.

The Apr method compares the > Ep’s inside the cones of the trigger jet and probe
jet, while the MPF method utilizes the vector sum of all the calorimeter tower Er’s. It
means that the leakage effect is taken into account by the Apy method, but not by the
MPF method. If forward jets have more leakage outside the jet cone than central jets,
B(Apr) should be smaller than (M PF) at high |n|’s, and forward jet energies corrected
by the Apy method should be larger than those corrected by the MPF method. To check
the conjecture that forward jets have more leakage outside the jet cone than central jets
due to showering in the calorimeter, the energy leakage outside the jet cone is studied
as a function of 1 in the next section.

4 Energy leakage outside the jet cone vs detector-n

To check if jets in the forward (plug calorimeter) region have more energy leakage outside
the jet cone due to showering in the calorimeter, jet shape observed in the calorimeter
is studied as a function of detector-n in this section.

First, we measure the energy density p(r) defined as

Y Er(r—Ar/2,r + Ar/2)
N ZET(OaR) 7

(6)

p(r)

where r is a distance from the jet centroid, R is the jet cone radius, and the summa-
tions are carried out over all the calorimeter towers within the annuli specified in the
parentheses. Please keep in mind that p(r) includes the contribution of the energy due
to underlying event. Figures 35 and 36 show p(r) distributions for each detector-n bin
for the Jet_20, 50, 70 and 100 data samples. In these distributions, jets of the cone size
R = 0.4 are used and p(r) is shown over the range of 0 < r < 1.3.

4 In Ref. [7], the width of a shower that contains > 99 % of the visible energy at the shower peak is
parametrized by

W(E) = —17.28 + 14.28 In E(GeV) cm,

or

W(E) = —4.03 4 6.39\/E(GeV) cm.



To evaluate the energy deposited outside the jet cone quantitatively, we form a ratio
of the > Er in the annulus of R <r < 1.3 to that of r < R,

S Er(R,1.3)
Z ET(Ov R) '

Please note that the sums in both the denominator and numerator of Eq. (7) include the
contribution of the underlying event energy and the sum in the numerator is not only
due to the energy deposited outside the cone R due to showering. However, assuming
that the underlying event energy is flat in 7, the variation in fOOC' along 7 indicates
the change of the energy leakage outside the jet cone as a function of 7.

The value of fOOC' of each distribution is shown in each plot in figures 35 and 36.
Figures 37 and 38 show fOOC versus detector-n for the cone size R = 0.4 for the Jet_20,
50, 70 and 100 data samples. Figures 37 and 38 are the same except for the vertical
scale. In figure 37, the vertical scale is fixed to 0.0 — 0.9 to show the difference between
the four data sets; on the other hand, in figure 38 the vertical scale is adjusted for each
plot to show the shape of the distribution better. One can see that fOOC is about 3 %
larger in the region 1 < |n| < 2 than in the central region and becomes even larger at
Il 2 2.

Figures 39 and 40 are the same as figure 38 but for the cone size of R = 0.7 and
R = 1.0, respectively. Omne can see that fOOC is about 2 % larger in the region
1 < |n| £ 2 than in the central region for the cone size R = 0.7, and for the cone size
R = 1.0 the change in fOOC is within +2 %. These findings are consistent with what
we expected in section 3.2.3 from the difference between (M PF) and G(Apr).

FOOC = (7)

5 Conclusions

In this note, the relative jet energy corrections obtained from the MPF and Ap; methods
are compared. The corrections obtained from the two methods are found to be different
by ~ 2 % in the region of 1 < n < 2, which can be explained by the difference between
central and plug jets in the energy leakage outside the jet cone due to showering in the
calorimeter. The leakage effect is taken into account by the Apy method, but not by
the MPF method; therefore, the Apr method is the more appropriate method to use to
obtain the relative jet energy corrections.
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Figure 2: Distributions of number of jets, missing Fr significance, zyeper, the azimuthal
angle between the leading two jets A¢(jetl,2), the average pr of the leading two jets
pe(jetl, 2), pr of the leading three jets, before and after each event selection cut for
the Jet_20 data sample.
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Figure 3: Distributions of number of jets, missing Fr significance, zyeper, the azimuthal
angle between the leading two jets A¢(jetl,2), the average pr of the leading two jets
pe(jetl, 2), pr of the leading three jets, before and after each event selection cut for
the Jet_50 data sample.
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Figure 4: Distributions of number of jets, missing Fr significance, zyeper, the azimuthal
angle between the leading two jets A¢(jetl,2), the average pr of the leading two jets
pe(jetl, 2), pr of the leading three jets, before and after each event selection cut for
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Figure 7: Distributions of A¢ between the missing Fr and the leading three jets (cone
size R = 0.7) with the different cuts on pr(jet3) for the Jet_50 data.

17



Ag(met jetl) | w/o p(jet3) cut
~ Entries 187990
5% Mean 132.9
g 25000 ~w/o p .(jet3) cut p-(jet3)<10 GeV
g - - - p(jet3)<10 GeV Entries 81597
o 20000— .. p(jet3)<3 GeV Mean 143.2
= p-(jet3)<3 GeV
q>) 15000 Entries 31235
L Mean 147.8
‘S 10000
)
e 5000
£
é o | L L L L 1 L

200 300

Ag(met,jetl) (deg)

Ag(met,jet2) I .W/O p.(jet3) cut
S = Entries 187990
o 22000=- Mean 50.5
S 20000E-  ——wio p,(jet3) cut p,(jet3)<10 GeV
= 18000F—- |.___p(jet3)<10 GeV Entries 81597
o 16000 | .. p-(jet3)<3 GeV Mean 39.18
c 14000 p,(jet3)<3 GeV
°>" 12000 Entries 31235
L 10000 Mean 34.26
S 8000f—
E 6000 ;—
9 4000F-
§ 2000~
pd 0 - R | R

-100 200 300

Ag(met,jet2) (deg)

Ap(met,jet3 w/o p-(jet3) cut

= | Entries 173287
S - Mean 84.2
O 5000F- [——wiopGetd) cut p,(et3)<10 GeV
= |-~ pyliet3)<10 Gev Entries 66894
0 4000— Mean 89.22
= =
c -
® 3000
w =
“— -
o 2000 e
g - . -

1000f—
S -
S [~
pd o] = L

T T T 200 300
Ag(met,jet3) (deg)

Figure 8: Distributions of A¢ between the missing Fr and the leading three jets (cone
size R = 0.7) with the different cuts on pr(jet3) for the Jet_70 data.

18



Number of Events / (5 deg)

Ag(met,jetl) | w/o p(jet3) cut
- | Enfries 294804
© 50000 Mean 136.9
S - [—w/op (et3) cut p,(et3)<10 GeV
= 40000 [ |----pq(iet3)<10 GeV Entries 123256
" E ........ p(jet3)<3 GeV Mean 147.6
% 30000— p,(et3)<3 GeV
> - Entries 49645
Lu -
- 20000l Mean 151.2
© -
o -
O  10000—
e [
é : 1 L 1

0 -100 200 — 300
Ag(met,jetl) (deg)

Ap(met,jet2) w/o p .(jet3) cut
e = Entries 294804
S 40000E- Mean 46.33
S 35000 E_ _W/o. p T(jEtS) cut pT(Jet3)<10 GeV
= = |- -P(iet3)<10 GeV Entries 123256
@ 30000F=|....... p(et3)<3 GeV Mean 34.29
GCJ 25000 p-(jet3)<3 GeV
> S Entries 49645
L 200005_ Mean 30.53
‘S 15000
@  10000F-
Q —
S 5000
> -
Z ok PR - R

-100 200 300

Ag(met,jet2) (deg)

Ag(met jet3) | w/o p(jet3) cut
Entries 270318
9000 Mean 8248
8000 ——w/o p(jet3) cut p(et3)<10 GeV
7000 - - - - pr(jet3)<10 GeV I Entries 98770
6000 Mean 88.81

P T
-100 0

M-
100

200 300
Ag(met,jet3) (deg)

Figure 9: Distributions of A¢ between the missing Fr and the leading three jets (cone
size R = 0.7) with the different cuts on pr(jet3) for the Jet_100 data.

19



DetaBin 01, -5.00 9\ < -4.50 i © DetaBin 02, -4.50 <) < -4.00 i o DetaBin 03, -4.00 <) < -3.60 i o DetaBin 04, -3.60 <n < -3.00 h
o = < < 1
S og S of S og o o -MPF Ap.f
o of o of o o % wod Mean = 0.058 -0.042
S 04 S ok S o4 S . RMS 0211 0.271
o 0% T 3 Tk 3 o o
s &
0F 0% 0%
0.4 0.4 04 a-
o 0.4 X 3
2
04 0.4 0.4
oty y t : t T 5 D b s + T 5 it b s + T T 05 + T
-MPF, Apf -MPF, Ap;f -MPF, Ap;f -MPF, Apf
in 05, -3.00 ) < -2.61 0 DetaBin 06, -2.61 <) < -2.33 i 0l DetaBin 07, -2.33 <) <-2.11 ol DetaBin 08, -2.11 <1 < -1.93 h
S = S 100 S
S e -MPF Apf s -MPF Apf S -MPF Apf S -MPF Apf
2 sof Mean = 0162 0112 | 5 “F Mean =[0.175 0135 | 5 2 sod Mean =10.162 0.143
S RMS .208 0.276 S oF RMS .206 0.272 S [ % 202 0.268
> 400 > 600 > >
i} it} MPH i eod- m 6d [Z-MPH

@
8
T
T 1
> s
=]
23
¥
P
5 3

N

S

T

w

S
IS
5]
T

,_.

S
N
S
T

-15 -1 -0.5 0 0.5

-15 -1 -0.5 0 0.5 -15 -1 -0.5 0 0.5

15 I 05 0 05 1 . T . T . :
MPE, ap t MPE, apt mPE, apt mPE, apt
DetaBin 09, -1.93 <n <-1.78 h DetaBin 10, -1.78 <n < -1.64 ﬁ DetaBin 11, -1.64 <n <-1.52 DetaBin 12, -1.52 <n <-1.41
n Tl [Te}
S 90 S oo =] <
= -MPF Apf = -MPF Apf S of -MPF Apf = -MPF Apf
> i 3 Mean =p0.148 0.130 P 3 Mean =;0.139 0.119 » 6o Mean =;0.112 0.092 > OF Mean = 0.079 0.057
c F RMS .205 0.269 c of RMS .205 0.270 T RMS .209 0.267 T 5o RMS 0.206 0.269
2 sof @ 5 D 5 5]
i a ., F : i D a0
a0 a0 30 30
30 30 204
20 20 20
10 10 10 b
T 0% 5 T T -1 B E : X - B £ - ey
-MPF, Aprf -MPF, Aprf -MPF, Aprf -MPF, Aprf
DetaBin 13, -1.41 < n <-1.32 © DetaBin 14, -1.32 <n <-1.20 0 DetaBin 15, -1.20 <n <-1.10 o DetaBin 16, -1.10 <n < -1.00
=1 =] =] =1
s ¥ -MPF Apf = -MPF Apf S s -MPF Apf S Wb -MPF Apf
- Mean = 0.035 0017 | 3 *F Mean_= -0.031 -0.046] Meanp= -0.099 -0.117) 3 Mean = -0.101 -0.116
i RMS 0.211 0.270 T 40 RMS 0.214 0.266 z = 0.223 0.268 < 3 RMS_= 0.233 0.280
g g S & ot
w 3og- o w 20 ITRPYY X
F | Opif 20
20 20 15 15
10
1o 10 10
st s
IEETT TS 3 =T 1 - e : 5 1 - B ; o T ———p ==t
-MPF, Apf -MPF, Apf -MPF, Aprf -MPF, Apf
[ DetaBin 18.-0.92 9 <-0.82 o[ DetaBin 19.-0.82 9 <-0.72 o
< 35 = = =]
S 3¢ -MPF Apf S st -MPF Apf S ok -MPF Apf S s -MPF Apf
g 3 Mean = -0.050 -0.063| 7 4of Mean = -0.023 -0.031] 3 Meanp= -0.010 -0.019| & g0 = -0.004 -0.013
E 25( 0.233 0.284 g 35¢ 0.230 0.281 E a0 RMS 0.221 0.277 % 0.217 0.279
i 3 G » @ @

8
f
[
<
;
T

A5 L8005 4 g s T } 15 1 05 0 05 kot
-MPF, Apr -MPF, Ap; -MPF, Ap/]
© 50 q < -0.38 o L Del
=] < 35 S 40 O 2@
S & -MPF Ap,f S -MPF Ap,f S -MPF Apf S ok -MPF Apif
Q 3 Mean = 0.006 -0.006 Q a0 Mean = 0.009 0.003 E ¢ Mean = 0.013 0.004 Q P 3 0.017 0.006
S 30G RMS 0.217 0.266 S 25 0.220 0.279 S 30¢ RMS 0.213 0.271 S 16 0.217 0.279
> 25 > > > 14
N N ok N N
120
20 1o
15¢ e 3 L 3
10 10 [ 3
4 “+ b |
R A R T T - B B - ] T 1
-MPF, Aprf -MPF, Aprf -MPF, Aprf -MPF, Aprf
DetaBin 25, -0.20 q <-0.13 o DetaBin 26, -0.13 <n <-0.07 i o DetaBin 53, -0.07 <) < -0.03 o DetaBin 54, -0.03 <1 < 0.03 h
o o o o
o 40 -MPF Ap.f S &E -MPF Ap.f o 18 -MPF Ap.f S xE -MPF Ap.f
5 BE Mean = 0.001 0.003 ™ Mean -0.014 -0.016] 5 e Mean = -0.053 -0.060 Tn = -0.078 -0.080
g 30 RMS 0.225 0.281 g b 3 RMS 0.224 0.275 g 14 RMS, = 0.231 0.281 g 20 0.236 0.287
> > 2 > 1o >
1w 25¢E w w (IR
20 20 10
15 15 8 10¢-
10 ©
“F 4 s
s 2
-15 -1 0.5 S 1 1 -1 -. - . 5 1 -. 0. . 5 -15 -1 -0.5 0 0.5 _i L
-MPF, Aprf -MPF, Aprf -MPF, Aprf -MPF, Apyf

Figure 10: Distributions of —MPF and Apzf in detector-n bins on the negative n side
for the Jet_20 data (cone size R = 0.7).
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Figure 11: Distributions of —MPF and Aprf in detector-n bins on the positive 7 side
for the Jet_20 data (cone size R = 0.7).
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and Aprf distributions as a function of detector-n.
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Figure 13: (top) Distributions of —MPF and Aprf in the detector-n bin of —0.723 <
n < —0.616 for the Jet_20 data (cone size R = 0.4). (bottom) The RMS of the MPF
and Aprf distributions as a function of detector-7.
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Figure 14: (top) Distributions of —MPF and Aprf in the detector-n bin of —0.723 <
n < —0.616 for the Jet_20 data (cone size R = 1.0). (bottom) The RMS of the MPF
and Aprf distributions as a function of detector-n.
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Figure 15: (top) Distributions of —MPF and Aprf in the detector-n bin of —0.723 <
n < —0.616 for the Jet_20 data (cone size R = 1.0). (bottom) The RMS of the MPF
and Aprf distributions as a function of detector-7.
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Figure 16: (top) Distributions of —MPF and Aprf in the detector-n bin of —0.723 <
n < —0.616, and (bottom) the RMS of the MPF and Aprf distributions as a function
of detector-n for the Jet_50 data for the cone sizes of R = 0.7 (a), 0.4 (b) and 1.0 (c).
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Figure 17: (top) Distributions of —MPF and Aprf in the detector-n bin of —0.723 <
n < —0.616, and (bottom) the RMS of the MPF and Apyf distributions as a function
of detector-n for the Jet_70 data for the cone sizes of R = 0.7 (a), 0.4 (b) and 1.0 (c).
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Figure 18: (top) Distributions of —MPF and Aprf in the detector-n bin of —0.723 <
n < —0.616, and (bottom) the RMS of the MPF and Apyf distributions as a function
of detector-n for the Jet_100 data for the cone sizes of R = 0.7 (a), 0.4 (b) and 1.0 (c).
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Figure 19: (top) The correction factors (M PF) (red circles) and G(Apr) (black tri-
angles) from the MPF and Apy methods as a function of detector-n, and (bottom) the
ratio of (M PF) to B(Apr) as a function of detector-n for the Jet_20 data (cone size
R=0.7).
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Figure 20: (top) The correction factors (M PF) (red circles) and G(Apr) (black tri-
angles) from the MPF and Apy methods as a function of detector-n, and (bottom) the
ratio of (M PF) to B(Apr) as a function of detector-n for the Jet_20 data (cone size
R =10.4).
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Figure 21: (top) The correction factors (M PF) (red circles) and G(Apr) (black tri-
angles) from the MPF and Apy methods as a function of detector-n, and (bottom) the
ratio of (M PF) to B(Apr) as a function of detector-n for the Jet_20 data (cone size
R=1.0).

31



[p,(etd)<8 Gev, A5 (@efau) | JET50, R=0.7 [ p(e3)<8GeV,ap25 @efauit) | JET50, R=0.4
1.4 1.4
<28 r

o * B(MPF) af ° B(MPF)
g 4 Bapy) g 4 Bapy)
12F 12}
1.1% ‘/;”M,X 22220, 1.1% o Z._,}’& fh‘l -
IR / Fo f
09f 09f
o8 osf
07k o7k
06:101 o.e:w_g‘H‘__Hw_lwwoww
n n
B(MPF) / B(Ap5) B(MPF) / B(Ap7)
—~ 175¢ —~ 15C
Q r o o
% 1.2; % 1.2;
E\ 1.1=§ ; 1.152 %\
% 11f % 1af I
105F- 4 105 E\g\‘ .{/T
E ,\.\N M/./, = W
s O N tcttsigipgpegrentetonee B :
o.esf 095?
09:101 0‘9:“3 s 5
n n
(a) R=0.7 (b) R=0.4
[_p.(et3)< 8 GeV, Ag>2.5 (default) | JET50, R=1.0
14
R * B(MPF)
F A B(Apy)
12F
11f %“ﬁ f}ﬁ_*\}
1:
5 ”
osf
0sf
07
056 2 T 0 1
n
B(MPF) / B(Apy)
—~ 125
Y =
% 12
E 1.15f
a u
% 11f
105
i ©-0-0 000000000y, wmm
095
o9t 2 T 0 1
n
(c) R=1.0
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Figure 24: (top) The correction factors (M PF) (red circles) and G(Apr) (black tri-
angles) from the MPF and Aps; methods as a function of detector-n, and (bottom) the
ratio of (M PF') to B(Apr) as a function of detector-n for the Jet_100 data.
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Figure 25: (top) B(MPF) as a function of detector-n without any A¢(jetl,2) cut (red
circles) and with the Ag¢(jetl,2) > 2.5 (rad) cut (black triangles) for the Jet_20 data
(cone size R = 0.7). No pr(jet3) cut is applied to these distributions. (middle) Same
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Figure 26: Same as plots in figure 25, but the pr(jet3) > 8 GeV cut is applied to these
distributions.
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Figure 27: (a) S(M PF) as a function of detector-n without any pr(jet3) cut (red circles),
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Figure 28: Same as plots in figure 27, but the A¢(jetl,2) > 2.5 (rad) cut is applied to
these distributions.
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Figure 29: Same as plots in figure 28 but for the cone size R = 0.4.
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Figure 30: Same as plots in figure 28 but for the cone size R = 0.4.
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Figure 31: (a) B(MPF) as a function of detector-n without any pr(jet3) (red circles)
cut, and with the pr(jet3) < 8 GeV (black upward triangles) and 5 GeV (blue downward
triangles) cuts for the Jet_20 data (cone size R = 0.7). The A¢(jetl,2) > 2.5 (rad) cut
is not applied to these distributions. (b) Same as (a) but for 5(Apr). (b) The ratio of
B(MPF) to B(Apr) as a function of detector-n without any pr(jet3) cut (red circles),
with the pr(jet3) < 8 GeV cut (black upward triangles), and with the pr(jet3) < 5
GeV cut (blue downward triangles).
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Figure 32: (a) B(MPF) as a function of detector-n without any pr(jet3) (red circles)
cut, and with the pr(jet3) < 8 GeV (black upward triangles) and 5 GeV (blue downward
triangles) cuts for the Jet_20 data (cone size R = 0.4). The A¢(jetl,2) > 2.5 (rad) cut
is not applied to these distributions. (b) Same as (a) but for 5(Apr). (b) The ratio of
B(MPF) to B(Apr) as a function of detector-n without any pr(jet3) cut (red circles),
with the pr(jet3) < 8 GeV cut (black upward triangles), and with the pr(jet3) < 5
GeV cut (blue downward triangles).
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Figure 33: (a) B(MPF) as a function of detector-n without any pr(jet3) (red circles)
cut, and with the pr(jet3) < 8 GeV (black upward triangles) and 5 GeV (blue downward
triangles) cuts for the Jet_20 data (cone size R = 1.0). The A¢(jetl,2) > 2.5 (rad) cut
is not applied to these distributions. (b) Same as (a) but for 5(Apr). (b) The ratio of
B(MPF) to B(Apr) as a function of detector-n without any pr(jet3) cut (red circles),
with the pr(jet3) < 8 GeV cut (black upward triangles), and with the pr(jet3) < 5
GeV cut (blue downward triangles).
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Figure 35: Distributions of p(r) for the Jet_20, Jet_50, Jet_70 and Jet_100 data sets for
detector-n bins on the negative 7 side.
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Figure 36: Distributions of p(r) for the Jet_20, Jet_50, Jet_70 and Jet_100 data sets for
detector-n bins on the positive 7 side.
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Figure 37: fOOC as a function of detector-n for the cone size R = 0.4 for the Jet_20,
50, 70 and 100 data samples.
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Figure 38: fOOC as a function of detector-n for the cone size R = 0.4 for the Jet_20,
50, 70 and 100 data samples. The data points shown in this figure are the same as those
in figure 37; however, the vertical scale of each plot is adjusted in this figure so that one
can see the shape of the distributions better.
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Figure 39: fOOC as a function of detector-n for the cone size R = 0.7 for the Jet_20,
50, 70 and 100 data samples.
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Figure 40: fOOC as a function of detector-n for the cone size R = 1.0 for the Jet_20,
50, 70 and 100 data samples.
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