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Abstract: We theoretically study the model of a hybrid cavity–Bose–Einstein condensates (BEC)
system that consists of a two-level impurity atom coupled to a cavity–BEC system with radiation
pressure coupling, where the system is weakly driven by a monochromatic laser field. The steady-
states behavior of the entire system is researched in the framework of the impurity–cavity coupling
dispersive limit. We find that the multiple types of photon steady-state antibunching effects can be
obtained when only the dissipation of the cavity is included. Moreover, the strength and frequency
range of conventional steady-state antibunching effects of the cavity can be significantly modified by
the impurity atom and intrinsic non-linearity of BEC. This result shows that our study can provide
a method to tune the antibunching effects of the cavity field. In addition, the non-standard photon
blockade or superbunching effect with the suppression of two-photon correlation and enhancement of
three-photon correlation can be realized. The frequency range of the superbunching effect also can be
changed by the impurity atom and intrinsic non-linearity of BEC. Therefore, our study shows many
quantum statistical characteristics in a hybrid cavity–BEC quantum system and its manipulation.

Keywords: antibunching effects; superbunching effect; cavity–Bose–Einstein condensates; impurity;
nonlinearity

1. Introduction

In quantum optics and quantum information processing, the research of photon manip-
ulation has been an important issue [1–8]. It is believed that photon antibunching [9–11] is
the key requirement for realizing the generation and manipulation of photons. Such photon
antibunching effects could generate photon streams [12,13], leading to many applications
in non-linear quantum optics, such as ideal single photon sources [14,15] or entangled
photon sources [16–18]. So, we need to research the manipulation of photon antibunching
effects. Antibunching of photons (photon blockade) refers to the effects in which photons
generated in a driven non-linear system can block the generation of more photons in the
system. Thus, the prerequisite for realizing these conventional photon antibunching effects
in quantum systems is the presence of strong non-linearities in the system. So far, much
effort has been devoted to the antibunching effects of photons in various quantum systems,
e.g., circuit QED [19,20], cavity QED [21,22], and bare optomechanical systems [23,24].
However, the manipulation of multiple types of photon antibunching effects has not been
studied in the cavity–Bose–Einstein condensates (BEC) system.

The radiation pressure coupling between atom and light in the cavity–BEC system
can be realized due to the ultracold atoms being collectively coupled to the same optical
mode [25–27]. One of the advantages of this collective mode which plays the role of the
vibrational mode of a moving mirror or a membrane is coupling to the radiation pressure
of the cavity can be increased to strong coupling by increasing the number of atoms [28,29].
On the other hand, there are other different kinds of non-linearities in cavity–BEC systems
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with radiation pressure coupling. One of the most significant non-linear effects within
ultracold atoms is due to the atom–atom interaction, which can result in the squeezing of
the matter field of the ultracold atoms [30,31]. Both kinds of these non-linearities have a
great influence on the optical properties of the cavity output optical field [32–34]. Thus,
the cavity–BEC system provides an ideal platform for the generation and manipulation of
photon antibunching effects.

Motivated by the recent theoretical and experimental progress of impurity-doped-BEC
systems due to numerous applications in probing strongly correlated quantum many-body
states [35,36], quantum state engineering [37–45], quantum resource manipulation [46–49],
quantum metrology [50–53], and some new hybrid atom–cavity quantum systems [54–56].
In this paper, we propose a hybrid cavity–BEC quantum system with radiation pressure
coupling. This hybrid cavity–BEC system is composed of a two-level impurity atom, a cigar-
shaped BEC, and a Fabry–Perot cavity, where the impurity atom is immersed in the cigar-
shaped BEC to form the impurity-doped BEC systems, which are trapped inside a Fabry–
Perot cavity. This hybrid cavity–BEC system is an integration of the impurity-doped BEC
systems and the cavity–BEC systems with radiation pressure coupling. The approximate
analytical expression of the steady-state second-order correlation (SOC) and third-order
correlation (TOC) function for the cavity field is obtained. Then, we propose a scheme to
manipulate the multiple types of optical antibunching effects in the hybrid cavity–BEC
quantum system via a two-level impurity or intrinsic non-linearity of BEC.

This paper is organized as follows: in Section 2, we first describe the hybrid cavity–
BEC quantum system in the dispersive limit (i.e., far-off resonance). Moreover, the effective
Hamiltonian for our hybrid quantum system under the Bogoliubov approximation is
proposed. Secondly, we introduce the diagonalization process of the hybrid system Hamil-
tonian through two steps and provide the eigenvalues and eigenstates of the hybrid system.
In Section 3, we use an approximation method to obtain the analytical expression of the
zero-time-delay normalized SOC and TOC function of the cavity field for our hybrid system
in the weak pumping limit. Then, according to the SOC and TOC function, the effects of
impurity and BEC on the cavity field antibunching effects are analyzed. Finally, we give
conclusions of our work in Section 4.

2. Physical Model and Solution

The hybrid cavity–Bose–Einstein condensate (BEC) quantum system is composed
of a two-level impurity atom and cavity–BEC quantum system with radiation pressure
coupling. As schematically shown in Figure 1, the impurity atom is frozen in place [57,58].
The relevant internal level structure for the impurity atom is given by the atomic ground
state |g〉 and the excited state |e〉, which form a two-level system with transition frequency
ωi. This impurity atom will interact both with BEC and the cavity. Next, we will intro-
duce the effective Hamiltonian of the system and provide the corresponding eigenstates
and eigenvalues.

2.1. System Hamiltonian

The cavity–BEC quantum system consists of a cigar-shaped BEC of N two-level atoms
with transition frequency ωb and mass mb inside a Fabry–Pérot optical cavity with length L.
Thus, the Hamiltonian of the hybrid cavity–BEC quantum system with radiation pressure
coupling reads

H = HCB + HiB + HiC + Hd. (1)
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Figure 1. Schematic diagram of the cavity–BEC (cigar-shaped) system with a two-level impurity.

The BEC is confined in a cylindrically symmetric trap with a transverse trapping fre-
quency ω⊥ and the longitudinal confinement along the x direction is negligible [59]. In this
way, the dynamics of the system can be described within an effective one-dimensional
model by quantizing the atomic motional degree of freedom along just the x axis. The cavity
is driven at rate η =

√

2Pγa/ωp through one of the fixed mirrors by a laser with frequency
ωp and wave number k = ωp/c, where P is the laser power and γa is the decay rate of
the cavity. In our situation, the excited electronic state of the atoms can be adiabatically
eliminated, and the atomic spontaneous emission can be neglected when the detuning
∆b = ωp − ωb is orders of magnitude larger than the atomic linewidth [60]. We set h̄ = 1
throughout the paper. In the frame rotating at the pump frequency ωp, the Hamiltonian of
the cavity–BEC quantum system with radiation pressure coupling [60,61] is

HCB + Hd = ∆aa†a +
∫ L/2

−L/2
dxΨ†(x)

[

− 1
2m

∇2 + V(x) +
Us

2
Ψ†(x)Ψ(x)

]

Ψ(x) + η(a + a†), (2)

where a (a†) and Ψ(x)
(

Ψ†(x)
)

are, respectively, the annihilation (creation) operations of
the cavity and atomic field. ∆a = ωa − ωp is the detuning between the cavity and pump
laser. V(x) = U0 cos2(kx)a†a represents the atomic back action on the field. U0 = g2

0/∆b

is the optical lattice barrier height for per photon, where g0 is the vacuum Rabi frequency.
Us = 4πas/mbL2

0 is the non-linear interaction within the BEC, where as is the two-body
s-wave scattering length [62–64], and L0 is the waist radius of the optical potential. Hd =
η(a + a†) describes the driving process.

The coupling between the BEC and two-level impurity occurs in the form of a density–
density interaction [36,53,65]. The Hamiltonian describes

HiB =
ωi

2
σz + λ|e〉〈e|

∫ L/2

−L/2
dx|φ(x)|2Ψ†(x)Ψ(x), (3)

where λ is the interaction strength, and φ(x) is the wavefunction of a two-level impurity
atom in the x direction. The interaction strength between impurity and BEC is proportional
to the s-wave scattering length, which can be greatly increased by tuning an external
magnetic field near a Feshbach resonance [62] so that the interaction strength is greatly
enhanced, and does not change their population. This coherent collision will change the
relative phase of the two internal states. In addition, we assume that coherent collisions
between the impurity atom and the BEC will not further excite the motional state of the
single atom [36,65].
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The impurity is considered a two-level quantum system in our situation (i.e., qubit).
Under the rotating wave approximation, the interaction Hamiltonian between a qubit and
single-mode cavity field is given by

HiC = g(a†σ− + aσ+), (4)

where g is the coupling strength, and the Pauli operator σ+(σ−) is defined by σ+ = |e〉〈g|
(σ− = |g〉〈e|). We assume the detuning ωi − ωa is large enough such that direct atomic
transitions do not occur but where, nevertheless, dispersive interactions between a qubit
and single-mode cavity field do occur [66–69]. The effective qubit–cavity field interaction
Hamiltonian in the case of large detuning is given by

H′
iC =

g2

ωi − ωa

(

σ+σ− + a†aσz

)

, (5)

where the term g2σ+σ−/(ωi − ωa), present even in the absence of photons, is a kind
of cavity induced qubit Kerr non-linearity effect giving rise to an energy shift on the
bare excited state |e〉 of qubit. This cavity–qubit dispersion interaction sometimes as a
primary means of performing specific quantum work, and sometimes behaves as a kind of
noise [70–72].

In the weakly interacting regime, the intracavity photon number is so low that the
condition U0〈a†a〉 ≤ 10ωR is satisfied, where ωR = k2/2mb is the recoil frequency of the
condensate atoms. We can restrict ourselves to the first two symmetric momentum side
modes with momenta ±2k, which are excited by the atom–cavity field interaction [73].
In this way, because of the parity conservation and considering the Bogoliubov approxi-
mation, the atomic annihilation (creation) field operators Ψ(x)

(

Ψ†(x)
)

of the BEC can be
expanded as the following single-mode quantum fields

Ψ(x) =

√

N

L
+

√

2
L

cos(2kx)b, (6)

Ψ†(x) =

√

N

L
+

√

2
L

cos(2kx)b†, (7)

where the term
√

N/L is the constant number which is considered condensate mode.
The annihilation (creation) operator b (b†) in the second term is the Bogoliubov mode
of BEC, which corresponds to the quantum fluctuations of the atomic field about the
classical condensate mode [73]. By substituting the atomic field operator of Equation (6)
and Equation (7) into Equation (2), the Hamiltonian of the cavity–BEC quantum system
with radiation pressure coupling has the following form

H′
CB = δaa†a + Ωbb†b +

1
4

λs(b
2 + b†2) +

√
2

2
λCBa†a(b + b†) + λcka†ab†b + λskb†2b2, (8)

where δa = NU0/2 + ∆a is the Stark-shifted cavity frequency. This frequency shift is
induced by the interaction of cavity–BEC and related to the number of atoms in the conden-
sate. Ωb = 4ωR + λs is the frequency of the Bogoliubov mode, where λs = 8πasN/LmbL0
is the s-wave scattering frequency of the atomic collisions. λCB =

√
NU0/2 is the ra-

diation pressure coupling between the Bogoliubov mode of BEC and the cavity mode.
λck = U0/2 is the cross-Kerr non-linearity interaction between the BEC and cavity modes.
λsk = 3πas/LmbL2

0 = 3λs/8N is the intrinsic-Kerr non-linearity interaction in BEC.
One can easily find that the ratio of the radiation pressure coupling λCB to cross-Kerr

interaction λck is of the order of
√

N and atom–atom interactions interaction λs to intrinsic-
Kerr coupling λsk is of the order of N. Thus, the cross-Kerr term and intrinsic-Kerr term
are negligible in comparison to the radiation pressure and atomic collisions for very large
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values of N. The Hamiltonian of the cavity–BEC quantum system with radiation pressure
coupling reduces to

H′′
CB = δaa†a + Ωbb†b +

1
4

λs(b
2 + b†2) +

√
2

2
λCBa†a(b + b†). (9)

Similarly, by substituting Equations (6) and (7) into Equation (3), the Hamiltonian of
the two-level impurity-doped-BEC quantum system reads

H′
iB =

ωi

2
σz + ωiB|e〉〈e|+ λiB|e〉〈e|

(

b + b†
)

+
√

2λ′
iB|e〉〈e|b†b, (10)

where ωiB = λN/L is a frequency shift on the bare excited qubit state |e〉. This fre-
quency shift is induced by density–density interaction between the excited state of impu-
rity and classical condensate mode. λiB = λ

√
2N

∫ L/2
−L/2 dx|φ(x)|2 cos(2kx)/L and λ′

iB =
√

2λ
∫ L/2
−L/2 dx|φ(x)|2 cos2(2kx)/L are, respectively, linear coupling and coherent collisions

interaction between the excited state of impurity and Bogoliubov mode of BEC (i.e., quan-
tum fluctuations of the atomic field about the classical condensate mode

√
N/L). The ratio

of the linear coupling λiB to coherent collision interaction λ′
iB is of the order of

√
N. So,

the coherent collisions interaction term can be removed when N is large enough. The Hamil-
tonian of the two-level impurity-doped-BEC quantum system has the following form

H′′
iB =

ωi + ωiB

2
σz +

λiB

2
(σz + 1)

(

b + b†
)

, (11)

where operator σz is defined by σz = |e〉〈e| − |g〉〈g|.
Combining the Equations (5), (9), and (11), the total Hamiltonian of the three-body

hybrid cavity–BEC quantum system takes the form

Htot = δaa†a + Ωbb†b +
1
4

λs(b
2 + b†2) +

√
2

2
λCBa†a(b + b†)

+
g2

ωi − ωa

(

σ+σ− + a†aσz

)

+
ωi + ωiB

2
σz +

λiB

2
(σz + 1)

(

b + b†
)

= δaa†a + Ωbb†b +
ω′

i

2
σz + λiCa†aσz +

1
4

λs(b
2 + b†2)

+
1
2

[√
2λCBa†a + λiB(σz + 1)

]

(b + b†) +
g2

2(ωi − ωa)
, (12)

where ω′
i = g2/(ωi − ωa) + ωi + ωiB is the effective energy gap between the ground state

and the excited state of a two-level impurity atom. λiC = g2/(ωi − ωa) is the dispersive
interaction strength between the two-level impurity and the single-mode cavity field. In the
discussion that follows, we will diagonalize the Hamiltonian Htot in two steps, and the
last constant term will be neglected, which has no effect on the dynamics of the system.
One can see Appendix A for diagonalization details. The diagonal Hamiltonian H′′

tot takes
the form

H′′
tot = δaa†a + Ω′

bb†b +
ω′

i

2
σz + λiCa†aσz −

(

Ωb +
1
2

λs

)

α2(a†a)2. (13)

2.2. The Eigenvalues and Eigenstates of the System

Using the displacement and squeezing unitary transformation (i.e., Equations (A1)
and (A7)), the Hamiltonian of the system will take a diagonal form as follow:

H′′
tot = S(ζ)D(αa†a)HtotD

†(αa†a)S†(ζ), (14)
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which is a diagonal Hamiltonian with the following eigenvalues and eigenstates

En,m,e = δan + Ω′
bm +

ω′
i

2
+ λiCn −

(

λCBn +
√

2λiB

)2

2Ωb + λs
, (15)

En,m,g = δan + Ω′
bm − ω′

i

2
− λiCn − (λCBn)2

2Ωb + λs
, (16)

|ψ〉n,m,e = |n〉 ⊗ |m〉 ⊗ |e〉, (17)

|ψ〉n,m,g = |n〉 ⊗ |m〉 ⊗ |g〉, (18)

where |n〉 and |m〉, respectively, denote as the harmonic-oscillator number states of the
cavity and the Bogoliubov mode. Then the eigensystem of the Hamiltonian Htot can be
obtained by

H′′
tot|n〉|m〉|e(g)〉 = En,m,e(g)|n〉|m〉|e(g)〉,

HtotD
†(αa†a)S†(ζ)|n〉|m〉|e(g)〉 = En,m,e(g)D

†(αa†a)S†(ζ)|n〉|m〉|e(g)〉,
Htot|n〉|m̃(n)〉e(g)|e(g)〉 = En,m,e(g)|n〉|m̃(n)〉e(g)|e(g)〉, (19)

where the n-photon displacement squeezing number states in Equation (19) are defined by

|m̃(n)〉e(g) = D†(αe(g)a
†a)S†(ζ)|m〉. (20)

Thus, a general state of the system can be expressed as

|ϕ(t)〉 =
∞

∑
n=0

∞

∑
m=0

Cn,m,e(t)|n〉|m̃(n)〉e|e〉+
∞

∑
n=0

∞

∑
m=0

Cn,m,g(t)|n〉|m̃(n)〉g|g〉. (21)

3. Anti-Bunching Effect in the Cavity

To investigate the manipulation of the single-photon blockade, two-photon blockade
and non-standard photon blockade, we will use an approximation method to analytically
calculate the zero-time-delay normalized second-order correlation (SOC) and third-order
correlation (TOC) function of the cavity photons.

3.1. Approximate Analytical Results

In our situation, when the hybrid cavity–BEC quantum system is driven by an external
laser, there will also be a certain amount of dissipation. Then, we phenomenologically
add an anti-Hermitian term to Hamiltonian Equation (12) to describe the dissipation of
the cavity photons and neglect the BEC and the impurity decoherence when the rate
of impurity and Bogoliubov mode dissipation satisfy γc ≫ γb ≫ γi (i.e., γb and γi

are, respectively, Bogoliubov mode and impurity dissipation). Thus, the effective non-
Hermitian Hamiltonian [74] is

He f f = Htot + Hd − i
γc

2
a†a. (22)

The excitation number is small when the rate of external laser driving is in the weak-
driving regime η/γc ≪ 1. So we can work within the few excitation number subspace
spanned by the basis states |0〉, |1〉, |2〉, and |3〉 of the cavity field. The general state
Equation (21) of the system can be simplified as

|ϕ(t)〉 =
3

∑
n=0

∞

∑
m=0

Cn,m,e(t)|n〉|m̃(n)〉e|e〉+
3

∑
n=0

∞

∑
m=0

Cn,m,g(t)|n〉|m̃(n)〉g|g〉, (23)
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where Cn,m,e and Cn,m,g are probability amplitudes. According to the effective Hamiltonian
He f f , simplified wave function |ϕ(t)〉, and the Schrödinger equation, the equations of
motion for the probability amplitudes are

Ċ0,m,e(g)(t) = −iE0,m,e(g)C0,m,e(g)(t)− iη
∞

∑
m′=0

e(g)〈m̃(0)|m̃′(1)〉e(g)C1,m′ ,e(g)(t), (24)

Ċ1,m,e(g)(t) = −(
γc

2
+ iE1,m,e(g))C1,m,e(g)(t)− iη

∞

∑
m′=0

e(g)〈m̃(1)|m̃′(0)〉e(g)C0,m′ ,e(g)(t)

−i
√

2η
∞

∑
m′=0

e(g)〈m̃(1)|m̃′(2)〉e(g)C2,m′ ,e(g)(t), (25)

Ċ2,m,e(g)(t) = −(γc + iE2,m,e(g))C2,m,e(g)(t)− i
√

2η
∞

∑
m′=0

e(g)〈m̃(2)|m̃′(1)〉e(g)C1,m′ ,e(g)(t)

−i
√

3η
∞

∑
m′=0

e(g)〈m̃(2)|m̃′(3)〉e(g)C3,m′ ,e(g)(t), (26)

Ċ3,m,e(g)(t) = −(
3γc

2
+ iE3,m,e(g))C3,m,e(g)(t)− i

√
3η

∞

∑
m′=0

e(g)〈m̃(3)|m̃′(2)〉e(g)C2,m′ ,e(g)(t). (27)

The weak external driving, with a driving rate which is much less than the cavity
dissipation rate (i.e., η ≪ γc), excites a few photon-states in the cavity. Thus, Equations (24)–
(27) can be approximately solved when the higher-order terms in the zero-, one-, and two-
photon probability amplitudes are discarded [23], i.e., dropping the second, third, and third
terms in Equations (24), (25), and (26), respectively. We only keep parts of the same
magnitude in Equations (24)–(27). Then, the approximate solution of Equations (24)–(27)
are

C0,m,e(g)(t) = C0,m,e(g)(0)e
−iE0,m,,e(g)t, (28)

C1,m,e(g)(t) = −η
∞

∑
m′=0

e(g)〈m̃(1)|m̃′(0)〉e(g)C0,m′ ,e(g)(0)e
−iE0,m′ ,e(g)t

E1,m,e(g) − E0,m′ ,e(g) − i γc
2

, (29)

C2,m,e(g)(t) =
√

2η2
∞

∑
m′ ,m′′=0

e(g)〈m̃(2)|m̃′(1)〉e(g)

E2,m,e(g) − E0,m′′ ,e(g) − iγc

× e(g)〈m̃′(1)|m̃′′(0)〉e(g)C0,m′′ ,e(g)(0)e
−iE0,m′′ ,e(g)t

E1,m′ ,e(g) − E0,m′′ ,e(g) − i γc
2

, (30)

C3,m,e(g)(t) = −
√

6η3
∞

∑
m′ ,m′′ ,m′′′=0

e(g)〈m̃(3)|m̃′(2)〉e(g)

E3,m,e(g) − E0,m′′′ ,e(g) − i 3γc
2

× e(g)〈m̃′(2)|m̃′′(1)〉e(g)

E2,m′ ,e(g) − E0,m′′′ ,e(g) − iγc
× e(g)〈m̃′′(1)|m̃′′′(0)〉e(g)C0,m′′′ ,e(g)(0)e

−iE0,m′′′ ,e(g)t

E1,m′′ ,e(g) − E0,m′′′ ,e(g) − i γc
2

, (31)

where C1,m,e(g)(0) = C2,m,e(g)(0) = C3,m,e(g)(0) = 0 is the initial situation for an initial
empty cavity and C0,m,e(g)(0), C0,m′ ,e(g)(0), C0,m′′ ,e(g)(0), and C0,m′′′ ,e(g)(0) are determined
by the initial state of the Bogoliubov mode and two-level impurity. We assume ∆n = n′ − n.
The result of the Franck–Condon factors e(g)〈m̃′(n′)|m̃(n)〉e(g) is

〈m′|eβ(∆n)(b†−b)|m〉 =











√

m′ !
m! e−

[β(∆n)]2

2 [−β(∆n)]m−m′
Lm−m′

m′

(

[β(∆n)]2
)

, m ≥ m′
√

m!
m′ ! e

− [β(∆n)]2

2 [β(∆n)]m
′−mLm′−m

m

(

[β(∆n)]2
)

, m′
> m

(32)
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where L
j
i(x) is the associated Laguerre polynomial, and β =

√
2λCB(cosh ζ − sinh ζ)/(2Ωb +

λs) is a system-dependent constant. We assume the Bogoliubov mode is in squeezing vac-
uum states, initially. Then, the probability amplitudes take the form C0,m,e(g)(0) = δ0,mCe(g),
where Ce and Cg are determined by the initial state of the two-level impurity. So far,
the probability amplitude of the system wave function in the few-photon subspace can be
approximately obtained

C0,m,e(g)(t) = Ce(g)e
−iE0,0,e(g)t, (33)

C1,m,e(g)(t) = −η
〈m|eβ(b†−b)|0〉Ce(g)e

−iE0,0,e(g)t

E1,m,e(g) − E0,0,e(g) − i γc
2

, (34)

C2,m,e(g)(t) =
√

2η2
∞

∑
m′=0

〈m|eβ(b†−b)|m′〉
E2,m,e(g) − E0,0,e(g) − iγc

×
〈m′|eβ(b†−b)|0〉Ce(g)e

−iE0,0,e(g)t

E1,m′ ,e(g) − E0,0,e(g) − i γc
2

,

(35)

C3,m,e(g)(t) = −
√

6η3
∞

∑
m′ ,m′′=0

〈m|eβ(b†−b)|m′〉
E3,m,e(g) − E0,0,e(g) − i 3γc

2

× 〈m′|eβ(b†−b)|m′′〉
E2,m′ ,e(g) − E0,0,e(g) − iγc

×
〈m′′|eβ(b†−b)|0〉Ce(g)e

−iE0,0,e(g)t

E1,m′′ ,e(g) − E0,0,e(g) − i γc
2

. (36)

The antibunching effects of the cavity field include single-photon, two-photon block-
ade, and non-standard photon blockade in our situation. For the same externally driven
source, the anharmonicity of the cavity field energy level leads to a change in the prob-
ability of the cavity absorbing photons with the change in the number of photons in the
cavity. The ideal single-photon blockade is that there is only one photon in the cavity,
and the absorption of the previous photon will prevent subsequent photons from entering
the cavity, i.e., the probability of finding two photons in the cavity is largely suppressed
due to the energy restriction. Therefore, the correlation between intracavity photons and
subsequent photons is absent. The condition for the single-photon blockade is the zero-
time-delay normalized SOC function g(2)(0) < 1 (i.e., g(2)(0) → 0 corresponds to complete
single-photon blockade). Similarly, the two-photon blockade with two-photon bunching
and three-photon antibunching requires the SOC and TOC to satisfy g(2)(0) ≥ 1 and
g(3)(0) < 1 [75,76]. The non-standard photon blockade is characterized by the SOC and
TOC function satisfying the conditions g(2)(0) < 1 < g(3)(0) [77,78], where the two-photon
correlation is suppressed and the three-photon correlation is enhanced.

When the cavity field is in state Equation (23), the SOC and TOC function of single
mode optical field in occupation number representation reads

g(2)(0) =
〈a†a†aa〉
〈a†a〉2 =

2P2

(P1 + 2P2)2 , (37)

g(3)(0) =
〈a†a†a†aaa〉

〈a†a〉3 =
6P3

(P1 + 2P2 + 3P3)2 , (38)

where Pi = ∑
∞
m=0

(

|Ci,m,e(∞)|2 +
∣

∣Ci,m,g(∞)
∣

∣

2
)

is the probabilities for finding i photons in
the cavity. Based on Equation (33)–(36), the photon probabilities Pi (i = 0, 1, 2, 3), SOC
function g(2)(0), and TOC function g(3)(0) can be obtained.

3.2. The Manipulation of Single-Photon Blockade

The SOC function g(2)(0) shows that the photon statistics transits between super-
Poissonian (g(2)(0) > 1) and sub-Poissonian (g(2)(0) < 1) distributions with the change
of δa, which correspond to classical and non-classical effects, respectively. In particular,
the dips in these curves correspond to the single-photon resonant driving cases. In such a
case, a single photon can be resonantly excited into the cavity, but the probability of finding
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two photons in the cavity is largely suppressed due to the energy restriction. This effect of
the sub-Poissonian distributions is often referred to as single-photon blockade (g(2)(0) ≪ 1,
i.e., a dip).

Figure 2 describes the effect of the initial state of impurity on the single-photon
blockade in our hybrid quantum system. In Figure 2, we plot the SOC function g(2)(0)
as a function of δa when the impurity initial state parameters Cg and Ce take various
values. In Figure 2a, the initial state of impurity is ground (Cg = 1) or excited (Ce = 1)
state, the corresponding left dip D1 or right dip D2 are both smaller than 0.1. When the
initial state of impurity is a superposition state (Cg = Ce = 1/

√
2), the dips of D3 and D4

will appear simultaneously at the positions corresponding to dip D1 and D2, respectively,
in Figure 2b. However, the minimum value of g(2)(0) of the dip D3 and D4 becomes
larger than D1 and D2, respectively. Figure 2c also shows that the dips of D5(D7) and
D6(D8) will appear simultaneously at the same positions. One can find that the value
of dip D7(D5) and D6(D8) are both smaller (larger) than D3 and D4. The value of the
left (right, relative to the point δa = 0.5) dip will decrease as the probability amplitude
of Cg(Ce) increases. In general, the blockading range is larger when the initial state of
impurity is a superposition state compared to when the initial state of the impurity is
only a ground or excited state. Additionally, the single-photon blockade will be enhanced
with the increase in the impurity initial state probability amplitude. At the same time,
the position of the single-photon blockade does not change with the initial state of the
impurity probability amplitude.

Figure 2. The equal-time SOC function g(2)(0) of the cavity field versus the driving detuning δa

for various values of the impurity initial state parameters: (a) Cg = 0, Ce = 1 (red solid line),
Cg = 1, Ce = 0 (blue dashed line), (b) Cg = Ce = 1/

√
2 (red solid line), and (c) Cg =

√
3/2, Ce = 1/2

(red solid line), Cg = 1/2, Ce =
√

3/2 (blue dashed line). Other parameters are λs = 0.5, Ωb =

1, ω′
i = 1, λiC = 0.08, λCB =

√
2/2, λiB = 1, η = 0.01, γc = 0.1 in units of Ωb.
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The effect of the BEC internal interaction strength λs on the cavity single-photon
blockade is plotted in Figure 3 within a certain parameter range. The situation of λs > 0
(λs < 0) indicates repulsive (attractive) interaction within the BEC [63]. In the attractive
interaction (λs < 0) situation within the BEC, according to Figure 3a, the value of the left
and right dip (relative to the point δa = 0.2) decreases as the absolute value of λs increases
(D1 > D2 > D3 and D4 > D5 > D6).

Figure 3. The equal-time SOC function g(2)(0) of the cavity field versus the driving detuning δa for
various values of the BEC internal interaction strength λs: (a) λs = −0.8 (red solid line), λs = −0.5
(blue dashed line), λs = −0.2 (green dotdashed line) and (b) λs = 0.8 (red solid line), λs = 0.5 (blue
dashed line), λs = 0.2 (green dotdashed line). Other parameters are Ce = Cg =

√
2/2,Ωb = 1, ω′

i =

1, λiC = 0.08, λCB =
√

2/2, λiB = 1, η = 0.01, γc = 0.1 in units of Ωb.

Additionally, one can find that the area enclosed by the curve of g2(0) and g2(0) = 1
will increase with the increasing of the absolute value of λs, when moving to the right. In
Figure 3b, if the value of repulsive interaction strength λs becomes larger, the value of g2(0)
of the right dips is approximately invariant, but the left dips becomes greater. The minimum
value of g2(0) of the left dips is approximately equal to 1, so the single-photon blockade
is not obvious. The single-photon blockade in the left dips will also vanish if the value of
λs continues to increase. Thus, the BEC internal interaction can enhance or weaken cavity
single-photon blockade under certain conditions in our situation.

To further study the effect of the interaction induced by two-level impurity on the
cavity single-photon blockade in the hybrid cavity–BEC quantum system, we plot g2(0) as
a function of δa for different values of λiB and λiC in Figure 4. Comparing Figure 4a with
Figure 4b, we find the minimum value of g2(0) is smaller than 0.1 at the dip near δa ≈ 0.3
in the blue dashed line of Figure 4a. Thus, the strong single-photon blockade (g2(0) ≪ 1)
can be observed at λiB = 0.2. If the impurity–BEC interaction strength λiB is not equal to
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0.2, the variation of interaction λiB will increase the value of g2(0) of the dip, compared
with the situation λiB = 0.2. Thus, the single-photon blockade near but for λiB = 0.2 is
weakened. On the whole, if the value of λiB is smaller than the half of the effective transition
frequency ω′

i , the impurity–BEC interaction has a weak effect on the single-photon blockade
in Figure 4a. However, if the value of λiB becomes larger, the impurity–BEC interaction
results in a new obvious right dip (relative to the point δa = 0.5) in Figure 4b.

In the traditional radiation pressure type cavity–BEC system without impurity atom,
single-photon blockade occurs only at a particular optical driving frequency under a certain
condition. In Figure 4c, we demonstrate the fine-tuning of the impurity-cavity coupling
parameter λiC on the cavity single-photon blockade. Figure 4d,e are enlargements of the left
and right dip positions in Figure 4c. The coupling strength λiC can only move the position
and has no effect on the value of each dip. This means that the single-photon blockade can
be realized with optional frequencies by tuning the strength of impurity–cavity coupling.
At the same time, one can use the coupling strength λiC to fine-tune the energy level of
the cavity to make the single-photon blockade as strong as possible at a particular optical
driving frequency.

Figure 4. The equal-time SOC function g(2)(0) of the cavity field versus the driving detuning δa

for various values of the impurity–BEC interaction strength λiB and impurity–cavity interaction
strength λiC: (a) λiB = 0.1 (red solid line), λiB = 0.2 (blue dashed line), λiB = 0.3 (green dotdashed
line), (b) λiB = 0.5 (red solid line), λiB = 0.8 (blue dashed line), λiB = 1.0 (green dotdashed line),
and (c) λiC = 0.01 (red solid line), λiC = 0.04 (blue dashed line), λiC = 0.08 (green dotdashed line).
Other parameters are Ce = Cg =

√
2/2, λs = 0.5,Ωb = 1, ω′

i = 1, λCB =
√

2/2, η = 0.01, γc = 0.1,
(a) λiC = 0.08, (c) λiB = 1.0 in units of Ωb. (d,e) are enlargements of the left and right dip positions
in (c).
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3.3. The Manipulation of Two-Photon Blockade and Non-Standard Photon Blockade

The internal interaction of the system can prevent the system from absorbing the
further photons when there are already two photons in the cavity, which is the two-photon
blockade. That means the two-photon correlation will be enhanced, and the three-photon
correlation will be suppressed. Thus, the two-photon blockade can be used to generate the
non-classical photon pairs, which has potential for preparing the entangled photon sources.
The two-photon blockade with two-photon bunching and three-photon antibunching can
be obtained in our system. In order to study the manipulation of the two-photon blockade
in our situation, we firstly introduce the criterion of the two-photon blockade, which is
g(2)(0) > 1 and g(3)(0) < 1 [75,76,79]. The criterion of a strong two-photon blockade is
g(2)(0) > 1 and g(3)(0) < 0.01 [80]. By using these criteria, we can study the effect of
system parameter changes on the two-photon blockade distribution region in our situation.

The dependence of the zero-time-delay normalized SOC function g(2)(0) and TOC
function g(3)(0) on the detuning δa are shown in Figure 5 for different impurity initial states.
According to the two-photon blockade criterion, the two-photon blockade can be obtained
when the impurity initial states are single states or superposition states, as displayed
by the cyan areas in Figure 5. In Figure 5a or Figure 5b, the area of the two photon
blockade is single when the initial state of the impurity is in the ground or excited state.
However, the two-photon blockade region is enlarged when the impurity initial state
is in the superposition state by comparing Figure 5a–c. The underlying physics of this
phenomenon is attributed to the impurity initial state coherence, which can enhance the
two-photon correlation of cavity.

Figure 5. The equal-time SOC function g(2)(0) and TOC function g(3)(0) of the cavity field versus
the driving detuning δa for various values of the impurity initial state parameters: (a) Ce = 0, Cg = 1,
(b) Ce = 1, Cg = 0, and (c) Ce = Cg =

√
2/2. Other parameters are λs = 0.5, Ωb = 1, ω′

i = 1, λiC =

0.08, λCB =
√

2/2, λiB = 1, η = 0.01, γc = 0.1 in units of Ωb.
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In addition to this trends, we also find the superbunching effect or dubbed the non-
standard photon blockade in our system [76–78]. The yellow area in Figure 5c indicates
that the SOC function g(2)(0) is less than 1 and the TOC function g(3)(0) is greater than 1.
This corresponds to the two-photon correlation being suppressed and the three-photon
correlation being enhanced, expressing preferential three-photon bunching. Comparing
Figure 5a–c, one can find that the superbunching effect exists only when the impurity initial
state is a superposition state. Thus, the initial coherence of impurity is favorable for the
preparation of two-photon blockade and non-standard photon blockade.

In Figure 6, the correlation functions of g(2)(0) and g(3)(0) are shown in their depen-
dence on the detuning δa for different impurity–BEC coupling strengths. As one can see,
there are ranges of the detuning δa for which g(2)(0) > 1 is accompanied by the additional
condition for g(3)(0) < 1 in cyan area, which implies the occurrence of the two-photon
blockade. Comparing Figure 6a,b, the case of impurity–BEC coupling strength λiB = 0.8
has more cyan area than that of λiB = 0.5. However, according to Figure 6b,c, the ranges of
the cyan area of the two-photon blockade have not changed significantly when all other
parameters are the same except λiB. Moreover, the yellow areas in Figure 6b,c indicate
non-standard photon blockade similar to the one in Figure 5c. Comparing Figure 6b,c,
the range of detuning δa for realizing the non-standard photon blockade in impurity–BEC
coupling strength λiB = 1 is wider to some extent than that of λiB = 0.8. Combining
the above two points, the enhancement of the impurity–BEC interaction strength λiB in a
certain range can manipulate the two-photon blockade and non-standard photon blockade.

Figure 6. The equal-time SOC function g(2)(0) and TOC function g(3)(0) of the cavity field versus
the driving detuning δa for various values of the impurity–BEC coupling strength: (a) λiB = 0.5,
(b) λiB = 0.8, and (c) λiB = 1. Other parameters are Ce = Cg =

√
2/2 and λs = 0.5, Ωb = 1, ω′

i =

1, λiC = 0.08, λCB =
√

2/2, η = 0.01, γc = 0.1 in units of Ωb.
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4. Discussion

The hybrid cavity–BEC system is composed of a two-level impurity atom and a
cavity–BEC system with radiation pressure coupling. In spite of similarities between the
two kinds of optomechanical systems (with a moving mirror and a BEC), the radiation
pressure coupling in a cavity–BEC system is different from that in a bare optomechanical
system. Firstly, the frequency of the BEC Bogoliubov mechanical mode is a controllable
parameter in cavity–BEC systems [25,34]. However, the frequency of the mechanical mode
of the moving mirror is a fixed parameter in a bare optomechanical system. Secondly,
the radiation pressure coupling strength can be increased to strong coupling by increasing
the number of atoms [28,29]. As we know, the radiation pressure coupling is a key factor in
the non-linear structure of the cavity field energy level [24]. Thus, we believe that studying
the optical antibunching effects with cavity–BEC systems have greater advantages than a
bare optomechanical systems.

We add a two-level impurity atom to the cavity–BEC systems, which will complicate
the composition of the systems. The advantage that comes with this is that we have more
ways to manipulate the system. Hui Wang et al. studied the tuning of photon blockade
by a two-level system in hybrid optomechanical devices. They found that the photon
blockade and tunneling can be significantly changed by the transition frequency of the two-
level system and the coupling strength between the two-level system and the mechanical
resonator [81]; however, they did not consider the coupling between the impurity atoms
and the cavity field. We found that the dispersion interaction between a two-level impurity
and the cavity field also has the effects of manipulating the photon antibunching effects in
our situation.

Finally, there has been a great deal of work investigating two-photon blockade and
multi-photon blockade in a quantum system. Adam Miranowicz et al. demonstrated
how various photon blockades can be identified by analyzing photon-number correlations,
coherence and entropic properties, Wigner functions, and spectra of squeezing [82]. Qian
Bin et al. found that the two-photon blockade can be obtained even when the strong
system dissipation is included in a cascaded cavity–quantum-electrodynamics system [76].
Anna K-K et al. showed that two-photon blockade and other non-standard types of photon
blockade can be generated in a driven harmonic cavity, which only couples with a non-linear
(i.e., squeezed) reservoir [78]. Here, we have simultaneously studied the single-photon
blockade, two-photon blockade, and superbunching effect in a hybrid cavity–BEC system.
This has contributed to the study of the diversity of quantum systems and the integration
of quantum resources.

5. Conclusions

In this paper, we first introduce the hybrid cavity–BEC quantum system, which
consists of a Fabry–Perot cavity, cigar-shaped BEC, and a two-level impurity atom. Here,
the effective Hamiltonian of the hybrid cavity–BEC quantum system is proposed under
certain approximations. On this basis, the effective Hamiltonian of our system can be
successively diagonalized by using the displacement operator and the squeezing operator.
Secondly, we have studied the steady-state photon antibunching effects of the hybrid cavity–
BEC quantum system. In our situation, the cavity is weakly excited by a monochromatic
laser field. Thus, we can treat the driving term as a perturbation. Then, the approximate
analytical expression of the SOC and TOC function for the cavity photons can be obtained
by truncating the Hilbert space of the cavity.

The single-photon blockade, two-photon blockade, and non-standard photon blockade
can be observed in our system. We find that these antibunching effects of the cavity are
significantly affected within a certain parameter range by the internal interaction of BEC
and an impurity when the cavity–impurity interaction is under large detuning conditions.
The single-photon blockade can be enhanced with the increasing of the impurity initial
state probability amplitude and internal interaction strength of BEC. The increase in BEC–
impurity interaction can induce the new blockade dips and resonant peaks for the SOC
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function. Moreover, the position of the new blockade dips and resonant peaks can be
tuned if we change the BEC–impurity interaction strength. However, the cavity–impurity
interaction can only move the position and has no effect on the value, as well as quantity,
of blockade dips in the dispersive limit.

The two-photon blockade with two-photon bunching and three-photon antibunching
also can be observed in our hybrid quantum system when the cavity dissipation is taken
into account. Furthermore, the range of frequency for realizing the two-photon blockade
effect in our system can be expanded with the enhancement of the coherence of the impurity
initial state and BEC–impurity interaction. In particular, in the same parameters, we have
also observed the non-standard photon blockade or superbunching effect, where the
probability of measuring two photons at the same time is suppressed. Simultaneously,
the probability of obtaining three photons is enhanced. That is, our study may provide an
indirect manipulation scheme for the antibunching effect of the cavity field in the hybrid
cavity–BEC quantum system under certain approximations. The study of multiple types of
antibunching effects will advance the development of preparing single photon sources and
photon pairs and have potential applications in quantum information science.
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Appendix A. Diagonalization of the Hamiltonian Htot

Appendix A.1. The First Step of Diagonalization

The optical field excitation number and the impurity population are conservative in
Htot. The Bogoliubov mode has the form of driving fields and quadratically coupling. Thus,
in the first step of diagonalization, we use the like displacement operator

D(αa†a) = exp
[

αa†a(b† − b)
]

, (A1)

where the operator α is defined as

α =

√
2λCBa†a + λiB(σz + 1)

(2Ωb + λs)a†a
. (A2)

Using the form of the like displacement operator given in Equation (A1) and the
Baker–Campbell–Hausdorff formula, we have

b′ = D(αa†a)bD†(αa†a) = b − αa†a, (A3)

b′† = D(αa†a)b†D†(αa†a) = b† − αa†a. (A4)

The Hamiltonian Htot can be transformed into the following form

H′
tot = D(αa†a)HtotD

†(αa†a)

= δaa†a + Ωbb′†b′ +
ω′

i

2
σz + λiCa†aσz +

1
4

λs(b
′2 + b′†2)

+
1
2

[√
2λCBa†a + λiB(σz + 1)

]

(b′ + b′†), (A5)
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Substituting the Equation (A3) and Equation (A4) into the Equation (A5), the Hamilto-
nian H′

tot will be rewritten as

H′
tot = δaa†a + Ωbb†b +

ω′
i

2
σz + λiCa†aσz +

1
4

λs(b
2 + b†2)−

(

Ωb +
1
2

λs

)

α2(a†a)2, (A6)

Appendix A.2. The Second Step of Diagonalization

The Hamiltonian H′
tot is diagonal in terms of the creation and annihilation operators

of the optical field, while it is not diagonal in terms of the operators of the Bogoliubov
mode due to the presence of quadratically coupling term. Thus, we can select the squeezing
operator to diagonalize the Hamiltonian H′

tot. The definition of squeezing operator is

S(ζ) = exp
(

1
2

ζ(b2 − b†2)

)

, (A7)

where ζ is the squeezing parameter. The effect of this squeezing unitary transformation on
the operators b and b† will obtain the following operators

b′′ = S(ζ)bS†(ζ) = b cosh ζ + b† sinh ζ, (A8)

b′′† = S(ζ)b†S†(ζ) = b sinh ζ + b† cos ζ. (A9)

Then, applying the squeezing unitary transformation Equations (A8) and (A9) to
Equation (A6), the Hamiltonian of H′

tot becomes

H′′
tot = S(ζ)H′

totS
†(ζ)

= δaa†a + Ωbb′′†b′′ +
ω′

i

2
σz + λiCa†aσz +

1
4

λs(b
′′2 + b′′†2)

−
(

Ωb +
1
2

λs

)

α2(a†a)2. (A10)

Finally, the Hamiltonian H′′
tot will have the diagonalized form in terms of the operators

b and b† as follows:

H′′
tot = δaa†a + Ω′

bb†b +
ω′

i

2
σz + λiCa†aσz −

(

Ωb +
1
2

λs

)

α2(a†a)2, (A11)

where the effective Bogoliubov mode frequency Ω′
b and squeezing parameter ζ need to

satisfy the following system of algebraic equations:

Ωb

(

cosh2 ζ + sinh2 ζ
)

+ λs cosh ζ sinh ζ = Ω′
b, (A12)

Ωb cosh ζ sinh ζ +
1
4

λs

(

cosh2 ζ + sinh2 ζ
)

= 0, (A13)

cosh2 ζ − sinh2 ζ = 1. (A14)

Solving the above system of algebraic equations, the effective Bogoliubov mode
frequency Ω′

b and squeezing parameter ζ read

Ω′
b =

√

(

4ωR +
1
2

λs

)(

4ωR +
3
2

λs

)

, (A15)

cosh ζ =
1√
2

√

Ωb

Ω′
b

+ 1. (A16)

Note that this diagonalization method has been used to research the squeezed states
of BEC in cavity [83].
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