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Abstract
The soft limits of scattering amplitudes have been extensively studied due to
their essential role in the computation of physical observables in collider
physics. The universal factorisation that occurs in these kinematic limits has
been shown to be related to conservation laws associated with asymptotic, or
large, gauge symmetries. This connection has led to a deeper understanding
of the symmetries of gauge and gravitational theories and to a reformulation
of scattering amplitudes in a basis of boost eigenstates which makes manifest
the two-dimensional global conformal symmetry of the celestial sphere. The
recast, or celestial, amplitudes possess many of the properties of conformal
field theory (CFT) correlation functions which has suggested a path towards
a holographic description of asymptotically flat spacetimes. In this review
we consider these interconnected developments in our understanding of soft
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theorems, asymptotic symmetries and CFT with a focus on the structure and
symmetries of the celestial amplitudes and their holographic interpretation.

Keywords: amplitudes, gauge theory, gravity, holography
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1. Introduction

The surprising simplicity and hidden structure of scattering amplitudes motivates the search
for new conceptual formulations, beyond standard quantum field theory, to make practical
calculations more efficient and provide a gateway to new physics. The infrared (IR) behaviour
of scattering amplitudes, which captures the long-distance dynamics, provides a rich source of
such simplicity and structure. Understanding the origin of IR singularities, as due to the late-
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and early-time emission of massless particles, and their cancellation in physical observables
has been of practical importance going back to the work of Bloch and Nordsieck [1] and the
Kinoshita–Lee–Nauenberg theorem [2, 3]. The universality of IR behaviour, in the sense that
it does not depend on details of the short distance physics in any given process, reflects its
fundamental nature and, for the case of real radiation, is often referred to as a soft theorem.

The observation that in gravity and gauge theories, soft theorems are Ward identities for
asymptotic symmetries [4–12] has provided new impetus for the study of both. In particular,
for asymptotically flat spacetimes, the residual diffeomorphisms which preserve the appropri-
ate boundary conditions comprise an enhancement of the Poincaré group to include infinite
classes of transformations called supertranslations and superrotations [13–17]. These addi-
tional symmetries have been [18, 19] related to gravitational memory effects [20, 21] whose
potential observability is under active investigation. Such connections between soft theorems,
asymptotic symmetries and memory effects have led to important new insights into the physics
of theories with massless particles. The connection between superrotations and soft theorems
for gravitons led to the discovery of a Ward identity for a Virasoro symmetry acting on the
null boundary of flat spacetime [7, 22], which provided evidence for the proposal that quantum
gravity in asymptotically flat, four-dimensional spacetime is dual to a two-dimensional theory
which is called ‘celestial conformal field theory’ (CCFT).

The conformal properties of the theory become manifest upon transforming from the stand-
ard basis of plane waves to conformal primary wavefunctions [23, 24]5, which are boost eigen-
states and on which the Lorentz group acts as the group of conformal transformations of the
two-sphere at null infinity [30]. This reformulation of amplitudes in new variables, celestial
amplitudes, provides an interpretation as CCFT correlation functions of operators labelled by
their scaling dimensions and spin. This remarkable insight has led to the active investigation
of the CCFT structure from both the bulk amplitude perspective and through applying known
CFT methods.

In this reviewwe aim to provide an overview of developments in these areas and the connec-
tions between them. We start in section 2 with a review of soft theorems in gravity and gauge
theories. We then briefly discuss asymptotic symmetries, their Ward identities and relation to
soft theorems in section 3. This leads to the topic of celestial amplitudes in section 4, where we
describe the basic holographic map and the properties of amplitudes in the conformal primary
basis. In section 5 we consider the symmetries of celestial amplitudes, the algebraic structure
of these symmetries, and their implications. Finally we discuss some open questions and future
directions in section 6.

2. Soft theorems

Perhaps the original example of universal IR behaviour in scattering amplitudes is the observa-
tion that the low energy limit of photon scattering by charged matter is given by the Thomson
cross section which depends only on the charge and mass of the scatterer and not its spin or
any details of its structure [31]. Low [32] and Gell-Mann and Goldberger [33] extended this
result beyond the strict zero-frequency limit to the term linear in the photon frequency where
dependence on the spin angular momentum appears. The explicit computations were done for
spin- 12 particles but the results, [32] in particular, were based on gauge and Lorentz invariance
and so could be argued to hold for any system with these symmetries [34–36].

5 For older work on expressing the S-matrix in the Lorentz basis see e.g. [25–29] for further references.
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Figure 1. Contributions to the photon emission amplitude. (a) and (b) Give rise to soft
poles while (c) contributes non-singular terms.

While such results pointed to the universal nature of soft limits, the constrained kinematics
obscured certain key features. Low’s [37] considerations of photon Bremsstrahlung radiation
from spin-0 and spin- 12 particles, generalised by Burnett and Kroll [38], demonstrated the uni-
versal factorisation of amplitudes with a soft-photon into soft factors and non-radiative lower
point amplitudes. The Low–Burnett–Kroll (LBK) result depends on the fact that the amplitude
with a photon contains two types of contributions: those for which the photon couples to an
external line, which have a pole in the photon energy, and terms where the photon is coupled
to an internal line, which do not have a singular contribution due to the off-shell nature of
the virtual particles. The key roles played by Lorentz symmetry and on-shell gauge invariance
motivatedWeinberg [39, 40] and Gross and Jackiw [41] to extend these results to graviton scat-
tering. Jackiw [42] subsequently showed that the graviton soft theorems could also be derived
from gauge invariance in a quite general fashion.

2.1. Leading soft theorems

As an example, let us consider a scattering process in QED with incoming electrons, with
momenta pi and charges Qi, producing outgoing electrons with momenta p ′

i and charges Q ′
i ,

interacting with an outgoing photon of momentum q—see figure 1. The contribution to the
scattering amplitude A(p,p ′,q) from the photon coupling to an incoming leg, figure 1(a), is
given by6

QiT(pi− q)
(−p/i+ q/+m)ϵ/(q)

(pi− q)2 +m2
u(pi)

=−QiT(pi− q)
[ϵ(q) · pi+ iϵ(q)µqνSµν

q · pi

]
u(pi) (2.1)

where ϵµ(q) is the outgoing photon polarisation vector and Sµν = i
4 [γ

µ,γν ] is the spin angu-
lar momentum generator acting on incoming electrons. T(pi− q) is the extrapolation, to the
case with one leg shifted by q to a non-physical momentum, of the elastic scattering amp-
litude for n electrons,A(p,p ′) = T(p,p ′)u(pi), with an incoming electron wavefunction, u(pi),
stripped off. Other contributions come from vertices where the photon connects to outgo-
ing electrons, figure 1(b), which have the same form as above but with the internal line
having momentum (p ′

i + q) which results in an important sign, and contributions which are

6 Our conventions are those of [43] with metric signature (−,+,+,+).
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non-singular in the soft limit where the photon connects to an internal line, figure 1(c), which
we denote ϵµ(q)Nµ(p,p ′,q). We can thus write the amplitude as

A(p,p ′,q) =
∑

incoming

−QiT(pi− q)
ϵ(q) · pi+ iϵ(q)µqνSµν

q · pi
u(pi)

+
∑

outgoing

Q ′
i ū(p

′
i )
ϵ(q) · p ′

i + iϵ(q)µqν S̄µν

q · p ′
i

T̄(p ′
i + q)

+ ϵ(q)µN
µ(p,p ′,q). (2.2)

In the soft limit, where |q · pi|⩽ |pi · pj| for any external momenta pi and pj, we have at leading
order T(pi− q)u(pi)≈A(p,p ′), and so dropping all non-singular terms, we find the leading
soft theorem given as:

A(p,p ′,q)≈

 ∑
outgoing

Q ′
i
ϵ(q) · p ′

i

q · p ′
i

−
∑

incoming

Qi
ϵ(q) · pi
q · pi

A(p,p ′). (2.3)

This result made use of the specifics of QED through the form of the vertex. However,
Weinberg [39] showed that Lorentz invariance uniquely fixes the form of the soft photon
coupling, for particles of charge Q and arbitrary spin, to be proportional to the above result,
i.e. ∝ Qϵ(q) · p δℓ,ℓ ′ , where ℓ and ℓ ′ are the initial and final helicities of the emitting particle.
Weinberg also showed that it is always possible to write the amplitude as a contraction of the
polarisation vector and a Lorentz vectorA(p,p ′,q) = ϵµ(q)Aµ(p,p ′,q). The polarisation vec-
tor is not a true Lorentz vector and has a non-trivial little-group transformation, ϵµ → ϵµ + qµ,
also called an on-shell gauge transformation. Lorentz invariance of the scattering amplitude
thus implies that it must vanish when εµ is replaced by the momentum, qµAµ = 0. Con-
sequently, by using the soft theorem, one sees that

∑
incomingQi =

∑
outgoingQ

′
i and so charge

is conserved for arbitrary scattering processes in any Lorentz invariant theory of photons.
Weinberg generalised these considerations to massless particles of arbitrary integer spin

s where the amplitude can be written in terms of products of the spin-1 polarisation vectors
ϵµ(q) and Aµ1...µs(q,p), a symmetric rank-s Lorentz tensor,

A(p,q) = ϵµ1(q) . . . ϵµs(q)A
µ1...µs(p,q), (2.4)

where for convenience we now denote all external legs, incoming and outgoing, by p. Lorentz
invariance implies that the amplitude must vanish when any of the polarisation vectors are
replaced by the momentum qµ. For the spin-2 case of the graviton, the corresponding soft
theorem is

A(p,q)≈

[∑
i

κi
2
ηi
ϵµν(q)p

µ
i p

ν
i

q · pi

]
A(p) (2.5)

where ϵµν(q) = ϵµ(q)ϵν(q) is the polarisation tensor of the outgoing soft graviton written as a
product of spin-one polarisation vectors7, κi is the ‘gravitational charge’ of the ith particle and
the sum goes over all external legs with ηi =+1 for outgoing particles and −1 for incoming.
Repeating the argument from Lorentz invariance and using momentum conservation implies
that all theκimust be equal toκ=

√
32πG and so, with the conventional definition of Newton’s

constant, that all particles have a gravitational mass equal to the inertial mass. Continuing to

7 This polarisation tensor is obviously symmetric and if we further take ϵµ(q) to be null, as will be the case for circular
polarisations, it will be traceless as is appropriate for a massless spin-2 particle.
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higher spin, s> 2, the soft-limit is incompatible with Lorentz invariance which implies the
impossibility of long-range higher-spin fields.

One important generalisation is to non-abelian gauge fields where the soft limit of quantum
chromodynamics (QCD) amplitudes has a complicated and interesting structure which plays
a key role in understanding the physics of high-energy colliders. However, at tree-level [44–
47], the soft factorisation is very similar to that of QED but we must replace the charge in the
soft, also called the eikonal, factor by its matrix valued analogue Q ϵ·p

q·p → gT aR
ϵ·p
q·p where g is

the gauge coupling and T aR is the gauge group generator for the soft gluon with colour index a
acting on the external leg in representation R.

2.2. Sub-leading soft theorems

The gauge invariance arguments of [37, 38], can be used to generalise the soft theorems to sub-
leading orders. To continue with the example of tree-level QED we consider a photon, now
with polarisation vectors ϵµℓ labelled by definite helicity ℓ=±, and momentum δq, where
δ � 1 is an expansion parameter which defines the soft limit, in the scattering amplitude of n
particles with hard momenta pi and helicities ℓi:

Aℓ1,...,ℓn,±(p, δq) =

[ ∞∑
a=0

δ−1+aS(a)±

]
Aℓ1,...,ℓn(p). (2.6)

It is of course always possible to make such an expansion of a tree-level amplitude, the power
of the soft theorems lies in the fact that certain leading terms are universal, in that they are
independent of the details of the amplitude. The soft operators S(a)± are given as a sum of
differential operators acting on each external leg and depending only on the charge, momentum
and spin of that leg. One subtle point is the extrapolation of the amplitude on the right-hand
side of (2.6) to non-physical momenta. The hard momenta satisfy n+ 1 particle conservation

n∑
i=1

ηipi =−q (2.7)

which is inappropriate for the n-particle amplitude. This is different than the prescription of
[38] and thus leads to a different, but equivalent, form of the soft theorem. Using the condition
qµAµ = 0 for the amplitude (2.2) implies that, to order O(δ0), we have

−qµNµ(p,0) =
1
δ

n∑
i=1

ηiQiA(p)+ qµ
n∑
i=1

Qi
∂

∂pµi
A(p) (2.8)

where we have suppressed the helicity indices on the amplitude and the derivative should be
understood as not acting on wavefunction, u(pi) or ū(pi) as appropriate, in the amplitude. The
ηi factors cancel in the second sum due to our convention for the hard momenta (2.7). Here
we have used the assumption that Nµ(p, δq) has only analytical dependence on q, which is
certainly valid at tree-level, so is independent of q to this order. We can further use charge con-
servation to drop the leading 1/δ contribution. This relation determines Nµ up to the addition
of terms vµ independently satisfying qµvµ = 0, however no such terms local in q are possible.
This expression for Nµ can be used to find that

Aµ =
n∑
i=1

Qi

[
ηip

µ
i

δq · pi
+
qνpµi
q · pi

∂

∂pνi
− iqνS

µν
i

q · pi
− ∂

∂piµ

]
A(p)+O(δ), (2.9)
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where we can now view the derivatives as acting on the full amplitude but Sµνi should be
then understood to be in the appropriate representation for the ith external particle including
the cancelling contribution from passing the spinor wavefunction through the action of the
momentum derivatives. Defining the orbital

Lµνi = i

(
pµi

∂

∂piν
− pνi

∂

∂piµ

)
(2.10)

and total angular momentum generators Jµνi = Lµνi + Sµνi for the ith particle we see that the
amplitude satisfies (2.6) with the soft factors

S(0)± =
n∑
i=1

Qiηi
ϵ±µ(q)p

µ
i

q · pi
, and S(1)± =−i

n∑
i=1

Qi
ϵ±µ(q)qνJ

µν
i

q · pi
. (2.11)

This factorisation of the soft-limit through sub-leading order is often referred to as the LBK
theorem. The same argument [42, 48] (see also [49, 50]) can be used to derive the universal
soft factors for gravitons. In fact, for the case of gravitons the gauge invariance is sufficient
to constrain not only the sub-leading soft term but also the sub-sub-leading term and Einstein
gravity amplitudes satisfy the expansion (2.6) with

S(0)± =
κ

2

n∑
i=1

ηi
ϵ±µν(q)p

µ
i p

ν
i

q · pi
, S(1)± =−iκ

2

n∑
i=1

ϵ±µν(q)p
µ
i qλJ

νλ
i

q · pi
,

S(2)± =−κ

4

n∑
i=1

ηi
ϵ±µν(q)qρqσJ

µρ
i Jνσi

q · pi
, (2.12)

where the graviton polarisation tensors can be written as ϵ±µν(q) = ϵ±µ(q)ϵ±ν(q). In these
soft factors, the definition of the angularmomentum operator depends on the spin of the particle
but otherwise they are independent of the specifics of the hard particles. The sub-leading and
sub-sub-leading graviton soft theorems involving S(1), S(2) were first derived, at tree-level
and in four dimensions, in the seminal paper by Cachazo and Strominger [51] by means of
the Britto, Cachazo, Feng and Witten (BCFW) recursion relations and using spinor-helicity
formalism. The sub-leading soft behaviour had already been considered using next-to-eikonal
methods [52, 53] and, following [51], theywere generalised to arbitrary dimensions in [54–57],
by use of the Cachazo–He–Yuan (CHY) formalism [58, 59] and to generic effective field theor-
ies with higher curvature interactions [60, 61] and string theories [62–68]. Twistor approaches
have also played an key role in the study of soft-limits, see for example [69–72] and chapter 6
[73] of the SAGEX Review on Scattering Amplitudes [74].

In general, even at tree-level the sub-leading term in the photon soft theorem and the sub-
sub-leading term for the graviton receive corrections which depend on the specifics of the
theory through the structure of the three-point coupling of the soft particle to hard particles.
However, for the soft dilaton theorem, which is closely related to the soft graviton theorem
in string theory, the universality extends to O(q) as the leading, sub-leading and sub-sub-
leading [75–78] terms are the same in any string theory. Continuing the expansion in δ, for
photons there is an infinite set of additional soft theorems, at least at tree-level, beyond sub-
leading order, and for gravitons beyond sub-sub-leading order, but this requires projecting
the amplitude onto a symmetric component to remove the undetermined contributions com-
ing from Nµ. For example, for photons this can be done using a symmetric tensor Ωµν1...νm ,
such that Ωµν1...νm∂

ν1
q . . .∂νm

q Aµ satisfies an additional soft theorem following from a Ward–
Takahashi identity for large gauge transformations [79], see also [80]. The existence of these
infinite towers of ‘projective’ soft-theorems has been shown to be related to the conservation of

7
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asymptotic charges in QED [81] and gravity [82]. Furthermore, these additional soft-theorems
can be related to an exponential soft-theorem [83] which when studied in Mellin space leads
to a tower of singularities, see section 5.2.

The sub-leading soft theorem for gluons has been discussed in the eikonal approach [84, 85]
and can be directly found at tree-level by the replacement Q→ gT aR in the photon soft factors.
It was also derived by using the BCFW method in [86] where it was given in terms of colour
ordered amplitudes, Ac.o., and using the spinor-helicity formalism which is very convenient
for massless scattering, see SAGEX Review chapter 1 [87]. The soft limit of an (n+ 1)−point
colour ordered amplitude with a soft gluon of momentum δq and helicity ℓ can be written as

Ac.o.
ℓ1,...,ℓn,ℓ(p1, . . . ,pn, δq) =

[
1
δ
S(0)ℓ + S(1)ℓ

]
Ac.o.

ℓ1,...,ℓn(p1, . . . ,pn)

+O(δ), (2.13)

with the soft factors now being a difference of terms acting on pairs of legs adjacent to the soft
gluon which are8

S(0)+ =
〈µ1〉

〈q1〉〈qµ〉
− 〈µn〉

〈qn〉〈qµ〉
=

〈1n〉
〈1q〉〈qn〉

,

S(1)+ =
1

〈nq〉
λaq

∂

∂λan
− 1

〈1q〉
λaq

∂

∂λa1
, (2.14)

where we have restricted to the case of a positive helicity soft gluon and |µ〉 is an arbitrary
reference spinor. Open string amplitudes describing gluons and massive external states were
analysed in [88, 89] which found the leading and sub-leading terms were the same as in Yang–
Mills theories.

The spinor-helicity formalism is also useful for expressing the universal factorisation prop-
erties of gluon amplitudes in collinear limits [44, 47, 90]. At tree-level, when two adjacent out-
going external legs with helicities ℓi and ℓj become collinear, so that pi ≈ αpP, pj ≈ (1−α)pP,
the colour ordered amplitude can be factorised as

Ac.o.
...,ℓi,ℓj,...(. . . ,pi,pj, . . .)≈

∑
ℓ=±1

Splitℓℓi,ℓj(pi,pj)A
c.o.
...,ℓ,...(. . . ,pP, . . .), (2.15)

where the sum is over the helicity, ℓ, of the intermediate particle of momentum pP and the
universal splitting amplitudes are

Split+1
−1,−1(pi,pj) = 0, Split+1

+1,+1(pi,pj) =
1√

α(1−α)〈ij〉
, (2.16)

Split−1
+1,−1(pi,pj) =

(1−α)2√
α(1−α)〈ij〉

, Split+1
+1,−1(pi,pj) =

−α2√
α(1−α)[ij]

.

These gluon splitting amplitudes can be used, via theKawai, Lewellen, and Tye (KLT) relations
[91], to find the universal tree-level behaviour of graviton amplitudes in the collinear limit [92,
93]. For two collinear gravitons with momenta pi and pj, parameterised as in the gluon case,
and with helicities ℓi+ ℓ̄i, ℓj+ ℓ̄j, the splitting amplitude into a graviton of helicity ℓ+ ℓ̄ is
given by

Splitℓ+ℓ̄
ℓi+ℓ̄i,ℓj+ℓ̄j

(pi,pj) =−κ

2
〈ij〉[ji]Splitℓℓi,ℓj(pi,pj)Split

ℓ̄
ℓ̄j,ℓ̄i

(pj,pi). (2.17)

8 The spinor brackets are defined (we follow the conventions of [43]) in terms of the decomposition of on-shell
momenta, paȧ = pµσ

µ
aȧ =−λaλ̄ȧ, and are given by ⟨ij⟩= ϵȧḃλ̄iḃλ̄jȧ, [ij] = ϵabλiaλjb.

8
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The collinear limit is non-singular for gravitons, for example

Split+2
+2,+2(pi,pj) =− κ

2α(1−α)

[ij]
〈ij〉

, (2.18)

but the universal terms can be identified by the non-vanishing phase they acquire as pi and pj
are rotated about pP. Alternatively, in (+,+,−,−) signature the spinor brackets [ij] and 〈ij〉
are independent and, for example, the universal term with Split+2

+2,+2 can be seen to be leading
in a 〈ij〉 → 0 expansion with [ij] held fixed.

2.3. Loop corrections

The leading soft theorem for photons is exact in QED and has no loop corrections, however
in general the same is not true for the sub-leading terms. As noted by Del Duca [94], the
LBK theorem only holds when the energy of the soft photon satisfies δq0 � m2/E, where m
is the lightest mass of the external hard particles and E is the energy scale characterising the
scattering process, e.g. the centre of mass energy. This is due to non-local terms, for example
poles like 1

δp·q , in Nµ, which cannot be expanded in small δ. Such contributions can arise from
regions of loop integration where the loop momentum l becomes collinear with an external leg
with mass m. In this case the loop momentum has small virtuality l2 =O(m2) but has large
individual components so that l · δq=O(Eδq0). As a result, propagators in loop diagrams of
the type

can only be expandedwhen δq0 � m2/E and consequently for theories withmassless particles,
or in the high-energy limit with E→∞, the LBK theorem will fail. Loop corrections to
soft-limits in non-abelian gauge theory have been studied in detail [92, 95–99], but remain
an active topic with the full colour two-loop soft factor only computed relatively recently
[100–102]9.

Loop corrections to graviton soft theoremswere discussed in [112, 113] based on the extens-
ive earlier work in non-abelian gauge theory. Theories with massless particles have IR singu-
larities in the S-matrix which are crucial in understanding the loop level soft behaviour. For
example, the one-loop n-graviton amplitude computed in dimensional regularisation, with IR
regulator ε= (4−D)/2 and mass scale µ, has a singular part proportional to the tree-level
amplitude [112, 114–116]

A1−loop =− κ2

32π2ε

n∑
i<j

ηiηjpi · pj log
(
−
2pi · pj
µ2

)
Atree +O(ε0), (2.20)

9 See also the SAGEX review chapter 12 [103] for a discussion of loop corrections to sub-leading soft behaviour in
gauge theory and further references to the literature including approacheswithin the context of Soft-Collinear Effective
Theory (SCET) [104–107] which provides a systematic approach to soft theorems in gauge theory, e.g. [108], and
gravity [109–111].
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where the sum is over all pairs of external momenta. If we were to take a naive soft-limit with
an uncorrected soft-factor there would be a mismatch between the singular terms on the left
and right. As a result the soft factor must receive loop corrections with singular terms

A1−loop(p, δq)

∣∣∣∣∣sing =
2∑

a=0

δa−1
[
S(a)A1−loop(p)+ S(a),1−loopA(p)

]∣∣∣∣∣
sing

, (2.21)

and, potentially, additional finite terms. The singular corrections were computed in [48, 112],
see also [117], where it was shown that the leading soft-graviton factor is uncorrected at
any loop order, while the sub-leading factor receives only one-loop corrections and sub-
sub-leading terms are corrected at one and two-loops in perturbative gravity.

An alternative approach was followed in [118] where the soft-limit is taken before the
expansion in ε. Unlike the standard approach, it is not known how to make this prescrip-
tion consistent with the physical requirement that divergences cancel in observables such as
cross-sections, but it does lead to soft factors which are uncorrected at loop order. In D> 4
where the IR divergences which affect soft theorems are absent, it has been shown that the
sub-leading soft graviton theorem is uncorrected [61, 119]. Loop effects have also been con-
sidered in bosonic string theory, also with D> 4, [120, 121] and in particular it was shown that
the dilaton soft theorem is uncorrected by loop effects at any order.

2.4. Multi-soft limits

The emission of m outgoing soft photons with momenta q1, . . . ,qm is, to leading order in the
soft momenta10. However, again given as a product of the amplitude for the hard particles
times a pre-factor, often called the eikonal factor, which is a product of the leading soft terms

A(p,q1, . . . ,qm)≈
m∏
j=1

[ n∑
i=1

Qiηi
ϵ(qj) · pi
qj · pi

]
A(p). (2.22)

This eikonal pre-factor can be derived by treating the hard particles as Wilson lines placed
along their trajectories, a method which can be usefully generalised to QCD [122, 123]. In
this limit, the diagrams for soft-photon emission can be shown to exponentiate [124] which
implies that low-order perturbative calculations contain all-order information which is import-
ant, particularly in the generalisation to the non-abelian case [125–130], in phenomenological
applications. Exponentiation in the next-to-eikonal approximation, where sub-leading terms
in the soft expansion are retained, has been studied for gauge theory, e.g. [84, 85], and for per-
turbative gravity [49, 52]. For a thorough discussion of the exponentiation of IR divergences,
and further references, see the recent review [131].

The behaviour of amplitudes under multiple emission of real, soft gluons and gravitons has
also been directly studied using on-shell and string theory methods. The tree-level double-soft
limits for gluons through sub-leading order were computed using BCFW recursion relations
and four-dimensional spinor helicity in [132, 133] and reproduced in [134] using the Cachazo–
Svrcek–Witten method [135]. Double-soft limits for positive helicity gluons can be given an
interpretation as a two-dimensional current–current operator product expansion (OPE) [9],

10 As we here considering only the leading term in the expansion for photons, the specific order in which one takes the
momenta soft is irrelevant. However, as discussed below, in other theories, e.g. Yang–Mills, or at sub-leading orders
this is not the case.
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while multi-soft limits can be interpreted as the OPE of a Sugawara stress tensor and used to
derive an analogue of the Knizhnik–Zamolodchikov equation for amplitudes [136], see also
[137, 138]. The four-dimensional double soft-limit of gravitons was similarly analysed in [132]
through sub-sub-leading order. In general dimensions, the double-soft theorem for gravitons
was studied using the CHY formalism in [139] and the sub-leading multiple soft theorem for
arbitrary number of soft-gravitons was similarly computed using CHY in [140, 141] and using
Feynman diagrammatics in [141, 142]. Double soft-limits have also been studied in open string
theory [133, 143] and for massless closed bosonic strings [144] where they were shown to be
independent of the stringα ′ corrections through sub-leading order. One-loop corrections to the
double-soft limit in QCD, formulated as a loop corrected current, were computed in [145, 146].

In the double-soft limit the order in which particles are taken soft can affect the result. Given
an amplitudewith two soft particles havingmomenta which scale as δ1q1 and δ2q2 we can study
the double-soft limit by expanding in the parameters δ1 and δ2. The consecutive soft-limit is
defined by first taking δ1 → 0 and then δ2 → 0, or vice versa, and consequently one can study
the symmetrised or anti-symmetrised limit. The simultaneous double-soft limit corresponds
to setting δ1 = δ2 = δ and then expanding in δ. Consecutive double-soft limits are given as
ordered products of single soft factors but simultaneous soft limits, particularly sub-leading
terms involving particles with different helicities, have correction or ‘contact’ terms. This issue
has arisen when using multi-soft limits to study the algebra of asymptotic symmetries. For
example, anti-symmetrised consecutive double-soft limits of gravitons have been related to
the Bondi, van der Burg, Metzner and Sachs (BMS) algebra [147–149], while collinear limits
have been used to directly compute the algebra in an ordering free approach [150].

One motivation for the study of the double-soft limit of gauge bosons and gravitons is the
similar analysis in the case of theories of spontaneous symmetry breaking, where the double-
soft limit of two Goldstone bosons has a non-vanishing limit [151]. This is related to another
important example of a soft theorem, the so-called Adler zero [152] which corresponds to the
vanishing of the soft pion amplitude as a consequence of spontaneously broken chiral sym-
metry. This topic has seen renewed interest and has been actively pursued in recent years giving
rise to significant progress in understanding the space of consistent effective field theories by
imposing soft limits on tree-level amplitudes, a programme referred to as the soft-bootstrap,
see for example [153–158].

An interesting recent application of multi-soft limits is to the study of classical radiation.
The gravitational waveform at a detector far from a radiation generating scattering process
can be extracted at late retarded times from the graviton soft theorem [159–163]. The lead-
ing term in the expansion of the waveform corresponds to a permanent change in the metric
which is related to the gravitational memory effect [20, 21] whose relation to soft theorems
and asymptotic symmetries was studied in [18].

3. Soft theorems and asymptotic symmetries

The universal properties of scattering amplitudes discussed in section 2 arise naturally from
the conservation laws associated with asymptotic or large gauge symmetries. In this section
we give a brief account of the fundamental principles underlying this remarkable equivalence.
We refer the reader to [164] for a pedagogical review.

The analysis of asymptotic symmetries in asymptotically flat gravity has a long history dat-
ing back to the works of BMS [13–15]. At spatial infinity, i0 in figure 2, conserved quant-
ities such as mass and angular momentum can be defined in the Hamiltonian formalism
[165]. They are in one-to-one correspondence with asymptotic symmetries, namely the set
of diffeomorphisms that preserve specified boundary conditions and act non-trivially on the

11
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Figure 2. Penrose diagram for Minkowski spacetime.

phase space or physical data of the theory. At null infinity (I ), this analysis is complicated
by the fact that charges can be radiated away. Lee, Iyer, Wald and Zoupas showed that con-
served quantities which live on cross-sections of null infinity and generate the symmetry can
nevertheless be constructed under certain conditions [166–168]11. In practice, the analysis is
often subtle, relies on a choice of asymptotic falloffs and gauge choices and remains an open
problem in the full interacting theory.

In the following, wewill assume that the charges associated with the asymptotic symmetries
at future or past null infinity (I + or I −) have been constructed via a canonical analysis or
otherwise. These charges are defined on cross-sections of I taken to be the past and future
boundaries I +

− and I −
+ of, respectively, I + and I −. We denote them by Q+ and Q− and

suppress their dependence on the asymptotic data and variation of the data under asymptotic
symmetries. Charge conservation is the statement that

Q+ = Q−. (3.1)

This conservation law is far from obvious in general, but it was remarkably shown to be implied
by a set of matching conditions [5] obeyed in a wide range of physical examples [4, 6–10,
169–176]. Imposing that the S-matrix obeys the symmetry (3.1) then leads to

〈out|Q+S −SQ−|in〉= 0. (3.2)

Provided the geometry reverts to the vacuum at the future and past boundaries of I + and I −

respectively, the charges can be split into a ‘soft’ part which is linear in the asymptotic data,
and a nonlinear ‘hard’ part

Q± = Q±
S +Q±

H . (3.3)

Substituting (3.3) into (3.2), one finds

〈out|Q+
S S −SQ−

S |in〉=−〈out|Q+
HS −SQ−

H |in〉. (3.4)

Upon quantisation, the left hand side of (3.4) can be identified with a particular soft mode of the
gauge or gravitational field, while the right hand side reproduces the corresponding soft factor
[6]. As such, the validity of soft theorems a posteriori justifies the conservation law (3.1).

11 This approach can be generalised to gauge theories in asymptotically flat backgrounds where the importance of
large gauge transformations was only more recently recognised [8].
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Soft theorems have revealed richer than expected asymptotic/large gauge symmetry struc-
tures. In gravity, generalisations of the extended BMS group [16, 177, 178] have been studied
at null [179–190], spacelike [171, 191–196] and timelike [12, 197–199] infinity. Gravitational
analogues of electric–magnetic duality have been proposed in [200–208]. Observable signa-
tures of these symmetries include memory effects at null infinity [18, 19, 82, 175, 209–211]
or near black hole horizons [212–218], as well as in shockwave backgrounds with accelerated
observers [219–223]. Counterparts of asymptotic symmetries and memory effects in higher-
dimensional asymptotically flat spacetimes have been analysed in [209, 224–226]. Connec-
tions to the symmetry groups of negatively and positively curved spacetimes, as well as the
gauge-gravity duality have been explored in [227–232], while potential implications for the
black hole information paradox have been discussed in [233–241].

In gauge theory, the asymptotic symmetry structure and the matching conditions have been
studied at null [8, 10, 242], spacelike [174, 243] and timelike [12] infinity. Magnetic sym-
metries and the electric-magnetic duality are discussed in [204, 244–247]. The symmetries of
higher-dimensional gauge theories and their relation to soft theorems have been worked out
in [174, 248]. The relation between asymptotic symmetries and loop corrections to the sub-
leading soft photon theorem has been addressed in [232, 249, 250], while multi-soft limits
were recovered from nested charge commutators in [147, 251]. The relation to gauge theories
in AdS in the flat space limit has been studied in [252, 253]. Memory effects to all orders in a
large-r expansion were discussed in [254].

In the remainder of this section we outline some of the simplest examples of asymptotic
symmetry enhancements in (massless) QED and gravity. The discussion is meant to motivate
the construction of celestial amplitudes which will be the focus of the following sections.

3.1. QED

Consider Maxwell theory in Minkowski space

ds2 =−du2 − 2dudr+ r2γABdx
AdxB, (3.5)

where xA are coordinates and γAB is the unit metric on the sphere and u is the retarded time. The
leading soft photon theorem is associated with angle-dependent large gauge transformations
[8]

A(0)
B → A(0)

B + ∂Bε(x
A), (3.6)

where A(0)
B is the leading O(r0) component in a large-r expansion of the transverse/radiative

gauge potential. The charges generating (3.6) are

Q+
ε =

1
e2

ˆ
I +

−

d2x
√
det(γ)εF(2)

ru , (3.7)

where F(2)
ru is the O(r−2) component of Fru in a large-r expansion. For constant ε, the large

gauge charges (3.7) reduce to the standard electric charges. A similar argument yields the large
gauge charges Q− on I − where u is replaced by the advanced time v. Using the constraint
equation

∂uF
(2)
ur = DAF(0)

uA + e2j(2)u (3.8)

on I + (and its analogue on I −), the charges Q+ (Q−) split into a soft piece linear in F(0)
uA

(F(0)
vA ) and a hard piece involving the current j

(2)
u (j (2)v ) (quadratic in the matter fields). HereDA
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denotes the covariant derivative on the sphere which reduces to ∂A on the plane. For a partic-
ular choice of ε(xA), upon quantisation and the use of crossing symmetry 〈out|a±(q)S|in〉=
〈out|Sa†∓(−q)|in〉, the conservation law (3.4) associated with (3.7) can be recast as the leading
soft photon theorem [8]

lim
δ→0

δ〈out|a±(δq)S|in〉= S(0)± 〈out|S|in〉, (3.9)

where S(0)± is given in (2.11). Conversely, (3.9) leads to the conservation law (3.4) upon picking
out particular modes on the sphere via integration against ∂Bε depending on the helicity of the
soft photon insertion.

3.2. Gravity

A generic four-dimensional asymptotically flat spacetime is described in retarded Bondi
coordinates by the metric [16, 17]

ds2 =−2e2βdu(dr+Φdu)+ gAB

(
dxA− ΥA

r2
du

)(
dxB− ΥB

r2
du

)
. (3.10)

The functions appearing in (3.10) have the following large r expansion

Φ= F− mB

r
+O(r−2),

β =
b
r2

+O(r−3),

ΥA = UA− 2γAB

3r

(
NB+CBCU

C+ ∂Bb
)
+O(r−2),

gAB = r2γAB+ rCAB+O(r0),

(3.11)

where mB,b,UA,NB,CAB are functions of u and x A while F and γAB depend only on x A (F is
related to the curvature of γAB by Einstein’s equations e.g. F= 1

2 (sphere) or F= 0 (plane)).
The asymptotic symmetries of (3.10) are generated by [16]

ξ|I + =
(
f+

u
2
DAY

A
)
∂u+YA∂A (3.12)

and analogous vector fields at I − with f, YA antipodally matched functions and vec-
tor fields on the sphere respectively [5]. The diffeomorphism (3.12) with YA = 0 gener-
ates supertranslations—an infinite-dimensional enhancement of the Poincaré translations.
Provided the boundary conditions do not allow for leading changes in gAB, the vector fields
YA are restricted to be holomorphic/antiholomorphic and (3.12) with f = 0 generate two cop-
ies of the Virasoro algebra [178]. Otherwise, the former condition is relaxed and they gener-
ate Diff(S2) [179]12. Both cases represent infinite-dimensional enhancements of Lorentz sym-
metry. For arbitrary f, YA, the diffeomorphisms (3.12) generate the generalised BMS algebra
[185]13.

The leading soft graviton theorem was shown in [6] to be equivalent to the conservation of
the supertranslation charges

Q±
f =

8
κ2

ˆ
I ±

∓

d2x
√
det(γ)fmB, (3.13)

12 Meromorphic vector fields YA also violate the boundary conditions, albeit at isolated points.
13 A further extension allowing for Weyl rescalings of the transverse metric was proposed in [187].
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which reduces to the Arnowitt-Deser-Misner (ADM) mass for constant f. The integral (3.13)
can be extended over all of I + using the constraint14

∂umB =
1
4
DADBN

AB− 1
8
NABN

AB, (3.14)

and its analogue nearI − [5]. Then, as described previously, the supertranslation charge (3.13)
splits into a soft part linear in NAB and a hard part quadratic in NAB. After quantisation and for
an appropriate choice of f, when substituted into the conservation law (3.4) it can be shown to
reproduce the soft graviton theorem

lim
δ→0

δ〈out|a±(δq)S|in〉= S(0)± 〈out|S|in〉 (3.15)

with S(0)± given in (2.12). Similarly, invoking the constraint equation for ∂uNA the conservation
law associated with the superrotation charge

Q±
Y =

4
κ2

ˆ
I ±

∓

d2x
√
det(γ)YANA, (3.16)

was shown to be implied by the sub-leading soft graviton theorem [7]

lim
δ→0

(1+ δ∂δ)〈out|a±(δq)S|in〉= S(1)± 〈out|S|in〉 (3.17)

with S(1)± given in (2.12). This has remarkable implications as we now discuss.
In fact, the soft component of the charge (3.16) can be related to the generator of a two-

dimensional local conformal symmetry on the sphere by choosing a meromorphic vector field
YA, while the soft theorem (3.17) can be recast as a Ward identity of that symmetry. Let us
focus on scattering of massless particles with momenta

pµi = ηiωi(1+ ziz̄i,zi+ z̄i, i(z̄i− zi),1− ziz̄i), (3.18)

where henceforth we absorb the ηi =±1 into the definition of the momenta. We denote the
amplitude without the soft graviton by 〈

∏n
i=1O

±
ℓi
(ωi,zi, z̄i)〉 to make the dependence on the

asymptotic on-shell particle states of energy ωi and helicity ℓi piercing the celestial sphere at a
point (zi, z̄i) atI ± as well as the ηi =± label manifest. For simplicity, here and henceforth, we
will use flat coordinates in (3.10) with F= 0. Integrating the sub-leading soft theorem (3.17)
against an appropriate function on the sphere15 one finds it can be put into the form [22]

〈Tzz
n∏
i=1

O±
ℓi
(ωi,zi, z̄i)〉=

n∑
k=1

[
ĥk

(z− zk)2
+

∂zk
z− zk

]
〈
n∏
i=1

O±
ℓi
(ωi,zi, z̄i)〉. (3.19)

Here Tzz denotes the insertion of the soft graviton mode picked out by the operator 1+ δ∂δ
(and smeared over the sphere) and we have introduced

ĥi =
1
2
(−ωi∂ωi + ℓi) . (3.20)

The result (3.19) is strikingly similar to the Ward identity of the stress tensor in a two-
dimensional CFT. On the one hand this is expected since the four-dimensional Lorentz group
acts as the global conformal group on the two-dimensional celestial sphere at null infinity

SO+(1,3)' SL(2,C)/Z2. (3.21)

14 If gravity is coupled to matter, a matter stress tensor term will appear on the right hand side.
15 This operation coincides with the shadow transform of a conformally soft graviton [24, 255].
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On the other hand, we see that the sub-leading soft graviton theorem encodes the enhance-
ment of Lorentz symmetry to Virasoro or Diff(S2). This is analogous to the enhancement of
conformal symmetry to Virasoro in two-dimensional CFT and hints at a holographic principle
for asymptotically flat spacetimes. The first step in making this equivalence more precise is to
recast the scatteringmatrix into a basis that diagonalises the weights (3.20). As wewill see, this
can be achieved by switching from the standard basis of asymptotic momentum eigenstates to
a basis of boost eigenstates.

4. Celestial amplitudes

A profusion of fascinating results in scattering amplitudes has been obtained using on-shell
methods in a translation invariant basis. In this section we review novel insights that arise by
making 4D Lorentz symmetry or, equivalently, 2D global conformal symmetry on the celes-
tial sphere manifest. The resulting celestial amplitudes exhibit a rich symmetry structure and
behave in many ways as correlation functions in a CFT—albeit one of a more exotic type
referred to as CCFT. This paves a path towards a holographic principle for asymptotically flat
spacetimes known as celestial holography.

4.1. The holographic map

The holographic flavour of the S-matrix becomes manifest when the asymptotic states are
taken to be boost eigenstates

boost〈out|S|in〉boost = 〈O±
∆1,J1

(z1, z̄1) · · ·O±
∆n,Jn

(zn, z̄n)〉CCFT. (4.1)

This change of basis recasts it as a correlation function of operators O±
∆i,Ji

inserted at points
(zi, z̄i) on the celestial sphere that are labelled by SL(2,C) conformal dimensions ∆i and
spins Ji and a sign distinguishing between out (+) and in (−) states. Starting frommomentum-
space amplitudes, celestial amplitudes are constructed as follows.

A massless momentum in Minkowski space can be written as pµ =±ωqµ(z, z̄) with an
energy scale ω, a sign for outgoing (+) versus incoming (−), and a null vector directed at a
point (z, z̄) on the celestial sphere

qµ(z, z̄) = (1+ zz̄,z+ z̄, i(z̄− z),1− zz̄). (4.2)

The celestial amplitude (4.1) for a scattering process of n massless particles with spins si and
momenta pµi =±ωiq

µ
i (zi, z̄i) is simply a Mellin transform with respect to the energies of each

external scattering state [23, 24]

Ãn(∆i,Ji;zi, z̄i)≡
n∏

k=1

ˆ ∞

0

dωk
ωk

ω∆k
k An(ωi, ℓi,zi, z̄i) (4.3)

of the momentum-space amplitude An(ωi, ℓi,zi, z̄i) which includes the momentum conserving
delta function δ(4)(

∑n
i=1 p

µ
i ). This map trades energies ωi for boost weights ∆i (or Rindler

energies), while the 4D helicities ℓi =±si become 2D spins Ji.
Celestial amplitudes for massive particles are more involved. The mass-shell of a massive

momentum is parameterised by a hyperbolic slice H3 of Minkowski space. An on-shell
momentum pµ =±mp̂µ(y,w, w̄) with p̂2 =−1 is embedded into the upper branch (p̂0 > 1)
of the unit hyperboloid in Minkowski space as

p̂µ(y,w, w̄) =
1
2y

(1+ y2 +ww̄,w+ w̄, i(w̄−w),1− y2 −ww̄). (4.4)
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The celestial amplitude (4.1) for an n-point scattering amplitude of massive scalars with
momenta pµi =±mip̂

µ
i (yi,wi, w̄i) is realised by the integral transform

Ãn(∆i;zi, z̄i)≡
n∏

k=1

ˆ
H3

d3p̂k
p̂0k

G∆k(p̂k(yk,wk, w̄k);qk(zk, z̄k))An(mip̂i) , (4.5)

where G∆(p̂(y,w, w̄);q(z, z̄)) = (−q · p̂)−∆ is the scalar bulk-to-boundary propagator in
H3 [256]. For generic massive spin-s scattering the analogue of (4.5) has been worked out
in [23, 257–259].

While momentum-space amplitudes describe probabilities for scattering plane waves and
exhibit manifest translation symmetry, celestial amplitudes scatter wavefunctions that trans-
formwith definite (∆,J) under an SL(2,C) Lorentz transformation. In what follows we review
the construction of the so-called conformal primary wavefunctions and how they give rise to
the boundary operators O±

∆,J in (4.1) before discussing some universal properties of celestial
amplitudes. We restrict to the scattering of massless particles henceforth.

4.2. Conformal primary wavefunctions and operators

The celestial operators appearing in (4.1) are defined via the map

O±
∆,J(z, z̄) = i(Ôs(Xµ),Φs

∆,J(X
µ
∓;z, z̄)

∗)Σ. (4.6)

Here Ôs(Xµ) is a spin-s bulk operator that creates a single particle state when acting on the
vacuum. The inner product (· , ·)Σ is defined on a Cauchy slice Σ and can be constructed from
the symplectic product for spin-s wavefunctions via Ω(Φ,Φ ′) = i(Φ,Φ ′∗)Σ where ∗ denotes
complex conjugation. For scalar wavefunctions it corresponds to the standard Klein–Gordon
inner product16, while it is appropriately generalised for arbitrary spin [24, 257–259]. The
wavefunctions Φs

∆,J(X
µ
±;z, z̄) satisfy the linearised spin-s equations of motion and are con-

structed from Mellin transforms of plane wavesˆ ∞

0
dωω∆−1e±iωq·X± =

(∓i)∆Γ(∆)

(−q ·X±)∆
. (4.7)

The ± label distinguishes between outgoing and incoming modes, and is selected by the ana-
lytic continuation Xµ

± = Xµ ± iε{−1,0,0,0} which serves as a regulator (that we omit hence-
forth). The wavefunctions Φs

∆,J(X
µ;z, z̄) are called conformal primary wavefunctions owing

to their transformation properties under the appropriate representations of Poincaré in both
the bulk (Xµ) and boundary (z, z̄) coordinates. Namely, under simultaneous SL(2,C) Lorentz
transformations

Xµ 7→ Λµ
νX

ν , z 7→ az+ b
cz+ d

, z̄ 7→ āz̄+ b̄

c̄z̄+ d̄
, (4.8)

they transform as two-dimensional conformal primaries

Φs
∆,J

(
Λµ

νX
ν ;
az+ b
cz+ d

,
āz̄+ b̄

c̄z̄+ d̄

)
= (cz+ d)∆+J(c̄z̄+ d̄)∆−JDs(Λ)Φ

s
∆,J

(Xµ;z, z̄) , (4.9)

with conformal dimension∆ and spin J. Here {a,b,c,d} ∈ C with ad− bc= 1, and Ds(Λ) is
the spin-s representation of the Lorentz algebra.

16 An alternate inner product involving the shadow transform was recently advocated for in [260] and leads to a
reorganisation of the celestial CFT data. Its implications are an open problem.
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Conformal primary wavefunctions are constructed from (4.7) dressed by the appropriate
frame fields. We consider scalar conformal primary wavefunctions

φ∆ =
1

(−q ·X)∆
, (4.10)

where compared to (4.7) we dropped the normalisation factor and omitted the ± label. Nat-
ural polarisation vectors constructed from (4.2) are

√
2ϵµ+ = ∂zqµ and

√
2ϵµ− = ∂z̄qµ but these

do not have definite SL(2,C) weights. Instead we construct spacetime dependent polarisation
vectors as [261]

mµ = ϵµ+ +
ϵ+ ·X
(−q ·X)

qµ , m̄µ = ϵµ− +
ϵ− ·X
(−q ·X)

qµ , (4.11)

which satisfym · m̄= 1 and transform with∆= 0 and, respectively, J=+1 and J=−117. We
define spin-one and spin-two conformal primary wavefunctions by

A∆,J=+1 = mφ∆ , A∆,J=−1 = m̄φ∆ ,

h∆,J=+2 = mmφ∆ , h∆,J=−2 = m̄m̄φ∆ .
(4.13)

An analogous construction for conformal primary wavefunctions with half-integer spin using
a decomposition of the null tetrad (4.11) and (4.12) into a spin frame can be found in [261].
A priori conformal primary wavefunctions have arbitrary complex dimension∆. When the

conformal dimension lies on the principal continuous series∆ ∈ 1+ iR of the SL(2,C) Lorentz
group they have been shown to form a complete δ-function normalisable basis [24]. Another
complete basis of conformal primary wavefunctions for the same range of conformal dimen-
sion is obtained from the shadow transform of (4.7) and (4.13) which acts on the corresponding
celestial operators as

Õ∆̃,̃J(z, z̄) =
k∆,J

2π

ˆ
d2z ′

O∆,J(z ′, z̄ ′)
(z− z ′)2−∆−J(z̄− z̄ ′)2−∆+J

(4.14)

where ∆̃ = 2−∆, J̃=−J, and squares to (−1)2J for suitable normalisation k∆,J. Con-
formal primaries with arbitrary ∆ ∈ C can be obtained via contour integrals on the prin-
cipal series [262]. Of particular importance for the discussion of symmetries in celestial CFT
are conformal primaries with conformal dimensions in the (half-)integers as we will see in
section 5.

We conclude this section with a discussion of special properties of conformal primarywave-
functions. First note that the wavefunctions (4.13) with (4.10) satisfy a Kerr–Schild double
copy [261]. The metric

g∆,J;µν = ηµν + h∆,J;µν (4.15)

is of Kerr–Schild form [263], i.e. it can be written as the Minkowski metric ηµν plus a function
(φ∆) satisfying the scalar wave equation dressed by two copies of a so-called Kerr–Schild
vector (m or m̄) which has the property that it is null and geodesic with respect to both the
Minkowski and the full metric. The Kerr–Schild double copy relates a class of Kerr–Schild
spacetimes to solutions of Maxwell’s equation and is a powerful tool for identifying exact

17 One can further complete the vectors (4.11) into a null tetrad {l,n,m, m̄} for Minkowski space by [261]

lµ =
qµ

−q ·X
, nµ = Xµ +

X2

2
lµ , (4.12)

which satisfy l · n=−1 and transform with ∆= J= 0.
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solutions of Einstein’s equations [264]. Exploiting the famous property that Kerr–Schild met-
rics linearise the Ricci tensor with mixed indices, the Ricci tensor for (4.15) can be shown to
vanish R∆,J;µν = 0. The spin-two primary h∆,J=±2 thus gives rise to an exact solution to the
vacuum Einstein equations.

Another interesting property of the wavefunctions (4.13) is that they exhibit definite
(anti-)self duality [255]. They thus naturally satisfy a Weyl double copy [261] which relates
the (anti)self-dual part of the curvature of the spacetime to the (anti)self-dual part of an elec-
tromagnetic field strength [265]. The Weyl and Kerr–Schild double copy are reviewed in the
SAGEX review chapter 14 [266]. See also [267, 268] for the classical double copy at null
infinity.

Building on the above results and relaxing the conditions for radiative conformal primary
wavefunctions which have |J|= s, one finds that (4.15) with h∆,J given by generalised con-
formal primaries satisfying (4.9) with |J|< s describe known exact solutions to Einstein’s
equations such as ultraboosted black holes and shockwaves [261].

4.3. Analytic structure of celestial amplitudes

The prescription described in previous sections in principle allows for any S-matrix to be
expressed in a conformal primary basis and hence for arbitrary n-point momentum-space scat-
tering amplitudes to be mapped to celestial amplitudes. In this section we review the case of
generic massless four-point scattering. We focus on scalar scattering for simplicity, while the
generalisation to the spinning case follows upon dressing the amplitudes with the appropriate
frame fields as described in section 4.2. We will see that all information about the scattering
is encoded in the analytic structure of celestial amplitudes as functions of a net boost weight
β dual to the centre of mass energy and a conformally invariant cross-ratio on the sphere r
related to the bulk scattering angle.

A generic four-pointmomentum-space scattering amplitude is a function of theMandelstam
invariants s, t,u defined in terms of the particle momenta pi as

s=−(p1 + p2)
2, t=−(p1 + p3)

2, u=−(p1 + p4)
2. (4.16)

Momentum conservation additionally implies s+ t+ u= 0 so that any scalar massless four-
point scattering amplitude A4 can be written as

A4(p1,p2,p3,p4) =M(s, t)δ(4) (p1 + p2 + p3 + p4) . (4.17)

Celestial amplitudes are obtained from (4.17) upon parameterising the momenta as in (4.2) and
evaluating the Mellin transforms with respect to the external energies. It will be convenient to
define

β ≡
4∑
i=1

∆i, r≡− t
s
=
z13z24
z12z34

. (4.18)

Momentum conservation implies that the resulting celestial amplitude is distributional with
non-trivial support on r= r̄ and allows for three of the four Mellin integrals to be easily eval-
uated. The final result takes the simple form

Ã4(∆i,zi, z̄i) = K(∆i,zi, z̄i)
ˆ ∞

0
dωωβ−1M(ω2,−ω2r)δ(r− r̄). (4.19)

HereK(∆i,zi, z̄i) includes a conformally covariant structure, as well as a universal conformally
invariant function. Its explicit form can be found in [269, 270].
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Since (4.19) involves an integral over all centre of mass energies, we see that the celestial
amplitudes are well defined provided that the momentum-space amplitudes have sufficiently
soft behaviour at high energies18. In the remainder of this section we discuss how the ultra-
violet (UV) behaviour of momentum-space scattering is reflected in the analytic structure of
celestial four-point amplitudes as a function of β.

To gain intuition about the structure of celestial four-point scattering, it is useful to consider
some examples [270]. While the form of M(s, t) for all s, t is unknown in general, we can
extract some generic features by studying the structure of celestial amplitudes associated with
M(s, t) polynomial and exponentially suppressed as functions of s at fixed scattering angle,

Mpoly(s, t) = sa, Mexp(s, t) = e−αs. (4.20)

As anticipated, in the first case we find that the celestial amplitude is ill-defined for any a ∈ R,
while for purely imaginary β and a it takes the form

Ã4,poly(∆i,zi, z̄i)∝
ˆ ∞

0
dωωβ−1Mpoly(ω

2,−ω2r)∝ δ(β+ 2a),

β,a ∈ iR. (4.21)

In the second case, we find

Ã4,exp(∆i,zi, z̄i)∝
ˆ ∞

0
dωωβ−1Mexp(ω

2,−ω2r)∝ α−β/2Γ(β/2),

Re(α),Re(β)> 0. (4.22)

Neither example can represent physical amplitudes as they violate basic consistency condi-
tions [272], however such amplitudes with polynomial and exponential behaviours are inter-
esting toy models which are relevant to four-point scattering in physical theories in particular
energy regimes. It is then convenient to introduce an arbitrary soft-hard cutoff ω∗ and split the
Mellin integral in (4.19) as19

Ã4(∆i,zi, z̄i)∝
ˆ ω∗

0
dωωβ−1M(ω2,−ω2r)

+

ˆ ∞

ω∗

dωωβ−1M(ω2,−ω2r). (4.23)

Forβ in the left hand complex plane, the second contribution in (4.23) can be seen to be analytic
provided that M(ω2,−ω2r)→ 0 as ω →∞ [273]. As for the first contribution in (4.23) note
that at low energies and suppressing massless loops, M admits an expansion [273]

M(s, t) =
∑
m,n

am,ns
n−mt m ⇐⇒ M(ω2,−ω2r) =

∑
m,n

am,nω
2n(−r)m,

ω ⩽ ω∗. (4.24)

Evaluating the first integral in (4.23) using this expansion we thus see that celestial amplitudes
have an infinite number of poles at negative even integer β =−2n. Moreover, the residues
of these poles are in one-to-one correspondence with coefficients in a low-energy expansion
of momentum space scattering amplitudes or equivalently, couplings of higher dimension
operators in a low-energy effective field theory description. Once one includes loop effects,

18 In contrast, regulating the integral will in general break conformal invariance. Celestial amplitudes with analytically
continued external dimensions are discussed in [262, 271].
19 The cutoff dependence drops out in the full result upon adding up the high- and low-energy integrals.
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particularly in theories with massless particles, (4.24) also involves logarithms of ω which lead
to higher order poles in the left-hand complex β plane.

For β in the right hand complex plane, the first contribution in (4.23) is analytic while the
second yields an infinite series of poles at positive even integer β provided that M admits
a series expansion around ω →∞. No such poles are present for exponentially suppressed
amplitudes at high energies and fixed scattering angle as can be seen from (4.22). We there-
fore conclude that exponentially soft behaviour at high energies leads to the absence of poles
in massless celestial four-point scattering in the right-hand complex β plane. Such behaviour is
characteristic for theories of quantum gravity where black holes are expected to be responsible
for the exponential suppression at high energies [274]. It is also a feature of string amplitudes
where the tower of massive string states leads to similar behaviour already at tree level [275].
The high-energy properties of bulk scattering are reflected in the large-β limit of celestial amp-
litudes where the Mellin integral (4.19) becomes dominated by high energies. Interestingly,
an analysis of tree-level celestial four-point amplitudes in string theory suggests that in this
limit the celestial sphere becomes the string worldsheet [276] (see also [277–279] for related
statements on string amplitudes in the high-energy limit). While the same analysis no longer
applies beyond four points it remains an interesting question whether CCFT can be related to
a CFT on a superstring world-sheet or even an ambitwistor string [280–283].

We conclude this section with a review of explicitly known celestial amplitudes. Three-
point celestial amplitudes involving massive particles were computed in [23, 284]. At tree-
level, four-point amplitudes of scalars, gluons and gravitons were worked out in [276,
285, 286]20, four-point string amplitudes were discussed in [276], while three- and four-
point superamplitudes were computed in [287–289]. For certain classes of tree-level celes-
tial amplitudes all-multiplicity formulas already exist in the literature and can be expressed
in terms of generalised hypergeometric functions: Yang–Mills maximal helicity violat-
ing (MHV) and next-to-Maximal helicity violating (NMHV) amplitudes were calculated
in [269], while [281] used the ambitwistor string to compute celestial amplitudes for biad-
joint scalars, Yang–Mills and gravity. Finally, celestial loop amplitudes were found in
[290, 291].

4.4. Double copy for celestial amplitudes

Amplitudes in gravity and gauge theories obey remarkable relations known as double
copy [292] which state that gravitational amplitudes can be obtained by a well-defined ‘squar-
ing’ of gauge theory amplitudes. These relations are known to hold to all multiplicities at
tree-level [293–296], are implied by string theory relations [91, 293, 294, 297–305] in their
low energy limit, and also hold at loop-level in a plethora of cases and for many pairs of field
theories (see [306] and the SAGEX review chapter 2 [307] for comprehensive reviews). These
relations heavily exploit translation invariance which is no longer manifest in the conformal
basis. Nevertheless, features of amplitudes that are expected to reflect fundamental properties
of the perturbative regime of quantum field theory should survive a change of basis. It is thus
reasonable to expect a version of the double copy to exist for celestial amplitudes.

Consider the simplest case of tree-level scattering in Yang–Mills theory and Einstein grav-
ity. In a basis of momentum eigenstates, the statement is that upon replacing the colour factors
obeying the Lie algebra Jacobi identity cs− ct+ cu = 0 by colour-kinematics dual numerators

20 Note that in general celestial tree-level amplitudes contain divergent Mellin integrals which are cured e.g. in string
theory; a notable exception is Yang–Mills theory where scale-symmetry allows to recast the integral as a distribution
that constrains the sum of external conformal dimensions.
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obeying the same identities ns− nt+ nu = 0 [308], the n-point Yang–Mills amplitude maps to
an amplitude for n external gravitons [296]

AYM
n = δ(4)

( n∑
j=1

pµj

) ∑
γ∈Γn

cγnγ
Πγ

7→ AG
n = δ(4)

( n∑
j=1

pµj

) ∑
γ∈Γn

n2γ
Πγ

. (4.25)

Here Γn is the set of n-point trivalent graphs and the denominatorΠγ is a product of the scalar
propagators associated with the graph γ. This presentation of the double copy relies on the fact
that external particles are in the planewave basis and on explicit momentum conservation. Both
of these require a generalisation in order to arrive at a double copy for celestial amplitudes.

This can be achieved by considering a representation of the amplitudes obtained from pos-
ition space Feynman diagrams where spacetime integrals like

δ(4)
( n∑
j=1

pµj

)
=

ˆ
d4X
(2π)4

e
∑n

j=1 ipj·X (4.26)

are left undone. Celestial amplitudes in Yang–Mills theory and gravity are then obtained
from (4.25) by using (4.26) and replacing the plane waves eipj·X by theirMellin transforms (4.7)
and the momenta pµj =±ωjq

µ
j by the translation generator of the Poincaré algebra

Pµ
j =±qµj e

∂∆j (4.27)

acting on the jth conformal primary wavefunction. The dual numerators nγ in (4.25) are thus
promoted to operator-valued numerators Nγ satisfying the Jacobi identity. This yields the
celestial double copy [309]

ÃYM
n =

∑
γ∈Γn

cγNγSγ 7→ ÃG
n =

∑
γ∈Γn

(Nγ)
2Sγ , (4.28)

where the colour factors cγ are replaced by operator-valued numeratorsNγ , and Sγ is the scalar
amplitude for the trivalent graph γ. An explicit discussion of (4.28) for four-point amplitudes
is given in [309]. The all-multiplicity generalisation is straightforward albeit cumbersome; an
elegant proof using the ambitwistor string was given in [281]. Note that the above presentation
of celestial amplitudes is reminiscent of recent results on ambitwistor strings in Anti-de Sitter
spacetime [310, 311] which also has operator-valued kinematical numerators. It is suggest-
ive that the natural way to implement the double copy in curved spacetimes will be through
operator-valued numerators.

4.5. OPEs from collinear limits of celestial amplitudes

Interesting and useful constraints on amplitudes can be inferred from their behaviour in spe-
cial limits of the external momenta. When two or more external momenta become collinear,
tree-level massless momentum-space amplitudes factorise into a universal prefactor and lower
point amplitudes as discussed in section 2.2. In terms of the ‘celestial parametrization’ of the
momenta of section 4.1, the collinear limit pi||pj corresponds to zi → zj. In CCFT, when two
operators associated to two gauge bosons are inserted near the same point on the celestial
sphere, the singularities at zi = zj correspond to the singularities of the OPE. Therefore the
collinear limit of momentum-space amplitudes extracts the celestial OPE. To match onto the
literature we use the momenta (3.18) rescaled by 1√

2
as in [312] in all formulas involving

OPEs.
Collinear divergences originate from the propagator poles 1

(pi+pj)2
∼ 1

pi·pj and have a univer-

sal form that can be derived from three-point vertices. In the following we will work in (2,2)
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signature and consider the ‘holomorphic’ limit, zij ≡ zi− zj → 0 with z̄i, z̄j fixed, in which the
momentum space amplitude becomes

lim
zij→0

Aℓ1,...,ℓn(p1, . . . ,pn) =
∑
ℓ∈±s

Splitℓℓi,ℓj(pi,pj)Aℓ1,...,ℓ,...,ℓn(p1, . . .P, . . . ,pn)

+O(z0ij), (4.29)

where the combined momentum of the collinear pair is

Pµ = pµi + pµj = ωPq
µ
P , ωP = ωi+ωj (4.30)

and the splitting functions are given in (2.16). To extract the OPE we compute the Mellin
transform in the collinear limit (4.29)

n∏
k=1

ˆ ∞

0

dωk
ωk

ω∆k
k Aℓ1,...,ℓn(p1, . . . ,pn)

i||j−→ lim
zij→0

ÃJ1,...,Jn (4.31)

× (∆1,z1, z̄1, . . . ,∆n,zn, z̄n) .

Upon changing variables

ωi = αωP , ωj = (1−α)ωP, (4.32)

the α integral is immediately recognisable as the integral representation of the Euler beta func-
tion

B(x,y) =
ˆ 1

0
dααx−1(1−α)y−1 =

Γ(x)Γ(y)
Γ(x+ y)

, (4.33)

whose arguments are functions of ∆i and ∆j. Since the only α-dependence comes from the
splitting factor we can readily read off the celestial OPEs.

We illustrate this for the OPEs of positive helicity outgoing gluons and gravitons. The col-
linear splitting factors for positive helicity gluons takes the form [93]

Split+1
+1,+1(pi,pj) =

1
zij

ωP
ωiωj

. (4.34)

Following the arguments above we can read off the celestial OPE [313]

Oa
∆i,+1(zi, z̄i)Ob

∆j,+1(zj, z̄j)∼− if abc
zij

B(∆i− 1,∆j− 1)

×Oc
∆i+∆j−1,+1(zj, z̄j). (4.35)

For positive helicity gravitons the collinear splitting factor takes the form [93]

Split+2
+2,+2(pi,pj) =−κ

2
z̄ij
zij

ω2
P

ωiωj
(4.36)

which gives the celestial OPE [312]

O∆i,+2(zi, z̄i)O∆j,+2(zj, z̄j)∼−κ

2
z̄ij
zij
B(∆i− 1,∆j− 1)

×O∆i+∆j,+2(zj, z̄j) . (4.37)

The celestial OPEs for mixed helicity gluons and gravitons, their incoming versions and the
generalisation of these results to account for the presence of both incoming and outgoing
particles can be found in [312]. Celestial OPEs involving the two-dimensional stress tensor
and other currents were discussed in [314–316], while OPEs involving particles of arbitrary
spin were worked out in [317].
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5. Celestial symmetries

In this section, we discuss the symmetries of celestial amplitudes and their implications.

5.1. Poincaré symmetries

Four-dimensional Lorentz symmetries act as global conformal symmetries on the celestial
sphere [23, 318]. By construction, the celestial operators defined in (4.6) transform under
Lorentz symmetries as global conformal primary operators in 2D CFT, namely[

Lm,O±
h,h̄
(z, z̄)

]
= zm ((m+ 1)h+ z∂z)O±

h,h̄
(z, z̄),[

L̄m,O±
h,h̄
(z, z̄)

]
= z̄m

(
(m+ 1)h̄+ z̄∂z̄

)
O±
h,h̄
(z, z̄),

(5.1)

for m= 0,±1. Here (h, h̄) are related to the conformal dimension ∆ and spin J by

h=
∆+ J
2

, h̄=
∆− J
2

. (5.2)

These generators obey the SL(2,C) algebra

[Lm,Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n)Lm+n. (5.3)

Lorentz invariance of momentum-space scattering amplitudes implies that celestial n-point
amplitudes obey the global conformal Ward identities

n∑
j=1

L( j)m Ãn =
n∑
j=1

L̄( j)m Ãn = 0. (5.4)

In contrast to Lorentz symmetries, translation symmetries act distinctly on in/out as well
as massless and massive celestial operators. In the massless case, translations act simply as
weight-shifting operators [318]

[Pk,l,O±
h,h̄
(z, z̄)] =±zk+ 1

2 z̄l+
1
2O±

h+ 1
2 ,h̄+

1
2
, (5.5)

for k, l=± 1
2 . These are defined in terms of the components of (4.27) as

P∓ 1
2 ,∓

1
2
=

1
2
(P0 ±P3) , P± 1

2 ,∓
1
2
=

1
2
(P1 ± iP2) . (5.6)

The shift in the scaling dimension arises in a conformal primary basis from multiplication
by a factor of energy in momentum space. Translation invariance therefore implies a relation
among celestial amplitudes with shifted weights,

n∑
j=1

P( j)
− 1

2 ,−
1
2
Ãn = 0. (5.7)

Under Lorentz symmetries, Pk,l transform as

[Lm,Pk,l] =
(m
2
− k

)
Pk+m,l, [L̄m,Pk,l] =

(m
2
− l

)
Pk,l+m. (5.8)

Note that this is the same as the transformation property of the modes of a conformal primary
operator of weights ( 32 ,

3
2 ) [315]. Together with

[Pk,l,Pk ′,l ′ ] = 0. (5.9)

Equations (5.3) and (5.8) define the Poincaré algebra.
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Table 1. Asymptotic symmetries generated by celestial currents.

s= |J| ∆ ∆̃ Soft pole Celestial current Asymptotic symmetry

1 1 1 ω−1 Jz Large U(1)
3
2

1
2

3
2 ω− 1

2 S̃z̄, Sz Large SUSY
2 1 1 ω−1 Pz Supertranslation
2 0 2 ω0 T̃z̄̄z, Tzz Superrotation

The action of translations on massive celestial operators of arbitrary spin can be found
in [257], while the associated symmetry constraints have been discussed in [257, 319].

5.2. Conformally soft symmetries

Gravity and gauge theories in four-dimensional asymptotically flat spacetimes enjoy a much
larger symmetry group than Poincaré. For the case of gravity discussed in section 3, the lead-
ing and sub-leading soft graviton theorems imply that translations and Lorentz transforma-
tions are promoted to local (angle-dependent) symmetries—supertranslations and superrota-
tions respectively. Together, these form the bms4 algebra defined by (5.3), (5.8) and (5.9) with
m,n ∈ Z and k, l ∈ Z+ 1

2 [315, 320] . The action of these symmetries on celestial operators is
again given by (5.1) and (5.5). As we will see, this algebra can also be extracted from OPEs
of celestial amplitudes involving conformally soft gravitons [138, 150, 315, 317, 321–323].
Supersymmetric generalisations of this algebra were studied in [316].

5.2.1. Conformally soft operators. The charges generating asymptotic symmetries at null
infinity can be recast as special boundary operators in celestial CFT. For certain values of
∆ ∈ Z they correspond to soft charges [255, 262] in the full (matter-coupled) theory when
the Cauchy slice on which they are defined is taken to null infinity and the wavefunctions
Φ∆,J are the Goldstone modes of the spontaneously broken asymptotic symmetries. Indeed,
the operators (4.6) generate the shift

[O±
∆,J(z, z̄), Ô

s(X)] = iΦs
∆,J(X∓;z, z̄) (5.10)

for s ∈ Z⩾0 expected for asymptotic symmetries in gauge theory and gravity. In supersym-
metric theories for s ∈ 1

2Z⩾0 we replace [. , .] 7→ {. , .} in (5.10) and soft charges are found at
special values of∆ ∈ 1

2Z [316, 324]. The celestial currents generating asymptotic symmetries
discussed in the following are summarised in table 1.

5.2.1.1. Gauge theory. The 2D generators of large gauge symmetry are the operators (4.6)
with ∆= 1,J=±1 [255, 325]. These are obtained from 4D gauge fields according to (4.6),
where the conformal primary wavefunction reduces to a pure gauge Goldstone wavefunc-
tion [255]

A∆=1,J;µ =∇µΛgauge , Λgauge =− 1√
2
∂a log(−q ·X) , (5.11)

where a= z (z̄) for J=+1 (−1). The asymptotic value of the gauge parameter Λgauge at null
infinity is proportional to the special choice of the function ε from section 3 which establishes

25



J. Phys. A: Math. Theor. 55 (2022) 443012 Topical Review

the equivalence between the Ward identity of large gauge symmetry and the soft photon the-
orem. The conserved operator is the conformally soft photon current Jz with (h, h̄) = (1,0), or
Jz̄ with (h, h̄) = (0,1).

5.2.1.2. Gravity. The construction of the BMS supertranslation current Pz (Pz̄) is similar
and related to a celestial operator of ∆= 1,J=+2 (J=−2) associated with the Goldstone
wavefunction [255]

h∆=1,J;µν =∇µξν,a+∇νξµ,a =∇µ∇νΛgravity,

Λgravity =
1
4
∂2
a [(−q ·X) log(−q ·X)], (5.12)

with a= z (z̄) for J=+2 (−2). The asymptotic value of Λgravity is related to the supertrans-
lation parameter f appearing in the BMS charge conservation law in section 3 associated to
the leading soft graviton theorem. The Diff(S2) superrotation generators are associated with
∆= 0, J=±2 pure gauge conformal primary wavefunctions which can also be expressed as
diffeomorphisms [262]. The operator obtained from the ∆= 0 mode (denoted T̃z̄̄z in table 1)
is related by a shadow transform [262] to the ∆̃ = 2−∆= 2 stress tensor Tzz defined in (3.19)
with (h, h̄) = (2,0) that generates a Virasoro symmetry. The ∆̃ = 2 diffeomorphism is express-
ible in terms of the meromorphic vector field YA used in establishing the relation between the
sub-leading soft graviton theorem and celestial conformal symmetry.

The asymptotic symmetries of gauge theory and (super)gravity21 can thus be viewed as
being generated by two-dimensional currents in CCFT. From the Kerr–Schild double copy
relation between the conformal primaries (4.13) we see for∆= 1 that BMS symmetry can be
regarded as a double copy of large gauge symmetry [204, 328]. For ∆ ∈ 1−Z⩾0 there exists
an infinite tower of conformally soft primaries obeying a Kerr–Schild double copy [261]; see
also [329].

5.2.2. Conformally soft theorems and 2D ward identities. Another way to see the action of
asymptotic symmetries in celestial CFT is to derive the imprint of soft theorems on celestial
amplitudes. It is not immediately obvious how to reveal the expected universal behaviour of
celestial amplitudes in the soft limit, or equivalently, how to take a ‘low energy’ limit of a boost
eigenstate which involves a superposition of all energy eigenstates. Nevertheless, motivated by
the analysis of conformal primary wavefunctions of∆= 0,1 and the discussion in section 4.3
we can start with a massless celestial operator of dimension∆ and spin J given by

O∆,J(z, z̄) =
ˆ ∞

0
dωω∆−1Oℓ=J(ω,z, z̄), (5.13)

and consider the limit

lim
∆→−n

(∆+ n)O∆,J(z, z̄) = lim
∆→−n

(∆+ n)
∑
k

ˆ ω∗

0
dωω∆+k−1OJ,k(z, z̄)

= OJ,n(z, z̄). (5.14)

Here we expanded

OJ(ω,z, z̄) =
∑
k

ωkOJ,k(z, z̄) (5.15)

21 A similar analysis for large supersymmetry transformations [326, 327] related to the soft gravitino theorem can be
found in [261, 324] which is generated by the ∆̃ = 3

2
supercurrent Sz or its ∆= 1

2
shadow S̃̄z.
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for ω ⩽ ω∗ and assumed that insertions ofOJ(ω,z, z̄) into S-matrices have fast enough fall-offs
with energy22 in which case the high-energy part of the Mellin integral will be free of poles
in ∆+ n. We therefore see that the ∆→−n limit of a celestial operator for n=−1,0,1, . . .
picks out the O(ωn) term in an expansion around ω= 0 corresponding to the soft-expansion
described in section 2.2. The∆= 1,0,−1 insertions are associated with leading, sub-leading
and sub-sub-leading soft behaviour respectively [83, 271, 286, 313, 325, 330].

In the following sections we review the universal behaviour of gravity and gauge theory
celestial amplitudes in conformally soft limits, as well as in the collinear or OPE limit. The
analysis will uncover interesting infinite dimensional symmetry algebras [150, 331] which will
be the subject of section 5.4.

5.2.2.1. Gauge theory. It was shown in [8] that, in theories without massive particles, the
leading soft photon theorem implies that soft photons behave as U(1) currents. To see this,
one parameterises the massless momenta as in (4.2) and substitutes them into the leading
soft photon relation (2.11). For outgoing soft photons of momentum p and hard particles of
momenta pk (again rescaled as in section 4.5) using

pk · ϵ+(z, z̄) =−ωkηk(z̄− z̄k), pk · p(z, z̄) =−ωωkηk|z− zk|2, (5.16)

the soft photon factor becomes

S(0)+ =
n∑

k=1

Qk

ω(z− zk)
, (5.17)

where we absorbed the factor of ηk into the definition of Qk. Consequently, S-matrices with
soft photon insertions obey Ward identities of the form

〈Jz(z, z̄)
n∏
i=1

Oi(ωi,zi, z̄i)〉 ≡ lim
ω→0

ω〈Oℓ=1(ω,z, z̄)
n∏
i=1

Oi(ωi,zi, z̄i)〉

=
n∑

k=1

Qk

z− zk
〈
n∏
i=1

Oi(ωi,zi, z̄i)〉.
(5.18)

Similarly, the leading soft gluon theorem can be recast as a holomorphic Kac–Moody sym-
metry generated by non-abelian currents Jaz (or soft gluons of positive helicity) [9].

As explained in section 5.2, in a conformal primary basis soft photons or gluons correspond
to operators of vanishing holomorphic/antiholomorphic weights or equivalently ∆= 1 and
J=±1. The conformally soft theorem then relates celestial amplitudes with and without inser-
tions of such operators, namely

lim
∆→1

(∆− 1)Ãn+1(∆,J=+1,z, z̄;∆i,zi, z̄i) =
n∑

k=1

Qk

z− zk
Ãn(∆i,zi, z̄i). (5.19)

This is the celestial counterpart of the soft photon theorem (3.9) as first derived in [286, 313,
325]. Its non-abelian gauge theory analogue was verified in examples of celestial amplitudes
in Yang–Mills and open string theory in [325].

22 An exponential fall-off limω→∞⟨O(ω, z, z̄) · · · ⟩ ∼ e−ϵω will ensure this limit is well defined for any negative
integer ∆.
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In the same parameterisations for the momenta, the sub-leading soft photon factor (2.11)
takes the form

S(1)+ =
n∑

k=1

Qkηk
ωk(z− zk)

(ℓk+ωk∂ωk +(z̄− z̄k)∂ z̄k) , (5.20)

or in a conformal primary basis

S̃(1)+ =
n∑

k=1

Qk

(z− zk)

(
−2h̄k+ 1+(z̄− z̄k)∂ z̄k

)
(P(k)

− 1
2 ,−

1
2
)−1. (5.21)

Here P−1
− 1

2 ,−
1
2
is the inverse of the momentum mode (5.5),

[P−1
− 1

2 ,−
1
2
,O±

h,h̄
(z, z̄)] =±O±

h− 1
2 ,h̄−

1
2
(z, z̄). (5.22)

The sub-leading conformally soft theorem then implies a differential recursion relation for
celestial amplitudes

lim
∆→0

∆Ãn+1(∆,J=+1,z, z̄;∆i,zi, z̄i)

=
n∑

k=1

Qk

(z− zk)

(
−2h̄k+ 1+(z̄− z̄k)∂z̄k

)
(P(k)

− 1
2 ,−

1
2
)−1Ãn(∆i,zi, z̄i).

(5.23)

We will see in section 5.3 how (5.23) and their analogue in non-abelian gauge theories can be
used to constrain the dynamics encoded in OPE coefficients of celestial operators.

5.2.2.2. Gravity. The conformally soft behaviour of gravity amplitudes follows similarly by
computing residues of poles at integer ∆⩽ 1. In particular, in a conformal primary basis the
leading soft graviton theorem (3.15) becomes [271, 330]

lim
∆→1

(∆− 1)Ãn+1(∆,J=+2,z, z̄;∆i,zi, z̄i)

=−κ

2

n∑
k=1

z̄− z̄k
z− zk

ηkÃn(∆k+ 1,zk, z̄k), (5.24)

where all suppressed arguments on the right-hand side are unshifted. The shift in the kth con-
formal dimension is inherited from multiplication by ωk in a momentum-space basis.

At sub-leading order, the conformally soft theorem is related to (3.19) by a shadow
transform [22, 24, 255] and simply reflects the conformal symmetry of celestial amplitudes.
An expression for the sub-sub-leading soft graviton theorem can be found in [182, 312, 332]
and can be used to constrain the leading OPE behaviour of gravity amplitudes [312] as we
will see next. The celestial counterpart of the soft graviton theorem to sub-leading and sub-
sub-leading order was discussed in [83]. At tree level, celestial amplitudes obey further Ward
identities associated with poles at increasingly negative ∆. These were recently worked out
from a celestial CFT perspective in [150, 288, 317], while their asymptotic symmetry interpret-
ation was explained in [190, 333]. Corrections to these Ward identities from higher-derivative
operators and their associated constraints were computed in [334, 335].

5.3. OPEs from symmetry

We now derive the celestial OPEs, obtained in the previous section from collinear limits of
celestial amplitudes, purely from symmetry considerations. We treat zi, z̄i as real independent
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variables and study tree-level OPE expansions of celestial operators in a holomorphic collinear
limit z12 → 0 for z̄1, z̄2 fixed. We focus on operators creating outgoing particles and omit the
corresponding label.

5.3.1. Gauge theory. We start by assuming that positive-helicity gluons admit the holo-
morphic collinear expansion

Oa
∆1,+1(z1, z̄1)Ob

∆2,+1(z2, z̄2)∼− if abc
z12

C(∆1,∆2)

×Oc
∆1+∆2−1,+1(z2, z̄2)+ . . . , (5.25)

where . . . include contributions from SL(2,C) descendants. This leading contribution to the
OPE is not affected by higher derivative operators, which modify the expansion at sub-leading
orders23. The form of the OPE is fixed by the leading soft theorem and SL(2,C) up to a
coefficient C(∆1,∆2). We now show that the sub-leading conformally soft gluon theorem
determines this leading OPE coefficient up to a normalisation fixed by the leading soft gluon
theorem [312].

The negative helicity sub-leading soft gluon theorem leads to the following transformation
properties

δ̄bOa
∆,±1(z, z̄) =−(∆− 1∓ 1+ z̄∂z̄)if

a
bcOc

∆−1,±1(z, z̄) . (5.26)

Acting with δ̄ on both sides of (5.25) and comparing the two sides, we deduce that C(∆1,∆2)
obey the recursion relation

(∆1 − 2)C(∆1 − 1,∆2) = (∆1 +∆2 − 3)C(∆1,∆2) . (5.27)

Equation (5.27) has the unique24 solution

C(∆1,∆2) = B(∆1 − 1,∆2 − 1) . (5.28)

The OPE of opposite helicity gluons can be derived along similar lines and is given [312].

5.3.2. Gravity. A similar argument can be used to derive the leading behaviour of gravitons
in the collinear limit. The OPE of positive helicity gravitons is fixed by SL(2,C) to take the
form

∂z̄1O∆1,+2(z1, z̄1)O∆2,+2(z2, z̄2)∼
D(∆1,∆2)

z12
×O∆1+∆2,+2(z2, z̄2)+ · · · , (5.29)

where . . . include contributions from SL(2,C) descendants, as well as primaries appearing
at sub-leading order in a holomorphic collinear expansion. Here O∆1+∆2,+2 is an SL(2,C)
primary, but a Poincaré descendant

O∆1+∆2,+2(z) = P− 1
2 ,−

1
2
O∆1+∆2−1,+2(z). (5.30)

Imposing that (5.29) is invariant under the sub-sub-leading conformally soft action25 leads to
a recursion relation for D(∆1,∆2) that is solved by [312]

23 This can be seen by a dimensional analysis of three-point functions e.g. [151] or of the primaries which contribute
to the OPE [312].
24 By Wieland’s theorem, see appendix E of [312]. The normalisation is fixed by the leading soft theorem.
25 The associated asymptotic charges have been discussed in [190].
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D(∆1,∆2) =−κ

2
B(∆1 − 1,∆2 − 1). (5.31)

Again, the normalisation is fixed by the leading conformally soft behaviour

lim
∆1→1

(∆1 − 1)O∆1,+2(z1, z̄1)O∆2,+2(z2, z̄2)

∼−κ

2
z̄12
z12

O∆1+∆2,+2(z2, z̄2). (5.32)

Both (5.28) and (5.31) can be shown to holographically reproduce the collinear splitting
functions derived in section 4.5. More recently, it was shown that the same results follow
upon including conformal descendant contributions to the OPEs and imposing Poincaré sym-
metry [317].

The graviton OPE expansion includes SL(2,C) primary contributions at sub-leading orders
in a z12 expansion. Some of these were determined using the extended BMS symmetry algebra
in [322, 323] (see also [336] for an analysis of subleading terms in the gluon OPE). For
example, at O(z012z̄

0
12) SL(2,C) implies that the tree-level positive helicity graviton OPE may

receive contributions from operators of dimension∆=∆1 +∆2 and spin J= 4. In pure grav-
ity, the only SL(2,C) primaries with these dimensions are the two extended algebra descend-
ants

P− 3
2 ,

1
2
O∆1+∆2−1,+2, J1−1P− 1

2 ,−
1
2
O∆1+∆2−1,+2, (5.33)

where J1−1 is a mode of one of the current algebra generators extracted from the sub-leading
conformally soft graviton which will be defined in (5.46). Specifically J1(z)≡ H 0

1(z) and
J1−1 =

¸
dzz−1J1(z). These operators can be shown to be related by a null state condition [322],

therefore the graviton OPE gets corrected by only one term at sub-leading order,

O∆1,+2(z1, z̄1)O∆2,+2(z2, z̄2)

∼ z̄12
z12

D(∆1,∆2)P− 1
2 ,−

1
2
O∆1+∆2−1,+2(z2, z̄2)

+D ′(∆1,∆2)P− 3
2 ,

1
2
O∆1+∆2−1,+2(z2, z̄2)+ . . . . (5.34)

Since the sub-leading term is effectively a current algebra descendant of the first, its OPE
coefficient should be determined by symmetry. Indeed, imposing invariance of (5.34) under
J−1
1 =

¸
dzzH0

−1(z) and matching the O(z012z̄
0
12) terms on both sides, one finds [322]

D ′(∆1,∆2) =−D(∆1,∆2). (5.35)

MHV amplitudes can be shown to obey this relation [322].
Similar arguments can be in principle used to determine further sub-leading terms in the

OPE expansion of gluons and gravitons and can be checked to reproduce increasingly sub-
leading behaviour of the correspondingMHV amplitudes [138, 321–323, 336, 337]. Subtleties
related to the mixing of helicity sectors appear in examples beyond MHV and generalising
these techniques to these cases, as well as higher loop orders is an active area of research.
Recent progress in related fields such as twistor theory [283, 338, 339] already appears to
provide some insight into these problems, see also the SAGEX review chapter 6 [73].

5.4. Conformally soft symmetry algebras

We hinted in section 5.2 at an infinity of conformally soft operators

lim
∆→−n

(∆+ n)O∆,J(z, z̄) , n=−1,0,1, . . . . (5.36)
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This limit effectively picks out the coefficients of the ωn term in the expansion around ω→ 0
ofO(ω,z, z̄) =

∑
jω

jOj(z, z̄). As we will see in section 5.5, the existence of these operators can
also be derived from conformal representation theory. In this section we review the algebra of
the (semi-)infinite tower of conformally soft gluon and graviton operators [150, 317, 340]. We
focus on only positive helicity currents and work in a VirL⊗ SL(2,R)R-invariant formalism
where SL(2,R)R is the global subgroup of VirR superrotations. That is we treat z and z̄ again
as independent variables which amounts to continuing (3,1)Minkowski to (2,2) Klein space
with the celestial sphere becoming the celestial torus [341] and the Lorentz SL(2,C) continued
to SL(2,R)L× SL(2,R)R.

5.4.1. Gauge theory. Define the discrete family of positive helicity soft gluons

Rk,a := lim
ε→0

εOa
k+ε,+1 , k= 1,0,−1,−2, . . . (5.37)

with weights

(h, h̄) =

(
k+ 1
2

,
k− 1
2

)
, (5.38)

and a consistently-truncated antiholomorphic mode expansion

Rk,a(z, z̄) =

1−k
2∑

n= k−1
2

Rk,an (z)

z̄n+
k−1
2

. (5.39)

These values of conformal weights ∆= k include all the conformally soft poles encountered
in the OPE (4.35) of two positive helicity gluons. The factor of ε is incorporated in (5.37) to
cancel these poles and give finite OPEs for the rescaled Rk,a. Including the contribution from
SL(2,R)R descendants the OPE (4.35) becomes

Oa
∆1,+1(z1, z̄1)Ob

∆2,+1(z2, z̄2)∼
−if abc
z12

∞∑
n=0

B(∆1 − 1+ n,∆2 − 1)
z̄n12
n!

× ∂̄nOc
∆1+∆2−1,+1(z2, z̄2)+ . . . (5.40)

where . . . denote terms sub-leading in the limit z12 → 0. The pole structure of the Euler beta
functions in (5.40) implies that for k−1

2 ⩽ n⩽ 1−k
2 , the mode operators Rk,an (z) organise into

(2− k)-dimensional SL(2,R)R representations. In particular, note that ∂̄2−kRk,a(z, z̄) = 0. One
can now infer the OPE of the soft currents (5.37) and derive the algebra of the soft operat-
ors [150]

[Rk,an ,Rl,bn ′ ] =−if abc
(

1−k
2 − n+ 1−l

2 − n ′

1−k
2 − n

)(
1−k
2 + n+ 1−l

2 + n ′

1−k
2 + n

)
×Rk+l−1,c

n+n ′ . (5.41)

Defining the rescaled operators

R̂
p= 3−k

2 ,a
n ≡

(
1−k
2 − n

)
!
(
1−k
2 + n

)
!Rk,an , (5.42)

with p= 1, 32 ,2, . . . (5.41) implies R̂ obey the simpler algebra

[R̂p,an , R̂q,bn ′ ] =−ifabcR̂
p+q−1,c
n+n ′ . (5.43)

To summarise, in 4D non-abelian gauge theorywith groupG, the leading soft gluon theorem
implies a standard closed celestial G-current algebra [4, 286, 313, 325, 330]. The sub-leading
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soft theorem implies two furtherG-valued holomorphic currents [138, 169, 312] which form an
SL(2,R)R doublet. In the conformal basis the leading and sub-leading soft gluons correspond,
respectively, to the ∆= 1 and ∆= 0 conformally soft gluon operators. The commutator of
two of these currents gives rise to further symmetry generators in an SL(2,R)R triplet. Continu-
ing in this manner, there exists an infinite tower of G-currents in finite-dimensional SL(2,R)R
representations obeying the closed algebra (5.43).

5.4.2. Gravity. A similar symmetry algebra analysis can be done for gravitons. Define a
discrete family of conformally soft positive-helicity gravitons

Hk := lim
ε→0

εOk+ϵ,+2 , k= 2,1,0,−1,−2, . . . (5.44)

with weights

(h, h̄) =

(
k+ 2
2

,
k− 2
2

)
, (5.45)

and a consistently-truncated antiholomorphic mode expansion

Hk(z, z̄) =

2−k
2∑

n= k−2
2

Hk
n(z)

z̄n+
k−2
2

. (5.46)

As in gauge theory, the soft graviton currents Hk obey a closed algebra [150, 317, 340]. Fol-
lowing similar steps as above and redefining

wpn =
1
κ
(p− n− 1)!(p+ n− 1)!H−2p+4

n , (5.47)

one can show that the rescaled conformally soft graviton operators satisfy [340]

[wpm,w
q
n] = [m(q− 1)− n(p− 1)]w p+q−2

m+n , (5.48)

with p,q running over positive half-integers p,q= 1, 32 ,2,
5
2 , . . .. This algebra is called the

wedge algebra of w1+∞ [342] - ‘wedge’ because of the restriction k−2
2 ⩽ m⩽ 2−k

2 , or equival-
ently 1− p⩽ m⩽ p− 1. Evidence that such algebraic structures are encountered in a large r
expansion of asymptotically flat metrics obeying the vacuum Einstein equations was recently
found [190, 333]. This algebra was shown to be uncorrected in self-dual gravity [343], while
modifications of this algebra in the presence of non-minimal couplings and their implications
for low-energy effective field theories were worked out in [335]. It will be interesting to explore
the possible quantum deformations of this algebra and the constraints they impose on quantum
theories of gravity.

5.5. Global conformal multiplets in celestial CFT

We end the discussion of celestial symmetries with an examination of the structure of global
conformal multiplets in two-dimensional celestial CFT. This will reveal the power of sym-
metry in organising the conformally soft behaviour of scattering and unify the discussion of
conformally soft theorems, two-dimensional Ward identities for four-dimensional asymptotic
symmetries, their associated soft charges, and conformal dressings for celestial amplitudes.
Global conformal multiplets in celestial CFTwere studied in [344] following the spirit of [345]
from the bootstrap literature. Inspiration is drawn from the closely related discussion of null
states in [138, 150, 321, 322, 346–349].
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Figure 3. Diamond illustrating the nested structure of SL(2,C) primary descendants that
arises for primary operators with weights (h, h̄) = ( 1−k

2 , 1−k̄
2 ) with h, k̄ ∈ Z>0.

Let us start by considering the conditions for global primary descendants in generic two-
dimensional CFTs. An SL(2,C) primary state |h, h̄〉 is by definition annihilated by both L1 and
L̄1. We can construct its SL(2,C) descendants by acting with L−1 and L̄−1, or equivalently
∂ ≡ ∂z and ∂̄ ≡ ∂z̄, an arbitrary number of times. Focusing on the holomorphic algebra, a state
of the form (L−1)

k|h, h̄〉 is called a primary descendant if it is annihilated by L1. This is satis-
fied for h= 1−k

2 for k ∈ Z>0. The primary descendant has dimension 1+k
2 corresponding to a

reflection of theweight h→ 1− h. A similar reasoning can be repeated for the antiholomorphic
algebra, yielding a primary descendant for h̄= 1−k̄

2 for k̄ ∈ Z>0. When both conditions are sat-

isfied, (h, h̄) = ( 1−k
2 , 1−k̄2 ) the two submodules intersect at the position of an additional primary

descendant forming a nested diamond structure. This is illustrated in figure 3.
The conformally soft primaries in CCFT and their primary descendants are organised into

celestial diamonds for which we now highlight some key aspects. The soft charge correspond-
ing to a given asymptotic symmetry transformation can be expressed as [347–349]

QS =

ˆ
d2zζ(z, z̄) · Osoft , (5.49)

where ζ is the symmetry transformation parameter and the · takes care of tensor (or spinor)
contractions. The operators Osoft are primary descendants of conformally soft radiative fields
(J=±s) and thus reside at the bottom corners of the celestial diamonds associated to ζ. The
two-dimensional Ward identities that are equal to four-dimensional soft theorems arise from
the insertion of celestial currents j, j̄ such that

∂̄j=Osoft , ∂ j̄=Osoft. (5.50)

This includes the U(1) current Jz and the stress tensor Tzz which are the conformally soft
primary operators at the right corner of the diamond associated to, respectively, the leading
photon and the sub-leading graviton soft theorem. The supertranslation current Pz corresponds
to the (non-primary) descendant of the primary operator at the right corner of the leading soft
graviton diamond.

A classification of all global conformal multiplets relevant in two-dimensional CCFT is
given in [344]. We distinguish three types of primary descendants depending on whether the
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spin J of the primary is bigger, equal or smaller in magnitude than that of the primary descend-
ant. We can group them in the following three categories according to their ranges of ∆ ∈ Z
focusing on integer spin.

• 1− |J| < ∆ < 1+ |J|: The operatorO∆,J gives the soft charge (5.49) for a corresponding
asymptotic symmetry whenever the wavefunction Φ∆,J is pure gauge as is the case for 1−
|J|<∆⩽ 1. These conformally soft operators lie at the left or right corners of the celestial
diamond and give rise to the leading (leading and sub-leading) soft theorem in gauge theory
(gravity) and their associated memory effects. The remaining modes at 1⩽∆< 1+ |J| in
this range give rise to symplectically paired Goldstone operators which encode conformal
Faddeev–Kulish dressings for celestial amplitudes. [350]

• ∆ = 1− |J|: For the sub-leading (sub-sub-leading) soft theorem in gauge theory (grav-
ity) [32, 51] the diamonds degenerate to a line, and the primary operator with conformal
dimension ∆= 1− |J| descends to its own shadow with dimension 1+ |J|. Charges that
give rise to an isomorphism with the soft theorems were discussed in [351] while com-
binations of positive and negative spin modes make contact to the overleading large gauge
transformations of [182, 352].

• ∆ < 1− |J|: There are infinitely many primaries at ∆= 1− |J| − n for n> 0 whose des-
cendant wavefunctions at level n naively vanish [344, 351], while the algebra of primary
operators constructed as in section 5.4 is anything but trivial [150, 317]. The associated
charges generating the tower of soft theorems were identified in [333].

The above towers of conformally soft primary operators in gauge theory and gravity obey
the infinite-dimensional holographic symmetry algebras discussed above.

5.6. Conformal dressings

In QED and gravity IR divergences exponentiate and set all matrix elements to zero. All-loop
amplitudes admit a splitting into a soft and a hard component of the form [40]

A= eBAbare, (5.51)

where in QED

B=−α
∑
i<j

QiQj ln

∣∣∣∣12pi · pj
∣∣∣∣ , (5.52)

whereas in gravity

B=−γ
∑
i,j

(pi · pj) ln(pi · pj). (5.53)

Here α= e2

4π2 lnΛIR and γ = G
π lnΛIR with ΛIR an IR cut-off, while Abare is the IR-finite part

of the amplitude which in our conventions is independent of both IR and UV cutoffs.
In a conformal primary basis a similar decomposition continues to hold. This is not a priori

obvious since both B andAbare depend on the external energies and the Mellin integrals could
in principle spoil factorisation. Nevertheless, the celestial amplitudes derived from (5.51) take
the form [270]

Ã= ÃsoftÃhard. (5.54)
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In (massless) QED

Ãsoft ≡
∏
i<j

(zijz̄ij)
−αQiQj , Ãhard ≡

∏
i

ˆ ∞

0
dωiω

∆ ′
i −1

i Abare, (5.55)

with ∆ ′
i =∆i+αQ2

i , while in gravity

Ãsoft ≡ exp

∑
i,j

2γPiPj|zij|2 log |zij|2
,

Ãhard ≡
∏
i

ˆ ∞

0
dωiω

∆i−1
i Abare, (5.56)

where Pi should be understood as P− 1
2 ,−

1
2
acting on the ith leg according to (5.5).

In both QED and gravity, the soft component of the celestial amplitude can be repro-
duced by vertex operators of Goldstone bosons for large gauge symmetry and supertranslations
respectively [353–355]. In QED, the soft component is manifestly conformally covariant and
the shifts in the dimensions of the hard part ensure the net celestial amplitude transforms as
a conformal correlator of dimension ∆i operators as it should by construction. In gravity, the
charges Qk are replaced by energies which in a conformal primary basis results in an operator
valued soft component in (5.54).

The conformally soft-hard factorisation (5.54) leads to a natural prescription of defining
IR-finite celestial amplitudes. One can dress celestial amplitudes by (hermitian conjugates of)
the vertex operators of the Goldstone bosons responsible for Ãsoft. In QED and gravity, the
Goldstone bosons S and C are defined by

Sz = i∂zS , Czz = i 12!∂
2
z C (5.57)

where Sz and Czz are ∆= 1 operators defined by inner product (4.6) of bulk operators of
respectively spin s= 1 and s= 2 with conformal primary wavefunctions ACS

1,−1 and hCS1,−2
that are canonically conjugate to the ∆= 1 Goldstone wavefunctions (5.11) and (5.12),
i.e. i(ACS,AG) = i(hCS,hG) = (2π)2δ(2)(z− z ′) [255, 270]. In QED, the vertex operators
e−iQkS(zk ,̄zk) can be shown to precisely coincide with the Lorentz-invariant Faddeev–Kulish
dressings [356–360] allowing for coherent photons of all energies. In a momentum space
basis, momentum conservation induces an upper bound on the allowed energies of photons
in the cloud. In a conformal primary basis such a constraint is irrelevant and a natural choice
of the dressing is simply picked out by conformal symmetry. Analogous statements hold for
gravity and are worked out in [270].

6. Outlook

The importance of soft factorisation for the cancellation of IR divergences in QCD cross-
sections ensures the continuing relevance of developing more efficient methods for perturb-
ative computations. Additionally, the recent developments in applying amplitude methods to
gravitational wave physics provides motivation for extending our current understanding of
soft limits to new regimes such as states with classical spin. Even at a more formal level there
are open questions regarding the connection between soft theorems and known asymptotic
symmetries, for example it would be useful to have a complete one-loop matching of the sub-
leading soft-factor in gravity and the two-dimensional stress tensor Ward identity.

The reformulation of the scattering problem in a conformal primary basis has so far proven
particularly useful in exposing potential new symmetries of Nature. Indeed, the (semi-)infinite
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tower of tree-level symmetry currents discussed in the previous section is perhaps surprising
from a momentum space point of view: we are only starting to uncover the interpretation and
implications of these symmetries beyond sub-leading order! It seems likely they, as well as
their extension beyond tree level, will imply powerful constraints on consistent low energy
effective field theories.

Massless low-point celestial amplitudes, while conformally covariant, are plagued with
singularities inherited from bulk momentum conservation. This fundamental difference from
standard CFTs where such singularities are typically absent has led to challenges in apply-
ing CFT methods in the study of CCFTs. One promising way around this is the proposal that
the conformal primary solutions should be traded for light- or shadow-transforms thereof [24,
260, 361–363] in which case contact terms may disappear. Nevertheless, whether there exists
a basis in which all singular conformal structures become regular remains an important open
question.

Massive celestial amplitudes are currently poorly understood and deserve further study.
While some of their symmetries were discussed in [257, 319], there is evidence that massive
operators are non-local on the celestial sphere [364] which obscures the power of celestial
symmetries and complicates the application of the methods discussed in section 5 to this case.
A better understanding of massive celestial amplitudes would be especially interesting as it
could provide insights into the holographic description of non-perturbative asymptotically flat
backgrounds, including black holes beyond their ultraboosted limits [261].

Although recent progress was made in [365], we are currently lacking an understanding
of basic aspects of the holographic correspondence, such as the precise ways in which bulk
locality, unitarity and causality are encoded in CCFTs.Moreover, there are subtleties involving
OPE associativity in mixed helicity sectors. The question of the radius of convergence of the
OPE, and relatedly the (non)locality of the CCFT remains open. A resolution of these issues
would pave the way towards setting up a bootstrap program in this context. Preliminary steps in
this directionwere taken in [286, 361, 366–368] where it was shown in a range of examples that
celestial four-point amplitudes encode information about the spectrum and OPE coefficients
of CCFTs not too unlike conventional CFTs. Identifying the central charge of CCFT would
also be essential for the holographic dictionary.

An important milestone in the celestial holography programme is to identify an intrinsic
CFT construction of a bulk theory. In the conformally soft sector, progress has been made in
a series of recent works [350, 353, 369–375] where effective actions have been proposed that
capture IR aspects of gauge theory and gravity both in four and more spacetime dimensions.

Since celestial amplitudes are expressed in boost eigenstates which superpose all energies,
the usual Wilsonian decoupling of UV/IR physics no longer applies. Being well-defined only
for theories that are equipped with a UV completion, celestial amplitudes offer an arena to
study general properties of consistent quantum gravity theories. The embedding of celestial
holography in string theory is an exciting open direction.
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