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Abstract

An analysis of the production, decay, and quantum numbers of the ¢(1440) in
radiative J/1 decays is presented. The ¢(1440), because of its large production
in this OZI-suppressed channel, is considered a possible gluonic bound-state, or
glueball. Such states appear to be a natural consequence of the non-Abelian
structure of the SU(3) color gauge group of QCD. The data, 2.7 x 108 produced
J/4’s, were obtained using the Mark III detector at the SPEAR eTe™ storage

ring.

‘The spin-parity of the ¢(1440) is independently determined to be 0~ using
two decay modes, ¢ — KZK*nF and « — KTK~x°. The technique used is
based on the three-body helicity formalism, which provides a means of studying
- the decay angular distributions in a manner independent of the structure of the
Dalitz plot. This is particularly useful in the case of : — KK m, where the limited
phase space makes it difficult to unambiguously identify the two-body modes.
In addition, the measured angular distributions provide direct visual evidence
supporting the spin-pa.rity“é.ssignment. Measurements of the : mass, width,
and branching fractions are obtained using : — Kg.Kiw:F, ¢ - KTK—x°
and ¢ — KGK%n®. The relative branching fractions are consistent with the
isospin 0 predictions. From a study of the K X7 Dalitz plot, an upper limit for
¢ = K*K + c.c. is obtained. These results are discussed in the context of the

current experimental status of the £(1420).

Upper limits are presented for B(¢c — nnr), B(t — ér — nrr), B(e —
KKn7), and B(v — prr). The limit on B(. — ém — nmw) appears to be
inconsistent with a large value of B(. — ér — KK 7). However, the very
uncertain status and properties of the § (980) make it difficult to pinpoint the

source of this inconsistency. Together, these upper limits provide evidence that,
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apart from a possible « — pp signal, KK is the dominant . decay and that

inclusive ¢ production is domigated by J/Y =, 1 — K K.

The double radiative channels J/¢ — X, X — v+ Vector, where Vector
= p° ¢, w are studied to probe the quark content of the object X. Many
pseudoscalar mixing models predict that the ¢ acquires a large radiative width
iﬁto ~p° thro.ugh mixing with the  and n’. In the y(7p°) final state, a broad
structure is observed in the 1.4 GeV region. Although the measured angular
distributions are consistent with the pseudoscalar predictions, the central mass
of this structure is below that found for the ¢ in the KKn channels. Thus,
with the present limited statistics, it is unclear whether this structure should
be identified with the . Upper limits are obtained for ¢« — v¢ and ¢+ — ~w.
Measurements are also obtained for B(J/% — vn') and B(J/%¥ — 4n) using the

4(ynTx~) final state. These results are compared with theoretical predictions.

Measurements of the hadronic decays J/¢¥ — ¢n, wn, and wn?®, as well as

the observation of the isospin-violating decay J/% — p°n, are presented.

Finally, the two- and three-body helicity formalisms are discussed in the

Appendices.
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Chapter 1. Introduction

The discovery of charm in 1974 was a decisive step toward understanding
the structure of matter. The observation of the J /¥ in both e*e™ and pBe
interactions (1), the subsequent observation of other states in the charmonium
system, and finally the discovery of the explicitly charmed D-mesons, firmly
established the existence of quarks — despite the fact that free quarks apparently
cannot be produced. Remarkably, theoretical investigations (2) four years
preceding the discovery showed that the existence of a fourth quark could explain
the suppression of weak strangeness—changing neutral currents, which govern
K} — u*u~ and the K7 K mass difference. For myy ~ 80 GeV, the predicted
K} K% mass difference is far too large unless a fourth quark, with mass m,
is introduced. Then one obtains Am/mg ~ (%{i fEmMccosbposin8s)?, which
agrees with measured mass difference for m; ~ 1.5 GeV. Similarly, K% —utu~
is suppressed by interference between diagrams in which the u- and c- quarks

are interchanged.

Crucial to most of the experimental ihvestiga.tions were advances in
instrumentation, in particular the development of the electron-positron storage
ring. The annihilation of an eTe™ pair into a virtual photon provides a means
of producing and studying the JPC = 1~ states that couple to the photon.

The success of ete™ rings can be seen from a plot of
R =o(ete” — hadrons)/o(ete” — ptu™)

as a function of the center-of-mass energy (Fig. 1.1). In this plot, one observes
peaks corresponding to the J/4 (hereafter v) and its radial excitations and
similar peaks for the T resonances, which are b5 bound states. Step-function

increases in R occur at thresholds for production of particles (DD, BB, etc.)
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with non-zero quantum numbers for a new quark flavor. In fact, the onset of
production of a new heavy lepton (e.g., the ) also results in a step up in R, but

these contributions are usually subtracted by convention.

At about the same time as the ¢ discovery, a field-theoretic description
of the strong- interactions was reinstated with the invention of quantum
chromodynamics (QCD) and the elucidation of its remarkable properties (4): the
direct gluon-gluon coupling, asymptotic freedom, and the possibility of quark
confinement. Understanding the decay properties of the ¢ has proved to be a
particularly interesting application of QCD. The line-width of the ¥, T = (63+9)
KeV, is only about one-thousandth of what one expects for a strongly decaying
resonance of its mass. The unusually long ¥ lifetime can be understood as the
result of two effects. First, the ¢ is not sufficiently massive to decay into a DD
pair. Such a decay would ordinarily be the natural process to occur, because it
requires only that the ¢z quarks separate and each combine with one member of a
light quark pair created with the available energy. With this channel closed, the
only strong decay of the 9 is the process whereby the ¢t quarks annihilate. In the
framework of QCD, this results in the formation of gluons, which subsequently
materialize into hadrons (Fig. 1.2a). The second reason the decay is suppressed
is that the QCD coupling constant, g, is a decreasing function of the ¢? carried
by the gluons and is substantially less than one at the %. In order to make
a colorless state with odd charge conjugation, at least three gluons must be

created; consequently the coupling enters as ag‘ in the decay probability.

The lowest order diagrams for 3 decay are shown in Fig. 1.2. These diagrams
represent a) hadronic decay; b) electromagnetic decay into a virtual photon,
which then couples to leptons or quarks; c) radiative ¥ decay with annihilation

of the ¢z quarks into two gluons; and d) the M1 radiative transition of the Y to
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the pseudoscalar charmonium state, the 7, (2980). The calculation of the decay

into three on-shell gluons gives (5)

16 5

T — 39) = 2o (r* - 9) > o3 ZOL

3
Qg ———, (1_1)
M2
¥

where ¥(0) is the value of the radial wave function of the v at the origin. This
result is identical to that obtained for the decay of 3S; positronium into three

3
photons, with the replacement o® — Ef-'s’-. If one assumes that the three-gluon
system couples to hadrons with unit probability, then Eq. (1.1) gives the strong

interaction contribution to the first-order parital width into hadrons.

Because the strong decays of the i are suppressed, the electromagnetic

decays contribute substantially to the total width. For example,

T(p—oete)=14 Qca)zl_\ll_@ﬁ, (1.2)
( M3

where Q. = % is the charge of the charmed quark. Ekperimenta.lly, it is found
that B(y — e*e™) = (7.4 £1.2)% or I'(¢p — ete”) = (4.7 4+ 1.0) KeV. Hadron
production can also occur through the annihilation of the ¢z system into a virtual

photon. The partial width is
I'(¥ = 4* — hadrons) = R(off-resonance)I'(¢) — ete™) =~ 10.3 KeV.

The partial width for the radiative decay into two on-shell gluons is (6)

. 32 T(0)2
L(% = v99) = o (n* - 9)aje L A(,_,z)l :

Using the known branching fraction to ete™,

Ty — ete)
I'(Y = ~* — ete~, u*u~, hadrons) + (¢ — vg9) + L (¥ — ggg)

= 0.074



and the above formulas for the partial widths, one can extract oz =~ 0.18. The

small value of as provides some justification for the perturbative calculation.

The radiative decay of the v into two gluons has a substantial rate. The

second-order calculation for the ratio of radiative to hadronic v decays predicts

that (7)

T4 —>ggg) 5 °\as

Qg

I'(y — gg) _ 36 2(a> [1+2'2°‘3 +] ~ 14.6%,

assuming as =~ 0.18. Using

3
(¢ —3g) = -l-g;r-(ﬂ’z - 9)“—-(&1-‘—fi)r(¢ — eTe™) ~ 39 KeV

one obtains

T(y — vg99) =5.7KeV  B(¢ — vg9) = 9.1%,

which indicates that these decays should be a good source of hard gluons.

The interest in radiative v decays is due to the fact that lattice, bag, and
potential models of QCD all strongly suggest the existence of gluonic bound
states (glueballs) with masses comparable to those of ordinary mesons (8).
The coupling between gluons is a consequence of the non-Abelian nature of
the SU(3) color gauge group of QCD. In addition, the non-observation of free
quarks provides empirical support for the notion that color is confined by a force
that increases with distance. Thus, glueballs appear to be an entirely natural
consequence of the properties of QCD, and as such, their observation would
constitute one of the best possible tests of the theory. The lightest glueballs are
expected to have masses ranging from 0.5-2.5 GeV (depending on the model),
and to have spin-parity 07+, 0™, or 27+, Because this mass range is accessible

in radiative ¢ decays, and because these quantum numbers should predominate



in the two-gluon system produced when the cz annihilate, radiative v decays
are considered to be a favorable channel in which to search for glueballs. (The
description of the gluonic resonance as a two-gluon system, however, may not be
very meaningful, as mixing is sometimes allowed between two- and three-gluon

systems (9).)

The question of whether the two gluons resonate directly (a glueball) or
first decay perturbatively into quarks, which then resonate as a meson or four-
quark state, is one of detailed long-range QCD dynamics and cannot as yet be
addressed by theory. In fact, there are several well-known examples of radiative
decays into mesons: ¢ — vn, y9', vf, and vf. Radiative decays to isovectors are
strongly suppressed; they must occur through a process in which the photon is
radiated by a light quark in the final state. Figure 1.3 shows some of the possible
interactions of the two gluons. In addition to glueball and meson production,
it is possible to form a hybrid state (10) consisting of ¢gg. In fact, it appears
unlikely that pure glueball states will remﬁin unmixed with ordinary mesons;

one expects the physical states to contain both gluonic and ¢§ components.

It has proved extremely difficult to find properties that disfinguish a glueball
from an ordinary meson. A simple guide to (pure) glueball widths is based on the
similarity between glueball decay into mesons and the OZI-suppressed decay of
a meson, such as ¢ — 3. In OZI-suppressed deca.yé, the quarks annihilate
to gluons, which couple again to quarks to produce the final state mesons.
Glueball decay, however, requires only one transition from gluons to quarks.
Consequently, if OZI- processes are suppressed by a factor I'p 21/T hadron, Where

Thadron is a typical hadronic width, then glueball decays should be suppressed

by \/T02z1/T hadron- An estimate for the glueball width is therefore

\/POZI/rhadron X Lhadron = VT 0ZIT hadron = O(1 — 10 MeV).
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In,spite of the heuristic appeal of this argument, it may not be reliable in
many cases of interest, espécially when there is ¢g-glue mixing. The argument
has also been challenged (9) on the grounds that the width of a two-gluon
glueball should be larger than that of the . (I' ~ 12 MeV). In 5, decays, the cg
system annihilates into two gluons, which then hadronize with unit probability.
Consequently, I'(n; — hadrons) ~ o?. A glueball decay would not be suppressed

by a? and would therefore have a width comparable to that of an ordinary meson.

A second idea is that glueballs, which are manifestly SU(3) flavor singlets,
might be expected to have SU(3) symmetric decays (11). A sufficiently heavy
C-even glueball would then decay into pp, ¢¢, and ww, whereas a meson in
an ideally mixed C-even nonet would decay into (pp, ww) or ¢¢, depending on
its quark content. ' The decay of a C-even glueball into KK* is suppressed by
Gy parity: the SU(3) singlet component of the K I_{""} system is odd under C.
Similarly, the decays of a C-odd glueball into Gy-even final states, such as KK
and Ky Ky, are suppressed. Because the SU(3) octet component of the two
strange-meson wave function does not have definite C, these selection rules do

not apply to ideally mixed mesons.

There are various SU(3)-breaking mechanisms, however, that may favor
certain channels. For J = 0 glueballs, helicity conservation could suppress
decays into two spin—% fermions, and could enhance s3 production by a factor
m?/m%. In the spherical cavity approximation to the bag model, it is found
that TM gluon modes couple predominantly in the s-channel to strange quarks
(12). Although it is difficult to determine whether these mechanisms are actually

operating, multi-kaon final states are prominent in the decays of the ¢, 8, and £.

The allowed quantum numbers of glueballs have been investigated in the

context of the lattice, bag, and potential models of QCD (13). Although there
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is some question as to whether the gluons should be considered massless, each
model allows exotic quantum numbers that are not allowed for ¢g states. In
lattice calculations, for example, the quantum numbers (ordered according to

increasing glueball mass) are

JPC = 0++’ 0—'+, 2++’ 1-+, 0—'—',

where the possible excitations of each channel are omitted. Unfortunately, no
states with exotic quantum numbers have been observed. The mass spectra
predicted by these models are summarized in Ref. (13); beyond the expectation
that typical glueball masses are in the 1 — 3 GeV range, there is little reliable
information. For example, all models predict that the scalar glueball is the
lightest, but its mass remains very uncertain (0.5 — 1.7 GeV). The lattice
calculations are presently limited by computirig power. Quark loops are not
included, so that mixing with ordinary mesons cannot yet be studied with this

method.

At present, there is only one reliable criterion to determine whether a
resonance with non-exotic quantum numbers is an ordinary meson. That is
simply to ask whether all available slots in the meson nonets of the appropriate
quantum numbers are occupied. The radially excited mesons must also be
considered, because these states can lie in the 1-2 GeV mass range. Thus, the
identification of a glueball or hybrid state can involve tracking down obscure
results in the dark corners of meson spectroscopy (14). In addition, this
method is extremely dependent on reliable spin-parity measurements, which
are notoriously difficult to obtain. A central goal of this thesis is to provide
an unambiguous spin-parity determination of the ¢, one of the most interesting

glueball candidates.
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Table 1.1. Summary of Known Radiative ¥ Decays.

Yo+ X By —1X) Modes X Observed JP(X)
X= (in Units of 10~3) to Decay into
(various expt.’s)
w0 0.036 + 0.011 + 0.007 0 0~
n 0.88 :0.08 +0.11 v,y tn”, 3x o~
n' 4.7£0.2+0.7 naw, vp°, Yw, vy 0~
f(1270) 2+
— 1.15 +0.07 £ 0.19 xtr~, n°x°
'(1515) 2+
— KK 0.60 £0.14 £ 0.12 K*K~,K3KS
+(1440)
— KKn 5.0+0.3+0.7 KiK*r¥, K+ K~ n°, K3 K3n® 0~
— 7p° (probable) 0.010 £ 0.02 £ 0.02 vp° 0~ prob.
X(1.2 - 2.0 GeV) ?
— T 3.0+0.6 nrtr~, nrow°
X (1.5 - 1.9 GeV)
— pp 2.3+0.9 PP, ptp~ (even)™
— Ww 0.67 £0.17 £ 0.24 2(rt " x°) (even)™
8(1700)
— KK 0.96 £0.12 £ 0.18 K+K—,Kg-Kg. 2t
— N 0.38 £ 0.16 nn
— nTx~ (probable) | 0.16 -+ 0.04 = 0.03
X (2.1 GeV) = h(2040)? nta~ (even)™
— ta 0.30 + 0.05 + 0.06
£(2220)
— K+K- 0.058 & 0.018 + 0.015 KtK- (even)™
1¢(2980) 12.7+ 3.6 nem,n'rr,n' KK, KK, 0~
po, ¢, K*K*
pp inclusive 0.489 =+ 0.049
nn’ inclusive <0.84 (90% C.L.)
5*(975)
— <0.07 (90% C.L.) nta~ o+t

The present status (15) of radiative ¥ decay measurements is summarized

(16) in Table 1.1. All numbers quoted are from Mark III except for 7O,
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4n,79(nn), 1n. (inclusive), and the ynn' upper limit, which are from the Crystal
Ball. In addition to the ¢, there are other interesting glueball candidates. The
0(1720), with JPC = 21+ is observed in KtK—, K3KZ, nm, and probably
also 7x. The £(2220), which is unusually narrow (T' < 40 MeV at 90% C.L.),
is observed (17) in K*K™. Its spin and pé.rity are unknown, although they
are restricted to the values (even)** because C(KK) = P(KK) = (-1)%, and
production in radiative ¢ decay implies C = +1. Structure is also observed in
the n7w, pp, and ww channels in the 1-2 GeV region. Recent studies indicate
that even spin and odd parity are dominant in the 1.5-1.7 GeV mass region in pp
and ww (18). It has proved very difficult with thevprésent statistics to untangle

what are probably 2-3 resonances in the n7r mass spectrum.

Thé radiative decays to exclusive final states (excluding the 7;) sum to
a branching fraction of about 2%, only 22% of the theoretical prediction..
The Mark II collaboration has made an inclusive measurement for values of

z = 2E,/My from 0.6 to 1.0. The branching fraction is (19)
B(p v+ X) = (4.1+0.8)%,

which is in reasonable agreement with the QCD prediction of 5% for this range.
The shape of the QCD photon energy spectrum, however, does not agree well
with the data. The theoretical spectrum is governed largely by three-body phase
space for massless particles and is peaked at high z, whereas the measured
spectrum falls for z > 0.6. More sophisticated theoretical calculations will be

described later.

In this thesis, analyses of the production, decay, and quantum numbers of the
¢ are presented in the context of both theoretical predictions and previous results

on the ¢ and other isoscalar states in the 1.4 GeV mass region. After a description
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of the Mark III detector, studies of the ¥ — 7K§Ki7r:':, ~KTK~ 7% and
K3 Kgn® channels are presented. The spin-parity measurement is performed in
both the KZK £xF and K+ K~ 7° modes using a three-body analysis technique
that is insensitive to which two-body decay modes are present in the KKr
system. A study is also made of the decays ¢y — vX; X — AV, where V = 2°,
#, and w. This electromagnetic decay provides information about the quark
‘content of the state X. Measurements of B(¥ — ~7) and B(p — 4n) are
also made and compared with the results obtained for the . Upper limits for ¢
signals in the nww, KKnn, and p7w channels are presented and compared with
theoretical expécta.tions. Evidence is also presented for a number of previously
unobserved decays of the form 1 — Vector + Pseudoscalar, which were found
as backgrounds to the channéls listed above. Finally, detailed discussions of the
two- and three-body helicity formalisms and their applica.tion to the calculation

of the decay angular distributions are given in the two appendices.
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Chapter 2. The Mark III Detector

2.1 OVERVIEW OF THE MARK II1 DETECTOR

The design of the Mark III detector (20) evolved from that of previous
magnetic detectors at SPEAR. The basic requirements for studying physics in

the 3-4 GeV region (v, ¢/, ¥") follow from a few simple considerations (21):

1. The particle momenta are typically about 0.5 GeV/c; very few tracks have
p>1GeV/ec.

2. The mean multiplicity of both charged tracks and photons is about four.

Events with more than eight charged tracks are rare.

3. Because of the presence of 7%’s and #’s in many decays, good photon

detection efficiency in the 50-300 MeV range is extremely important.

There are several consequences of the low charged particle momenta. First,
the momentum resolution is predominantly due to multiple scattering. It is
therefore essential to minimize the amount of material encountered by the
charged tracks. Second, for a path length of about 1 m, very good 7/K/p
separation can be achieved by time-of-flight with a time resolution of about 200
péec. Finally, although a high magnetic field improves the momentum resolution,
it also increases the transverse momentum required for a charged track to reach
the time-of-flight counters. For a 1.15 m radius and a B-field of 4 kG, the cutoff
in pr is about 70 MeV/c.

Figure 2.1 shows the axial and transverse views of the Mark III detector.
The main features of the detector, moving outward from the beam axis, will

now be described. (The thickness in radiation lengths of various components is
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Figure 2.1. The Mark III detector viewed a) from along the beam axis and b)
from the side (transverse view).
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Table 2.1. Thickness in Radiation Lengths of Detector Materials.

Detector Component Thickness (% r.L.)
Beam pipe (1.5 mm Thick Be) 0.400
Trigger drift chamber
Gas 0.026
Wires 0.031
Cylinders (5) 0.610
Total 0.667
Main drift chamber
Inner wall 0.160
Gas , 0.754
Wires . 0.154
Total 1.068
Time-of-Flight Scintillators 12.0
Aluminum spool 28.0

given in Table 2.1.) The beam pipe is made of beryllium to minimize multiple
scattering. Surrounding the beam pipe at a radius of about 0.1 m is a small
drift chamber that provides a timing signal for the trigger as well as four position
measurements radially. The main drift chamber, which is 2.337 m long, has 30
" sense wires arranged radially, and covers 85% of the solid angle. Just outside the
main drift chamber, at a radius of 1.15 m, are the 48 time-of-flight scintillation
counters. The electromagnetic calorimetry consists of a barrel shower counter
and two endcaps, which together cover 94% of the solid angle.. The barrel is
inside the conventional solenoidal magnet in order to maximize the efficiency
for low-energy photons. The magnet produces an axial field of about 4 kG. The

steel flux return and the muon counters are outside the coil.
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The following coordinate system is used to describe events. The z-axis points
inward, towards the center of the ring; the y-axis is vertical, normal to the plane
of the ring; and the z-axis points along the positron beam. Thus, the z-z plane

coincides with the bend plane of the SPEAR dipole magnets.

2.2 THE TRIGGER DRIFT CHAMBER

The trigger drift chamber (layer 1) is a low-maés, cylindrical chamber
immediately surrounding the beam pipe. Its primary purpose is to provide
a timing signal, ¢,yen¢, that can be compared to the beam crossing time t;poss-
Events with large values of |toyens — tcross| are usually due to cosmic rays and
are rejected by the trigger. In previous magnetic detectors at SPEAR this
time measurement was performed by a set of scintillation counters surrounding
the beam pipe. However, multiple scattering of charged tracks in such counters
makes a substantial contribution to the momentum resolution at low momentum.
Mark III chose to improve the momentum resolution at the expense of some time

resolution. The trigger rate is still quite low, however.

The trigger drift chamber is composed of four concentric layers of drift cells
separated by thin foam cylinders (Fig. 2.2a). The cylinders are covered on each
side with aluminized mylar. Each layer contains 32 sense wires (38 pm stainless
steel) maintained at about +2100 volts, alternating in ¢ with 32 guard wires
(178 um BeCu) maintained at about —200 volts. The z-coordinate is measured
by charge division. The materials in layer 1, including the cylinders, wires, and

gas (70% argon/30% ethane) account for 6.67 x 10~3 r.l.

The technique by which layer 1 is used to obtain a timing signal is illustrated

in Fig. 2.2b. Near the interaction region, the z-y projection of most tracks is
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Figure 2.2. Trigger drift chamber electronic structure. a) Cell configuration as
viewed along the beam axis. In each of the four sub-layers, the 32 sense wires
- (dark circles) alternate in ¢ with 32 field wires (open circles). b) Expanded
view showing half-cell offset of wires in consecutive layers. The sum of the drift
‘ distances | = [{+1l3, and hence the sum of drift times, is approximately constant.
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very nearly radial. As a result, the sum of the drift times,

li+1
b=ty tty= L2,
V4

in two consecutive layers is essentially constant, regardless of the position of the
track within the cell. To reduce time slewing, the signals from each end of a wire
are OR’ed, and the resulting signals from two offset wires are fed into opposite
ends of a tapped delay line (chronotron). The time at which the pulses overlap

is approximately constant for true eTe™ events.

In practice, it is required that the overlap take place within a 100 ns gate.
This reduces the triggers from cosmic ray events by the ratio of the chronotron
gate width to the time interval between beam crossings (781 ns), approximately
0.13. (Without the chronotron, the gate width would have to be extended to
the maximum drift time (250 ns); the cosmic ray rejection would then be only

250/781 = 0.3.) A rough estimate of the cosmic ray trigger rate is therefore
. 2. ~2_ -1 —-1,_2yr1
Veosmic ~ (2 X 10°m™%s7)(10™ m?)(3) ~ O(1 Hz).

Figure 2.3 shows the distribution of ¢ = t1 + t2 for events satisfying the trigger
requirements (and therefore have at least one track within the time gate). The
hadronic events occur well within the 100 ns interval and peak at t = 0, whereas

the cosmic ray events are distributed uniformly over the gate interval.

2.3 THE MAIN DRIFT CHAMBER

The main drift chamber (22) provides momentum measurements of charged
tracks over about 85% of the solid angle. The chamber incorporates a number of
unusual features, including an inner layer of large cells for dE /dz measurements

(layer 2) and six outer layers of small cells (layers 3-8) with a triplet sense wire
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Figure 2.3. The distribution of the chronotron time sum ¢ = ¢; + ¢5 for events
satisfying the trigger. Events from ete™ collisions peak at t = 0, whereas the
distribution of cosmic ray events is uniform.
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configuration. The middle wire of each triplet is offset by 800 um in ¢ with
respect to the other two sense wires, allowing immediate resolution of the left-
right ambiguity. Together, layers 2-8 contain 1968 sense wires and provide up
to 30 position measurements per track. The z-coordinates of the tracks are
determined both by stereo angle layers (layers 4 and 6) and by charge division
measurements (in layers 3, 5, and 7). The design, electronics, and performance

of the drift chamber are summarized below.

Design

The main drift chamber is a cylindrical structure of inner radius 14.47 cm,
outer radius 114.3 cm, and length 233.7 cm. Axial .a,nd transverse views of
the drift chamber are shown in Fig. 2.4. The inner boundary of the chamber
(1.7 x 10~3 r.l.) is a phenolic clad paper hexcell tube covered on both sides
with mylar and 8 ym of aluminum. The aluminum surface inside the chamber is
held at about —2kV. The outer surface of the drift chamber is a 6.25 mm thick
curved aluminum plate that counteracts the pull of the wires on the endplates
and provides a gas seal. The inner surface of these panels is also covered with an
aluminized mylar skin that is held at about —2kV. The negative high voltage on
the inner and outer cylindrical boundaries simulates the presence of neighboring
layers. Without this high voltage, the electric field, and hence the gain, would

drop in the inner and outer layers.

Figure 2.4 shows that layer 2 is shorter in the z-direction than the outer
layers. This allows space for the compensating solenoids, which are positioned
close to the drift chamber. The endplates for layer 2 are made of NEMA G-10;
those for the outer layers are made by mounting 16 pie-shaped G-10 pieces on
the outside of 7.62 cm thick aluminum hexcell. The wires are held in place by

feedthroughs mounted in precision drilled holes in the G-10, and their positions



22

= 18™ wire 31.49cm

P YT &IE“ — m.ne"‘nl—‘ e 7 48em
ﬂ o TRom
1

+ i

Figure 2.4. The main drift chamber a) transverse and b) axial views showing
the cell configuration. Layers 2, 3, 5, 7, and 8 are axial; layers 4 and 6 are stereo.



23

in the outer layers are known to about 50 um.

The cell arrangement is shown in Fig. 2.4b. In layer 2, there are 32 cells
azimuthally, each of which contains 13 gold-plated tungsten sense wires (20 um
diameter) spaced 1 cm apart radially. The middle wire, however, is not read out.
To resolve the left-right ambiguity, the sense wires are alternately offset by +150
um with respect to the center of the cell. The wires are instrumented for dE /dz
and provide a high density of measurements to improve the reconstruction
efficiency for K2’s and decaying charged kaons. The dE /dz measurements have
provided useful K /7 separation at low momenta but were not used in the analysis
discussed herein. The cells are bounded by a 57 um stainless steel guard wire
at the inner and outer radii and by fifteen 175 um CuBe field wires in the ¢
direction. Because the cell half-width increases from 1.8 cm to 3.0 cm, the high
voltage must be increased with radius to equalize the sense wire gain. For dE/dz

measurements, the gain must also be kept low (~ 2 x 104) to prevent saturation.

The outer layers (layers 3-8) are composed of smail cells, arranged so that
layer N is at the radius 13.45x N cm and contains 16 X N cells. C'onsequently, the
dimensions of the cells are similar, 4 cm high and 5.28 cm wide (Fig. 2.5). The
three gold-plated tungsten sense wires are at ground potential. The outer two
sense wires are offset by +400um in the ¢ direction, and the middle sense wire
is offset by —400um. The resistive stainless steel guard wires, also at ground,
bound the cell at the inner and outer radii. They provide measurements of the
z-coordinate by charge division in layers 3, 5, and 7. The pulse on the guard wire
is induced by positive ions drifting away from the sense wire; its pulse height is
about 15% of that on the neighboring signal wire. The two guard wires are not
read out individually but are joined at the ends. More precise z measurements

are provided by the wires in layers 4 and 6, which have +7.7° and —9.0° stereo
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Figure 2.5. Main drift chamber electronic structure. a) Cell configuration in
layers 3-8. The sense wires are offset by £400 um with respect to the center of
the cell. b) Electron drift trajectories.



25

angles, respectively. The diameters of the sense, guard, and field wires are 20

um, 57 um, and 175 um, respectively, as in layer 2.

The voltages on the CuBe field wires increase radially within a cell from
about 4200 volts to 4400 volts. This graded voltage sequence compensates for
the increase in cell size and results in approximately equal gains (~ 2 x 105)
for the sense wires in layers 3-8. The electron drift trajectories are shown in
Fig. 2.5b. The electric field (~ 800 volts/cm) is fairly uniform over most of the

drift region. The maximum drift time is 550 ns.

The gas mixture used is 89% argon, 10% CO3, 1% CHy, which is adequate
but not optimal in terms of drift properties. The drift velocity as a function of
E-field is shown in Fig. 2.6. This mixture does not have a tendency to grow
“whiskers,” which are potentially disastrous carbon filaments deposited on the
wires. At the very high electric fields encountered at the surface of the field
wires, high voltage breakdown appears to trigger the formation of such whiskers

in many drift chamber gas mixtures commonly used.

Electronics

Block diagrams of the electronics for layer 2 and layers 3-8 are shown in
Fig. 2.7. Because layer 2 is operated at low gain for dE/dz (~ 2 x 10%),
it was necessary to install preamplifiers on the face of the chamber. An
additional difficulty was the presence of crosstalk between the neighboring sense
wires within the cells of layer 2. The induced pulse on a sense wire has the
opposite polarity from the direct pulse, and the resulting cancellation reduces
the efficiency. Given the large fluctuations in pulse height, this can be a severe
problem. To minimiée this effect, resistors are placed between nearest and next-
nearest radially neighboring sense wires. The values of the resistors are chosen so

that the charge taken away from a hit wire to the neighboring wire approximately
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cancels the induced pulse. The signals from the preamplifiers are then further
amplified and discriminated by LeCroy MVL 100’s. In layers 3-8, the signals
from the sense wires go directly to the MVL 100’s.

The discriminated signals from layers 2-8 are fed into multi-hit time to
amplitude converters, or MTAC’s (23). In each MTAC channel, the start up of a
ramp is initiated by a signal derived from beam crossing. The ramp charges a set
of four capacitors. When the discriminator pulses from a single wire arrive at the
MTAC, they successively clock a bit through a shift register that decouples the
corresponding capacitor from the ramp by opening a FET switch. The charge
on a capacitor is therefore proportional to the drift time. In principle, up to 4

hits per wire can be measured, but in practice only the earliest hit is used.

The pulses from the charge division and dE/dz wires are first amplified
and then fed into multi-hit sample and hold modules, or MSHAM’s (24), which
measure the total charge in the signal. The gate width is set to be the maximum
possible drift time, although up to four possible time bins can be used. The slow
fall-off of the drift chamber pulses, however, makes the use of one long time bin

desirable.

As in all systems in Mark III, if the event satisfies the trigger requirements,
all of the analog timing and pulse height information is digitized and corrected

by a smart processor (BADC) and then transferred to the VAX 11/780 online

computer. -

Performance

A large number of detailed properties of the drift chamber must be
understood to achieve optimum resolution. These include the wire positions;

electrostatic deflection and gravitational sag; the drift velocity in different cell
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regions and sides of the cell; the y’s (offsets corresponding to the earliest possible
drift time); and the Lorentz angle. A useful quantity for studying the resolution
is

A = Virige [%(t1 +1t3) — tz] ; (2.1)

where ¢; and t3 are the drift times to the outer two sense wires and 5 is the drift
time to the middle sense wire. The sign of A gives the side of the cell on which
the track passed, and the magnitude of A gives the stagger between the sense
wires. Figure 2.8a shows the distribution of A for all cells in layer 5. There
are two well-resolved peaks corresponding to tracks on the two sides of the cell.
Because op = m 0z, Where o is the single wire resolution, the width of the
peaks is a measure of the position resolution. For layers 3-8 the resolution is
about 220 um, and for layer 2 it is 250-300 ym. In addition to resolving the
left-right ambiguity, the three sense wires measure the local tangent vector to

the track. This vector aids considerably in pattern recbgnition.

The 2-position is determined to about 0.15 cm from a stereo angle wire and
' to about 1.5 cm by charge division. The charge division information is used
primarily in pattern recognition, predicting which stereo angle cells should be
associated with a track consisting of cells from the axial layers. The charge
division measurements are also used for steep tracks, which do not reach layer

4 and therefore have no stereo information.

These measurements lead to the following resolutions on the momentum p,

azimuthal angle ¢, and dip angle A:

op/p = 0.0154/1 + p*(GeV)?
0y =2 mrad

Otan ) = 0.011,
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Figure 2.8. Main drift chamber performance. a) The distribution of A, which
is the difference between the average drift distance to the outer two sense wires
and the drift distance to the middle sense wire. The two peaks correspond to
tracks on the two sides of the cell, and the width of the peak is a measure of the
intrinsic resolution. b) Momentum spectrum for muons produced by the process
¥ — pTu~. The o of the Gaussian curve is 45 MeV/c.



31

where the first term in the momentum error is due to multiple scattering. The
momentum spectrum for muons produced by the process ¥ — ptu~ (p = 1.545

GeV/c) is shown in Fig. 2.8b. The o of the Gaussian curve is 45 MeV/c.

- 2.4 THE TIME-OF-FLIGHT SYSTEM

Particle identification by timé-of-ﬂight is essential for removing backgrounds
that cannot easily be rejected by kinematic fits. The time-of-flight system
consists of 48 scintillation counters that cover about 80% of the solid angle
and allow more than 20 separation of charged kaons and pions up to 1.2 GeV/c.
The main features of the time-of-flight system, including a brief description of
the counters, the electronics, and the use of time-of-flight information in data

analysis is given below. The system is discussed in greater detail in the references

(25).

The Counters

The 48 Nuclear Enterprises Pilot-F scintillation counters are mounted
lengthwise in a cylindrical configuration on the outside of the main drift chamber
(Fig. 2.9) and are held in place by stainless steel bands about the circumference.
The radius at the inner surface is 1.15 m. Because the time resolution is in
general (26) proportional to \/L/N,, where N, is the number of photoelectrons
and L is the length of the counter, it is desirable to maximize the number of
produced photons and hence the thickness of the counters. The scintillators are
5.1 cm thick (12% r.l.) trapezoids that are about 3.175 m long and 0.156 m

wide over most of their length.

The light from each end of the scintillator is brought out through holes in
the iron magnetic flux return by ultraviolet transmitting plexiglass light guides.

The area of the light guides is decreased in two steps, first at the holes in the
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magnet yoke and then at the photomultiplier. The area of the light guide does
not decrease in the intermediate region so that the tirﬁe spread of the leading
photons is minimized. The relative times of the signals from the two ends can
be used to determine the rough z-position of the incident particle. In practice,
the z-dependence of the signal arrival time is removed by using drift chamber

information to calculate the projected z-position of the track at the scintillator.

The photomultipliers, Amperex XP2020, were chosen for their small transit
time variation (0.25 ns) across the photocathode surface. Each photomultiplier
is mounted outside the flux return in a cylinder made of mu-metal and iron,

which reduces the magnetic field to about 0.1 G at the photocathode.

Electronics

The timing of the system is govenied by a signal induced in a monitor in the
SPEAR beam pipe by the incoming electron bunch. The signal is discriminated
by a very fast discriminator that also compensates for pulse height variations; the
resulting resolution on the beam-crossing time is a few picoseconds. (However,
the spread of the bunches in the z-direction leads to an uncertainty in the
collision time of about 90 psec.) When a pulse arrives from a photomultiplier, it
initiates the discharge of a capacitor that normally rests at 5 volts. The discharge
does not begin until the pulse-height exceeds a threshold set by the computer.
The discharge is stopped by the delayed beam-crossing signal, leaving a residual
charge that is used to determine the time-of-flight. The motivation for using the
beam-crossing signal as a common stop, rather than as a common start, is that
it allows one to hold the capacitors at their constant resting voltage for most of
the time, avoiding the possibility of residual charge caused by polarization of the
dielectric. The time at each of two thresholds is measured to provide additional

pulse-shape information; in practice, the higher threshold time does not improve
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the resolution beyond that achieved using the first time and correcting for time-

walk as discussed below.

The total charge of the pulse is also measured, which allows time-walk
variations to be removed. The time-walk is due to the fact that the rise time of
the signal to threshold is a function of the total charge in the signal (£, q—%).
Both pieces of information are digitized by the BADC and transferred via
CAMAC to the online VAX 11/780 computer if the event satisfies the trigger

requirements.

Performance and Use in Data Analysis

Optimum performance of the time-of-flight system is achieved only after
extensive online and offline calibration. The performance of the system is
monitored online using a laser that sends light to the center of the scintillators
via quartz fibers. Details of the calibration are discussed in Ref. (25). Particle

identification by time-of-flight is based on the relations

M? = p? (1 ;f 2) B = L/cT, (2.2)

where 3 is determined using the time-of-flight T' and the path length L, which
is measured in the drift chamber. Because L, P, and z are required, the

tracking resolution of the drift chamber contributes to the overall time-of-flight

resolution:

oToF = °5cINT + 9DC:- (2.3)
The a%o term is determined using the drift chamber track parameters and
the associated error matrix. The intrinsic time-of-flight resolution, osornT,

has some z-dependence, being somewhat worse near the centers of the

counters. The average time resolution is oppr = 171 psec for bhabhas
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(ete™ — ete™ or ete™ — ¢ — ete™), 175 psec for u pairs (ete™ — utp~ or
ete™ — ¢ — utp~), and 189 psec for pions from ¥ — p7 events (Fig. 2.10a).

The reason for the somewhat poorer resolution for pions is not well understood.

To use the time-of-flight information quantitatively, one calculates the
likelihood that the measured time would be found for a particular mass
hypothesis and track parameters. If the measured time is T and the predicted
time for mass hypothesis my is T, then the likelihood‘is
()

wr=e 2\ I (2.4)

This quantity is used extensively in the data analysis discussed later.

The good 7/K/p separation is evident from scatterplots of mass squared
vs. momentum (Fig. 2.10b) and 8 vs. momentum (Fig. 2.11). The events are
selected from a sample of 1 decays in which the z-positions calculated from the

drift chamber data and from the time-of-flight data agree. The resolution on
“ the mass squared is

2 2
oy =M =2 (i) °T —2pPE (%) , (2.5)

where o = L/c is in the range 4.0-5.6 nsec. At high momentum, the
resolution on the mass squared is proportional to P?, explaining the shape of the

distributions in Fig. 2.10b. Using ¢ = 189 psec, one finds that ¢ M2/ M? =~ 0.2
for a kaon with p = 800 MeV/c.

2.5 THE SHOWER COUNTER

The Mark III electromagnetic calorimetry consists of three components
(Fig. 2.12): a cylindrical barrel shower counter (27) and two endcap shower

counters (28) that extend the solid angle coverage to within about 11° of the
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beam axis. The total solid angle coverage of these systems is 94% of 47. Because
many decay processes involve 7%’s or 7’s, good efficiency for low-energy photons
is essential for the reconstruction of exclusive final states. Good efficiency can
also be important for spin-parity analyses, because the energy of a photon is
often correlated with the angle at which it is emitted in the decay rest frame.
The design, electronics, and performance of the shower counters are discussed

briefly below.

Design

The barrel and endcaps have a similar design with 24 layers of rectangular
proportional tubes alternating wit\h 23 sheets of 0.5 r.l. thick lead-antimony
alloy. In the barrel, the proportional tubes are formed from aluminum I-beams
 and lie along the beam direction (2); in the endcaps the tubes are aluminum
‘extrusions and are mounted in the vertical (y) direction. Each tube contains a
single 46 um diameter stainless steel sense wire maintained at about 2kV. The
coordinate of the shower counter along the wire is measured by charge division.

Both systems use a gas mixture of 80% argon/20% methane.

To minimize the material traversed by photons before theyv are detected,
the barrel shower counter was placed inside the magnet. As a consequence,
the efficiency for low-energy photons is very good (see below). The placement
of the barrel inside the magnet required a cylindrical structure that could be
supported from the ends. This problem was solved with an aluminum spool
of length 3.85 m, outer diameter 2.52 m, and thickness 23 + 4 mm, on which
the barrel is mounted. The structure is supported by radial stainless steel rods
passing outward from flanges at each end of the spool. The spool and the
scintillation counter plastic provide 0.4 r.l. of material before the first layer of

proportional tubes.
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An important feature of the shower counter is its high degree of
segmentation. In the barrel, there are 320 cells arranged azimuthally in each
layer, and in the éndca.ps there are 74 cells above the beam pipe and 72 below
it. This segmentation gives good position resolution and pattern recognition
capability. These are useful in resolving photons produced with a very small

opening angle from symmetric decays of high-energy 7°’s.

Electronics

In both the barrel and the endcaps the wires in the first six layers are read
out individually, whereas the wires m the outer eighteen layers are grouped
radially in six triplets. This reduces the number of electronics channels but
preserves the full informa.tfon from the inner layers, where the showers from
low-énergy photons are usually confined. The signal from each end of a wire or
triplet of wires is fed into a module (29) consisting of an amplifier followed by a
sample and hold circuit. Because of the high drift velocity of the argon-methane
mixture, even at low fields, the maximum time for ionization collection is only
about 0.2 usec. The pulse, however, has a long tail, and the gate on the sample
and hold circuit is 1 usec. The charge deposited per cell by a minimum ionizing
track is 1pC, compared with 5 fC noise for the 1 usec gate. Over the full track
length, this signal is equivalent to that of a photon with E ~ 200 MeV.

The capacitors at each end of the wire that decouple the high voltage
from the read-out electronics can discharge into each other and reduce the
charge asymmetry that gives the z-position. To reduce this effect, large (25

nf) capacitors were used.

Performance

The position and energy resolutions for the shower counters are given in
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Table 2.2. Energy and Position Resolution of the Mark III Shower
Counter '

Measurement Barrel Endcaps

Energy resolution o =17.5% x \/E(GeV) | o = 17.0% x VE(GeV)

Position resolution oz = 0.8% x (wirelength) Oy = 1% x (wire length)

along the wire

Position resolution - 04 = T mrad 0z =7 mm

transverse to the wire

Table 2.2. The ¢ coordinate of a shower in the barrel is determined from a fit to
the shower shape and has a resolution 04 == 7 mrad compared with the cell size
of 20 mrad. The linearity of the shower counter has been checked using Bhabhas
at Fem = 3.1, 3.7, and 4.3 GeV. For lower energies, from 0-1 GeV, the linéa.rity
~ was checked using ¢ — pm events. The true photon energies were determined
from a kinematic fit using only the photon momentum directions, the charged
track momenta, and the #° mass constraint. The average measured energy vs.

the fitted energy is shown in Fig. 2.13a; it has a linear dependence.

Due to the small fraction of the shower sampled by the gas proportional
tubes, the measured energy is subject to large statistical fluctuations. In
addition, large Landau fluctuations further degrade the resolution. Figure 2.13b
shows the energy for Bhabha-scattered electrons at Eyeorn = %m¢. The energy

distribution is approximately Gaussian, and the resolution can be expressed as

f’_-EE =0.175/\/E(GeV). (2.6)

Although this resolution is not good enough to identify resonances from the
inclusive photon spectrum, nearly all exclusive channels of interest can be

studied using kinematic fitting. For example, in the process ¥ — ~17/;




42

- T T _I_
>
all B
5 T AR
z i
2 041 + -
w +
+
N R -
& ol i
D 0.2 - -
2 -
w - -
= +
0 [ 1 1 L L 1 i
0 0.2 0.4 0.6
S PREDICTED y ENERGY {GeV)
600 —
2
© 400 |-
o
S R
[72]
w
=
2 200 |
W
0 L—e-ale
0 0.8 .
ENERGY (GeV)

Figure 2.13. Shower counter performance. a) Average measured energy vs. the
fitted (true) energy for photons from pm events, showing a linear energy scale.
b) Shower energy distribution for Bhabha-scattered electrons at the .



43

n' — ~20°, the energy resolution on 1 is og ~ 3 MeV after the four-constraint
fit to energy and momentum conservation. Thus, the well-measured charged
track momenta and photon directions are sufficient to determine the photon
energies. The variable used in the kinematic fit is v/Z rather than E, because it
has been observed that v E has a more Gaussian behé.vior at low energies and

has a resolution independent of E:

1
dE?2
U\/E = —d-—E,—O'E = 0.085(\/ GeV) (27)

The photon detection efficiency for the barrel shower counter as a function
of energy is shown in Fig. 2.14. The efficiency (not including geometrical
factors) is determined using the approximately 7000 ¥ — p°7° events in the
data sample. Because the 7° is essentially monochromatic and the photons are
emitted isotropically in the 70 rest frame, the photon energy spectrum in the lab
frame should be uniform from about 4 MeV to 1.45 GeV. The deviation from
that shape at low energies is therefore due to loss of efficiency. At 100 MeV, the
efficiency is close to 100%; it falls to about 75% at 50 MeV.

An accurate measurement of the efficiency at low energies is complicated
by the presence of spurious photons (“split-offs”) due to secondary hadronic
interactions of pions and kaons in the shower counter. At low momenta, the cross
section for such 7N and KN interactions is quite high. As a consequence, about
40% of all pm events have at least one fake gamma. It is sometimes difficult
to distinguish such shower clusters from real low-energy (<100 MeV) photons.
The spurious clusters, however, are usually highly concentrated around charged
tracks. Figure 2.15 shows the distribution of the angle between the shower

. cluster position and the entry point of the nearest charged track in the shower

counter for pr events. The peak at cos 0nq =~ 1 is due to spurious photons.
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There are two common approaches to this problem. First, one can exclude
all clusters with cos 844 > 0.95 and model the loss of solid angle with the Monte
Carlo. This procedure should be quite reliable if the angular distribution of
the final state particles is known. A second approach that is often used in the
analysis of exclusive channels is to try several kinematic fits to a given event
using different subsets of the shower clusters as photon candidates. Thus, if one
is studying the process y7° K+ K, events with up to six shower clusters might
be fit using various subsets of the five highest energy clusters. The fit yielding
the best x? is chosen. Because split-offs tend to have energies below 100 MeV,
it is usually the case that the highest energy shower clusters are due to real
photons, whereas the lowest energy clusters, especially if they are near charged

tracks, are spurious.

Reconstruction of Data

The pattern recognitiqn problem in the shower counter is potentially very
complicated, but in most cases a fairly simple algorithm isolates the correct
clusters. We will take the case of the barrel shower counter as an example, but
the procedure for the endcaps is quite similar. Because the position resolution in
the ¢-direction is much better than that in the z-direction, the first step in the
search is to scan around the barrel in ¢, ignoring the radial and z-coordinates.
The algorithm groups together hits that have a small (< 2 cell) separation in
¢, and requires a minimum of two cells hit with consistent z information to
form a cluster. The second step involves sorting the z-coordinates of the hits
in each of the original ¢-clusters. If there are distinguishable concentrations of
hits clustered at different z-coordinates, the ¢-cluster is split. The final step in
pattern recognition is to examine the shower structure in the r — ¢ coordinates.

If the cluster has two distinct prongs at the shower counter inner radius that
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later merge, the shower is split. Such topologies are usually due to photons from
high energy 7%s that decay symmetrically. The final shower clusters must have

a minimum of two cells hit with consistent z-positions.

The starting positions of the shower clusters are determined by fitting a
straight line to the shower shape. The position of this line at the minimum
radius is taken to be the particle entry point. All clusters whose entry point
is consistent with that of a charged track are removed from the list of photon

clusters.

2.6 THE MAGNET

The 4 kG axial magnetic field is provided by a solenoid surrounding the
barrel shower counter. With this arrangement, the number of windings can
be increased without reducing the photon detection efficiency. In the Mark III
design there are four layers of 5 cm by 5 cm cross-section aluminum conductor
- compared to only two layers in the previous SPEAR magnetic detectors. This
results in a reduction in the power consumption from 2 MW to 1 MW. The
magnet is cooled by water flowing through a 2.5 cm diameter hole in the

conductor.

2.7 THE MUON SYSTEM

The muon system (30) consists of two layers of gas proportional tube modules
mounted in an octagonal array outside the steel flux return of the magnet. The
solid angle coverage of the system is 65% of 4r. Between the two layers is a
12.5 c¢m thick steel plate to absorb hadrons. Each layer consists of modules that
contain two overlapping sub-layers of circular cross section gas proportional

tubes. The z-coordinates are measured by charge division on the resistive
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stainless steel wires. At p =1 GeV, the pion punch through (including decays)

is 5% for the inner layer and 3% for the outer layer.

The muon system does not play an important role in the analysis of
most 1 decays because muon production is very limited, occurring only in
ete™ — qutu~, ¥ - ptu~, and K and 7 decays. The back-to-back dimuons,
however, are important in studying the performance of other components of the

detector.

2.8 THE TRIGGER

The trigger (31) is designed to minimize the detector dead time by rejecting
uninteresting events (e.g., cosmic rays and scattering of the beam by residual gas
in the beam pipe) before the lengthy (~ 30 ms) process of digitization and data
transfer to the online computer is begun. The primary trigger considerations
arise from the 781 ns period between SPEAR beam crossings (1.28 MHz). To
exploit this, the decision process is divided into two steps, the first of which
is completed in less than the time interval between successive beam crossings.
Events that fail this step do not contribute to the dead time. At present, the
trigger uses information only from the drift chambers and the time-of-flight
counters. Thus, an event with only photons in the final state will not be recorded,

although a neutral trigger may be implemented in the future.

The first trigger step, referred to as level 0, is completed within 590 ns after
beam crossing. This allows the various capacitors in the system that record times
and pulse heights to be reset before the next beam crossing. Level O consists
of two parts running in parallel, either of which will satisfy level 0 and lead to
further consideration of the event by level 1. The first part is a single-track

trigger that requires a hit from the inner drift chamber chronotron within a 100
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ns gate and a hit from the time-of-flight chronotron within a 27 ns gate. The
time-of-flight signal is obtained by feeding pulses from the last dynode at each
end of a counter into a chronotron circuit. This reduces the timing ambiguity
due to the z-position of the hit along the counter. The second part of level
0 is a two-track trigger that requires two chronotron hits from the inner drift
chamber, but does not require time-of-flight information. If the level 0 trigger
is satisfied by either test, the trigger performs the level 1 step and inhibits the
reset of the electronics. At the v, the level O trigger rate is 2-3 kHz. These
triggers are primarily due to beam gas scattering, as the cosmic ray trigger rate

is only about 1 Hz.

The level 1 trigger also has parallel one-track and two-track tests but uses
information from layers 3 and 5 of the main drift chamber in addition to the
layer 1 chronotron signals. Because the maximum drift time in the méin drift
chamber is 550 ns, this information arrives too late to be used in the level 0
trigger. Level 1 uses programmable array logic to implement a rudimentary
track-finding algorithm. The idea of the algorithm is illustrated in Fig. 2.16.
Starting with each cell in layer 5, which covers 88% of 4w, the level 1 trigger
looks for valid patterns of hit cells within a certain allowed region defined by
a minimum transverse momentum cut (75 MeV). The patterns are found by
forming triple coincidences of the hit cells, where a hit cell has signals from at

least two out of three sense wires.

The level 1 one- and two-track triggers are continuations of their
counterparts in level 0. Thus, an event may satisfy the two-track trigger without
satisfying the one-track trigger because it lacks time-of-flight information. The

outputs of the one and two track triggers are OR’ed, however, so that either one

is sufficient to keep the event.
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Table 2.3. Mark III Run History

Year Run Data Collected
1981 Summer Installation at SPEAR
Fall Checkout and Debugging
1982 Spring | %: ~ 0.9 M produced
Fall - ¥': ~ 150 K hadronic events logged
¥": ~ 1800 nb™—1
1983 Spring ¥: ~ 1.8 M produced
%": 3800 nb~1
Fall SPEAR problems
1984 Spring ¥": reached total of 8.9 pb~1

At the typical luminosity of 4 x 102 ¢cm™—2s~! at the ¥, the level 1 trigger
rate is 2-3 Hz. About 1.1 Hz is from ete™ collisions, 1.4 Hz is from cosmic
rays, and 0.5 Hz is from beam gas events. The dead time of the experiment is
8-12%, depending upon beam conditions. The primary contribution to trigger
inefficiency is inefficiency in the inner drift chamber, which has single-wire cells.
The overall efficiency per track is about 96% over the solid angle covered by

layer 5. The overall trigger efficiency for ¥’s is 93% (see following section).

2.9 MARK III RUN HISTORY AND DATA SAMPLE

The run history of Mark III is shown in Table 2.3. The detector was installed
in the west interaction region of the SPEAR ring in the summer of 1981. The
first useful ¢ data, cohsisting of 0.9 x 10% produced 1’s, were taken in the spring
of 1982, although some components of the detector were not fully operational.
In particular, crosstalk compensating resistors and preamplifiers had not yet
been installed on layer 2 of the drift chamber, and its efficiency was quite low.

However, most other components were working reasonably well, and checks with
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several well-known % decays indicate that there are no major problems with this
data sample. The second 3 data sample, taken in the spring of 1983, consists of
1.8 x 10° produced ¥’s. The detector was fully operational. Unfortunately, the
experiment takes data for only half the time that SPEAR is operational; during
the other half, SPEAR runs in a single-beam mode for the Stanford Synchrotron
Radiation Laboratory (SSRL).

The number of events on tape from the two % runs is approximately 107.
To minimize the computer time required for reconstruction (300 ms/event), it
is desirable to remove beforehand the beam gas and cosmic ray backgrounds. A
fast (~10 ms/event) analysis program, using a minimum of detector information,
was used for this purpose (32). First, cosmic rays are removed by using both
time-of-flight and muon counter information. Second, the number and energy
of the shower clusters (which may be due to charged tracks) are used to identify
Bhabhas and clear hadronic events. Finally, drift chamber hits (but not times)
are used to count tracks and identify beam gas events. This filtering process
reduces the event sample by about 70% and removes only about 0.5% of real

hadronic events.

To determine the normalization for branching ratios, it is necessary to correct
the number of observed 1’s for the detection efficiency. Efficiency losses are due
primarily to events with all neutral particles and events in which all the charged
tracks are close to the beam pipe. The detection efficiency can be measured
using the process ¥/ — wFw~¢. For this purpose, about 10% ¢’ events were
logged in the fall of 1982. Events with ¢’s are tagged using only the four-
vectors of the charged pions to calculate the missing mass. The pions are then
excluded from consideration, and it is determined with software whether the

detector would have triggered on the remaining particles. The ¥ momentum is
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sufficiently low that it does not bias the measurement. The efficiency determined

from this procedure is 93%, and the fraction of zero-prong P decays is found to

be (3.5 +0.5)%.

The 1983 data sample corresponds to (1.79 £+ 0.11) x 10° produced w’s. The
size of the 1982 data sample was found by scaling the total number of events
according to the number of ¥ pu~ evenfs relative to thé 1983 data sample. The
combined 1982 + 1983 data samples correspond to (2.71 + 0.05 + 0.15) x 10°
produced ¥’s.
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Chapter 3. Analysis of the Decay ¥ — ;¢ - KKn

3.1 INTRODUCTION

The ¢ was first observed in radiative ¢ decay by Mark II in the process

T R T KgKiw; (33). The signal, which was originally assumed to be
the E(1420), contained about 30 events when the 1.2 GeV photon was identified
and about 85 events when that requirement was relaxed (Fig. 3.1a, b). The ¢ was
subsequently studied with greater statistics (174 + 30 events) in the KT K~ n°
mode by the Crystal Ball (Fig. 3.1c), and a partial wave analysis of the K+ K~ 7°
system was performed (34). The results of the Mark II, Crystal Ball, Mark III,

and DM2 analyses are summarized in Table 3.1.

The most intriguing of these results is the branching fraction: ¢ — ¢ is
the largest of all radiative 9 decays that proceed via annihilation of the cé
system into gluons. (The magnetic dipole transition ¥ — ~47., which has a
branching fraction of (1.27 +0.36)%, does not require the quarks to annihilate.)
The only comparable mode is ¥y — 5/, whereas f(1270) production is only
about one-quarter of that for the «. This large coupling of the ¢ to the gluonic
intermediate state suggests that the : wave function has a large SU(3) flavor
singlet component. A more interesting — but amazingly difficult to prove -

conjecture is that the ¢ is a glueball.

3.2 THE E MESON

A continuing source of confusion is the existence in the same mass region of
what is probably a different state, the £(1420). This meson was first observed in
the process pp — Enm, E — KK= (36). In the original analysis, the quantum

numbers JE = 0~ were preferred over JP = 1*; the same conclusion was
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Figure 3.1. Observations of the ¢ by Mark II and Crystal Ball. a) Mark II,
photon required b) Mark II photon not required. Events in shaded region
have M(KK) < 1.05 GeV. c) Crystal Ball, events in shaded region have
M(KK) < 1.125 GeV.
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Table 3.1. Results on the : From Radiative ¢ Decay.

Measured Mark II Crystal Ball Mark III DM2 DCI
Quantity Ref. (33) Ref. (34) Ref. (35)
Mass (GeV) | 1.44%2:91 1.44%2:929 1.456 = 0.005 % 0.006|1.474 + 0.015
Width (GeV)| 0.05+3:93 0.055%3:930  |0.095 £ 0.010 = 0.015/0.076 £ 0.016

B(y > y)x | (43+17) | (40£07+£10) | (5.0£0.3+0.7) -
B(.— KKr) x10~3 x10™3 x10™3
JP - 0~ 0~ -
# events ~ 85 174 + 30 ~ 360 in KIK*x¥ | 60— 100
observed |in K3K*n¥ | in K*K~n° | ~400in K*K~#° |in K3K*n¥
'in signal ~ 50 in KgKgx®
Decay low-mass KK m%‘—f—%%% <0.25 g{%;{% < 0.35 —
Mode (90% C.L.) (90% C.L.)

reached in a later reanalysis of the data (37). The K K7 Dalitz plot was found
to contain (50 + 10)% K K* + c.c and (50 £ 10)% (K K)resw, where (KK)res is
a resonance with M=1.0 GeV and T' = 0.07 GeV.

A signal at the same mass was observed in the process 7~p — (KK7)n
(38). Here, the partial wave analysis favored J® = 1% over JP? = 0, and
it became more or less accepted that the E(1420) was an axial vector meson

decaying predominantly into K K* + c.c.

Recently, two high statistics experiments have reported contradictory results

on the E. The WAT76 experiment (39), with about 1000 events, finds that

Prmy — 1+ B(E—K*R) _
JE(E) = 17 and B(E=KEr) =

1200 events, has reported a complicated structure in the 1.4 GeV region. This

100%, whereas MPS 771 (40), with about

structure is associated with the 0~ partial wave; no resonant 1% is found. Both

K*K and 67 appear to be present. This confusing state of affairs is summarized
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Table 3.2. Results on the E Meson (Hadronic Production)

Measurement 81 cm HBC 2 m HBC WAT76 MPS Expt. 771
(CERN) (CERN) (CERN) (AGS)
Ref. (36) Ref. (38) Ref. (39) Ref. (40)
PRELIMINARY
Production pP (at rest) " p— K K*n¥n |ntp— ot (K3K*xF)p| n=p — KsK*r—n
process -~ (KRx)xr  |p{r~) =3.95 GeV/c| pp—p(K3K*nF)p
p =285 GeV/c
Mass (GeV) 1.425 + 0.007 1.426 + 0.006 1.425 + 0.002 1.421 + 0.002
Width (GeV) 0.080 + 0.010 0.040 = 0.015 0.062 + 0.005 0.080 £ 0.010
Je o+ 1++ 1++ complicated
structure in 1.4 GeV
region: resonant
0~*; no evidence for
resonant 1++
# events ~ 890 in 152+ 25 ~ 1000 ~ 1200
observed three channels
'Decay Mode BT K_z :{;gg)'",) B&_KI;Z") = g((ﬁ;f,) =1 resonance has
=0.5+£0.1 = 0.86 +0.12 substantial K* K
‘ (6 - KR) and 6 coupling
in Table 3.2.

It is difficult to interpret the discrepancies among these experiments. One

possibility is that the state observed in the pp experiment is the same as that

observed in radiative ¥ decays and is distinct from the state observed in 77 p

interactions. This hypothesis does not explain the contradictory results of WA76

and MPS 771, however, and it appears more likely that there are systematic

errors in at least one experiment that are not fully understood. It is clear

that partial wave analyses in the presence of large backgrounds and multiple

resonances-even with a large number of events-are quite difficult to perform.

Although a definitive spin-parity measurement of the E would be valuable,

the different masses and widths of the E and the . provide reasonably convincing
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evidence that these resonances are distinct. The E signal observed by WAT76
(accompanied by a D(1285) signal) is shown in Fig. 3.2a. The E is clearly at a

lower mass and appears to be narrower than the ..

The measurements of B(E — K*K)/B(E — KKn) differ substantially,
as seen from Table 3.2. (The decay E — nww has not been unambiguously
observed.) The result from Dionisi, et al. (38), is sometimes inaccurately stated

as

B(E - K'K)/B(E — K*K + é7) = 0.86 £ 0.12,

without the additional condition that B(§ — K K) = 1 is assumed. In any case,
the Dalitz plots obtained for the E mass region appear to show clear evidence
for K* bands without the appropriate node structure for spin 0 (Fig. 3.2b),

although it is not always clear from these plots how much is due to background.

3.3 REVIEW OF THE MARK II AND CRYSTAL BALL ANALYSES

Before presenting the Mark III data, it is useful for comparison to discuss
certain aspects of the Mark II and Crystal Ball analyses. Figuré 3.3 shows the
Dalitz plots and the KK mass distributions obtained by the two gxperiments.
The events were required to have M(KK~) in the range 1.375-1.500 GeV
(Mark II) or 1.400-1.500 GeV (Crystal Ball). The KK mass distributions
peak at threshold and fall to essentially zero at about 1.3 GeV. The inequality
M(KK) < M(KKr) — M(r) must be satisfied, of course, so for the preceding
KKr mass cuts one has M(KK) < 1.36 GeV. The peak at threshold, however,
is not just the projection of three-body phase space, which peaks closer to 1.14
GeV. (See the dashed curves in Fig. 3.3.)

For events with M(KKn) > 1.5 GeV it is found that the KK mass is
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typically much higher. One contribution to the background is from
% — K*(890) K™ (1430) + c.c.

where each K* decays into K7 or K 7. Because the ka.qns are heavy compared
to the pions, they tend to remain in the same back-to—bé.ck configuration as their
parent K*’s and consequently have a high effective mass. Thus, it is sometimes
useful to make a KK mass cut. The effect of the cuts M(KK) < 1.05 GeV
(Mark II) and M(KK) < 1.125 GeV (Crystal Ball) is also shown in Fig. 3.3.
Although these experiments find that the Breit-Wigner fit parameters of the ¢
are insensitive to the KK mass cut, this is not the case in the Mark III data.
The requirement M(KK) < 1.125 GeV causes a downward shift in the . mass
of about 20 MeV.

One possible explanation for the concentration of events at low K K mass is

the decay

¢ — 6 § - KK.

The 6(980) is a poorly understood isovector state with J© = o++. According to
some phenomenological analyses (41) its true width may be as large as 300 MeV,
and it may not actually be a resonance. The main difficulty in understa.nding»
this state is that its mass is below KK threshold; in fact, one explanation of the

6 is that it is a four-quark KK bound state (42).

The 6 appears to decay into nm as well as into K K. Therefore if ; — o,
one should observe . — é7 — nr. Unfortunately, the ratio of the branching

fraction to nn relative to KK is poorly measured (43):

B(§ — nm)

T 025 1.3,
B(6 — KK)
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Any value within the above range, however, leads to an observable ¢ — n7r
signal with the present Mark III data sample. It will be shown in a later chapter
that no signal is observed at this level. Thus, there is some doubt as to whether

the 4 is really present in ¢ decays.

‘Obta.ining a description of the § line-shape in the KK channel is not at all
trivial. It certainly cannot be described by :a. symmetric Breit-Wigner because
its mass is below threshold. The rapidly varying phase space and presence of
the nm channel appear to require a coupled channel parameterization of the
line-shape. The observed narrow signal in n7 is then explained in the following
way: As the n7 mass exceeds K K threshold, that channel opens up, and due to
unitarity the n7 cross section suddenly falls. There is an additional effect due
.‘to aﬁalyticity: the opening of the KK channel also produces a drop in the 7
cross section below the § peak. The result is a cusp whose width is considerably
narrower than the “underlying” width of the state. The parametrization of the

6 most commonly used is (41)

da'z C mR‘\/I‘OI‘z 2
dm ~ " |mE —m? — img(Ten + L g
Lrn = gnan

where the subscript z refers to either 71 or KK; gn is the decay momentum at
mass m into the w7 system; mp is the mass of the resonance; and g, and gg

are the squares of the coupling constants for the resonance couplings to the nn

and KK channels.

In addition to ¢ — 67 (or some isovector threshold enhancement in the

KK system), there are two other decay channels available: ¢ — K*K and the
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decay into three-body ph.ase space. (After the K* the lightest strange mesons
are the Q(1280) with J” = 1% and the x(1350) with JP = 0%.) Examination
of the Dalitz plot shows that the phase space is quite limited and that the
position of the K* bands would coincide to a large extent with the § region. For
M(KKT) = 1.45 GeV, the K* bands overlap at M(KK) ~ 1.05 GeV. Thus,
it is difficult to determine the relative contributions of the K*X and ér by a

simple inspection of the Dalitz plot.

The Crystal Ball partial wave analysis (34) includes the following

contributions:
¢+ — KKr angular distributions uniform
— 6 JP =0~
— o7 JP =1t

— K*K + c.c. JP =0~
— K*K + c.c. JP =1+

The last four processes are allowed to interfere with arbitrary phases. The total
amplitude includes the Breit-Wigners for the resonances and the appropriate
angular distributions with unknown helicity amplitudes where required. For the
fit, the signal region (1.3-1.8 GeV) is divided into five mass bins, and the relative
contributions of the partial waves to each bin are determined. Figure 3.4 shows
that the dominant contributions are K K'r with all angular distributions uniform
and é7 with J¥ = 0~. There are some events in the K*K JP = 1t partial

wave, but these are distributed uniformly.

3.4 THEORETICAL PREDICTIONS FOR ¥ — v + PSEUDOSCALAR

Since the discovery of the ¢, there has been a proliferation of papers dealing

with the question: Is it a glueball? Because of the well-known difficulties in
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calculating observable quantities in QCD, however, relatively few of these papers
have made any quantitative predictions. In spite of the discouraging absence of
reliable theoretical results, we present here a list of questions that have been
addressed by theorists and discuss some of the progress that has been made on

them.

1. How reliable is the perturbative picture of radiative ¢ decays? Even if
the radiative decay of the 9 into gluons can be calculated, what about the
coupling of the gluons to light mesons? Is a non-relativistic description of

these mesons adequate for such a calculation?

2. Assuming that the perturbative approximation is reliable, what are the
branching fractions for ¥ — 4P, where P = 5, n/, or a pseudoscalar
glueball? Can one calculate the rate for ¥ — yP/, where P/ is a radially
excited pseudoscalar? What does B(y — ) > B(¢ — vn'), imply about

the quark content of the ¢?

3. A frequently made argument is that spin-one states are not likely to
be found in radiative ¢ decays because Yang’s theorem states that two
massless vector particles do not couple to spin one. To what extent can the
gluons be regarded as massless? Should one expect there to be substantial
E(1420) signal (assuming that it is an axial vector meson!) under the ¢?
Is there any hope for discovering a hybrid state with the exotic quantum

numbers JPC = 1=+ in radiative ¢ decays?

An interesting approach to studying the two-gluon system in the lowest order
radiative diagram is to calculate its spin-parity content as a function of mass.
This type of analysis has been done by Billoire, et al., (44) assuming the gluons

to be massless. This assumption immediately forbids J = 1+ and (odd)~.
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The cross section for each spin-parity channel as a function of the mass of the
two-gluon system is shown in Fig. 3.5a. The JX = 0~ and 0% contributions
are identical and fairly large, but the 2 contribution is dominant. There is a
JP = 4% contribution at low mass, but because high spin mesons are relatively

heavy there will not be any significant hadron production.

The more recent analysis of Korner, et al., (45) has examined the first-order
perturbative diagram in greater detail. To calculate the production of specific
mesons, it is assumed that they can be approximated as non-relativistic, weakly
bound ¢g systems. Although this assumption is probably adequate to describe
the annihilation of the ¢ quarks into gluons, it is not clear how reliable it is for
the subsequent coupling of the gluons to light mesons. In this approximation the
values of the meson wave functions at the origin are the only unknown quantities
and can be obtained from I'(¢) — e*e™), I'(n’ — ~v), etc. Beyond this, the first
order perturbative diagram is calculated exactly (including the loop integral)
so that there is no assumption that the gluons are on-shell. For the case of

pseudoscalar production the radiative partial width is found to be

D = 5o+ 7) = (%) atagl L <4R¢(0) ) (4RP5(O))2

°M$ \ /47rM¢ V4rm

x [=&P3 ()],

(3.1)

where

R, (0) = wave function of the ¥ at the origin
Rpg(0) = wave function of the pseudoscalar at the origin
m = mass of the pseudoscalar
m., 2p 1
= | — = —— = — 2
z=1 (M¢) M¢=>m My(1-z)

aPs (z) = reduced pseudoscalar helicity amplitude
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Figure 3.5. Perturbative calculations of radiative 4 decay. a) Spin-parity content
of the two-gluon system as a function of mass (27). b) Summed squares of the
reduced helicity amplitudes for various J¥ values (28).
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The amplitude HP5 (z) is obtained from the loop integral calculation and has
an interesting behavior. In the limit z — 1 (m/M,, — 0), the amplitude is
dominated by the contribution from off-shell gluons. This contribution is not

included in the calculation of Billoire, et al.

The decay rates for J¥ = 0+*, 1+, and 2+ are also calculated, but
for J > 0 there are additional helicity amplitudes. Figure 3.5b compares the
summed squares of the reduced helicity amplitudes for different JZ values. It is
found that J® = 1% is not suppressed compared to the other channels and that
JP = 2% does not dominate over the other contributions. Thus, the argument
that the ¢ could not have spin one that is based on the assumption that the

gluons are quasi-real is not supported by this analysis.

To evaluate the partial width for ¥ — 41/, the ¥ and n’ wave functions at
the origin must be known. These are obtained using ['(¢) — eTe™) = 4.7 keV
and I'(n’ — 44) = 5 keV, and by assuming that a non-relativistic description of
these states is adequate. The value for s at the 7’ mass is found to be 0.31 from
the first-order formula for the running coupling constant with A = 100 MeV.
Finally, the width from Eq. (3.1) is multiplied by the SU(3) factor 3cos?dpg
(0ps = —11°). The result is I'(¢ — yn') = 188 eV or

B(¢' - '777’)theory =3 X 10—3-
The Mark III value for this branching ratio is (see Chapter 4)
B(y — yn') = (4.7 £ 0.2(stat) £0.7(sys)) x 1073,

The agreement is surprisingly good.

Unfortunately, if the wave function at the origin for the 7 is extracted from its

27 width, an extremely small value for I'(yy — ~n) is obtained. Presumably, one
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or both of the assumptions (first-order perturbation theory or non-relativistic
description of the ) is invalid. However, if one assumes that R,(0) = R,:(0)

(SU(3) invariance), then the result is

T =) (as(Mr;’)

4 M,
T — vn) as(My) ) P_SM

f”
which agrees well with the data (see Chapter 4).
Finally, one would like to estimate the production of a radially excited

pseudoscalar to see whether it is at all comparable to that of the ¢. At the

¢ mass the partial width is

2

2
L% — 7+ (qaR)) _ % |Hpg(z) | m, | R/m,
L(¥ — v+ 7') T, |Hpg (:1:,7:) My Rnl/mnl

12
= 1.41 | Bl
R,'l/m,,l_

The wave function at the origin for a radially excited pseudoscalar is unknown.

As a guess, one can simply use the fact that

LY —etem) I‘(W — ete™)

T(T > ete”)  T(¢ — ete) ~0.46
or
(¢ = ete) _
TGS eFem) = 054E 0L
From the latter value it is found that
r= ¥ = 7+4(ed)r) _ 0.76.

Ly — )

However, this result is obtained assuming that the value of as does not change
between the #’ and « masses. If one uses the formula for o given above, then

the ratio is reduced by a factor of two, r = 0.38, since the width depends on a?.
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The above calculation helps to make quantitative the expectation that the
smaller value of the radial wave function of a radially excited pseudoscalar
should lead to a suppression of its production relative to that of the n’. The
result appears to confirm this to some extent, although the authors caution that,
given the large theoretical uncertainties, the difference between the theoretical
prediction of » = 0.38 — 0.76 and the experimental value of r = 1.1 is not very

large. A more precise theoretical calculation would be of great interest.

The model also predicts the branching fractions for the production of the

axial-vector mesons D(1285) and E(1420). The results are

D 1.0 :
B(¢—+1+{ })={ }x10‘3.
E 0.4

The prediction for the E is considerably less than the product branching
fractions measured (see below) for the . into KKm, B(y — 7¢)B(t — KK7) =
5.0 x 1073, However, the result indicates that there could be a small E signal in

the mass region that might eventually be extracted with a partial wave analysis.

3.5 THE THREE-BODY SPIN-PARITY ANALYSIS METHOD

| The spin-parity analysis of the ¢ presents some unusual difficulties because
the correct description of the available two-body decay modes is not obvious.
The fairly stringent upper limit on ¢ — & — nwr suggests that something may
be wrong either with the statement that the : decays predominantly into éx
or with the statement that the § decays both into KX and nw. In fact, the
evidence for § — n is far more convincing than that for § — KK. Perhaps
the threshold enhancement in the K K system has a different origin than the nr
signal. For, in addition to the ¢ not appearing in nrr, the structure observed

in ¢ — 4(é7) — 4(nn7) does not appear in KXx. Another view is that the
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¢ does decay into ém, but the absence of a signal in n7r is due to interference

with ¢ — ne — nrr (46).

The spin-parity measurement presented here has two main advantages over
the usual partial-wave analysis. These a.dva.nta.gés come about because the
measurement is based on the three-body helicity formalism, which is discussed in
detail in Appendix A. First, the angular distributions that are calculated and the
fits that are performed are independent of which two-body decays are present.
The angles describe only the overall orientation of the three-body system. In
other words, the quantities that describe the Dalitz plot do not enter. Second,
because these angular distributions are always meaningful, regardless of any
two-body decays, they provide direct visual evidence supporting the spin-parity
assignment. Thus, one does not need to rely solely on the rather abstract
calculation of the likelihoods for the different hypotheses; they complement
the more convincing evidence obtained by simply looking at the angular

distributions.

There are some disadvantages to the three-body formalism, which limit its
applicability. First, in the presence of large backgrounds, the measured angular
distributions will not be those of the decaying particle. Of course, this is a
problem for any technique, but a partial-wave analysis can sometimes handle it
by absorbing the background into a partial-wave with all distributions uniform.
In the present analysis, however, the backgrounds are quite small, and there is
no difficulty in applying the three-body technique. A second disadvantage is
that high statistics are required, partly because the method does not use all the
information that is in principle available. For example, if one knew that the
¢ decayed into K*K, then the angles of the 7 in the K* rest frame could be

used. In an analysis in which there is a single, clearly identified two-body decay
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leading to the three-body final state, the usual two-body helicity formalism is

clearly preferable.

The angles calculated in the three-body helicity analysis are shown in

Fig. 3.6. Their definitions are:

0, = the polar angle of the K K7 system in the lab-frame, measured

with respect to the positron beam direction (z-axis)

B = the polar angle of the normal to the ¢ decay plane in the KK~=
rest-frame, measured with respect to the momentum direction

-of the K K system

a—p, = the azimuthal angle of the normal to the . decay plane in the
KK rest-frame, measured with respect to the azimuthal angle
of the ¢ production plane (the plane defined by the z-axis and

the « momentum direction in the lab-frame).

These definitions may need some clarification, particularly the last one.
The lab-frame coordinate system (z, y, z) is defined in Section 2.1. As there
is essentially no polarization of the beams, the z- and y-axes can be chosen
arbitrarily. The coordinate system (z/, y/, 2’) in the ¢ rest frame is defined as
follows: The 2'-axis points along p, (measured in the lab frame), so that the
eigenvalue of J, is equal to the ¢ helicity. In the ¢ rest-frame the momentum
vectors of the three decay products sum to zero and therefore lie in a plane
whose normal is 4. Then cos8 = # - 2. The positions of the z/ and y' axes are
found by carrying the lab-frame axes through the rotation specified by the three
Euler angles ¢,, 8., —p,. The last azimuthal angle, —¢,, represents a choice
of phase (see Appendix A). With this choice the « production plane (formed by

P, and 2) has the same azimuth (= ¢,) in the ¢ rest-frame as in the lab-frame.
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Figure 3.6. Angles used in the . spin-parity analysis.
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The difference a — @, between the azimuth of the decay plane normal and the
production plane is the only physically meaningful function of @ and ¢,. The
reader who is confused by the definitions of these azimuthal angles can take

consolation in the fact that they have very little impact on the results of the

fits.

The three-body helicity formalism predicts the following distributions:

JP=0—=>%=(1+c0320‘) cos § = uniform
P _ + aN _ 4 2 502 1.2 .. 2 2
Jr=1 =>E—2(1+cos 0,) sin® 8 + 5z*sin® 4,(1 + cos® B)

+ %zsin 20, sin 28 cos(a — p,) (3.2)
JP=1"=> % = (1 + cos®4,) cos® B + z*sin® 4, sin’? B

- %zsin 20,sin 28 cos(a — p,)
" where z is the ratio of amplitudes for helicity 1 to helicity 0 and is assumed to

be real (47).

The angular distributions given in Eq. (3.2) have the useful property that
the marginal distributions of cos 8 and cos 0, are sufficient to distinguish J =0
from J = 1. This property allows one to confirm the results of the maximum
likelihood fits by a simple inspection of these distributions. For example, by
integrating over cos @, in the J P = 1+ distribution one obtains

dN
dcos 3

= 2z? + (2 — z%) sin? 3, - (3.3)

and by integrating over cos 8 one obtains

dN
dcosd,

=1+ 2z% + (1 — 2z%) cos?9,. (3.4)

When z? = 2, the JP = 1+ cos 3 distribution becomes uniform and thus

coincides with the J P = o~ prediction. However, the cosd, distribution for
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z? = 2 is quite different from the JP = 0~ prediction of 1 + cos?4,:

dN
dcos$,

(P =1%; 22 =2)=1-06cos?4,. (3.5)

This distribution is peaked at cosf, = 0, in contrast to 1 + cos?4,, which is
peaked at |cosd,| = 1. Thus, there is no value of z? for which the J = 0 and

J=1 predictions for cos 8, and cos 8 both match.

One can verify that the cos 8 distribution is reasonably well measured by
examining a decay for which this distribution is uniquely predicted. The decays
¥ — wn and Y — wn®, where w — wt7~ 7%, have this property. Here, 3 is
the angle between the normal to the w decay plane (formed by the three pions
. in the w rest-frame) and the momentum vector of the w. Although the w is
a spin-1 particle, helicity 0 is excluded by parity conservation in these Vector
+ Pseudoscalar decays. This leads to the prediction that dN/d cos~,6 = sin? 8.
Figure 3.7 shows the distribution of cos 3 separately for both wn and wn® events.
In both cases, clear agreement with the theoretical prediction is observed.
Further checks of the cos 8 acceptance using the Monte Carlo will be discussed

later.

Although the cos @ distribution is well measured by the detector, the cos 4,
distribution suffers from significant acceptance corrections. For large values of
| cos 8,], it is more likely that one or more of the ¢ decay products will also have a
large value of | cos 8|; at these angles there are fewer drift chamber hits along the
track and the reconstruction efficiency is lower. However, the cos 8, distribution
is sufficiently well measured — and the acceptance corrections are sufficiently well
understood - that with a large number of events the spin 0 and spin 1 angular

distributions can be distinguished.
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3.6 FITTING PROCEDURE FOR ¢ — KK7 SPIN-PARITY ANALYSIS

The use of a maximum likelihood fitting procedure to incorporate acceptance
corrections on an event-by-event basis is by now common practice. The
technique has the virtue that all of the correlations among acceptance effects
for different quantities are included; one is not just making one-dimensional
acceptance corrections to measured distributions by averaging over all other

kinematic quantities.

Let v, denote all of the kinematic quantities necessary to specify the
configuration of an event e. The probability density for observing this event

is then given by
. w(ve)e(ve)
) = S dvw(v)e(v)]

where w(v,) is the probability density to produce the configuration v, and e(ve)

is the detection efficiency for the configuration. The integral in the denominator
is required to normalize the probability density to one, regardless of the values
of any parameters appearing in w(v). The probability density for observing the
sequence of events e;,...,ey with configurations Veys---,Vey is the product of

the corresponding p(e)’s:

‘w(Ve e(Ue
P(ey, ..., ex) c:_[_-.!:l [dvw(v)e(v)’

It is convenient to work with (natural) log P rather than P. Thus,

log P(eg, ..., ey) = Z log [ w(ve) } + Z log e(ve).

foerd J dvw(v)e(v) =,

In most cases of interest one can write w(r,) as a sum with the unknown

coefficients A,4:

w(v) = Z AaWe (V)
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For example, the A, might be helicity or multipole amplitudes. The

normalization integral can then be written

/ dvw(v)e(v) =Z’\°‘ / dvwe (v)e(v)
=Aala

and

log P(eq, ..., ex) Zlog [Zw(ki)fa} + Zloge(ue).

According to the maximum likelihood method the most likely values of A,
are those that maximize P(e;, ..., ey). The second term on the right hand
side, the sum over loge(ve), is independent of the A,. Thus, for the purpose
of determining the values of A,, this term can be ignored. Furthermore, if one
wishes to compute the relative likelihood for two hypotheses H; and Hg, with
corresponding predictions w(v; Hi) and w(v; Hz), the e(b,)’s divide out so that

one has

P(ey, ..., en; Hi) _ Il [w(u,; Hl)/fd’/’;"(”; HI)G(V)]
Pley, ..., ex; Hp) 1, [w(,,e; Hz)/fd,,w(,,; HZ)G_(V)].

Remarkably, it is unnecessary to compute the acceptance ¢(v,) explicitly for each
configuration v,, either for determining the Ay or for comparing the likelihoods
for different hypotheses. Only the acceptance integrals, I, which are fixed and
. independent of Ay, need be calculated. They are obtained by generating Monte
Carlo events according to phase space, weighting with the appropriate wq(v),

and summing over the Monte Carlo events.

It is important to determine the I, with sufficient precision so that any
resulting uncertainty in the ratios of likelihoods for different hypotheses is small

compared to the true ratio. If Alog L ~ 10, one would like the uncertainty in
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Alog £ tobe X 1. In practice, this means that enough Monte Carlo events must
be generated so that any statistical fluctuations in the resulting distributions are
small. Consider a hypothesis that has no free parameters, such as the JX = 0~ _
angular distribution. If the uncertainty in I is 61, then the uncertainty in log P

is

dlog P -N
6(log P) = “2—51 = ——4T
or
61 1

In the analysis of ¢« — K3K*xTF there are about 300 events; to reduce §(log P)
below one, it is necessary to have |6I/I| < 0.3%. Of course, in comparing
likelihoods for different hypotheses there will be some cancellation of these erTors;
however, this calculation indicates that a surprising degree of precision can be

required in the Monte Carlo evaluation of the efficiency integrals I.

For the spin analysis of « — Kg-K*w*, a total of 1.2 x 10° Monte Carlo
events were used to determine the efficiency integrals. As a check, the Monte
Carlo events were divided into four subsamples of 4 x 10% events each, and the
spin analysis was repeated with each subsample. The difference in the (natural)

log likelihoods between J = 0 and J = 1 varied by only 1-3 among these fits.

3.7 ANALYSIS OF ¢ — yu; ¢ — KK*nTF

Event selection

To reduce the data sample to a manageable size, events with four charged
tracks are 4-C fit to the hypothesis ¥ — yK*xFrtx—. If there is more than
one shower cluster in the event, the highest energy cluster is used in the fit;

any fake photon produced in K decay would have an energy below 1.2 GeV, the
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energy of the radiated photon. Photons near charged tracks are not excluded so
that the angular distributions are biased as little as possible. No time-of-flight
information is used at this stage to identify charged #’s and K’s. Instead, four
fits are tried with each event, taking each particle in succession to be the K and
the rest to be the n’s. If any of the resulting 4-C fit x?’s is less than 35, the
event is saved for further analysis. This procedure reduces the data sample by
about 95%. However, the requirement x* < 35 is extremely loose, and a large

background remains that must be removed with more stringent cuts.

K3 Identification

The next step in the a.ﬁa.lysis is to search each event for Kg. candidates. To
do this, pairs of oppositely charged tracks are examined. Because of the fairly
long Kg lifetime, some improvement in the mass resolution can be achieved by
using the track parameters to calculate their crossing point, which is taken to be
the vertex position of the Kg' decay. The momentum vectors of the 7+ and 7~
are then calculated at this decay vertex rather than at the distance of closest
approach to the beam crossing position. These corrected momentum vectors
have the same magnitude as the original vectors, but are rotated in the zy plane

to account for the effect of the solenoidal magnetic field.

If there are two crossing points, both of which are within a reasonable
distance (10 cm) of the origin, the one with the small z displacement is choseh.
There can also be 7+ 7™~ pairs whose tracks, due to measurement errors, do not
cross. In this case the distance of closest approach of the circles formed by the
track projection in the z — y plane is required to be less than 9 mm. The vertex
position is taken to be halfway between the circles at their distance of closest

approach.

Using the corrected momentum vectors and assuming pion masses, one can
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calculate the mass of each pair. The pair with mass closest to the Kg. mass is
taken to be the Kg candidate; for the event to be considered further the 7tz
mass must be within 100 MeV of the Kg mass. This cut is very loose, as the

mass resolution for the K3 is about 6 MeV (see below).

An interesting check is provided by the Kg. proper lifetime distribution. The

proper lifetime is given by

ngr ngrzy

T = — =

,
By p Pzy

where 72y is the transverse distance of the decay vertex and Pzy is the transverse
momentum. This formula is useful because it depends only upon well measured
transverse quantities and avoids ﬁse of the z-coordinate of the vertex. (The
uncertainty in the z-position of the origin is 0, ~ 25 mm, whereas 0z ~ 0.5 mm
~and oy ~ 0.05 mm.) The K§ mass and lifetime distributions for events with
M(K3K*x¥) in the . mass region (1.34-1.58 GeV) are shown in Fig. 3.8a, b.
The parameters obtained by fitting the 77 mass spectrum to a Gaussian plus a

flat background are

M(K3) = (497.0 £ 0.3(stat)) MeV
o(K3) = (6.0 £ 0.3(stat)) MeV

where o(K3) is the experimental mass resolution. The lifetime distribution is
fit to an exponential with the result

er(K3) = (2.3£0.2) cm.

This is not quite in agreement with the known value of 2.675 + 0.007 cm.
However, it does agree well with the value 2.2 + 0.2 cm obtained by analyzing

Monte Carlo generated events, which shows that the acceptance effects are
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reasonably well modeled. For the purposes of this analysis, it was considered
unwarranted to rigorously measure the Kg. lifetime; to do this would require
a more sophisticated technique using a likelihood function to incorporate the

acceptance corrections.

Charged Particle Identification

With the Kg’s cleanly identified, one needs only to assign the correct particle
identification to the other two charged tracks. Because the missing mass cannot
be large if the event satisfies the initial selection procedure discussed above, there
cannot be a missing K9; from strangeness conservation one of the two recoiling
charged tracks must be a kaon. Thus, only one of these tracks need be identified
by time-of-flight in order to know the particle type of both. In practice, it is
required that there be at least one charged track with a time-of-flight weight

greater than 0.01 and a track with a non-zero kaon weight.

Breit-Wigner Fits and Branching Ratio

Figure 3.9a shows a scatterplot of M (K3 K<) vs. M(K3K*nF). Thereis a
clear cluster of events in which the Kg.K % mass is just above threshold and the
K% K*nT mass is in the 1.4-1.5 GeV mass region. If one requires M (KyK*nTF)
to be in the range 1.3-1.58 GeV, the associated M(K3K*) distribution has
a roughly triangular shape with a rapid falloff (Fi'g. 3.9b). The cut on
M (K3 K*n¥) restricts M (K3 K=*) to be less than 1.42 GeV; however, it is clear
that there are very few events at the upper end of the Kg-K % mass spectrum.
For this reason, we impose the requirement M (KgKi) < 1.32 GeV. This cut
removes some background above the ¢ mass region but has very little effect on
the ¢ region itself. The cut used in the Crystal Ball analysis, M (ngK*) < 1.125
GeV, is much more Stringent. (In the Mark III data, this cut removes ~ 35% of
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the events.)

For comparison, Figure 3.10 shows the Kg.K * distributions that would result
from ¢ decay into three-body K K phase space and from decay into én. Here the
6(980) line shape is assumed to be given by the Flatté parametrization discussed
above. It should be emphasized, however, that this parametrization is based on

very little data. The phase space projection is clearly not the correct desription

of the measured M(K3 K¥) distribution.

The main background in this channel is ¥ — K*(890) K'(1430) + c.c., which
can produce the final state K3 K £xF 79, The kaons tend to follow the direction
of the original K™*’s, resulting in a high mass K3 K= system. The K3K * mass
cut helps to remove these events, which tend in any case to have M (K3K *£7F)
above the ¢ mass region. The large decay p — K* (890) K +c.c. does not produce
a set of final state particles that can be confused with the signal. The decay
% — ¢nTx~, whose counterpart ¢ — ¢n°x° feeds down into ¥ — YKTK —~ 70,
cannot produce both a Kg and a charged kaon.

After making the cut M (K‘%K’h) < 1.32 GeV, one obtains the KIK*nT
mass spectrum shown in Fig. 3.11. The mass resolution of 10 MeV, obtained
from the Monte Carlo, is small compared with the observed width. The
resonance parameters resulting from a fit to a Breit-Wigner folded with a
Gaussian resolution function With a quadratic background shape are

M(c) = [1.456 £ 0.005(stat) + 0.006(sys)] GeV

I'(e) = [0.095 + 0.010(stat) + 0.015(sys)] GeV
The statistical errors are obtained from the likelihood function, and the

systematic errors are obtained by trying fits with different cuts and different

assumptions for the background shape;

The branching fraction is obtained with slightly more restrictive cuts that
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KK mass distribution from Iota decay
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require each charged track to pass through at least one stereo layer. In addition,
the photon is required to be in the range |cosd| < 0.75. The measured
number of events is 340 + 18, and with the efficiency of (11.1 + 1.7)% and
B(Kg — w7 ~)=68.6%, one obtains

B(¢ — v)B(t - KKx) = (5.0+0.3+0.8) x 1073,

Here it is assumed that the isospin of the ¢ is zero, which implies

B(. — K3K*x¥)
B(t — KK)

_ 1
=3

The isospin of the ¢ is discussed in a later section.

For comparison with the Crystal Ball results, one can temporarily make the
so-called “6-cut” and require M(K+K~) < 1.125 GeV. The resulting KIK*r¥F
mass distribution is shown in Fig. 3.12. The parameters obtained from a Breit-

Wigner fit are
M = [1.442 + 0.005(stat)] GeV

I' = [0.085 £ 0.010(stat)| GeV.
The mass agrees well with the Crystal Ball and Mark II values, but the width

is still considerably larger.

Figure 3.13 shows the axial view of an event of the type ¥ — ~4¢ with
v = K3K*nF. The tracks crossing near the origin are pions from the K%,

which has traveled some distance before decaying.

In modeling the efficiency for the ¢, the resonance parameters are taken to be
M =1.45 GeV, T = 0.095 GeV, and the polar angle distribution of the photon
is assumed to be 1 + cos?4, corresponding to J¥ = 0~. The ¢ is then decayed
into a broad Kg.K % resonance below threshold. The & decay and the decay of
the K§ KT system are assumed to be isotropic. The values M (KZK=*) = 0.005



89

Entries/(0.02 GeV)

[ T

——

1.6 1.8
M(K3K*n¥)

Figure 3.12. The ¢ signal after requiring M(K3K*) < 1.125 GeV.

2.0



90

----

o -
H .

vt

Figure 3.13. Radiative 3 decay to the ¢. The 1.2 GeV photon is clearly
visible in the shower counter; the tracks crossing near the origin are due to
the K — #T7~ decay. ’



91

GeV, T = 0.100 GeV are found to model the shape of the observed Kg.K *
mass distribution well, correctly reproducing the mean, median, and standard
deviation. This check is not an argument that the ¢ actually decays via the 6 ; 1t
is merely a procedure for ensuring that the Monte Carlo events used to obtain
the detection efficiency model the data well. Because the Kg,K + mass cut is so
loose, the detection efficiency is not sensitive to the exact resonance parameters
used to describe the KgK * system. Values of I(KGK %) from 0.075 GeV to
0.300 GeV were tried; the fraction of events with M(K3K=) > 1.32 GeV is
typically less than 4%.

Angular Distributions and Maximum Likelihood Fits

We consider now the distributions of the ¢ polar angle (8.) and the polar
angle § of the normal to the . decay plane. These distributions were shown
above to discriminate between spin 0 and spin 1. As.a check on the analysis
procedure, Monte Carlo events were generé.ted acéording to both spin 0 and
spin 1 angular distributions and then passed through the analysis chain as if
they were data. In all cases the maximum likelihood fitter, using MINUIT,
strongly favored the correct hypothesis. The spin 1 distributions are governed
by the pa.ra.meter z, equal to the ratio of amplitudes for helicity 1 and helicity O.
Therefore, nine different values of z (0.2, 0.4, . . ., 1.8) were used. Figure 3.14
compares the measured values of z with the generated values and shows that
they agree well. The line zpyeqs = Zgen is shown for reference. The number
of events generated in each case was approximately 5000. The good agreement
shows not only that there are no gross errors in the analysis procedure, but also
that the distributions are sufficiently well measured by the detector to extract
the value -of £ with good precision-. (The statistical errors are about the size of

the diamonds representing the measurements.)
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Spin 1: Measured vs. Generated value of X
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The measured distribution of cos 8 is shown in Fig. 3.15a; the acceptance
is shown in Fig. 3.15b. The cos 3 distribution agrees well with the uniform
distribution predicted for spin 0. The acceptance (averaged over all other angles)
is also quite flat for this angle. The fact that the measured cos 3 distributions for
% — wn and wn® agree with the predictions also indicates that the acceptance

is reasonably uniform.

The acceptance for cosf, is very non-uniform. When the charged tracks
recoiling against the photon have small polar angles and exit the detector
thrqugh the endcaps, they have fewer drift chamber hits and at angles smaller
than about 19°, no z information. The reconstruction efficiency is approximately
uniform for |cos 8| < 0.75 but falls rapidly beyond this value. This geometric
efficiency has been studied with ¢ — ~n/, o’ — ~p° events, and it is found
that the agreement between data and Monte Carlo is quite good. Figure 3.16a
shows the measured cos 8, distribution and Fig. 3.16b shows the acceptance after
averaging over all other angles. Figures 3.17a and b show the cos 8, distribution
after correcting, for this average acceptance. In Fig. 3.17a, the (unique) spin 0
prediction is overplotted on the data; in Fig. 3.17b, the curve corresponding to
spin 1 is shown. There is no unique spin 1 prediction, of course, but here z is set
to the value that makes the cos 8 distribution uniform. Qualitatively, the data
agree much better with the spin O prediction. The data do not show the dip at

the extremes and the peak at the midpoint that would characterize spin 17.

The preceding argument is not meant to provide a quantitative comparison
of the relative likelihoods for spin 0 and spin 1. "It assumes that the cos 8
distribution is absolutely flat, perfectly constraining the spin 1 helicity amplitude
ratio; it ignores any information present in the correlation between spin 0 and

spin 1; and it uses only the average acceptance to correct the cos 8, distribution.
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It does show, however, where much of the power comes from in the maximum

likelihood fits.

To get a feeling for what is happening in the fitting procedure, it is
useful to consider a set of Monte Carlo generated histograms of the cosf
and cosd, distributions for a variety of hypotheses. The distributions can
be compared directly with the non-acceptance corrected data. (The cosp
acceptance correction, of course, is negligible.) Figure 3.18 shows the Monte
Carlo J? = 0~ distributions and the JP = 1+ distributions for the value of z
(= 0.85 + 0.05) obtained from the best fit to the data.

By varying z, the fitter makes the best compromise between obtaining
agreement with the data for both cos 3 and cosf,. The next set of figures
(Figure 3.19, Figure 3.20, Figure 3.21, Figure 3.22, Figure 3.23) shows the
variations of cos 8 and cos 4, as z is varied from 0.2 to 2.0 in steps of 0.2. For
small values of z, the cosd, distribution agrees reasonably well with the data,
but the cos 8 distribution is far too peaked. As z is increased, cos 8 flattens out,

but cos §, becomes too peaked to match the data.

In presenting the three-body helicity formalism it was emphasized that this
method permitted an analysis that is independent of which two-body decay
modes are present — that is, the structure of the Dalitz plot. One slight
qualification to this statement must be made. In obtaining the efficiency
integrals from the Monte Carlo, one must choose some way to decay the ..
Conceivably, if the detection efficiency is sensitive to the decay mode, the
efficiency integrals could change, affecting the final results. To investigate this
question, the efficiency integrals were obtained in two ways. In the first method
the « was decayed according to the scheme discussed above for the branching

ratio: the ¢ decays into “6”n where the §-like object has parameters M = 0.950



98

250 ] ' I N i ’ o '
bl p
| P |L—?]q
200 | I : i
| B q
r: -t
) 150
\ .
</}
.2 130 pu
=
u el
S
H e
50
20 -
o I 1 l 1 l A [ e l o l 1 ! e ' L l L I
-8 -4 o} 4 a -8 -4 .0 4 8
cos(4,) cos(3)
JP=1+ Best Fit
%o 300 T T T T ]
3co0
250
280 |
’1 200
]
—_ 200
a 150
': 150
<
= 100 | ‘ , -
& too
50 8 - -
0 ‘—I L ' L L o bt o 1 L,
-8 -4 0 4 8 -8 -4 ) " 8

cos(4,) cos(f)

Figure 3.18. Monte Carlo angular distributions. a) The J P = 0~ distributions
and b) the J¥ = 1% distributions corresponding to the value of z (=0.85)
obtained from the best fit to the data.



0.2

X

180
120
100 =~
80
1}
40 -
20

JP=1+

160
140 ~
120 ~

ﬁ...c /sotnugy

a

cos(f)
cos(f3)

X=0.4

JP=]_+

cos(4,)
cos(4,)

Figure 3.19. Monte Carlo J¥ = 1*, z=0.2, 0.4 distributions.

200

180 -
180 ~
120 =~
100

1°0 /setnpuy



Entries/ 0.1

Entries/ 0.1

100

Figure 3.20. Monte Carlo JP = 1+, z=0.6, 0.8 distributions.

250

200

150

100

S0

250

200

150

100

50




101

X=1.0
‘50 ( l 300 l T ' T T
400 |l
250 = ] | ]
350
mi 300 [ i 20 -
S 250 |
? [ 150
< 200
.
j: .
150 b 100
é ) ]
100 |’
50 |
50
o | b ] [ ! 0 el |
-8 -4 0 4 8 -8 -4
cos(8.)
X=1.2
~ 600 350 —
mahan
500 3co + !
- o 250 |
S 200
o 00
Q
-: 150 ~
‘E 200 }
;ﬂ 100 -
100
50 =
0 o L1t L

Figure 3.21. Monte Carlo JP = 1+, z=1.0, 1.2 distributions.



102

Entries/ 0.1

800 480 l T
|
720 400 H
i 3s0 -
800
! 300 -
500
! 250 - . )
400 r
200 r~ -
100
150 = -
200 100 | .
100 50 - b
ol PSS S U B U | 1

000 800
800
- s60
200
- 600 400
< 500
} 300 (- -
2 wo
= .
"E 300 200 | 4
= i
" 200 '
100 | -
100
0 P I R R I S N
-8 -4 ) 4 8 -8 -4 ] 4 8

Figure 3.22. Monte Carlo J® = 1%, z=1.4, 1.6 distributions.



800

500

- 400
<@
~.

o 300
Q
-« —
b

200
=
[ey]
m_—y

1co |}

a

x10

1.4

1.2

Entries/ 0.1

-r

600

500

400

300

200

100

200

800

700

820

500

400

300

200

100

Figure 3.23. Monte Carlo J¥ = 1+, z=1.8, 2.0 distributions.



104

GeV and I' = 0.100 GeV. As discussed above, this appears to model the KgK *
mass distribution quite well and probably provides _the best estimate of the
detection efficiency. The second method assumes that the . decays solely via
K*K + c.c. This hypothesis is clearly incorrect, as will be seen later from the
Dalitz plot. However, it does provide a measure of the worst case systematic
errors that might be present in the efficiency integrals. It is found that the results
are only slightly sensitive to the decay model; specifically, the difference in log
likelihoods for spin 0 and spin 1 changes by only 1-2 when different decay models
are used. This change is small compared to the difference in log likelihoods and

therefore does not alter the conclusions.

For JP = 1t the preferred value of z is 0.85 & 0.05 and and for JP = 1~
the preferred value is —1.2 + 01 The ratio of likelihoods is

L(1+)/L£(07) = exp(—8) ~ 3 x 104

L(17)/L(07) = exp(—14) ~ 8 x 10”7

In principle, one could argue that the spin 1 fit has an additional degree-of-
freedom not present in the spin 0 hypothesis. This could be taken into account by
subtracting 1 from the spin 1 log likelihoods, which would somewhat strengthen
the conclusions. As the result is clear anyway, we adopt the more conservative

approach and use the ratios quoted above. The likelihood function will be

discussed in more detail in the analysis of ¢« — K+ K~ #°.

Dalitz Plot

Because the fitting procedure used to determine the . spin was designed to
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be as insensitive as possible to the details of which decay modes are present,
it provides no information concerning this question. It would be surprising to
observe : — K*K + c.c. because this decay is expected to be suppressed by Gy -
parity. Apart from this theoretical prediction, the main interest in determining
the fraction of ¢ decays to K*K + c.c. is that all of the hadronic experiments
find that the K Kx Dalitz plot of the E is dominated by K* K. Thus, measuring

B(. — K*K) provides another means of distinguishing the ¢ from the E.

The Dalitz plot for . — Kg.K *xF is shown in Figure 3.24. The measurement
of its structure is not completely straightforward, because the K* bands overlap
in the § region due to the limited phase space. Wei have therefore adopted the
following procedure for obtaining a limit on B(t — K*K + c.c). Requiring
M(KIK £7F) to be in the range 1.2-1.6 GeV, one counts the number of events
in the Dalitz plot that are in the K* bands but which are outside the region
where the bands overlap. One then corrects this number for the fraction that

would lie in these regions if the + decayed solely into K*K.

Figure 3.25a shows the Dalitz plot for Monte Carlo :(JP = 0~) - K*K
events. Angular momentum conservation requires the K™* helicity to be zero; this
leads to a cos? 4 distribution of the K* decay products, which explains the node
structure observed in the Dalitz plot. The bands constructively interfere in the
overlap region. Figure 3.25b shows the Monte Carlo K7 ¥ mass spectrum after
requiring M?(K3n%) to be in the range 0.44-0.55 GeV?. The clear K* peak is
fit with a Breit-Wigner with mass and width fixed at the known values of the K*
plus a quadratic background. As there is no : — non K*K background in the
Monte Carlo, one expects the K* Breit-Wigner to take up essentially all of the
events. This is the case, with greater than 96% of the events in the distribution

due to the K* Breit-Wigner. In the analogous Kgﬂri mass spectrum, with
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M?*(K37¥) in the range 0.44-0.55 GeV?, the fraction is 99%. Summing the
number of events in the two regions, one finds that they constitute 29.2% of the
total events in the Monte Carlo +(JP = 0~) » K*K + c.c. Dalitz plot.

We now apply the same procedure to the Dalitz plot associated with the ¢
mass region, 1.2-1.6 GeV. No K3K* mass cut is made. Requiring M?(K<7F)
to be in the range 0.44-0.54 GeV?2, one obtains the ngi mass distribution
shown in Figure 3.26a. Again, the distribution is fit to a K* Breit-Wigner plus
a quadratic backgroﬁnd. The curve corresponding to the 90% C.L. upper limit
is shown in Fig. 3.26a; there are 19 events under the Breit-Wigner. Applying the
same procedure to the K*#F mass distribution leads to a 90% C.L. upper limit
of 21 events (Fig. 3.26b). After summing these and dividing by the sampling
fraction (29.2%) obtained above and by the number of ¢ events, one obtains

B(¢ — K*K + c.c.)

= <0.35 90% C.L.
B(¢c — KKr) %

Thus, the ¢ has a very different Dalitz plot from the E(1420), for which
B(K*K)/B(KKT) is greater than 50% according to all experiments and 100%

according to the experiment with the largest data sample.

3.8 ANALYSIS OF 9 — i, ¢ » KTK—7°

The analysis of the K+ K~ 7° decay of the . is performed in two steps. First,
events with two charged tracks and at least three shower clusters are 4-C fit
to the hypothesis ¥ — 3vKTK~. No time-of-flight information is used at this
point — the tracks are simply assigned kaon masses. Because there are often
spurious photons due to kaon interactions in the shower counter or to kaon
decays in flight, one cannot require that there be exactly three shower clusters.

The difficulty is compounded by the soft energy spectrum of the photons from
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the 7° decay. The spurious photons also typically have low energies, but in this
channel they cannot be rejected on the basis of energy. For this reason, the

following 4-C fits are done using the five highest energy photons:

¥ = y17213K K~
% — N1 KT K™
% = Y1127 KT K™
% = y1137a KT K™

where -1 has the highest energy. If any of the above fits has a x2 < 25 and has at
least one 7¥;7; combination with mass less than 0.35 GeV, the event is retained
for further analysis. The cuts used in this procedure are extremely loose and are
not sufficient to isolate a clean signal. Both the background rejection and the
mass resolution can be improved by adding the 7° mass constraint; the resulting
mass resolution on the K+ K~ x° system at the ¢ mass is then ¢ = 11 MeV for

the 5-C fit.

The 5-C fits are done using the same set of photon candidates as in the
4-C fits, but the two lower energy photons are constrained to the 7° mass. The
assumption that the highest energy + is radiated by the 4 is in fact a very good
one. Figure 3.27 shows the measured distributions of E(y2) and E(vy3). The
E(~v2) distribution cuts off around 0.6 GeV, substantially below the 1.2 GeV
photon radiated by the 1. Of course, the assumption that the highest energy
photon is radiated by the ¢ eventually ceases to be valid as the mass of the

recoil system is increased.

The following cuts are then imposed:
1. P(5C) >o0.L

2. Time-of-flight identification: at least one charged track must have a kaon
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weight greater than 0.011 (corresponding to tymeqs — tpredicted Within 30).

Events with pion weights larger than the kaon weights are excluded.

3. E(~v3) > 40 MeV.

The last cut is required to ensure that the Monte Carlo adequately models
the photon detection efficiency. A major concern in the analysis of this decay is
the extremely high fraction of events with soft photons: approximately 50% have
E(~3) less than 100 MeV. Although the photon detection efficiency appears to
be reasonably good in the 50-100 MeV range, correctly modeling this efficiency
in the Monte Carlo is a nontrivial problem. In other decay modes discussed
later, a shower generator based on crude shower phenomenology is used in the
Monte Carlo. Because this generator does not adequately model the detection
efficiency below 100 MeV, events are required to have photon energies above
this value when branching fractions are obtained. In the decay : — K+ K ~ 9,
making such a cut would drastically reduce the number of events and, what is
worse, bias the cos 8 distribution, because the energy of a photon in the lab

frame is correlated with its production angle in the decay frame.

To improve the shower modeling, the EGS generator (48) was implemented
and used for this analysis. Figure 3.28a shows the Monte Carlo generated
distribution of E(v3). In Fig. 3.28b, the observed E(v3) distribution (from
Fig. 3.27) has been divided by the Monte Carlo generated distribution bin-by-
bin. If the two original distributions had the same shape, a flat distribution
would result. (The relative normalization has no significance.) It is evident that
while the agreement is fairly good above 40 MeV, the efficiency below 40 MeV is
higher in the data than it is in the Monte Carlo. To some extent, this could be
due to spurious low energy photons, which are not modeled by the Monte Carlo.

In any case, the fraction of events with photons below 40 MeV is sufficiently
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small (15%) that the cut E(v3) > 40 MeV does not impair the analysis.

After making the three cuts listed above, one obtains the scatterplot
of M(KTK~n%) vs M(K*K™) shown in Fig. 3.20a. A clear . signal is
observed associated with low KT K~ mass. The K+ K~ mass distribution for
M(K*K~7°) in the range 1.3-1.55 GeV is shown in Fig. 3.29b. To reduce the

background in the region above the : it is useful to impose the loose requirement
M(KTK™) < 1.32 GeV

as in the analysis of « — KZK %7F. The resulting K+ K~ #° mass distribution
is shown in Fig. 3.30. A fit to a Breit-Wigner curve folded with a Gaussian
‘'resolution function plus a quadratic background yields the parameters

M(¢) = (1.461 £ 0.005) GeV

T'(:) = (0.101 + 0.010) GeV,

and the number of events in the Breit-Wigner is
N(.— KTK™ 7% = 402 + 20.

Unlike the modg L — ngK*ﬂ'*, here there is background from ¢ — ¢ + X,
especially ¥ — ¢7%x%, which is dominated by #S*. In studying the angular
distributions, the K+ K~ #° mass is required to be in the range 1.3-1.55 GeV. The
signal-to-noise ratio for this mass region is very high, about 10:1. Furthermore,
the angular distributions associated with the mass region just above the . are

roughly uniform.

The branching fraction for this signal is

B(¢ » 1)B(c » KTK™7% = (8.2+£0.4 £ 1.4) x 10™*
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or, correcting for the isospin factor of %,
B(¢ — v)B(t — KKx) = (4.9+0.2£0.8) x 1073, -

which agrees extremely well with the value obtained from the ngK £xF mode.

The spin analysis of this channel proceeds in exactly the same manner as that
for . — Kg.Kiw:F. Figure 3.31 shows the measured cos 8 distribﬁtion and the
Monte Carlo acceptance averaged over all other quantities. Both distributions
are consistent with being uniform, although the Monte Carlo acceptance appears
to dip slightly for small values of |cosB|. This dip was much larger in the
previous Monte Carlo, which had a very poor efficiency for low energy photons.
Figure 3.32 shows the measured cos 8, distribution and the acceptance averaged
over all other quantities. The acceptance is approximately uniform only in the
narrow interval |cosf,| < 0.5. It does indicate, however, that the dip in the
center of the cos 8, distribution is real. If one accepts that the cos 3 distribution
is uniform, then if the + had J P = 1+, the cosd, distribution would have the

form
dN

=1 - 0.6cos®f
deoso, 1-0.6cos“d,,

which peaks at the center.

A full maximum-likelihood fit, using the same procedure as for : —
K3K +5F, provides quantitative confirmation that JP = 0~ is strongly
preferred over JP = 1t. The — log(likelihood) function for the JZ = 1+
fit is shown in Fig. 3.33. The presence of two minima is due to the fact that
the angular distribution is quadratic in z (the ratio of helicity 1 to helicity 0
amplitudes) with a symmetry breaking linear term in z due to interference. The
minimum is found at z = 0.76 £ 0.07, corresponding to a positive natural log

likelihood of —6.8. The log likelihood for J P = 0~ is found to be 10.6, giving a
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ratio of

LP=1%) _ ~174.

L(JP =07)
The fit to the exotic quantum numbers J? = 1~ gives a log likelihood of —30
at = —1.1+0.1. Thus, JP =1~ is rejected with respect to JZ = 0~ by an
enormous factor. These results confirm the conclusions from the analysis of the
KgK %7F channel. The values of z obtained here agree with those found in the

KJK*n¥ analysis: £(11) = 0.85 £ 0.05 and z(17) = -1.2£0.1.

3.9 OBSERVATION OF 1 — Kg.Kgr°

The ¢ has also been observed, although with rather poor statistics, in the
channel . — K3 K37° (49). The number of events (~ 50) is too small to permit
a spin-parity analysis. The K3 K%7® mass spectrum is shown if Fig. 3.34 and

the branching fraction
B($ - )B(+ — K3K3n°) = (3.0 £ 1.3 £ 1.5) x 10~%
is obtained. Correcting for the isospin factor -112, one obtains

B(Y = 1)B(+ - K3K%7°) = (3.6 £ 1.6 + 1.8) x 1073,

3.10 IsOSPIN CONSIDERATIONS

Because of its large production in radiative v decays, it is almost certain

that the ¢ has isospin 0. If this is the case, one can predict

KgKir:F:K'*'K‘wo:KgKgﬂO: :%:%=4:2:1.

W=

The measured K+ K~ #° and K}K %£7F branching fractions are in very good
agreement with this prediction. The KZK2n° measurement is also consistent

within the rather large errors.
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If the ¢ is an isovector, one has
KtK™=°: ngKosﬂ'o =2:1,

which is the same as for I = 0. The relative amounts of K3 K £xF and KT K—#°
are not uniquely predicted, but depend on the isospin of the K K system. If cos «
is the amplitude for the KK system to have I = 0 and sin o the amplitude to

have I = 1, then one has

' 1 1 1
ngKiw; cKtTK7° . Kg-Kgmro = —2-sin2a: Ecos2 o Zcos2 o.

If the KK system is in a pure isovector state (e.g., from § — K K) then there
will be no K* K~ x° production, which is obviously inconsistent with the data.

However, for tan? a = 2, the production is identical to that for I = 0.
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Chapter 4. Study of the Double Radiative Decays
Y = v+ X; X — v + Vector

4.1 INTRODUCTION

The identification of the ¢ as a state with pseudoscalar quantum numbers
considerably narrows the range of explanations for this particle. In pa.rticuia.r,
the existence of a complete nonet of low-mass pseudoscalars implies that the
only conventional ¢§ assignment for the : is a radial excitation. Thus, a
central question is whether there are characteristics that distinguish such a
radially excited meson from a glueball. In fact, the problem is more subtle,
because a glueball would almost certainly mix with ¢g pairs to some extent; the
differences between such a state and a meson of the same mass and quantum
numbers are not expected to be very great. Certainly, they are difficult
to predict. In any case, the existence of a pseudoscalar glueball or hybrid
requires the additional degrees of freedom provided by the gluons and would
be unambiguously established if the two radially excited pseudoscalar mesons
were discovered as well. Thus, an overpopulation of the ¢g nonets would provide
compelling evidence for unconventional states. Unfortunately, such evidence

does not yet exist.

In the absence of comprehensive knowledge of the meson spectrum, one can
study other properties of glueball candidates, such as the pattern of their decay
modes. Several theoretical papers have examined the question of whether a
glueball can be expected to have substantial radiative width. Surprisingly, the
answer appears to be yes, at least in the pseudoscalar sector. Of course, radiative
‘decays of glueballs must be mediated by an intermediate state containing quarks
or come about through the mixing of quarks into the glueball wave function.

However, nearly all calculations indicate the presence of large mixing amplitudes
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for the pseudoscalars. There is even some experimental evidence from hadronic
¥ decays that the n’ wave function is not saturated by quarks alone (50). In
this chapter, the theoretical predictions are reviewed and the analysis of three

decay channels is presented: ¥ — 7X; X — 4V, where V = p, ¢, and w.

4.2 THEORETICAL PREDICTIONS

The results of several theoretical calculations are given in Table 4.1. In
spite of large uncertainties, the agreement among the bag model predictions is
surprisingly good. The largest uncertainty comes froz_n estimating the mixing
between the ¢ and the n and n'. The main elements of these calculations are
briefly discussed below in order to demonstrate how a large glueball radiative
width can arise. The term glueball will be used to describe not only pure gluonic

states, but also states that are predominantly glue, with some admixture of q3.

In the bag model calculation of Donoghue (54), two main results are
obtained. First, it is found that in addition to processes that mix qq states (e.g.,
7 and 7') into the glueball wave function (Fig. 4.1a, b), there are other diagrams
(Fig. 4.1c, d) that can couple the gluons to quarks and contribute substantially
to the radiative width. Second, in the nonrelativistic limit, the magnetic dipole
transition of a radially excited pseudoscalar meson (2s) to the ground state
vector (1s) vanishes due to orthogonality of the radial wave functions. In the
relativistic case a strong suppression is still expected. Thus, a large radiative

width might distinguish a glueball from radially excited quarkonium.

The amplitude for the decay is given by

M = (V(p')|5#|P(p)). (4.1)

where P and V represent the pseudoscalar and vector particle, respectively. The



126

Table 4.1. Theoretical Predictions for ¢« — 4p°

Model I'(c — 4p°%) (MeV)
Pseudoscalar meson - 0.213 — 0.413
dominance + bag model;
Iwao (51).
Bag model + 7,7/, glue 0.43
mixing

Carlson and Hansson (52).

Bag model q7, qgg - <15
mixing;
Barnes and Close (53).

Bag model with n, 7/, glue 04—-1.6

mixing and additional

quark-glue coupling;
Donoghue (54).

Pole model with input 3.5

from ¥ — yn, ', v¢;
Palmer and Pinsky (55).

Effective Lagrangian 2.5
incorporating chiral
symmetry; Rosensweig(56).

¢, 7, n’, mixing via 4.2
anomalous couplings;
Senba and Tanimoto (57).

available four-vectors are pq, 9 = p’ﬂ — pg, and Sy, the polarization of V. The

amplitude must therefore have the form

M = Ae**F S, (v )pagp, . (4.2)

implying a decay rate

I'= :’:;jr [(mzpn:pm%/Y] ' | (45)
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Figure 4.1. Time ordered diagrams for glueball radiative decay. The processes
in a) and b) correspond to glueball-meson mixing, whereas those in c) and d)
give an additional gluon-quark coupling. From Donoghue (54).
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The two-body phase space is taken into account by the term in brackets (o p3)

and is 27 times larger for ¢ — p°y than for ' — p%.

To calculate the amplitudes of the processes in Fig. 4.1a, b, it is first
necessary to determine the mixing of the glueball with other particles. To first

order in a,,
(I|H,57|G)
Eq-E;r -

IP)=1G)+ ) i (4.4)
I

The index I includes the 7, 5/, and the radially excited pseudoscalar states:
.(s3)p and 71§(m—" + dd)p. The matrix elements of H, 7f are calculated in the
bag model and are on the order of (50-100)a; MeV. The coefficient 4 in Eq.
(4.2) and Eq. (4.3) is the matrix element of the magnetic dipole operator u:

A = (V|u|P), (4.5)

which is also calculated in the bag model. It is found that the amplitude for
transition from the radially excited component of P, (¢g)p, is only about 5%
of that for the 1s — 1s transition, as expected from the nonrelativistic limit.
The width can be related to I'(n’ — pv) by dividing out (V|u|n’) in Eq. (4.5).
Assuming that the ¢ is a glueball, Donoghue finds that the contributions from
Fig. 4.1a, b are

T(¢ — p%) = 0.23 — 0.94 MeV

D(u—wy) = 3T( — ) (46)

D(c— ¢v) = 0.17 x T{s = ),
depending on the value of , in the bag model. It turns out that the amplitudes

in Fig. 4.1c, d are also large. The final estimate for the radiative width from all

processes is

T(t — p%4) = 0.4 — 1.6 MeV,
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whereas for radially excited quarkonium the width is only
T(tqgp — p°7) =~ 0.18 MeV.

It is difficult to know how accurate these results are likely to be or
whether they can be used on a quantitative basis to draw conclusions from
an experimentally determined width. In particular, the relativistic gg model of
Godfrey and Isgur (58), which has successfully predicted many features of the
meson spectrum, indicates (59) that the partial width of the radially excited
pseudoscalar is

T'(ngp — 0%) = 0.9+ 0.5 MeV.
Apparently, one cmot draw an unambiguous conclusion from a large width
into p%~.

The pole-model calculation of Palmer and Pinsky attempts to predict several
¢ decay modes, and will be discussed again later. The idea is simply to assume
that if the ¢ is a pseudoscalar glueball, it will mediate the radiative decay of the
¢ into pseudoscalars (Fig. 4.2a). Then the ratio of the amplitudes f, and fyp for
the 7 and %’ to mix with the ¢ can be determined from B(¢ — v1)/B(¥ — vn'):

B(¢ — m) =1.2 (ﬁ.)z |:_mf _ m;']z .

B( — ') for ) | mi—m}

The absolute magnitudes of f, and fy are determined from B(¢ — ~vn') /B¢ —
7¢). Unfortunately, the inclusive ¢ — ~. branching ratio is unknown, and must
be estimated. The ¢ decays are then assumed to be mediated by the n and
n', as shown in Fig. 4.2b. A very large radiative width to p~ is predicted:
I'(¢ — p%) ~ 3.5 MeV.

Barnes and Close (53) emphasize that additional information can be

obtained by comparing the yp° and y¢ mass distributions. If the ~p° signal is
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Figure 4.2. Pole model diagrams. a) Radiative i decay into pseudoscalars and
b) ¢ decay. From Palmer and Pinsky(55).
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due to a glueball, one expects to see a v¢ signal at the same mass, although at
a much lower rate. For example, the standard perturbative picture of radiative

% decay implies that
Yoy i wivd] =9:1:2

if the ¢g pair is produced in a flavor independent manner.

On the other hand, if the vp° signal is from the decay of a qg or qgg state
with ¢§ = 715(uﬁ + dd), then the ¢ mass distribution should have a peak about
300 MeV higher, from the s3 or s3g partner. In general, the ¢g state will be a

mixture of light and s3 quarks, and there will be an orthogonal partner. Thus,
|e1) = cos B|f1) + sin B|®)
|e2) = —sin B|0) + cos B|®)

where ® = s5 or s3¢g and 1 = Vli(m‘z + dd) or Vli(uﬁ' + dd)g. Both states, |¢1)
and |¢g), will decay into p%y with relative amounts governed by the mixing angle
B. Regardless of the value of 8, the state that is mostly s3 or s3g will decay into
Y¢ at a rate that is 2/9 of the rate that the light-quark state decays into p°%4.
Unfortunately, this prediction is difficult to test with the present statistics: given
about 60 events in p%y there should be only about 7 events in vo; ¢ - KTK—
due to the factor of 0.5 from B(¢ - K*K ~). The P — 4V decay width is also
estimated by Barnes and Close. They find

(¢ — p%) < 1.5 MeV

if the ¢ is a hybrid state.
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4.3 ANALYSIS OF ¢ — 1X; X — ~p°

Although the analysis of the vy 7~ final state would appear to be straight-
forward, a great deal of care is required because of the large numbér of
backgrounds. These arise not only from the yyrt7~ topology (e.g., ¥ — pm),
but also from the 3yr+7™ (e.g., ¥ — yrt7~) and 4yrt 7~ (e.q., ¥ — p27%70)
final states. In the latter processes, it is nearly impossible to determine on
an event-by-event basis whether one or more low-energy ( < 50 MeV) photons
has been missed due to inefficiency. Therefore, one must study the relevant
distributions for well-identified background events to be sure that they do not

affect the measurement and/or interpretation of the signal.

Event Selection and Kinematic Fitting

The first step in the event selection is to kinematically fit events with two
oppositely charged tracks to the hypothesis ¥ — yyr*7~. At this point no
information from the time-of-flight counters is used; pion masses are simply
assumed. Due to the présence of fake photons, which are additional clusters
produced by the interactions of hadrons in the shower counter, one cannot
require exactly two photons in the event. In selecting candidate photons it
is désira.ble to try to exclude as many of these split-offs as possible. Two

requirements are therefore imposed:
1. cosfyq < 0.95, and

2. the shower must be at least two layers deep.

The angle 8,4 is defined as the angle between the position vector of the photon
and the position vector of the nearest charged track at the point the track enters
the shower counter. The requirement that the photon shower be at least two

layers deep has very little effect on the signal. Monte Carlo studies have shown
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that > 97% of the photons «5 in the decay process ¥ — ~1¢; ¢ — ~2p° have
a lab-frame energy greater than 100 MeV. The loss of efficiency from the cut
on cos 8yq is modeled by the Monte Carlo. For pseudoscalar states (n/,:), such
Monte Carlo simulations are quite reliable, because the angular correlations of all
particles can be calculated exactly and do not depend on any unknown helicity

amplitude ratios.

The photons satisfying these two cuts are then ordered according to energy,
and each event is 4-C fit to the hypothesis ¢ — ~qn T~ If there are more than
two photons, two fits are done using the first and second and then the first and

third highest energy photons:

Ny T
017 LA
The highest energy photon is always used because the photon radiated by the

% has E ~ 1.2 GeV and would never be produced by a hadronic split-off.

Events with a 4-C fit x? < 25 are selected for further analysis. If both fits of
an event have x? < 25, the fit with the better x? determines which two photons

are used.

The fake gammas are, in fact, a very minor problem in this channel. Because
the real photons in the decay process usually have high energies, it is relatively
easy to discriminate against fake photons with the 4-C fit. For example, in the
analysis sample (x? < 25) only 2.6% of the events in the n’ peak have fits to
Y1737t~ with P(x2) > 0.04, where

POc) = [ o) dx?

is the confidence level of the x* from the 4-C fit (i.e., the probability for x? to
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be worse than the value actually obtained). In the region M(v3p°%) ~ 1.4 GeV,

about 1% of the events have better fits to v;y37 77~ than to yyyarT7m™.

Distinguishability of the Photons

In the double radiative process ¥ — ~X; X — ~p°, the question arises as to
whether the two photons can be distinguished. A Monte Carlo simulation has
been used to verify that if X = ¢, the photon radiated by the ¢ has a higher
lab frame energy than the photon radiated by the ¢ in about 98% of the events.
Thus, the mass of the recoil system is M(r 7~ ~,,). In practice, the ability
to distinguish between the two photons on the basis of energy is slightly worse
because of the shower counter energy resolution. By using the fitted rather than
the measured photon energies one can still correctly assign the photon in about
06% of the events. It is possible to estimate the error in M(nt7 ™) that is
made in the few events where AE is small and the wrong photon is used. The

mass error is close to twice the photon energy difference.

The distribution of M (x* 7~ ,,,,) for events selected with this procedure is
shown in Fig. 4.3. A prominent n’ signal is evident, as well as a broad background

due to ¢ — pm.

Measurement of ¥ — ~vn'

The large signal (~ 1000 events) from the process ¥ — ~n'; n' — ~p°
provides an extremely important calibration for the analysis of the  mass region.
Because nearly all of the background events under the n’ can be removed with
fairly simple and loose cuts, one can use the n’ signal to check how accurately
the distributions generated by the Monte Carlo reproduce the data. In addition,
the branching ratios for ¥ — 4n and ¢ — yn’ are of some theoretical interest,

especially in comparison with ¥ — ..



135

600 T | |

500 -

400 |- =

300 | | -

200 -

Entries/(0.02 GeV)

100 ' —

0 J/WJ‘IA | | | | |

4 8 12 16 20 24 28

M("+7r_7low)

Figure 4.3. The distribution of M(r+7,,,,) after requiring x* < 25 from the
4-C fit. A large n' signal is evident, as well as a broad background from 3 — p.
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The cuts used to select events for the measurement of the branching ratios

are:
1. |cos8| < 0.75 for both photons and charge tracks.
2. M(vy) 2 0.2 GeV.

3. 0.425 < M(nt7~) <0.925 GeV.

No cut is made on the 4-C fit x? beyond the original very loose cut of x? > 25.
The requirement that all tracks have momentum vectors in the polar angle
region |cos 8| < 0.75 ensures that the charged tracks are well measured and that
the photons are in the barrel shower counter. This avoids the crack between
the barrel and the endcap, as well as the complicated geometrical acceptance of
the endcap. For smaller signals, however, the eildcaps are often used, and the

charged tracks are only required to pass through at least one stereo layer of the

drift chamber.

The second cut, M(yy) > 0.2 GeV, efficiently removes background from
¥ — pm without seriously affecting the radiative signals. The effect of the cut
is shown by Fig. 4.4a, which is a scatterplot of M(rt7™y,,) vs. M(y7). A
dark 7° band is evident. In the double radiative events the photons tend to be
far apart and have a very broad mass distribution typically centered at about
1.5 GeV. The requirement M(yv) > 0.2 GeV removes only about 1% of the y7’

events.

The final cut removes more background by requiring that M(rT7~) be
consistent with the p° mass. Because the phase space in the p’ decay is limited,
the p° line shape is not symmetric, but rather is skewed toward lower masses and
cuts off sharply at the high end. The position of the cut is shown in Fig. 4.4b,
a scatterplot of M(n¥x~) vs. M (77~ 4,,,,). It should be noted that many of
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the events in the scatterplot are background because the x2 cut is so loose. A

much cleaner scatterplot will be shown later.

The resulting M (#+ 7~ ,,,,) spectrum is shown in Fig. 4.5. The parameters
obtained from a fit to a Gaussian line shape plus a quadratic background are

 M(n') = 0.957 + 0.0005 GeV

o(n') = 0.009 & 0.0004 GeV.
The good agreement with the known 7’ mass establishes that the mass scale is
correct to within 1 MeV. The resolution of 9 MeV agrees with the value obtained
from the Monte Carlo. Using the measured number of events, 631 + 29 (1983
data), the efficiency determined from the Monte Carlo (¢ = 0.248 + 0.025), and
the known value B(n' — ~p°) = (30.0 1.6)%, one obtains

B(¢ — ') = [4.7 £0.2(stat) + 0.7(sys)] x 1073.

The statistical uncertainty is obtained by adding in quadrature the uncertainties
on the number of signal and background events. The systematic uncertainty is
calculated by adding in quadrature the uncertainties in the efficiency, flux and
B(n' — ~p%). The above value is somewhat higher than the mean of the four

Crystal Ball measurements in different modes (60):
B(¢ — n’) = [4.1 £0.3(stat) + 0.5(sys)] x 1073,

although a more recent Crystal Ball measurement using only the vp® mode finds
(61)
B(¢ — v1') = [5.0 £ 0.5(stat) £ 0.6(sys)] x 1073,
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Figure 4.5. The M(r*x~~,,,,) distribution after removing p7 events.
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Measurement of ¥y — vyn

The branching ratio for 7 — v "7~ is only (4.91 £0.13)%, so one does not
expect to see a strong 7 signal. The mass of the 777~ system cannot be greater

than the n mass, so a p? cut is not made. The complete set of cuts used is
1. Each charged track must pass through at least one stereo layer.
2. |cosfy| < 0.75 for each photon.
3. P(x?) > 0.05.
4. M(yv) > 0.25 GeV.

5. E(v)>0.1 GeV.

The cut E(y) > 0.1 GeV is about 91% efficient; it is required because the
Monte Carlo program does not adequately model thé true photon detection
efficiency for very low energy photons. The M(r*n~1,,) mass spectrum in
the range 0.44-0.63 GeV is shown in Fig. 4.6. The 7 signal contains 26 + 6.4
events (1982 + 1983 data). Using the detection efficiency of (21.6 + 3.2)% and

B(n — 4x*x~), one obtains

B(¢ — 1) = [9.1 + 2.2(stat) + 1.6(sys)] x 1074,

which agrees well with the Crystal Ball measurement (61) using n — ~v

B(¢ — 1) = [8.6 £ 0.9] x 1074,
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Table 4.2. Comparison of Efficiency of Stereo Layer Cut in Data and
Monte Carlo for Events from % — vn'; ' — ~4p°.

Stereo Layers % of Tracks % of Tracks
| in Data in Monte Carlo
no stereo 3 4
L4 only 10 9
16 only 2 3
L4 and L6 85 84

Using the Mark III measurements for ¥ — 4 and ¥ — 7’ one finds

B(yp — ~n')

Bo =) = 5.2 + 1.3(stat) + 0.3(sys).

This value agrees well with the theoretical estimate (discussed in the preceding

chapter) based on the first-order QCD diagram.

Study of the 1.4 GeV Mass Region

The study of the higher mass region in M(rt7~~,,,,) is complicated by the
presence of additional backgrounds. As a consequence, somewhat more stringent

cuts are used. The first three cuts are

1. Each charged track must pass through at least one stereo layer.
2. P(x?) > 0.15.

3. There must be only two shower clusters that are both (a) more
than one layer deep and (b) outside of the cos 6,4 = 0.95 cone of

each charged track.

It is important to check that the efficiency for each of these cuts is reasonably
well understood. One approach is to check that the effect of the cuts on Monte

Carlo generated events and 5’ events is the same. Table 4.2 shows the fraction of
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tracks with useful information in the stereo layers for both ' events and Monte
Carlo events. The differences are very slight. Figure 4.7 compares the P(x?)
distribution for the n’ signal in the data and in the Monte Carlo; the events
must have x* < 25. Both distributions have peaks at P(x?) = 0 due to the
fact that the underlying errors are not exactly Gaussian. In studying the data;
one must take care to ensure that background events do not distort the P(x?)
distribution. Although the signal-to-noise ratio is high at the 5/, the P(x?)
distribution for the background is not uniform and contributes significantly to
the peak at low P(x?). Thus, in making Fig. 4.7a, the P(x?) distributions for
the sidebands 0.85-0.90 GeV and 1.02-1.07 GeV are subtracted from the P(x?)
distribution associated with the n’ signal region (0.91-1.01 GeV). The fraction
of events with P(x?) > 0.15 is 0.83 in the data and 0.80 in the Monte Carlo, a
difference of about 4%. This agreement can be expected to apply to the 1.4 GeV
mass region as well. The efficiency for the cut on the number of shower clusters
(which excludes a region near the charged tracks) is found to be (81 £ 5)% from
¥ — ~n' events. vThis is quite similar to the value obtained from the Monte
Carlo, although the agreement may be fortuitous, as the Monte Carlo does not
model hadronic interactions in the shower counter. (One might expect rough
agreement, however, because the cut ignores the regions near charged tracks,

where most split-off clusters are found.)

Background from % — 07

The hint of an # band in Fig. 4.4a is evidently due to another background
process. To study this process further, it is useful to temporarily remove
n' — ~p° by excluding events with M(x*7~~,,,,) in the range 0.8-1.1 GeV.
The resulting scatterplot of M(r+7x~) vs. M(4~) is shown in Fig. 4.8a. It is

clear that most of the n’s are correlated with M (rt7~) at the p° mass, giving
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evidence for the previously unobserved isospin violating decay ¥ — p°7.

The M (+v) distribution for events with M(r+7~) < 1.3 GeV is shown in
Fig. 4.8b. The mass obtained from a fit to a Gaussian is M(n) = 0.549 + 0.005
GeV, and the resolution is ¢ = 0.017 & 0.005 GeV. The M(x*x~) distribution
for events in the 7 region (0.52 < M(v4) < 0.57 GeV) is shown in Fig. 4.9a. The
Breit-Wigner fit parameters are M = 0.777 £ 0.008 GeV and I' = 0.082 + 0.029
GeV. This width is 2.5¢ lower than the true p° width. Further study of this
channel has shown that the 777~ signal is due to both p° and w, and a fit
allowing p° — w interference gives a good description of the data. This analysis,
along with the observation of other new vector-pseudoscalar channels, will be
described in another publication (62). Here it is only necessary to understand
the contribution of this signal to the background in the ¢ region. Figure 4.9b
shows the distribution of M (77~ ~,,,) for pn events. It is desirable to remove
these events not only to improve the ratio of signal to noise, but also to ensure
that any observed p° signal is due to radiative decay and not to a hadronic decay

of the 1. Both p7 and p°n events are removed by imposing the requirement that
M(yv) > 0.6 GeV.

The mass region between the 7° and 7 signals, 0.2-0.4 GeV, is also excluded
because events in this region are still on the tail of the enormous 7° peak. The
effect of this cut on ¢« — ~p° events can be seen from the Monte Carlo generated
~~ mass distribution (Fig. 4.10). The cut M{vyy) > 0.6 GeV removes about
6.4% of the events.

Observation of a vp° Signal Near 1.4 GeV

After making the cuts described above, the M (n 7 ~) distribution is plotted

against the M (r*r~+,,,) distribution (Fig. 4.11a). Three processes are evident
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from this plot. The lowest band is due to ¥» — 41, n = y777~. Here the 77—
mass is below the p° mass. The very dark band is due to the process ¥ — 7/,
n' — ~p°. Fina.liy, there is a cluster of events that have a p° signal correlated
with M(7n+ 77 v;,,) in the 1.4 GeV region. To see this more clearly, it is useful
to plot the 7¥7~ mass only for those events with M(xt7~7,,,) between 1.1
and 1.7 GeV (Fig. 4.11b). With the n’ events excluded, one can see that there

are still events with a p° remaining.

The presence of a p° is significant because all other known processes in which
¥ — 44p° have been removed with the vy mass cut. The observation of a p°
signal also narrows the range of potential backgrounds because C-invariance

then requires an even number of photons:
C'/’ =-1= Cpo(—l)n'7.

If the signal is due to a background process in which photons are missed, there
must be at least two such missing photons. Thus the processes ¥ - Aot

and ¢ — ynw+t 7~ are not a serious problem.

Most of the additional structure in the #t7~ mass spectrum above the
p° is due to the decay ¥ — wr*r™, including w — ~n°. This background
will be discussed in more detail below. Figure 4.12a shows the distribution of

M (7t n~7,,) after requiring
0.5 < M(zxtx~) < 0.9 GeV.

There is evidence for a broad structure in the 1.4 GeV region.

Figure 4.12b shows the scatterplot of E(vhign) vs. E(7joy) for events
with M(n+n"7;,,) in the range 1.1-1.6 GeV. Although the plot appears to

provide evidence for a monochromatic photon, this is more or less an inevitable
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consequence of the 4-C fit: the band in E(vy;4,) simply corresponds to the
original cluster in M(#T7~v,,,). DBecause the measured photon energies
have very large uncertainties, one cannot see a monochromatic photon in the

measured photon energy spectrum.

Background from ¥ — wrt 7~

Another background process has been identified by computing the neutral

missing mass recoiling against the two charged pions. This decay process is

 — wrt

T w — yn°.

‘The product branching ratio for this decay (including ¥ — ~f(1270)) is
(0.68%)(0.087) = 0.059%, which implies that there should be ~ 1600x efficiency
such events in the data sample. If one of the photons from the #° is soft, these
events will fit well to the hypothesis ¥ — yyr+7r~. Most of the events can
be removed by the P(x?) > 0.15 cut (but not by a loose x? cut, because the
missing photon often has a very low energy) and by the p® cut. The missing mass
distribution before the p® cut is shown in Fig. 4.13a. By requiring the missing

mass to be greater than 1.0 GeV, one can remove these remaining wnr 7~ events.

The missing mass cut cleans up somewhat the M (7 T7~) vs. M(7T7 ™ v;,,,)
scatterplot (Fig. 4.14a) and the 77~ mass spectrum (Fig. 4.14b). The only
possibly significant structure besides the p° in the 777~ mass spectrum is a
cluster near 0.95 GeV. Because of the small number of events, it has proved
extremely difficult to identify this background. The background under the p°
itself appears to be very small. A fit to a Breit-Wigner line shape yields the
parameters M = 0.758 + 0.011 GeV and I' = 0.141 + 0.025 GeV, which are

consistent within errors with the p° mass and width. Because the cut on the
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p° removes nearly all of the wr™r™ background, in the following sections the

missing mass cut is not made.

It is interesting to know the distribution that the wrt7— events would
produce in the M(7t7~~,,) spectrum if they were not removed. In order
to study this no p° cut is made, and the missing mass is required to be in the
range 0.675-1.1 GeV. The distribution of M(x*7~,,,,) shows no prominent
structure in the 1.3 GeV mass region. (Fig. 4.13b).

Breit-Wigner Fit and Branching Ratio

To obtain the mass and width parameters, the signal is fit to a Breit-Wigner
curve folded with a Gaussian resolution function (Fig. 4.15). The mass resolution

at 1.44 GeV is determined from the Monte Carlo to be ¢ = 11 MeV.

The signal shown in Fig. 4.15 appears to have two components: a small one
centered around 1.25 GeV and a large signal centered around 1.4 GeV. Because
the lower mass signal appears in the 3y7* 7~ control sample with approximately
equal strength, it is unlikely to be background. It has not been possible to
identify the specific decay producing this signal. For this reason, the Breit-
Wigner parameters of the higher mass signal are obtained from a fit to the

upper mass region (1.3-1.9 GeV) only. The results of this fit are

M(X) = 1.420 £ 0.015 + 0.020 GeV

I'(X) = 0.133 £ 0.055 + 0.030 GeV.

To obtain the number of events due to the 1.4 GeV signal, the B_reit-Wigner
is simply extended into the rest of the mass region. This curve is shown in
Fig. 4.15. The number of events (1982 + 1983 data) from this fit is 77 + 15. The
efficiency is found from the Monte Ca;rlo to be (35 + 4)%. This value does not

include the efficiency for the requirement of two good gammas, which is found
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to be (81 + 5)% from n’ — vp° events. The product branching ratio is
B(¢ — 4X)B(X — 4p°) = (1.0 £ 0.2 + 0.2) x 1074,

If one makes the identification X = ¢ then the partial radiative width to ~p°,
assuming I' = 95 MeV and B(. —» KK7) ~ 1, is

T{¢ — 7p°) = 1.9+ 0.7 MeV.

Analysis of the Backgrounds

We now consider in more detail whether any decay process could be
misidentified and produce the signal that is observed in the 77~ ~;,, mass
~spectrum. Such processes fall into three groups. First, we investigate the
éossibility that the charged particles are not pions. Second, we consider
‘background processes with two charged pions and two photons that are not
in a double ra.&ia.tive decay sequence. Finally, we look at processes with more

than two photons that could feed down into yyxt7—.

To ensure that the charged particles are pions the following checks were

performed:

1. The possibility that the events are double radiative Bhabhas, ete~ —
ete™ vy, is ruled out by computing the quantity Ehower/|P| for each
charged track. The events have Egpouer/|P| < 1, in contrast to the

expected value of 1 for e*,

2. The possibility that the charged tracks are muons is ruled out in 40% of the
events, which have at least one track with sufficiently high momentum for

a muon to reach the muon counters. No hits are observed in the counters.
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3. The possibility that the charged tracks are kaons is clearly excluded,
except in the case of five events, through the use of time-of-flight
information. These five events were already removed for the above fits

and branching ratio determination.

The second class of backgrounds, those from ¢ — yyr+ 7=, fall into three

categories:
1. Two-body decays ¥ — p°°, p°, XE7F (e.g., p=7F),
2. Mismeasurement of 1 — v7’; n’ — p°, or

3. A three-body decay 9 — ~vvp°

The two-body decays are easy to rule out because one of the pions or the p°
must be monochromatic. Figure 4.16 shows the momentum spectra of the pions,
and Fig. 4.17 shows the momentum spectrum of the p°. There is no evidence of

a narrow peak that would characterize two-body backgrounds.

The possibility that the signal results ffom a confusion between the photons
from ¥ — yn'; 7' — 4p° is interesting because there a.ré over 1000 such events.
However, the kinematic reflection of the ' when the wrong photon is selected to
accompany the p° makes a substantial contribution to the 7t 7™~ background
only above 2 GeV, and the confusion between the photons is small anyway. In

addition, Monte Carlo n’ — ~p° events do not show evidence of any structure

in the 1.4 GeV region.

Finally, there is the unlikely possibility that the decay is actually a three-
body mode (vyp°). The M(x+7~,,) distribution for phase space events has

been generated and shows no indication of any narrow structure.
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Backgrounds from % — 3yr+7~ and 4yrta—

The most difficult backgrounds are processes in which one or more photons
are not detected, either because the photon energy is too low or because it is

not within the detector solid angle. As noted above, the decay
¥ — 3y+p°

is forbidden, because the right-hand side has even charge conjugation. Thus

3y 7~ is a much less serious background than
¥ — 4y +0°,

which is allowed. In particular, the hadronic decays to the final states p°nOn°
and p7%n are quite large. Alfhough many of these modes are electromagnetic
(and violate isospin), they can have large branching ratios because the strong
decays are OZI-suppressed. Table 4.3 summarizes the features of the 4yr 7~

- backgrounds.

Backgrounds from 9% — 3ynr™r~ will be considered first. These processes
can contribute only to tlhe extent that there is background under the p°. Because
the p° signal is very clean (Fig. 4.14), one can immediately conclude that there
is very little background of this form ( < 6 events). The most prominent signal
in 3yx+r~, which is ¢ — yn’; ' — prt7—, does not appear as a background
under the p° because the dipion mass must be less than M (n') = M(n) =0.41
GeV.

The background from 3yr+7~ was studied-in two ways. First, the
requirement that each event have two shower clusters was changed to a three
cluster requirement. All other analysis cuts remained the same. The distribution

of M(xtw~7,,) for these events is shown in Fig. 4.18a. There is a large 7’
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Table 4.3. Backgrounds from ¥ — 44 + p°.

Background Process No. Events in Comments-
¥ — 4y +p° Data Sample

¥ — (7% or 7) + X;;

X — pn |

X = H(1190) - p(p°) = 1.19 GeV

X = A1(1270) 0 forbidden: C(n%4;) = +1

X = =x(1300) 0 forbidden: C(7%r(1300)) = +1

X = A3(1320) 0 forbidden: C(7%A43) = +1

X = w(1670) - should be suppressed: [ = 3

X = A3(1678) 0 forbidden: C(#%A43) =0
Y=’ +X;

X — 7

X = A5(1300) (1000 +500) x ¢ | p(p°) = 1.13 GeV. No significant

peak at this momentum
X = 6(980) - p(p°) = 1.27 GeV is beyond endpoint
of measured momentum spectrum

-’ +X;

X — n0x0

X = 5*(975) - p(p°) = 1.28 GeV

X = f(1270) - p(p°) = 1.15 GeV

Y — (7% or n) + X;
X — p%n

¥ is only particle with

observed decay into p°n

W — pOnOx0

Checked with Monte Carlo

3-body (5000 events)
P — p%70n - Checked with Monte Carlo
3-body (5000 events)
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Figure 4.18. Study of the 3ynT7~ background. a) M(x+x~,,) for events
with three shower clusters and b) P(x?) for events with M(rtx—~,,,) in the
range 1.3-1.6 GeV.
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signal! These events are not from ¢ — yn'; n/ — nr+7~, but from ¥ — ~n’;
n' — ~4p° events (a clear p° signal is present) that have a split-off cluster far
from a charged track. These split-offs are often due to a low energy piece of a
photon shower that appears topologically separate to the reconstruction code.
From the 7/, éne expects about 16% of the X(1.4) — ~4p° events to have three
shower clusters and about 3% to have four. The spike near 1.3 GeV in Fig. 4.18a
indicates that the shoulder in the two cluster events at the same mass is probably
due to background. The number of excess events in the 1.4 GeV region in the
three photon sample, however, is consistent with expectation. Figure 4.18b
shows the P(x?) distribution for three cluster events with M(x+7~,,,,) in the
range 1.3-1.6 GeV. In general, the events have low values of P(x?), indicating

that many of them are background.

The second approach was to study events that had good 5-C fits to the
hypothesis 9 — yn7Tx~. These events have a high probability of having three
photons. They were then refit to the hypothesis ¥ — yyr™7~. As expected,
very few events in the 1.4 GeV region had a good x? and no narrow structure

was present.

The unambiguous presence of the p® signal shows that, in fact, the only
serious and dangerous backgrounds that might completely produce the signal
are ¢ — p°n%7° and ¢ — p%7°n, where two soft photons are lost. The possible
decays leading to these final states are listed in Table 4.3. The atn~4,,, mass
spectrum for events with four shower clusters away from charged tracks, but
satisfying all other analysis cuts, is shown in Fig. 4.19a. There is no prominent
structure in the 1.4 GeV region, although there is a considerable amount of
smooth background. The P(x?) distribution from the 447t x~ fit for events with
M7t 7™ 45y) in the range 1.3-1.6 GeV is shown in Fig. 4.19b. The distribution
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is steeply falling, indicating that yyr*7~ is not the correct hypothesis. In
contrast, the P(x?) distribution for the signal events (Fig. 4.20) is relatively flat
and extends all the way out to P(x?) = 1.

There are other useful checks that can be used to rule out backgrounds
from ¢ — 4yxTx~. First, many decay modes are forbidden by C-invariance
(see Table 4.3). The presence of a p° is crucial for the use of this selection
rule, as the analogous charged channels are allowed. A useful check for the
presence of two-body decays of the form ¢ — p°X; X — (na° or 7%7°) is the p°
momentum spectrum. This spectrum can be measured even if photons are lost.
(In fact, the charged track momenta are not significantly changed by the 4-C
fit to yyrtx~.) A potentially very serious background is ¥ — p°A%; A9 — o7,
but it can be largely excluded because it would produce a peak near the tail end

of the momentum spectrum, whereas no such peak is observed (Fig. 4.17).

In addition to these checks, Monte Carlo p°7°7® and p°nn°® events were
generated according to three-body phase space and fit to the hypothesis ¢ —
4ynt 7~ using the two highest energy photons. Both of these processes result
in some events with M(r+7~~,,,,) in the 1-2 GeV region. However, the mass
distributions are broad, and most of the events fit very poorly to the Nyt
hypothesis. Applying the cuts used in the data analysis, even without the cut
on the number of shower clusters, removes 99% of the p°7%n events (Fig. 4.21).
The p°7%r° events have somewhat better x2?’s than the p°7%7n events, and are
more difficult to remove. The standard analysis cuts, without the cut on the
number of shower clusters, remove 96% of this background. The M(nr+7~,,,,)
distribution for the remaining events is shown in Fig. 4.22a. There is some
background in the 1-2 GeV region, and it has a shape very similar to that

observed in the data. If one were to require only two shower clusters, as in
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the analysis of the data, only 27 events would survive in the 1-2 GeV region

(Fig. 4.22b).

Because the branching ratios for these background processes have not been
measured, one does not know the correct number of events to generate in
the Monte Carlo program. The number generated (5000) was chosen quite
conservatively, and corresponds to a branching ratio of about 0.2%. This is

about half that of p°n°, a very large strong decay of the .

Angular Distributions

Because the most obvious explanation for the signal (or perhaps just part
of it) is the process ¥ — ~¢; ¢+ — ~p° it is important to investigate the
decay angular distributions and determine whether they are consistent with
JP=0". Using the two-body helicity formalism described in Appendix B, one
can calculate the angular distributions for ¥ — 71 X; X — 420°% p°® — 7nF7~ for

JP(X) =0~ and JP(X) = 1. The following notation is used:

0, 4 = the polar and azimuthal angles of X measured in the lab frame.

The z-axis is defined by the positron beam (see Sec. 2.1).

0y, ¢ = the polar and azimuthal angles of the p° in the X rest frame;
O, ¢x = the polar and azimuthal angles of the ™ in the p° rest frame;
z= |A1(X)/Ao(X)| = ratio of a.mplitudes' for production of X in

helicity one and helicity zero states;

T = |41(p%)/Ao(p°)| = ratio of amplitudes for production of p° in

helicity one and helicity zero states.
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For JP (X) = 07, the angular distribution is predicted uniquely:

‘cii—l(:: = (1 + cos® 9) sin? O,

and the cosd, distribution is uniform. This result can be understood intuitively.
Because J(X) = 0, the angular momentum along the decay axis, pL=2A 0~ Ayas
must be zero. But Ay, = %1 only, so A 0 =0 is not allowed. Furthermore, the
72 helicities can be measured (in prinéiple) in the final state, so the A 0 =E1

amplitudes do not interfere.

The result for JP(X) = 17 is quite complicated:

% = Lz%sin® 0{ (1 + cos® 8,) cos? 8 + z sin® 8, sin?
- %zp cos(dr — ¢,) sin 20, sin 20,.-}
+4(1 + cos? 9) { sin’ 8, cos® O + z3 cos? 0, sin’ O,
+ 3T, cos(éx — Bp) sin 26, sin 20,.-}
+3zsin 20{ cos(¢, — ¢) sin 26, [cos’ Oy — z} sin® 0]
+ $2,8in 20, [cos(q&,r — ¢)(cos 26, + cos b))
+ cos((¢pr — ¢p) — (#p — #))(cos 20, + cos 0,,)] }

There are two free parameters, z and zp, both of which are assumed to be
real. Consequenﬂy, two of the three polar angle distributions for JZ = 1T can
always be made to match the distributions predicted for J¥ = 0~. This is
unfortunate becauée only two of the distributions are well measured, cos 8, and
cos 0, whereas cos § is measured very poorly (if at all) when the decay products
of X go into the endcaps of the detector. Only with a large data sample is this

distribution useful (see : — KKr).

In spite of the difficulty with cos 4, it is still possible to consider the question

of whether the distributions are consistent with J = 0—. Figure 4.23 compares
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the distribution of cosf, for n' events and for events with M (7T~ Yy) in
the range 1.3-1.5 GeV. The cosd, distribution has been fit to the function

N(1—cos®8r) and shows fairly good agreement with the 0~ prediction of sin? Or.

The cosd, distribution should be uniform for JZ = 0—. Although the.
distribution appears to be relatively flat, there is an excess of events with
cos ) < 0 (Fig. 4.24)b. Part of this excess can be attributed to the fact that the
cut M () > 0.6 GeV biases the measurement of cos 0,. For low values of M (y~)
the photon momenta are more closely aligned, and the p° momentum vector is
therefore more aligned with the momentum vector of X. This configuration
corresponds to cosd, large. By studying this problem with Monte Carlo events
it was found that the cut M(vy) > 0.6 GeV affects only the range of cos 4, from
0.9 to 1.0, that is, only the highest histogram bin. If one ignores this bin, then
the probability that a uniform cos 8, distribution would lead to the measured
asymmetry is only 1-2%. Whether this is an indication of a serious problem
in thé analysis or is just a statistical fluctuation is unclear. The photons are of
sufficiently high energy that there can be no problem with efficiency, even though
the asymmetry corresponds to the fact that in the Epigh vs. Elow scatterplot

the density of points becomes too low as E,,,, decreases.

It is possible to adjust the spin-one parameters z é.nd z, to produce a flat
cosd, distri_butiqn and a 1~ cos? 8, distribution in cos 8. The cosf distribution,

after integrating over azimuthal angles, is predicted to have the form

dN

—1_ 2
deoad = 1-0.6cos“0
when z = 2 and z;l = 0. This distribution has the opposite curvature

from JP = 0~ Figure 4.25 shows the cos @ distributions for the n' and for

events in the 1.3-1.5 GeV region. Figure 4.26 shows the acceptance corrected
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cosd distributions for the 1.3-1.5 GeV region with fits to a(1 + cos?6) and
o/(1 — 0.6cos? §). The x* per degree-of-freedom is 0.6 for the spin O prediction
and 0.88 for the spin 1 prediction with z and z, as stated above. Thus, the data

are consistent with both spin 0 and spin 1, with spin O being slightly preferred.

Measurements by Other Experiments

Two other experiments have recently studied this decay process, the Crystal
Ball, using data taken at SPEAR, and DM2, which is located at the DCI e™e™
ring. The DM2 detector has a cylindrical design with a solenoidal magnet, and
the y+p° analysis was based on 4.4 x 10% ¢’s. The DM2 ~p° mass distribution
is shown in Fig. 4.27a. There appears to be structure in the 1.4 GeV region,

although no values for the mass, width, or branching ratio have yet been quoted.

The Crystal Ball has also observed (61) a signal near 1.4 GeV in this channel.
Using a data sample of 2.2 x 10° s, the 4p° mass spectrum shown in Fig. 4.27b
is obtained. The signal has a shape similar to that observed by Mark III, with a
shoulder at about 1.3 GeV. The total number of events in the signal is (61 4 15)
with an efficiency of (14.3 £ 1.7)%. A fit to a single Breit-Wigner yields:

M(X) = 1.390 £ 0.025 GeV
T'(X) = 0.18573310 Gev

B(¥ = 4X)B(X — 4p°) = (1.9+ 0.5 + 0.4) x 10~%,

As in the Mark III analysis, the signal has been fit with combinations of f + ¢
or n(1275) + ¢, both of which give reasonably good fits.

The angular distributions obtained by the Crystal Ball are inconclusive. The
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~p° mass distribution is divided into three regions

0.900 — 1.000 GeV 75’ region
1.200 — 1.350 GeV X, region

1.350 — 1.550 GeV X, region.

The distributions of cosfy,(= — cos8,) and cos & for these three mass regions
are shown in Fig. 4.28. It is found that the events in the X}, region are consistent
with a spin O interpretation, whereas those in the X, region are not. There is
a potential difficulty with contamination from ¥ — ~f(1270) events that have
a split-off. These may contribute to the X}, region to some extent. In the Mark
II analysis the p° signal is clean (and the #*7~ mass resolufion is very good),

so there is no problem with this background.
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4.4 ANALYSIS OF ¢ — 4X; X > ~¢

Event Selection and Fitting

Events with two oppositely charged tracks are 4-C fit to the hypothesis
¥ — y7K*TK~. The selection procedure for photon candidates for these fits
is the same as that used in the ¥ — yy7+7~ analysis: shower clusters within
the cos§ = 0.95 cone of a charged track are ignored, as are clusters that have
less than two layers. If there are more than two clusters, two kinematic fits are
done, ¥ — 7172 K+TK™ and ¢ — 473K T K~, where the gammas are ordered
according to energy. Events with more than two clusters are allowed because
there may be spurious photons due to kaon interactions in the shower counter
or decays in flight. No time-of-flight information is used at this stage — kaon
masses are assumed for the charged tracks. For the event to be considered
further, the x? for this fit must be less than 25. For events with two fits, the fit

with the better x? determines the selection of the candidate clusters.

To ensure that the momenta are wgll measured and that the acceptance is
accurately modeled by the Monte Carlo, it is requix:ed‘ that each charged track
pass through at least one stereo layer and that the photons be within the solid
angle range | cos 4| < 0.75. In this analysis only the 1983 data is used (1.8 x 10°
¥’s).

Backgrounds from yvK+ K~

The largest source of background in the yyK+ K~ channel is the process
¥ - K*KF, K** . K*71° which has a branching ratio of (0.11 + 0.02)%.
These events are easily removed by requiring M(yy) > 0.2 GeV. In addition,
fhe charged kaons tend to be nearly back to back, so the K+ K~ system has a
much higher mass than the ¢.



182

In addition to ¥ — K*K, there is background from 1 — ¢n. This signal
is evident as a cluster of events in the scatterplot of M(yy) vs. M(KTK™)
(Fig. 4.29a). The ¢ signal in the K K~ mass spectrum is shown in Fig. 4.29b,
and the corresponding monochromatic peak in the K + K~ momentum spectrum
is shown in Fig. 4.30a. The central value of p(K*K~) = 1.320 + 0.0005
GeV agrees with the expectation for this two-body decay mode. The 7 signal
is shown in Fig. 4.30b. The number of events in the signal is 64.5 + 8.1;
correcting for the detection efficiency ¢ = 0.265 + 0.03 and taking into account

B(¢ — K*K~) = 0.493 £+ 0.01 and B(n — ~v) = 0.390 * 0.008, one obtains
B(4 — ¢n) = [0.070  0.009(stat) + 0.009(sys)] x 10~2.

The systematic uncertainty is obtained by adding in quadrature the 8%
uncertainty on the flux, the 10% uncertainty on the Monte Carlo efficiency value,
and the uncertainties on the ¢ and n branching ratios. The correct angular
distributions were used in generating the Monte Carlo events. The above result

~can be compared to the Review of Particle Properties value of
B(¢ — ¢n) = [0.10 £ 0.06] x 1072,

A convenient way to remove this signal with only a small loss of efficiency for

% — Y5 ¢t = 79 is to exclude events with M(vv) in the range 0.44-0.66 GeV.

Backgrounds from ¢ — (ny)KTK~.n=3, 4

The major background from ¢ — (3v)K+tK~ is
Y= o= KTK 1% 1% — g,

which is discussed in detail in Chapter 3. These events are difficult to

discriminate against for two reasons:
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1. If one of the photons 2~y3 from the #° decay is soft (say, v3), then ~yo will
be energetic and M(K+ K~ +;) will be at the . mass.

2. The KtK~ mass distribution from ¢ = KTK~7° peaks near K+ K~

threshold, which is very close to the ¢ mass.

Consequently, cutting around the ¢ does not completely remove these events,
a,lthough it helps. In the present analysis, however, no ¢ — ~¢ signal is observed,
and an upper limit is set for this process. If this analysis is repeated in the future
with a larger data set, and a small ¢ signal is observed in YK+ K™, it must be
thoroughly checked that there is an assigned ¢ signal at the correct mass and
that the bump in the yK+ K~ mass spectrum is not just due to ¢ — KK~ 7P,
(The first member of my examination committee who informs me that he has
reached this point will be handsomely rewarded with a bottle of wine.) Most
--of these events can be removed by imposing a tighter x? cut, which will be

discussed below.

The last major background is due to ¥y — ¢#°n°, which is dominated by
¥ — ¢8*(975). The S* is a narrow (I' = 33 MeV), poorly understood scalar
state. The signal shows up as a peak at 1.184 GeV in the KT K~ momentum
spectrum. (This is the only way to identify this process unless the events are
refit to the correct hypothesis, ¥y — 4yK+K™.) Figure 4.31a is a scatterplot of
P(KTK~™) vs. M(K*tK™). In addition to a cluster corresponding to ¥ — ¢n,
there is a small cluster near p = 1.2 GeV due to ¢ — ¢S*. The ¢S™* events do
not produce a peak in the K+ K~ ~,,,, mass spectrum, although a few of them

contribute to the broad background in the 1-2 GeV mass region.

Analysis Cuts

To analyze the ¢ — ¢ final state the following cuts are made:
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for ¢« — 4¢.



187

1. P(x?) > 0.05.

2. At least one stereo layer per charged track.

3. |cosd| < 0.75 for photons.

4. M(vy9) 2 0.2 GeV; M(vy) ¢ [0.44 ~ 0.66] GeV.

5. The time-of-flight K-weight for at least one charged track must be greater
than 0.05. |

No cut was made on the number of shower clusters allowed in an event. Such
a cut would be dangerous because there can be additional photons due to K

decays.

The final K+ K™ ~,,,, mass distribution is shown in Fig. 4.31b. There is
no ¢ signal, so an upper limit is set, using the following procedure. First, the
mass region from 1.2-2 GeV is fit to a linear background plus a Gaussian-folded
Breit-Wigner with the Mark III values for the . mass and width. The folded
mass resolution is determined with the Monte Carlo to be 0 = 8 MeV. The area
under the Breit-Wigner is then increased (allowing the background to vary) until
the area under the likelihood function for area is 90% of thej:bta.l area. The
Breit-Wigner curve corresponding to this upper limit is shown in Fig. 4.31b and
contains 12.3 events. The detection efficiency is found to be ¢ = 0.11 from the
Monte Carlo, which includes the correct angular distributions.for all stages of
the decay process. A comparison of the Monte Carlo and data x? distributions
for ¥ — ¢n, however, indicates that the Monte Carlo predicts too few events
with large values of x?. The corrected efficiency, ¢ = 0.088, is 20% lower than
that found from the Monte Carlo. Taking into account B(¢ — KTK™) one

obtains

B(y = y)B(t —v¢) <16x107*  90% C.L.
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which is roughly comparable to the signal observed in 4p°. Relative to . — KKx
this limit gives
B(c — ~9)
B(. — KK)

Although this is not a stringent upper limit, it shows that if the vp° signal is

< 3.1% 90% C.L.

due to the ¢, then the quark content of the ¢ is not predominantly s3.



189

4.5 ANALYSIS OF ¢ = 1X; X — qyw

The decay sequence ¥ — 7X; X — qyw; w — 777~ 7x° produces four photons
and two charged tracks in the final state. The efficiency is therefore not as high
as it is for ¥ — vX; X — 4p°, and one does not expect to be able to set a very
stringent upper limit. However, an 7’ — 4w signal is observed, as well as two

new hadronic decays, ¥ — wn?® and ¥ — wn.

Event Selection and Fitting

Events with two oppositely charged tracks and at least four shower clusters
are kinematically fit (4-C) to the hypothesis ) — 4yr*7~. Candidate photons
are selected with the same criteria as in the yyp° and yv¢ analyses. If there are
more than four such candidates, the clusters are ordered according to energy

and two fits are done:

Y — Y123 Yar T and ¢ — Y vvzvsT .

The fit with the better x? is chosen. Events with P(x?) < 0.1 are excluded from
further analysis. As before, each charged track is required to pass through at

least one stereo layer.

Photon Combinatorics and Observation of an w signal |

The first step in the analysis is to determine which photons come from the

0; #° — ~44. In the radiative decay ¥ — YP; P — Aw,

sequence.w — ot
where P = 5/ or ., the photon radiated by the i has the highest energy. In
the background processes ¥ — wn® and wn, the recoiling 7° or n has very high
momentum (1.446 GeV/c or 1.394 GeV/c, respectively). Consequently, the
decay of this high momentum #° or n nearly always produces the highest energy

photon in the event. Thus, the most convenient scheme for organizing the six
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Table 4.4. Convention for 4+ combinations

A B

(¥ | mv2 | B
2 | mr3 | 2

(3) | 7va | 23

possible photon pairs is as shown in Table 4.4, where "71 is the highest energy
photon and ~4 is the lowest. The A combinations always include the highest
energy photon, whereas the B combinations are complementary to them and
nearly always contain the #° that is produced when the w decays. Figure 4.32
shows the 7#t7~ v~ mass distribution for both the A and B combinations. In
making the distribution of M (7t 77 ~;v;) it is required that M(v;v;) < 0.2 GeV;
that is, because w — 7T x~x?, consistency with a #° is required. There are only
24 w’s in the A combinations, but there are approximately 690 w’s in the B

combinations (about 97% of the signal.)

Observation of ¥ — wn and wn®

Most of the events in the w signal are not due to ¥y — vX; X — ~w, but
rather are from hadronic ¢ decays. This is seen from Fig. 4.33, which shows
scatterplots of M(v1v2) vs. M(x*n"v3v4) and M(y17y3) vs. M(xt7~~374).
There is a clear correlation between the w signal and #° and 7% signals in the
recoiling 4y combinations. The scatterplot of the other pair of combinations

shows a similar correlation.

It is useful to narrow down the event sample by requiring that there be at

least one M (77~ v4) combination consistent with the w mass:
0675 <M (1r+7r_'1,-'7j) <0.891 GeV (any B combination).

The easiest way to remove the hadronic events is to exploit the fact that
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these are two-body decays with very high momenta. Figure 4.34 shows the
momentum spectrum of the (yy) g7t 7~ combinations (which is the same as
that for the (v7)4 combinations) and the distribution of M(v4) 4. Two clear
peaks corresponding to 3 — wn and wn® are observed. The number of events is
determined by fitting the spectrum to two Gaussian-folded Breit-Wigners plus
a linear background. The Breit-Wigner widths are fixed at 2 MeV, reflecting
the width of the w:

Spa§ [E(l + %(-’;1)2] ~ 6E

and

= 6 my,
2m¢ m,/,

m? + m% — m? _
6E=5['/’ P “’] i

where mp is the mass of the recoiling pseudoscalar. These fits yield the mean

momenta and the number of events in the two modes
P =1.395+0.001 GeV N(wn) = 321 +21

P =1.444+£0.001 GeV  N(w®) = 206 + 15.

Detailed checks have been performed to show that the Monte Carlo correctly
models the small fraction of w’s in the B combinations. It has also been verified
that the combinatorial background in the momentum spectrum is small and
approximately uniformly distributed; it is therefore absorbed by the background
term in the fit. The Monte Carlo events were generated using the correct angular
distributions, including the effect of the w spin polarization and the matrix

element for w decay.

One difficulty in obtaining the efficiency for these decay modes is the large
fraction of events with low energy photons. It has been determined that the
Monte Carlo FAKSHR generator does not correctly model the photon detection
efficiency below about 100 MeV. (The EGS program was not installed in the
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Mark Il Monte Carlo at the time this analysis was performed.) It is therefore
necessary to exclude events with photon energies below 100 MeV, both in the
data and in the Monte Ca.rlo., for the purpose of obtaining the branching ratio.
The number of events in each mode after this cut is
N(wn) =158 +13
N(wn®) =108 +9.
The efficiencies are found to be
€(wn) = (13.0+2.0)%
é(wn®) = (10.0 £ 1.5)%
where the uncertainties, as usual, are estimated by varying different cuts in the

Monte Carlo. The measured branching fractions are

B(¢ — wn) = (1.9+£0.2+0.3) x 1073

B($ — wn®) = (0.67 £ 0.06 + 0.11) x 10~3

It is quite difficult to check whether the Monte Carlo adequately models the tail
of the x? distribution in the channel. In the following section it is shown that the
branching ratio for ¥ — yn/; n’ — qw agrees with expectation within the fairly
large statistical errors. This provides some check of the overall normalization of

the analysis procedure for the 4yr+x~ final state.

Analysis Cuts for the Radiative Channel

To study the process ¥y — v+ X; X — 4 + w it is useful to remove wn and
wn? events. This can be accomplished by requiring P(7r+7r"'y,-'7_.,-) < 1.36 GeV
for each B combination. With the exception of one addition to be discussed

below, the cuts used in this analysis are:

1. P(x?) >o0.1
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2. E(v;) >0.1 GeV
3. p(rt7~~;v;) < 1.36 GeV (each B combination).

4. M(xtr"~4;) in the range 0.675-0.891 GeV (for at least one B

combination).
5. M(v;7;) < 0.2 GeV (for at least one B combination).

6. Time-of-flight K weight < m weight for each charged track.

In the radiative channel the mass of the recoil system is M(r 7 v3v374),
because v; is always the photon radiated by the % in 5’ and ¢ decays. The
distribution of this recoil mass, with the cuts listed above, is showh in Fig. 4.35a.
- A small n’ signal is present, as well as a large number of events in the 1-2 GeV
region. Most of these are easily shown to be due to background by selecting
events that have exactly four shower clusters (not counting those near charged
tracks or with only one la.yer). The resulting recoil mass spectrum is shown in
Fig. 4.35b and is very much cleaner. There is some loss of efficiency from the
four photon cut; its efficiency is estimated to be (74 10)% by comparing the
number of ' events before and after the cut. Using the number of 5’ events
(= 17), the Review of Particle Properties values for n/ — w and w — 7770,

the efficiency e = (0.74)(0.086), one obtains
B(¥ — vn') = [5.9 + 1.4(stat) + 1.6(sys)] x 1073,

which is consistent within the statistical error with the measurement in the
n' — ~4p° mode. Although the above number is not useful as a measurement of

¥ — 4n’, it does serve as a calibration check for a somewhat difficult analysis.

To obtain an upper limit for ¥ — ~:; ¢ — ~w, the mass region 1.05 <
M(rT7~v27374) < 1.8 GeV is fit to a flat background plus a Breit-Wigner.
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The Mark III values for the . mass and width (M = 1.455 GeV, ' = 0.095
GeV) are used. A Gaussian mass resolution of o = 16 MeV, obtained from the
Monte Carlo, is folded with the Breit-Wigner. Figurg 4.35b shows the curve
corresponding to the 90% C.L. upper limit. The number of events under the
Breit-Wigner is 26; with an efficiency of 7.1% and the factor B(w — = T7~#°)

one obtains
B(% = 4)B(t = yw) < 2.3 x 10™* at 90% C.L.

or,
B(¢ — yw)

VT 0.044 at 90% C.L.
B(. — KKn) at 90%
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Chapter 5. Limits on Other . Decay Modes

The ¢ has sufficient mass to decay into several other multi-meson final
states, including n#ww, 47, and KK#nr. Decays into an odd number of pions
are forbidden by G-parity if the ¢ is an isosinglet, which is strongly implied by
its large producﬁon in radiative ¢ decay. The nm7 mode is of particular interest
because a large branching fraction is expected from SU (3) symmetry. If the ¢
decays via 6, as indicated by the Crystal Ball results, and one assumes that
SU(3) relates the n7 and KK couplings of the §, then (55)

Lle—nmr) 4
I(c— KKx) 3
The very limited data on the § indicate that

(6 — o)

— = 0.25 — 1.3.
I'(6 - KK )

Using the Crystal Ball result

B(. — é7)B(§ — KK)
B(.— KKr)

> 0.75 90% C.L.
and the Mark III measurement
B(¢ — v)B(t - KK7) =5.0 x 1073
one can p;edict
B(y — v¢)B(¢c — 67)B(§ — n7) = (0.90 — 4.9) x 1073,

or
B(. — é7)B(§ — nn)

= = 0.19 — 0.98.
B(. — KKr)
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On the other hand, if one ignores the § and rather assumes that SU(3) governs
the four-point amplitude for the ¢ coupling to three pseudoscalars, then the ratio
is
T(c — n7r)
I'(. — KKr)
Palmer and Pinsky (55) argue that SU(3) - based predictions are unreliable,

1
=3

and that in the context of their pole model

L= nmm) _ .00,
I'(c =+ KKr)
In addition, they find
(¢ — pnm)
———— 1-5-
I'(c - KKr)

Unfortunately, no ¢ signals have been observed by Mark III in nxw, 47, or
KKrr, with the (significant) possible exception of ¢« — pp. The results in the
pp channel are difficult to interpret because the pp threshold is ill defined and

near the . mass.

The nrr Final State

A detailed discussion of Mark III results on the process ¥y — yn77r can be
found in the references (63). The analysis uses an initial 4-C fit to the hypothesis
¥ — 3yn 7~ followed by a 5-C fit to the hypothesis ¥ — ynx+7r~. A broad
structure, which could well consist of two or more resonances, is observed in
the 1.2-2.0 GeV mass region. Because it is difficult to untangle this structure, a
very conservative approach to obtaining the . upper limit was used in which a
Breit-Wigner with the . mass and width (M = 1.460 GeV, T = 0.100 GeV) was
superimposed on the mass spectrum (Fig. 5.1a). The upper limit derived from

this procedure is

B(p - n)B(t —»natr™) <88x107*  90% C.L.
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This implies
B(. — nrr)

— < 0.26
B(¢ — KKr)

where the unobserved n7°7® mode has been taken into account.

The additional requirement that either the 77 or n7~ mass be consistent
with the § (0.93 < M(n7) < 1.03 GeV), yields the n7r mass distribution shown

in Fig. 5.1b. Using the same procedure to determine the upper limit, one obtains
B(y — 1)B(t — 6X1F)B(6* — nrt) <46 x107*  90% C.L,

or
B(t — é7r)B(6 — nn)
B(. — KKr)

which contradicts the prediction based on the Crystal Ball measurement. The

< 0.14,

discrepancy could be due to the poor knowledge of B(§ — n7)/B(6 — KK).
However, the extremely conservative procedure used to obtain the ¢ upper limits
indicates that one should be careful about invoking the & to explain the KK
threshold enhancement in 4 — K K.

The KKrr Final State

The process ¢ — yK*K~7*x~ will be discussed in detail elsewhere (64).
The event selection procedure is based on a 4-C fit, although time-of-flight
information is used to identify K’s and n’s. The resulting K+ K~ 7 7~ mass
spectrum is shown in Fig. 5.2. There are virtually no events around 1.4 GeV

’

and only one up to 1.6 GeV. Using the detection efficiency of 5% one obtains
B(¢p = v)B(t = KK77) < 2.2 x 1075,

a remarkably stringent limit.
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The 47 Final State

An extensive analysis of the process 9 — 47 has been performed (65) using
the two isospin related channels, ¥ — yrT7~ 77~ and ¢ — yrT7~7%0. The
47 mass distributions for these channels are shown in Fig. 5.3. Although there is
a large, broad background from ¥ — 5, clear structure is evident in the 1.4—-1.9
GeV mass region. The separate partial wave contributions are extracted from a

maximum likelihood fit that includes
1. X — pp with JP(X) = Of*', 0-,1%,1~, 2%, 27, and isotropic;
2. X — pnr with isotropic angular distributions;
3. X —4r with isotropic angular distributions;

4. X — Aqm.

It is nontrivial to separate the contributions from pp, p77, and 47 because the
large p width permits a 7 to participate in two w7 mass combinations consistent
with the p mass. The amplitude must therefore be correctly symmetrized under

m exchange.

The main result of this analysis is evidence for a pseudoscalar signal in the
pp channel. The signal is very broad, extending from about 1.4 to 1.9 GeV, and
could well consist of more than one resonance. It is possible that the lower part
of this structure is due to ¢ production. In fact, an ¢ — pp branching fraction
comparable to that of ¢ — K K7 cannot be excluded. Such a result is expected
(55) if ¢ — ~4p° is large; it would also make . decays more flavor symmetric.

Taking events in the pp J P = 0~ channel from 1.5 — 1.9 GeV, one obtains

B(yp — vX(07))B(X — pp) = (2.3 £0.9) x 1073,
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From the multichannel likelihood fits one can obtain an upper limit for

v — prw (pp and non-resonant 47 excluded):
B(Y — 4t)B(t — p7m) < 9 X 1073 90% C.L.

This upper limit may be somewhat sensitive to which other resonant channels

are included in the fits to the 447 events.
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Chapter 6. Conclusions

The production, decay, and quantum numbers of the ¢ have been studied in
radiative ¥ decay. Using the processes ¥y — 45 ¢ — KTK~7°% and ¥ — .,
Lt — Kg.K *xF, the spin-parity of the . was investigated. Together, these
channels contain about 760 .’s in the Mark III da.ta..v To avoid assumptions
concerning the two-body decays - in particular, those involving the very poorly
understood 6(890) — the three-body helicity formalism was used. This formalism
allows one to predict the distribution of the « production angles and the angles

describing the orientation of the normal to the ¢ decay plane.

The maximum likelihood fits performed in these two channels indicate that
JP =0 is strongly preferred over both J¥ = 1+ and JP = 1~. The source
of the discriminating power of the three-body method is easy to identify, and
visual examination of the relevant angular distributions provides clear support
for the 0~ assignment. The use of this technique was made possible by the high

signal-to-background ratio (~ 10 : 1) in the ¢ mass region.
The ¢ mass and width obtained in the K3 K<xF channel were found to be:

M (i) = (1.456 + 0.005 + 0.006) GeV

T'(¢) = (0.095 + 0.010 + 0.015) GeV.
These are consistent with the parameters obtained from the KT K~ 7° channel:

M(¢) = (1.461 + 0.005 + 0.005) GeV
I'(z) = (0.101 + 0.010 + 0.010) GeV.
It is possible that the difference in mass with respect to the Mark II and Crystal

Ball experiments is due to the much less stringent KK mass cut used in the

Mark IIT analysis. By making the KK mass cut identical to that made in the
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Crystal Ball analysis, a downward shift in the central K K7 mass was observed.

However, there appears to be no clear justification for such a cut.

The very large radiative branching fraction of the ¢ to the ¢ remains a
source of mystery. Using the K3 K £72F and KT K~ 7° channels, the following
measurements were obtained:

B(p — v)B(« —» KK7) =(5.0+£0.3+0.7) x 1073 (K3K*7¥)
B(¢ — y)B(c —» KK7) =(4.9+£0.2+0.8) x 103 (KtK™x9),
where isospin zero has 'been assumed. The good agreement shows that the

relative sizes of the individual K K'r branching fractions are consistent with the

isoscalar predictions.

However, the Mark III value for B(y = y7/),
B(y — ') = (4.7£0.2+0.7) x 1073,

which was obtained using n’ — 70°, is quite comparable. The branching fraction

for ¥ — 4n was measured to be
B(p = yn) = (9.1+2.241.6) x 1074,

using # — g7t ~, which implies

B(¢ — yn')

=52+1.3+03.
B(¢ — yn)

By studying the regions of the K K'r Dalitz plot outside the area where K*K
and ém would overlap, an upper limit on : — K*K + c.c. was obtained. The
procedure does not depend on any description of the §. The value is

B(c —» K*K + c.c.)
B(t — KKn)

< 0.35 90% C.L.
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This measurement contrasts with that obtained for the E(1420) in hadronic
production experiments. The E(1420) appears to decay predominantly, perhaps
entirely, into K*K.

The pseudoscalar assignment for the ¢ implies that the only conventional ¢g
assignment for this state is a radial excitation. The radially-excited pseudoscalar
nonet is not well understood. The n(1275) is a possible isoscalar candidate
for this nonet, and the ¢ could be the other isoscalar member. Theoretical
arguments indicate that the production of a radially-excited pseudoscalar at
the rate observed for the ¢ is unexpected. However, these arguments are semi-
quantitative at best; the only way to definitively settle this question is to find all
m‘embers of the radially excited pseudoscalar nonet. An issue thought to have
been settled that has now resurfaced is the spin-parity of the E£(1420). Two
high statistics experiments have obtained contradictory results: JX = 0~ and

JP = 1*+. This inconsistency underscores the extreme difficulty of obtaining

- reliable spin-parity measurements where backgrounds are present.

The question of whether the ¢ decays into § is a very difficult one. Certainly
the KK mass distribution peaks near threshold, but the very conservatively set

upper limit
B(% — v¢)B(s — 6*7)B(6 —» nr¥) <46 x 107 90% C.L.

is inconsistent with the prediction based on the Crystal Ball measurement.
Either the ¢ does not decay into éx, or B(6 — nx)/B(6§ — KK) is wrong,
or . — dm — nmw is suppressed for some reason, such as interference with

t— En. i

Upper limits for other channels accessible to the ¢ have been obtained. These
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B(¢ = v)B(t » KKnr) <2.2x107° - 90% C.L.

B(m — 4¢)B(t — p771) <9.0 X 1075 90% C.L.
A substantial part of the signal observed in the pp 0~ channel could be the ¢,
but the high pp threshold makes this difficult to establish. A branching fraction

comparable to that for . — KK is not excluded.

To probe the quark content of the ¢, the double radiative decays ¢ — X,
X — 7+ Vector were studied. An intriguing structure is observed in the v(v%)
channel with Breit-Wigner parameters

M(X) = (1.420 + 0.015 + 0.020) GeV

T(X) = (0.133 % 0.055 + 0.030) GeV

and product branching fraction
B(¢p = v+ X)B(X — v0°) = (1.0 £ 0.2 £0.2) x 10™4.

The measured angular distributions are consistent with pseudoscalar predictions.
In particular, the distribution of the polar angle of the 7 in the p° rest frame
is consistent with sin? 4. Although both the Crystal Ball and DM2 experiments
appear to conﬁrm’ the observation of such a signal, the low value for the mass
indicates that one should be cautious about associating the signal with the +. It
should be noted that the mass scale in this channel is verified to better than 1

MeV with the 5’ signal (~ 1000 events).

Investigation of the y(yw) and v(+¢) final states revealed no structure in
the 1.4 GeV region, although n’ — qw was observed at the expected rate. The
following upper limits were obtained using the ¢ Breit-Wigner parameters from
the KK7 channels

B(p > w)B(s —v¢) <1.6x10"*  90% C.L.

B(p - y)B(t — ) <23x10"*  90% C.L.
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Finally, several hadronic ¢ decays were studied. The results are

B(4 — ¢n) = (0.70 £ 0.09 £ 0.09) x 1073
B(¢ — wn) = (1.9+£0.2+0.3) x 1073

B( — wn®) = (0.67 £0.06 £ 0.11) x 1073

The isospin-violating decay ¥ — p°n was observed. The p° width was found to

be too small, an effect attributed to interference with ¥ — wn.

If it definitely established that . — ~p° is on the order of 1 MeV, then a
significant ¢g component must be present in the . wave function. According to
the pseudoscalar mixing models, this would be a natural result of the strong
mixing é.mong the isoscalar mesons and a glueball. The 5’ would then be
primarily ¢g with some gluonic component. An interesfing test would be the
measurement of 1 — we relative to ¥ — wn'. Because the quarks in the two
mesons are correlated by the production process—and the quark content of the w
is known~ these decays would provide a means of probing the relative light-quark

content of the ¢ and the n'. With a data sample of 107 ¢’s, such a measurement

should be possible.

Clear proof that a large ¢ — pp signal is present would be another indication
that the ¢ is not just a radially excited pseudoscalar. The ¢ production in
radiative ¢ decay would then be comparable to that of the n, and much larger

than that of any other state produced by the annihilation diagram.

Probably the most difficult approach to establishing the existence of glueballs
is to identify two other light pseudoscalar mesons. If that goal were a.chiéved,
however, the ¢ would be excluded from the radially-excited nonet and would

almost certainly be identified as a glueball.
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Appendix A. The Three-Body Helicity Formalism

A.1l INTRODUCTION

This appendix describes the extension of the helicity formalism from two-
body to three-body decays. The formalism was invented by Berman and
Jacob (66), and the presentation here is intended to be a detailed elaboration,
accessible to experimentalists, of the original paper. A basic knowledge of the
two-body helicity formalism is assumed, although the main ideas should be
clear without such knowledge. Another exposition of the three-body helicity
formalism can be found in Chung (67). The three-body helicity formalism is
useful because in the decay a — 1 + 2 + 3, it is not always clear whether
there are intermediate two-body states. For example, in the process ¥y —
~¢(1440), +(1440) — KK, the KK mass spectrum peaks near threshold,
suégesting ¢t — 6(980)r. However, the Km mass distributions overlap in the
K*(890) region, so that one cannot easily rule out a K*K component. Another
difficulty is that the §(890) is a very poorly understood state, and in fact may
not even be a resonance. Although § — nr is observed, there appears to be

little (1440) — n7w, leading one to question whether the :(1440) does decay

into 6.

It is therefore desirable to use a method that does not require knowledge of
the intermediate two-body decays and uses only the properties of the entire
three-body system. The first step is to construct three-particle CM states
with definite total angular momentum j, projection m, and helicities A, Ag,
A3. These states allow one to conveniently apply conservation of angular

momentum to the decay process. In the construction of these states, it will be
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evident that there is an additional rotationally invariant quantity: the angular
momentum projection along the axis normal to the CM decay plane. It will
then be possible to calculate the angular distribution of the normal to the CM
decay plane, relative to the momentum direction of the decaying particle. The
angular distribution is most conveniently expressed using the density matrix
of the decaying particle. Finally, the consequences of parity conservation will
be derived, and the angular distribution for X(J P = 1¥) decaying into three

pseudoscalars will be calculated.

A.2 CONSTRUCTION OF THREE-PARTICLE CM STATES

We will analyze the decay a — 1 + 2 + 3 in the rest frame of a. Then

Mg = W1 + W2 + W3

0=7p1+ P2+ D3 (A1)

where w; is the energy of the 1*# particle. The momentum conservation equation
implies that the momentum vectors lie in a plane — the decay plane — and form

a triangle (Fig. A.l1a).

In the three particle rest frame, five variables are required to completely
specify the kinematics of the state. (With known masses, there are nine
momentum components, but there are four constraints from energy and
momentum conservation.) These five variables can be taken to be any two
energies (the position on the Dalitz plot) and the three Euler angles a,f,v

describing the orientation of the decay plane with respect to a fixed coordinate

system.

The choice of the fixed coordinate system is usually based on physical

considerations related to the production of the decaying particle. For example,
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»V

Figure A.1. Three-body decay. a) In the decay rest frame, the three momentum
vectors form a plane. The reference configuration has & = 8 = 4 = 0. b) Euler
angles specifying the decay plane orientation.
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if a was produced in a previous decay with momentum 7y, the z-axis in the rest
frame of a is chosen to be aligned with py. The angular momentum projection
along z is then identical to the helicity A3. The definition of the x-axis in the .
a rest frame depends on the phase convention used to describ_e the decay that
produced a. If a was produced by a two-body decay, and if the phase convention
ié that of Jacob and Wick (68) with the third Euler angle ¥ = —¢, then the
x-axis is such that the production plane of a is at the same azimuthal angle in

the a rest frame as in the lab frame.

To refer the three particle states to the fixed coordinate system, we pick a
reference state that by definition will have @ = § = v = 0. A convenient choice
for this state is one that lies in the x-y plane and that has the momentum of
one of the particles, say 73, aligned with the -y axis (Fig. A.la). If the three
particles have helicities A1, Ag, A3, then this three particle state can be described
by a vector

IwI’AIaw23A2yw37A3’a = 0’:3 =0,7v= 0)-

Then any other state with the same energies wy,ws,ws and helicities A1, A2, A3

can be obtained by a rotation.

|w1,A1,w2,A2,w3,A3, a,ﬂa'Y) = R(a,ﬂ77)lw1aklvw2aA2aw3’A3’ o= oaﬁ =0,y = 0)-

(A2)

The energies and the helicities are invariant under R(e, 3,7). Figure A.1b shows

the Euler angles that specify the orientation of the decay plane.

We now construct the three-body states of definite angular momentum 7,
angular momentum projection m along the z-axis, helicities A, A3, A3, and
energies wj,ws,w3. These quantum numbers, however, do not alone uniquely

specify a three-body state. The angular momentum M quantized along the
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normal 7 to the decay plane must be specified as well. The reason is that J-#
commutes with all of the operators associated with the above quantum numbers.
‘Because J - # is the generator of rotations about #, it commutes with all of the
rotationally invariant operators. But it is a scalar operator itself, so it commutes
with J,. Stated in other terms, if the system is rotated about the z-axis, the
angular momentum along the normal to the decay plane is unchanged, because

J and # rotate simultaneously.

Why isn’t an analogous operator necessary in the two-body helicity
formalism? In fact, such an operator could be defined: it is the angular
momentum along the decay axis. But its eigenvalue is A = A; — Ag, so it
is not independent of Ay and As, which are a.lrea.dy specified. However, the
quantum number M in the three-body formalism plays essentially the sa.me.role

as A = A1 — Ag in the two-body formalism.

The relation between the states with definite o, 8,4 and those with definite
7,m, M is easy to obtain. We will obtain the relation in two ways to illustrate
the formalism. For convenience let ) = wy,wq,w3 and A = Ay, A, A3. The goal

is to find the coefficients in the equation

IAa Q2,8 '7) = Z cj,m,M(a, B, '7) lA, 0,7,m, M) (A3)
mM

Now consider the case a = 8 = 4 = 0. The z-axis is then aligned with the

normal to the decay plane, so that m = M:

A, Q,a=0,=0,7y=0)=)_ ¢jpp(e=0,8=0,7=0)A,0,5,M,M).
M
(A4)

We rotate back to the original state using Eq. (A2)



217

R(asﬂ,q)!A’nsa =0,=0,7= 0) = ch,M,M(a =0,8=0,7= 0)
»M
X R(e,B,7)|A,Q,5, M, M).

(A5)

The crucial point in this argument is that the states |A, 2, j,m, M) are angular
momentum eigenstates, and therefore transform according to an irreducible
representation of the rotation group. Note that for this to be true, all. of
the quantum numbers except for m must be rotationally invariant. Thus,
the rotational invariance of M is essential to the argument. In general, the

transformation is

R(c,8,7)|A,Q,5,m, M) = > D7, (2,8,7)|A,Q,5,m',M)  (AS)

m

so that

R(a’ﬂ"ynAanaa =0,8=0,y=0)=

Z cj,M,M(a =0,8=0,7= O)DJmM(a’ﬂ7 'Y)IA, n,ja m, MXA7)
3mM

The coefficient ¢; , (@, 8,7) in‘Eq. (A3) can be read off from Eq. (A7):

cj,m,M(as ﬂ’q’) = cj,M,M(a =0,8=0,7= O)Dan(aa B, '7) (AS)

and
lAa ns o, ﬂ7 '7) = Z cj,M-Dan(a, ﬂy 'Y)lAa Q,j, m, M) (Ag)
mM
where we have dropped the irrelevant labels on ¢; M- Equation (A9) can be

inverted by using the orthogonality of the D-functions:

- . 4 872
/dadcosﬂd'y [DJ,,’,'n(a, B, 'y)DJm,n,(a,ﬂ,'y)] = Emajj'&mm'&"”"'
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We can now express the states of definite total angular momentum in terms of

states with definite o, 8,v:

1 2]+1

|A-$ n?jsm:M> =
¢i,M

/dadcosﬂd'yDJ M(a,ﬂ,"l)
X |A, Q,0,8,79). (A10)

The coefficient multiplying the integral does not affect the form of the angular
distributions and will be dropped.

We will now show the same result from a different point of view. We make

the definition:
10, 4,5,m, M) = [ dadcos fdaDizyy (e 6,7)10, 4, 208, 7)-

(A1)

We will show that the right-hand side transforms according to an irreducible
representation of the rotation group, and hence is an eigenstate of angular

momentum.

R(@,8,2)I0% Aysym, M) = [ deldcos ' Disyg(ol, 8,7V R, 6,2) [0 A, o, 8,

/da’dcos B'dy'D?* (e 8,7 )R(a, 8,7 R(, 8 ,7)|0,A,d =0,8 =0,7' =0).
(A12)

Because the set of rotation operators forms a group we can write

R(a”’ ﬂ”a ’7”) = R(a’ ﬂ’ '7)R(a’a ﬂ’7 '7’)

and

7 [(R(e!,8',4")] = DI%) (R (e, B,7) R(", 8", "))
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=" DI LR a, B,7)| D%y [R(, B, 4]
MI

=3 Dl [R(en B, 1) Dy [ R(", 8", 4] (A13)
M! -

where the notation D]m y[R(e, 8,7)] means the D matrix element corresponding

to the rotation R(a,3,7) , etc., and we have used
D olB7Y =D Rl =D}, [R]

Because
da'dcos B'dy = dvy"dcos B"dy", ’ (A14)

we have

R(e, 8,7)|0,A,j,m, M) = /da"dcos ﬂ”d'y"z D]A{,m(.a,ﬂ,'y)D]l;;,M(a",ﬂ”,'y")
]
X R(a", ,3",.’7”)'0, A,]Z” — 0’ ﬂ” - 0’ '7” — 0)
=" Dip . (,8,7)0,4,5, M, M). (A15)
M'
Thus, |2 Ajm M) transforms irreducibly under rotations and is an eigenstate

of J2 and J, with eigenvalues J,m. The quantum number M is identified by

considering the case @ = # = 4 = 0. Then in Eq. (A12) the D-function becomes
D¥(e=0,8=0,7=0) = bpy-

Thus, when the normal to the decay plane and the z-axis are aligned, M = m.

This implies that M is the angular momentum along #.
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A.3 DECAY ANGULAR DISTRIBUTION IN TERMS OF THE DENSITY

MATRIX

Using Eq. (A12) we can now calculate the general form for the angular
distribution of the decay plane. First, we introduce the density operator.
Consider the amplitude for transition from the initial s'ta.te |I) to the final state
|F),

A(I - F) = (F|U|I). (A16)
If we don’t know the initial state, but can give only the probability p; that it is

|I¢), then the transition probability, averaged over the possible initial states, is
(AU = F)%) =) pel(FIUIL) R = Y o FIUILN LU FY. (A17)
k k

In general, the basis vectors convenient for expressing |I;,) will be different from
those best suited for expressing |F). Here, the basis vectors for the |I};) will
be of the type |E J M), i.e., a single-particle state with mass E and angular
momentum quantum numbers J, M;. The states |F) will be three particle
|02, A, @, B,7) vectors and will be expressed in terms of the |0, A, 7, m, M) states.
The quantization axis (z-axis) for m is the same as that for M. Let |a),|b)
denote basis vectors for |F) and |A), |B) denote basis vectors for |I;,). Then Eq.
(A17) becomes, after inserting complete sets of these basis vectors,

(A = F)]?) = I’%:B(Fla)(alUlA)(AlSk_:pkl-’k)(IkIB)(BIUTIb)(bIF)' (A18)

a,0,4,

The operator
p = pelle)(Ixl (A19)
k
is referred to as the density operator. It is simply the sum of the projection

operators for the possible initial states, weighted by their probabilities.

Translating Eq. (A18) into the language of a three-body decay we find
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A - PP = Y (QpApe, B0 A m! MY QA 'm M |UE T MY(E T M|
inte::cdzzc";tctca

X | D pelle) (Il | 1B'T' MY(E' T M| U Q" A" 5" m" M)
kltk/\k
k

x (A" " M"|QpApa, 8,7). (A20)
To evaluate this expression, we use

]
(ﬂFAFa, ﬂ,qlﬂ’A’j’m’M’) =D’ :Ml(aa B, 7)6ﬂpﬂ'6ApAi

m

(AF'm'M|UIE T M) = F(Q', A, M, E)6 0 yi61 7

(EJ M| [E Pkl-’k)(fkl] |E'I' M) = pyM1675,67, 116BE, 58, 7
A :
{ E'J MIIUTIQII A" jllmll MII) = F* (ﬂ", AII, M”, El) 5,}']'" 5M’m"‘
v
(Q"A""m" M"|QpApa, B,7) = D'Zn,,M,,(a,ﬂ,7)69:;QF6A::AF.

(A21)

The 7 functions give the coupling to the final state quantum numbers. They
must, however, be functions only of rotationally invariant quantities, and thus
do not depend on m’ or m”. The § functions accompanying the 7 ’s express
the conservation of angular momentum. In the formula for the density matrix
we have used the fact that the initial states |I;) all have the same mass = Ef
and spin = Jr but can have different values of J;. Furthermore, J, for the
1) states in general has a different quantization axis than that of the |E J M)
states. Thus, the density matrix has off-diagonal terms. For example, in the
decay ¥ — <¢(1440), the quantization axis for the |I;) states is the beam

axis, whereas that for the |E J M) states is the ¢(1440) momentum direction.
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Substituting these expressions into Eq. (A20), we find

(A - F)?)
o’
Z D]m)’.M'(a’ ﬁ, ’7)6QF015AFAI?(Q', A', M’, E’)Jm:MGj:JpMM,
tndices on

intermediate states
1t
X 6JJ16JIJ16EE16EIEI?* (", A", M", El)5J'j"6M’m"Din"M"(a’ B,7)
X 59"“1? 5AMAF
Jr* Jr
= Z DmlMl (as ﬂ) 7) DmIIM"(aa .Ba '7)pm'm"

m! m!

M,M”
X Y(QF,AF,M’,E[)f*(ﬂF,AF,M”,EI). (A22)

To obtain the angular distribution we integrate over the final state energies

lp = wy,ws,ws3. Because only two energies are independent, we have

[ dwndun [ ariaz - )
= Z > pmmv/d'yD,J,{X,(a,ﬂn)D,{f,M.(a,ﬂn)FMM:
MM mm'
(A23)
where

Fyeapr = /dwlmzf(ﬂF,AF,M)f‘(QF,AF,M').

Here we have suppressed Ej, because it is fixed at the mass of the decaying
particle. The dummy suffixes have also been relabeled. The integral over d~y
conveniently removes interference between states of different M, because the v
dependence of the integrand is simply & (M-M')y Thus, the distribution in o

and @ can be written, relabeling J; by j,

dN . .
25 = 2 Pmm 3 Dirag(@,8,0)D7 1 (2,8, 0)| Ryg ? (A24)

m,m! M
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where

IRMlz =27 Z dxuldw2?|(w1A1w2A2w3A3,M)[Z.
A1A2A3
We now combine the terms with opposite values of M

dN ' ] ] '
= 2 e 2 [Dhag(@8,0D, 1 (,8,0) | RaeP
m,m' M20 '

+ DI 4(e,8,00D%, _yp(es8,0)|R_pg ]

S
= bt I [0 0 (B)e ™ T (8)| B
m,m' M2>0

+ e‘iamd]r;',_M(ﬂ)e—iamld{ﬂ"_M(ﬁ) IR_MIZ]

= 3 X ot [ (8)d 1 (8) R
M20m,m'
+dl, By _p(B)R-pl?].

Now exploit the hermiticity of p,

.
Prm® = Pty

or

Reprmt = Re€Pppitm

Imp s =—=Imp ..

(A25)

The last bracketed term in Eq. (A25) is symmetric under m < m/, whereas

ee(m=m') = cos(m — m’ )a + isin(m — m')a

has mixed symmetry under m « m'. Therefore

dN

m,m' M>0

= Z Z (Re Pt + £Im pyyr) (cos(m — m') e + isin(m — m')a)
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% [d{nM (B)1 5 (B) | R + di;z,—M(ﬂ)di;;',—M(ﬂ) |R-M]2]

= Z Z [}Ze Pmm! c0s(m — m')a — Imp,, . sin(m — m’)a]
m,m' M>0

X [d#M(ﬁ)dL'M(ﬁ) Raa® + &, _4r(B)el, 00 (B)IR- M|2].

(A26)

The term involving the d-functions can be written

[. . ] = (di;zM(ﬁ)dz;z'M(ﬂ) + di;s,—M(ﬂ)d'Z;,l,_M(ﬂ)) (IRM|2 +2|R_M|2)

. . . . 2 _ 2
+ (@ O3 0) = &,y (8), _p(8)) (U Bty

(A27)

Defining

ZimF(8) = dhpg BV g (B) + &, 0BV, 10 (8)
ZIM5(8) = dhpg (VAL g (B) — & 0BV, 10 (B)

Ri; = 3(|RM[® + |R_p[?)

Ry = 3(1RyI? — |R_p) (A28)
we have
A5 5 [Retmcntn= Y= I - ]
m,m! M>0 _
M M~ -
x[ZEMF (B) Ry + Zint (6) Ry (A29)

The final manipulation is to combine terms with opposite values of m,m/.

Because

& (B) = (-1)"""d_,. _.(8),
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we have

205 B) =& (B (B) £, (BYE ()
=(-1)~Um+M)(_1)~m M) (BT, _,,(8)
+ (_1)—m+M(___1)—-.m’+Mdz;1M(ﬁ)d{n’M(ﬂ)

=+ (1M ()=t 2700 6). (430)

There are two cases to consider:

Case 1

M = integer = (—1)2M =1
J = integer = {

m,m’ = integer = (—1)'(m+m') = (—l)m"m'

Case 2

C 1. { M = half integer = (—1)2¥ = (-1)
J = 7 Integer =

m,m' = half integer = (—1)m+m’ = (—1)(‘1)m—m"

Thus, for Case 2 we have
(=1)M (1)~ (m+m) < (—1)(~1) (~1)™ " = ()™,
and for both cases we find the same result:

000 + 27%% (8] = (12 (-))™='] 22ME(p). (A31)

mm'
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We can now combine terms with (m,m’) and (—m, —m'):

mm! M>0

(at)
— sin(m — m)a(Im prmgy = (1™ Imp_pn )|
x Ri Z2MF ()
+ [ cos(m — m") o Re prmmt = (=1)™ "™ Rep_pm, i)
~ sin(m — m")a(Impp + (=1)™™ Im p_m,_m:)]
x Ry 22 (5).

(A32)

Note that the above sum is over all m,m/, not just m,m’ > 0. That is because
the m = m'/ = 0 term appears twice in the above formula so all terms must

appear twice and then be multiplied by the overall factor of %

This is a formidable looking expression. In applying it to the case of spin 1
we will see how reasonably simple results emerge, especially when the density

matrix has some zero elements or symmetry.
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A.4 CONSEQUENCES OF PARITY CONSERVATION

We now consider the action of the parity operator on the angular momentum

eigenstates. We have

ITi2.A,5,m, M)
= /dadcos,@d'ny:M(a,ﬂ,7)R(a,ﬂ,'y) H 0,4,0=0,8=0,7=0)

(A33)

where [[], R(a,8,7)] = 0 has been used. The ket on the RHS is the direct

product of three one-particle plane wave helicity states
|,A,0=0,8 = 0,7 = 0) = const |1s1A1)|P2s2A2)|P3s3A3) (A34)

where the momentum 5; of each particle lies in the zy plane. From Ref. (3), p.
24, we know that

H Iﬁz; 8, A) = n(-l)‘s—’\e—im’y |ﬁ23 S, _A> (A35)

However, the derivation can just as well be carried out for a state whose

momentum vector lies in the zy plane, yielding
[T 1Bsse0s) = mi(=1)%~Xe= a5, 5 —2) i =1,2,3. (A36)

Aside from the phase factor (—1)%~%, this result is easily understood.
The parity opera.for reverses the helicity, because A = §- p, and rotates the
momentum by 7 about any axis normal to the momentum vector, thus reversing
it. In the present case we choose the normal axis to be the z-axis, because it is

the only one perpendicular to all three momentum vectors. The coefficient n; is
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the intrinsic parity of the particle. Using Eq. (A36) in Eq. (A33) we find

H ln’ Aa j’ m, M) = Mmn2n3 (—1)81+’2+33"'"\1_/\2—/\3

X / dadcosﬂqu"’:M(a,ﬂ,'y)R(a,ﬂ,'y)e_i”J‘IQ, —-A,a=0,8=0,7=0).

(A37)
But
R(a, B,7)e™ s =¢=iatsg—ifdy j—inJzp—inJs
=R(a, 8,7 + 7). (A38)
We therefore perform a change of variables
!
v =q+m
&y = dy
y . . T J — .
Dlle By =+ — 1) = éomal  (8)e" M=M= (_y)Mpi* (o B,41).
(A39)
Thus

H IQ, A’ j’ m, M) = 771772773(—1)31+82+38—’\1—’\2—'\3(—l)M!na _A7j, m, M)-

(A40)

For a state consisting of three pseudoscalars this is

[Ii1.a1=0,22 = 0,23 = 0,5, m, M) = (~-1)M+1|q, A, = 0, A2 = 0,23 = 0,5, m, M)
(A41)

and is a state of definite parity. If the decaying particle has even (odd) parity

then M, the angular momentum component along the normal to the decay plane,

must be odd (even).
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For a parity conserving interaction, in general, we have

'(ﬂ,A,j,m,MIU'EI, JI’ MI) = <Q’A3ja maMl H U H IEI’ JI7 MI)
= 7II771772773(—1)M(—1)31+82+33—’\1_'\2—'\8 (ﬂ, _A’j, m, M‘UIEI’ JI’ MI)'

(A42)
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A5 ANGULAR DISTRIBUTIONS FOR X — 3 PSEUDOSCALARS

We have seen that for a decay into three pseudoscalars conservation of parity
restricts the values of M. The table below gives the number of values of M that

are allowed for different spin—parity combinations.

J even J odd
even parity = M odd J J+1
odd parity = M even J+1 J

Thus, although there are 2J+1 values of M, there are only J or J+1 independent
decay amplitudes. We now work out dN/dQ for J P - =* decaying into three

pseudoscalars.

JP =1
P= odd = M even == M =0 only

Ry~ = H(|Ry|? - |R_p|}) =0.

From Eq. (A32) we have

%IEV =3 Z [cos(m —ma(Reppm + (—1)™ ™ Re [
m,m’
—sin(m — mNe(Imp,, .y~ (-1)™ ™ Im p_m,_m:)]
x R 2,04 (B).

(A43)

Performing the sums, we have

dN

= %Rg'{22e 0025 T (B) + 2(Re pyy + Re p-1,-1)2:5F(8)

+4 [cos a(Repipo — Rep_10) —sina(Impyo + Im p_l’o)] le’,g+ (8)
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+ 2[cos 20(Repy —1+ Rep_11) —sin 2a(Impy 1 — Imp_l’l)] z1 O+(ﬂ)}
(A44)

Using p = p! we obtain

dN R{,*'{Repoo 1(H'(,B)-i-(Re/’11+Rep—1 1)2. 1(H'(ﬂ)

+2 [cos a(Repio — Rep_10) —sina(Impyg+ Im P—1,0)] le”g"'(ﬁ)

+2 [cos 2aRep; 1 —sin 2aImp1,_1] Z1 0+ 1(8) } (A45)

Substituting for the Z-functions, one finds that the result for 1~ — 3(07) is

dN .
yrol =R{ { (2cos? B)poo + sin? B(p11 + p—1 —1)

- v2sin 28 [cos a(Repio — Rep_10) —sina(Impyg+ Im p_1,0)]
- 2sin? g3 [cos 2aRepy -1 —sin2alm Pl,—l] }

(A46)

We now calculate the result for JP = 1+ decaying into three pseudoscalars.

The parity restriction is

P= even => M= odd = M = +1,

so that

dN —-m'

-5 = % Z Ri*' [cos(m —m')a(Repppt + (-1)™™ Rep_pm —mt)
m,m’

— sin(m — m’)a(Im ppp — (1) ™ Im p_m,..ml)] X Z,},l;:(ﬁ)
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+Ry [cos(m —m')a(Re ppmt — (—l)m'""Re P—m,—mt)
~ sin(m — )l I byt + (=)™ Imp_ps )] Z217,(B).

(A47)

Summing over m and m’, we have

dN
a - R { (p11 + p-1,—1)Z11,'11+(ﬂ) + p00Z5 " (8)

+2 [cos a(Rep1g — Rep_19) —sina(Impyp+ Im P—l,o)] le,’;’*' (8)
+ [cos 20(Repy -1 + Rep_11) —sin2a(Impy_1— Im P—1,1)] Zl’ﬂ' (8) }
+RBy {(P1,1 - p-1,-1)217 (B)+

+2 [cos o(Rep1o+ Rep_19) —sina(Impyg— Im P-1,0)] le:g— (8)

+ [cos 20(Rep1,~1 — Rep—_11) ~sin2a(Impy 1+ Im P-—l,l)] le,’_l_'i' (ﬂ)}
(A48)

We again use the hermiticity of p to obtain

dN
rroi Rf { (P11 + p—1-1) Z11F(8) + pooZog T (8)

+2 [cos a(Repio — Rep_10) —sina(Impi o+ Im P—1,o)] Z11,’3+ (8)

+2 [cos 2aRepy -1 —sin2alm Pl,-—l] Z11,'.1.-{ B8) }

+Ry {(ﬂ1,1 - p-1,-1)2{ 7 (8)
+2 [cos a(Repio + Rep-10) —sina(Impig— Im p_1,0)] le”g“ (8) }

' (A49)

After substituting the Z-functions, we obtain the final result for 1% — 3(P) in
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terms of the density matrix:

dN : .
= Ri"{ (P1,1 + P—1,-1)3(1 + cos? B) + pgg sin? 8

+ ﬁcosﬂsinﬁ[cos o(Repio — Rep_y0) —sina(Im P10+ Imp..l’o)]

+sin? 3 [cos 20Repy 1 —sin2alm Pl,—l] }

+Ry { (P11 — p—1,—1) cos B

+V2sin g [cos a(Rep1o + Rep_10) —sin a(Impyo — Imp_l,o)] }

(A50)

The density matrix elements are calculated for radiative 1 decay and substituted

into the above formulas in the following section.
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A.6 DENSITY MATRIX FOR ¥ — v+ X(J =1)

The three-body helicity formalism presented above uses the density matrix
to keep track of the polarization of the decaying particle. The density matrix
is just a bookkeeping device; it is not essential to the calculation. However,
by exploiting the hermiticity of the density matrix, some simplifications of the
formulas were achieved. We now give an example of the calculation of the density
matrix for a spin-one particle X 'produéed in the process ¥ — v+ X. To be
more precise, we will calculate the density matrix for X when it is produced in
the direction #(8,4) in the lab frame. Thus, the correlations between 6,4 and

the three-body decay plane angles a, 8 of X are implicit in Eq. (A24).

For ¢ — 4 + X, the final state (the system consisting of the photon and
the particle X, before X decays) is given by the action of the propagator on the

initial state:
|fa,) = UlJy, My). (As1)

Here IJ,/,,M,l,) is the state vector of the ¥, which has its spin projection My
either aligned or antialigned with the ete™ beam axis. For unpolarized beams,
each direction has probability p(My = +1) = p(My = —-1) = % The state
vector of the ¥ is not a coherent superposition of the My = +1and My = -1
states. It is either |Jy, My = +1) or |Jy, My = —1). The density operator for
the 9 is then |

p(W) =% D |y, My)Jy, My (A52)
M¢=:i:1

and the density operator for the ¥ + X system is

P+ X)=% Y |fm,)fu,l- (A53)
M¢=il

We can express |fjs 1‘,) in terms of the two-particle eigenstates of total angular
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momentum and helicity

!fM¢>= Z llJ’M’AX,’\"I)(J’ka.Y’A’YIU'J1/)’M¢)
AJf!’\‘1

= 3 LM Ax A Axy ), (A54)
AX!A'Y

where J = Jy and M = M, from angular momentum conservation. As we
remarked above, it is necessary to calculate the density operator for X at #(4, ¢).

We can obtain the density operator for the system (v+ X) at 7(0, ¢) by recalling
that the amplitude for producing X, v at #(8, ) with the helicities Ax, Ay is

A(ﬁ'(a’ ¢), Mq/n AX, A‘Y) = (ﬁ(oy ¢)a A]f’ A’YIfM¢>

= Dif, ax—r,($:0,—8)Ary,  (AS55)

so that the density operator for the vy + X system at A(0, ¢) is

pr+Xia0.8) =§ 3 [ 3 AGR(6,6), My, Ax, M)l Ax, )]
My=%1 Ax,\q

x[ Y A (A(0,4), My, Ny, X,) (A, X! ,Ag|].
gty
(A56)

. To obtain the density operator for X at #(8, ), we take the partial trace with

respect to Ay:

p(X;2(8,8)) = D _(Mle(y + X 2(8,8)) M)
Ay

=1 ¥ T{[C 4t Mprx018000)]

x [ 4% (5, My, Xy, M) (5, Xl] } (A57)
Al
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Note that this forces Ay = X/,. Substituting Eq. (A55) we have

o(X;7(0,4)) = Z > Z IR G} TR CX )

=%l A'7 A4Y1

X Ardg Ay, [ Ax0) (2, Ny 1} (A58)

The density operator simply consists of all the terms of the angular distribution
(probability densities) multiplied by the projection operators for the given
quantum numbers. Interference terms, which have A x # )"X’ arise when Ay does
not uniquely specify Ax. The partial trace just sums over Ay in the probability,
which is appropriate because Ay is a quantity that can be measured in the
final state. I.n contrast, if X decays into other particles, Ay is a quantum
number characterizing an intermediate state, and is therefore summed over in

the amplitude that contribute to the density matrix.

Equation (A58) is valid for any radiative ¥ decay. We now specialize to the
case of J(X) = 1. Because Jy, = 1, we have the restriction [Ax — Ay| < 1. The

allowed values of Ay, A'}(, A~ are shown in the table below.

Ax 0 0 1 -1 o 0 1 -1
Ny 0 0 0 0 1 -1 1 -1
Ay 1 -1 1 -1 1 -1 1 -1

In evaluating the density operator, we encounter terms with coefficients like

Ay AS,—l' Because parity conservation implies

Jp=T—
Arghy = Nynxny(—1)T¢ X J"’A—,\x,—,\.,
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=nx(-1)"XA_,, 5
= (£1)A-xy,-2, (A59)
such terms can be rewritten, for example, as A114p;-

The density matrix p, X\ is just the matrix of coefficients of the terms

in the density operator. The position in the matrix is given by the values of

Ax, M. For example,

po=% > (1Dl 1+ 1D}, 1?1402
i M¢=:f:1

After a short calculation, we find that

P11 P10 P1,-1

PO1 P00  PO,-1

pP-11 P-10 P-1,-1

114 125029 _L —ig
3lAu|"sin®d  mA1145,e *4 sin 20 0
P10 31401(3(1 + cos? ) —14715A01A’{1e"¢ sin 26
0 90,1 3l411[?sin? 0

(A60)

. Substituting the density matrix Eq. (A60) into Eq. (A46) yields the angular
distribution for ¥ — 4X; X — 3(07) for JP(X) =1": |

%_JY. = R")*‘{|A01|2(1 + cos? §) cos? B + | A1;|? sin? 0sin? 8

— 3Re (ASIAu) sin 20 sin 2/ cos(a — ¢) }

(A61)
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If one integrates over (a — ¢), there is only one unknown parameter,

|A11/2/|A01|2, that controls the angular distribution.

The angular distribution for ¢y — 4X; X — 3(07) when J P (X) =1%is
obtained by substituting the appropriate density matrix terms into Eq. (A50):

% =Ri"{%|A01{2(1 + cos? 8) sin? B + 1|41 sin® 8(1 + cos? B)
+ JRe(Ag1 A1) sin 20 sin 28 cos(a — ¢) }
— Ry { Im( 4%, A1y) sin 20sin fsin(a — ¢) }

(A62)

Again, if one integrates over (a — ¢) there is only one parameter, |A41;|2/|401|2,
controlling the angular distribution. The angular distributions for JP(X) = 1%
differ significantly from each and from the distribution for JP(X) = 0=, which

is uniform in cos 8 and has a (1 + cos?§) dependence in the lab frame polar

angle.
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No one knows anything until its proved. And even
| then you may have a nagging doubt.

~Horace Rumpole
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APPENDIX B:

An Experimenter’s Guide to the Helicity Formalism

B.1 Introduction

This paper is a pedagogical guide to the helicity formalism, which is the preferred method
for obtaining angular distributions in most relativistic scattering and decay processes. The first
question that arises is:; Why don’t we use the spin-orbit formalism that was developed in non-
relativistic quantum mechanics? After all, total angular momentum is always conserved, and one
should still be able to obtain the total angular momentum operator simply by adding the orbital
and spin angular momentum operators for the particles. The problem is that these operators are
defined in reference frames that are not at rest with respect to one another. The orbital angular
momentum operator is defined in the center of mass (CM) frame, whereas the spin operators are
defined in the rest frames of the particles. This leads to some technical problems in describing
the spin states which, however, can be overcome (70). The helicity formalism is well suited to
relativistic problems because the helicity operator /1 = S - b is invariant under both rotations and
boosts along 5. As a consequence, one can construct relativistic basis vectors that are either

eigenstates of total angular momentum and helicity, or of linear momentum and helicity.

In preparing this paper the author relied on the original paper of Jacob and Wick (71), as
well as treatments by Chung (72), Perl (73), Lifshitz and Pitaevskii (74), Martin and Spearman

(75), and Jackson (76). The phase conventions are the same as those used by Jacob and Wick.

Before plunging into the details, it is useful to give a brief overview of the main ideas. Con-
sider a decay process, a. — 1 + 2, where a has spin J and spin-projection M along an arbitrarily
defined z-axis. We choose the rest frame of o, in which its state vector is |J,M ) The amplitude

for the final state particles 1,2 to have momenta j; = py and P> = —Py and helicities A;,4; is



241

A =71 =B M3 P2 = =P, WIUNM) (B.1.1)

The final state is referred to as a two-particle plane-wave helicit)" state. Here U is the time-
evolution operator that propagates the initial state through the interaction. Because particles 1,2
have equal and opposite momenta in the CM frame, we can\ characterize the final state by the
direction 7(0,p) of the decay axis with respect to the z-axis (spin-quantization axis of a), by the
magnitude p of either particle’s momentum, and by the helicities A;,A;. Thus (suppressing p

because it is fixed)
A= (9,(1),}\.1,?\.2 UM ) (B.1.2)

Because 14 12 is the probability for the particles to emerge with polar angles 0,9, if we can calcu-
late (B.1.2), we have the angular distribution. Typically the experiment does not measure the

helicities A;,A,, so they must be summed over.

The key idea in the helicity formalism is that rotational invariance of the helicities allows
one to define a set of two-particle basis states |j,m ,A.,,A.z) that have definite total angular momen-
tum j, angular momentum projection m, and helicities A;,A;. We can then exploit conservation

of angular momentum by inserting a complete set of these states into Eq. (B.1.2).

A= Z (9,(9,1.1,12 lj.m ,ll,lz\/\]',m ARl U |JM>

Jjm
- ,% {0,0.A1,2217,m A, 228 marSjsA 2, | (B.1.3)
= (8,0, A1,02 1, M A Ao,

It will be shown that

A = constant x Dj}; (9,0,—9)4,3, (B.1.4)

where A = A, — A,. This result has a simpie interpretation. For a decaying particle a with spin
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projection M along z, the decay amplitude is equal to the amplitude for its spin to have projec-
tion A = A; — A, along the decay axis /(6,p), multiplied a constant 4, giving the coupling to the
final state helicities.

The plan of this paper is to derive some properties of rotation operators; to use them to
construct the plane-wave and total angular momentum helicity states mentioned above, and then
to calculate the scattering and decay angular distributions. Finally, parity and the treatment of

identical particles in the helicity formalism are discussed.

B.2 Rotation Operators and the D{;(afy) Functions

In this section we derive several results that will be required for the development of the hel-
icity formalism. Especially iniportant are the Dfyp(afy) functions, which are matrix elements of

the rotation operator R(afy) between angular momentum eigenstates.
B.2.1 The Rotation rator R

We adopt the active view of rotations in which the Cartesian coordinate axes xyz are ﬁxed,
and the physical system is rotated with respect to them. The rotation is specified by attaching
another coordinate system XYZ to the physical system and measuring the Euler angles of XYZ
with respect to the xyz axes. Referring to Fig. B.1, we see that an arbitrary rotation R(afy) can
be constructed from 3 successive rotations: 1) a rotation about the z-axis by an angle a, taking
Oy into Ou; 2) a rotation about the u-axis by an angle B, taking Oz into OZ; and finally, 3) a

rotation about the Z-axis by v, taking Ou into OY. The complete rotation is therefore
R(@BY) = RZVRu(BIR,(0) = e Ve Pre™ (B.2.1)

where we have used the fact that a rotation about a given axis 7 is generated by the angular
momentum operator J - i. Equation (B.2.1) for the rotation operator is not very useful because

it is not expressed in terms of rotations about the original coordinate axes xyz. To do this, recall
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that if Ia) is a state vector representing some physical system and Q is an observable, then under

a rotation R of both the system and observable

la) = la’) = Rla) (B.2.2)
and

{aiQla)={(a'IQ'1a’) = (alRQ'R |a)
so that |
Q= RQRr

Applying this rule to the sequence of three rotations that make up R(affy) we have

;Iu = R:(a)JyR}(a) (B.2.3)

Jz = [RyBIRA)V; [R,BIRAD)) = R,(BWRI(B)

Substituting these expressions into Eq. (B.2.1) gives
R(eY) = [RuB®e™ " RIB|RUBIR.()]
= |Ret@)e ™ RHaDe ™ RIB| RUBIR, )]

R(aPy) = ¢~ 'sg™iPhp=iv): (B.2.4)

In deriving Eq. (B.2.4) we have exploited the unitarity of the rotation operators, so that, for

example
expl—iyJz] = exP[-i'Y(Ru(B)JzR;{ ()]

= Ry(B)expl—ivJ;1R{(B) (B.2.5)
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The expression (B.2.4) is important because it expresses an arbitrary rotation specified by Euler
angles (a,B,y) in terms of rotations about the fixed axes xyz. It appears in almost every paper on
the helicity formalism, and, as we will see, it is the origin of the Df;(afy) functions.
B.2.2 R ntations of Rotation Operators

If is useful to evaluate exi:licit matrix representations of R. We will denote a matrix

representation of the unitary operator R by R.

B.2.2.1 Rotation of Vectors

A 3x3 representation can be obtained by considering rotations of vectors. The effect of a
rotation is to take the unit vectors é;, &,, &3 that point along Ox, Oy, and Oz, respectively, into

three new unit vectors £, £, E that point along OX, OY, and OZ. Thus
Ej=Rg] j=123 (B.2.6)
Expressing E ; in terms of the &; basis vectors we have

Ei=Y &R (B.2.7)

To evaluate the matrix elements R we use orthogonality of the é;

~ij

. 3
é E;= & &R =R B.2.8
k ' i-zlek t__',j ~kj ( )
R_"é,"EA'j

~ij

One can calculate §é; - E’j in terms of the Euler angles (afy).

Because we can write any vector 7 = V;é;, ¥ transforms as

V= 7' =RVl =Y VR[E] = Y V;E; = T ViéiR (B.2.9)
J J i Y
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so that the components of 7 ' expressed in the Xyz coordinate system are

Vi=YR V (B.2.10)
J

ry -.-U'

Note the difference between the rule for transforming a basis vector (Eq. B.2.7) and the rule for

obtaining the new components of a vector (Eq. B.2.10): the indices on R are interchanged with
respect to the summing index.

B.2.2.2 Rotation of Angular Momentum Eigenstates

The angular momentum eigenstates | jm) transform irreducibly under rotations because
[R,J%] = 0. Thus, a representation is labeled by the total angular momentum j. The action of

R(afy) on the basis state |jm) is

R@B)ljm)= 3, Dismlafy)lim) ®2.11)

m'ee—j

(jim"1R(@Bn)ljm)= 3. Dixm(@BYjm"lim’) = Dhym(of)

m'e—j

These equations are analogous to Egs. (B.2.7) and (B.2.8). They express the rotated state in

terms of the original basis vectors.

Now we use the expression (B.2.4) to calculate Df,,(afy)

Dium(ay) = {jm' 1€ ™™™ jm)

Dipym(0fBy) = €™ d}ym(B)e =™ (B.2.12)
where

@ym(B) = (jm'le"w’l jm)



246

This matrix element is given by the Wigner formula

; - (= DPIG+m=m)\j+m—mN]*
dmm(®) ;{ (j=m'-n)i(j+m=n)(n+m'—m)!n!

X (costaP)/+m—m'=2n(—gintpB)m—m+2n ]

(B.2.13)

The sum includes all integers n for which all of the arguments of the factorials are positive.

Although Eq. (B.2.13) is somewhat complicated, the dlym(B) have many simple properties.

Clearly these functions are real and from Eq. (B.2.13)
Bjpm(=B) = (= 1)™ " dhym(B)
Also, R = R™! implies {jm R |jm') = {jm'\R™"|jm}* so that
[DJ,;,,,,'(O,B,O)] = {jm te~ P im ) - (jm'lem"l jm)
= Diym(0,—B,0)
where we have used the reality of the d;(B) functions. Thus
Bntm(—=B) = B (B)
Using (B.2.14) and (B.2.16), we find that
Bl = (1" ®)
and from (B.2.16) we have
Diym(aBy) = €™ yim(B)e ™™ = &~ MVl (~Be ™

- Dlr;lm'(y’-ﬁsa)

(B2.14)

(B.2.15)

(B.2.16)

(B.2.17)
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From Egq. (B.2.13) we can calculate dJ,(B) for B = m,2x.
d%'m(n) - (_l)j-m 8m',-m
d#'m(z‘“) - (_l)zj d{,.'m(O) - (-I)Zj 8m’m (B°2'18),

Finally, there is the extremely useful orthogonality relation

2 2z ]
Jaa [ dr [ sinpap|Dis a4 x (oB)] - S Smmdy | (B.2.19)

B.3 Plane-Wave Helicity States

The definition of one-particle plane-wave helicity states is intuitive. In the case of massive
particles we begin with the rest state i7" = O,S,A.), which has ‘spin s and spin projection A along
the z-axis. In the rest frame the spin pi'ojection and the helicity are equivalent. But when this
state is rotated only the helicity A = ¥ / remains invariant, and we will use it to label the state.
Physically, the invariance is due to the fact that the quantization axis j rotates along with the
spin § of the system.

To obtain the state |p,s,A), we first rotate |7 = 0,5,A) so that its quantization axis points

along 5(6,9) and then apply a Lorentz boost along 5(6,p).
17,5,A) = L(D)R(0. = ¢, = 6,y = —@) |7 = 0,5,A) (B.3.1)

The choice ¥ = —¢ is conventional (Jacob and Wick, Ref. (71)), and has no physical meaning. It

is convenient because as 6 — 0

R(@,8,~9)17 = 0,5,A) = %;bm(w,e = 0,~9) |7 = 0,5,M’)
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- Ee'iWSM';_ei‘P"l 7 = 0,5,M"
- 17 = 0,5) (B.3.2)

independently of ¢. The notation L(p) means: boost the rest-frame particle with velocity V’

along 5(0,9) such that its final momentum is 7.

This procedure is completely equivalent to one in which we first boost along the z-axis and

then rotate to the 5(0,p) direction, because
175.) = LGIR(9,8,-0)1F = 0,5,
| = R(9,8,~9)[R™(9,0,~0)L(P)R(9,8,~9)11F" = 0,5,A) |
= R(9,0,~9)L(P; = p£)IF = 0,5,\) (B.3.3)
where we have used |
| 'Lcm = R©.0,~9)L(F; = PHR™'(9.0,-9)

There is one more phase question. To obtain the state I-ﬁ;,s,i\,) we use Eq. (B.3.1) or Eq.
(B.3.3) with 0 = &, but there is no unique choice for ¢. The ambiguity can be removed by

imposing the desirable condition

lim l-isz’A) = lim lﬁz’sy_x) | (B.3.4)
0 7. —0

—i‘ -
Because (using Eq. (B.2.18))

e ™p = 0,5)) = ;D $20,m0)17 = 0.5,1)

- ;(_1):—1 81',—1.'5 - O,S J"I)
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= (=1F* |7 = 0,5,—A) (B.3.5)
we have
(=17 215 = 0,5,1) = |7 = 0,5,-A) (B.3.6)
Comparing with Eq. (B.3.4) we see that the deﬁﬁition is
1=B,5,A) = (=1) %™ 15;,5,A) (B.3.7)

Equations (B.3.6) and (B.3.7) will be important when we consider the action of the parity opera-

tor on helicity states.

Finally, we choose the Lorentz invariant normalization
(ﬁ',s',l’l i’,s,k) = (2n)} 2E 8*[F"—P) 85 San, (B.3.8)

There is no difficulty in treating photons m the heﬁdty formalism. For massive states we
can go to the rest frame and thereby obtain all the states |7 = O,S,A.), A= —s;—s + 1,...s. by apply-
ing the angular momentum lowering operator J_ = Jy —iJ, to |17’ = O,s,s), but we cannot do this
for photons. Instead, the photon helicity states |\ = +l> and IF,A = -l) are related with the

help of the parity operator. See Ref. (71) for details.

B.3.2 Two-Particle Plane-Wave Helicity States in the Center of Mass Frame
We now construct states that represent two particles that are in plane-wave states with

momenta p; and P5. They are simply the direct product states
IP1A1; Padg) = 151,51.A0) @ 152,52,0) (B.3.9)

The spins s, and 5, of the two particles are fixed and will be suppressed. The Lorentz invariant

normalization is obvious from (B.3.8)
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{7 W 152N 2 FihsBahs) = (2m)S4E (E8%(F' — D)8 (B'2 — P)owadua, (B.3.10)

We now pick the CM frame, so that p; = —p, = . Because the particles are back to back, we
can now specify the same two-particle state in terms of spherical coordinates p,9,p, where
p = |5l = |P3] and (6,) are the angles of §;. The state vector is written Ip8pAAz). It is shown

in Section B.8 that the normalization expressed in spherical coordinates is

{p'0'¢'\' A1 pOgAAz) = (21:)64—in 4P * — P*)5(cosd’ — cos8)d(@' ~— @) X 3y Bz,
(B.3.11)
where P* = P{ + P$ is the total 4-momentum in the CM frame
Pt = (E,00,0) E=E;+E;=+/p*+m} +~p*+m} (B.3.12)

In effect, we are making a change of variables from 7, 7> (6 variables = 3 + 3) to P?, cos0,¢ (6

variables = 4 + 2).

Because the two-particle CM plane-wave states are eigenstates of total four-momentum P,
it is useful to factor out the eigenstate IP"). From (B.3.11) we see that a convenient factorization

is
a5 )"
IpG(pM)Q)- (21:)3 [.;E- le(p}\.lAQ)lPa) (B.3.13)

The factorization has been chosen so that the normalization (B.3.11) is preséi'ved if we define the

normalization of I[P and 16g););) to be
(P "™IP%) = 5P " — P%) o (B.3.14)
_(6’(p'k’,l’2|6(plll.2) = §(cosd’ — cosB)3(¢' — @) a0, (B.3.15)

We will see later that Eq. (B.3.14) is the source of the four-momentum conserving d-function that



251

is always factored out of the (momentum conserving) S-matrix.

B.4 Construction of Two-Particle States with Definite Total Angular Momentum: The

Two-Particle Spherical-Wave Helicity Basis

To apply conservation of angular momentum to the transition matrix element, it is neces-
sary to use eigenstates of total angular momentum as the basis for our two-particle CM states.
These new basis states will be denoted by |p,J,M ,7\.1,3\.2). Here p is the magnitude of the momen-
tum of either particle, J is the total angular momentum of the two-particle system, M is the
eigenvalue of J,, and A,,A; are the helicities of the two particles.Note that p,J,A;,A; are all invari-
ant under rotations and thus can be specified simultaneously with M. It may seem strange that p
appears in the definition of these states, since neither particle is in an eigenstate of P. But recall
that we are specifying the magnitude, not the direction, of 7. A more intuitive label would be

the total center of mass energy

E = \/mt + p? + \/m#% + p? B.4.1)

but the use of p is conventional.

Because the |p,J, M, ,11,7\.2> states are eigenstates of total angular momentum, they transform

irreducibly under rotations

1p.J M AAg) = 3, Dira(aBy)1p.J .M A )s) (B4.2)
=

The two particle plane-wave states | p,9,<p,A.,,kz), which we defined as the direct products of two
one-particle plane-wave states, do not have definite J M. Under rotations they transform accord-

ing to a fully reducible representation R of the rotation group. (To say that R is fully reduci-

ble means that it can be decomposed into a direct sum over all irreducible representations

specified by J,M. In less abstract terms, the matrix R that rotates | p,e,(p,ll,lz) is a block diagonal
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matrix. Each block is responsible for transforming the components of | p,e,(p,k,,xz) with a partic-

ular value of J. Of course, R and 1p,8,0,A,A2) are then both written in terms of the

ipJ .M ,l,l,kz) basis.) What is the transformation between these two bases? We write the expan-

sion

1D.8,0hihg) = X, (D001 10T M M o) (B.4.3)

I M

To determine the coefficients cj, we use a trick: it is easy to evaluate them for

@=¢=0. This direction corresponds to the z-axis, along which M is quantized. We have

19,8 = 0,0 = 0ALA) = X el = 0,0 = 001,09) 1p.J .M Ai. o) (B:4.4)
JM

Physically, this vector represents two oppositely moving particles in plane-wave states with
momenta J; = pZ,5> = —pZ and with helicities A;,A2. As we have noted before, this type of state
has no orbital angular momentum component along the direction j, because L = 7x p. Hence,
1p,0 =0,p = O,M,_?»z) is an eigenstate of J, with eigenvalue A = A; — Az, and the only terms on the

right-hand side of Eq. (B.4.4) are those with M = A.

Ipse - 0,‘P - Oalh;"l> - Zcfk(p’e - 09(P - OSAI,AQ)IPJ’L;"I’AZ) (B'4°5)
J

Now we rotate back to the original state
|Ps9a¢,’~l,7\-2> - R(‘Pﬁ,—(P)‘P ’9 - 0’¢ - O:}"ls;‘Q)

- Zenp0 = 00 = 0 M) D (@8,-0)1p. T M M hg) (B.4.6)

Referring back to Eq. (B.4.3), we can read off the coefficients cjs

(28,0 M.0) = cn(@.8 = 0,0 = 0.41,1)Di1(9,6,-0) (B4.7)
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The coefficients ¢ (p,0 = 0,9 = 0,\,A;) are determined up to phase by normalization. It is

shown in the appendix that
2 2 +1
les! = (B.4.8)
and we choose -
2J+1
¢ = (B.4.9)

The transformation between the two-particle plane-wave helicity basis and the two-particle

spherical-wave helicity basis is therefore
: 2+ 1 \
Ip,ea‘P?“‘la)’l) - Z T D‘ﬂ(‘P,es-(P) IerM:A'bA'Z/ (B°4- 10)
I M
As an example, take 0 = ¢ = 0 and assume spinless particles, so that A; = A; = 0.Then

1p,0 = 0, = 0,0,0) = Z ZEL pls(0.0,0)1p.7.M.0, 0)

- Z = 1p.J,0,0,0) (B.4.11)

Finally, we note that because the |p,J, M ,x,,xz) states have total momentum P = 0, they are
eigenstates of total four-momentum P®. This is simply because we are working in the CM frame.

It is therefore useful to factor out the |P®) part of the vector as in Eq. (B.3.13).

'p ’J ,M 9xl’)'2> - (215)3

a5 "
—;S—] 1T, M A A) P9 (B.4.12)

Substituting (B.3.13) and (B.4.12) into the transformation equation (B.4.10), we find, because

IP?) is invariant under rotations,
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10,0002) = 3~/ ZEL Din(0.8,-0)M M) (B.4.13)
% 4

To invert Eq. (B.4.10) or Eq. (B.4.13) we use the orthogonality relation between the D’ func-

tions, Eq. (B.2.19), with a@ = —y. Thus

2= 1
UMM = 2L [do [dcosd [Die.0-0)16,000) (B.4.14)
‘ 0o =i

An especially useful form is the inner-product

T MXN10.0M0) = Biaia, ] ot Din@8,-9) (B.4.15)

where

B.S Angular Distributions

B.5.1 Two-Body Scattering

We consider now the process a + b — ¢ + d in the center of mass frame. Let the helicities
of the particles be Az AyAcAgs.  The initial state particles 4,b have momenta 7, = p;Z and
Pp = —piZ; the final state particles have momenta D = Py and p; = —py. Thus, the initial and

final two-particle plane-wave helicity states are:

451"

'i> - Ipbei - 09(pi - 09“‘05’%) - (zn)s Di

19,- - 0,([),' - O,A,a,l[,>|P}">

451"

If) = 19787, Acshd) = (210

The transition amplitude for scattering from 14) to If) is
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(1T15) = 2m)4 /p%w(m(ef,(pf,xc,w T'10,0,Aq,05) P (B.5.2)

Because T conserves energy; but may depend on it, we have

{(1T1i) = @) (PHIP) 4 /Im;_f (07,0 hesha! T(5)10,0A0,M)

= (2m)* 3%PF — PH2n) 4 / { 9f, @fsheshal T(5)10,0, Mg hs)
(B.5.3)

It is conventional when defining the T-matrix to factor out the four-momentum conserving

d-function
Sp = 85 + i(2m)* 34 (P} — PNT; (B.5.4)
We will write (ignoring the )
{1713} = (2n2 4 /ﬁ Brorreha T()0.0AAs) (B.5.5)

We can now exploit conservation of angular momentum by inserting complete sets of the two-

particle spherical helicity states and using Eq. (B.4.15)

1T = QuR ao == T 3 (Br0pehal IMAM)

PiPr M i

x (JMA.,,.MI T($)1J'MAghs) (J "M'Aghp10; = 0,0; = 0,AzA)

- (2z) 4. /
pipr JMJ’M

% 87783 (Aeha T/(5)1Aghs) X D2,(0,0,0)

2 +1)*

+l
ZJ ‘ y ] D, (07.85,—9)
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{FITIi) = (2m)* 4 p; » ; 2 4: L }Dﬁ,(cpf,ef,—(pf)(kcxdtz'f(s)i Aghs)
(B.5.6)
where A; = A; — Ay and A; = A, — Az. Let
Trairde = (Achal T/(5)1AgAs) (B.5.7)
we have
{1TVi) = 4n ﬁ; ;(u + 1)e ™% 4l L 00T () (B.5.8)

The probability for a transition to final state particles with direction 67,9s, as a function of

ef,(pf-the angula.r distribution-is given by
— (0 P -aI/ |T|'\|2 (B59
de (f’ f) \f l/ = )

The overall constant a comes from phase space factors and can be ignored if one is calculating

only the angular distribution.

B.5.2 Two-Body Decays and Sequential Two-Body Decays

We now obtain the decay angular distribution for 2 — 1 + 2, where the decaying particle a
has mass m,, spin J, and spin projection M along an arbitrarily chosen z-axis. The final state
particles 1,2 have hélicities A1,A2 and momenta J; = Py, p1 = —Py. As usual, we work in the CM
frame (rest frame of particle a). From Eq. (B.3.13) the two-particle plane-wave helicity final state
is

im,
Py

Y
1f) = sp,ewfx,xz)-(znﬁl ] 18,0/AA2)I PF) (B.5.10)

Here 0,0 are the polar angles of ;. The amplitude for a to decay into the state If) is
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dm A
pf"] {Br0MM | U1IM) (B.5.11)

A =)=y [

where the momentum conserving 3-function has been suppressed. We will also ignore the con-
stants in Eq. (B.5.11), as they have no effect on the angular distribution. To exploit conservation
of angular momentum we insert the two-particle spherical helicity basis states |J:M, fxllz) and use

Eq. (B.4.15)
A(a = f) = 89/l UIIM)

- Z <9f(pf).1x2 iJ fM f}qMXJ fM flllzl U |JM>

M,

Y
2+ 1
= Dir (@1,07,—97) 81,5806\ U1 M) (B.5.12)

IpM;

The matrix element {AMA2!U IM) must be rotationally invariant, so it is more precise to

write it as 4, with no M dependence, The amplitude for a — f is therefore

]

+
22 L} i end—epdia, (B.5.13)

4

A(a—of')-

where A = A; — A;. The decay probability is, of course, I4(a — 12, and if the experiment does
not measure the final state helicities Ay,A; they must be summed over. The angular distribution
is

] |2

+
] Difi(95,97,—01)4 ;.,AQ: (B.5.14)

4

do | ’

== 0r00) =2, |

dQ; " % |

The simplest example is the decay to two spinless particles. The angular distribution is

do 27+ 1
0 ©7.9y) = ym |D{f% (07,85~ A0!?
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= | YH(0y,0)12 1400l ' (B.5.15)

because J must be an integer.

The helicity formalism is easily extended to treat sequential two-body decays. For example,

the amplitude for the process
a—1+2
=3 +4

where the decaying particle has spin J and the final state particles have helicities A;,A2,A3.\4 i8,

ignoring overall constants,

A@@—f)= % (030303041 U(1)151,M 1 = M{B19:1A1hz] U(a)lJM)

A@@ =) =Y, D13, (©3,95=03) Difs, 2, (91,81,~90)Bapdaa, (B.5.16)
M ' ;

Here we have summed over the allowed helicities of the intermediate particle 1 because they can-
not be measured. The angles 0,,p; are measured in the rest frame of particle a, whereas the
angles 03,03 are measured in the rest frame of particle 1. (However, @3 is the same in both
frames.) The z-axis in the frame of particle a is the arbitrarily defined spin-quantization axis for
M. The z'-axis in the rest frame of particle 1 is not arbitrary. It is the direction of 7 in the par-

ticle a rest frame, so that the spin projection along z' is M = A;.
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B.6 Parity

The spherical helicity states Ip,J,M. ,A.l,kz) are not eigenstates of parity. However, we can
discover their transformation property by starting with the simpler single-particle plane-wave
states from which they are constructed. By exploiting parity conservation in strong and EM

interactions we can reduce the number of helicity amplitudes by approximately a factor of 2.

B.6.1 Action of the Parity Operator on Single-Particle Plane-Wave
Helicity States

In the rest frame of a single particle state the action of the parity operator IT is simply to

multiply the state by its parity eigenvalue 1
TP = 0,5,A) = niF = O,5,A) (B.6.1)
To find the action of IT on the state | ﬁ,s,k) we use the relations for parity transformed operators
L(F:) = TIL(-FT1 | | (B.6.2)

L(@,) = e™™ L(-p,)e™

II5;,5,) = TIL@;) 17 = 0,5,0) = L(=P)I1IF = 0,5,)
=1 L(-P)IF = 0.5
=ne™L@)e™ 15 =051 (B.6.3)
With Eq. (B.3.5) to calculate the action of ¢~ we find
TI5,s.0) = n(=11"* e™15,,5,-) . (B69)

To calculate the effect of parity on a particle with p, = —pZ we can use Eq. (B.3.7) for l—ﬁ‘z,s,x)
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in terms of |7;,5,A)
TI=7,5.) = (=1 ¢ MI7;,5,) (B6.5)

where we have used [II,R] = 0 for any rotation operator R. After inserting our previous result

Eq. (B.6.4) and using Eq. (B.3.7) with A — —A, we find

=758 = 1 15;,8,—A) = n(=1)** e™1-7,,5,-A) (B.6.6)

B.6.2 Action of the Parity Operator on Two-Particle CM Plane-Wave

Helicity States
Now consider the action of the parity operator on a CM plane-wave state representing two

particlés with momenta j; = pZ and p5 = —p3.
I1ip,0 = 0,0 = 0.\, A7) = T11 17,5 1A o1 =F;,52,09)

vhS—AtA, eiﬂy

DBs1, = hr) ™

=1 an(— 1 )S —1-7.293 2’-2'2>

- nlnz(_l)ﬁ‘lﬂf:‘lﬁ'la eiﬂ"p,e - 0’(p - 0,—11,—2.2) (B.6_7)

B.6.3 Action of the Parity Operator on Two-Particle CM Spherical
Helicig States

By substituting the spherical helicity state expansion Eq. (B.4.10) for the two-particle

plane-wave states on both sides of (B.6.7) we find

I1Y ¢;D53(0,0,0) 1p.J , M Ay,hg) =
JM
Mm(=1)" 5% o5 S 0Dy 2(0,0,0)1p.0 .M ~hy, =) (B.6.8)
M '

The sums over M are trivial, because
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»

To evaluate the right-hand side we use Eq. (B.2.14) and Eq. (B.2.18)

™1p,J,~h=hiy=A2) = TDig -2 (0,~1,0)1p.J. M =M, Do)
Ml

= (=1 Mp,J A=A, —Aa) (B.6.9)
so Eq. (B.6.8) becomes

Y eUp I AMA) = nma(= 1 e (=17 Hp, T A=A, =ha) (B.6.10)
J _ 7 A

This equation must hold term by term, because states with different J are orthogonal and the

parity operator on the left-hand side does not change J. Thus
I MAAg) = nima(=1) " 1p I h=he,=hg) (B.6.11)

By applying the raising and lowering operators J. = J; £ iJ, to both sides of Eq. (B.6.11) we

can step M from ~J to J. Thus
Tip.J .M o) = ma(= 1) ™ ™*1p.J M, ~hy, =) (B.6.12)

This result is expected: parity changes the sign of the individual helicities, but M is unchanged.

B.6.4 Applications of Parity Conservation to Helicity Amplitudes
For strong and electromagnetic interactions the T-matrix commutes with II, so for a

scattering processa + b —c +d
(A'd’xdl TJIAa,A.b> - (&,MIHT"H lxmxb)

- NcNd (-1 )s‘ﬂ"-s'—s’("l.c,"}\-dl il -xa,—lb> (B.6.13)
MNaTb
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where we have used Eq. (B.6.12) for both the initial and final states.

For the decay process @ — 1 + 2, we have
(i U1a) = (i A2 TTUTIG) = nana(=1)°**7 x (=Ay,~RaI Ula) (B.6.14)

Here J and 1, are the spin and parity of a. The relations (B.6.13) and (B.6.14) reduce the
number of independent helicity amplitudes by about“a factor of 2. The reader can show trivially

that a pseudoscalar cannot decay into two pseudoscalars by a parity conserving interaction.

As an example, consider radiative y decay
y—yv+X
My=-Lm=-l,n=nx
J=1, 5, =1,5;= 5y
Aphxt UIy) = ny(=1)* {(=Ap—=Ax| Uly)
or
App, = (=14, (B.6.15)

Figure B.2 shows the case sy = 2.

B.6.5 Example: Angular Distribution forw —yn'; n' —1yp°; p°— ntn”

The sequence of two-body decays

y=nn

- Y2 p°

is shown in Fig. B.3. The object is to calculate the angular distribution of the final state particles,
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which are vy, v, ®¥, &=, Let the helicities of the particles be denoted by

y decay 1 decay p° decay
Ay =0 Ap=0,x1 A =0
Ay, = £1 A, = £1 A =0

In e*e™ interactions the y is produced with spin-projection M = =1 along the beam axis (no
M = (!). This is a consequence of the QED interaction e*e™ — virtual y at energies large com-
pared to the electron mass, where electrons couple to positrons of the opposite helicity only. It is
therefore convenient to define the z-axis to be along the beam direction. With unpolarized
beams there is no ¢ dependence and the origin_of ¢ is arbitrary. The amplitude to produce the

final state particles with given helicities and angles is

AM Dy ) = % DY, (9.8,-0) Ay, (B.6.16)

X D:ig}?’:_k ((pr’e:’_(p') Bl,’l, X D:ﬂp-k‘_ ((p",e", —(P") Cl').-,

It is conventional to define the z’' and z” axes by the momentum directions of y; and y,. The
spin projection of the p° along the z” is therefore —A,. Because the i’ has spin = 0, Ay, — 4, =0
and the p° cannot have helicity 0. Mathematically, this follows from the constant D*M) term,
for which s(n') = 0 forces both subscripts to be 0. Substituting the known values for the spins,

we find
- AMAN,) = Df},a,l ((Pae,—(P)z‘iz,le,:x,inf,zo (9",9",—9") Coo (B.6.17)

If the photon helicities are not measured, we must sum over final states after squaring the ampli-
tude. The angular distribution is therefore
d*c

- 1 2
JooB, doo = 2 % LA(M doy ) (B.6.18)
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where we have also averaged over the initial spin states ;>f the y. We can ignore the helicity
couplings A,B,C because they form one overall factor. This would not have been the case if 75
were replaced by a massive particle so that there was an additional coupling to helicity 0. In our

example, however, we can relate all couplings in the sum with parity (Eq. (B.6.14)).
A; = Ax,,o = Ty Ty (_.l)s('r)ﬂ(n')—s(\v)A_Mo
= (=140
By, = iyl (=1 “"’"f"’B ~1,-1
= (=1)B-},-1 (B.6.19)
The factors of (—1) are irrelevant in the squared amplitudes. Thus,

3 1AM A A )12 = (1d}g,(0)12 + iy, -1(6)12)
N

x (1d}o(8")12 + 1dL4(8")12 (B.6.20)

Because

dlo(®) = di (8 = (=D)L, (0" = =S (B.6.21)

the second factor in Eq. (B.6.20) is just sin?0". Also

dig) = dLip= (1M dly = dly
A1 = dlp = (=DM dlyy =dlyy

(B.6.22)

where we have used the simple properties of the d functions. From Eq. (B.6.22) it is clear that

the resuits for M = =+1 will be the same. Thus
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d’c -
dcosby dcosé”,-

1 + cosby, 2 1 — cosfy, 2 )
5 + 5 sin%0",-

= (1 + cos?, ) sin?0"- | (B.6.23)

where we have ignored overall constants. It should be emphasized that the angles in this formula
are measured in the rest frames of the decaying particles y and p°. An interesting feature of this
result is that there is no azimuthal angle dependence of any kind. This is a consequence of the
fact that there were no unmeasurable intermediate helicities to be summed over, and will not, in
general, be the case. For example, in y — yf(1270); f — n*n~, the sums over f helicity in the

amplitude produce ¢’ dependence in the angular distribution.

B.6.6 Example: Angular Distribution for w — Vector + Pseudoscalar

The process e*e™ — y — Vector + Pseudoscalar provides an example of a nontrivial
azimuthal angular dependence. For convenience, we consider y — p°r”, p° — n*n~, although

there are many other examples (¢n, o7, o1, o, Ox°, ...).

It will be shown below that the A = 0 amplitude of the p° vanishes by parity conservation,
and interference between the A = +1 and A = —1 amplitudes produces a correlation between the
production plane and the decay plane of the p°>.  The production plane is defined by the e*e™
beam axis (the z-axis) and the p° momentum vector (the z'-axis); this plane lies at the azimuthal
angle ¢ about the z-axis in the lab frame. The decay plane is defined by the momentum vector
of the n* in the p° rest frame and the momentum vector of the p° in the lab frame. This plane
lies at the angle @' about the z'-axis in the p° rest frame. With the phase convention used in this
paper, the production plane lies at the azimuthal angle’(p m the p° rest frame as well as in the lab
frame. This follows from the fact that the x'y'z’ coordinate axes are obtained from the xyz axes
by a rotation with the Euler angles 0. = ¢, B = 0, y = —¢. Thus, the angle between the produc-
tion plane and the decay plane, which is the only physically meaningful azimuthal angle, is given

by Ap = ¢' —o.
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The calculation is straightforward. Parity conservation (Eq. B.6.14) provides a relation

between the helicity amplitudes
Jy=d =y
Ay = T]vnpn,‘(—l) A..;”..;, -—d =y —hy (B.6.24)

which implies that Ao vanishes. The p° therefore has helicities A, = £1 only. The correspond-
ing amplitudes interfere because the helicities characterize an intermediate state and cannot be
determined by amny measurement of the final state pions. The v, as discussed in the previous
example, is produced as an incoherent mixture of My = £1. The decay angular distribution is

therefore

2
5~ L | I 0#a08-0ur0 L@ O~ | (B.6.25)
where we have used A, = 0. By substituting the D functions, one finds (ignoring overall con-
stants)

dN e o

5q - (1 + cos?0) + sin?6cos2(¢’ — @){sin®0 (B.6.26)
As in the decay y — yn; ' — p°, the absence of helicity zero for the p° results in a sin%0’

distribution of the pions in the p° rest frame. If one integrates over the azimuthal angle, the p°

has a (1 + cos?0) distribution relative to the beam axis.The azimuthal angular dependence is

dN .
doosio -[1 + lacos2(@ (p)] (B.6.27)

after integrating over the polar angles. Figure B.4 is a histogram of A(p =@ — ¢ for y —p°r°
events measured by the Mark III detector. The cos2(¢' — ¢) dependence is clearly present,
although there are dips in the distribution at y = 0,x, and 2z due to the detector acceptance. At

these angles the p° production and decay planes are aligned, and the charged pions are more
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likely to go into the ends of the detector (closer to the beam pipe) where the detection efficiency

is low.

The correlation between cos® and A¢ is shown in Fig. B.5. The acceptance is also poor

when Icos®! ~ 1, but the approximately uniform horizontal bands at A¢ = 0, =, and 27 are evi-

dent, and contrast with the strong horizontal density variation in the bands at Ap = % and %’-‘-

B.7 Symmetrization of Helicity States for Identical Particles

In the helicity formalism is it easy to construct appropriately symmetrized states for the
analysis of processes with identical particles. Let P,, denote the particle interchange operator,
which swaps particles 1 and 2. The action of P, on an identical two-particle plane-wave helicity

state aligned along the z-axis is, because s; = §; = s,
Plzlp’e - 0,‘0 - O,A'l}Q) - P12[IFZ3S9AI,1>I—§‘23S,A‘2’2>] (B-7-l)

The particle labels 1,2 have been added to the one-particle helicity states to indicate which of the
two states each particle is in. The quantum numbers A;,A; refer to states, not particles. Inter-

changing the particles gives
P121p,0 = 0,0 = 0, 4A3) = 177,5,A1,2)|=P,5,h2, 1)
= (=1 ™D1—p;,5,0,,2)
x (=1 ™ e ™P\5,,5.05,1) (B.7.2)
Some care is required with half-integer spins, where
G A G Ve T ) el E N OV C VN GO Ve (B.7.3)

The last expression is also valid for bosons. We note that
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—ir,

e Y eiﬂ’

e m o™y (1) (B.7.4)

which says that half-integer spin particles pick up a factor of (-1) when they are rotated by

2z Using these results in Eq. (B.7.2) gives
Plzlp’e - O,CP - OJ'IAQ> - (-I)ZH'L‘—A‘ eiﬂ’ |"l7z,-$',xl,2>|ﬁz,s,l2,1>
= (=DF e p 0 = 0.0 = 0ok (B.7.5)

where the ordering of the A’s in the state vector is now reversed from the LHS of Eq. (B.7.2).

We can quickly determine the action of P, on spherical two-particle helicity states by com-
paring Eq. (B.7.5) with the action of the parity operator in Eq. (B.6.7). The only differences are
that in the present case, s; = 5, = 5, there are no parity factors, and now the order of the helici-

ties is reversed. Thus, we can read off the answer from Eq. (B.6.12)
Pialp J M MAg) = (=1 1p,J M Ayhy) (B.7.6)

According to the spin-statistics theorem, states of identical bosons must be even under par-
ticle exchange, and states of identical fermions must be odd under particle exchange. Thus, the

correctly summarized two-particle spherical helicity states are
[t + 2P 1.7 M ALY = 10T MMM + (<1 10,7 M dohs) (B.7.7)

The result is the same for bosons and fermions.

As a simple application, we will show that a massive spin-1 particle cannot decay into two

photons. From Eq. (B.7.7), the correctly symmetrized two photon CM state is
|¢> - IPJ"I,M,}\-I,AQ> - IP”I-I,M’}"Z:A'O (B.7.8)

But IA; — Azl < J = 1 because there can be no orbital angular momentum about the decay axis
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(L =7 x p). For photons, which have no zero helicity component, this implies that A; = A,.

The two states on the RHS of Eq. (B.7.8) are therefore identical and

|D) = 0. (B.7.9)

B.8 Normalization of Two-Particle Plane Wave Helicity States

We now show how to normalize the two-particle plane-wave helicity states when they are

labeled by | p,e,(p,kl,}\q) (Eq. B.3.11). The normalization in the 7’,p5 coordinates is (Eq. B.3.10)
{F'1A 55" 2A 2 P 1 AP 2Ag) = (2m)%4E E8%(F' = P (F'2 — P)bradua, (B.8.1)

We are assuming that all other labels describing internal quantum numbers such as charge, isos-
pin, strangeness, etc. are identical, so that we don’t need additional 3-functions on the right-hand
side of Eq. (B.8.1). By specifying the state with spherical coordinates, we are making a change of
variables from 7,75 to f”,p,O,(p, where P is the total momentum in the CM and F is the momen-

tum of one of the particles. It is easily seen that
d3p\d’py = \J1d3Pd3p = d°Pd’p = d*Pp%dpd?Q (B.8.2)

We can find the relation between dp and 4dP° from

V5 = P°= E| + Ey = /p? + mt + \/p? + m?

1 (Ey + Epdp _ /spdp

1
—— p —————
Jtmi  JEmi) | EE: | EiE

dP° = pdp

DE\E,

2
\/s_dQ

d3p 1d3p2 - d3P[dP°
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pElEZ 41 72
B.3.3
7 d'PdQ ( )

This change of variables means that
PE.E;

f d*p\dpAD N 135 2N 2 Pk Do) = -f dezQ_J—"‘(P 08 A'1,A212,8,0,A1,A2)

Using Eq. (B.8.1), we see that

CRPAEE Sy dya, = [ d*PdQ ”Ef P2 1N 19, 0,0 M ha) (B.8.4)
which implies
{p',0,0' X' 1,X>1p,0,0, M1, )= (2m)° 4J- 25 54(P - PRSAQ ~ Q) Buca, (B.3.5)
This proves Eq. B.3.11. By definition
M N NN M A Ag) = Srs8aeaduadia, (B.8.6)

Using Eq. (B.4.14) with ¢; unknown and Eq. (B.3.15) we have
M XN MMMy = 1ey? [ [ d2Qd°Q D (9',0',~0)DffA(@.0,~0)
x Q' - Q)3 a0, (B.8.7)

Performing the integral over d2Q' and using orthogonality of the D’ functions with a = —y = ¢

(Eq. B.2.19) gives '

(I MEANIT MADG) = s 16712 SrsBaeneuadi, (B.8.8)

By comparing Eq. (B.8.8) with Eq. (B.8.6) we see that
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2J +1
lcy12 = e (B.3.9)

as claimed.
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Step2: Oz —=(0Z: Rotation about u

/

//
' Iﬂx

Step 3: Ou—=0Y : Rotation aboutZ

5-84 4821A1

Figure B.1.  Construction of an arbitrary rotation by three successive rotations parametrized
by Euler angles a,8.y.
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Figure B.2.  Allowed decay processes y — yX, where X is a spin-2 particle. The two
processes in each pair are related by parity because 5 5 — 5 (~§). The matrix
elements A4, and A, _; have a relative +(-) sign if the parity of X is even
(odd).The photon is represented by a wavy line and spin projections are denoted
by double arrows. Note that IA, — Ayl < J = 1 because there can be no orbital
angular momentum about the decay axis (L = 7 x p).The 4; j are rotationally
invariant.
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Figure B.3.  Helicities and decay angle definitions for y—yn'; n'—yp"; p°—n*n".Each decay is
viewed in the rest frame of the decaying particle.
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Figure B4.  Distribution of p°r® events in Ag. The cos2A¢ dependence is due to interference
between the A, = £ 1 amplitudes.
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Figure B.S.

Scatter plot of A vs. cosd for p°r” events.
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