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Abstract

As we move into the next era of cosmology, dominated by large extensive surveys in the
name of precision. The question of how best to constrain our current models with the vast
amount of data available to us now and in the future has become prominent. This thesis looks
to answer that question in the field of weak lensing, specifically for redshift distributions, a
typical weakness of the field.

To begin, this thesis will look at the cosmological parameters that describe our universe
to the best of our ability and the probes available for constraining them. Chapter 2 looks at
one of those probes in more detail, weak lensing, and how a light bending phenomenon can
be used to infer statistical properties of the matter distribution of the universe and how its
precision is hampered by weaknesses in redshift inference. Methods for achieving this is
the focus of Chapter 3, photometric redshifts; using light collected from galaxies across a
small number of broadband filters to infer its redshift based on known spectral features. We
look into how such methods developed, how these spectral features exist, and the various
approaches used. One approach requires a change to our statistical thinking, and thus Chapter
4 focuses on Bayesian statistics and ways it can be applied to problems. One such application
is considered in Chapter 5 where we modify the work of Leistedt et al. (2016) for weak
lensing-like settings. In Chapter 6 we apply the work to Kilo Degree Survey, specifically
KV450 and constrain cosmological parameters potentially lowering a current tension in S8

values between weak lensing and CMB studies. Lastly, in Chapter 7, we gather preliminary
results using our approach to KiDS-1000 data, considering improvements required for the
levels of precision and accuracy of future surveys.



4



5

Declaration

I hereby declare that the contents of this thesis are my own work, except where specific
reference is made to the work of others. The specific contributions in each chapter are listed
below.

Chapters 1, 2 and 3 correspond to reviews and general work on the past and present of
precision cosmology, weak lensing and photometric redshift estimation. In particular, in
the reviews of Kilbinger (2014) and Mandelbaum (2017). All sources of information are
appropriately referenced.

Chapter 4 corresponds to work and reviews on Bayesian statistics and a key focus on the
works of Malz and Hogg (2020) in redshift distribution inference.

Chapters 5, 6 and 7 describe my work in collaboration with Alan Heavens, Andrew Jaffe,
Florent Leclercq and Arrykrishna Mootoovaloo, which expands upon and is heavily based
on the work of Leistedt et al. (2016)

The copyright of this thesis rests with the author. Unless otherwise indicated, its
contents are licensed under a Creative Commons Attribution-Non Commercial
4.0 International Licence (CC BY-NC). Under this licence, you may copy and
redistribute the material in any medium or format. You may also create and
distribute modified versions of the work. This is on the condition that: you credit
the author and do not use it, or any derivative works, for a commercial purpose.
When reusing or sharing this work, ensure you make the licence terms clear to
others by naming the licence and linking to the licence text. Where a work has
been adapted, you should indicate that the work has been changed and describe
those changes. Please seek permission from the copyright holder for uses of this
work that are not included in this licence or permitted under UK Copyright Law.

George Kyriacou
July 2023



6



7

Acknowledgements

I want to thank my supervisors Alan Heavens, Andrew Jaffe and Florent Leclercq, for the
years of guidance and patience they have given me. The many months of frustration, circling,
stop and start, re-explaining and sheer time and effort that’s a consequence of working with
me. A special thanks to Harry (Arrykrishna Mootoovaloo) for his kindness and generosity
in all the voluntary help he has given me, especially near the end. To my mum (Hilary
Kyriacou) for taking on the hellish task of painstakingly proofreading this thesis for my many
grammatical and spelling errors. Most importantly, I would like to thank my wife, Shannon
Kyriacou, for the sacrifices she has made for me to achieve my goals and ambitions and for
never wavering in her support of me during a PhD of which, at times, I could barely support
myself.



8



Contents 9

Contents

List of figures 13

List of tables 23

1 Cosmological Parameters 25
1.1 Einstein’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3 Expanding universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Cosmological Constant . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Standard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.1 Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.2 Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4.3 Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.4.4 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.4.5 Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2 Weak Lensing 75
2.1 From Newton to Einstein . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2 Lens Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.2.1 Fermat’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2.2 The Born Approximation . . . . . . . . . . . . . . . . . . . . . . . 81
2.2.3 Lensing Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.3.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.3.2 Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.3.3 Ellipticity Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 90



10 Contents

2.4 Shear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.4.1 Shear Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.4.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.5 Cosmological Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.5.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.5.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.5.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3 Photometric Redshifts 121
3.1 A galaxy’s flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.1.1 luminosity function . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.1.2 Fluxes and magnitudes . . . . . . . . . . . . . . . . . . . . . . . . 122
3.1.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.1.4 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.2 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.2.1 Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.2.2 Empirical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.2.3 Template Based Methods . . . . . . . . . . . . . . . . . . . . . . . 144

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4 Bayesian Redshift Statistics 155
4.1 Statistical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.1.1 Frequentist Inference . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.1.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1.3 Choice Of Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.1.4 Hierarchical Models and Marginalisation . . . . . . . . . . . . . . 162

4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2.2 BPZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.3 Redshift Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.3.1 Stacked Likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.3.2 Spectroscopic Based Methods . . . . . . . . . . . . . . . . . . . . 179
4.3.3 Principled Approaches . . . . . . . . . . . . . . . . . . . . . . . . 182

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5 Algorithmic Development 189



Contents 11

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.1.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.1.2 Template sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1.3 Selection Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6 KV450 Analysis 203
6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.1.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.1.2 KiDS + VIKING 450 . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.2 Cosmological Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.2.1 Sample Implementation . . . . . . . . . . . . . . . . . . . . . . . 207
6.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.2.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.2.4 Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3.2 KiDS + VIKING 450 . . . . . . . . . . . . . . . . . . . . . . . . . 215

7 KiDS-1000 223
7.1 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.2 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.3 KiDS-1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8 Conclusion 233

Bibliography 237



12 Contents



List of figures 13

List of figures

1.1 Radial Velocities corrected for solar motion are plotted against distances
from stars and the mean luminosity of the nebula in a cluster. Black disks
and the full line represent the use of nebulae individually, while circles and
the dashed line represent combining nebular into groups. The cross is the
mean velocity and mean distance of 22 nebular that could not be estimated
individually (Hubble, 1929). . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 In rotational curves of galaxy NGC 6503, the dark line is observed while the
dashed lines are the theoretical components (Freese, 2008). . . . . . . . . . 41

1.3 left: Optical image of merging cluster IE 0657-558, the white bar indicates
200kpc while the blue plus the centre of the plasma clouds, the green contours
are the κ maps, and the white contours are errors in the κ-peaks at 68.3%
95.5% and 99.7%. right: Same as left but with a 500ks Chandra image
indicating the position of the plasma. (Clowe et al., 2006). . . . . . . . . . 42

1.4 Experimental limits on current Dark matter - nucleus detection experiments.
Regions above lines are disfavoured at 90% confidence. The regions labelled
‘DAMA’ are the detections of the DAMA/LIBRA experiments (Heros, 2020). 46

1.5 Experimental limits on current Dark matter - proton cross-sections from
indirect detection (Aartsen et al., 2017). . . . . . . . . . . . . . . . . . . . 47

1.6 The ratio of different distance measures to the Hubble distance against
redshift. The curves represent different models of (ΩM,ΩΛ), solid (1.0,0.0),
dotted (0.05,0.0), dashed (0.2,0.8). left: angular diameter distance. right:
Luminosity distance (Hogg, 1999). . . . . . . . . . . . . . . . . . . . . . . 50

1.7 Identification of void galaxies (red crosses) within void structures (blue rings)
within a projection of a 10h−1 slab of the SDSS Data Release 9 CMASS
sample (Sutter et al., 2014b). . . . . . . . . . . . . . . . . . . . . . . . . . 57



14 List of figures

1.8 Top Left : Distribution of uniformly sampled galaxies from LCRS. Clockwise:
The clusters identified by the FOF algorithm at different FOF radii sizes,
at each point, the filaments become interconnected into a ‘cosmic web’
(Shectman et al., 1996). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9 An illustration of the 2 point correlation function which is the excess proba-
bility finding 2 galaxies r12 apart in volume elements dV1 and dV2 compared
to a random distribution (Reid et al., 2019). . . . . . . . . . . . . . . . . . 61

1.10 Top: Data points inferring the matter power spectrum at z = 0 using a com-
bination of different probes, including PLANCK CMB Data, SDSS galaxy
clustering, SDSS Ly−α and DES Cosmic shear. The solid black line repre-
sents the theoretical prediction using best-fit Planck 2018 parameter values
in the ΛCDM model. The dotted line represents the theoretical prediction
with the inclusion of non-linear effects. Bottom: Deviations between data
and theoretical prediction (Chabanier et al., 2019). . . . . . . . . . . . . . . 65

1.11 The high-resolution spectrum of QSO 1422+ 23 at an emission redshift
of zem = 3.62 shows the many absorption lines of creating the Lyα for-
est,(Rauch, 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.12 Sensitivity of the CMB power spectrum under 4 cosmological parameters
a) the curvature as indicated by Ωtot b)energy density of dark energy ΩΛ c)
baryon density Ωbh2 and d) matter density Ωmh2. The variations take place
over a fiducial model of Ωtot = 1, ΩΛ = 0.65, Ωbh2 = 0.02, Ωmh2 = 0.147
(Hu and Dodelson, 2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.1 A distant star’s light ray C is deflected through gravitational interactions with
the sun S. δN is the Newtonian deflection angle between the light’s original
and now changed trajectory (Soares, 2005). . . . . . . . . . . . . . . . . . 76

2.2 A ray path x(λ ) from source to observer, the straight path represents a light
ray without any mass perturbing its path. The angle between observer and
source is β and γ for the perturbed and unperturbed path, respectively, the
difference between them being the deflection angle δ . . . . . . . . . . . . . 79

2.3 Illustration of the angular image distortion (from β to θ ) at comoving dis-
tance χ that takes place due to a potential gravitational field (Kilbinger,
2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4 The level of elliptical distortion that can take place on a spherical 2-d image
given different amounts of γ across its 2 components (Kilbinger, 2014). . . 85



List of figures 15

2.5 left : The different shapelet components made through different combinations
of (l,m). right : How using different numbers of these components can
replicate an original image with reasonable parity already possible with
n ≤ 20 (Refregier, 2001). . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.6 The different configurations of distorted elliptical images of galaxies that
make the E-modes and B-modes of the lensing power spectrum (Van Waer-
beke and Mellier, 2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.7 The difference in observed matter power spectrum between the full version
(bold line) and that that has used the ‘flat sky’ approximation (Kitching et al.,
2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.8 The cosmological constraints on values of Ωm and σ8 using different methods
for inferring redshift distributions of weak lensing surveys (Hildebrandt et al.,
2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.9 Cosmological constraints on parameters Ωm and S8 for different weak lensing
(and CMB) surveys (Hildebrandt et al., 2018) . . . . . . . . . . . . . . . . 110

2.10 2 elliptical galaxies within a halo’s tidal field (grey sheet) shape will change
from uncorrelated (red) to correlated (blue) (Kiessling et al., 2015). . . . . 112

2.11 2 elliptical galaxies within a halos tidal field (grey sheet) shape will change
from uncorrelated (red) to correlated (blue) (Kiessling et al., 2015). . . . . 114

2.12 (Troxel and Ishak, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.1 A rest-frame spectrum of an LRG obtained from the SDSS Legacy Survey,
with the respective emission lines labelled SDSS-III collaboration et al. (2011).127

3.2 Rest-frame portion of galaxy SED explored by the WFPC2 photometric
system at z = 0 and z = 2. The drop in flux represents the Balmer break
(Massarotti et al., 2001). . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3 An illustration of the Edwin Hubble classification system and how it relates
to galaxy shape and morphology (NASA & ESA, 1999). . . . . . . . . . . 129

3.4 A typical SED from an elliptical galaxy showing strong absorption lines
due to metals in the stellar atmospheres of a mostly low luminosity stellar
population while no evidence of any emission lines and hence no young stars
and no gas (Driver, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.5 A typical SED from a spiral galaxy. Showing some emission and some
absorption indicating both a young and old stellar population Driver (2014). 133



16 List of figures

3.6 A typical SED from an irregular galaxy. A strong emission-line spectrum
indicating many hot young stars heating the gas which is re-radiating at
specific wavelengths which depend on the chemical composition of the gas
(Driver, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.7 A flow diagram showing the fundamental steps required for any photo-z
estimation, empirical or template-based methods. The dotted lines repre-
sent optional steps. The figure within the colour-redshift mapping model
represents galaxies’ spec-z results compared to their colours (Salvato et al.,
2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.8 A simplified Neural Network consisting of an input, hidden and output layer
(Bonnett, 2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.9 An example of a topological map consisting of 768 cells on a spherical
HEALPix grid was created by SOMz of which the spec-z values have been
added in post (Kind and Brunner, 2013b). . . . . . . . . . . . . . . . . . . 143

3.10 A synthetic SED of a galaxy containing a 0.8Gyr stellar population and
metallicity of Z = 0.5Z⊙ using a population synthesis model (Maraston, 2005).147

3.11 A typical template set consisting of SEDs from many types of galaxies
(elliptical: Ell; Starburst: SB; spiral with small bulge: Sc and AGN ( (lumi-
nous quasar: QSO; low luminosity obscured AGN: Sy1.8). Also included
are typical features of SEDs, both at-rest frame and their place at z = 1.1
through dashed lines. Lastly, the transmission curves of the i,z filters are
also included (Salvato et al., 2018). . . . . . . . . . . . . . . . . . . . . . 148

3.12 left: V-K vs I-K for a template sample in the 1 < z < 5 redshift range. right:
The same relationship with an applied 0.2 photometric error (Benitez, 2000). 149

3.13 A typical p(z) generated from a simulated galaxy created from a template set,
consisting of multiple peaks where a sub-peak agrees with the true redshift
(dashed line) (Leistedt et al., 2016). . . . . . . . . . . . . . . . . . . . . . 151

4.1 An illustration of a sample of 210 people, 10 of which are librarians (grey)
and 200 of which are farmers (green), those in blue are those that match the
given description of the man (Sanderson, 2019) . . . . . . . . . . . . . . . 159

4.2 Examples of gaussian, uniform and Jeffreys priors (Shariff, 2017). . . . . . 160
4.3 An example of a basic Bayesian hierarchical model based on the toy model

used above, consisting of 3 main components: the physical model likelihood;
the instrumentation error likelihood; and the prior. . . . . . . . . . . . . . . 164



List of figures 17

4.4 An illustration of samples being taken from a normalised distribution propor-
tional to the distribution itself regardless of normalisation, these samples can
then be used for statistical analysis (Rocca, 2019). . . . . . . . . . . . . . . 166

4.5 An example of the MCMC MH algorithm, containing a proposal distribution
and the uptake of samples both rejected and accepted to the proportions of
the posterior distribution (Dong et al., 2020). . . . . . . . . . . . . . . . . 167

4.6 An example of a simple 2-dimensional posterior distribution on the left being
converted to a potential energy distribution on the right of which samples are
drawn (pink) (Rogozhnikov, 2016). . . . . . . . . . . . . . . . . . . . . . 168

4.7 An illustration of the steps required in a 2-dimensional example of a Gibbs
sampling procedure (Mackay, 1995). . . . . . . . . . . . . . . . . . . . . . 170

4.8 left: An illustration of the likelihood contours that are created around a
probability distribution right: A plot of X against L (X) showing how the
integral leads to the evidence Z (Pritchard, 2016). . . . . . . . . . . . . . 171

4.9 Example of how a probability distribution may change with the introduction
of a prior choice, the first row shows the likelihood for each galaxy type, row
2: the prior, row 3: the posterior, row 4: the posterior marginalised over each
galaxy type (Benitez, 2000). . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.10 Prior in redshift and different given magnitudes p(z|m0) estimated through
using the calibration method on the HDF-N data (Benitez, 2000). . . . . . . 174

4.11 left:Results of a Monte Carlo simulation based on CNOC2 evolving luminos-
ity functions (solid circle) well as the N(z) distribution estimated by peak-ML
(open circles), initial iteration (dashed line) and final iteration (solid line)
right: The χ2 contribution of the same N(z) distribution (Brodwin et al., 2006)175

4.12 From the CFHTlens weak lensing analysis. Comparison of the stacked
n(z) posterior distribution for different tomographic bins against the ‘true’
distribution given through spectroscopic redshifts (Benjamin et al., 2013). . 178

4.13 Illustration of the nearest neighbours method to which the yellow dots rep-
resent photometric samples, the green dots the nearest spectroscopic neigh-
bours of our chosen galaxy and blue the volume of radius dαγ of who is
density must be recalibrated. In this case, the magnitude space is 3 dimen-
sional, but in reality, the number of dimensions would be the number of
filters (Gomes et al., 2018). . . . . . . . . . . . . . . . . . . . . . . . . . . 179



18 List of figures

4.14 left: An example of the self-organised maps used by KiDs-1000 where the
cells have been fictitiously coloured based on which spectroscopy galaxies
from which survey are contained within them. All black cells represent cells
containing only no spectroscopic galaxies right: The survey-based colour
scheme (Wright et al., 2020). . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.15 A direct acyclic graph of the CHIPPR model consisting of the φ the hyper-
parameters that describe the redshift distribution n(z), a set of redshifts z j

and their corresponding photometric data d⃗ j for a set of J galaxies (Malz and
Hogg, 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.16 left: Example of simulated data plotting their true spectroscopic redshifts
against their expected photometric redshifts, in this case, there is a non-biased
uniform implicit prior (grey line in histograms) but with a level of scattering
and catastrophic error so that they photometric distribution (grey) differs
from the spectroscopic distribution (bold black line). right: A comparison of
the posterior samples of CHIPPR (blue) against the true distribution (black)
as well as other distribution techniques (Malz and Hogg, 2020). . . . . . . . 185

4.17 left: Example of simulated data plotting their true spectroscopic redshifts
against their expected photometric redshifts, in this case, there is a template-
based implicit prior (grey line in histograms) but with a level of scatter and
catastrophic error so that they photometric distribution (grey) differs from
the spectroscopic distribution (bold black line). right: A comparison of the
posterior samples of CHIPPR (blue) against the true distribution (black) as
well as other distribution techniques (Malz and Hogg, 2020). . . . . . . . . 186

4.18 A comparison of the posterior samples of CHIPPR (blue) against the true
distribution (black) as well as other distribution techniques, in this case, the
same data from Figure 4.17 is used but an incorrect uniform implicit prior in
the analysis (Malz and Hogg, 2020). . . . . . . . . . . . . . . . . . . . . . 187

5.1 Hierarchical forward model for the the observed fluxes F̂b of a survey of
galaxies within a given band b where Wb(ν) is the bth filter and Lt(ν) the
spectral template of type t.{ fi jk} is the distribution given the redshift, magni-
tude and template bins (i,j,k respectively), Fb the actual flux and σ the error
on this flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.2 The beta distribution for varying values of α and β (Kim, 2020). . . . . . . 194



List of figures 19

5.3 A set of Dirichlet distributions shown on the triangle of which the corners
indicate a probability of [1.0,0.0,0.0] for that outcome. The colour indicates
the value of the probability on a scale of black to white, corresponding with
0.0 to 1.0 (Liu, 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.4 Likelihood and posterior distributions of 3 objects from the simulated set
where the dashed line indicates the true redshift (Leistedt et al., 2016). . . . 196

5.5 left: The mean of the first 4 components extracted from PCA from a large
template set, the flux has been scaled and offset for visual purposes. right: A
4x4 scatter plot of all templates plotted against component i,j (where i=[1,4]).
The colours indicate the different sets of which the K mean clustering algo-
rithm placed the template. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.6 The median redshift based on the redshift distribution of the KiDS450 -
Viking data in the first tomographic bin and their variance compared to
6 random template sets (3 containing 50 templates and 3 containing 100
templates), these sets are compared to the same result gathered from PCA
analysis (grey). This is the same results as displayed in the first tomographic
bin of 6.7 left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.7 Hierarchical forward model for the selection effects of all possible observed
fluxes F̂ to those kept within the survey in their separate tomographic bins
F̂1...5. The selection effect sBPZ is the categorising of sources by BPZ redshift
estimates zBPZ . The b superscripts have been omitted. . . . . . . . . . . . . 200

6.1 The data correlation matrix used in this analysis. Each element in the original
covariance matrix, C ∈ R195×195 is scaled such that the maximum possible
entry is 1 for illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.2 The correlation functions multiplied by the angular scales, θ . We have
seven ξ+ and six ξ− per pair of tomographic redshift distributions, which
results in a total of 13× 15 = 195 correlation functions. Hence, the data
vector, x ∈ R195 is shown in blue above. The error bars correspond to the
standard deviation, computed using the diagonal elements of the covariance
matrix. The red curve shows the fit to the data using the mean of the inferred
cosmological and nuisance parameters with the Combined set. . . . . . . . 210

6.3 The weighted N(z) of the entire survey with the true distribution, posterior
distribution and the stacked posterior in green, red and blue, respectively.
The posterior is split into 3 tones from deepest to lightest representing the
mean, 68% uncertainty and 95% uncertainty distribution. . . . . . . . . . . 212



20 List of figures

6.4 Redshift distributions using simulated data with marginalisation over the
reference magnitude and type over 5 tomographic bins. The green histogram
shows the true input distributions. While the distributions obtained with
the inferred parameters fi jk are shown in red. The n(z) gained from the
stacked posterior is also included (blue). The posterior is split into 3 tones
from deepest to lightest representing the mean, 68% uncertainty and 95%
uncertainty distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.5 The weighted N(z,m) of the entire survey with the true distribution, posterior
distribution, and the stacked posterior in green, red and blue, respectively, in
this case, the templates t have been marginalised out. The posterior is split
into 3 tones from deepest to lightest representing the mean, 68% uncertainty
and 95% uncertainty distribution. . . . . . . . . . . . . . . . . . . . . . . . 215

6.6 Redshift distributions using KV-450 data with marginalisation over the ref-
erence magnitude and type over 5 tomographic bins. The cream histogram
shows the results from KiDS DIR samples used for their analysis. The
stacked posterior is in blue. While the distributions obtained with the in-
ferred parameters fi jk are shown in red. The n(z) gained from the stacked
posterior is also included (blue). The posterior is split into 3 tones from deep-
est to lightest representing the mean, 68% uncertainty and 95% uncertainty
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.7 left: The median redshift based on the redshift distribution of the KiDS450
-Viking data and their variance compared to 6 random template sets (3
containing 50 templates and 3 containing 100 templates), these sets are
compared to the same result gathered from PCA analysis (grey). right:
The median Redshift based on the redshift distribution of the KiDS450
-Viking data and their variance compared to 3 randomly chosen sets of
100,000 galaxies, all of which used the PCA template set. The set used for
cosmological analyses is highlighted in grey. . . . . . . . . . . . . . . . . . 217

6.8 The full marginalised 1D and 2D posterior distribution of both sets of cosmo-
logical and nuisance parameters. The inner and outer contours correspond
to the 68% and 95% credible intervals. A top-hat prior is assumed for all
parameters except for δc and Ac, for which Gaussian priors are adopted. . . 218



List of figures 21

6.9 left: The marginalised posterior distribution in the Ωm −S8 plane for the KV-
450 analysis (in green) and Planck (in blue). The inner and outer contours
correspond to the 68% and 95% credible intervals, respectively.right: The
marginalised posterior distribution for the S8 parameter in various experi-
ments. The broken curves correspond to the results obtained when different
sets of n(z) are used, and the purple curve shows the results when the sets
are combined. The distribution of S8, as obtained by the Planck 2018 results
(Aghanim et al., 2020) is also plotted in brown. . . . . . . . . . . . . . . . 219

6.10 The inferred values of S8 in different surveys and collaborations. The third
row corresponds to the value obtained in this work. . . . . . . . . . . . . . 220

7.1 The weighted N(z) of the entire survey with the true distribution, posterior
distribution and the stacked likelihood in green, red and blue, respectively.
The posterior is split into 3 tones from deepest to lightest representing the
mean, 68% uncertainty and 95% uncertainty distribution. The version has
samples based on the smoothed variant. . . . . . . . . . . . . . . . . . . . 225

7.2 The full 1D and 2D marginalised posterior distributions were obtained using
three different methods - The one in tan colour corresponds to posterior
distributions with the full simulator (CLASS), while the solid brown one
corresponds to the Gaussian Process emulator when random functions of the
band powers are drawn, marginalising the Gaussian Process uncertainty. The
posterior in blue shows, the distributions obtained when only the mean of the
Gaussian Process was used in the inference routine. The contours denote the
68% and 95% credible interval, respectively. Note that some parameters are
dominated by their respective priors and are not constrained at all. A similar
conclusion was drawn by Köhlinger et al. (2017). However, the important
point here is that the posterior from the GP is close to that obtained with
CLASS Mootoovaloo et al. (2020). . . . . . . . . . . . . . . . . . . . . . . 227

7.3 The sky coverage of the KiDS survey 4th data release DR4, the blue rep-
resents all the accumulated data from the first 3 releases culminating in
KiDS-450, whereas the blue represents all the new data. The grey represents
the end goal coverage of 1350 square degrees (Kuijken et al., 2019) . . . . . 229



22 List of figures

7.4 Redshift distributions using KiDS-1000 DR4 data release with marginalisa-
tion over the reference magnitude and type over 5 tomographic bins. The
cream histogram shows the results from KiDS-450 DIR samples, while the
green shows the mean redshift distribution of the SOMz work used for their
analysis. While the distributions obtained with the inferred parameters fi jk

are shown in red. The n(z) gained from the stacked likelihood is also in-
cluded (blue). The posterior is split into 3 tones from deepest to lightest
representing the mean, 68% uncertainty and 95% uncertainty distribution. . 230

7.5 The median redshift based on the redshift distribution of the KiDS-1000
DR4 data release and their variance compared to 5 randomly chosen sets of
100,000 galaxies, all of which used the PCA template set. The first set used
above is highlighted in grey. . . . . . . . . . . . . . . . . . . . . . . . . . 231



List of tables 23

List of tables

5.1 Collection of 215 tables used in PCA analysis. . . . . . . . . . . . . . . . . 197

6.1 The average redshift and its variance for every redshift bin using the 2 models,
the stacked posterior (SP) and the BHM model of this paper. . . . . . . . . 213

6.2 Result for KV-450 analysis with new n(z) redshift distribution. . . . . . . . 221



24 List of tables



25

Chapter 1

Cosmological Parameters

If one was to describe the state of modern cosmology, one might start with the brief term
‘precision cosmology’. However, with slightly more details, these words unpack to be the
study of statistical techniques to improve the inference of cosmology parameters given
observational data and their chosen model. This statement carries with it the many aspects
this thesis will cover. First, the observational data is the survey images of the sky, giving
us both colour and shape information of millions of galaxies. The chosen λCDM model
and its parameters describe our universe and how this relates to the galaxy shape in terms
of weak lensing. The inference relates to the tools used to link both model and data to
their likely parameters correctly. Lastly, the statistical techniques, the main focus of this
thesis, look into how one can correctly infer survey redshift distributions from flux data. On
the surface, this may look like a small cog in a vast cosmological machine, but a cog can
have detrimental effects if not treated correctly. To adequately justify the impact this small
statistical conundrum can have on our understanding of cosmology, one has, to begin with,
that cosmology itself, the assumptions it makes, the variables it holds and the probes used to
investigate it.

1.1 Einstein’s Equations

Although aptly described as ‘the weakest fundamental force’ (Shirai and Yamazaki, 2019)
compared to its stronger counterparts (electromagnetic, strong, weak), the large masses of
planets, stars, galaxies and galaxy clusters and the large distances between them make gravity
the overwhelming force of the universe. Therefore, gravity is the key to understanding the
past and present and future on a macro scale.

Huge strides were made in the revolution that was ‘The theory of General Relativity
(Einstein et al., 1915) (for now on summarised as GR) and the jumping of the gravitational
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domain from Newton to Einstein. As a result, gravity was no longer a force instantaneously
reacting to surrounding matter density (already a violation of Special Relativity’s strict speed
limits (Einstein, 1905)) but instead the consequence of the relationship between matter and
curvature in our universe and shown in Einstein’s field equations:

Rµν −
1
2

gµνR = 8πGTµν , (1.1)

where µν are index values, gµν is the metric tensor, Rµν and R are the Ricci Tensor and
curvature scalar, respectively, G the gravitational constant and Tµν the energy-momentum
tensor. Each of these terms helps describe the matter-curvature relationship mentioned above.
The metric tensor describes the coordinate system used to give an infinitesimal space-time
step ds along the system.

ds2 = gµνdxµdxν , (1.2)

where dxµ is an infinitesimal step in the µ th direction. The Ricci Tensor and curvature scalar
describe the coordinate system’s shape. While the energy-momentum tensor describes the
matter-energy distribution as a perfect fluid which in its inertial reference frame is given by

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (1.3)

where ρ is the total energy density of the system (including the matter), and p is the isotropic
pressure. Lastly, the Gravitational Constant is the same as that defined originally by Newton
so that on earth-like scales, there is no disagreement with Newtonian gravity. Depending
on which way round (left-to-right or right-to-left) the equation is read, one can interpret the
equation as the energy-matter of the system determining the system coordinate curvature or
the system coordinate curvature dictating the dynamics of its matter and energy. Succinctly
matter is not attracted to matter due to force more that the matter is following its natural path
through space-time, a natural path in which matter’s presence has altered.

The most significant assumption of our current cosmological models is that GR dictates
their dynamics. Such an assumption can be made as the theory has successfully guided
our understanding of the universe with tests that have continued to prove its resilience for
a decade. The earliest is the fact that GR could explain away observations that disagreed
with Newtonian physics, such as the procession of Mercury (Treschman, 2014); the value
predicted by Einstein et al. (1915) not only agreed with the observation at the time (Le Verrier
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et al., 1859) but was still in agreement with recent constrained observations (Lo et al., 2013).
Whereas predictions made by GR (such as Gravitational Waves (Einstein and Rosen, 1937))
continue to be confirmed in our modern era of observation (Abbott et al., 2016).

As successful as the theory continues to be, one cannot ignore its limitations. For example,
the mathematics of GR predicts singularities within a black hole, indicating a point at which
the theory breaks down (Einstein and Cohen, 1956). The same can be said because GR is
inherently classical and continuous and has not been successfully quantised to agree with
quantum field theory (Wagh, 2004). As real as these flaws may be, they exist at the extremes
of our understanding, with enormous masses on the most minor scales, scales that will not be
probed for the remainder of this thesis and thus, GR is a fair assumption to take forward.

1.2 Cosmological Principle

The field equation 1.1 may well be used for the dynamics of the universe but solving the
differential equations is not an easy process and, at the very least, requires a metric of
choice. Thankfully there are more key assumptions one can use. In this case, the following
fundamental assumption is the Cosmological Principle. The principle states that "the universe
is isotropic and homogeneous, i.e. there is no preferred direction or preferred position"
(Piattella, 2018).

Originally the principle was stated without proof as a means to simplify models (Lahav,
2001). This is because the principle at its heart is challenging to verify (all more likely
falsified). Furthermore, as we are earthly bound, one can only observe the universe from
one point in space. These limits are observations within our light cone (objects outside the
light cone have not had enough time for their light to reach us). However, homogeneity
is observable within our available scales, such as the distribution of quasars, which were
observed to be homogeneous on scales larger than 250 h−1 Mpc (Sarkar and Pandey, 2016).
In contrast, the isotropy is much more easily observed (due to all angles being available for
observation), with all models of anisotropy being highly constrained. Furthermore, although
homogeneity and isotropy are independent quantities, one can use validation isotropy to
constrain homogeneity further as long as one concedes a much smaller assumption; the
Copernican principle (Maartens, 2011) which states that we are not in a unique position in
the universe (Peacock, 1998).

There are more formal definitions of the cosmological principle that help construct a useful
metric which leads to 2 conditions below (Weinberg and Wagoner, 1973):

1. the constant-time hypersurfaces are maximally symmetric
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2. matter quantities are only time-dependent.

The first condition means that a maximally symmetric space is completely characterised
by 1 constant number, the scalar curvature R whereas the Ricci Tensor summarises to
Rµν = gµνR/D where D = gµνgµν . As R can be negative, positive or zero, this leaves 3
possible 3-dimensional special cases.

1. R = 0 therefore ds2
3 = |dx|2 a flat euclidean space,

2. R > 0 therefore ds2
3 = |dx|2 +dz2 under the condition that z2 + |x2|= a where a is a

constant. This is a euclidean space wrapped around a sphere of radius a.

3. R < 0 therefore ds2
3 = |dx|2 −dz2 under the condition that z2 −|x2|= a where a is a

constant. This is a euclidean space on a hyperboloid.

These 3 possibilities are usually known as the universe being ‘flat’, ‘closed’ or ‘open’,
although all 3 are possible under the cosmological principle. Observations indicate a flat
universe (Lahav and Liddle, 2014).

Moving to spherical coordinates, these 3 possibilities are compact to give equation 1.4.

ds2
3 = a2

(
dr2

1−Kr2 + r2dΩ
2
)
, (1.4)

where Ω is the solid angle, r is the normalised radius and K = R(3)a2/6 so that the 3
possibilities are determined by K are 0,-1 or 1. To complete the 4D space-time metric, one
must incorporate time. As the CP definitions state, the special components can still scale
(and thus be variable) with time as long as they remain symmetric at a constant time and
thus were allowed to make a a function of time, producing the Friedmann-Robertson-Walker
metric (Friedman, 1922; Friedmann, 1924; Lematre and Eddington, 1931; Robertson, 1935,
1936):

ds2 =−dt2 +a2(t)(
dr2

1− kr2 + r2dΩ
2), (1.5)

where t is the cosmic time, such a metric will make calculations within GR easier and more
tethered to our understanding. Furthermore, recent numerical relativity simulations have
shown that generic metrics are compatible with FRW metrics as long as homogeneity persists
on large scales; thus, its use is justified (Giblin et al., 2016). However, this opens a new door
regarding our scale factor a(t). In what sense is our universe spatially time-dependent? In
what sense does our universe scale?
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Figure 1.1: Radial Velocities corrected for solar motion are plotted against distances from stars and
the mean luminosity of the nebula in a cluster. Black disks and the full line represent the use of
nebulae individually, while circles and the dashed line represent combining nebular into groups. The
cross is the mean velocity and mean distance of 22 nebular that could not be estimated individually
(Hubble, 1929).

1.3 Expanding universe

As stated above, the FRW metric implies a homogeneous, isotropic non-static universe. One
that may look the same from every position and direction but not necessarily look the same
from different periods in time. The nature of this time-based dependency is entirely one way;
towards expansion. The first evidence of cosmological expansion came from observations
that galaxies that are further away are moving faster away from us. This is most commonly
known as Hubble’s Law:

v = H0d, (1.6)

where v is the galaxy’s velocity away from us, d is the distance that galaxy is from us, and H0 is
the constant relating the two (known as the Hubble Constant). Figure 1.1 shows the original
data used to which Hubble observed the first value of H0 to be H0 = 500 km s−1 Mpc−1

(Hubble, 1929), now known to be systematically wrong.
This original value of H0 was highly imprecise due to a large amount of scattering in the

original data. However modern observations have since constrained H0 to be lie between
66−77 km s−1 Mpc−1 (Riess, 2020). That said, independent observations of H0 have to lead
to values that are no longer compatible with each other (an issue known as ‘Hubble Tension’
(Efstathiou, 2021). The most notable examples of said tension are the SH0ES (Supernovae
H0 for the Equation of State) collaboration which uses a distance ladder approach. The



30 Cosmological Parameters

approach uses the luminosity of specific star types (Cepheids and Type 1a supernovae) as
standard candles (objects of known luminosity) to establish distance measures. This gave a
value of H0 = 74.03±1.42kms−1 Mpc−1 (Riess et al., 2019) and observations of the Cosmic
Microwave Background obtained a value of H0 = 67.44±0.58kms−1 Mpc−1 (Collaboration
et al., 2018) which is a disagreement in value by over 4σ . Much research has taken place
to discover if the tension is theoretical, showing the need for modifications of our current
cosmological models to be resolved (Knox and Millea, 2019). Alternatively, if the tension is
purely statistical and results from the data not being analysed correctly while the underlying
theory stays intact (Freedman et al., 2020), for this thesis, the tension (and implications) will
be mostly ignored under the assumption that the true value exists within the above range with
little change to our current models. One can take confidence from this assumption as many
other independent methods of measuring H0 all agree that H0 exists within the said range
(Shajib et al., 2019; Wong et al., 2019).

1.3.1 Redshift

A direct consequence of an expanding universe would be that the light we receive from
distant galaxies would be ‘redshifted’. By using Equation 1.5 as the metric within Equation
1.1, one can show that the energy of a photon is inversely proportional to the scale factor;
thus, one can link the scale factor directly to the wavelength of observed light:

aem

aobs
=

Eobs

Eem
=

fobs

fem
=

λem

λobs
=

1
1+ z

, (1.7)

where a,E, f ,λ is the scale factor, the energy of the photon, the frequency of the photon and
the wavelength of the photon at the time of emission (em) or observation (obs) while z is the
redshift. By defining aobs = 1 this simplifies to 1+ z = 1/aem.

The inclusion of redshift as the first physical consequence of cosmological expansion
(outside of recession velocities of the original discoveries) brings about the question of how
best to interpret the expansion going forward or, more importantly, the limitations of these
interpretations. The standard interpretation is the expanding space interpretation (Pössel,
2020) that galaxies within the universe are at rest (peculiar velocities aside) and that it is
the space around that is expanding. The interpretation is usually coupled with galaxies
on the surface of a slowly expanding balloon, highlighting the d ∝ r relation of Hubble’s
law. However, as helpful as this interpretation can be, there are limitations to concepts such
as Hubble’s law or the understanding of redshift as the expansion of light waves. Firstly,
it tethers our understanding of the recession velocity of galaxies to the change in a scale
factor at a fixed time. This leads to the intuitive but untrue assumption that in an expanding
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universe, a galaxy that was momentarily at rest with us must eventually move away due to the
space expanding between us (in fact, even in an expanding universe, the galaxy may move
towards us as highlighted in the Tethered Galaxy Problem (Francis et al., 2007)). Also, with
redshift, one may incorrectly imagine the electromagnetic waves of the observed photons to
be stretching.

An alternative interpretation is that space itself does not expand. It is the galaxies them-
selves moving through space. Under such rules, redshift would be observed as a Doppler
shift. This method also has faults, if one was to work out the radial velocity required for
observed redshifted galaxies, it would not equal the recession velocity. Instead, a relativistic
radial velocity is required for the redshift to match as below:

z =
√

c+ vrad

c− vrad
−1, (1.8)

where c is the speed of light and vrad is the relativistic radial velocity (Narlikar, 1994). Even
with this change, the interpretation would fail to explain the counter-intuitive results that
galaxies at a constant distance from us can have a non-zero redshift (Davis et al., 2003).

As shown, both interpretations can be mathematically equivalent if conceptually limited.
For this thesis, the expansion will be referred to in more modest words as the consequence of
2 bodies existing within the FRW metric. Redshift is the consequence of an observer’s frame
of reference being different to that of the photon’s emitter due to the FRW metric and not a
continuous change to the photon. Furthermore, this eliminates looming questions such as “Is
the space in a bedroom expanding?" (J.A Peacock et al., 2001) as a bedroom is not within an
FRW metric (the matter that makes that room neither homogeneous nor isotropic).

Lastly, although not a focus of this thesis, the redshifting of galaxies is not exclusively due
to the universe’s expansion. General relativity also predicts the existence of redshift due to
gravitation as shown in the equation 1.9 and is often known as Einstein shift (Eddington,
1926):

zg =
∆φ

c2 , (1.9)

where ∆φ is the change in gravitational potential. This gravitational effect has been verified
both in the lab (Pound and Rebka, 1960) and observed in space (Adams, 1925). One can
even correct the equation1.8 to include gravitational redshift as seen in the equation 1.10
(Peacock, 2008).

1+ z =

√
1+ vrad/c
1− vrad/c

(1+
∆φ

c2 ). (1.10)
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Previous studies of gravitational redshift have used data from the Sloan Digital Survey
(Eisenstein and Weinberg, 2011). By comparing galaxies at the centre of galaxy clusters
(usually in the form of brightest cluster galaxies) with galaxies on the outskirts of clusters (to
have similar zH with varying gravitational potentials), gravitational redshifts were estimated
to be of the order of zg ∼ 10−5 (Wojtak et al., 2011)(Sadeh et al., 2014) (or a velocity
contribution of ∼ 10 km s−1). An effect minimal enough to be ignored for the large redshifts
being considered in this thesis. Galaxies also have their peculiar velocities vpec, which is
moving relative to us and differs from the cosmic expansion or ‘Hubble Flow’. As this
velocity still contributes towards the overrule change of frame between emitter and observer,
it also produces its redshift zpec equivalent to the equation 1.8 but with vpec instead of vrad.
At low redshift, this is approximated to vpec ≈ czpec allowing the following combination for
the observed redshift (Davis et al., 2010),

1+ zobs = (1+ zH)(1+ zg)(1+ zpec), (1.11)

where zH ,zg, and zpec are the redshifts due to the Hubble flow, Einstein shift and peculiar
velocities, respectively.

Isolating peculiar velocities from the expansion velocities requires knowledge of the radial
velocity relative to a reference system and an independent method of measuring galaxy
distance. The latter usually comes in the form of the Tully-Fisher relation (Tully and Fisher,
1977) (that luminosity of a spiral galaxy follows a power law with rotation velocity), which
was used by the SFI++ (Masters et al., 2006) and 2MTF (Masters et al., 2008) catalogues.
The fundamental plane relation (Dressler et al., 1987) (that the radius of a galaxy is closely
related to its surface brightness and dispersion velocity) used by the 6dF velocity survey
(Springob et al., 2014). An alternative approach reconstructs and simulates the expected
velocity field and compares it to the observed galaxies (Lavaux et al., 2010)(Erdogdu et al.,
2006). Analysis of galaxy clusters finds average peculiar velocities of ∼ 300kms−1 (Guidorzi
et al., 2017)(Karachentsev et al., 2006)(Boruah et al., 2019)(Nicolaou et al., 2019) which
approximates to a redshift contribution of zpec ≈ 0.001 and so just as with Einstein shift
above zpec is also presumed to be low in comparison to zH and ignored for future calculations.

1.3.2 Cosmological Constant

The discovery of an expanding universe was met with the assumption that due to gravity,
galaxies would slowly pull back closer and that the expansion would eventually stop. So
confident was this assumption that the ‘deceleration parameter’ q0 was introduced into
cosmology, believing it to be positive (Sandage, 1970). However, 2 independent analyses
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of type 1a supernova and their distance-redshift revealed that q0 would be negative, and
the expansion was accelerating (Riess et al., 1998)(Perlmutter et al., 1998). The analysis
can be summarised as the supernova redshifts observed were less than expected given the
supernova’s known distance from us. By ‘expected’, one means redshift growing slower with
distance than the linear relationship one would get from constant expansion and much slower
than with decelerating expansion. Met initially with scepticism, proof that the universe
is accelerating in its expansion has now been observed independently through Cosmic
Microwave Background (Clarkson, 2012), and Baryon Acoustic Oscillations (Eisenstein
et al., 2005).

Accelerated expansion can be mathematically explained with modifications to equations
1.1 but the mathematics originally existed to solve a different problem based on incorrect
assumptions. While Einstein was developing his general theory of relativity, he presumed
we lived within a static universe (Einstein, 1917) (no expansion), a presumption based on
observations at the time and a presumption that would not be undermined for another 12
years (Hubble, 1929). He also presumed we lived in a closed universe (positive curvature)
(O’Raifeartaigh et al., 2017). Equation 1.1, when applied to FRW metric, leaves these 2
assumptions incompatible, and the closed universe would expand. A constant was added to
the equation 1.1 known as the cosmological constant to remedy this conflict,

Rµν −
1
2

gµνR+Λgµν = 8πGTµν , (1.12)

where Λ was the cosmological constant. Although the discoveries of Hubble would leave
Einstein’s static presumption redundant, the constant would still have a place in modern
cosmology, especially since it allows more flexibility in a universe’s expansion rate previously
available.

To see this in more detail, we shall apply the metric of equation 1.5 to the revised field
equations 1.12. Beginning with curvature, one can compute both the Ricci Tensor Rµν and
scalar R to our homogeneous and isotropic universe:

R00 =−3
ä
a
, (1.13)

R0i = 0, (1.14)

Ri j =
1
c2 gi j(

ä
a
+(2

ȧ
a
)2 +2

kc2

a2 ), (1.15)

R =
6
c2 (

ä
a
+(

ȧ
a
)2 +

kc2

a2 ), (1.16)
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the dots (ie ȧ, ä) represent first and second time derivatives. This helps simplify the Einstein
equations,

H2 +
kc2

a2 =
8πG
3c2 T00 +

Λc2

3
, (1.17)

gi j(H2 +2
ä
a
+

kc2

a2 −Λc2) =−8πG
c2 Ti j, (1.18)

where H = ȧ/a is the Hubble parameter producing a normalised rate of expansion. For the
stress-energy tensor, we presume matter works as a perfect fluid (Schutz, 1985), so it has the
following form:

Tµν = (ρ +
P
c2 )uµuν +Pgµν , (1.19)

where uµ is the 4-velocity of the fluid state. Perfect fluids are a straightforward version
of a fluid state; they are a state in which there are no forces between particles, no heat
conduction and no viscosity. One may use the perfect fluid state when approximating the
universe on large scales. As we were presuming GR gravity is not considered a force, so
on large scales, all other forces are negligible. This is also the same for heat conduction
and viscosity, although still existing on small scales are negligible at large (Hobson et al.,
2006). As forces, heat conduction and viscosity still exist, using a perfect fluid is at best a
first-order approximation. Its use greatly simplifies the field equations with all non-diagonal
terms going to zero, allowing for the production of equations that fit with observations (Ward,
2017).

There are criticisms of the assumption that the universe (or, more precisely, matter and
energy content of the universe) can be modelled as a perfect fluid. Firstly the argument that
the use of equations1.19 greatly simplifies the field equations has become mostly redundant
due to efforts being made to solve FRW with more generalised fluid states (Das et al., 2017).
Secondly, by restricting ourselves to the limitations of perfect fluids, one can have issues
calculating non-perfect phenomena such as Bose-Einstein condensation of dark matter, heat
flow and dissipative mechanisms (Comer et al., 2011). With this in mind, alternative methods
of navigating the FRW equations are being developed, such as the relativistic variational
multi-fluid approach (B.Carter, 1984) or many component single fluid models (Gromov et al.,
2002). These approaches offer insight into cosmology’s subsequent developments, but none
have been convinced of their ability to match cosmological observation (Ha et al., 2012).

Going forward with the perfect fluid assumption, one can combine the stress-energy Tensor
equation 1.19 with the simplified Einstein equations 1.17 and 1.18 to produce the Friedmann
Equations:

H2 =
8πG

3
ρ +

Λc2

3
− kc2

a2 , (1.20)
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ä
a
=−4πG

3
(ρ +

3P
c2 )+

Λc2

3
. (1.21)

Considering the original problem Einstein had in which there is no cosmological constant
(Λ = 0) and a closed universe k > 0. Under these circumstances, it’s possible to have a static
universe H = 0 from the equation 1.20 but as long as P ≥ 0 and ρ ≥ 0 (which is the case for
all known matter at the time) then from equation 1.21 one can see that ä ̸= 0 thus a non-static
universe is not possible. A finely tuned non-zero Λ would still allow Einstein’s static universe
to be compatible with both Friedmann Equations.

As stated earlier, observations strongly indicate that we do not exist within an Einstein
static universe, but this discovery has not retired the constant. Once again consider a situation
with no cosmological constant Λ = 0 but now we are in the antithesis of the Einstein static
universe, one of which the universe is open or flat k ≤ 0 and is accelerating in its expansion
(ȧ > 0, ä > 0). Once again under the presumption that P ≥ 0 and ρ ≥ 0 one is unable to
prevent deceleration in the equation 1.21. However, with constant inclusion, we now have
the freedom to accelerate a flat or open universe.

The rest of this thesis will presume the existence of the cosmological constant, but it is
probably best to consider the Λ as the mathematical framework that allows acceleration
within GR as opposed to a complete explanation. One does not even have the freedom
of treating Λ as a ‘quick fix’ as it has physical interpretations that have led to legitimate
criticisms (Solà, 2013).

This physical interpretation comes from particle physics. By modelling the universe as a
scalar field, φ one can re-write the energy-momentum tensor regarding kinetic and potential
energies.

Tµν =
1
2

∂µφ∂νφ +
1
2
(gρσ

∂ρφ∂σ φ)gµν −V (φ)gµν , (1.22)

where ∂ = ∂/∂xµ are partial derivatives and V (φ) the potential of the field. One can
consider the tensor in a vacuum where there is no kinetic energy ∂µφ = 0 and the potential
energy has been minimised V (φ) = V (φ0) where φ0 is the value of φ that gives the minimal
potential. Thus the vacuum tensor can be written (Weinberg, 1989) as

T vac
µν =−V (φ0)gµν =−ρvacgµν , (1.23)

where ρvac is the vacuum energy density. One can make this equivalence in the equation 1.23
within the context of GR. This would be all that is left within the tensor. By rearranging the
equation 1.12 one can consider the cosmological constant in the same manner as

Gµν = 8πG(Tµν +ρvac), (1.24)
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where Gµν = Rµν − gµνR/2+Λgµν and ρvac = ρΛ = Λ/8πG. Under this rearrangement,
the cosmological constant and vacuum energy are equivalent.

With this interpretation, Λ should reveal itself beyond just accelerated expansion but
through other observations. One such example of vacuum energy comes from the Casimir
Effect. Quantum theory suggests vacuums have zero-point energy in the form of normal
vibration modes. To observe such energy, if one were to add 2 flat conducting plates very
close together, the plates would act like boundary conditions limiting the available vibrations
modes; thus, the zero-point energy between the plates would be lower than outside the plates
causing a small inward force. Such a force has been postulated as the following (Casimir,
1948),

F
A
=

ℏcπ2

240d4 = 1.30×10−18 dyn cm2 d−4, (1.25)

where d is the distance between the 2 plates and ℏ = 1.0545718× 10−34 m2 kg s−1 is the
reduced Plancks constant. This theoretical result was later verified (Sparnaay, 1957) by
measurements of the force per area being 2.50±1.5×10−18 dyn cm2 d−4. With that said,
The Casimir Effect being evidence of zero-point energy has been criticised (Bordag et al.,
2001) as one can get to the same theoretical prediction through the use of the van der Waals
forces (Jaffe, 2005). While this is the case, the simplest explanation is the zero-point one.
Thus the Casimir Effect continues to hold under Occam’s razor.

There would be many other theoretical contributions towards this vacuum energy, such as
the potential energies of scalar fields such as the Higgs Field (Bass and Krzysiak, 2020) but
the most dominant would be the zero-point energy which is up to the Plank scale (the scale
of which Quantum Field Theory works up to) one predicts a quantum fluctuations energy
of ρPL

Λ
∼ (1018 GeV)4. However, when one observes the vacuum energy density required

to explain the accelerated expansion, we observe we produce ρobs
Λ

≤ (10−12 GeV)4 (Carroll,
2000) This means the theoretical prediction is 120 magnitudes larger than observational
limits (Weinberg, 1989). This is one of the most significant errors in all physics (although this
discrepancy has been reduced from 120 magnitudes to the still very high 30 if one expresses
the energy density as a Mass ρΛ = M4

vac).
This issue has led to many alternative theories being studied to eliminate the constant.

For example, generalised ‘ f (R)’ General Relativity (Capozziello et al., 2018) looks for
modifications to the field equations themselves. Quintessence (Capozziello et al., 2003)
which adds a single slow-rolling scalar field with minimal coupling to gravity, producing a
potential that acts similarly to the cosmological constant and the inclusion of string theory
and attempts at a unifying theory for quantum gravity (Polchinski, 2006),(Dvali et al., 2000).
Nevertheless, none have yet produced convincing results or made observable predictions.
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1.4 Standard model

Through the Friedmann equations and the cosmological constant, we now have a framework
in which a homogeneous and isotropic universe can not only expand but accelerate in its
expansion. However, they are not yet solvable in this state as we have 3 unknown variables
P,a,ρ . The pressure, scale factor and density, respectively. To solve 3 variables, a 3rd
equation is required, which comes in the form of the continuity equation:

ρ̇ +3
ȧ
a
(ρ +P) = 0, (1.26)

which can be derived directly from the 1st law of thermodynamics dE =−PdV +dQ or by
applying the energy conservation equation ∇νT µν = 0 to the fields equations. However one
still cannot solve 3 variables as not all 3 equations are linearly independent (this is proved by
the fact that one can combine equations 1.20 and 1.21 to produce equation 1.26). Instead, one
has to use a property of a perfect fluid that has a barotropic equation of state. The pressure
can be described as a function of density exclusively,

P = wρc2, (1.27)

where w is a dimensionless constant. Although more commonly known as P = wρ when
c = 1 By substituting P with equation 1.27 in equation 1.26 and integrating one produces a
(ρ,a) relationship,

ρi = ρi0(
a
a0

)−3(1+wi), (1.28)

where ρi0 and a0 are the present values of the density and scale factor, respectively (though
usually a0 = 1), and i represents the different i-fluids. The equation refeq: relationship
is indeed a solution to the differential Friedmann equations, but they are useless without
understanding the different density ρi components and their respective equation of state
constants wi.

1.4.1 Densities

Different components of the universe will have different equations of state. The most obvious
is that we see radiation and matter within our stars. To define their equations of state, we
assume matter acts as an ideal gas. An ideal gas assumes point particles (they take up
no volume) randomly moving with little inter-particle interaction except for direct contact.
Both are acceptable for cosmological use as the vast volume of space means any matter is
effectively point-like. The same can be said for randomly moving in any direction as the
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universe is isotropic (no preferred direction), and little interaction as the space between matter
is so significant that any gravitational interaction would be minimum. It can be considered a
direct collision when it would not be minimum.

The ideal gas law states that PV = nRT = NkT where P,V,n,R,T,N,k are pressure,
volume, number of moles, the gas constant = 8.31 J mol−1 K−1, temperature, number of
particles and the Boltzmann constant = 1.38× 10−23 J K−1 respectively. the law can be
rearranged in terms of pressure and density ρ ,

P =
ρ

µ
kT, (1.29)

where µ is the average particle mass. By using Newton’s second law F = ma where F,m,a
are force, mass and acceleration one can define PV = Nµ v̄2/3 where v̄ is average particle
velocity. Combined with the ideal gas law leads to kT = µ v̄2/3, which gives a final particle
pressure of

P =
1
3

ρ v̄2. (1.30)

Relating the equation 1.30 to the equation of state 1.27 gives a particle equation of state-
dependent on ρ and v̄

w =
v̄2

3c2 . (1.31)

We categorise the density by the assumed v̄. In the case of matter, we state that the velocities
are non-relativistic (v̄ << c) whereas radiation velocities are relativistic (v̄ ≈ c), leading to
the following equations of state:

w =

0, matter
1
3 , radiation

. (1.32)

As stated previously, the cosmological constant can be interpreted as a density ρΛ = Λ/8πG
and thus, under our current model, must also have an equation of state. Due to Λ being
constant (no time dependence) one can differentiate its density by time (ρ̇ = 0) which when
applied to the continuity equation 1.26 reveals that ρ =−P and thus

wΛ =−1. (1.33)

To keep consistent with how we have interpreted the components above, one can also write
the universe’s curvature in terms of density. In the same vein, as previously shown, we can
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rearrange the equation 1.20 to give the curvature energy density ρk,

ρk =
3k

8Gπa2 . (1.34)

This shows that ρk ∝ a−2 which when related to our solution from the equation 1.28 implies
an equation of state of wk =−1/3.

In terms of usable parameters within a ΛCDM model one usually does not use the raw
density ρ instead it is usually normalised to the critical energy density ρcr,0 = 3H2

0/8πG
which is the density value one gets from equation 1.20 if we set k = 0 and only account for
present-day (a = a0 = 1) and include ρΛ within ρ . Current values based on our understanding
of H0 have this value at ρcr,0 = 1.878 h2 ×10−29 g cm−3.This allows us to define our density
parameter as

Ω =
ρ

ρcr,0
. (1.35)

Under this definition, all the density parameters (matter, radiation, constant and curvature)
should add up to 1, provided we live within a flat universe. We can now use the Friedmann
equations with our equations of state, density solutions from equation 1.28 and the redshift-
scale factor relation from equation 1.7 to understand how energy densities have changed with
expansion and redshift,

H = H0

√
Ωr0(1+ z)4 +Ωm0(1+ z)3 +Ωk0(1+ z)2 +ΩΛ. (1.36)

Constraining the values of these present-day density parameters is a large part of current cos-
mology. Especially in the case of weak lensing (see Chapter 2), Ωm is of utmost importance,
so it is worth clarifying. Ωm is the parameter for what is usually known as ‘cold matter’ or
‘dust’ where the cold in its name comes from being of low-kinetic energy compared to its
mass-energy (or, as we saw earlier, has very low non-relativistic velocities compared to the
speed of light. Matter itself can also be split up into 2 sub-components Ωm = Ωb +ΩCDM

where b and CDM refer to baryons and cold dark matter respectively.
Baryonic matter refers to everything in the universe one might classically consider as

‘stuff’, from every star to every planet, although most of it exists as diffused hot gas around
galaxies. In cosmology, we consider baryons to be all the neutrons, protons and electrons,
although strictly speaking, electrons are leptons in the context of particle physics. The
guiding principle to what is considered a baryon is that their velocities are non-relativistic (
so do not include neutrinos), interact with light, and can be directly observed.
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On the other hand, what we cannot directly observe through light interactions is Cold Dark
Matter ΩCDM. Very little is known about CDM besides that it interacts gravitationally but
not electromagnetically. The reason for its introduction (and its importance going forward
in this thesis) is that current observations of the universe cannot be explained through the
gravitational attractions of baryonic matter alone. The most obvious is the rotation curves
of galaxies. This refers to the orbital velocity of stars around a galaxy. To mathematically
simplify, if we assume that Newtonian gravity is enough to explain the motion of stars within
and around a galaxy, most of the galaxy’s mass is concentrated within a laboratory radius R.
Under these assumptions, one would expect the orbital velocity outside of this region to be
the following:

v2
cir =

GM
r

, (1.37)

where vcir is the orbital velocity, G is Newton’s Constant, M the galaxy’s mass and r the
radius from that galaxy. One can see that the vcir ∝ 1/

√
r. This does not, however, match

with observations. As we can see in Figure 1.2, where the bold line is the rotational curves
of NGC (New General Catalogue) 6503, a dwarf spiral galaxy approximately 17 million
light-years away (Young, 2017) vc does not go down at r−1/2 but instead remains constant.
If one were to relax our assumption of all mass being within radius R (the disk) and allow
gas on the outskirts, the gas contribution is still insufficient. Instead, one must model a halo
(dot-dash) of ‘extra mass’ (Dark Matter) to explain the curves. This observation is not limited
to HGC 6503 but has been observed in 1000s of galaxies (Catinella et al., 2006) including
our own, the Milky Way (Sofue and Rubin, 2000). Tracing the 21cm line of atomic hydrogen
has allowed us to observe the constant nature of the velocity curves to continue for at least
10s of kpc away from the galaxy (Munoz et al., 2006). This evidence indicates that almost all
galaxies contain at least 4 times as much dark matter as they do stars, gas, and dust (Gelmini,
2015) and in the case of smaller dwarf or low surface brightness galaxies, as much as 95% of
their mass is DM (Young, 2017).

One of the strongest direct observations of dark matter allows us to relax our Newtonian
gravitational assumptions. This direct observation was the ‘bullet cluster’ (Clowe et al.,
2006). The cluster 1E-0657-558 (Tucker et al., 1998) contains 2 main galaxy concentrations
that have recently collided (∼ 100 Myr ago). We presume they have recently collided as
their X-ray-emitting baryonic gas is concentrated in the cluster’s centre, whereas their visible
light-emitting galaxies are still separated. This is consistent with a model in which galaxies
act like collisionless particles (as the chance of a direct galaxy collision is so low), whereas
the gasses around the galaxies experience ram pressure slowing them down. Under these
conditions, the galaxies have been decoupled from the X-ray plasma. Thus, observations of
the cluster’s gravitational potential should be at the centre of the cluster where the plasma
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Figure 1.2: In rotational curves of galaxy NGC 6503, the dark line is observed while the dashed lines
are the theoretical components (Freese, 2008).

(and thus the majority of the cluster baryonic mass) exists. An observation of the gravitational
potential can be made through weak lensing (see chapter 2), which gives us a 2-D κ-map
of the cluster as seen in Figure 1.3. The κ-map roughly follows a map of the gravitational
potential; thus, one can see the gravitational potential is placed with the galaxies, not the
plasma. The spatial offset between the centres of the baryonic mass peaks and the centres
of the total mass is detected to 8σ significance.This contradicts a baryonic-only universe
and indicates that most of a cluster’s mass is with DM halos surrounding the galaxies. As
with the rotation curves above, this is not an isolated event. In fact, through analysing data
from Chandra and Hubble Space telescopes, an investigation took place on 72 cases of
galaxy cluster collisions (Harvey et al., 2015) all at different angles and times about earth
observers. This is crucial as a criticism of interpreting a single observation is that due to
Figure 1.3 only being a 2-D image, the effects may be caused by unseen masses along the
line of sight. Due to the 72 case analysis, they concluded to 7.6σ significance that most of
the cluster’s mass lies around the galaxies as halos as opposed to the surrounding plasma.
The cluster merger studies not only provide compelling evidence for the existence of DM but
also provide an insight into its physical nature. As the DM from the 2 galaxy concentrations
passed through each other with no observable drag, it indicates that DM not only does not
interact with matter (as it passed through the gas unaffected ), but it also does not self-interact
(as it passed through more DM). If one was to interest DM as a particle, one can measure
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Figure 1.3: left: Optical image of merging cluster IE 0657-558, the white bar indicates 200kpc
while the blue plus the centre of the plasma clouds, the green contours are the κ maps, and the white
contours are errors in the κ-peaks at 68.3% 95.5% and 99.7%. right: Same as left but with a 500ks
Chandra image indicating the position of the plasma. (Clowe et al., 2006).

its self-interaction cross-section based on these 72 cases to be σDM/m = 0.47 cm2 g−1 to 2σ

significance. Above were 2 of the most significant findings in evidence for DM, but others
do exist as well, such as the observation of hot gas in the centre of galaxy clusters such as the
Coma Cluster (Briel and Henry, 1997) were without the presence of DM creating potential
well the hot gas would have evaporated out the cluster. Observations of the radial velocity
dispersions of galaxies also in the Coma Cluster showed them not to be explainable with the
visible matter alone (Zwicky, 1937).

Although evidence supports the existence of DM, the fact that it is so weakly interacting
(both with itself and matter and photons outside of gravitational) and that it has not been
detected within a laboratory means our understating of what DM is considerably low. Thus a
level of scepticism over its existence still exists. Furthermore, there are some challenges to
our current understanding of DM. Areas where observation contradicts our current DM model
(Weinberg et al., 2013). A case in point is the ‘core-cusp’ problem; current cosmological
simulations predict that DM halos have a ‘cusp-like’ structure where the dark matter distribu-
tion is sharply peaked at the centre. In contrast, observations of galactic velocity rotation
curves indicate a flat constant core dark matter profile. Thus, our understanding of DM
predicts too much matter in the 1st few central kpcs of typical galaxies (Alam et al., 2001).
Another issue is most well known as the ‘missing satellite’ problem. CDM is predicted to
preserve fluctuations even at small scales due to its non-relativistic and weakly interacting
nature. These preserved small-scale fluctuations should be observable as satellite galaxies
orbiting large galaxies (such as the Milky Way) of the order of 50-200 (Moore et al., 1999).
Pre-2000 current observations contradicted this prediction, with only 9 faint dwarf galaxies
being detected to be orbiting the Milky Way (Klypin et al., 1999). However, in the last 2
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decades, further observations by SDSS (Willman et al., 2005) and DES (Nadler et al., 2019)
have found enough satellite galaxies in small patches that one can extrapolate that across
the total halo volume, the missing satellites would be found (Koposov et al., 2007). Very
much related is the ‘too big to fail’ problem (Boylan-Kolchin et al., 2011a) which again
looks at satellite galaxies and sub-halos. In the same way that CDM would preserve small
fluctuations, it would also preserve slightly larger ones. Thus one expects to find massive
sub-halos. However, current observations of the Milky Way have found that the largest
sub-halos we are aware of are still 5 times smaller than expected (Boylan-Kolchin et al.,
2011b). This problem is not restricted to the Milky-Way either, as similar discrepancies have
been found in our closest galactic neighbour, the Andromeda galaxy (Tollerud et al., 2011).
Although the argument can be made that we have not observed the massive subhalos because
they are ‘dark,’ i.e. do not contain bright dwarf galaxies, this goes against our understanding
that massive halos host galaxies seem unlikely.

Due to the problems mentioned above and the continued issue of a lack of CDM particle
confirmation, alternative ideas to CDM have been theorised. Modified Newtonian dynamics
(MOND) (Milgrom, 1983) is the most notable. The reasoning behind MOND is not to
remove CDM but to explain why the gravitational fields act as if they require more mass than
the baryons offered by the baryons alone (Famaey and McGaugh, 2011). The idea behind
the modification is that our understanding of gravitational dynamics is limited to the high
acceleration environments of our solar system and that outside the core of our galaxy, stars
accelerate at a much slower pace; thus, Newton’s 2nd law of motion can be rewritten:

Fg =

GMm
r2 , a ≫ a0

GMma0
ar2 , a ≪ a0

, (1.38)

where Fg,M,m,r,a is the gravitational force, the masses of the 2 objects, and their relative
radius and acceleration of 1, whereas a0 ∼ 10−10 m s−2 is the typical acceleration of stars in
a galaxy. In other words, in the regime of the solar system, a ≫ a0 Newtonian dynamics stay
touched, whereas, for galactic dynamics (especially those on the outskirts), the dynamics
change, leading to a new centripetal velocity of

vc(a ≪ a0) = (a0GM)1/4, (1.39)

a velocity independent of r can lead to the constant nature of observed velocity curves.
Relativistic extensions to MOND have also been suggested, such as the Tensor-vector-

scalar theory (Teves) (Bekenstein, 2004) which attempts to make the theory compatible with
structure formation. The modifications would solve issues such as the velocity curves without
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needing CDM. However, the theory has been tightly constrained due to observable evidence
( the Bullet Cluster), which successfully decouples the mass of the galaxies from its baryonic
matter, which is incompatible with MOND. Many MOND alternatives would still require
their CDM equivalent to agree with the most recent observations (Ferreras et al., 2012).

Given these discrepancies, we will continue with the primary interpretation of DM, an
unknown particle. However, given our current understanding, we can make some assumptions
about the type of particle we expect DM to be:

• It would be a particle that does not carry electrical or colour charges (due to lack of
photon interaction evidence and known exotic isotopes).

• It would have been produced early in the universe (as required with current simulations).
Thirdly would have to be stable to be here still today.

• They would interact gravitational (to solve all the issues seen above) but self-interact
incredibly weakly (bullet cluster).

The candidates for the dark matter particle (sometimes referred to as χ) can be roughly
classified into camps. WIMPS (Weakly Interacting Massive Particles) and non-WIMPS.
WIMPS usually have masses in the range of mWIMP ∼ 10Gev−Tev and are so far the studied
group due to them appearing in other particle theories, having the correct relic density and
offering the most straightforward chance of confirmation by the detection (Feng, 2010).
Below are the 2 leading WIMP-type candidates :

• Neutralinos. A popular particle physics theory beyond the standard model is supersym-
metry (Martin, 1997) which introduces a new set of particles that only differ in their
spin from our current particles. The neutral spin 1/2 new particles can mix to form
other particles, one of them has a mass and interaction cross-section inline current
WIMP models

• Kaluza-Klein Dark Matter. Particles produced through the universe having more spatial
dimensions in a theory known as Universal Extra Dimensions (USD) (Appelquist et al.,
2000). One of these extra particles is light and stable enough to be a WIMP candidate.

Others exist, such as T-odd particles (Birkedal et al., 2006) and Branons (Cembranos et al.,
2003), but much less work has focused on them. Below is a summary of non-WIMP
candidates that could also be (or contribute towards) dark matter.

• Axion. Originally proposed to solve the strong CP problem, a new pseudoscalar field
is introduced leading to an extremely light and weakly interacting particle (Asztalos
et al., 2006).
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• Sterile Neutrinos. One can introduce right-handed neutrinos for their mass terms to be
allowed. They must not interact with any standard model particles (thus sterile).

• Weak-Scale Gravitinos. An example of a SUPERWIMP (Feng et al., 2003). Like
WIMPS, they have the correct relic density but much weaker interactions. They exist
within supersymmetry as the spin 3/2 partner to the Graviton (Ellis et al., 2003).

As with WIMPs, countless more candidates exist, especially in the realm of ‘hidden dark
matter’ (Feng, 2010) where particles can exist without standard model interactions.

It is worth noting that outside of new gravitational theories and individual unknown
particles, there is a third possibility of explanation for the matter discrepancy in the form of
large astronomical objects. Examples of said objects include Massive compact halo objects
(MACHOs), which suggest that dark matter may be very dim stars, such as brown dwarfs
(De Paolis et al., 1998) that have so far been undetected. However, recent microlensing
surveys have ruled out the possibility that MACHOS can substantially contribute to dark
matter (The MACHO collaboration et al., 2000). Similarly, Massively Compact Objects,
which are dense pieces of non-radiating matter, such matter should be detectable in the
lensing of supernovas, but current supernova observations have ruled out their possible
significance (Metcalf and Silk, 2007). Lastly, primordial black holes produced in the early
universe are small enough not to be ruled out as DM candidates. These possibilities for
non-particle explanations have already been mostly ruled out or considered unlikely so we
will continue with the general particle explanation.

Regarding finding these possible Dark Matter Candidates, the experiments can be loosely
classified into 3 categories; direction detection, indirect detection and laboratory production
(Heros, 2020). Therefore, we will briefly explore these 3 classifications.

Direct detection experiments use presumed dark-matter-nucleus interactions to produce
nuclear recoils. The number of recoils one gets (does not get) helps constrain possible dark
matter particle mass and cross-section (mχ ,σχ ). The most known example is DAMA/LIBRA
(Bernabei et al., 2018) a detector 1400 m underground in Italy. This detector takes advantage
of the earth’s annual modulation in velocity around the milky way due to it orbiting the sun
(as orbital velocity and the velocity of the solar system are not always in the same direction.
Thus the number of dark matter interactions on the earth will also modulate annually. A
modulation that has now been detected to 9.5σ . These modulations, dark matter detections,
have been under scrutiny because they suggest a WIMP mass and cross-section that has so
far been disfavoured by every other experiment (Heros, 2020). This can be seen in Figure 1.4
where the DAMA results (pink contours) fall in disfavoured regions of mass and cross-section
(green). Such contradictions have been met with opposing arguments. One of them suggests
the modulations in the DAMA data are caused by cosmic ray background (Blum, 2011) not
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Figure 1.4: Experimental limits on current Dark matter - nucleus detection experiments. Regions
above lines are disfavoured at 90% confidence. The regions labelled ‘DAMA’ are the detections of
the DAMA/LIBRA experiments (Heros, 2020).

Dark matter, and another suggests that the DAMA experiment’s unique choice of Isotopes
that contain an odd number of protons, i.e. Na(11) and I(53) are the reason they are detecting
Dark Matter. In contrast, similar even number proton experiments do not (Arina et al., 2015).

Other examples of direct detection include Cryogenic Dark Matter Search (CDMS(Agnese
et al., 2013), the Germanium Neutrino Technology (CoGeNT) (Aalseth et al., 2013) and the
Cryogenic Rare Event Search with Su- superconduction Thermometers (CRESST) (Angloher
et al., 2012). All of which to date have ether constrained mχ ,σχ further or had detected
ions with extremely conflicting results. However, new detectors such as the European
Underground Rare Event Calorimeter Array (EURECA) hope to explore lower mass regions,
yet unchecked (Kraus et al., 2009).

Alternatively, one can use indirect detections. These detections presume that as Dark
matter gravitation attracts more dark matter in heavy objects (galaxies and stars etc.), the
Dark matter will either annihilate itself (as Dark matter may well be its anti-particle) or decay.
Either way, this should lead to a detectable flux of photons, neutrinos or cosmic rays (Kunnen,
2015). Using the centre of the sun (Murase and Shoemaker, 2016) or earth (Aartsen et al.,
2013) as sources of this neutrinos flux are desirable for detectors such as neutrino telescopes
for 2 reasons. Only neutrinos would escape the centres, and neither the sun nor the earth
produces high-energy neutrinos, thus reducing background noise. In both cases one has to
assume that the mass has reached an equilibrium between capturing exterior dark matter
and annihilating interior dark matter. As seen in previous studies, this assumption limits the
dark matter mass and cross-section. Figure 1.5 shows such limits from 3 such detectors as
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Figure 1.5: Experimental limits on current Dark matter - proton cross-sections from indirect detection
(Aartsen et al., 2017).

ANTARES (ANTARES collaboration et al., 2016), Ice-Cube (The IceCube Collaboration
et al., 2015) and Super-K (Choi et al., 2015) for the full annihilation to bb̄,W+W−,τ+τ−.

For the case of earth indirect detections, one has to assume a value for the annihilation
cross-section to constrain the dark matter-nucleon cross-section. Alternatively, one can
search for dark matter through galactic centres where one searches for increased fluxes in
gamma rays and neutrinos, such as with the High Energy Stereoscopic System (HESS),
which uses five Imaging Atmospheric Cherenkov Telescopes located in Namibia to observe
high-energy gamma-rays from the galactic centre of the milky way (Moulin, 2019). Cosmic
ray detections have also been made that can be attributed to dark-matter annihilation, but
more straightforward non-dark matter explanations involving supernovae remnants have also
been suggested.

As stated, indirect detection of gamma rays, cosmic rays and neutrinos from the centre of
galaxies brings about an issue not found with an indirect observation from the sun or centre
of the earth; background noise. This is mainly due to uncertainties in the many astrophysical
processes between the galaxy’s centre and our observation. This issue may be solved
through the search for anti-deuterium d̄, a secondary particle produced by WIMP annihilation
associated with minimal amounts of background. This is mainly because the calculated peak
production of d̄ by dark matter takes place at low kinetic energies, whereas the background d̄
produced by cosmic rays are at much higher energies. Such a difference in kinetic energy
makes deciphering, which is caused by dark matter, much more accessible, thus significantly
reducing background noise (Donato et al., 2000). Due to this lack of background noise,
the search for d̄ is being considered as a viable next step in the constraining of dark matter
particle parameters (Randall and Xu, 2020) and thus has many current efforts trying to detect
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d̄ such as the General Antiparticle Spectrometer (GAPS) (Aramaki et al., 2015) and the
AMS-02 (Cholis et al., 2020).

The final form of detection is from laboratory production or, more specifically, from
collider experiments. Large particle colliders constantly search for new particles that could
include new dark matter candidates or those already mentioned above. Proposals are currently
being considered at multiple sites, including The European Organization for Nuclear Research
(CERN), Jefferson Lab (JLAB), Fermi National Accelerator Laboratory (FNAL) and the
Stanford Linear Accelerator Center (SLAC) (Heros, 2020). Such particle detectors would
offer a level of precision simply not available from the other methods of detection mentioned
above. However, there are some significant limitations in this classification. Firstly since the
indicator of a dark matter interaction is a change in expected energy, many model assumptions
have to be made to connect the energy change to a dark matter cross-section (as opposed to
direct detection, which measures the cross-section directly). Secondly (and potentially more
damning), any discovery made through collider experiments would discover, at best, a dark
matter candidate but would not be able to link that candidate to the actual substance currently
holding our galaxies together without coupling it with an astrophysical observation. With
this in mind, direct and indirect observation are still the best case for discovering dark matter
going into the future.

1.4.2 Distance Measures

As redshifts are the main focus of this thesis, it is worth noting that they are not an allegory
for distance but a measure of how much expansion has occurred between the photon being
emitted and observed. The exception is at low redshift when one can produce a linear
relationship between redshift and distance

z ≈ d
DH

, (1.40)

where d is distance and DH is the Hubble distance which is defined as

DH ≡ c
H0

= 3000h−1Mpc = 9.26×1025h−1m, (1.41)

where h is a dimensionless parameter that expresses our uncertainty in H0 thus (0.6< h< 0.8).
However, usage of this distance approximation may not apply in cosmological studies,
especially at high redshift (Fairall et al., 1992). The relationship between redshift and
expansion becomes very parameter-dependent. This becomes clear as we redefine the
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equation1.36,

E(z) =
√

Ωr0(1+ z)4 +Ωm0(1+ z)3 +Ωk0(1+ z)2 +ΩΛ, (1.42)

where H(z) = H0E(z). This defines a function dependent on redshift that’s proportional to
the logarithm of the scale factor. As this expansion rate changes with time and redshifts, the
definition of ‘distance’ is becoming less defined. Depending on the method used to measure
distance, one may acquire different values entirely at different points in time, as shown below.

The closest one can probably get to an accurate distance measure is comoving distance,
which is the distance between 2 objects if we ignore the main complication, which is the
scale factor. Suppose we consider the simplified case, a galaxy in our line of sight of known
redshift z. Then, we can redefine our equation 1.5 in the comoving coordinate χ ,

ds2 =−cdt2 +a2dχ
2. (1.43)

Taking the case of light, where ds= 0 (a null geodesics), we can formally define the comoving
distance between 2 radial objects,

DC = χ =
∫ t0

temt

cdt
a

=
∫ 1

a

cda
a2H

=
∫ z

0

cdz
H

= DH

∫ z

0

dz
E(z)

, (1.44)

where dt = da/aH and da =−a2dz. It is clear that when we consider low redshift distances
where E(z)∼ 1, then the comoving distance rediscovers the linear relationship defined in
equation 1.40.

We can now consider different types of measures. One such example is the angular distance.
If we consider the object in the sky of known diameter by measuring the angle of separation
across its diameter, we can work out how far away it is as simple as d = diameter/θ given
θ ≪ 1. We can then relate the diameter distance (angular distance) dA to the comoving
distance

dA = a(t)χ =
DC

1+ z
. (1.45)

This particular equation shows the looseness of which something can be defined as the
‘distance’ as from Figure 1.6.a one can see that dependent on your model, objects of known
sizes that appear to have the same diameter when observed can be at 2 completely different
redshifts. In fact, after a point, objects that appear angular distance-wise ‘closer’ have larger
redshifts.

Similar complications appear for another measure of distance; the luminosity distance.
This distance refers to the idea that objects further away appear less bright; thus, if an object’s
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Figure 1.6: The ratio of different distance measures to the Hubble distance against redshift. The
curves represent different models of (ΩM,ΩΛ), solid (1.0,0.0), dotted (0.05,0.0), dashed (0.2,0.8). left:
angular diameter distance. right: Luminosity distance (Hogg, 1999).

intrinsic brightness is known and compares it to the observed brightness, one can deduce its
distance (just as the angular distance uses a known intrinsic size). More precisely, we define
the luminosity distance DL as the distance that follows the following relation between the
object has observed flux F and its intrinsic luminosity L:

Fobs =
Lint

4πD2
L
. (1.46)

Under the assumption that the photons spread equally along the surface of a sphere around
the object. Due to the expansion of the universe, the luminosity of the object does stay
constant, with the intrinsic luminosity defined as Lint = dE/dt and the observed luminosity
as Lobs = dE0/dt0 2 factors must be considered. Firstly as stated in equation 1.7 photons
redshift so their observed energy decreases as dE/dE0 = 1/1+ z. Secondly, time intervals
also change depending on expansion, as shown with the equation 1.43when ds = 0 if the
universe expands, so are the time intervals as dt/dt0 = (1+ z) and so one can relate both
luminosities as a function of redshift:

Lobs =
dE0

dt0
=

dE
dt(1+ z)2 =

Lint

(1+ z)2 . (1.47)
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Presuming a photon has travelled with a comoving distance Dc accounting for the extra
factors, this would give the following flux relation

F =
Lobs

4πD2
c
=

Lint

4π(Dc(1+ z))2 , (1.48)

where we have omitted the modern-day scale factor as we presume a0 = 1. By relating to the
equation 1.46, we can define the luminosity distance as a function of redshift

DL = Dc(1+ z). (1.49)

As with angular distance, the redshift dependency means the change in flux one expects
changes with the cosmological model as seen in 1.6.b. The angular and luminosity distance
can be related through Etherington’s distance duality relation (DDR) (Etherington, 1933)

DL = (1+ z)2DA. (1.50)

DDR represents a testing ground for some of the cosmologies’ more fundamental assumptions.
Due to DDR being a ratio only dependent on redshift, it should hold regardless of choices
of Ωm/Λ/γ/κ . The relation only requires photon numbers to be conserved, photons to follow
null geodesics and space-time to follow a metric. An expanding universe is not even required
as this would lead to z = 0 for all areas of space, making DL = DA; thus, any observations
against the relation would be significant.

Various forms of parameterisation have been suggested to investigate the validity of DDR.
Previously DDR has been parametrised using DL = DA(1+ z)2+ε where DDR would be
valid for the case of ε = 0. Such an example of this approach was through the testing of
cosmic-opacity (Avgoustidis et al., 2010); DDR relies on the conservation of photon counts
as a change in photon flux would not change angular distance but would change luminosity
so one can determine that the observed luminosity distance may be affected by the photons
being lost from source to observation

D2
L,obs = D2

Ltrue
eτ(z), (1.51)

where τ(z) is an opacity parameter that to first-order approximation is τ(z) = 2εz. Such
change in flux can be due to obvious astrophysical sources such as interactions with dust.
However, the clustering nature of said sources can be mostly avoided, leading to a sub
per cent level of constraint on their effects. Instead, the study of cosmic opacity comes
from the possibility of exotic particles coupling with photons in a so-far unknown way.
DL measurements of SNe type 1a were compared to measurements of H(z) so that in the
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redshift range of 0.2 < z < 0.35 cosmic opacity was constrained to τ < 0.012 which leads to
a DDR parameter constraint of ε =−0.04+0.08

−0.07 (Avgoustidis et al., 2010) thus expressing no
violation of DDR.

The above example was particular. Modern studies use a more generalised function to
represent possible violations in DDR, mostly through the use of a η(z) function

DL

DA
(1+ z)−2 = η(z), (1.52)

where a violation to DDR would be where η(z) ̸= 1. The advantage of such a function is
that it opened the doors to trying different parametric models, such as

η(z) =


1+η0

1+η1z

1+η2
z

1+z

, (1.53)

where both η0, η1 and η2 must be 0 to ensure DDR.The motivation behind the use of multiple
models is that they mimic the possible expression for an equation of state for different dark
matter models (Cao and Zhu, 2014) such as one with a constant equation of state (η0) or
more time-varying models (η1,η2). The first 2 models are continuous and smooth, whereas
the latter has a correction to prevent divergence at high-z. All models must comply with
the idea that DDR holds at z → 0. Such examples of work include the study of galaxy
clusters, specifically measurements of the Sunyaev-Zeldovich effect (SZE) and X-ray surface
brightness to gather DDR values of η1 =−0.056+0.1

−0.1 and η2 =−0.088+0.14
−0.14 all in agreement

with DDR (Holanda et al., 2011). While most recent studies have suggested a combination
of radio quasars and gravitational waves, specifically 120 intermediate-luminosity quasars
with redshifts ranging from 0.46 to 2.80 were observed with the Very Large Baseline
Interferometry (VLBI) (Cao et al., 2017) to estimate DA, this was then combined with DL

estimates through simulated gravitational wave observations to find DDR to be verified to
a precision of 10−2 (Qi et al., 2019). The gravitational waves were simulated as current
wave detectors such as the LIGO/Virgo collaboration (Abbott et al., 2016) to detect a limited
amount of events to be used for such analysis. Instead, simulations were based on future third-
generation detectors such as the Einstein Telescope (ET), which could be making observations
as early as 2035 (Maggiore et al., 2019) by which time quasar observations would have
expanded to possibly allow precision of ∆η = 10−3. The advantage of a gravitational wave-
based approach is that one can obtain a luminosity distance that is completely independent
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of photon-number non-conservation (Schutz, 1986) allowing constraint on exotic particles
alone.

1.4.3 Perturbation

The model, as summarised by the equation 1.36 is enough to make broad statements on
cosmological scales. It is even enough to discover the nuances of which different measure-
ments of distance change in value depending on their redshift, as seen above. However,
we do not live in an FRW universe mostly because (as stated previously) an FRW universe
requires homogeneity. Although this may be true on the largest scales (≥ 200 Mpc), the
fact that we have dark matter haloes, galaxy clusters, and stars is evidence of a disparity
in matter densities or, more generally, non-homogeneity. Instead, we model our universe
as a perturbed FRW universe. This is achieved by presuming the background universe is
homogeneous, but, at any particular point in space, they may be a small difference where
that small difference is defined within the metric as

δgµν = gµν − ḡµν , (1.54)

where δgµν ,gµν , ḡµν are the perturbations, true metric and mean homogeneous metric. Such
a change in metric would lead to similar changes in the Ricci tensor ie.Rµν = R̄µν +δRµν .
Perturbations in the Stress-energy tensor are not as linear as it’s components that are perturbed
linearly such as its physical density δρ(η ,x), pressure δP(η ,x) and 4 vectors δρµ(η ,x).
Where x is space and η is conformal time coordinate which is defined as

η =
∫ t

−∞

dt
a
, (1.55)

so that one can rewrite equation 1.43 in a coordinate system that completely scales with the
scale factor.

ds2 = a2(η)[−dη
2 +δi jdxidx j], (1.56)

where δi j is the Kronecker delta in the case of a flat universe.
For this thesis, the details are not required, mostly because the tensor perturbations are

known as gravitational waves, are not coupled to density, and are not important for the
large-scale structure we observe in the sky. Instead, we only care for the scalar matter
perturbations, which we can redefine as the matter density contrast,

δ =
δρ − ρ̄

ρ̄
. (1.57)
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Such a definition allows us to use linear perturbation theory derived from Newtonian dynam-
ics (Ryden, 2006). We consider a perturbation as a sphere of constant density with radius r
and mass M slightly denser than the homogeneous background so that |δ | ≪ 1. Due to the
gravitational attraction of the matter, the system is dynamic with an acceleration at radius R

R̈ =−GM
R2 . (1.58)

As this is the gravitational acceleration on the surface of the sphere, as long as there is extra
mass there (δ > 0), then the sphere will collapse inwards (R̈ < 0). Using the fact that the
mass can be defined as M = πρR3/3 (which is required for the conservation of mass), we
can substitute ρ for ρ̄ in the equation 1.57to obtain the following

R̈
R
=−4πG

3
ρ̄(1+δ ), (1.59)

as M(t) ∝ R(t)3ρ one can also state that R(t) ∝ ρ(t)−1/3 = ρ̄(t)−1/3[1+δ (t)]−1/3 we can
now consider how the radius changes in the context of an expanding universe by considering
the (ρ,a) relationship in equation 1.28 for matter (w = 0) to give ρ ∝ a−1/3.

R(t) ∝ a[1+δ (t)]−
1
3 , (1.60)

R̈
R
=

ȧ
a
− 1

3
δ̈ − 2ȧ

3a
. (1.61)

Combining equation 1.59 with equation 1.61 yields

ȧ
a
− 1

3
δ̈ − 2ȧ

3a
=−4πG

3
ρ̄ − 4πG

3
ρ̄δ , (1.62)

the equation 1.62 is significant as its the equation of motion of a homogeneous universe with
small inhomogeneity. We can separate the homogeneous part from the perturbation part. By
setting δ = 0 and thus removing all perturbations we are left with an acceleration equation of
pressure-less matter in a homogeneous and isotropic universe ȧ/a =−4πGρ̄/3 which when
removed from equation 1.62 leaves us with the motion of small linear perturbations

δ̈ +2Hδ̇ −4πGρ̄δ = 0, (1.63)

this can give us an insight into the effect expansion has on the perturbations in the universe.
Consider a perturbed (δ ̸= 0) but static (H = 0) universe. This would yield an equation
of motion of δ̈ = 4πGρ̄δ which has an exponential solution. By simply putting small
perturbations in a static, pressure-less universe would grow exponentially. This is not the
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case in an expanding universe where the HḢ works as a friction term (thus, it is known as
‘Hubble friction’), slowing down the perturbation growth.

However, this is a Newtonian approximation at best. The true relativistic equation requires
the solving of fluid equations as mentioned above, which leads to the slightly modified
equation

δ̈ +2Hδ̇ − 3
2

ΩmH2
δ = 0 (1.64)

By including Ωm, the equations of motion on the perturbations are now model dependent. We
can trace how perturbation may have grown at different stages in the history of the universe
by studying equation 1.36. At high redshifts, the universe will be radiation dominated so
Ωm ≪ 1 and H = 1/2t this leads to δ̈ + δ̇/t ≈ 0 as its equation of motion has a logarithmic
solution (slow growth)

δ (t) = B1 +B2 ln t, (1.65)

whereas beyond this time when z < 0, the cosmological constant will be dominating so
Ωm ≪ 1 and H = HΛ = constant the perturbation equation of motion is δ̈ +2HΛδ̇ ≈ 0 which
has exponentially decaying solution,

δ (t)≈C1 +C2e2Hλ t . (1.66)

These equations of motion help us successfully constrain the times when perturbations can
grow. Thankfully we can consider a matter-dominated era in the universe evolution where
Ωm = 1. and H = 2/3t where δ̈ +4δ̇/3t −2δ/3t2 ≈ 0. For this the solution follows a power
law with 2 solutions; a decaying mode t−1 and an expanding mode t3/2 where perturbation
grows with expansion as δ (t) ∝ t3/2 ∝ a(t)

This, of course, has all been in the case where |δ | ≪ 1 which can help explain the
evolution of density perturbation on an initial mass scale of 105 solar masses (1 solar mass
= M⊙ ≈ 2×1030 kg). However, we require much larger perturbations to explain the structure
we see in our universe. For example, a cluster of galaxies can have a density contrast of
δ ≥ 100 in this case where δ ≫ 1 studies of growth no longer follow linear perturbation
theory, and we are forced to move to the non-linear models where higher orders of the
expansion of δ are needed around a homogeneous and isotropic universe. Due to their
complexity, we mostly rely on numerical simulations to understand the structure of this
regime. However, some analytical solutions do exist. One such solution can give a precise
result: the symmetric collapse model (Bryan and Norman, 1998). This model assumes a
symmetric density perturbation of radius R with zero velocity at its border. Under these
conditions, we can treat the perturbation as its FRW universe and apply the Friedmann
equations directly. When calculated, we find that the symmetric perturbation grows to a
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maximum size, detaches from the expansion of the background and begins to collapse until
reaching an equilibrium state. This equilibrium state is called the virial state, a state that is
stable and self-gravitating and follows the conditions of the virial theorem (Clausius, 1870)

U =−2K. (1.67)

U and K are the system’s total potential and kinetic energy. Assuming energy conservation
during the equilibrium state’s evolution, one can calculate the non-linear perturbation at
virialisation to be δvir ≈ 178. Although very simple and originally applied to a closed
universe, the result is encouraging as N-body simulations have shown that defining a density
contrast of δ ∼ 100−200 can be very successful at defining Dark Matter halos (Planelles
et al., 2014). However, structures are not perfectly spherical, and any deviation from spherical
symmetry will only worsen with time; thus, although the collapse model may be a good
approximation at early times, it is entirely unable to predict some of the very non-spherical
structures we observe today (Monaco, 2016).

Alternatively, one can use the Zel’dovich approximation (Scoccimarro, 1998). Under this
approximation, we presume the initial displacement of dark matter particles is known or
calculable and that its dynamics are entirely determined by this initial configuration of fluid
elements so that a particle’s Euclidean position is only a function of the initial Lagrangian
(initial) position q and time t,

r(q, t) = a(t)q+F(q, t), (1.68)

where F(q, t) is the displacement field which where local gravitational effects can be seen as
F = ∇Φ/4πGρ̄ . Where ∇ is the gradient vector defined as ∇ f = (∂ f/∂x,∂ f/∂y,∂ f/∂ z)
and Φ is the gravitational potential. Such an approximation allows us to approximate the
dynamics of a collapsing or expanding perturbation under local gravitational effects giving a
predicted evolution of an over density

1+δ (x, t) =
ρ(x, t)
ρ̄(t)

=
1

(1− cλ1)(1− cλ2)(1− cλ3)
, (1.69)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues to the deformation tensor ∂ fi/∂x j which is usually
aligned with the axis of an ellipsoidal structure. The Zel’dovich approximation has 2
important advantages over the spherical collapse. Firstly, it makes no oversimplification over
perturbation geometry (it can now be elliptical instead of spherical) and can remain accurate
further into the non-linear regime. These eigenvalues allow for different structures to form
that were simply not possible under the spherical collapse model, such as
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Figure 1.7: Identification of void galaxies (red crosses) within void structures (blue rings) within a
projection of a 10h−1 slab of the SDSS Data Release 9 CMASS sample (Sutter et al., 2014b).

• Void 0 > λ1 ≥ λ2 ≥ λ3 expansion along all eigenvectors.

• Sheet λ1 ≥ 0 > λ2 ≥ λ3 otherwise known as a Zel’dovich pancake where the structure
collapse along its shortest ellipsoidal axis

• Filament λ1 ≥ λ2 ≥ 0> λ3 the structure collapses along a second axis from a string-like
structure containing a central overdensity

• Halo λ1 ≥ λ2 ≥ λ3 > 0 final collapse along last axis becoming a spherical structure.

Such a structure has not only been predicted by simulation but confirmed by observation.
Such an example is the SDSS Data Release 9 CMASS sample(Ahn et al., 2012), a galaxy
survey covering 3000 square degrees of sky at redshifts of 0.43 < z < 0.7 containing 455,281
galaxies. Using a void finding algorithm called VIDE (Sutter et al., 2014a), they could
identify 10s of void-like structures filling ∼ 60% of available volume as seen in Figure
1.7. With an effective radius between 20 and 70 h−1 Mpc (Sutter et al., 2014b) voids may
be among the most significant structures in the universe. Identifying and observing voids
opens new doors of possible experimentation, primarily because of their highly low-density
environments. Studies of the voids in Figure 1.7 were found to have an average density
contrast of δ = −0.85. This allows for general relativity tests in the ‘low gravitational’
environments of which MOND predicts changes to our current understandings, as well as
tests for galaxy formation models seeing how predictions stack up on the low-density side of
the spectrum (Peebles, 2001).
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Figure 1.8: Top Left : Distribution of uniformly sampled galaxies from LCRS. Clockwise: The
clusters identified by the FOF algorithm at different FOF radii sizes, at each point, the filaments
become interconnected into a ‘cosmic web’ (Shectman et al., 1996).

Another example of these advanced perturbation structures being observed is in the case
of filaments. Filaments are the long string of galaxies that encapsulate the densest regions
of our universe, with simulations predicting them to take up only ∼ 10% of the universe’s
volume but ∼ 40% of all the matter content at z = 0. An example of observation would be
from the Las Campanas Redshift Survey (LCRS) (Shectman et al., 1996) which recorded
the angular positions of redshifts of 26,418 galaxies that were radial up to 600 h−1Mpc from
us. By taking a subsample of 5073 galaxies and collapsing the survey to a 2-D wedge, a
friends-of-friends (FOF) algorithm could be used to identify neighbouring galaxies at varying
neighbourhood radii. Through Figure 1.8 one can see that as one increases the FOF radii
size, clusters that may be the first perceived as spherical become more string-like in their
structure until they begin to interconnect connecting multiple superclusters. The analysis
found that the length scale of statistically significant filaments is 70-80 h−1 Mpc and thus the
most significant structures in the known universe (Bharadwaj et al., 2003). By statistically
significant, they meant that although > 80 h−1 Mpc filament structures exist, they arose from
chance alignments of projection effects, so they are not considered ‘real’ objects. Due to their
prominence and size, the ability of a cosmological model to produce filaments is an easy test
of its usefulness, with current observations of the filamentary structure being in agreement
with a flat low ΩM universe (Sousbie et al., 2008). These tests can be incredibly robust as
measurements of the filamentary structure seem to incentivise observation effects such as
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redshift space distortions, edge effects and incompleteness (Coil, 2013). While not covered
here in as much detail, sheet structures have also been observed through data from the LCRS,
revealing rich sheet-like structures surrounding dense regions (thus why void edges seem so
well defined) (Doroshkevich et al., 2001). While halo structures seem paramount to any dark
matter model of N-body simulation going forward.

1.4.4 Power spectrum

Although non-linear perturbations are prevalent and observable given their size and scope
(especially in the case of voids and filaments), the reliance on N-body simulations to test
theory against observation makes them less desirable and technologically more difficult (but
still essential) tests when compared to analytical solutions of linear theory. This is not to say
they can be ignored. On the contrary, in the current state of ∆ domination, density contrasts
continue to grow, breaking down the use of not only linear- perturbation theory but all
perturbative treatments outside of direct simulation; thus, a theory that connects fundamental
physics to the large-scale structure is still paramount. However, the breaking down of linear
theory is time and space-dependent, more minor scales of space break down before larger
scales, so as long as one observes a large enough scale at a high enough redshift, one can
still test perturbations against their linear theory predictions.

Which begs the question; How do we test linear theory against observation? As equa-
tion 1.64 shows the growth of perturbations over time, one may wish to test individual
perturbations by predicting and then observing δ (x, t) where x and t are any given point
in space and time. However, this approach has severe limitations, as we can only receive
observable signals within our light cone. One does not have all available x, t to observe,
let alone the initial conditions for any given x. Furthermore, determining δ (x, t) would be
a technologically massive task because the quantity would contain so much information,
essentially giving the power to predict the position of every galaxy throughout time. Thus a
test of this sought is not only impossible but incredibly inefficient (Piattella, 2018).

Alternatively, we can treat the perturbations as random variables (the collection of random
variables being the random field) where there initial value of any point is randomly based
on probability distribution. Statistical information can then be inferred about this field, such
as expectation value, variance, and the equations’ statistical quantities can predict. We can
define a random field as G(x) where the probability of the field being a certain value g1 at
any one place x1 is defined as

p(G(x1) = g1) = p1(g1)dg1. (1.70)
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As we move under the assumption that the universe is homogeneous on the largest scale,
we can assume that the probability function for one point in space is the same as for another.
Thus we can write the expectation field as independent of x,

⟨G⟩=
∫

Ω

gp(g)dg, (1.71)

where Ω is the ensemble, thus integrating all possible states. Of course, in the case of our
universe, we do not have access to every possible state as we only have one single realisation
of our universe, so instead, an estimator would be used that takes a spatial average of a given
volume V

Ḡ =
1
V

∫
V

d3xG(x). (1.72)

It can be proven that the error on this estimator, when compared to the actual expectation
value, will be, on average, 0 and that the variance on this error goes to 0 as V → ∞ (Moore,
2015). However, as stated previously, the reason we cannot access δ (x, t) we do not have
access to the entire universe, only a finite observable cone; thus, there will always be
some possible error in our calculation of ⟨G⟩ known as cosmic variance (Moster et al.,
2011). This is the ideal situation as most modern studies are dominated by data variance of
having observation areas much smaller than the light cone itself. An interesting statistic to
consider is the probability of G(x1) and G(x2) having the values g1 and g2 which is given as
p12(g1,g2)dg1dg2 one can then use this probability to define the 2-point correlation function
ξ (x1,x2)

ξ (x1,x2) = ⟨G(x1)G(x2)⟩=
∫

Ω

g1g2 p12(g1,g2)dg1dg2. (1.73)

If we consider the field to be homogeneous and isotropic, the 2-point correlation function
can simplify to ξ (x1,x2) = ξ (r12) where r12 = |x1 − x2| as the function is only dependent on
the distance between 2 points, not the points themselves or the direction of the difference. As
a physical interpretation, consider a random field that’s purely Poissonian, so the probability
at each point is independent of all other points ie.p12(g1,g2) = p1(g1)p2(g2) under these
conditions ξ (r12)=⟨G⟩ thus any deviation from the mean represents a non-Poisson random
field, one of which points correlate with other points. Equally, we can say the probability
of finding a pair of galaxies at a separation of r12 in volume sizes dV1,dV2 (see Figure 1.9)
is given as dP = n̄2(1+ξ (r12))dV1dV2 where n̄2 is the mean galaxy density. For example,
if the random field is galaxies, one may expect a nearby positive correlation as gravity will
bring galaxies closer together. With this in mind, the 2-point correlation function is a great
statistic for measuring the effects of gravity on our perturbations.
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Figure 1.9: An illustration of the 2 point correlation function which is the excess probability finding
2 galaxies r12 apart in volume elements dV1 and dV2 compared to a random distribution (Reid et al.,
2019).

We can also Fourier transform our random field to the following:

G(x) =
∫ d3k

(2π)3 G̃(k)eikx, (1.74)

G̃(k) =
∫

d3xG(x)e−ikx, (1.75)

where k is the wavenumber. This allows us to consider the 2-point correlation function of the
FT field

⟨G̃(k)G̃∗(k′)⟩=
∫

d3xe−i(k−k′)x
∫

d3zξ (z)eik′z, (1.76)

where z = x′− x. By introducing the Dirac Delta function δD, we can define the power
spectrum P(k),

⟨G̃(k)G̃∗(k′)⟩= (2π)3
δ
(3)
D (k− k′)P(k). (1.77)

P(k) =
∫

d3xξ (x)eikx (1.78)

Thus the power spectrum is the Fourier transform of the correlation function. Making this
change is beneficial. If our random field is the matter perturbations and we consider those
perturbations to be Gaussian in distribution, then the field modes δk grow independently
in equation 1.64. We make predictions of the matter power spectrum at different redshifts
Pδ (k,z) as

Pδ (k,z) = T (k,z)Pδ (k), (1.79)
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where T (k,z) is the transfer function that describes equation 1.64 and Pδ (k) the initial
conditions. The remaining issue is the one mentioned above. One can not observe the power
spectrum directly as it’s an ensemble average; instead, one relies on the correlation function
(spatial average) in a finite volume V = L3 of the survey leading to a degree of cosmic
variance. However, the amount is negligible as long as the scale k being observed is much
smaller than the survey size kL ≫ 1.

As the use of power spectra as an apt statistic to describe the clustering behaviour of
perturbations relies on the assumption that the field is Gaussian, it is worth discussing how
robust such an assumption is. It is already clear that this assumption does not hold for minor
scales due to non-linear evolution, as mentioned above. So any Gaussianity is assumed
to be limited and tested at large scales where linear-perturbation theory still holds. Such
an example of a test was carried out using data from the IRAS QDOT survey (Efstathiou
et al., 1992) which contained 1824 galaxies at a radius of 20 h−1Mpc < R < 500 h−1Mpc
from the earth, by covering 73.9% of the sky this would seem a large enough scale. By
applying the FKP estimator (an early estimation for the matter power spectrum) to the survey
data, the analysis showed that matter density modes had power values that are independently
exponentially distributed (a prediction of gaussianity) up to powers 10 times the mean value.
They found no traces of non-Gaussian behaviour at all (Feldman et al., 1993).

That said, the result has had pushback (or, more precisely, the conclusions interpreted from
the result). Firstly on the theoretical side, it has been argued that measuring the power of
individual modes does constitute a complete test of gaussianity and that higher-order k-space
correlation would be required to claim model independence (Peacock and Dodds, 1994).
However, there have been observations that contradict the result entirely. For example, a
study of 4 pencil beam surveys (small sky cover but high redshift) containing a well-sampled
distribution of galaxies up to 2000 h−1Mpc also looked at individual modes and found a
periodicity in the galaxy distribution every 128 h−1Mpc, a sure sign of non-gaussianity
(Broadhurst et al., 1990). However, re-analysis of the same data set has suggested that if
one includes the effects of realistic-survey geometry, the noise level increases to the point
where the result is insignificant (Kaiser and Peacock, 1991). Other tests also exist, such as
the one-point distribution of the velocity field (Nusser and Dekel, 1993) and the topology of
isodensity surfaces (Hamilton et al., 1986), but so far, none have produced evidence against
Gaussian (Peacock and Dodds, 1994). This may bring up the philosophical point that when
testing for non-gaussianity, the absence of evidence is not evidence of absence. The argument
has also been made that due to the limited size and scope of past surveys, non-Gaussian fields
may appear Gaussian due to the central limit theorem alone, questioning the validity of their
use (Scherrer, 1992).
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Outside of the Gaussian field assumption and the non-linear evolution of minor scales,
2 other significant effects must be considered when trying to observe the matter power
spectrum. Firstly by ‘matter’, we include baryonic and Dark combined (although hugely
dominated by the dark matter component), but as shown earlier, we cannot observe dark
matter directly, so instead, we must rely on observation. As they are believed to form in
the centre of dark matter halos, they should be excellent tracers for the underlying matter.
However, this relationship is not one-to-one, and the need for galaxy bias bg is needed to link
the galaxy and matter power spectra,

Pg(k) = b2
gPδ (l), (1.80)

where Pg and Pδ are the galaxy and matter power spectrum, respectively, the galaxy bias bg is
the first term in a series expansion of the galaxy overdensity δg, but one can use just the linear
term to describe large-scale mass power spectra. For a complete description, the galaxy bias
would have to be a function of redshift and scale. Although models exist (purely analytical
and based on simulation), they still break down on minor scales. This is to our detriment
as many cosmological parameters in the context of galaxy clustering are degenerate with
galaxy bias (Samuroff, 2017). The issue may even compound with the possible inclusion of
non-Gaussian initial conditions where the other scale dependencies widen the gap between
a galaxy cluster and matter that cannot be explained through non-linear evolution alone
(Desjacques et al., 2016).

Another effect that has to be considered is redshift-space distortions. When one is not
taking a 2-D projection of the sky but instead dealing with a 3-D data set with some ‘depth’,
redshift is usually used as the radial coordinate. However, as we saw in 1.3.1, the redshift
one observes a combination of expansion and peculiar velocity. Thus any peculiar velocity in
observed galaxies will distort the observed matter power spectrum even in the generous case
of no noise data (Peacock and Dodds, 1994). The effect on data can be split into 2 distinct
categories. The first is large scales, known as the anisotropic effect (Kaiser, 1987) where
mass from low-density regions moves towards high-density sheets. If those sheets lie near
the plane in the sky, the density contrast between the 2 regions will be enhanced in redshift
space. This effect on the model density is summarised as

δk → bδk(1+ f µ
2/b), (1.81)

where b is a constant, f is a velocity suppression factor, and µ is the cosine of the angle
between the wavevector and the line of sight. The second effect refers to small scales where
visualised motion smears information in the radial component reducing power in the power
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spectra. This effect is hard to treat precisely, but simplified models exist (Peacock, 2008).
Although efforts have been made to combine the 2 effects by multiplying the 2 correction
factors (Fisher et al., 1993) this brings mathematical difficulties as both effects interfere with
each other, leading to a new correction altogether.

With an understanding of the 2-point correlation function and thus the matter power-
spectrum, one can finally mention this thesis’s other critical cosmological parameter outside
of Ωm. To track the growth of structure, it may be necessary to not only know the density of
matter in the universe but also how ‘clumpy’ that matter becomes. In other words, one may
wish to find the variance in the matter perturbations ⟨δ 2(r, t)⟩. This same variance can be
extracted directly from the power spectrum,

⟨δ 2(r, t)⟩=
∫

∞

0

dk
k

∆
2(k), (1.82)

where ∆(k) = k3P(k)/2π2 is a dimensionless version of the power spectrum. ∆(k) can be
understood as the measure of density fluctuations on the scale of k−1. In this current state, the
perturbation variance is not particularly used for 2 reasons. Firstly one would never be able
to observe density in an individual point (we always observe over a volume no matter how
small that volume is), so we could not have an observation to use for comparison. Secondly
(although the points are intrinsically connected), the integral of the equation 1.82 does not
converge with increasing k (or decreasing scales), so the variance could never be found.
Instead, one needs to force convergence in the integral by averaging regions over a volume,
usually a sphere of radius r h−1 Mpc. This effective variance is defined as

σR =
∫

∞

0

dk
k

∆
2(k)W̃ (kR)2, (1.83)

where W̃ (kR) = 3[sin(kR)− (kR)cos(kR)]/(kR)3 is the Fourier transform of the top hat
function

WR(y) =

1/VR y < R

0 y > R
. (1.84)

Convergence is obtained as W̃ (kR)2 decays as (kR)6. Although any sized window function
can be used, the choice of the value of R is important when it comes to usefulness. Too
large and small-scale effects are potentially smoothed out. Too small, and the reliance on
unreachable observables is impractical. Typically the value used is R = 8 h−1 Mpc, roughly
the size of a sphere of material required to form a galaxy cluster which seems then a good
scale to choose as galaxy clusters are one of our most reliant observable (Lahav and Liddle,
2014). The other reason is that non-linear cosmology only dominates the variance when
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Figure 1.10: Top: Data points inferring the matter power spectrum at z = 0 using a combination of
different probes, including PLANCK CMB Data, SDSS galaxy clustering, SDSS Ly−α and DES
Cosmic shear. The solid black line represents the theoretical prediction using best-fit Planck 2018
parameter values in the ΛCDM model. The dotted line represents the theoretical prediction with the
inclusion of non-linear effects. Bottom: Deviations between data and theoretical prediction (Chabanier
et al., 2019).

σ2
R = 1 is around R ∼ 8. We define this particular variable σ8, the true value of σ8 is one of

the main tensions still existing within ΛCDM, but this will be covered in Chapter 2.

1.4.5 Probes

Seeing that as long as we stay within linear scales, power-spectra provides all the information
for a Gaussian system. With this in mind, the standard ΛCDM test compares observations of
the matter power spectrum to theoretical predictions. However, power spectra are a function
of scale and different observables probe at different scales. As one can see from Figure
1.10 (Chabanier et al., 2019) one covers a large amount of scales (2×10−4 h Mpc−1 < k <
2 h Mpc−1). At the largest scale, anisotropies of the microwave background (CMB). On
intermediate scales (∼ 101 Mpc), Cosmic Shear and galaxy clustering data are used, while on
the smallest scales (∼ 100 Mpc), the Lyman alpha (Lyα) forest is used. Different observations
allow one to also probe at different redshifts, in this case, z ∼ 103 for CMB, 2.2 < z < 4.6
for Lyα , 0.2 < z < 1.3 for Cosmic Shear, and z ∼ 0.35. Such differences in redshift allow
for the testing of ΛCDM as one should have consistency in result no matter the redshift.
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Figure 1.11: The high-resolution spectrum of QSO 1422+23 at an emission redshift of zem = 3.62
shows the many absorption lines of creating the Lyα forest,(Rauch, 1998).

The Lyα Forrest refers to observations of the intergalactic medium (IGM), the gaseous
environment surrounding galaxies (Spitzer and L., 1956) (this is the same environment that
holds the majority of Byronic matter of the universe as seen with the bullet cluster above).
The IGM would mainly contain the most abundant elements in the universe, Hydrogen
and Helium, which would be ionised using the radiation of nearby galactic stars. There
would, however, be a fraction of the neutral gas (through the capturing of electrons in the
ionised plasma) (Gunn and Peterson, 1965). This fraction of neutral gas can be observed as
neutral Hydrogen absorbs ultraviolet light (at a photon wavelength of λ = 1215 Å). Which
at 2.2 < z < 4.6 redshifts into observable visible light (3900 - 7000). As not all absorption
would take place simultaneously (as the IGM exists across redshifts), the wavelength of the
absorption would also vary, leading to 1000s of small absorption lines only a few angstroms
wide, leading to the name Lyman α Forest as the absorption lines mimic a dense Forrest
(Weymann et al., 1981) (as can be seen from the spectral lines of the quasistellar object QSO
1422+23 in Figure 1.11 (Rauch, 1998).

The forest is of such cosmological use as it can give us an idea of the density of baryonic
matter within the IGM. Moreover, this same IGM has been shown to have linear perturba-
tions in density, meaning that observable properties can be predicted from minimal initial
conditions without the need for non-linear physics. In this sense, the forest acts as a tracer is
a tracer for the matter (and not just baryonic matter) density of the universe. Through this
usefulness, Lyα has provided constraints on dark matter and dark energy parameters through
measurements of Baryonic Acoustic Oscillations (Bautista et al., 2017) which are a minor
peak in the matter 2-point correlation function caused by a delayed decoupling of baryonic
matter from photons compared to dark matter, this minor peak appears as oscillations in
Fourier-space (power spectra). It has also probed the structure formation of neutrino (Yèche
et al., 2017) masses but most importantly for this context. Finally, it provided observations of
the matter power spectrum. The observations present in Figure 1.10 were produced through
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the BOSS and eBOSS surveys (Abolfathi et al., 2018) which used 43,751 quasars (highly
luminous centres of the galaxy) spectra. With thorough knowledge of the redshifts ,of the
quasars, a line of sight flux power spectra PF1D(k) (Chabanier et al., 2018) can be produced,
which can be directly related to the matter power spectra,

Pm(k) =
1
b2 (−

2π

k
dPF1D

dk
), (1.85)

where b is a scale and redshift dependent bias that depends on the model parameters (most
notably Ωm and σ8).

At a redshift of z = 1100, the cosmic microwave background observations represent the
earliest images we have of our universe. First observed by 2 radio astronomers (Arno Penzias
and Robert Wilson) as background noise from their radio telescope, equating to an antenna
temperature of 3.5K (Penzias and Wilson, 1965). The noise was, in fact, photons from the
point of recombination. Before z = 1100, the universe was a hot plasma as the temperature
was too high to create Hydrogen. The universe was ‘opaque’ in that photons could not
travel far without interacting with electrons and changing direction (Thomson Scattering
(Bashkansky and Reintjes, 2004)). In this state, photons and baryonic matter were ‘coupled’
(shared similar temperatures). However as the universe expanded the temperature of the
universe cooled (as E(z) ∝ T (z) ∝ 1/a(z)). At about 3000K, protons and electrons combined
to produce Hydrogen and the number of free electrons decreased, and photons were not
energetically high enough to interact, ionise and reverse the Hydrogen making process.
Photons and Byronic matter had decoupled, creating a transparent universe in which today
we can observe photons as there were at that point.

As was the case previously with the Lyman-alpha forest, the cosmic microwave background
opened the door to observations untouched by non-linear physics. At its most basic cosmic
radiation was strong evidence for the big bang model, that we started in the hot dense initial
state and then expanded and cooled cosmic radiation was an initial prediction of the model
before its eventual discovery (Gamow, 1948). The data of interest concerning the CMB
are perturbations in the temperature field. Although fairly uniform (δT/T ∼ 10−5 (Bucher,
2015)), the small differences have huge cosmological implications. One such example is
the dipole. On the scale of 180 degrees, a perturbation in temperature of δT/T ∼ 10−3 is
observed. At first glance, such a large-scale perturbation would not be expected given the
lack of large-scale structure, but instead, it can be explained as blue/red shifting due to the
peculiar motions of the earth itself (Durrer, 2015). This same observation has lead values
for the peculiar velocity of the solar system that are consistent, which is much lower than
redshift observations (Aghanim et al., 2014). In the context of the LambdaCDM model,
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the Temperature power spectrum is precious. Because one observes the whole sky instead
of a section, one cannot use normal Fourier analysis in 2-dimensions. Instead, we refer to
the temperature fluctuations in the direction of the sky n̂ as Θ(n̂) = ∆T/T . These same
perturbations on a sphere can then be transformed into multipole moments (the angular
equivalent of Fourier waves),

Θℓm =
∫

dn̂Y ∗
ℓm(n̂)Θ(n̂), (1.86)

where Θℓm is the transformation, Y ∗
ℓm(n̂) the multipole moments. The angular wavelength

can be related as θ ∼ π/ℓ. Assuming the perturbation field is Gaussian, it can be completely
characterised through the angular power spectrum Cℓ,

⟨Θ∗
ℓmΘℓ′m′⟩= δℓℓ′δmm′. (1.87)

Although, as one can see from the CMB spectrum in Figure 1.12 the CMB power spectrum
is usually displayed in its unitless form,

∆
2
T =

ℓ(ℓ+1)
2π

CℓT 2. (1.88)

Figure 1.12 also illustrates just how sensitive the shape of the CMB power spectrum is
to cosmological parameters. A case in point is a) which refers to variations in Ωtot or the
universe’s curvature. The peak in the angular power-spectrum ℓpeak is directly linked to the
angular size of the sound horizon, a known value on the angular scale of 1 degree. Any
deviations from this value would be evidence of curvature. Figure 1.12a) shows horizontal
shifts in the first peak. This is due to the usual spots in the CMB map, which correspond to
the peaks appearing larger or smaller depending on if the light had bent inwards or outwards
depending on its closed or open curvature ℓpeak ∝ 200/Ω1/2. These same CMB spots are
some of the best evidence we have for the flatness of our universe (de Bernardis et al., 2000).
Similarly, one can see the different impact matter and baryon densities (Ωm,Ωb) have on
the cosmic microwave background power spectra. 1.12 d) shows that as the matter density
increases, the amplitude of the peaks relative to the large-scale plateau decreases. This is
because large-scale modes only began to grow in matter domination. Decreasing the matter
density enhances the small-scale modes that entered the horizon during radiation domination
(Benjamin, 2018). As for the baryon density in 1.12 c), the relative peaks are affected by
their size, with odd peaks growing with Ωb relative to even peaks. This is due to an effect
called ‘baryon loading’. The coupled photons and baryons oscillate in and out of the dark
matter potential wells due to gravity and radiation pressure. However, as baryons contain
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Figure 1.12: Sensitivity of the CMB power spectrum under 4 cosmological parameters a) the curvature
as indicated by Ωtot b)energy density of dark energy ΩΛ c) baryon density Ωbh2 and d) matter density
Ωmh2. The variations take place over a fiducial model of Ωtot = 1, ΩΛ = 0.65, Ωbh2 = 0.02, Ωmh2 =
0.147 (Hu and Dodelson, 2002).

mass, they also contribute to the gravitational effect so that the dark matter and baryon caused
compression (the odd peaks) are more significant than the photon caused expansions (even
peaks). This effect would only become more prominent through the increase in Ωb. The
lack of variation in cosmic microwave background power spectra due to changes in dark
energy density is also evidence for our picture of the universe. At such high redshifts, the
dark energy density is low compared to radiation and matter so it would have minimal effect.
However, as expansion continues and matter and radiation energy decrease, the constant
dark energy becomes more prominent, thus why it has more of an effect on the large-scale
later redshift modes. The cosmic microwave background power spectra can directly impact
the matter power spectrum because the CMB maps out the dark matter potential wells from
which matter perturbations grow. As one can see from Figure 1.10 our observations of the
matter power spectra are still entirely dependent on observations of the CMB from Planck
temperature, polarisation and lensing reconstruction power spectra. Most notably, in 2
regions, the largest scales, which should still have the same linear growth as the original
potentials wells and the baryon acoustic oscillations, which were multiple peaks in the CMB,
now appear dampened wiggles in the matter power spectra.



70 Cosmological Parameters

Another and probably more apparent probe is the study of galaxy clusters. Galaxy clusters
are some of the most significant objects in the universe, containing hundreds and possibly
thousands of galaxies within them. Such an example is the Virgo Cluster lying 50 million
lightyears away and containing over a thousand galaxies. It is the closest galaxy cluster to
the eX-ray By largest, we mean most massive gravitational bound systems, with some galaxy
clusters as high as 1015M⊙.

The advantage of high masses is that they contain many objects (such as the billions of
stars within each of their hundreds of galaxies) that emit light for observation across many
wavelengths. Such an example is the light in the optical and near-infrared (stars) which has
been used to study the galaxy luminosity function (the number distribution of galaxies at
certain luminosities), which gives insight into galaxy formation and evolution (Popesso et al.,
2005). The other much larger photon emitting source of galaxy clusters is in the form of
extremely hot defused intergalactic gas. The compression due to the gravitational potential
of the cluster courses the gas to rise to density and temperature, emitting X-ray radiation
(Forman et al., 1978). This is the same x-ray emission used as evidence for dark matter,
especially in cases such as the bullet cluster. However, this emission is not the only use of
the IGM and not the only way we can detect it within galaxy clusters. Photons from the last
scattering surface (CMB) interact with the case before reaching the earth. These interactions
lead to an increase in photon frequency. One can directly observe this phenomenon named
the Sunyaev-Zel’dovich (SZ) effect by measuring the intensity in CMB photon frequency
and noticing a deficit and surplus of intensity below and above the interaction frequency
µ = 217 GHz (Birkinshaw et al., 1984). Measuring the size of the SZ signal is an essential
observable being highly linked to the cluster’s mass and correlates with the gas mass and
temperature. A much smaller secondary SZ effect is caused by the peculiar motion of the
IGM known as the Kinetic-SZ effect, or the Ostriker-Vishniac effect, which is instrumental
for understanding cluster motion (Ostriker et al., 1986).

This wealth and diversity in galaxy cluster signals allow for multiple probes of modern
cosmology. Simulations have shown that with a fixed, known number density of clusters and
different redshifts, one can constrain ΩM and σ8 (Borgani and Guzzo, 2001). That is because
clusters form in dark matter halos, requiring initial perturbations on a comoving scale of
∼ 10 h−1 Mpc, the larger σ8 is, the more perturbations of this size can exist. One can also
make the inference that because galaxy clusters require such large comoving volumes (or
an initial perturbation of a certain scale) to collapse, then baryon fraction fb = Ωb/ΩM or
this clusters should be constant as the dark matter and baryon matter within would not differ
much from the cosmic average. Thus by thorough knowledge of the cluster gas fraction
through x-ray observation and knowledge of Ωb through primordial nucleosynthesis models,
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one can directly obtain ΩM (Bridle and King, 2007). One can also use galaxy clusters as
‘standard candles’. These objects have a known distance in the universe and can be useful for
determining H0. This is possible due to the SZ signal, and the X-ray observations give us
insights into the thermal properties of the IGM. Provided the assumption that the cluster is
spherically symmetric, one can estimate the angular diameter distance of the cluster

DA ∝
(∆TCMB)

2Λee

SX T 2
e

, (1.89)

where ∆TCMB is the temperature change due to the SZ effect, SX the X-ray flux, Λee the X-ray
cooling function and Te the electron temperature (Bonamente et al., 2006).

In the case of the matter power spectrum in Figure 1.10 instead of looking at individual
galaxy clusters, one can observe the overall galaxy clustering. In this case, a subset containing
110576 Luminous Red Galaxies from the SDSS galaxy survey (Reid et al., 2010) was used
to recover the halo density field (as galaxies are dark matter halo tracers) and thus the halo
density power spectra, which can be related to the underlying mass power spectrum through
the appropriate bias model.

1.5 Summary

From the chapter above, one can see that from various significant observations, we now have
a working model for the universe we are a part of. A working model that is only reliant on a
small set of logical assumptions (Perivolaropoulos and Skara, 2021) :

• Gravity and the dynamics of space-time are correctly described by the Theory of
General Relativity.

• That on cosmological scales (> 100Mpc), the universe is statistically homogeneous
and isotropic, which under GR leads to the special part of our universe being described
through the Friedmann-Lema^ıtre Roberson-Walker (FLRW) metric.

• The density components of the universe consist of matter in the form of cold dark
matter and baryons, radiation in the form of neutrinos and photons and dark energy,
which is responsible for the universe’s expansion.

• The large-scale structure of today’s universe can be described through gravitational
dynamics taking place on primordial Gaussian perturbations caused by initial quantum
fluctuations.
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Although not mentioned above in any detail, the last important assumption is that before the
CMB, the universe went through a phase of rapid accelerated expansion (inflation), and it
is this phase that bridges the gap between quantum fluctuation and Gaussian perturbation.
Combining these assumptions leads to a model that requires only a small number of indepen-
dent parameters, which include baryon and matter densities (Ωb,ΩM), the Hubble constant
h as well as some less explored (within this thesis) parameters such as the optical depth τ

and amplitude As. These parameters have led to a model (ΛCDM) that has proved extremely
successful in describing our universe. Not only has it survived more than a decade’s worth
of precision tests (Bull et al., 2015) but today, our most modern and precise measurements
of the CMB (Collaboration et al., 2018) have found that the ΛCDM model can correctly
describe ‘the cosmological information in over a billion map pixels with just six parameters’
(Aghanim et al., 2020) with 5 of the 6 parameters simultaneously measured to sub-per cent
precision. No compelling evidence has yet been shown to add extensions to the base-ΛCDM
model and even less for a new model entirely. These successes are not limited to early
redshift CMB data, as we saw earlier with Fig. 1.10 observations on multiple scales that
continue to late redshift matter power spectra in agreement with the spectrum predicted by
the parameters of Plank.

With that said, cosmological physics is far from complete. Weaknesses still exist in the
assumptions required for the ΛCDM model. Some, such as the nature of cold dark matter,
are hoped to be rectified through further experimentation and observation. Others, such as an
understanding of dark energy or the marriage of GR to the other most successful theory in
physics (Quantum Field Theory) may require new theoretical innovations. Even if we ignore
those assumption issues, minor problems still exist within ΛCDM, most prominently the
tension between late and early observations of the Hubble constant H0. This is not the only
tension. Other issues also exist where measurements are not entirely aligned as expected.
Some of these discrepancies are briefly listed below.

• The CMB cold spot is huge and not consistent with the predicted gaussianity of ΛCDM
(Cruz et al., 2004)

• The peak position of the Baryon Acoustic Oscillation as observed by Lyα and the
CMB differ by 2.5-3σ (Aubourg et al., 2014)

• Recent CMB observations show a 3.4σ preference for a closed universe, however
when combined with BAO observations a flatter universe ΩK = 0.0008± 0.0019 is
preferred (Collaboration et al., 2018)
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• On small scales (< 100 kpc), inconsistencies arise from our current dark matter model.
These have already been covered above but include the core-cusp problem and the
missing satellite problem

• The lithium abundance calculated from observations of absorption lines from metal-
poor halo-stars in a milky way leads to a value of Li/H = (1.6±0.3)×10−10 (Group
et al., 2020) which is 3.5 times smaller than the theoretical prediction of Li/H =

(5.62±0.25)×10−10 a tension of over 5σ (Pitrou et al., 2018)

• Using quasars to extend Hubble diagrams to higher redshifts (z < 5.5) reveals tension
in the observed distance modulus-redshift relation against flat ΛCDM to be at 4σ

(Risaliti and Lusso, 2018) a tension that is made worse through the inclusion of high
redshifts Gamma-ray bursts and Pantheons (Lusso et al., 2019)

• Through torsion balance experiments, a small (sub-millimetre) wavelength oscillating
force has been observed at a 2σ level. This is in direct conflict with the small-scale
forces predicted by Newtonian gravity (Perivolaropoulos, 2016)

• An interacting pair of high mass high redshift galaxy clusters known as El Gordo
(ACT-CL J0102-4915) (Menanteau et al., 2011) have a high relative velocity which
indicates that they were formed earlier than is possible within ΛCDM to a 6.16σ

confidence (Asencio et al., 2020)

Other than the ones mentioned above, other tension and anomalies exist, such as anoma-
lously strong ISW effects, a lack of large-angle CMB temperature correlations, Age of the
Universe issues, and many more. For a deeper insight into all tensions covered, please see the
review by Perivolaropoulos and Skara (2021). The investigation of these tensions can only
illuminate our understanding of the universe through the tensions evaporating under a better
understanding of systematic errors and more data or through the need for new theoretical
modelling. There has, however, been one significant omission from the topic so far. A tension
like H0 separates the value of a cosmological parameter between low and high redshifts. That
tension is σ8, whose primary cosmological probe has been omitted so far and is the focus of
the next chapter; Weak Lensing.
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Chapter 2

Weak Lensing

2.1 From Newton to Einstein

Weak lensing is connected to a phenomenon known as gravitational lensing, in which photons’
trajectories are changed and bent in the presence of mass. These trajectory changes lead to
distortions in the images we observe, much like a lens would distort an image. It is these
distortions that give insight into the masses that produce them.

Although widely linked to General Relativity, the bending of space-time, and Einstein’s
interpretation of gravity, one can still understand how light could bend through a Newtonian
approximation. Newton himself questioned whether his equations of gravity would act on
the light in the same way they act on bodies of mass (Newton, 1704). At first, this seems
problematic, if one looks at the equation for the gravitational force given as

Fg =
Gm1m2

r2 , (2.1)

where G is the gravitational constant, and r is the distance between 2 bodies of masses m1

and m2. Light is presumed to have a mass of 0, which under the equation 2.1would lead
to no force interaction. However, if one considers the acceleration of photon a1, by using
Newton’s 2nd law of motion that F = ma, one can determine the acceleration of the photon
due to gravity as

a1 =
Gm2

r2 . (2.2)

An acceleration entirely independent of the photon’s original non-existing mass m1 (a
conclusion already reached by Galileo, who observed that as long as gravity is the only
interacting force, all bodies, regardless of their mass with the same initial velocities, follow
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Figure 2.1: A distant star’s light ray C is deflected through gravitational interactions with the sun S.
δN is the Newtonian deflection angle between the light’s original and now changed trajectory (Soares,
2005).

the same falling trajectory). So as long as the light is treated as a body (in this case, a photon
particle as opposed to a wave), one could predict its trajectory change in Newtonian physics.

The case marks an observable change in trajectory due to how much a light path is bent by
the presence of a massive object such as the sun. For example, consider Figure 2.1. Light
from a distant star will not follow a straight line trajectory but instead be bent by the presence
of the sun S to follow path C. How much this path has bent is given by the deflection angle

δN = π −2β , (2.3)

where β is intrinsically linked to the eccentricity ε of the trajectories hyperbole as β =

cos−1(1/η). For a normal particle of mass m, energy E and angular momentum L (concern-
ing the sun), the eccentricity is calculable,

ε = (1+
2EL2

G2m3M2
S
)1/2

= [1+
(v2 −2GMS/RS)c2RS

G2M2
S

]1/2,

(2.4)

where MS and RS are the mass of the sun and the distance between the sun, the point of
measuring the deflection angle and v is the particle’s velocity. This equation also assumes the
particle’s kinetic energy remains constant which is a fair assumption if the velocity magnitude
is large). In the case of the photon v = c where c ≫ 1 so the assumption holds. By assuming
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c2,≫ 2GMS/RS, one can simplify the photon’s deflection angle,

δN = π −2cos−1(
GMS

c2RS
)

=
2GMS

c2RS
,

(2.5)

where the final simplification comes through the Taylor series cos−1(x) = π/2− sin−1(x)≈
π/2−(x+ ...) where x=GMS/c2RS = 4.7×10−5 ≪ 1. In the case of our sun, the Newtonian
deflection angle was δN = 0.85 arc seconds (Soldner, 1804).

Considering the equation 2.5 relied exclusively on Newtonian physics (and having to
ignore the issue of force interaction on zero mass objects), the result was not far from the
truth. Einstein’s first attempts at calculating the deflection angle (before General Relativity
was fully formed) had a similar conclusion with a deflection angle of δ = 0.83 arc seconds
(Einstein, 1911). For a more definitive answer, one requires the use of full General relativity.
As with any GR problem, one must start with the relevant metric. In this case, that metric
would not be the FRW (this is a small-scale problem dealing with a point mass; thus,
expansion and the cosmological principle do not apply). Instead, we use the Schwarzschild
Metric, the solution to spherically-symmetric mass distribution (Schwarzschild et al., 1916),

ds2 = (1− 2GM
rc2 )c2dt2 − dr2

1− 2GM
rc2

− r2(dθ
2 + sin2

θdφ
2) (2.6)

where (r,θ ,φ) are spherical coordinates starting as the centre of the point mass of mass M.
To understand the path of a photon under such a metric we must take a brief detour.

Consider a particle in its inertial frame of reference, from this frame one is observing proper
time dτ and is constantly at rest (dx = dy = dz = 0). Under these conditions equation 1.2
is simplified so that dτ2 = ds2 (assuming c = 1). A particle would follow a path between
spacetime points A and B. The proper time that had elapsed between the 2 can be explained
through an arbitrary parameter p that increases along the path.

τAB =
∫ B

A
dτ =

∫ B

A

dτ

d p
d p =

∫ B

A
L(xµ , ẋµ)d p (2.7)

where ẋµ = dxµ/d p and

L2 =

(
dτ

d p

)2

= gµν ẋµ ẋν (2.8)

Which is the Lagrange function (squared) of the system. The time lapsed by a particle at rest
is stationary (at a maximum). As long as this is the case and the points A and B are fixed the
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L2 must satisfy the following equation.

∂L2

∂xµ
− d

d p

(
∂L2

∂ ẋµ

)
= 0 (2.9)

This is known as the Euler-Lagrange and is used to derive equations of motion throughout
mechanics. Typically the equation is shown in ∂L form (as opposed to ∂L2) but computing√

gµν ẋµ ẋν is difficult and avoided where possible.
We can now return to the Schwarzschild Metric. By applying equation 2.6 to equation 2.8

we derive the Lagrange function of the system.

L2 = (1− 2GM
rc2 )ṫ2 − ṙ2

1− 2GM
rc2

− r2(θ̇ 2 + sin2
θφ̇

2) (2.10)

Applying this Lagrange to equation 2.9 where d p = dτ and treating each coordinate in
xµ = (r, t,θ ,φ) separately leads to an expression for the conservation of energy ((1 −
2GM/rc2)dt/dτ = constant = k) and angular momentum (r2dφ/dτ = constant = h) but
most importantly it leads to the orbit equation (a differential equation showing how distance
from the point mass changes along a straight line),

ṙ+
h2

r2 − 2GM
r

− 2GMh2

r3c2 = c2(k−1) = constant, (2.11)

, which solved for the case of a light path which has L = ds = 0 and gives the following
solution

1
r
=

sinφ

R
+

3GM
2c2R2 (1+

1
3

cos2φ), (2.12)

where R is the distance of the closest approach, consider once again Figure 2.1 we care about
the difference in φ between where the photon began and where it ends, in other words, far
away from the deflecting star, in a system where the sun represents r = 0 the initial and final
points would be r →−∞ and r →+∞ respectively. Under these conditions the φ is small
so sinφ ≃ φ and cos2φ ≃ 1. Applying the r limits to a new simplified equation 2.12 leads
to a change in φ of π + 4GM/c2R. In a normal straight-line course, a π changes in φ , so
removing that reveals the true deflection angle,

δGR =
4GM
c2R

. (2.13)

This result is precisely twice what was predicted by Newtonian physics when applied to the
case of the sun giving a deflection angle of δGR = 1.7 arc seconds (Einstein, 1916). This
value was confirmed to a 20% error margin during a solar eclipse in 1919 (Dyson et al., 1920)
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Figure 2.2: A ray path x(λ ) from source to observer, the straight path represents a light ray without
any mass perturbing its path. The angle between observer and source is β and γ for the perturbed and
unperturbed path, respectively, the difference between them being the deflection angle δ .

one of the first observational confirmations of GR. More than 7 decades later, the result was
reexamined and confirmed with new observations to within 0.02% (Lebach et al., 1995).

2.2 Lens Equations

2.2.1 Fermat’s Principle

For Einstein, the discovery of light’s path being gravitational bent was nothing more than
a visual confirmation of his theory (for more details of this, see the work of Bartelmann
and Maturi (2016)). Believing that its effect was too small to be noticed on a cosmological
scale. This, however, is not the case. If light can be bent, then masses in the universe
have effectively become lenses. It is from the perspective of lenses that we continue going
forward. Considering the cosmological case where Newtonian gravitational potentials Φ

are small (galaxy clusters have a typical potential of |Φ|/c2 ≤ 10−5) and the mass structure
moves slowly relative to the speed of light (said clusters have typical peculiar velocities of
v ≤ 600 km s−1). Under these conditions, one does not need to calculate the gravitational
effect through a Schwarzschild metric. Instead, due to the low potentials being considered (we
assume the photons never get close to the point masses), one can use a perturbed Minkowski
Metric (tiny changes to otherwise euclidean geometry):

ds2 =−c2(1+
2Φ

c2 )dt2 +(1− 2Φ

c2 )dx2 (2.14)

where x = (x,y,z). Due to photons having ds2 = 0 and through recognising that 1/(1− 2Φ

c2 )≃
1+ 2Φ/c2 when 2Φ/c2 ≪ 1 one can rearrange to find what the speed of light is within a
weak gravitational field,
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c′ = |dx
dt

|= c

√√√√1+ 2Φ

c2

1− 2Φ

c2

≈ c(1+
2Φ

c2 ). (2.15)

In the context of a lens, one can write the refractive index of a gravitational field to be
n = c/c′ = 1− 2Φ/c2. Interpreting the gravitational field as a refractive index allows for
using Fermat’s principle, which states that a light ray between 2 points will take minimal
time if the 2 points are sufficiently close. If not they will take the path of which variations in
time t concerning the chosen path are stationary (dt/dx = 0) (Born and Wolf, 2019). The
principle has been used to explain well known optical phenomena such as Snell’s law that
under the angles (θ1,θ2) of the path light travels from one refractive index to another (n1,n2)
follows n1 sinθ1 = n2 sinθ2.

Similarly, we can apply Fermat’s principle to determine a generalised statement regarding
the photon’s deflecting angle. In our context, we consider a path x(l) between 2 points a,b
and a refractive index n(x(l)) (just as the gravitational potential will vary depending on
location) that varies with that path. Under these conditions, we can write Fermat’s principle
as

δ t =
∫ a

b
n(x(l))dl = δ

∫
λb

λa

n(x(l))| dx
dλ

|dλ = 0, (2.16)

where λ is an arbitrary curvature parameter. In this arrangement, our integrand is a La-
grangian function L(x, ẋ,λ ) = n(x(l))|dx/dλ | and because we expect the integrand to be
minimised we can apply the Euler-Lagrange equation. This leads to the path description
given by Fermat’s principle

ẍ = ∇⊥ lnn ≈− 2
c2 ∇⊥Φ, (2.17)

where lnn ≈ n−1 when n is small. With an understanding of the path, one can relate this
to the deflection angle. Consider Figure 2.2 consisting of the path x(λ ) compared to the
unperturbed straight path. We can describe the deflection angle as

δ = β − γ =
dx
dλ

|a −
dx
dλ

|b =
∫ b

a
ẍdλ . (2.18)

Combined with equation 2.17 leads to the direct link between deflection angle and gravita-
tional potential,

δ =− 2
c2

∫
λb

λa

∇⊥Φdλ . (2.19)
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2.2.2 The Born Approximation

A simple method for validating the generalised deflection angle caused by a gravitational
potential, as shown in equation 2.19 would be to apply it to our observed scenario of the
deflection angle caused by the sun. One typical issue in such cases is that the surrounding
gravitational potential constantly changes the light path, making for a highly complex
integration. In these circumstances, the Born approximation states that instead of taking the
ray’s deflected path, we integrate the potential over the straight undeflected path between
source and observer. Such a crude simplification is allowed as we deal with deflection angles
on the scale of arc seconds. With such minor changes to the angle, one can assume that the
deflected and un-deflected path has similar gravitational potentials. As well as simplifying
mathematically, the approximation also speeds up calculations computationally as one no
longer needs to solve a time-intensive equation such as the Poisson Equation (Petri et al.,
2017).

In the case of the deflection angle of the sun, we consider the sun to be a point mass M at
the origin of the coordinate system (x,y,z) = (0,0,0), and the light ray follows a straight path
unperturbed by the sun’s mass (Born approximation) parallel to the z-axis, but with a constant
impact parameter of b =

√
x2 + y2 thus the photon is always r =

√
x2 + y2 + z2 =

√
b2 + z2

away from the point mass. So our curve parameter will be z, and the photon travels to and
from z = [−∞,∞]. This requires the perpendicular gradient of the potential,

∇⊥Φ =
GM
r3

[
x
y

]
, (2.20)

where Φ =−GM/r the gravitational potential of a point mass. Completing the integral of
equation 2.19 reveals the deflection angle in the x and y axis,

δ =
2GM

c2

∫
∞

−∞

dz
√

b2 + z23/2

[
x
y

]
=

4GM
c2b

[
sinθ

cosθ

]
, (2.21)

as x = sinθ and y = cosθ where θ is the angle between b and the y-axis. To gather the scalar
value of the deflection angle, one must take the magnitude,

|δ |=
√
(
4GM
c2b

)2(sin2
θ + cos2 θ) =

4GM
c2b

. (2.22)

In the case of the impact parameter being the distance of the closest approach (b = R), we
have a result that is identical to the original result of equation 2.13 (Zaidouni, 2018).
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Even with the small-angle justification and the validation of the above example, this is
not ample reason to rely on an approximation, primarily if alternatives exist. One such
alternative is to deal with the approximation statistically. For weak lensing surveys more
concerned with summary statistics (see sub-chapters below), the Born approximation equates
to the first-order form of that summary. By using certain second-order terms as well, we are
introducing a Born Correction (Bernardeau et al., 1996) (Schneider et al., 1998). Another
approach is to discretise the problem so that instead of the ray path being a straight line
or a continuously evolving line, the ray path consists of multiple straight lines that change
direction based on the gravitational potential at particular points (Hilbert et al., 2009). In
both cases, the approaches lead to more accurate results; however, based on both analytic
and simulated studies, the extra accuracy one gets is negligible (Cuesta-Lazaro et al., 2018).
One such example was a simulation of an LSST-like weak lensing survey that found that the
born approximation was at least 4 times faster and used half as much memory as tracing the
entire path and led to parameter biases on the scale of 10−5 which is small compared to other
biases in weak lensing. However, if one wished to study non-gaussian aspects of the weak
lensing signal, significant biases were introduced, which will have to be examined further
with future surveys (Petri et al., 2017).

2.2.3 Lensing Potential

With an understanding of how light paths are deflected by the presence of gravitational
potential and a grasp of the appropriate approximations required to calculate them, we can
now perform calculations connected to actual images. For example, one may observe distant
galaxies. With images, one has multiple light rays from the same source but whose paths
differ depending on their original position. These differences lead to distortions in the images
we perceive of the original object.

Consider Figure 2.3 which now consists of 2 deflected ray paths not 1 as seen earlier. The
source exists at a distance χ from the observer so that in the small-angle approximation,
the observer believes the 2 rays are separated by x0 = χθ (this is for a flat universe, in the
case of an open/closed universe fK(χ) replaces χ in the equation). This is not their true
separation, instead, their separation has been modified so that from the perspective of the
mass coursing the distortions a χ ′ the change in separation is given as dxdeflected = (χ−χ ′)dδ

where dδ =−2∇⊥Φdχ/c2 as seen in equation 2.19. Thus the true separation of the rays can
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Figure 2.3: Illustration of the angular image distortion (from β to θ ) at comoving distance χ that
takes place due to a potential gravitational field (Kilbinger, 2014).

be found by removing the deflected contribution

x(χ) = x0 − xdeflected

= χθ − 2
c2

∫
χ

0
dχ

′(χ −χ
′)[∇⊥Φ(x,χ ′)−∇⊥Φ

(0)(χ)],
(2.23)

where Φ(0)(χ) takes into account that the second ray path will also be deflected, thus
contributing to the overall separation. The corresponding angle to the true separation would
be β = x(χ)/χ = θ −δ (known as the lens equation) leading to an angle of deflection not
unlike equation 2.19

δ =
2
c2

∫
χ

0
dχ

′ χ −χ ′

χ
[∇⊥Φ(x,χ ′)−∇⊥Φ

(0)(χ)]. (2.24)

Once again the born approximation can be used so instead of continually calculating x in
∇⊥Φ(x,χ ′) we presume the observed light ray took a straight line path so that x ≈ x0 = χθ .
With this in mind, one can create a Jacobian matrix AAA = ∂β/∂θ so that one can map from
image coordinates θ to source coordinates β ,

Ai j = δi j −
2
c2

∫
χ

0
dχ

′ (χ −χ ′)χ ′

χ

∂ 2

∂xi∂x j
Φ(χ ′

θ ,χ ′), (2.25)
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where δi j is the delta function. Just in the same way as the deflection angle in equation
2.19 uses the gradient of the gravitational potential, one can rewrite the Jacobian also to be
dependent on the gradient of the lensing potential ψ ,

Ai j = δi j −∂i∂ jψ

where ψ(θ ,χ) =
2
c2

∫
χ

0
dχ

′ (χ −χ ′)
χχ ′ Φ(χ ′

θ ,χ ′).
(2.26)

An obvious effect of structuring the Jacobian with the use of a delta function is that in the
case of no mass deflecting the photons path (i.e. ψ = 0) the Jacobian simply becomes the
identity matrix A = I =

(
1 0
0 1

)
which means the image coordinates are equivalent to the

source coordinates β = Aθ = Iθ = θ . The Jacobean in this form allows us to define the
second derivatives of the potential as the scalar convergence κ and 2-component spin-2 shear
γ = (γ1,γ2) to introduce parameters that have direct relationships with the size and shape of
the images we collect of distant galaxies,

A =

(
1−κ − γ1 −γ2

−γ2 1−κ + γ1

)
, (2.27)

where

κ =
1
2
(∂1∂1 +∂2∂2)ψ =

1
2

∇
2
ψ γ1 =

1
2
(∂1∂1 −∂2∂2)ψ γ2 = ∂1∂2ψ. (2.28)

The convergence and shear (κ,γ) parameters have not been chosen randomly but are direct
consequences of requiring an intuitive understanding of the Jacobian. One can begin by
splitting A between the parts that do not change the image equally in all directions (the
anisotropic part) and the part that does (isotropic), which is given by the trace of the matrix,

tr(A) =
2

∑
i=1

δii −∂i∂iψ = 2−∇
2
ψ = 2(1−κ). (2.29)

Separating the trace reveals how the shear holds the anisotropic effects,

A = κI−Γ, (2.30)

Γ =

(
γ1 γ2

γ2 −γ1

)
. (2.31)

The isotropic nature of the convergence means it essentially acts as a magnifier changing the
image’s size but not its overall shape. We can see this by inverting the A as this reveals how
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Figure 2.4: The level of elliptical distortion that can take place on a spherical 2-d image given
different amounts of γ across its 2 components (Kilbinger, 2014).

the truth becomes the observed image (θ = A−1β ),

A−1 =
1

det(A)

(
1−κ + γ1 γ2

γ2 1−κ − γ1

)
. (2.32)

So the prefactor 1/det(A) acts as the magnifier multiplying the image coordinates. In our
case that magnifier is µ = 1/det(A) = 1/((1−κ)2 − γ2)≈ 1+2κ as κ and γ are both close
to zero. The magnification is completely convergence dependent. On the other hand, the
anisotropic element of lensing, the shear γ , can be summarised as not changing the size of
the lensed object image but its shape. Consider a circular source which has been lensed. The
lensing process will lead to the observed image being an ellipse. One can characterise the
ellipticity ε (a combination of the semi-major and semi-minor axis a,b) through the inverse
Jacobian’s eigenvalues λ±,

ε =
a−b
a+b

=
λ+−λ−
λ++λ−

=
|γ|

1−κ
, (2.33)

where λ± = (1−κ ±|γ|)/(det(A−1)). The effect of shear on the image’s shape can be seen
clearly in Figure 2.4 where changes in γ1,γ2 make the circle more elliptical but also change
in orientation.



86 Weak Lensing

2.3 Observables

2.3.1 Convergence

As stated above, gravitational lensing’s observable effect is that images of galaxies we collect
will be distorted in size and shape. However, for this phenomenon to be a cosmological probe,
as hinted at in Chapter 1, one must be able to connect these observations to cosmological pa-
rameters of interest. Thankfully this is possible. The presence of matter courses gravitational
lensing. Thus, the amount of distortion in our images gives us a gauge of how much matter
was between the source and the observer on the photon’s path. Consider the convergence
equation 2.28 but one replaces the lensing potential with the integral from equation 2.26,

κ =
1
c2

∫
χ ′

0
dχ

χ(χ ′−χ)

χ ′ ∇
2
Φ, (2.34)

where the integrand is magnified by a factor of χ2, due to the laplacian in equation 2.28 being
2D (as it the referring to the image), whereas the in equation 2.26 the potential is 3D (as it
can be anywhere in the universe). We can now use the Poisson equation ∇2Φ = 4πGa2ρ

where ρ is the matter distribution and rewriting in terms of perturbations to have a relation
between convergence and cosmological parameters,

κ =
4πG
c2

∫
χ ′

0
dχ

χ(χ ′−χ)

χ ′ a2
ρ

=
3H2

0 ΩM

2c2

∫
χ ′

0
dχ

χ(χ ′−χ)

aχ ′ δ ,

(2.35)

where the relation between mass density ρ and perturbation density δ is ρ = ρ̄δ =(3H0Ωm/a38πG)δ .
One obvious probe will be that if one knows the convergence field, one can infer the corre-
sponding perturbation field. This is the crux of weak lensing surveys, requiring many galaxy
images to understand the distributions between source and image. The issue becomes the
fact that one cannot observe convergence directly. One may want to use an estimator such as
the magnification µ , but the estimator can also be defined as the ratio of the image to source
size µ = θ/β one still requires information of the source area that is unavailable.

This does not mean magnification is completely undetectable. By considering Liouville’s
theorem, one can analytically prove the conservation of surface brightness Lieu (2004)
states that “The surface brightness of an image of a lensed source coincides with the surface
brightness of a source in the absence of lensing" (Petters et al., 2001). This means that
not only does the size of the lensed image increase but also its flux. Once again, without
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knowledge of the sources of intrinsic flux, one cannot gain information individually; however,
one can detect it by looking at the distribution of galaxy fluxes across a large area. The
2 increases (image size and image flux) have conflicting effects in the context of a survey
detecting millions of galaxies. The size increases mean the overall source density in any
region will be decreased (due to the stretching of the image decreasing source count density),
whereas the flux increase means sources will be detected that would otherwise be undetectable
due to the flux limit of the survey (sources below the flux limit being to faint to be observed)
(Hildebrandt et al., 2009). Depending on the effect, one will detect negative or positive
angular cross-correlations (i.e. in the case of the flux limit, one will find many more than
expected faint galaxies in a single region due to that region being lensed). These cross-
correlations lead to a signal, the first detected using optically selected quasars from the Sloan
Digital Sky Survey (SDSS). (Scranton et al., 2005). The signal-to-noise ratio one can expect
from magnification can be very low (Van Waerbeke, 2010) which, when combined with
the fact that flux correlations are intrinsic to survey distributions, makes the collection of
cosmological information a difficult task (Heavens et al., 2013).

2.3.2 Shear

A more widely available observational and much higher signal-to-noise ratio comes from
observing cosmic shear γ . In reality, one wishes to remove the magnitude part of the
observation to have a shape-only based result, so the true observational is the reduced shear

g =
γ

1−κ
, (2.36)

which from equation 2.33 shows that |g|= ε . Unfortunately, this is still an oversimplification.
The ellipticity of equation 2.33 only describes shape not orientation, this issue can be
mitigated by considering the two-component spin 2 shear to be a complex number γ =

γ1 + iγ2 = |γ|e2iφ whereas φ passes from 0 to 2π the ellipsis rotates around π . Adding
orientation means ellipticity becomes ε = (a−b)e2iφ/(a+b) the only change this makes
is one no longer detects the magnitude of the reduced shear but the full complex value.
This would still be fine if every galaxy were inherently a perfect sphere of ε = 0 which is
unfortunately not the case. All galaxies have an amount of source ellipticity εs which, when
taken into account, gives a new image ellipticity (Seitz and Schneider, 1997)

ε =
ε +g

1+g∗εs ≈ ε +g, (2.37)
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where the approximation is allowed under the weak-lensing regime of κ, |γ|, |g| < 1. Just
as with magnification, one cannot gather information from the image without knowing the
source. There is one major advantage which is that we have a much better understanding
of intrinsic elliptical on a statistical level so that we can assume that the source shape and
orientation of a galaxy to be completely random < εs >= 0 allowing the observed ellipticity
to be an unbiased estimator of reduced shear

< ε >= g. (2.38)

This also is not entirely the case as ellipticity is not completely random (see later sections)
but small enough that the first shear signals could be detected on this assumption (Bacon
et al., 2000).

Unfortunately, reduced shear estimation is not that simple. Up to now, we have presumed
one has perfect knowledge of the galaxy images’ ellipticity and that any distortion in that
image (compared to the source) is exclusively due to weak lensing. In both cases, the
assumption is incorrect, and if one does not mitigate for these assumptions, heavy biases
would be introduced (Massey et al., 2011). Starting with the later assumption that distortions
are weak lensing exclusive. This is not the case. Images of galaxies one receives from
telescopes are blurrier than they should be. This blurring can course, add smoothing and
distortion to the image and is known as the point spread function (PSF) of the observations.
There are multiple sources of the PSF (Kitching et al., 2011) :

• the way the individual telescope is set up, from detected photons to pixellated image,
will introduce a unique PSF which changes with image position

• photons detected by ground telescopes will be refracted due to atmospheric conditions

• any slight movement by the telescope while observing can lead to additional smoothing
(as the slightly moving image would be averaged out). Multiple effects can course
such movements as vibrations and wind.

• additional noise due to the accidental detection of background photons, the noise
is usually modelled as gaussian for ground telescopes and Poisson for space-based
telescopes (due to the low number of background photons)

There are 2 forms of bias that can occur if PSF effects are not dealt with correctly; Firstly, the
smoothing of the image reduces its ellipticity; thus, a multiplicative bias is introduced that
reduces overall observed shear. Secondly, any anisotropies in the PSF will invite additive
errors to the ellipticity observed (Mandelbaum, 2017).
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To remove the PSF before, one must know what the PSF for that observation is (as
atmospheric effects such as weather and temperature are time-dependent, one cannot have a
constant PSF even for the same telescope). Gathering said knowledge is usually achieved
by observing stars close to the galaxy. As far away stars can be considered point sources
of which their actual spherical shape is known, any distortion in shape can be attributed to
(and thus used to model) the PSF. One then needs to interpolate the PSF to other positions in
the sky so that it can be removed from nearby galaxies being observed. There are varying
methods to achieve the correction interpolation, the most common of which is an empirical
approach of fitting a low-order spacial polynomial function to the stars and then smoothly
changing variables of these polynomials depending on where your galaxy is in the sky.
Such an approach was considered sufficient for space-based telescopes where the PSF was
instrumental in origin so well modelled by smoothly varying functions (Van Waerbeke
et al., 2002). However, future wide-field surveys by ground-based telescopes with short
exposure times such as the LSST have much more significant atmospheric effects that do not
follow smooth functions requiring more sophisticated fitting methods (Chang et al., 2012).
Alternatively, one can use a physics-based forward modelling approach in which one directly
simulates the PSF as a function of position by ray tracing the photons through physical
models of the telescope and then choosing the appropriate model by which one simulates
nearby stars’ PSFs best. This reduces the interpolation issue as it only needs to interpolate the
galaxy’s coordinates on the fine space grid of the model as opposed to interpolating between
the stars themselves. A method such as this entirely depends on the simulated model being
correct, so mistakes in physics have detrimental effects. This would be particularly important
when trying to correctly forward model chaotic events such as atmospheric effects, so with
that in mind, this approach works using space-based telescopes and has been successful in the
past with data such as the COSMOS survey (Leauthaud et al., 2007) (Rhodes et al., 2007).

One should not limit the effects of the point spread function to the size and shape of
the observed object (size and shape being second moments in this case). Before 2020 the
formalism used to quantify PSF error (and thus work out the effects it had on weak lensing
shear bias) did not consider higher moments and so would predict 0 biases as long as size and
shape work correctly found regardless of higher moments (Jarvis et al., 2016). Unfortunately,
this is not the case, as additional additive and multiplicative biases for cosmic shear were
found for Euclid that went beyond those predicted by their second moment formalism with a
realistic telescope PSF (Schmitz et al., 2020). The most probable suggestion for the added
bias is in higher-order errors. To investigate its effects Zhang et al. (2022) measured the
fourth radial moment (kurtosis) of simulated images and related them to their PSF models and
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shear measurements to find that errors in fourth moments alone can contribute to ∼ 0.05% of
shear bias, negligible for current surveys but essential going forward for LSST and EUCLID.

Another PSF-based effect that needs to be correctly considered is the Chromatic PSFs.
What this refers to is the fact that all modelling techniques above have assumed that the PSF
is only a function of location (and even then, it slowly changes) and that each galaxy has
one PSF. However, the PSFs are wavelength-dependent as well. This can be due to multiple
reasons, the diffraction limit of the telescope lens, refractions in the atmosphere, which have
a wavelength-dependent trajectory and sensor contributions within the telescope (Meyers and
Burchat, 2015). This would affect the PSF modelling methods mentioned above as they all
use individual stars (either as a point of model creation or verification) that release different
light (wavelength-wise) compared to the galaxies to which we apply the model (Cypriano
et al., 2010). This wavelength dependence can also break the second assumption as galaxies
contain colour gradients, emitting photons of multiple wavelengths, potentially multiple
PSFs (Er et al., 2017). With that said current studies suggest that through image simulation
in different bands, one can accurately model the bias caused by changes in wavelength and
correct it in the final result, even in time-dependent atmospheric conditions seen in LSST
ground-based surveys (Carlsten et al., 2018).

The location-only dependency of the PSF continues to break down if one considers the
effects and imperfections in the detectors themselves. For example, weak lensing surveys
usually observe faint sources, while the models above use bright starts, so any flux dependence
in the actual PSF would lead to inaccuracies in our models. One such flux-dependence is
the ‘brighter-fatter’ effect (Antilogus et al., 2014) in which brighter sources lead to charge
building up within a pixel. This induces an electric field which deflects further light away
from charged pixels to nearby pixels. The outcome of this deflection is that brighter objects
can seem broader than faint objects. Thankfully this effect can be modelled by considering
the correlations in nearby pixels (Coulton et al., 2017).

2.3.3 Ellipticity Estimation

Presuming one had modelled the PSFs correctly, considering all the effects mentioned above
(location dependence, interpolation technique, forward model, wavelength dependence, flux
dependence etc.). Outside of effects caused and biases created by the pixelation process
and other systematic effects (see below), one can presume that the image being observed is
an image that is exclusively distorted from weak lensing. As mentioned above, one would
measure the ellipticity to gain a statistical shear. However, this is an idealised case. Not
all galaxies follow perfect ellipses. This is doubly the case when the images observed are
pixelated. This is a galaxy-by-galaxy process which can be computationally expensive. Thus,
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many models have been created to complete the non-trivial task of correctly estimating
shears.

A popular method is weighted quadrupole moment (Okura and Futamase, 2012). Consider
an image consisting of a smooth light profile with fluxes that differ as a function of position
I(θ) where θ = (x,y) the centre of the object can be defined as the first moment

µi =

∫
I(θ)θid2θ∫
I(θ)d2θ

. (2.39)

The weighted second moment measures the covariance of luminosity around a central point,

Qi j =

∫
(θi −µi)(θ j −µ j)W (θ −µ)I(θ)∫

W (θ −µ)I(θ)d2θ
, (2.40)

where W (θ −µ) is the weighting function usually chosen to maximise the signal-to-noise
ratio (SNR) and to minimise the contribution of far-away noise pixels. Using these secondary
moments, one can make shape estimates for the ellipticity such as distortion,

ε =
Qxx −Qyy +2iQxy

Qxx +Qyy +
√

QxxQyy −2Q2
xy

. (2.41)

Such estimates for shear have been successful in the past with choosing the correct weighting
system leading to the correct shear values being recovered with a 10% systematic uncertainty
(Bacon et al., 2001) other advantages include the fact that quadrupoles do not presume a light
profile for the galaxy so do not apply a model bias. The lack of model bias means unbiased
estimates for the galaxy shear can even be found for galaxies with complex morphology
(Bernstein, 2010). However, this argument only holds if we negate the fact that the method is
extremely weighting-dependent where the weightings themself over their own model bias.

An alternative method is based on a decomposition of the galaxy image into shapelets.
Once again, consider the flux profile of the image I(θ). It can be decomposed into a set of
basis functions

I(θ) = ∑
n

fnBn(θ), (2.42)

where n = (n1,n2), fn are the basis coefficients and Bn is the 2-dimensional basis function.
This can also be written in terms of 1-dimensional Basis functions

Bn =
2

∏
i=1

Bni(θi), (2.43)
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Figure 2.5: left : The different shapelet components made through different combinations of (l,m).
right : How using different numbers of these components can replicate an original image with
reasonable parity already possible with n ≤ 20 (Refregier, 2001).

Bni(θi) = [2niπ
0.5ni!β ]−0.5Hni(

θi

β
)e

−2
θ2

i
2β2 , (2.44)

where β is a scale usually around the radius of the image while Hn is the Hermite polynomial
of order n. The coefficients fn are found using∫

∞

−∞

d2
θ f (θ)Bn(θ). (2.45)

As the basis functions form an orthogonal set. This effect can be seen clearly in Figure 2.5.
Figure 2.5.a shows 2 different 2-dimensional shapes each basis function represents (where
the dark and light regions correspond to positive or negative values) when applied to an image
(Figure 2.5.b). In this case, an HST image, using more basis functions, improves the image
to the point where n < 20 is almost identical to the original (Refregier, 2001). Shapelets
can be seen as a generalisation of the quadrupoles to all available multi-pole methods as the
shapelets when n1 +n2 = 0 are equivalent to Gaussian weighted quadrupoles (Refregier and
Bacon, 2001).

The shapelets break down an image into a set of shape components, each of which measures
the effect of shear would be easier than the combined complicated image. Consider our I′(x)
represents the unsheared flux image which can be represented in a first-order approximation

I(x)≈ (1+ γiSi)I′(x), (2.46)
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where γi and Si are the shear and shear operators, respectively. If our sheared image is
decomposed into basis functions as seen above, we can express a relationship between the
lensed and unlensed basis coefficients ( fn, f ′m)

fn = (δnm + γiSinm) f ′m, (2.47)

where Sinm is the shear matrix. Using the fact that the average shapelet coefficient < fn >

before lensing must be rationally invariant and that shear breaks this symmetry by introducing
a preferred direction, one can construct a measure of this symmetry breaking for each shear
coefficient

γ̃1n =
fn−< fn >

S1nm < fm >
, (2.48)

when n1 and n2 are even and

γ̃2n =
fn−< fn >

S2nm < fm >
, (2.49)

when n1 and n2 are odd.
With the individual component shear, estimated one can combine them for a full shear

estimation
γ̃i =

∑n winγ̃in

∑win
, (2.50)

where w1n and w2n are the weights which are set to zero when n1 and n2 are odd-odd
or even-even respectively. When not set to zero, the weights are optimised to minimise
estimator component variance. Such an estimator is unbiased and linear (Refregier, 2001)
furthermore, being in this shapelet form allows for multiple advantages. It turns shear into
simple matrix calculations. It is linear in galaxy intensity, which avoids some forms of bias.
It uses all available shape information, whereas the quadrupole method above only uses
2-order shapelets which can introduce unstable and ill-defined quantities (Kaiser et al., 2000).
There are, however, a few criticisms of the shapelet approach. For both practical reasons
and not unintentionally overfitting the noise, one is forced to use a truncated set of basis
functions, so the full shapelet expansion is not used to describe the galaxy. This leads to
the shapelet-constructed images resembling gaussian intensity profiles while galaxies follow
Sersic profiles (Sérsic et al., 1963) leading to underestimates in some quantities. Studies have
taken place to quantify how limiting the shapelet method (Melchior et al., 2010) is in real-life
scenarios. The two realistic conditions chosen are those that have already been mentioned; a
limited number of sample modes and intrinsic galaxy shapes that are not restricted to shapelet
models. By simulating galaxy shapes based on a Sersic profile, the study found that highly
elliptical galaxy shapes cannot be accurately modelled and are biased towards less elongated
galaxies. Issues compound when higher Sersic indices are included in the profile (see below),
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at which point shear estimates are biased due to the preference for round Gaussian models;
thus, the use of shapelets for practical shear estimation has been heavily questioned.

A more direct alternative route is to use model fitting. As with the PSF approaches, we
fit the galaxy images to the parametric model. We most often presume the Sersic profiles
mentioned above, which take the following form (Kacprzak et al., 2014),

I(x) = A exp(−k[(x− x0)
TC−1(x− x0)]

0.5n), (2.51)

where A is the amplitude, x0 is the centre of the observed image, C is the covariance
matrix and k = 1.9992−0.3271n where n is the Sersic index profile. The profile, although
simplistic, can be compelling with Sersic indices of n = 1 (exponential profile) and n = 4
(de Vaucouleurs profile) being commonly used models for the disk and bulge of observed
galaxies, respectively. Numerical optimisation algorithms are usually used (such as steepest
descent and adaptive grid search) to find the parameters that best suit the image, and then
using the ellipticity is defined for this model. The method can be efficient; however obvious
pitfalls come from model fitting methods; systematic effects can occur through the choice
of optimisation algorithm, and model bias can occur if the model oversimplifies the galaxy
shape (studies through simulation have shown that if a galaxy is comprised of 2 particular
shapes such as a bulge and a disk, then biases are introduced that need to be taken into
account (Voigt and Bridle, 2010)).

There also exist methods that do not use the shears of individual galaxies at all and thus are
entirely independent of galaxy shape. One such method is the stacking method. This method
is based on the presumption that intrinsic galaxy shapes are uncorrelated (an assumption
that will be scrutinised in more detail below) so that if you were to unlensed images of the
galaxy on top of each in pixel space, the resulting image should be a circle thus the ellipticity
of the resulting image would be due to exclusively to the shear and provide an adequate
estimation. Furthermore, this method avoids common biases of the methods above; the sum
of independent samples should have a close to Gaussian distribution due to the central limit
theorem (Lewis, 2009), so the statistics of the stacked images are known without knowing
the distribution of individual galaxies, those also removes model bias as were not presuming
the galaxies have a particular shape. Alternatively, an improved stacking method is known
as spectral stacking (Hosseini and Bethge, 2009) where one completes the same procedure
but in Fourier Space using the image’s power spectrum. The approach’s success can be seen
in the GREAT08 challenge (Bridle et al., 2009). In this 6-month competition, participants
were asked to analyse 30 million simulated galaxies with different shapes, signal-to-noise
rates, point spread functions and ellipticities to estimate their shear. From this challenge,



2.4 Shear Prediction 95

the spectral stacking approach won the competition with a score of 210.9 (compared to the
image stackings 131.4).

2.4 Shear Prediction

2.4.1 Shear Power Spectra

Under the assumption that the methodology for taking noisy pixellated images of galaxies
and extracting shear estimates is well understood and biases limited, this alone does not
allow science to take place. The shears of individual galaxies, although observable, are not
currently predicted by the standard model. As one can see from equation 2.35 if one wishes
to predict the lensing effects along a line of sight (presumable between the observer and
a distant galaxy), one requires accurate knowledge of the matter distributions (both dark
and baryon) along that line of sight. The knowledge that is not currently available. What
can be measured and predicted, though, are statistical lensing effects such as the degree to
which lensing quantities (such as shear convergence and lensing potential) correlate with
each other this is because the statistical quantities of matter (through the correlation function
and power spectrum) can be predicted through the standard model as seen in Figure 1.10.
As the cosmological principle is held for the matter distribution, so does it hold for the
convergence/shear distribution meaning that the 2-point correlation function of these lensing
quantities is invariant under translation and rotation.

Consider the 2-point correlation function of the convergence < κ(ω)κ(ω ′) > as seen
above. This is the assembled average over 2 angular positions separated by ω ′. When
expressed in Fourier space, one can define the convergence power spectrum Pκ ,

⟨κ̃(ℓ)κ̃∗(ℓ′)⟩= (2π)2
δD(ℓ− ℓ′)Pκ(ℓ), (2.52)

where δD is the Dirac delta function, κ̃, κ̃∗ is the Fourier transforms of the convergence,
and its complex conjugate, respectively, and ℓ is the Fourier conjugate of θ , a 2D wave
vector (which differs slightly from equation 1.77 due to us using angular position). As
seen previously, the convergence power spectrum depends only on ℓ because of statistical
homogeneity and isotropy. We can now square our expression from 2.35, and convert it to
Fourier space to directly relate the power spectrum of the convergence to the power spectrum
of the density contrast Pδ ,

Pκ(ℓ) =
9
4

Ω
2
m(

H0

c
)4
∫

χ

0
dχ(

χ(χ ′−χ)

aχ
)2Pδ (k =

ℓ

χ
,χ). (2.53)
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Through equation, 2.53 were in a position where one can make actual cosmology. We observe
and compare the convergence power spectrum to the predicted convergence power spectrum
given to us through the standard model’s predicted density contrast power spectrum. With
observation and a prediction, one can infer the parameters of the standard model that appear
in equation 2.53 such as matter density Ωm. It is worth noting that to get to equation 2.53
many approximations were made that will be considered in more detail below; however, there
is a pressing matter of the fact that the above has been referring to the convergence power
spectrum but as we stated before were observing the shear not the convergence through that
method mentioned above. Thankfully we can relate one to the other. In fact, by evaluating
the distortion matrix of equation 2.32 for the case of 2 masses (an acceptable approximation
under the thin-lens approximation), one can derive an expression for shear in terms of
convergence through the trace-free part.

γ = π
−1
∫

d2
θ
′
κ(θ ′)D(θ −θ

′), (2.54)

where θ = (x,y) in Cartesian coordinates,and D(θ) = (y2 − x2 − 2ixy)/|θ |4 is a complex
quantity. Shear and convergence are so closely related that one can recover the convergence
from shear measurements through Kaiser Squares Inversion (Kaiser et al., 1993). This method
is based on the fact that equation 2.54 is essentially a convolution (where a convolution is
defined as an integral that expresses the amount of overlap as one function g passes over
another function f in t-space as the following [ f ∗ g](t) =

∫ t
0 f (τ)g(t − τ)dτ where in out

case g and f are replaced with κ and D in θ -space instead of t-space) and that in Fourier
space a convolution becomes a product allowing for a simpler relation

γ̃ =
1
π

κ̃(ℓ)D̃(ℓ), (2.55)

where ℓ = (ℓ1, ℓ2) and D̃ is the Fourier transform of the filter form equation 2.54 defined
as D̃(ℓ) = (ℓ2

1 − ℓ2
2 + 2iℓ1ℓ2)/ℓ

2 so one can simply take the inverse of the integrand to get
from one to the other (shear to convergence). Even more, use full that if we move to polar
coordinates and drop the constant term, the relation simplifies more to

γ̃(ℓ) =
(ℓ1 + iℓ2)

2

ℓ2 κ̃(ℓ) = e2iβ
κ̃(ℓ), (2.56)

where β is the polar angle of the wave vector ℓ. We can now apply this relation to our actual
observable, the 2-point-correlation function of the shear and Fourier transform it just as we
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did with the convergence in equation 2.52 as

⟨γ̃(ℓ)γ̃∗(ℓ′)⟩= ⟨e2iβ
κ̃(ℓ)e−2iβ

κ̃
∗(ℓ′)⟩= ⟨κ̃(ℓ)κ̃∗(ℓ′)⟩= (2π)2

δD(ℓ− ℓ′)Pκ(ℓ). (2.57)

Thus it is clear that the power spectrum of the convergence and the shear are equivalent
(Pγ = Pκ ), so as long as one observes the shear power spectrum, one can infer the matter
density contrast power spectrum.

With this equivalence known, we can now consider the shear 2-point correlation function as
our observable of choice. We will consider shear 2-point statistics as it noted by Bartelmann
and Schneider (1999), by considering pairs of (θ ,θ +θ ′) we can rewrite our shear quantity
in terms tangential component γt =−Re[γe−2iφ and its cross-component γx =−Im[−2iφ ]
where φ is the polar angle of the separation vector θ .By convention, one adds a minus sign
so that γt is positive for the tangential alignment around an overdensity while a positive cross-
component shear has a π/4 rotation compared to the tangential shear. On the other hand, the
tangential shear component is negative for a radial alignment around an under-density. Under
this 2-component format, the 2-point-correlation function is no longer a single function but
3 based on the statistical interaction of the components (⟨γt ,γt⟩,⟨γx,γx⟩,⟨γt ,γx⟩), the last of
these vanishes to zero in a parity-symmetric universe. The other 2 are linearly combined to
give a correlation function ξ±, which relates to the convergence power spectrum as

ξ± = ⟨γt ,γt⟩±⟨γx,γx⟩=
1

2π

∫
∞

0
dℓℓPκ(ℓ)J0,4(ℓθ), (2.58)

where J0,4 refers to the 2 Bessel functions (J0,J4) that correspond with the 2 correlation
function operators +,− respectively. The 2 different correlation functions are essentially
linearly filtered versions of the convergence power spectrum. The filters in question are
the 2 Bessel functions that work differently at small ℓθ . For example, J0 remains almost
constant for ℓθ ≪ 1 while J0 behaves as (ℓθ)4 so ξ− is a lot more localised version of the
convergence power spectrum. Even with this filtering process, information is not lost as
the full convergence power spectrum can be recovered from just one of these correlation
functions,

Pκ(ℓ) = 2π

∫
∞

0
dθθξ+J0(ℓθ) = 2π

∫
∞

0
dθθξ−J4(ℓθ). (2.59)

For complete consistency, one can also recover one correlation function from the other
though recovering ξ−(θ) from ξ+(θ) is the desirable option as it only requires an integral
of [0,θ ] as opposed to the much less practical solution of the reverse (ξ+(θ) from ξ−(θ))
which requires an infinite range of integration.
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Unfortunately, evaluating the convergence power spectrum straight from the correlation
functions above is incredibly in-practical. Consider equation 2.59 to fully recover the
convergence power spectrum one would come across 2 issues. Firstly we do not have perfect
knowledge of ξ±(θ), every galaxy observation is noisy, and many shear estimations have to
be made, as demonstrated above. Furthermore, even if we did have a method to perfectly
observe the shear of distant galaxies, the integral of equation 2.59 requires knowledge of
correlation function at an angular separation of θ = ∞ knowledge unreachable to us as it
requires observations outside of our light cone. With this in mind, we use an estimator
(Schneider et al., 2002) to estimate the correlation function based on galaxy observations,

ξ̂± =
∑i j wiw j(εt,iεt, j ± εx,iεx, j)

∑i j wiw j
. (2.60)

The sums take place over a pair of galaxies (i, j) at an angular separation of |θi −θ j| (so that
their angular positions are θi,θ j respectively). For each galaxy, one observes its ellipticity ε

and derives its elliptical tangential and cross components εt ,εx. We also assign a weight w
to each galactic observation. By these means, we can down-weight noisy observations by
assigning small values of w. Presuming that the observable ellipticity of a galaxy image at
angular position θi takes a form of εi = εs

i + γ(θi) where εs
i is the intrinsic ellipticity which

is valid under the weak lensing assumption |γ| ≪ 1.
To evaluate the effectiveness of this estimator, we must consider the expectation value

of the estimator ⟨ξ̂ ⟩ as we will be taking the assembled average. if we first evaluate the
assembled averages of the actual cross and tangential ellipticities, we get the following term,

⟨εt,iεt, j + εx,iεx, j⟩= σ
2
ε +ξ (θ), (2.61)

where σ2
ε is the dispersion of the intrinsic galaxy ellipticity, as this is the case by taking

the ensemble average of the estimator, we gather the original correlation function, showing
it to be an unbiased estimator ⟨ξ̂±⟩= ξ±. Other than solving the issues mentioned above,
there are other advantages of the estimator, such as the fact that it has an easily calculable
covariance matrix, but most importantly, no knowledge of the mask geometry is required, just
what galaxies are within the mask. This key advantage makes it the origin of other 2-point
correlation function estimators designed to give a higher signal-to-noise ratio in specific
angular scales and reduce correlations on different angular scales (a consequence of the
original estimator.

Such a derived estimator includes the top hat shear dispersion (Kaiser et al., 1992) which
takes the average root mean square of the shear for an aperture of radius θ (ie.⟨|γ|2⟩(θ)).
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Just as with equation 2.58 the estimator can be reexamined as a filter on the convergence
power spectrum,

⟨|γ|2⟩(θ) = 1
4π

∫
∞

0
dℓℓPκ(ℓ)

2[J1(ℓθ)]
2

(ℓθ)2 , (2.62)

J1 as a filter function is a low-pass filter on the power spectrum, this means that just like
J0 the filter is constant for (ℓθ)≪ 1 but unlike J0 which oscillates for large (ℓθ) with the
amplitude slowly decreasing at (ℓθ)−1/2 the J1 filter decreases steeply as (ℓθ)−3 at large
values limiting its use. Thus estimator is light on usable information but returns very high
signal-to-noise ratios for any given θ thus was a strong candidate for early cosmological
studies where the signal-to-noise ratios were lower than are technologically available now.
More modern studies have used the aperture mass dispersion (Schneider et al., 1998) as the
statistic of choice. For this statistic, one defines a circular region with a characteristic scale θ

and collects the mean tangential shear concerning the centre ϑ ,

Map(θ ,ϑ) =
∫

d2
ϑ
′Qθ (|ϑ −ϑ

′|)γt(ϑ
′), (2.63)

where Qθ is the weighted filtered function. An alternative filter function can be derived to
match the aperture mass to the convergence in both cases, and many approximate functions
have been used in the past, including fourth-order polynomials and Gaussian functions. As
with all previous estimators, it can be written in terms of a filter on the power spectrum.

Map(θ ,ϑ) =
1

4π

∫
∞

0
dℓℓPκ(ℓ)

576[J4(ℓθ)]
4

(ℓθ)4 . (2.64)

This is by far the most localised filter behaving as (ℓθ)4 and oscillatory decreasing as (ℓθ)−5

for small and large values, respectively. In both cases (top-hat shear and aperture mass), the
statistics need estimators to be practical. These estimators use linear combinations of the
original estimator mentioned above ξ̂±.

These seemingly inferior estimators offer advantages in easily separating the shear power
spectrum into E and B modes. A brief return to the shear field is required to appreciate the
significance. Fields can be defined in terms of their spin weights which explain how the field
changes if an angle rotates the coordinate system θ (Heavens, 2008). If said rotation leads to
a field change of f → f esiθ , then s is the spin weight. As an example lensing potential ψ

does not change under a coordinate rotation system thus ψ = ψeesiθ , esiθ = 1 which means
the lensing potential has a spin weight of s = 0 (this is more routinely known as a scalar
field). The shear field, however, has a spin weight of 2 (i.e. it changes as γ → γe2iθ ). This
means that the shear field changes from its real to imaginary component (or pure γ1 to γ2
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Figure 2.6: The different configurations of distorted elliptical images of galaxies that make the
E-modes and B-modes of the lensing power spectrum (Van Waerbeke and Mellier, 2003).

every 45 degrees (alternatively, it returns to its original value every 90 degrees). The general
quality of a spin 2 object is that it can be written as the second derivative of a complex field
φ in modal form.

γ =
1
2

∂∂ (φE + iφB), (2.65)

where φE and φB are the modes of the complex field, these modes are defined by saying
that if we have vector field u that is the gradient of the complex field (i.e. u = ∇φ ), then
the second derivatives of the E and B modes give the gradient and curl of that vector field
respectively (∇2φE = ∇ ·u,∇2φB = ∇×u). In the case of shear, the complex field in question
is the lensing potential, and due to this modal separation, the shear itself can also be separated
into its ‘E’ and ‘B’ modes γE ,γB. These shear modes have a physical interpretation as well as
a mathematical description. For example, consider Figure 2.6 the green top images represent
how spherical galaxy images would distort and align with just E-mode shear, whereas the
bottom red images are the same but for B-mode shear. Furthermore, the images on the left
represent how the modes distort images for central overdensities, whereas the right images
are distortion caused by central under densities. Also, note that every E-mode galaxy image
can be rotated 45 degrees to become its corresponding B-mode (thus the spin 2 nature of
shear).
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This modal structure can be continued into our chosen statistics for extracting cosmology
from weak lensing observations. We can rewrite the 2-point correlation functions in terms of
E and B modes,

ξ±(θ) =
1

2π

∫
dℓℓJ0,4(ℓθ)[PE

κ (ℓ)±PB
κ (ℓ)]. (2.66)

This is a Hankel transform of the convergence power spectrum and can be easily and
quickly integrated numerically (Hamilton, 2000). However, as one can see in equation 2.66
when expressed as standard 2-point correlation functions, the E and B modes are coupled and
cannot be separated, which brings us back to the advantages of the derived 2-point statistics,
which do have the ability to separate the 2 modes. The separated modal statistics can be
shown given a derived 2-point statistic χ ,

χE,B =
1

2π

∫
dℓℓPE,B

κ (ℓ)Ũ2(ℓ), (2.67)

where Ũ is a statistic-specific power spectrum filter. As with all statistics covered so far,
estimators are required, which also have the mode separating qualities,

X̂E,B =
1
2 ∑θi∆θi[F+(θi)ξ+±F−(θi)ξ−(θi)], (2.68)

where ∆θ is the bin width and F is the statistic-specific correlation function filter. The 2
filters are Hankel transforms pairs, so a relation exists that gets you from one to the other.
For a complete list of filters and their corresponding 2-point statistic, please see the work
of Kilbinger et al. (2013). Depending on the statistic chosen, it is easier to derive one filter
and relate it to the other. For example, Ũ is just the Fourier transform of the real space filter
function Qθ in equation 2.63, and then from the relation, the correlator filter functions are
derived.

It is now clear that the correlators offer this modal splitting advantage, but it is still not
clear why this is an advantage in the first place. Consider again the shear modes expressed
through equation 2.65, in that example, the complex field ψ to which shear is the second
derivative is the lensing potential. This is particularly important as the lensing potential is
a real field void of an imaginary component, so for the case of weak lensing, ψE = ψ and
ψB = 0. In other words, the shear field should not have a B mode. Thus the detection of a B
mode (or, more superficially, the B model of the shear power spectrum) may indicate errors
in the observation or analysis of the data, such as systematic errors in setup. Although not
observable now due to only existing on the per cent level compared to E-modes, there are
reasons for naturally occurring B-modes from weak lensing analysis. This includes B-mode
correlation in the intrinsic shape of the galaxies, selection biases in the size and magnitude



102 Weak Lensing

of the observed galaxies and higher-order terms neglected by the approximations in place.
Even with all the above errors, systematics, and physical phenomena accounted for, there
would still be a degree of B-mode to a weak lensing survey, this is due to the universe not
being isotropic on all scales, so any deviation from the local spacial isotropy assumed by
standard cosmology would induce a B-mode in the shear (Pitrou et al., 2012). Unlike the B
mode reason seen above the anisotropy, B-modes arise on all cosmological scales. This has
at least 2 potential uses. Firstly, any bounds on a scale of B-modes detection can be used as a
constraint on the isotropy of the universe (allowing further evidence for the cosmological
principle). On the other hand, understanding local isotropy in the universe can help remove
the B-modes in analysis, disentangling them from the non-cosmological B-modes.

2.4.2 Approximations

As mentioned above, the shear power spectrum as described in equation 2.53 can not be
described in such a way without the need for approximations. The most physically changing
is the flat-sky approximation. Up to this point, the coordinate system of choice has been
Cartesian as in θ = x,y to say all observations are observed from a flat surface. This is not the
case; observations are made by earth-bound telescopes that rotate with the earth or orbiting
satellites. In both cases, the observations are on a curved surface which the normal power
spectrum does not describe. Under this circumstance, instead of writing a function f (x,y) as
a summation of sine waves, we write the function in spherical coordinates, i.e. f (θ ,φ) were
the coordinates of the choice point to locations on a surface of constant r. Under this system,
the cartesian coordinates are related by x = r cos(φ)sin(θ) and y = r sin(φ)sin(θ) where φ

is the azimuthal angle in the x-y plane from the x-axis where 0 ≤ φ ≤ 2π and θ is the polar
angle from the positive z-axis where 0 ≤ θ ≤ π .

Under this system, a normal Fourier transform to gather the power spectrum is no longer
sufficient. Whereas with Fourier transforms, we use an infinite set of sin and cos waves to
define a function. Now we use a set of spherical harmonics defined as

Yℓm =

√
2ℓ+1

4π

(ℓ−m)!
(ℓ+m)!

Pm
ℓ (cos(θ))eimφ , (2.69)

where ℓ is the multipole representing a given angular scale of the sky to approximately π/ℓ

in degrees and its values indicesℓ= 0, ...,∞. m is an index restricted by −ℓ≤ m ≤ ℓ and Pm
ℓ

are the Legendre polynomials. With this in mind, we can take a sum of these harmonics to
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define our function,

f (θ ,φ) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓmYℓm(θ ,φ). (2.70)

In this case, aℓm are the coefficients and are analogous to the Cartesian function in Fourier
space and thus are defined in a similar manner

aℓm =
∫

π

θ=0

∫ 2π

φ=0
f (θ ,φ)Y ∗

ℓm(θ ,φ)dΩ, (2.71)

where Ω is the solid angle and Y ∗
ℓm the complex conjugate of the spherical harmonic. As

with the Fourier transformed functions above, we can define a power spectrum C(ℓ) as the
variance of the coefficients.

⟨aℓma∗ℓ′m′⟩= δℓℓ′δmm′Cℓ. (2.72)

The power spectrum in this form can be written as Cℓ = (∑ℓ
m=−ℓ⟨|alm|2⟩)/(2ℓ+ 1) and

so is the average squared magnitude of the coefficients for each ℓ. But as one can see
there is only 2ℓ+1 m-modes for each multipole leading to the following cosmic variance
δCℓ =

√
2/(2ℓ+1).

Returning to the shear field, which can now be written in terms of spherical harmonics,

γ(θ ,φ) = ∑
ℓm
(εℓm + iβℓm)Yℓm(θ ,φ), (2.73)

where εℓm and βℓm are the multipole coefficients of the E-modes and B-modes, respectively.
We can then relate the E-mode angular power spectrum to the lensing potential angular power
spectrum,

Cεε
ℓ =

1
4
(ℓ+2)!
(ℓ−2)!

Cφφ

ℓ , (2.74)

where Cεε
ℓ ,Cφφ

ℓ are the E-mode angular power spectrum and lensing angular potential spec-
trum respectively. this relation is possible due to the relationship between the E-modes
and the lensing potential in the first place being εℓm =

√
(ℓ+2)!/(ℓ−2)!φ/2.Much in the

fashion seen previously, we can now link the lensing potential angular power spectrum to the
matter power spectrum just as we had done with the convergence before,

Cφφ

ℓ =
8
π
(
3ΩmH2

0
2c2 )2

∫ dk
k2 I2

ℓ (k)
∫

dχ(
χ ′−χ

χ ′χa
)2 j2

ℓ (kχ)Pδ (k,χ), (2.75)
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Figure 2.7: The difference in observed matter power spectrum between the full version (bold line)
and that that has used the ‘flat sky’ approximation (Kitching et al., 2017).

where

Iℓ(k) =
∫

dχ(
χ ′−χ

χ ′χa
) jℓ(kχ)[Pδ (k,χ)]

1/2, (2.76)

where jℓ is the spherical Bessel function. For full consistency, the shear correlation functions
can also be expressed in terms of the shear E-mode angular power spectrum as

ξ±(θ) = ∑
ℓ

2ℓ+1
4π

Cεε
ℓ dℓ

2,±2(θ), (2.77)

where dℓ
2,±2 are the reduced Wigner D-matrices.

Both equation 2.75 and equation 2.77 are examples of the exact equation without any of
the approximations (minus the Born approximation, which was mentioned above and allowed
for the E-mode, lensing potential relation). However, this full term is tough to calculate
in reality, so the flat sky approximation is introduced. The flat sky approximation allows
us to neglect the angular nature of our observations and instead presume the observations
took place on a euclidean surface. This assumption may be allowed, especially when the
observation field has taken place over a small angular change (and thus is also known as
a small-angle approximation). Mathematically this replaces our expansions in spherical
harmonics with the equivalent expansions in Fourier modes. Due to the similar orthogonality
relations between spherical harmonic functions and exponential functions (as the sine waves
can be represented as exponential functions), the physical changes to equation 2.77 are
minimal. Firstly the preface in the relationship between E-modes and lensing potentials in
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equation 2.74 simplifies to (ℓ+ 2)!/(ℓ− 2)! → ℓ4. This is due to the different ways spin
raising and lowering operations act on harmonic and exponential functions. The underlying
effect is the replacement of the reduced Wigner D-matrices with the Bessel functions used
prior i.e. dℓ

2,±2(θ)≈ J0/4(θℓ). To test the appropriateness of this approximation (Kitching
et al., 2017) ran simulations of the cosmic shear power spectrum for a given CFHTLenS
matter distribution using the cosmology equal to the 2016 Plank results, obtaining both the
full cosmic shear power spectrum and that power spectrum one would get from a flat-sky
approximation. From Figure 2.7 we can see the power spectrum and their relative differences.
It is clear that on large scales ℓ < 10, there is a more than 10% suppression in power due
to the Flat-sky approximation, a suppression that reduces to < 1% for small scales ℓ > 100.
This is expected as the approximation assumes a small angle of observation, thus a small
scale. The same is true when considering changes to the correlation function, with effects
only tangible at high angles. It is also worth noting that the approximation has a much larger
effect on ξ+ than on ξ− which is to be expected as ξ− is more localised (thus waiting for
smaller scales more than larger scales) than ξ+= due to the J4 Bessel function as discussed
earlier. When used on its own, the approximation has met criticism due to its inducing errors
of the order 1/ℓ, which may not be completely negligible.

Another issue that makes calculation difficult and time-consuming to evaluate accurately
at high multipoles is the rapid oscillations in the spherical Bessel function. To attack this
function, we use the Limber approximation (Limber et al., 1953), and its generalisations in
Fourier space (Kaiser et al., 1992). The approximation assumes that the rest of the integrand
in Iℓ(k) is slowly varying compared to the variations in jℓ which is generally the case for
large ℓ. This assumption allows us to replace the spherical Bessel function with a much
more practical delta function i.e. jℓ →

√
πδD(ν − kξ )/2ν . Where ν = ℓ+1/2. The wave

number k is then related to the radial distance ξ via the relation kξ = ν . The practicality
of this approach is that it allows us to effectively ignore the second integral so that when
combined with the flat sky approximation, we can return to the original equation. A more
digestible explanation of the approximation is given in (LoVerde & Afshordi 2008), which
says that it assumes the matter power spectrum is not evolving. As radical of an assumption
as this may be, it can be shown that applying the Limber approximation to a spherical-radial
representation of the cosmic shear field can lead to a first-order approximation of the full
cosmic shear power spectrum despite the constant matter power spectrum assumption.

To assess the full impact of the approximations (Kitching et al., 2017) computed the
integrated effects over the differences using the following formula:

⟨A⟩/NA =

∫
dln(ℓ)ℓ2δC(ℓ)∫

dln(ℓ)ℓ2 . (2.78)
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Similar formulas are provided in (Massey et al., 2011), (Laureijs et al., 2011) but also included
a normalisation term NA =

∫
dln(ℓ)ℓ2. The use of the formula is that non-zero values will

change the power spectrum amplitude and lead to biases in cosmological parameter inference.
Through the simulation, they found that the flat-sky approximation combined with the limber
approximation led to an amplitude difference of ⟨A⟩/NA = 1.9× 10−13. For context, the
requirements for a Euclid or LSST-like weak lensing survey are for that quantity to be
⟨A⟩/NA ≤ 1.9× 10−12 across all systematic effects (instrumental and approximations in
the mathematics) to produce unbiased results for dark energy equation parameters. This
means that the Flat sky and limber approximation would account for 11% of the entire
systematic effects budget and thus is way too high to be useful in the future. With that
said, a common counterargument is that the approximations were only meant for the small
scales of which small angel approximations are used; however, if we limit our selfs to
said small angles and thus ignore scales larger than ℓ < 100, then the formula produces
a bias of⟨A⟩/NA ≤ 1.7×10−12 which is still a high percentage of the total budget. These
approximations are still used today due to their practical and easily calculable nature but are
slowly being phased out due to their lack of necessity as computational power increases, and
error budgets continue to fall.

2.5 Cosmological Analysis

2.5.1 Estimation

At this point, we have methods for estimating the ellipticity of galaxy images collected in
comprehensive surveys (be it weighted Quadrupoles moments, shapelets, or other methodol-
ogy). We also have equations that allow us to estimate the shear correlation function based
on this ellipticity. Furthermore, these same correlation functions can be converted to shear
power spectra and thus convergence power spectra. Lastly, through the above approximations
(mainly Flat-sky and limber), we can relate these convergence power spectra estimations
to the universe’s matter distribution. With this framework, we can now link observation
to the theoretical prediction, finally allowing us to finally make some actual cosmological
predictions.

Weak lensing is so cosmologically valuable because it is a direct probe to the whole matter
distribution, as opposed to the other methods that rely on baryonic tracers such as Lyman-α
and galaxy clustering. These tracer methods have to deal with considerable complications
due to the non-linear aspects of galaxy bias and redshift-space distortion. That is not to
say weak lensing is without its issues. First, even if we neglect all the uncertainty that
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comes with the approximations and estimations needed to go from image to modelled matter
distribution, there is the fact that weak lensing by nature is ‘weak’, and so millions of galaxy
images are required for significant enough shear signals. This is a technological limitation as
weak lensing surveys continue to increase in their observation volume. The second issue is
that weak lensing provides a projected matter density field, a combination of all the matter
between source and observer. The shear field is 2 dimensional. This flatness means weak
lensing is insensitive to many available modes of the complete matter distribution and thus
leads to a high information loss.

Some methods are attempting to mitigate this information loss. One such method is known
as 3D lensing (Heavens, 2003). In this method, one does not only take elliptical information
from galaxy images but redshift information as well (usually in the form of photometric
redshifts, but this will be discussed in more detail below). The individual redshift information
is used so that when a spherical harmonic transformation of the shear is made, one does not
need to mix the k-modes along a line of sight (which happens in an average projection) but
instead has a shear field consisting of both ℓ-modes and k-modes for the point in the sky and
the line of sight respectively. Through simulation, it has been shown that by taking a 3D
approach, one may be able to estimate the equation of state cosmological parameter ω to
up to 1% precision. one may even be able to constrain the equation of state across different
redshifts (ω(z)) which allow for the testing of different vacuum energy models. Furthermore,
such analysis could reduce error bars in matter distribution parameters such as amplitude
with even modestly accurate photometric redshifts. Other advantages include eliminating
several systematic effects such as intrinsic alignment. However, a concern for this method is
the contamination of cosmological analysis due to survey masks (areas of no observation)
due to the complete spherical harmonic transformation of the field masked areas’ course
power to mix between mask-affected and unaffected scales. With this in mind, the geometry
of the mask has to be accounted for, which can be achieved in several ways.

1. applying the effect of the mask directly onto the theoretical prediction through a mixing
matrix. One such method for being pseudo-Cℓs (Hivon et al., 2002)

2. by correcting the data for the mask through a regularisation scheme

The second suggestion requires a very intensive matrix inversion. Either way, surveys
need to be incredibly large to account for masks and thus have only been a viable form
of analysis recently, with the CFHTLens (Kitching et al., 2014) survey being 120 square
degrees. However, as with the ‘weak’ issue, this issue will decrease as surveys get larger
over time.
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An alternative, simpler (though potentially less effective) method that is the current
method of use across most modern surveys is tomographic redshift binning (Hu, 1999). In
this approach, redshift data is used again, but instead of caring about every individual galaxy’s
photometric redshift for the full shear analyses, the survey is split into Nz tomographic bins of
which a galaxy is allocated to a bin based on its photometric redshift. This means that one no
longer obtains one convergence power spectrum but Nz(Nz−1)/2 convergence power spectra
Pκ,i j where 1 ≤ i ≤ j ≤ Nz as both auto spectra i = j and cross spectra i ̸= j are included.
This change in analysis modifies our convergence power spectra equation somewhat:

Pκ,i j =
9
2

Ω
2
m(

H0

c
)4
∫

χlim

0
dχ

qi(χ)q j(χ)

a(χ)
Pδ (k =

ℓ

fk(χ),χ
), (2.79)

where qi(χ) is the lensing efficiency for the i’th bin defined as

qi(χ) =
∫

χlim

χ

dχ
′n(χ ′)i

fK(χ
′−χ)

fK(χ)
. (2.80)

In this case, n(χ)i is the source galaxy distribution of the i’th tomographic bin such that
n(χ)idχ = n(z)idz the lens efficiency indicates how strong the lensing effect it as distance χ

due to the combined background distribution. There is a difference in strength between the
galaxy distribution and the lensing efficiency as a function of distance, the lensing efficiency
is a very broad function in comoving distance or redshift; thus, tomographic power spectra
are not independent of each other. This means that a large-scale structure, regardless of
the bin it is in, can contribute to all the bins with higher redshifts as the light from the
source to the observer would also have to travel between those bins and interact with the
large-scale structure. Even if this were not the case, photometric redshift errors mean galaxies
can be placed in the wrong tomographic bin, leading to overlapping tomographic redshift
distributions.

2.5.2 Prediction

Through such observations as the change in the shape of observed galaxies, one can use
techniques such as tomographic bins to build up an estimated matter power spectrum.
However, as seen previously, one can not infer information from the universe from this
observation alone; instead, it must be compared to models of how we believe a matter
distribution and thus a lensing distribution would evolve with redshift, and through these
comparisons, we can predict the value of specific cosmological parameters. With that said,
weak lensing is incredibly limited in the cosmological parameters it can probe, even among
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Figure 2.8: The cosmological constraints on values of Ωm and σ8 using different methods for inferring
redshift distributions of weak lensing surveys (Hildebrandt et al., 2017).

those that are intuitively connected, such as Ωm and σ8. Take, for example, the results from
the Kilo Degree Survey that observed 449 deg2 of the sky (KiDS-450 (Hildebrandt et al.,
2017)) as seen in Figure 2.8. Using images of 14640774 objects assorted into 5 tomographic
bins, shear correlation functions were compared to models. From Figure 2.8 we can see
multiple banana shapes, all representing possible samples of the actual cosmological values
using different redshift distribution techniques (see Chapter 3). No matter the technique,
one still gets an effect, meaning parameters scale across multiple values. This is due to a
degeneracy they both hold. Different combinations of both parameters can cause identical
shear power spectra to be observed. This makes intuitive sense. One would expect that a very
clumpy but not very dense universe would deliver similar levels of weak lensing to that of a
dense but more spread-out universe.

Due to this degeneracy in result, it has become a lot more common to adopt a cosmolog-
ical parameter that combines the 2, known as S8 where S8 = σ8

√
Ωm/0.3. Visually this

combination of the 2 variables represents the central ‘width’ of the banana and allows for a
visual uncertainty contour that is much more adept for a fundamental Gaussian uncertainty,
as seen in Figure 2.9. These are updated results not only including KiDs-450 as seen above
but other extended survey results from the KiDs-VIKING survey, as well as comparisons
to other weak lensing surveys such as the Dark Energy Survey (DESy1 purple), the Hyper
Suprime-Cam Subaru Strategic Program (HSC orange). These particular results are all
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Figure 2.9: Cosmological constraints on parameters Ωm and S8 for different weak lensing (and CMB)
surveys (Hildebrandt et al., 2018)

broadly in agreement, but one result reveals one of the other central tensions of cosmological
physics.

2.5.3 Challenges

The predictions mentioned above make weak lensing a powerful tool for cosmology, espe-
cially in parameter constraints. However, the above theoretical explanations for the link
between cosmological matter distributions and observable shear correlations missed some
complex challenges that still face weak lensing going forward.

One of the major issues is that we have presumed that all shear correlation observed
through our weak lensing surveys is caused directly and exclusively by the underlying matter
distributions between source and observation. In other words, we have assumed that the
source ellipticity of the galaxies is entirely randomly generated so that the average shear
⟨γ⟩ is zero on large enough scales. Unfortunately, this is not the case. The ellipticity of
galaxies is not completely randomly generated but instead has some correlation to other
galaxies’ shear before weak lensing. They have intrinsic alignment. This alignment works to
contaminate the shear signal. It can lead to the signal being boosted by the intrinsic alignment



2.5 Cosmological Analysis 111

between galaxies that mimic the gravitational shear or the complete opposite. Galaxies can
have intrinsic anti-correlation diminishing the shear signal (Kiessling et al., 2015).

The believed reason for this intrinsic alignment is due to gravitational fields from structures
more immense than the galaxies coursing tidal interactions. As galaxies can vary in size,
so can structure coursing the alignment; thus, intrinsic alignment happens simultaneously
on multiple scales, from large halo-sized scales above 10Mpc to typical galaxy-size scales
below 1Mpc. The alignment is usually split into 3 scale regimes, the 2 mentioned above and
an intermediate galaxy cluster scale of a few Mpcs. These regimes will be covered in more
detail below.

On the largest scale, we consider the intrinsic alignment of the galaxy is caused by the
dark matter halo in which they are. To the lowest order particles at position x(q,a) where q
and a are initial position and scale factor receptively. These particle positions follow straight
lines determined by the gradient of the displacement potential Ψ (Zel’Dovich et al., 1970)

x(q,a) = q−D+(a)δΨ(q), (2.81)

where D+ is the growth factor. We can now consider the entire halo by taylor expanding the
above equation along the halos centre of gravity q̄,

x(q,a)≈ q−D+(a)[δΨ(q̄)+∑
j
(q j − q̄ j)δΨ(q)]. (2.82)

The two terms within the square brackets identify the difference in halo motion. In the first
term, I identify the bulk motion of the halo, while the second term shows the difference
in motion of a particle compared to the centre of gravity. The field affecting this motion
difference is the title field tensor δΨ(q). For example, suppose the tidal field of the halo
does not coincide with the halo’s principal axis. In that case, a shearing motion produces
angular momentum, of which an individual galaxy galactic disk would form perpendicular
to the halo angular momentum direction coursing a quadratic alignment for spiral galaxies.
This effect is also known as tidal torquing, and by tracking the ellipticities of spiral galaxies,
one can reasonably predict the halos angular momentum direction but not necessarily its
magnitude (Catalan and Theuns, 1996). In terms of its effect on contaminating weak lensing
signal, (Capranico et al., 2013) computed the angular ellipticity power spectra and found that
the intrinsic E-mode spectra caused by quadratic alignment were an order of magnitude less
than the weak lensing power spectra, so the minimum contamination but still valuable for
identifying systematics as it did produce a B-mode signal as well.

In the case of elliptical galaxies, the galaxy structure is determined by the velocity disper-
sion of dark matter particles and starts within it so it can reach viral equilibrium. However, if
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Figure 2.10: 2 elliptical galaxies within a halo’s tidal field (grey sheet) shape will change from
uncorrelated (red) to correlated (blue) (Kiessling et al., 2015).

said galaxy is placed within a tidal gravitational field, it will distort, forcing the stars to take
new positions to keep the equilibrium. These new positions will lead to a new galaxy shape
that correlates with other nearby galaxies within the same tidal field, as shown in Figure 2.10.
In the limits of weak fields, the relationship between elasticity and the projected tidal shear
field is entirely linear, allowing for the following model for intrinsic shear (γ I):

γ
I =− C1

4πG
(δ 2

x −δ
2
y +2iδ 2

x y)S(Φ), (2.83)

where x,y are Cartesian coordinates in the sky plane and S(Φ) is a smoothing of the grav-
itational potential on the halo scale. C1 is a constant of proportionality that indicates the
strength of the reaction the galaxy feels as its shape changes due to the tidal field. Through
measuring ellipticity correlation in the SuperCOSMOS (Brown et al., 2000) dad the constant
was found to be C1 ≈ 5× 10−14 (h−1 M⊙ Mpc−3)−1 (Bridle and King, 2007). The linear
relationship is not limited to particular constrained conditions either. The range in which
the linear relationship holds is quite high linear ellipticity correlations have shown to extend
to 30h−1 Mpc (Okumura et al., 2008) in the Sloan Digital Sky Survey and extended as
far as 100 h−1 Mpc for cross-correlations between galaxy shape and density (Mandelbaum
et al., 2006). With this said, studies have found that the linear model alone is strong enough
to account for the total intrinsic alignment observed in elliptical galaxies (Camelio and
Lombardi, 2015).

As intrinsic alignments on the post-halo scale cannot account for all observed intrinsic
alignments, the sub-halo scale must also be considered. Under these circumstances, one
can make intrinsic alignment predictions through the halo model itself. Most important,
through the halo model, one can differentiate the alignment of central galaxies from the
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alignment of satellite galaxies. It is often assumed to simplify the model by stating that
central galaxy ellipticity was uncorrelated with satellite ellipticity. Matter can be further
simplified by using the fact that the dominant term for galaxy alignment is the same term
that describes the alignment of their host halo. This means one can account for the total halo
alignment power spectra using only a few terms. In this state, the 2 models shown above
(the small-scale Halo model and the large-scale tidal interaction model) can not be extended
to their intermediate regime for the small scale because the model relies on the halo is self
so bound to that scale while the large scale one is derived from Lagrangian perturbation
theory which can only be applied to potentials from large scale structure. Figure 2.11 shows
the issue more acutely, included in the observations of galaxy correlations found in SDSS
luminous red galaxies at various scales. Also included are different models. Only the one
Halo model correctly models the observations at the most miniature scale, while only the
linear models can fully account for the most significant scale. From this, one may look
for an intermediate scale theory that joins the 2 scales to model the intrinsic alignments of
galaxies fully. These scales are sometimes referred to as mildly non-linear as observations
have shown that intrinsic alignment seems slightly more potent than the linear predictions.
Methods have been proposed, such as phenomenological solutions or replacing the matter
power spectrum with a non-linear counterpart, this model named Non-Linear Alignment
(NLA) gives a more substantial predicted alignment at more minor scales while keeping
things unchanged at larger scales (one can see from Figure 2.11 that the NLA model -red-
bridges the gap between large and small scales but still fails at the smallest). However, as
shown through their fails and lack of overlap in specific scales, these are toy models, and
thus a complete understanding of intrinsic alignment has not yet been met. With a complete
understanding, not knowing intrinsic alignment must be considered within the weak lensing
analysis itself.

To analyse weak lensing, it is essential to gauge its effect on core mathematics. We
can expand upon what we mean by observed ellipticity so that it follows ε = γG + γ I + εs

where εs is the source ellipticity. It is unlensed, random and presumed to be sampled from a
distribution that averages to zero. γG is the shear we have been familiar with up to this point;
the shear is caused by a gravitational potential, standard weak lensing. The new extra term is
γ I which contributes to the average ellipticity based on its environment. Notice that intrinsic
alignment is not treated under the source ellipticity variable under this equation but is instead
treated as its kind of shear being ‘applied’ to the source. Under this consideration, one can
work out the ellipticity power spectrum to find 3 terms where there used to be 1:

Cεε
ℓ =CGG

ℓ +CGI
ℓ +CII

ℓ . (2.84)
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Figure 2.11: 2 elliptical galaxies within a halos tidal field (grey sheet) shape will change from
uncorrelated (red) to correlated (blue) (Kiessling et al., 2015).

The three components contribute to the weak lensing signal in different ways.

• The first term CGG
ℓ is the usual weak lensing power spectrum one has seen up to this

point where the ellipticity of the source is correlated due to mass structures between
source and observer

• The last term CII
ℓ represents the correlation one would expect to be caused by intrinsic

alignment where 2 nearby galaxies have similar ellipticities due to being mutually
aligned by the gravitational tidal field

• The second term CGI
ℓ represents a correlation caused by both the intrinsic alignments

and the weak lensing effect. For example, consider a sizeable cosmological structure
with a large gravitational tidal field. Any galaxies near it will be intrinsically radially
aligned to it, whereas any galaxies behind the large structure will be tangentially
aligned to the structure due to weak lensing. This effect leads to the 2 galaxies in
question being anti-correlated.

The II and GI effects are well presented in the illustration of Figure 2.12 where in both
cases, we have a large mass structure and galaxies being intrinsically aligned to it at redshift
zi, but we also have a galaxy being gravitationally lensed by the structure at redshift z j

where z j > zi. One should note, though, that it is only in the simplest of alignment models
do intrinsic alignment and gravitational shear act orthogonally coursing an anti-correlation.
More complex models that account for the merger history of galaxies or baryonic infall may
result in different intrinsic alignments coursing positive correlations with lensing. It is also
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Figure 2.12: (Troxel and Ishak, 2014)

worth noting there is one omission to the terms impacting the elliptical power spectrum,
and that is CIG

ℓ this refers to the correlation between galaxies that have been intrinsically
aligned by a large mass structure and the galaxies in front of that structure that have been
weak-lensed by it. However, this term can be rightfully ignored as galaxies are only lensed
by large mass structures between source and observer, not behind the source.

To mitigate the effect of intrinsic alignment, one can take a direct approach of including a
parameterised model of intrinsic alignment and marginalising its parameters as a part of the
cosmological analysis. The parameterisation may be more general and be a function of galaxy
properties such as redshift and galaxy type that can also be marginalised as new parameters.
One such early example was developed as King and Schneider (2003) who had the intrinsic
correlation function as a linear combination of 9 intrinsic alignment functions parametrised as
η(r,z) = (1+ z̄)α exp(−r/R) where r is the comoving separation, R is the correlation length
and z̄ is the mean redshift of the galaxy pair. In this case, 3 sets of (α,R) are the nuisance
parameters to be marginalised. Using this approach, the degeneracy between Ωm and σ8 and
future works showed a similar effect for including the GI contribution (KING2005). There
are, however, major limitations to this approach. As we saw earlier in Figure 2.11, there
currently is no model that succeeds under all scales. Thus, one standard model cannot be
assumed for the whole cosmological analysis; thus, if one cannot trust the model on certain
scales, one would be unable to trust the cosmology inferred in and out of those scales.
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An alternative approach is to remove the intrinsic alignment data from the analysis in a
process known as nulling (Joachimi and Schneider, 2009). Intrinsic alignment is directly
linked to redshift. The closer the 2 galaxies (thus, the closer their redshifts) are to each other,
the more likely they are to exist within the same gravitational tidal field and have the exact
intrinsic alignment. One can exclude or down weight ‘close’ galaxies, thus significantly
reducing the magnitude of the II power spectrum. However, this has the apparent cost of
reducing the overall number of galaxies pairs and thus the statistical power of the weak lensing
signal, which can outweigh the benefits. (Takada and White, 2003) showed that applying the
nulling technique to a topographic survey of 5 or more redshift bins (so only using the cross-
correlations between the tomographic bins) would increase errors on parameter constraints
by about 10%. In contrast, the error caused by II contamination would be negligible. In
terms of GI, the removal of certain data is also possible. Limiting the galaxy data by type
one can exclude galaxies that contribute primarily to the signal. Such a type difference exists.
CFHTLenS confirmed that the intrinsic alignment signal from late-type galaxies is consistent
with zero while early-type galaxies (which have had longer to align) course a non-zero GI
signal. It has been shown that removing 20% of red foreground galaxies can suppress the
intrinsic alignment signal by 2. There are then 2 main floors to this approach. The first-
mentioned above is the reduction in statistical power; even with perfect redshift information
and where one can confidently use 20 or more redshift tomographic bins, even though the GI
signal can be removed entirely, the size of the 2d confidence regions in parameter estimation
will increase by 20% - 50% (Joachimi and Schneider, 2009). This is an ideal scenario. In
reality, insufficient photometric data is used, leading to galaxies being missed placed in bins
leaking the intrinsic signal. Under these conditions, the increase in contour size is still around
50% while the capability to reduce the intrinsic alignment signal is cut severely (Joachimi
and Schneider, 2009).

With this in mind, there is a third approach that may be applied to try to reduce intrinsic
alignment signals. This approach is known as the self-calibration technique. The approach
gets its name through using observables within the same survey and re-scaling their cross-
correlations to calibrate the weak lensing survey. In this case, the extra observable is the
galaxy density power spectra (denoted as Cg) which allows us to examine the shear-density
cross-correlations and density-density correlations (Fry and Gaztanaga, 1993). The technique
also uses the i < j redshift separation examined in the nulling effect. This separates from
nulling because of the inclusion of the density observable. This approach differs slightly
if we self-calibrate using the cross-correlation between tomographic bins within a single
tomographic bin.
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The II signal is negligible between tomographic bins where the i < j nulling rule is applied.
This leaves us with the IG signal, which can be related to the density-intrinsic alignment
cross-correlation

CIG
i j (ℓ)≈

W G
ig

bi
1Πii

CIg
ii (ℓ), (2.85)

where bi
1 is the average galaxy bias within the ith redshift bin under the assumption that

galaxy and matter density can be linked through a galaxy bias function such that

δg(x) = b1(x)δm(x; χ)+
b2(x)

2
δm(x; χ)2. (2.86)

Although we are neglecting the b2 terms, the extra bias this non-linear term would have
caused leads to inaccuracies of less than 10% for a typical Stage IV weak lensing survey.
In weak lensing signal terms, this reduces GI contamination by 10 or more (Zhang, 2008).
This is similar to the reductions we saw in nulling techniques; however, the inclusion of self-
calibration holds its only advantages. For one, the GI signal is not simply eliminated in nulling
but simultaneously estimated. The benefits of this are 2 fold, one can you the estimated GI
signal for other alignment-based studies, but also one can use the signal to preserve statistical
power and not have the increase in contour size seen above due to statistical reduction. There
are issues with the lack of elimination of GI, and an estimator must be used to separate the
lensing and intrinsic alignment components o the shear-density cross-correlation. As this
separation is imperfect, an extra error is propagated into the parameter estimations. The
method also relies on the assumption of galaxy bias; thus, a bias model must be measured as
well; however, the errors in uncertainty caused by galaxy bias inaccuracy would be negligible
for the biases ensured in stage IV surveys (Zhang, 2008).

A similar technique is used in the case of self-calibration within a photometric tomographic
bin. However, in this case, instead of using a single scaling relationship as seen in equation
2.85, a set of scaling relationships are constructed between the shear and intrinsic alignment
and the shear and galaxy density cross-correlations. All these relations have almost identical
redshift separation dependencies, so various measurements of shear and density cross-
correlations are taken with micro bins of width 0.01z across single bins. The micro bins
may alert the issue of photometric error, but the method was shown to be safe under the
redshift errors and catastrophic errors expected of stage IV surveys. The approach can
also be modified only to give individual signals if that is what has required allowing for
more flexibility. In both self-calibration methods, the technique can be expanded to 3-point
statistics allowing for insights into the bispectrum and non-gaussian distributions.
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A promising method allows us to not self-calibrate at all. Instead, one may use to calibrate
using external datasets. One example is the cross-correlation between CMB gravitational
lensing and galaxy lensing (Vallinotto, 2011). When first detecting the CMB lensing - galaxy
lensing cross-correlations was an exciting discovery. Even though the CMB is unaffected by
intrinsic galaxy alignments, a GI signal was still detected by Hand et al. (2015) (although
to separate from usual galaxy-based GI, it is labelled φ I (Troxel and Ishak, 2014)). This is
due to the intrinsic ellipticity of foreground galaxies correlating with the lensing deflections
caused by the CMB temperature fluctuations and polarisation signals. The observed signal
can then be described in terms of its components

Cobs
i =CφG

i Cφ I
i . (2.87)

A combination of linear alignments models that agree with intrinsic alignment measurements
at low redshift studies has shown that the φ I signal is about 15% the size of the φG signal
making its contaminating impact 50% more than that of GI contamination on galaxy lensing
(Troxel and Ishak, 2014). At first, this seems like a step back, but it has also been shown
that linear scaling relationships can be made between IΦ, IG and Ig. Furthermore, these
relationships are more accurate than that seen in equation 2.85 with a typical error of 5%
for stage IV surveys. Although requiring an overlap between the galaxy and CMB survey
measurements, this method gives an additional study of the ig signal as in a proper focus of
weak lensing surveys going forward.

One may wonder why the separation of E and B modes cannot be taken advantage of. As
stated earlier, shear signals are related to the gradient of the gravitational potential. Thus,
they should be curl-free (consisting only of E-modes), so any detection of a B-mode could
indicate intrinsic alignment (as I signals do have E and B modes). This indication has led to
suggestions that the B-mode signal can lead to constraints on the contamination (Heymans
and Heavens, 2003) or as diagnostic tools to test the above methods for eliminating the I
signal altogether. However, in reality, the usefulness is limited due to the lack of correlation
between the I B-mode component and the G E-mode component in the GI correlation.
Furthermore, the leading terms from the decomposition predict no B-mode signal further
limiting the diagnostic use.

Lastly, there have been suggestions that through other novel detections, we can have an
idea of what the intrinsic shape of a galaxy was independent of the weak lensed image we
gain from extensive surveys. Such a detection would allow us to decouple intrinsic alignment
and shape noise from the weak lensing signal, increasing our signal-to-noise ratio. Such
an example of decoupling of this nature would be to look at the radio signals of a galaxy
image to determine the polarisation emission of the galaxy (Brown and Battye, 2010). The
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advantages of determining the polarisation are that they are unaffected by the lensing effect
and give insight into the intrinsic alignment of the galaxy. A similar approach can be taken
with optical polarisation (Audit and Simmons, 1998). With that said optical signals are more
easily affected by external factors such as other source galaxies and intervening magnetic
fields, which introduce position dependencies requiring extra knowledge to overcome. An
alternative approach requires an overlapping smaller spectroscopic survey in the region of
the extensive photometric weak lensing survey (Huff et al., 2013). This would allow one to
measure the rotation velocity of disk galaxies. Such information could be combined with
the Tully-Fisher relation (Tully and Fisher, 1977) which describes a relationship between
rotational velocity and luminosity of disk galaxies to identify the inclination of the said
galaxy. Through this inclination, one can find the intrinsic alignment of the galaxy before
gravitational lensing. In both cases, the statistical power of the weak lensing surveys could be
increased by these decoupling methods, but they require extra resources either in whole new
complimentary surveys or extra detection in specific frequencies. With that said, intrinsic
alignment stays as one of the main factors in limiting weak lensing signals, a factor that is
being approached and limited in many different ways, as shown above.

2.6 Summary

To summarise, this chapter looked into the final probe for insight into the cosmological
universe. The phenomenon of gravitational lensing is the idea that photons will change
directory and bend due to the presence of mass. A phenomenon that predates Einstein and
can be predicted (though inaccurately) from Newtonian physics. Through Fermat’s principle
and the borne approximation, one can create a Jacobian matrix that takes photons’ changing
trajectories and maps the distortion these changes course in an image. These distorted images
lead to variables that make up the Jacobian, the convergence and shear, two variables that can
be interpreted from the shape of the galaxy image, most notably the ellipticity of the galaxy
image. In fact, in the regime of weak lensing where |γ|,κ < 1, the average ellipticity of
galaxies becomes an unbiased estimator of the reduced shear < ε >= g under the assumption
that a statistical galaxy orientation is entirely random so that without weak lensing having
an effect the mean ellipticity would generally be 0. Ellipticity cannot be easily observed in
most cases due to PSF, so methods were considered to estimate the ellipticity under these
conditions. Under the assumption that ellipsis and thus shears can be accurately detected and
through methods such as tomographic binning power spectra can be constructed and linked to
the matter power spectrum. This links cosmological parameters such as Ωm and mass density
of the universe, and σ8 the clumpiness (although both are usually combined into one S8
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parameter) of the universe can be predicted and compared to other independent observations.
Most notably, the tension between CMB and weak lensing σ8 estimation. Challenges do
still exist in this study of work, most notably with the underlying assumption that galaxies’
orientations are statistically random. This is not the case as the universe’s growth can lead to
galaxies having intrinsic alignment contaminating the weak lensing signal, but many methods
exist to compensate, reweight or completely disentangle the intrinsic alignment effect. With
that said, one of the main contributions to an error within weak lensing estimation has yet to
be mentioned in full detail, a significant contribution, especially when it comes to using the
tomographic method, and that is the photo-z estimation.
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Chapter 3

Photometric Redshifts

3.1 A galaxy’s flux

3.1.1 luminosity function

As stated in the previous chapter, weak lensing focuses on determining matter distributions
based on the statistical correlations on the distortions of galaxy images. As all the matter
between the observer and the source affect the observed image, a good understanding of how
far away the source images are (or, more precisely, the source images’ redshift) is paramount.
Determining redshift has already been covered previously in terms of standard candles but to
record the redshifts of the millions of galaxies required for weak lensing surveys due to their
low signal-to-noise ratio requires an entirely different technique. One based on astronomical
photometry. This revolves around measuring the photon flux of galaxies over particular
wavelength intervals. Intervals may reveal specific characteristics linked to redshift.

To consider a galaxy flux, we must first consider its luminosity and how it is linked to
galactic variables. Luminosity is measured in units of [J s−1], revealing exactly what it
measures; the amount of energy released by the galaxy every second. The luminosity of
galaxies does not seem entirely random. Instead, it seems to follow a quantifiable distribution
known as the galaxy luminosity function. At low luminosity, the number of galaxies rises
with luminosity following a power law, but this number decays at high luminosity. Both the
power-law rise and exponential plateau can be combined into a single function which states
the number of galaxies that have a luminosity above Llim (Schechter et al., 1976) :

N(Llim) =
∫

∞

Llim

φ⋆xαe−xdx, (3.1)
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where φ is the normalisation parameter, and x is the ratio between the luminosity in the
integral and the characteristic luminosity L⋆where the function transitions from power law to
exponential. Thus, in this case, the parameters of interest are α,L⋆,φ⋆, which are determined
from observation and fitted with data. The normalisation can cause issues, depending on
how it is set up (does it normalise to the total number of galaxies or unity?). The luminosity
function gives a number density instead of a number. This has led to the function being
treated as PDF, which causes conflict with the fact that many known luminosity functions
have been known to diverge at high luminosity (Dai et al., 2009). A more rigorous definition
developed by Lake (2017) can be deployed, which states that given a luminosity interval dLi

around a luminosity Li and a volume dVi around a point in space xi, the average number of
sources that live in that luminosity-space interval is given as

< Ni >= φ(Li,xi)dLidVi. (3.2)

Much like the averages we came across earlier with power spectra, the average is taken over
all possible universes with different initial conditions, and Ni is the number of galaxies in
that space-luminosity interval in one of those universes. However, as with previous power
spectra, the homogeneity and isotropy of the universe φ are not dependent on xi; thus, a
spacial average can be used instead. Through this definition, one can assume that Ni is
Poisson distributed and, through appropriate steps, form estimators based on observations.
The parameters mentioned before are not necessarily permanent but can change with time
and be different depending on the type of galaxy (spiral, elliptical, irregular). This particular
dependency on time (redshift) and galaxy type comes into play in the templates below and is
regularly used to generate realistic simulated galaxy samples.

3.1.2 Fluxes and magnitudes

In usual cases, we do not observe a galaxy’s luminosity directly as this would require us to
record all energy emitted by the galaxy in all directions. Instead, observing and measuring a
galaxy’s flux is more beneficial. This is the total energy of photons observed from a source per
unit of area and time. One usually detects galactic electromagnetic radiation through a filter
to gather more necessary information. This allows us to see the flux exclusively for specific
wavelengths of light. The range of wavelengths filtered (otherwise known as filter width)
are classified by photometric systems. Ranges above > 300 Å are considered broadband
or wideband, in the range of 100 Å− 300 Å intermediate band and < 100 Å narrow band.
different banding has its advantages. Telescopes are more sensitive to larger bands allowing
fainter objects to be detected, while narrow bands allow for more detailed information.
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If we consider a calculation, a filter will introduce a function Rfilter(λ ) which states the
probability of a photon of wavelength λ passing through the filter. For example, a perfect
filter would be a top-hat function over relevant wavelengths. The flux would then be all the
flux from that galaxy integrated over this function,

F =
∫

∞

0
f (λ )Rfilter(λ )dλ , (3.3)

where f (λ ) is the galaxy’s spectral energy distribution (SED). Measured in units of flux
per unit wavelength, the observed SED is a characteristic of a galaxy that, much like the
luminosity function, depends on redshift and galaxy type. The filter function (also known
as the filter response) can also be represented as the product of 3 individual terms, all
representing transmission curves as a function of wavelength. Transmission curves due to
quantum efficiency of charge-coupled devices (TCCD), curves due to the telescope’s optics
(Topt) and curves due to atmospheric observatory conditions. The last curve is only important
when observing from the earth. In space, this term has negligible effect, i.e. Tatm ≈ 1.

Unfortunately, for historical reasons, the flux is not the standard unit used for observation.
Instead, one usually relies on magnitudes, a logarithmic conversion of fluxes. Magnitudes
are usually split between absolute and apparent. The apparent magnitude m is the brightness
of an object as it appears on earth and is described as

m =−2.5log
F
F0

, (3.4)

where F is the flux, and F0 is a normalising constant. This constant is also known as a zero-
point flux, and itself can also be shown as a zero-point magnitude m0 so that the apparent
magnitude is also m =−2.5log(F)+m0. Different magnitude systems use different zero-
point magnitudes. For example, the Vega magnitude system sets the zero-point magnitude
so that the star Vega would have 0 apparent magnitudes in all bands (Bessell, 2005) (as
the star will be brighter in different bands, this means that m0 can be band dependent).
A more commonly used system is the AB system which uses a single reference flux of
F0 = 3631 J y (Oke et al., 1983) or m0 = 48.6 when measured in ergs−1 cm−2 Hz−1. This
magnitude corresponds to the flux density of Vega at about 5500Å. Due to its single reference
magnitude, the AB system makes comparing bands for a single object easy but can lead to
difficulties when considering low signal to noise objects which can have negative fluxes due
to noise.

An alternative and potentially superior system is that used by the SDSS survey and is
known as the ‘asinh magnitude system’, which has the following equation (Lupton et al.,
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1999):

m =− 2.5
ln10

[
sinh

F
2bF0

−1
+ lnb

]
, (3.5)

where the F0 parameter is the zero-point flux, the asinh magnitude system is almost identical
to the AB system at the high signal-to-noise ratios. However, they differ at low signal to
noise because of the b, the softening parameter defined as the 1σ noise of the sky in a point
spread function aperture in 1" seeing. This addition essentially accounts for the noise in the
measurement, allowing the magnitude system to behave reasonably well at low signal to
noise even in the worst cases of negative fluxes caused by a large amount of noise. In both
situations, AB magnitudes cannot.

As can be gathered from the name ‘apparent magnitude’, this is how bright the object
is from our observation. This is not, however, a measure of the actual brightness of said
object since observed fluxes will fall with distance squared. With this in mind, 2 apparent
magnitudes of 2 different objects cannot be directly compared. Instead, one may wish to use
the absolute magnitude, which is the apparent magnitude of the object if the object was at a
fixed distance of 10 pc away from our observations. This is achieved through the following
equation:

M = m−5log10

(
D

10pc

)
, (3.6)

where M, m and D are the absolute magnitudes, apparent magnitudes and the distance the
object is from us, respectively. To maximise information, the magnitude of a luminous object
may be observed over a broad band of wavelengths. This brings with it issues, especially
when observing multiple objects. If we presume that the objects are all not at the same
redshift from us, then their fluxes have also been redshifted by different amounts, which
means that if we were to use equation 3.6 to bring all objects to the same distance, it would
still not be like-for-like as they would have been emitting different wavelengths of light to be
detected by our broadband filter. With this in mind, a k-correction KQR allows us to make
the necessary correction in value to convert the apparent magnitude in broadband R to the
absolute magnitude with rest frame broadband Q,

MQ = mR −5log10(
DL

10pc
)−KQR, (3.7)

where the distance D has been replaced with the luminosity distance DL. This allows us
to account for the fact that depending on the geometry and expansion of the universe, the
relationships between ‘distance’ and ‘flux red shift’ would no longer be linear. The correction
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itself can be estimated through the following equation (Hogg et al., 2002):

K =−2.5log

[ ∫
∞

0 fλ (
λ

1+z)dλ∫
∞

0 fλ (λ )R(λ )λdλ

]
. (3.8)

The bottom of the equation gives the flux expected from an object in the apparent filter as
seen in equation 3.3 where R(λ ) and f (λ ) are the filter response and flux density. While the
top equation reveals a z redshift dependency. This can be incredibly useful for simulating
the expected absolute magnitudes of galaxies at certain bands and distances (see below).
With that said, it is not always required to use the k-correction. For example, if one uses
an apparent magnitude using a bolometric system, there is no need for the correction. This
is because the bolometric magnitude is based on light measured at all wavelengths instead
of filters. This means the redshift in wavelength makes no difference to the result as all
wavelengths are checked regardless. Secondly, if one is measuring known emission lines
(see below), these lines will stay even if their position changes. Although not necessary for
this thesis (the following is more useful for determining luminosity functions and stellar
mass functions of galaxies), when making like-for-like comparisons of galaxies, one may not
only want to correct the effect redshift has in that filter but also correct for the fact that you
are observing galaxies at different points in their stellar evolution which can also affect the
observed apparent magnitude. With this in mind, one can use an E-correction (Cole et al.,
2001) which is usually modelled as linearly proportional to redshift so that one can add an
(Ez) term to the end of equation 3.7. An example of this proportionality can be seen in the
SDSS MGS sample which found E to be 1.07 mag z−1 (Saulder et al., 2013).

A correction we depend upon for weak lensing studies is the idea of interstellar (also
known as galactic) extinction. Up to now, we have assumed the detectors detect every photon
and wavelength in the direct line of observation. This, unfortunately, is not the case. Between
object and observer, there is the interstellar medium consisting of dust and gas that will
scatter and absorb the light passing through. To make matters worse, this cannot be modelled
as a simple constant decrease in flux across all bands as the level of scatter/absorption is
wavelength-dependent. For example, blue light scatters more than red light, leading to an
artificially larger ratio of red to blue photons; galaxies are said to be ‘dust reddened. With
this in mind, different bands b will have a different amount of extinction Ab that is subtracted
from the apparent magnitude mb. To measure extinction, we usually use the term colour
excess EB−V , which states how much the B-V colour (colours are ratios between different
bands) has reduced between intrinsic and observation.
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EB−V = (B−V )obs − (B−V )int

= AB −AV .
(3.9)

Extinction is also direction-dependent as there will be a different amount of dust at different
points in the sky; thus, the need for extinction maps showing their different extinction values
are different points in the sky, such as the ones provided by (Schlegel et al., 1997) (or more
recently re-calibrated by (Schlafly and Finkbeiner, 2010)). Finally, to make the final jump
from colour excess to extinction, one needs to multiply EB−V by the extinction curve

RV =
AV

EB−V
. (3.10)

Although RV is also galaxy and line-of-sight dependent, we are mainly interested in earth-
bound observations of which the commonly used value is RV = 3.1. Every brand will have a
slightly different value, but all can be multiplied by EB−V to get the extinction in that band
leading to large lists of known extinctions (Schlafly and Finkbeiner, 2010).

3.1.3 Spectroscopy

As seen above, a considerable effort is made to ensure that the light detected by our surveys is
a true reflection of the light emitted by those galaxies. The reason behind such an effort being
made is that due to the redshift effect of shifting the observed light to larger wavelengths, if
we knew what the fluxes should be for any galaxies at particular wavelengths, then we can
compare this to what is observed, revealing the redshift of the said galaxy.

Luckily enough, such calculations can be made. By looking at the fluxes across multiple
very small binned wavelengths, one observes the spectral energy distribution of the galaxy
(SED). These SEDs have common characteristics in their shape, usually in the form of sharp
spikes and dips in recorded flux. These sharp spikes and dips (so sharp that they resemble
straight lines) are known as emission and absorption lines, respectively. Figure 3.1 shows an
example of a characteristic SED. This is the rest-spectra of a large red galaxy (LGR) from
the SDSS Legacy survey, which has emission and absorption lines.

One may also notice that said absorption/emission lines have been labelled with corre-
sponding elements. This is due to the nature in which such lines appear. Take emission lines,
for example, taking place in star-forming galaxy regions where electrons are moving down
an energy state, the difference in energy between the 2 states is directly proportional to the
frequency of the emitted photon detected in the SED Eγ = h f where Eγ is the energy of
the emitted photon (the difference in energy states) and h and f are the plank constant and
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Figure 3.1: A rest-frame spectrum of an LRG obtained from the SDSS Legacy Survey, with the
respective emission lines labelled SDSS-III collaboration et al. (2011).

frequency respectively. The size of these energy state differences is entirely dependent on
the element of which the electron is occupying. Similarly are absorption lines. If certain
elements are prominent within a galaxy, such as in gas, photons with frequencies matching
energy states within these elements will be absorbed, leading to a dip in fluxes in the recorded
SEDs. With this in mind, there are certain elements more prominent as well.

One of the most prominent (and, in fact, the most abundant) elements in our galaxies
is hydrogen. Above, we have mentioned the Lyman−α line at a wavelength of 1215.7 Å,
which is a consequence of electrons’ transition from energy levels 2-1. As mentioned earlier,
this absorption line is usually detected in Lyman-α forests and is not the usual approach for
spectroscopy. Instead, the Balmer lines are the most recognisable characteristics of hydrogen
within the SED. The Balmer lines are a series of emission lines (H-α , H-β , H-γ , H-δ , etc.)
that consist of hydrogen electrons moving down to level 2. Starting with H-α , which is a 3-2
level drop appearing at the visible wavelength of 6563 Å, being visible the H-α emission line
has direct consequences, giving Orion Nebula its pinkish look.

The abundance of hydrogen also has another consequence in the case of the Balmer break.
This occurs in galaxies containing stars that are sufficiently hot enough that hydrogen atoms
are ionising instead of going up energy levels. In this state, photons below a wavelength
of 3646Å are continually absorbed by the free electrons leading to a vast lack of radiation
below that point, as can be seen in Figure 3.2 (Massarotti et al., 2001). Furthermore, as stars
have to be sufficiently hot, the break is usually linked to star-forming galaxies allowing these
high redshifts ‘Balmer-break’ galaxies to be easily identifiable (Díaz Tello et al., 2016).

The last important hydrogen feature is the 21 cm line. Also known as the hydrogen line.
Neutral hydrogen has a very fine energy split near the ground state between less energetic
anti-parallel ground state (consisting of an electron and proton with a z-direction (m) spin of
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Figure 3.2: Rest-frame portion of galaxy SED explored by the WFPC2 photometric system at z = 0
and z = 2. The drop in flux represents the Balmer break (Massarotti et al., 2001).

1/2 and −1/2 respectively) and a more energetic parallel spin (with electron and proton spin
of 1/2 and 1/2 respectively) state (Liu and Chronopoulos, 2008). As the electron transitions
between the 2 fine states, a photon of wavelength 21 cm is released. Being this size makes
this photon a radio wave which has the benefit of little interference between emitter and
observer. Radio waves can pass through large clouds of interstellar dust unperturbed (in
contrast, the dust would be opaque to visible light requiring accurate dust maps, as mentioned
before). The main cosmological use (as opposed to the main use overall which lies with
radio astronomy, such as the mapping of galactic spiral structure) of 21 cm lines today is in
probing the universe between recombination and reionisation, as ionised hydrogen will not
have the expected 21 cm characteristic. Unfortunately, due to its radio wave nature, 21 cm
lines do not make the best candidates for large ground-based surveys due to their interference
with television transmitters and the ionosphere; thus, only very secluded locations, such
as the far side of the moon (Burns et al., 2021) can provide the kind of required data. As
demonstrated above, there are very distinct features in galaxy SED (more could have been
mentioned, such as the Lyman Break at 1214 Å). Due to this distinctiveness, the redshifts
determined from spectroscopy can be expected to have a precision better than 10−3 (Salvato
et al., 2018). As good as that may be, spectroscopy is not the main redshift determiner of
large weak lensing surveys. This has a lot to do with the level of precision needed in the
probing wavelengths, usually requiring a resolving power of R = λ/δλ > 200. Resolving
large power requires significant time to absorb photons in each small wavelength bin for
sufficient signal to noise. Even with the efficiency of today’s multi-object spectrographs
(i.e. VLT/VIMOS, KECK/DEIMOS, SUBARU/FMOS), meaningful spectra can only be
obtained for a tiny percentage of detected sources in deep imaging surveys. Even among
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Figure 3.3: An illustration of the Edwin Hubble classification system and how it relates to galaxy
shape and morphology (NASA & ESA, 1999).

this small percentage, a minimum of 2 well-defined spectral features (the kind mentioned
above) are required for a precise redshift measurement. Given the limited signal-to-noise and
spectral coverage of some deep surveys, this cannot be easy to achieve (Salvato et al., 2018).
Especially in the case of weak lensing surveys where one is looking at very faint objects, the
success rate of measuring a spectroscopic redshift (remembering that this is already from
a small percentage subset of the full survey) can be as low as 50%−70% (Newman et al.,
2013a). This is not an applicable method going forward.

3.1.4 Morphology

Although spectroscopy cannot be used directly, it offers clues as to the correct method to scan
extensive surveys and determine their redshifts efficiently. As stated, galaxies have standard
spectral features, but as hinted by the Balmer-Break galaxies, some will show particular
features more than others, and thus not all SEDs will look the same. A better understanding
of what determines certain features may add insight and efficiency to using these features for
redshift identification. One such determination is the galaxy morphology which refers to the
structural features of the galaxy.

The Edwin Hubble Classification scheme is the universal system based on galaxy mor-
phology. A scheme illustrated in Figure 3.3. As you can see from the illustration, in general,
there are 2 galaxy shapes used; elliptical galaxies and spiral galaxies. As the name suggests,
Elliptical galaxies have ellipsoidal shapes, and the level of brightness across the galaxy varies
very little. Thus, the brightness profile appears featureless and smooth. Galaxies of this
nature are classified by an ‘E’ followed by a number that increases with galaxy ellipticity.
Much like the ellipticity numbers seen before, this number is a ratio of the major and minor
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axis,

classification number = ⌊10(
b
a
)⌉, (3.11)

where b and a denote minor and major axis and ⌊x⌉ means rounding x to the nearest integer.
Elliptical galaxies are theorised to be the oldest of the galaxies, being from early in the uni-
verse, they have mainly older low mass stars and be redder in appearance. Their smoothness
and elliptical nature may be directly linked to this extra time, and years of galactic conflict
(as in collisions and mergers with nearby galaxies) have robbed them of their original shape
and outermost stars. Although such major galactic mergers (major referring to the galaxies
involved being of comparable mass) were more common in the early universe, it has to be
theorised that an elliptical galaxy will be the result of the collision between the Andromeda
galaxy and our very own Milky Way galaxy in about 4-5 billion years (Nagamine and Loeb,
2002).

In contrast, spiral galaxies have a prominent disk-like structure and are usually comple-
mented with bars, spiral shapes and bulges. Within the classification system, spiral galaxies
are named with an ‘S’ followed by ‘B’ if the galaxy has a bar (which is believed to be roughly
two-thirds of all spirals (Mihalas and Routly, 1968)) or ‘a,b, or c’ if it does not. Unlike
the elliptical galaxies, they are usually bluer in colour, full of young active stars’ ongoing
star formation, and due to different formation levels, the brightness profile has unsmoothed
features. The Milky Way and our neighbour, the Andromeda galaxy, are spiral. When it
comes to how the spiral shape exists in the first place, problems have occurred. The spiral
shape seems to be one that cannot co-exist with the idea that galaxies exhibit differential
rotation. Stars within the disk have the same orbital speed so that stars further along the arms
with longer orbits will lag, tightening the spiral arms until they ultimately disappear. This
is known as the winding problem and has led to the 2 leading ideas of how spiral arms are
possible being the density wave model (the arms are the consequence of regions of the galaxy
with higher densities (Davis et al., 2003)) and the stochastic self-propagating star formation
model which says the arms formed due to shock waves in the interstellar medium (Mueller
et al., 1976).

There are 2 other main classes of the galaxy we must consider. The first is lenticular
galaxies. In Figure 3.3 they are classified as ‘S0’ and represent the in-between of spirals and
ellipticals. They still have a 2-dimensional disk-like structure seen in spiral galaxies (unlike
the more 3-d ellipticals) but do not have large spiral arms. They are believed to be disk
galaxies that have used up or lost most of their interstellar mass; this means a minimal level of
star formation is taking place, so the majority of the stars within it are ageing (like ellipticals).
Sub-classifications can continue, such as ‘S0’ or ‘SB0’ if a bar is present, subscripts like ‘S01’
referring to dust absorption levels in the disk component or ‘ES’ galaxies classifying those
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that the sub-in-between of ellipticals to lenticulars. The other relevant class are the irregulars
which refer to galaxies that do not follow the elliptical and spiral-based structure and have
no distinct regular shape. Although their lack of regularity suggests rareness, they make up
a quarter of all known galaxies. This commonness has led to some suggesting irregulars
used to be spirals and ellipticals that have been deformed by external gravitational effects
such as collision and minor mergers with much larger galaxies. This idea has additional
weight as irregulars are usually small and about a tenth of the size of the Milky Way. Just
like lenticular galaxies. Irregulars also have subclasses (Irr I, Irr II and dIrr) which refer to
the galaxy having some spiral/elliptical structure, no structure at all or being a dwarf in size.

The simplicity of the Hubble classification has been criticised regardless of its everyday
use leading to calls for updating its structure (Masters et al., 2019). With that said, it is
common to see galaxies classified in an extended form of the Hubble system known as the de
Vaucouleurs system (de Vaucouleurs et al., 1959), which follows the Hubble system with a
few changes.

• non-barred spirals are now denoted as ‘SA’ as opposed to just S with lenticulars also
split based on having a bar or not (SA0, SB0)

• a third spiral fork is added, which is denoted by ‘SAB’ as in intermediate spiral has a
weak bar

• many Ir I galaxies have been reclassified as spirals, such as ‘Sd’, which are spirals with
diffused broken arms, and ‘Sm’, which are spirals without a central bulge

• galaxies are also denoted by (r),(s) or (rs) based on if they have had, have not or are in
a transition stage of a ring-like structure.

Combined, this leads to a much more detailed morphology structure, such as a non-barred
spiral galaxy with broken arms and no rings classified as ‘SA(s)d’.

On the surface, this may all seem like pointless taxonomy, but this is very relevant to
identifying identifiable SED structures. As stated earlier, not all galaxies have the same rest
frame SED and looking for common structures may be inefficient and inaccurate. So instead,
we can use their taxonomy to narrow down our search (in contrast, widen our parameter
space) in pursuit of more accuracy. Firstly we consider the typical spectra of elliptical
galaxies. As stated, elliptical galaxies are usually populated by early-type galaxies and thus
contain older, cooler giants. The typical SED of an elliptical galaxy can be seen in Figure
3.4 the SED is characterised by a few key features. Firstly an abundance of absorption
lines. This is because most heavier elements have already been created, and thus, light is
absorbed, leading to typical Magnesium, Sodium and Calcium lines at 5175 Å,5894 Å, and
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Figure 3.4: A typical SED from an elliptical galaxy showing strong absorption lines due to metals
in the stellar atmospheres of a mostly low luminosity stellar population while no evidence of any
emission lines and hence no young stars and no gas (Driver, 2014).

3969 Å respectively. In addition, due to the lack of young stars, there is not a vital blue/UV
component to these galaxies allowing for a very clear Balmer Break. Another feature is
the complete lack of emission lines due to them not having H II regions (interstellar matter
consisting of ionised Hydrogen). Similar spectra can also be seen among the lenticulars (S0).

In contrast, the SEDs of spiral galaxies (see Figure 3.5) contain emission lines, especially
the solid H-α emission line in the H II region heated by hot young stars. A small amount of
absorption from underlying older stellar populations. Moreover, a much less defined Balmer
break is due to the presence of bluer hot stars. Even more extreme are the irregular spectra
(see Figure 3.6). Having very little real structure, the galaxies are mainly entirely young,
starting with a large H II gas region, thus no Balmer break at all, no absorption lines and
extensive emission lines along the Balmer series.

As these features seem to be dependent on the type of galaxy we are looking at, more pre-
cise ideas of what their redshift can be explored as long as these ‘types’ can be parameterised.
We only expect certain features from certain galaxies that allow for a total redshift estimation.
For example, the 4000 Å break mentioned above is a clear indicator of an LRG (luminous
red galaxy), which is most likely to also be elliptical for the reasons explored above. Due
to the broadness of the break, identification of an LRG would not require complete spec-
troscopy, but if said identification was made in the optical range, then a redshift estimate of
0.12 < z < 0.55 is already possible. Absorption lines are also associated mainly with nearby
low-redshift galaxies as less than 10% of these galaxies have strong emission lines (Bolton
et al., 2012). Bluer galaxies, on the other hand, are usually classified as ELGs (emission-line
galaxies) where the detection of just OIII lines in the optical range allows for a quick redshift
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Figure 3.5: A typical SED from a spiral galaxy. Showing some emission and some absorption
indicating both a young and old stellar population Driver (2014).

estimation of 0.25<z<0.68. Other emission lines are also primarily associated with another
classification of the galaxy; the AGN (active galactic nuclei). These galaxies currently have a
supermassive galaxy at their core that continuously releases matter, leading to a much higher
density and luminosity at their centre. Due to the high speed at which matter is released
from the supermassive black hole, photons from that matter that are released will be Doppler
shifted (the changing observed wavelength due to the motion of the emitter) in both the blue
and red direction as there would be no consistency in the motion of the matter relative to us.
For example, the matter consisted of hydrogen atoms releasing H −α emission lines. If the
velocity of the matter relative to us were in a range of ∆v, then the range of wavelengths,
all of which cover the H −α emission lines, would be ∆λ = λHα

∆v/c where λHα
is the

rest-frame wavelength of the H −α emission line. This spread means the emission does not
appear as a strict line but instead is a more broad peak. This effect is known as Doppler
Broadening (Kollatschny and Zetzl, 2013). This extends to quasars (a specific form of AGN)
with bright blue continuum and broad lines, prominent non-line-based features that allow for
redshift estimation beyond the redshift desert, a region at 1.5 < z < 2.5 where optical and
ultraviolet observations in the past have been complex.

As stated previously, measuring individual wavelengths (and thus spectroscopy) is not
a viable option for the number of galaxy redshifts required for a weak lensing survey.
Nevertheless, the added information that not all galaxy types have identical expected spectra
and that these different types may have much broader SED features than single absorption
and emission lines open the door to a different approach that still uses galaxy SED but in a
much more efficient manner.
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Figure 3.6: A typical SED from an irregular galaxy. A strong emission-line spectrum indicating
many hot young stars heating the gas which is re-radiating at specific wavelengths which depend on
the chemical composition of the gas (Driver, 2014).

3.2 Photometry

3.2.1 Origin

Although the above may sound trivial. The main principle of photometry and thus estimating
the photometric redshift (otherwise known as photo-z) is to take the same approach seen in
spectroscopy (look for SED features of known rest-frame wavelength and use the difference
in observed wavelength to determine redshift ) but with much broader filters. To indicate
how broad, the spectral resolution of spectroscopy was around R > 200 and the spectral
resolution of photometry was at least 4 times less. So much so that photo-zs were defined as
a Redshift estimation using only images of spectral resolution R < 20 (Koo, 1999). I say ‘at
one point’ as modern photometric surveys have continued to blur the line between ‘photo-z’
and ‘spec-z’. So, for example, the redshifts obtained by PRIMUS (Prism Multi-object survey)
have a spectral resolution of R ∼ 40 (Coil et al., 2011) are considered spectroscopy. In
contrast, the redshifts obtained from PAUS (Physics of Accelerating universe survey) have
a resolution of R ∼ 50 and are considered photometric (Cabayol et al., 2021). This is an
exceptional case where the survey used a 40 narrow-band filter camera (typical photometric
surveys have 3-10 broadband filters) which still has fewer data points than spectroscopy’s
wavelength to wavelength information.

The first known use of photometric redshifts was by Baum (1962). Where a photoelectric
photometer (an instrument that measures the brightness of stars through electric currents
produced when photons interact with the light-sensitive surface, a consequence of the
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photoelectric effect) constrained by just 9 photometric filters was able to span the spectra
from 3730 Å to 9875 Å. Using this system, he took the 9 filter SED of elliptical galaxies in
the Virgo cluster and elliptical galaxies in the Cl0925-2044 (also known as Abell 0821). The
redshifts of both clusters were spectroscopically known, but this was a demonstration that by
only knowing the redshift of one (in this case, Virgo), you could estimate the other. This was
achieved by plotting the average SED of both clusters on a log wavelength scale to discover
the displacement in the energy distributions. Through this technique, he was able to estimate
a redshift for Abell 0821 of zp = 0.19 (very close to the spec-z estimate of zspec = 0.192).
The method was so effective that he could extend the approach to galaxies at much higher
unknown redshifts of zp = 0.46. However, with this effectiveness came a severe limitation.
Such broad comparisons between galaxy SEDs require them to have very broad features and
similar features to compare; thus, the method was limited to the broad feature of the 4000Å
break, which is only identifiable in elliptical galaxies, as seen above. With that said, he did
find other uses for his photometry, such as in estimating differences in stellar populations of
spiral galaxy arms (Baum, 1966).

Another early candidate for using photometry to estimate photometric redshift came from
examining the broad U band. Suppose we have a situation where an otherwise very blue
galaxy and a significant drop in its bluest band, then it’s an indication that the U band
has entered the Lyman break, a phenomenon that occurs at z ∼ 3 and was known as the
“Lyman-break technique" (Partridge et al., 1974). Although technically, this same drop can
also be achieved without the Lyman breakthrough absorption in the Lyman-alpha forest, it
should be known as the "Lyman-drop technique" (Koo, 1999).

In both these cases, the phrase ‘photometric redshift’ was never said. The first reference to
photometric redshift did not come till the work of Puschell et al. (1982). Although the only
reference was in the abstract, their attempt to estimate redshifts through photometry of faint
galaxies set up many of the modern standards approaches to photometric redshifts, such as
the use of near-infrared bands (JHK) alongside optical bands (RI), the use of SED templates
ranging across many different types of galaxies, whose origins are both organic and synthetic
as well as the match of SEDs to templates through a χ2 method. These are still methods at
the heart of modern-day template-based photometry (see template-based methods below).
When combined with the technological advancements introduced by Koo et al. (1985) where
he used photographic plates (glass plates coated by a light-sensitive emulsion of silver salts,
made popular through their ability to not shrink or deform under environmental changes
common to astronomical study) to measure the photometric redshifts of multiple galaxies
simultaneously and with a relatively small amount of filters (U,BJ,RF , IN), he showed that
with ease (relative ease compared to spectroscopy). He could estimate the redshifts of over
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100 galaxy samples. These building blocks led to photometric redshifts being the core of
many multiwavelength surveys today. Due to their lack of time and input data needed per
galaxy, fainter galaxies (and thus deeper surveys) were possible. These estimations would
only grow in confidence and validation with every new spec-z survey. The fact that some of
the most state-of-the-art photo-z codes are available today has contributed to publications,
including the term ‘photometric redshift’ increasing by a factor of 10 within the last 2 decades
(Salvato et al., 2018).

In the modern era of photometric redshifts, the methodology fills sharply into 2 different
camps: template-based (otherwise known as physically motivated) or empirical-based (also
known as data-driven). Both camps have their distinct advantages and disadvantages when
compared to each other. For example, empirical methods are considered more likely to
give an accurate photo-z estimate so that when compared and validated against their spec-z
counterparts (where the spec-z redshift is considered correct), they are less likely to produce
outliers than template-based methods (Hildebrandt et al., 2010). However, if we were to
eradicate outliers from the analysis, we can use a metric of validation known as the 68th
percentile error σ68

σ68 =
Q84.1%(∆zi)−Q15.9%(∆zi)

2
, (3.12)

where ∆zi = (zphot,i − zspec,i)/(1+ zspec,i) measures the error between the perceived correct
spectroscopic redshift zspec and the the estimated photometric redshift zphot scaled by 1+
zspec,i . Q are the quantifies of the distribution so that σ68 only considers the error around
the core meaning of the photo-z distribution. Furthermore, empirical methods perform
better at estimating intermediate redshifts, whereas template methods perform better at the
extremes (Abdalla et al., 2011). The reason for this can be explained through their alternative
names and indicates how both methods are used side by side today. Empirical methods are
data-driven, so they can perform optimally in intermediate redshifts in which much spec-z
data has been collected. However, the results are expectantly worse at redshift extremes,
where there are less data to ‘train’ on. Template methods, i.e. Physically motivated methods
will not necessarily have the same issue, relying on physical assumptions that should hold
regardless of the amount of spec-z data collected in the region. Given that their advantages
directly affect different redshift regions, attempts have been made to integrate them into each
other (Wolf, 2009) or to combine the estimations from both methods cohesively (Dahlen
et al., 2013). Both methods can be considered combined because, fundamentally, they are
doing the same things to achieve the same goal. Consider the flow diagram in Figure 3.7
which shows fundamental steps to any photo-z estimation regardless of camp. All photo-
z techniques manipulate the key features we are used to seeing in SEDs and isolate the
redshifted wavelength of which these features occur compared to at rest frame. The flow
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diagram shows that all the sources may change depending on the method (be it spectroscopic
samples or physical models). The first step is to create a model mapping source fluxes (or
colours which are the ratio of different filter bands) to redshift. One such mapping model
can be seen within the ‘colour redshift mapping model’, where the grey points represent real
galaxies on the redshift-colour plane while the solid lines represent the expected redshift-
colour relationship based on these galaxies. The model is then compared to the input data,
which in this case would be a series of flux or colours in an average of 4-10 available filters.
Optionally a preliminary (extra information outside of the model) may or may not be added.
This comparison allows us to find either the single best redshift that reflects the data (a
point estimate zphot) or a series of probabilities of that data existing at a range of redshifts
known as a probability distribution function p(zphot) of PDF. At this point, results validation
would occur directly through spectroscopic comparison or indirectly through other statistical
methods such as cross-correlation. The importance and relevance of priors, probability
distributions and validation techniques will be explored in more detail below. As stated, the
flow diagram represents both camps of methodology, with the real difference being how
one gets from step to step, such as how the redshift-flux mapping model is created (and the
information used to create it) and the tools used to make the model-input data comparison.
Although the work of this thesis is based on a template-based method, some of the ideas
pushed forward can still be applied to empirical-based methods. Thus, a brief description of
that method will be given below.

3.2.2 Empirical Methods

The Empirical method camp of photometric redshift estimation developed much later than
template-based methods and, in one sense, was a direct response to some of the known
criticisms of the said method, mainly the fact that template methods (as will be explored
below) is dependent on physical models that may change with time. Thus Connolly et al.
(1995) developed a model-independent approach that only required a sample of galaxies
with photometric data and known spectroscopic redshifts. Using this data, he developed a
polynomial relationship between redshift and magnitude, both linearly and more accurately
quadratic:

z(m) = a0 +
N

∑
i=1

aimi, (3.13)

z(m) = a0 +
N

∑
i=1

aimi +
N

∑
i=1

N

∑
j=1

ai jmim j, (3.14)
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Figure 3.7: A flow diagram showing the fundamental steps required for any photo-z estimation,
empirical or template-based methods. The dotted lines represent optional steps. The figure within the
colour-redshift mapping model represents galaxies’ spec-z results compared to their colours (Salvato
et al., 2018).

where N is the number of filters, mi is the magnitude at one of these filters and a0ai,a j are
the relevant coefficients found through a linear regression (or least squares minimisation)
technique. Using just 4 filters (a 4 bandpass system of UJFN) and 370 galaxies these
models were able to determine redshifts up to z = 0.5 with uncertainties of σz = 0.057 and
σz = 0.047 for the linear and quadratic models respectively. Further analysis showed that
through this method, there was little to no loss of information if one used colours (flux ratios,
i.e. Ci = Mi −Mi+1) instead of magnitudes increasing versatility. In this case, much like the
earliest photometric work, the 4000Å break was the main contributor, so this first attempt
may have been limiting in scope. With that said the sheer ease with which this method
can be used (as one just needs spec-z data with no need for working theories of redshift
and galaxy formation) lead to many quick uses, such as the measuring of the luminosity
function up to J = 24 (SubbaRao et al., 1996). The reliance on the 4000Å was also mitigated,
showing that it is not a vital and thus limiting factor for empirical approaches by Richards
et al. (2001). Using a small sample of quasars of known redshift as well as 4 SDSS colours
(u−g,g− r,r− i, i− z), a colour-redshift relation (CZR) is formed by plotting these quasar’s
colours against redshift and taking the mean colours across a set of redshift bins (through
interpolation). A χ2 function of redshift is then formed by comparing the observed colours
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Figure 3.8: A simplified Neural Network consisting of an input, hidden and output layer (Bonnett,
2015).

to the CZR:

χ
2 =

N

∑
i

(Ci,obs −Ci,CZR(z))2

σ2
Ci,obs

+σ2
Ci,CZR

, (3.15)

where Ci,obs are the observed colours, Ci,CZR(z) the mean colours of the CZR at a given
redshift, and σ the uncertainties on those colours, the redshift with the lowest χ2 becomes
the redshift estimate. This method was improved upon by Weinstein et al. (2004) by making
4 changes that are now also seen as hallmarks of the modern era of photometric estimation:

1. As opposed to linear interpolation, the CDZ, is parameterised in a more refined way
using a series of 4-dimensional multivariate Gaussians where the variance of the
gaussian (or the CDZ ‘width’) can change as a function of redshift

2. Uncertainties are handled more rigorously; colour uncertainties are not independent,
meaning the quasar colour convenience is not 0. Therefore a full covariance matrix is
considered in the χ2 as opposed to individual uncertainties

3. As a consequence of the use of a covariance matrix and the varying width of the CDZ
χ2 is no longer a stand-in for probability, so instead of minimising χ2, we look to
maximise redshift probability p(z) (this will be used in more detail below)

These improvements led to the result that 90% of quasars across the extensive redshift range
of 0.8 < zphot < 2.2 can be estimated with an accuracy of ∆z < 0.3. The last 2 refinements
become exceptionally important mainly as we discuss Bayesian approaches below.

The most modern version of this data-driven approach moves strictly away from the
analytical functions and polynomial models above and instead embraces machine learning as
the next step in complete model independence (as, in a sense, by fitting coefficients to an
analytical function, you are assuming redshift-flux mapping follows a straightforward model).
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Much like photometric techniques in general, machine learning can also be divided into 2
camps; supervised and unsupervised. Supervised methods most mimic what we have seen
previously. They require a set of training data consisting of galaxy sources with photo-zs
and spec-zs for the method to ‘learn’ a function that maps one to the other. By ‘learning’,
the algorithm finds the set of coefficients that best fit the data and interpolates much like
the early empirical methods before it, but this time on a much larger dimensional scale and
without the idea of analytically constructing the function of which it is based. This has its
advantages. The constants on the possible mapping are way less, allowing for a much better
and thus more accurate fitting, but on the other hand, these methods can act like ‘black boxes’
giving only inputs and outputs with no understanding of how one went from one to the other.
To understand the vagueness and complexity of these supervised methods, consider the 2
most popular approaches:

1. Random Forests (Kind and Brunner, 2013a)(Carliles et al., 2010). Aptly called because
it consists of a collection of ‘decision trees’ that have all been independently taught
on a random subset of the training data. Each decision tree aims to split the data set
in two along some axis of the input photo-z data. This splitting axis is determined by
minimising the ‘resubstitution error’ εresubs = ε1+ε2 where εi is the standard deviation
away from the mean spectroscopic redshift of that split subset. The amount of splitting
(or branching) continues until it no longer gives a performance benefit. What is left
is a set of logical if conditions leading the input data to a small set of spec-zs of
which the mean spec-z becomes the input assigned value. The fact that we repeat this
across many trees directly counters the main disadvantages of single decision trees.
Firstly they are prone to overfitting (accurate with data that looks the same as it was
trained on but catastrophic outside of that data space), so the forced setting of the
forest forces variance in the output value and that a single tree can only give values,
not uncertainty. On the other hand, the forest takes the output values across every
tree to give a mean and uncertainty photo-z estimate, a necessity for modern weak
lensing surveys. The main disadvantage of this approach is the sheer time and memory
consumption required to run data through the necessary amount of trees, and the fact
that your taking an average of many large logical conditions completely removes any
chance of interpretability of how one got their outcome. A study using a random forest
consisting of 400 trees trained on 80000 objects and tested on 100,000 objects from
the SDSS survey (Carliles et al., 2010) found an accuracy level comparable to other
modern approaches. What is most important is that due to a lack of any underlying
parametric model, the bias was essentially zero.
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2. Neural Networks (Bonnett, 2015). Designed originally as an analogue to how humans
and animals think, a set of inputs (the photometric data) interact with several layers
of ‘neurons’ that interact with all the inputs based on weights and biases. These same
neurons act as the input to the following layers until we have an output in the form of a
redshift estimation. Let us consider that in slightly more detail. Figure 3.8 is a basic
example of a Neural Network consisting of 3 input and 2 output nodes. Following the
notation of Mackay (1995), the mathematics is the same whether we go from input to
hidden or hidden to output. Either way, we refer to the values of all the prior layers
nodes as x and the node of the following layer values as y then given there are i prior
layer nodes and j following layer nodes and k+1 layers (the +1 is due to the input
layer having no prior interaction) all together we get the following transformation:

y j = g(k)( f (k)i ), (3.16)

f (k)i = θ
(k)
j +∑

i
wi jxi. (3.17)

For consistency its worth noting that if xi is the kth layer the y j = xk+1
j . From equation

3.17 we can see a set of biases θ
(k)
j and weights wi j that control the output variable.

It is worth noting that these weights change for every layer, input node and output
node, while the biases only change per layer and output. The only large mathematical
change that can be seen is in equation 3.16 where g(k) is an interaction function, the
decider of how the next layer interprets the interactions of the previous. In simple
cases this can simply be g(k)(x) = x as in to say that the weights and biases are used
directly but in more complicated cases it might be advised to use a sigmoid function
g(k)(x) = 1/(1+ e−x). One example would be if the output is a probability and thus
must live within the [0,1] range. Adding this function to the final layer would ensure
this. The number of layers, number of nodes and use of particular g(k)(x) are all at
the discretion of the user; however, when these are chosen, the network goes through
a learning stage where a set of inputs and true outputs are known to optimise the
weights and biases. For example, the above paper used a second-order optimisation
method known as conjugate gradient algorithm (Graff et al., 2014). Because so many
options to the neural network structure allow for great flexibility in use, take for
example (Bonnett, 2015) which does not have a single output node representing the
estimated redshift. Instead, there is a range of output nodes, each giving a probability
value of the source within a certain redshift range. This approach produced a set of
photometric estimations optimised for weak lensing study using a sample of 58714
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galaxies in CFHTLenS that have spectroscopic redshifts from DEEP2, VVDS and
VIPERS. Furthermore, the main weakness of Neural Networks, like most machine
learning codes, is correctly estimating inputs outside of the training samples data space.
Even with that said, the effect on the CFHTLensS results was a slight estimation of
how many galaxies have high redshifts (only 0.2%-0.4%), an amount small enough
that it had little effect on the final weak lensing results. Although the optimisation
of the weights may seem close to the polymetric coefficients from above, their sheer
quantity and the structure’s flexibility are not beholden to an underlying model in
the same way. The quantity of neurons (and thus weights and biases) has increased
exponentially in recent years, leading to the current state of the art of modern computer
science and photo-z estimation; Deep Machine Learning. These methods can be so
sophisticated that work has taken place to make individual photometric data points,
pre-classifications and known errors such as extraction completely obsolete by using
the photometric images themselves the input variable (D’Isanto and Polsterer, 2017).
This means extra information that may help inform redshift estimations such as galaxy
morphology (see 3.1.4) or dust map corrections can be ‘learnt’ while never directly
inputted.

In the other camp of machine learning, we have unsupervised learning. This approach
goes even further in trying to achieve model independence by not involving redshift values
in the model creation stage; thus, the tendency to overfit a model around the redshift values
is wholly removed. To explain how this works in practice, one of the leading unsupervised
machine learning photometric estimators is SOMz (photometric redshift PDFs with self-
organising maps and random atlas) (Kind and Brunner, 2013b). Taking a similar approach to
their previously mentioned work TPZ (Photometric redshift PDFs and ancillary information
by using prediction trees and random forests) (Kind and Brunner, 2013a) both methods aim
to have a set of cells consisting of similar galaxies and then estimate redshifts based on the
cells mean redshift. The main difference between the 2 is that while TPZ organisation of
the cells depends on their redshifts (as each cell splitting was aimed to reduce scatter), the
SOMz method does not use redshift data at all (outside of a culling technique that will be
elaborated on in further chapters). Instead, the cells are based on what galaxies are most
similar in input values alone. Thus a number-of-filters dimensional data set is projected
onto a 2-dimensional map. Only after the map is created are the spec-z values added to the
map, as shown in Figure 3.9. One of the main weaknesses of this approach is that due to the
lack of ‘supervision’, galaxies may be grouped with vastly different redshifts, and thus the
map would be unusable. However, due to the apparent correlation between photometric data
and redshift, the maps indicate a usable model with some cells having a much larger mean
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Figure 3.9: An example of a topological map consisting of 768 cells on a spherical HEALPix grid
was created by SOMz of which the spec-z values have been added in post (Kind and Brunner, 2013b).

redshift than others. The creation of the map itself is beyond the scope of this thesis, but the
procedure for estimating redshift is not. A new input source is placed in the cell of most
similar galaxies, and the estimated redshift is that of the cell. Much like many random trees
are used to create a random forest in TPZ, SOMz uses a random atlas, many 1000s of maps
created to give uncertainties and reduce overfitting in the same way. When both models were
directly compared, their accuracy was comparable, with the main advantage of SOMz being
that the choices one would make beforehand (number of cells on a map, size of cells, shape
of calls and map, number of maps, etc.) had much less of an effect than the choices made
for TPZ (number of trees, number of branches, the final number of galaxies per cell, etc.)
meaning a much less intrusive meta-optimisation stage.

No matter the individual approach, all empirical techniques share advantages and dis-
advantages compared to template-based methods. For starters, they vastly outperform the
template counterparts when it comes to speed, mainly because, being quite a modern idea,
they have been optimised for the large datasets commonly used today (Vanzella et al., 2004).
Also, given the circumstances of being trained on a wealth of training data represented by
your input data, empirical methods usually outperform template-based methods in accuracy.
However, here lies the central ensure of data-driven methods, how much can be learnt? If
the methods rely on a load of spec-z data, then the redshift distributions in these regions
may already be known. Any input data that differs from the norm suffers from extrapolation
of the model; thus, data-driven approaches suffer considerable losses in accuracy when
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used in deep-pencil bean studies covering large redshift ranges (Hildebrandt et al., 2012).
Moreover, it can be difficult to tell if this extrapolation has occurred as there would be
such a small amount of spec-z data to which to compare it. Lastly, although the model
Independence means the algorithms may come across correlations between specific data
points and redshifts, those correlations remain unknown (one could analyse the weight of
individual neurons to see what inputs they favour, but after being multiple layers deep, the
results may be meaningless). This makes these methods harder to discover distributions of
new regions and for new physics.

3.2.3 Template Based Methods

Template-based methods (or physically motivated) methods are the alternative approaches
and are the older of the 2. Going forward, all methods and techniques will be about the
template method, although some of the later techniques could potentially still be used within
an empirical-based framework.

Template fitting was actually in the first paper to use the term "photometric redshift" (Koo,
1999). In the said paper titled "Near-Infrared Photometry of Distant Radio Galaxies: Spectral
Flux Distributions and Redshift Estimates" (Puschell et al., 1982), the introduction of more
studies of faint galaxies due to improvements in red and near-infrared sensitive detectors
(Boynton, 1980; Gunn et al., 1981) meant a cheap and effective method for estimating
redshifts of objects too faint for complete spectroscopy would have its advantages. In the
spectral range mentioned above, models looking at the effects of stellar evolution on elliptical
galaxies’ observed colours suggested that their spectra’ shape should remain constant for
redshifts z < 2 (Bruzual A. et al., 1980). To test this modelled hypothesis using more faint
data, Puschell devised the template fitting method in a photo-z frame.

At its most basic, the method seeks to best fit broadband data against known templates.
These known templates would be a set of reference spectra where fluxes at a given filter are
calculated and extrapolated across a given magnitude and redshift limit. The broadband data
would then take the given redshift of the best fit template. This is accomplished through
minimising the following χ2 (Bolzonella et al., 2000):

χ
2(z) =

Nfilters

∑
i=1

(
Fobs,i −bFi(t,z)

σi

)2

, (3.18)

where σi are the uncertainty of the observed fluxes Fobs,i at given filter i wile bFi(t,z) is the
template fluxes at a given reference flux b and redshift z and template t.

The ease of use of the template method has allowed for its application outside of just
redshifts. One can also determine properties of celestial objects such as galaxy type by
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making this a dependent variable in the templates used. Most importantly (and in contrast
to empirical methods), the templates can be extrapolated to redshift and magnitude ranges
outside the original template range but may lead to incorrect conclusions. With this said,
the benefit of extrapolation has made template fitting the preferred method for new space
surveys with a limited spectroscopic calibration set or the explorations of new regimes in
existing surveys.

It is worth considering these templates in slightly more detail as they are essentially
replacing the learning stage of the empirical methods, i.e. the templates are the model
relating photometric data to redshift. The templates themselves come in 2 forms. Ether
they are theoretical or empirical. Theoretical templates are created entirely from stellar
population models. These models determine many galaxy features (such as stellar mass and
element abundance). For understanding, we consider the most basic form of said models; the
simple stellar population (SSP) (Renzini et al., 1981) how one gathers luminosity of different
bands is outlined thoroughly by Maraston (2005). In this model, all stars are presumed
to be of the same age t and with the same chemical composition (or metallicities) [Y,Z]
where Y,Z are the fraction of the total consisting of Helium or everything heavier (C, O,
Mg, Si, Fe, etc., anything heavier than Helium is referred to as ‘the metals’) receptively.
There is a 3rd component, X, which refers to the mass fraction of Hydrogen, but this can
be implied as X +Y +Z = 1. Sometimes a different metallicity notation is used, such as
[Z/H] = log(Z/Z⊙)− log(H/H⊙ which refers to the total abundance of heavier elements
concerning hydrogen relative to our sun. The total bolometric luminosity released by a said
model star is split between main sequence stars (MS) and post-main sequence stars (PMS)

Lbol
SSP(t; [Y,Z]) = Lbol

MS(t; [Y,Z])+Lbol
PMS(t; [Y,Z]). (3.19)

The 2 luminosity contributions rely on completely different techniques to model. Main
sequence stars span an extensive mass range, thus using isochrone synthesis (Chiosi et al.,
1988). In this method, a mass-luminosity function L(M, t) is adopted as well as an initial
mass function Ψ(M). The main sequence luminosity is then found by integrating over a series
of mass bins along a curve on the Hertzsprung-Russell diagram, representing a population of
stars of the same age but with different mass (an isochrone) (Kippenhahn et al., 2012)

Lbol
MS(t; [Y,Z]) =

∫ MTO

Minf

L(M, t)Ψ(M)dM, (3.20)

where Minf is the lower mass limit (usually 0.1M⊙) and MTO(t) the current turn off mass (the
mass completing the hydrogen-burning phase). On the other hand, post-main sequence stars
have very similar masses. In this case, the ‘fuel consumption’ approach is used (Maraston,
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1998) is used. In this approach, the integration variable is no longer mass but ‘fuel’, defined
as the amount of Hydrogen and/or Helium consumed by nuclear reactions in the post-main
sequence phase. We use an evolutionary flux b(t) = Ψ(MTO)|dMTO/dt| which gives the rate
at which stars evolve to any post main sequence phase j at age t and function of the amount
of stellar mass that is to be converted into luminosity at each phase Fuel j[MTO(t)]

Lbol
PMS(t; [Y,Z]) = 9.75×1010b(t)∑

j
Fuel j[MTO(t)]. (3.21)

The factor at the beginning of the equation is used as a unit conversion as b(t) is given in
years Fuel j[MTO(t)] in solar masses and luminosity in solar units.

The choice of mass-luminosity relation and fuel consumption functions is paramount to
producing luminosity and thus is 1 of the 3 ‘ingredients’ that make the synthesis model
(Maraston, 2005), 3 sets of matrices all containing chosen models that use variables from
the previous ingredient. In this case, this ingredient is known as the energetics. The
second ingredient beyond this thesis’s scope is the surface parameters, which looks at the
surface temperatures and gravities of the stars of different phases given their mass and
luminosity as described in ingredient 1. Lastly, but most importantly for our use, is the third
ingredient transformation to observables the spectra as a function of gravity and temperature
(as produced from ingredient 2) to convert bolometric luminosity into usable SEDs. The
transformation is completed either synthetically or empirically. For example, in the work of
Maraston (2005) a synthetic library of individual star spectra is used (Lejeune et al., 1998)
which is based on the modelling of star atmospheres. To have the correct spectra based on the
ages, metallicities, surface temperatures and gravities generated through the primary model,
a quadratic interpolation in Teff, log(g) and linear interpolation in [Fe,H] takes place. This
does not, however, cover the entire parameter space. For carbon-rich and oxygen-rich stars,
an empirical library of observed spectra corrected for observation errors was used (Lançon
and Wood, 2000). At this point, the luminosity’s combined and intergalactic gas corrections
are applied to give usable galaxy spectra such as that in Figure 3.10.

Alternatively, instead of creating the SEDs from models, one can use empirical data in the
form of actually observed spectra of galaxies (Coleman et al., 1980). Although this removes
the possibility of the synthetic modelling being inaccurate, new inaccuracies form through
attempting to tie together observations at different wavelength ranges observed under different
conditions. Other issues also become more prominent, the library of empirical observations
does not cover all possible wavelengths, so modelling is required to extrapolate over entire
wavelength ranges (Polletta et al., 2007). Furthermore, as these are accurate observations, one
cannot control essential variables such as the galaxy’s redshift of morphological type. With
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Figure 3.10: A synthetic SED of a galaxy containing a 0.8Gyr stellar population and metallicity of
Z = 0.5Z⊙ using a population synthesis model (Maraston, 2005).

that in mind, classifications of type and reversing redshifts to rest-frame are still required for
optimum use. However, if template extraction is completed correctly, one will have a usable
template set for interpreting galaxy spectra, such as the set in Figure 3.11.

However, at this stage, the templates are not yet at the point of being model fluxes Fi(t,z) as
seen in equation 3.18. For the final conversion, we need to redshift the templates’ luminosities
Lt [ν ] to every redshift within the desired range and integrate them over the band spectrum
filters.

Fi(t,z) =
1+ z

4πD2
L(z)

∫
∞

0

dν

ν
Lt [ν(1+ z)]Wi(ν) (3.22)

Where Wi(ν) is the filter response as a function of frequency ν (Hogg et al., 2002). The
filter response for filters i and z can. be seen in Figure 3.11. Equation 3.18 is only meant to
represent the core principles of the template-based method and thus is in its most basic form.
However, with the sheer quantity of different template-based codes, there are many variations
in exactly how these templates are used. Take “EAZY: A Fast, Public Photometric Redshift
Code" (Brammer et al., 2008) as an example. Instead of finding which individual template at
a particular redshift best fits the data (which may lead to inaccuracies if the templates do not
well represent the data), the code instead looks to find the best fitting set of coefficients from
a linear combination of the templates.

Tz =
N

∑
i

αiTz,i, (3.23)

where Tz,i are individual templates at different redshifts and αi ≥ 0 are the coefficients. N is
the number of templates in the linear combination. This is usually 1,2, or all the templates
in the list. Another differentiating factor is that the templates have error functions giving
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centring

Figure 3.11: A typical template set consisting of SEDs from many types of galaxies (elliptical:
Ell; Starburst: SB; spiral with small bulge: Sc and AGN ( (luminous quasar: QSO; low luminosity
obscured AGN: Sy1.8). Also included are typical features of SEDs, both at-rest frame and their place
at z = 1.1 through dashed lines. Lastly, the transmission curves of the i,z filters are also included
(Salvato et al., 2018).

certain wavelength regions different weights based on the accuracy of the template, which
helps produce more realistic uncertainties. Alternatively, "The Zurich Extragalactic Bayesian
Redshift Analyzer" (ZEBRA) (Feldmann et al., 2006) uses a machine-learning approach to
generating templates. Using a training set of real SEDs of known spectroscopic redshift, a
continuous space is created so that a set of basic templates are corrected at different redshifts
to fit the space best (although obvious issues can apply with spectroscopic samples not
representing the entire population). Other codes keep to basic template sets but tackle the
dust attenuation issue (which can severely change the observed photometry). This can be
achieved by using dust-corrected templates (Benitez, 2000) or by including dust as a free
parameter (Bolzonella et al., 2000).

The fact that so many codes have taken dramatically different approaches to handling
templates hints that there was/is a problem to be solved. Unfortunately, that is the case, and
although template-fitting methods have their advantages, they also bring limitations that
can lead to severe errors if not treated appropriately. The primary sources of error can be
summarised into two main classes; colour/redshift degeneracies and template incompleteness
(Benitez, 2000). The idea of degeneracy is that after minimising χ2, there may be fluxes that
fit more than one template. At this point, minor random errors in the reading of the observed
flux would lead to objects being placed with the incorrect template and thus the incorrect
redshift. This can be catastrophic if the possible templates are of wildly different redshifts
(Sawicki et al., 1996).
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Figure 3.12: left: V-K vs I-K for a template sample in the 1 < z < 5 redshift range. right: The same
relationship with an applied 0.2 photometric error (Benitez, 2000).

The rate and severity in which degeneracies occur can be illustrated clearly through Figure
3.12 left which shows a colour-colour relationship (specifically V-I against I-K) for a sample
of morphological types at redshifts 0 < z < 5 the more significant the square, the larger the
estimated redshift. When lines intersect, multiple estimations can be made from different
templates. This is a degeneracy. The degeneracies can be significantly increased in their
frequency through the implementation of error as seen in Figure 3.12 right where the lines
have become ‘blurred’ at which point the probability of a catastrophic degeneracy is far more
likely. As well as this blurring effect, increasing the number of lines or opportunities for
crossing would lead to higher degeneracy. This would occur by increasing the number of
lines and the redshift range. Such an error will not express itself randomly but may lead to
a bias. It is expected that it would be far more likely that degeneracy leads to low redshift
objects incorrectly identified as high redshift objects than in reverse, mainly because fewer
high redshift objects are observed due to limiting magnitudes (this bias is looked into again
when examining BPZ).

Unfortunately, the intuitive response of using more filters (theoretically, this would increase
the amount of available information, thus showing differences that were not visible before)
shows a slight improvement. For example, PCA analysis of the HDF-N photometric sample
showed that no more than 3 parameters were needed to express the relevant information of
seven filters (Connolly et al., 1995). That said, simple acts can counteract such degeneracy,
such as limiting template size and redshift range to what is essential, thus limiting the
opportunity for crossing, as mentioned above. Another possibility is to work out the best
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magnitude limits to limit degeneracy. For example, this was achieved in photometric studies
of the Hubble Deep Field (Sawicki et al., 1996), through Monte Carlo simulations, it was
shown that catastrophic errors of redshifts are insignificant for bright objects but become
significant for magnitudes around 27, so objects were only included with objects of magnitude
27 or brighter.

As mentioned above, template incompleteness is the other large area where error can occur.
One can imagine a template set to be considered too ‘sparse’ if templates within it are too far
apart in terms of type and redshift. If this is the case and the correct template is omitted, a
redshift and spectral type may be chosen far away from the correct prediction simply because
there were no templates closer to which to match to (Sawicki et al., 1996). The problem now
moves away from the number of templates used to the accuracy of said templates. It has been
shown that the template fitting photo-z method performs better when using empirical sets of
templates than stellar population synthesis models (Walcher et al., 2010). The reason may
seem simple. Instead of basing templates on observed spectra, synthetic models rely on the
model having high accuracy. Unfortunately, this is not always the case. One example is UV
spectra which are not well understood even for local galaxies (Sawicki et al., 1996), efforts
have been made to include the effects of spectral evolution in their models, but these efforts
do not include the effects of galactic self-absorption and other unknown effects.

To counter some of the main limitations of template-based methods, much focus has gone
into the template allocation itself, especially on the problem of template incompleteness.
We have already seen above some of the techniques used to fill the holes left by missing
(or non-existing) templates, such as taking a linear combination of the templates instead of
keeping them apart or ‘correcting’ their distributions based on SED training data. These
are, in a sense interpolating the spaces between templates to produce more viable options.
The level of interpolation can be pretty significant, for example, the LAPHARE template set
(Ilbert et al., 2006). Similar to ZEBRA, a set of spectroscopic SEDs and redshifts are used,
but unlike ZEBRA, they are not incorporated into a machine learning pipeline; instead, the
features are used to interpolate a smaller set of templates linearly. In this case, an original
set of 4 classically used templates (Coleman et al., 1980) (consisting of an E, Sbc, Scd
and Im type galaxy derived from ultraviolet observations of nearby galaxies make up some
of the components of base template sets still used today (Benitez, 2000)), as well as an
extras starburst template (Kinney et al., 1996), were linearly interpolated using a set of
galaxies from the VISMOS VLT Deep survey (Le Fèvre et al., 2005) to produce 62 new
templates (over 12 times more than the original set). This same technique was later used to
produce the commonly used COSMOS set as well (Ilbert et al., 2008). Other attempts to
stretch the space of the templates have come through using free parameters and manipulating
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Figure 3.13: A typical p(z) generated from a simulated galaxy created from a template set, consisting
of multiple peaks where a sub-peak agrees with the true redshift (dashed line) (Leistedt et al., 2016).

the template distributions (in a sense creating more templates), such as using dust as a free
parameter, as seen above. As well as all these approaches work to mitigate one issue (template
incompleteness), they, unfortunately, can also have the effect of exacerbating another, in
this case, template degeneracy; By making the differences between templates finer and finer
through the methods above you are in as sense adding more and more overlapping lines to
the Figure 3.12 to such an extent that even with low errors in flux measurements one would
still have multiple templates at multiple redshifts.

To deal with the much larger problem of template degeneracy, one may start by looking
at changing the output of the entire process. Take, for instance, a situation that can occur
as a direct consequence of degeneracy where if one was to treat χ2 of the redshift template
matching as the inverse to the probability (thus, the higher the χ2(z), the lower the p(z)) of
that redshift being the redshift of the photometric source then due to degeneracy one could
have multiple peaks of high probability where the highest peak may not even be the accurate
redshift. An example can be seen in Figure 3.13. Under the outputs we have seen up to this
point, one would receive a single photo-z estimation based on the redshift value corresponding
to the highest probability (lowest χ2), which in this case would be catastrophically wrong.
Thus a new output is required that somehow incorporates information from the sub-peaks.
The first attempt at such incorporation was from the work of SubbaRao et al. (1996) who used
the mean redshift of the whole range of possible redshifts instead of the maximum probability.
This allows for the variance to also be outputted, giving an idea of the uncertainty of the
result. If the said approach were applied to Figure 3.13, one would get a mean Redshift much
lower than the maximum estimate with a large enough uncertainty to include the accurate
redshift in its error. Such a technique’s success led to the expected outcome of most redshifts
codes today, starting with the work of Arnouts et al. (1999) the idea being that one does
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produce a single estimate but instead produces the probability density function (PDF) p(z)
such as the one seen in Figure 3.13. In this sense, no information is lost, which becomes
even more critical when considering summary statistics of complete surveys, as we will see
below. The mean Redshift technique was closer to this idea than first thought, effectively
restraining the PDF to a Gaussian of width and peak dictated by the mean and variance.
Using the entire PDF photo-z estimates of quasars from the SDSS optic sample, one could
remove all catastrophic errors (Lima et al., 2008). Of course, there are still situations where
a single number estimation is required. This case needs new ways of extracting information
from the p(z). One such way is taking random samples of the p(z) and choosing the peak
redshift based on these samples (Wittman, 2009). This approach showed much less scatter in
zp vs zspec diagrams, which would significantly reduce systematic for weak lensing studies.
Other techniques that use the whole distribution but will not be covered in detail include
post-selecting peak techniques (Lima et al., 2008) and risk parameter techniques (Tanaka
et al., 2018).

Although changing focus to full PDFs has apparent benefits, there are a couple more subtle
issues that may seem detached from the primary process. The first is storage. Depending on
the size of the Redshift bins used to construct the pdf, one can quickly require anything from
50 to 1000 times more data points per galaxy which can become detrimental for multi-million
Galaxy surveys. Attempts to solve the issue have been both mathematical and technical,
either through representing the data in other ways such as Gaussian Basis functions (Kind
and Brunner, 2014) or through the inclusion of more storage of the data reduction techniques
(different file formats etc.). The other issue is validation. It is elementary to validate a photo-z
technique if one is comparing a single zp value to a single zspec value but much more difficult
if one has a whole distribution. One such attempt is the continuously ranked probability
score (Polsterer et al., 2016) which measures how well the zspec is captured within the curve
of the p(z)

3.3 Summary

The above chapter looked at one of the core aspects of weak lensing surveys, and one covered
for the remainder of this thesis: photometric redshifts. The weak lensing survey considered
distortions of sources due to matter between observer and source. A distortion that would
be meaningless without an idea of the distance or redshift between them. The redshift
of the sources is so paramount to weak lensing surveys that the sensitivity of the cosmic
power spectrum to the mean redshift of the survey is as sensitive as any of the cosmological
parameters one is trying to determine (Jain and Seljak, 1997). In fact, the mean redshift
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is so detrimental that a rough estimate of the convergence power spectrum can be roughly
estimated to be more than proportional to the mean z̄ Pκ(ℓ∼ 1000) ∝ ∆

−3.5
de σ2.9

8
¯1.6|ω|0.31.

One of the accepted best avenues for finding accurate redshifts is by examining observed
galaxy fluxes (or magnitudes) from sources, as these can be directly linked to redshifts due
to district spectral features. The most accurate method is through spectroscopic redshifts in
which one observes very fine wavelength bins leading to full spectral energy distribution.
Although accurate, the method is costly and limited to brighter sources, so not suitable for
the millions of faint sources typical of a weak lensing survey.

Instead, one may use photometric redshifts, a technique similar to the above but with much
broader wavelength filters. Due to their broadness, one cannot rely on individual fine spectral
features like the spectroscopic case. Instead, one must use broader features or otherwise
unknown links between flux’s/magitudes (or their ratios/differences in the forms of colours)
and redshift, which is achieved through data-driven empirical techniques (both supervised
and unsupervised machine learning). Although empirical techniques are accurate compared
to template methods, they do not work well in the conditions in many weak lensing surveys,
which is a broad range of possible redshifts in areas with very little spectroscopic training
data. Instead, one may use template-based methods, which take advantage of the fact that the
galaxies of different mythologies contain different spectral features. By having templates that
match these different morphologies, one can mitigate some of the inaccuracy of the input data.
These templates are formed from either synthetic models (that may have inaccuracies in their
modelling) or empirically gathered from observation (which may not sufficiently represent
the input survey). Although more accurate (than data-driven methods) in spectroscopically
poor regions (and thus valuable for weak lensing surveys), they have their weaknesses in
the form of template incompleteness and degeneracies where the former can be reduced
through different template interpolation techniques as seen in the many different modern
photo-z codes. Although changing from single photo-z estimates to complete probability
distributions does work to address some of the template degeneracy concerns, to tackle the
issue directly, one must take a slight detour to ask ‘what does it mean for a certain redshift to
be most probable?’.
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Chapter 4

Bayesian Redshift Statistics

4.1 Statistical Theory

4.1.1 Frequentist Inference

To understand a new way of statistical thinking, we must shore up our grasp on the current
way. We have mentioned the idea of the χ2 being inversely proportional to the probability.
This is only true in the vagueness sense of which one rises and the other falls. The χ2 we
witnessed in equation 3.18 is a simplified case of a more general equation. In this simplified
version, all observations are independent and thus have errors with no covariance. If we were
to lift these restrictions, we would return to the whole generalised equation as

χ
2 = (D̂−D(θ))T

Σ(D̂−D(θ)), (4.1)

where D̂ = {y1, ...,yN} is the data vector, D(θ) = y1(θ), ...,yN(θ) the model vector, θ is the
changing parameter and Σ the covariance . Of course, in our case, the data vector would
be the filter fluxes, the model being the expected template fluxes at different redshifts and
the redshift parameter. To return to equation 3.18 one simply removes the covariance by
setting Σ = diag(σ1, ...,σN) which simply becomes a vector of the errors on the filter fluxes.
To link this value to a probability, one must make assumptions about the form of the data
we are collecting. The main assumption is that the value of the filter flux yi collected can
be approximated to a Gaussian distribution around the mean value of ȳi and variance σi.
This assumption usually holds for astronomical data. Due to the large amount of data being
collected, gaussianity is implied by the central limit theorem (Shariff, 2017). This means one
not only has a value of how close this is to the model but an idea of how likely it was that
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these input values represent the true values of the source

p(D̂|θ) = 1
|2πΣ|1/2 exp

(
−1

2
χ

2
)
. (4.2)

This probability has the particular name ‘likelihood’, and its true meaning can be taken from
its symbolic form p(D̂|θ) as is to say is the probability of observing the data D̂ given the
parameter θ is true. This gives us a much more intuitive idea of what this probability form is
trying to achieve.

Consider these 2 scenarios, starting with a low error faint observation of a source. If we
assume (or ‘given’) that we know the source is at a low redshift where our templates (models)
tell us a source will give high fluxes for this redshift, there is a low probability of reproducing
that result as the lack of error in the value means it would be very rare for the data to vary that
far away from the actual high flux mean. Whereas a second example, a source is producing
fluxes that completely agree with the model under the assumption that it has a particular
redshift but has an extremely high error associated with that. The likelihood here is also low
(in fact, the likelihood would be close to uniform regardless of flux value) mainly because
here it would take many multiples of new observations to receive that accurate flux again due
to the highly varying nature of the significant error.

In both cases, we were using the language of ‘reproducing’ the result or ‘taking multiple
observations’ because if we consider the likelihood to be our main pointer of probability,
then we are taking what is known as ‘frequentist’ statistics.

Statistics of this kind get their name because it says the probability of something occurring
is referencing the ratio (of frequency) of that event occurring compared to not occurring if
the experiment was repeated an infinite amount of times. For example, if one was to say that
a coin flip has a 50% likelihood of being heads, what one is saying from the frequentist point
of view is that if we were to flip a coin an infinite amount of times repeatedly, half of the
times, the coin will be heads. The idea of a frequentist approach being scientifically used
came into prominence with the rise of High Energy Physics and particle collision, where
1000s of replicated collisions are taking place every second. Under these circumstances,
one can refer to the probability of a particular particle being created every 100 collisions
in a complete frequentist framework, and due to the ease with which likelihoods can be
produced, this was and still is the general approach in these realms. Our typical intuitive idea
of probability seems frequentist at first, much like the coin example above, but this is not
the way we usually think or ideally want to think and certainly does not apply to situations
in which an experiment cannot be easily repeated. One such example is that of cosmology.
We only have one universe and thus one data source to observe. Under these circumstances,
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what does ‘frequency’ or repeated experiments even mean? Under these circumstances, a
different method of statistics is required.

4.1.2 Bayesian Inference

The ‘new’ statistics, which we will explore and later apply to our photometric redshift
problems, are a version of statistics that precedes the frequentist approach. Derived initially
in the 1740s by Reverend Thomas Bayes and later published after his death by Richard Price
(Bellhouse, 2004). The Bayesian approach takes probability away from this idea of repeating
experiments and frequencies of occurring to something much more in tune with how the
scientific method works. Instead, it moves it to a statement of ‘belief’ (D’Agostini, 2005).
At first, this may seem contradictory, but it is more in tune with how we interpret probability
in the real world. Let us take the example of a flipping coin. When we state the probability
of getting heads on the next coin flip is 50% instead of saying this means that if we were to
flip it an infinite amount of times, it would be heads half as much of the time (less intuitive
as we only have the single flip). Instead, we are saying that based on the 1000s of coin flips
we have seen, we believe the next event of heads is just as likely as tails. The significant idea
here is that we use prior knowledge to shape our probability and use incoming data to change
that probability if needed. For example, if the next 50 flips were to head, our ‘belief’ that
the next flip is a 50:50 split (or, more precisely, that we have a fair coin) may begin to drop.
These are all scenarios allowed through Bayesian statistics.

Of course, this is not just a philosophical reinterpretation of probability for one to keep in
mind when constructing experiments and their statistical analysis. A mathematical framework
allows it to differ from the frequentist method. The mathematical formalism was first
independently developed by Pierre-Simon Laplace in 1774 (Zeger, 2012) and is based on
considering events (A and B). A common misconception of probability theory is that one
can simply write the probability of both events occurring as p(A∩B) = p(A)p(B) where
p(A∩B), p(A) and p(B) the joint probability of A and B occurring, the probability of A
occurring and the probability of B occurring respectively. This is only a special case of
the real, more general equation p(A,B) = p(A|B)p(B) where p(A|B) is the probability of
A occurring given B has occurred. For simplicity, we have used (and will continue to use)
an alternative formalism for joint probability of p(A∩B) = p(A,B) mainly due to the rise
of events one can have in a single probability going forward. The conception (and thus
the special case) comes from the fact that when one first learns probability theory, they
usually use a situation in which 2 events are completely independent of each other, and in
that situation, the first equation is correct as p(A|B) = p(A). The second piece to revealing
the Bayesian framework is by using the transitivity of joint probability, which means the
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probability of A and B happening is the same as the probability of B and A. This may seem
linguistically trivial, but it opens the door to the rest of the derivation,

p(A,B) = p(B,A), (4.3)

p(A|B)p(B) = p(B|A)p(A), (4.4)

p(A|B) = p(B|A)p(A)
p(B)

. (4.5)

Equation 4.5 is the famously known ‘Bayes theorem’, giving us a new interpretation of
statistics. It may not be self-evident how that is the case, but it will become more evident
as we replace A and B with more contextual events. For example, consider B to be D̂ the
data just observed from an experiment and A to be θ a particular parameter or hypothesis
connected to one is observing. Under these transformations, we now have the following:

p(θ |D̂) =
p(D̂|θ)p(θ)

p(D̂)
, (4.6)

this is the more useful equation, especially in the field of parameter inference. To understand
its significance, we shall break it down into individual terms.

• p(D̂|θ) - the likelihood, the probability that the data will be generated given the
hypothesis (or parameter) is true, the same term maximised in frequentist statistical
analysis

• p(D̂) - the evidence, the probability of the data unconnected to the theory

• p(θ) - the prior, the probability of the parameters based on all knowledge before the
experiment has taken place and data observed

• p(θ |D̂) - the posterior, the probability of the parameter or hypothesis given the data
observed

It is the last 2 terms that show the divergence between Bayesian and frequentist approaches.
The likelihood is no longer the goal quantity but a component of the overall goal, which
is the posterior, i.e. my ‘belief’ in this hypothesis given the new data I have just observed.
These beliefs are not in a vacuum but are influenced by prior beliefs. Thus, in the case of the
coin, flipping 1 head would not affect our posterior significantly due to prior knowledge of
the coin’s fairness up to that point.

The subtle difference between the likelihood and the posterior and the evidence’s meaning
can feel very abstract. With that in mind, to illustrate not only there mathematical meanings
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Figure 4.1: An illustration of a sample of 210 people, 10 of which are librarians (grey) and 200
of which are farmers (green), those in blue are those that match the given description of the man
(Sanderson, 2019)

of these terms and how this can help change our way of thinking of probability can look to
the behavioural psychology study of Daniel Kahneman and Amos Tversky and Kahneman
(1974) which was later illustrated for widespread consumption (Sanderson, 2019). The
experiment was a series of people who were told the following (paraphrased) ‘A man was
randomly chosen from the American population. Using the description below, do you believe
this man is a librarian or a farmer?’. They were then described the man with words one
may stereotypically associate with a librarian, not a farmer. People overwhelmingly chose
a librarian that Daniel and Amos deemed irrational when determining. The reason is that
people did not consider the prior knowledge that the ratio of farmers to librarians in America
is 20:1 to librarians.

Figure 4.1 offers clarity to the distinction. Illustrated here is a population of 210 people, of
which 200 are farmers (green), and 10 are librarians (blue). The highlighted people in blue
represent those whom the description would match. People determining that the person is a
librarian, not a farmer did not by comparing their likelihoods i.e. p(description|librarian) =
0.4 the probability that given the person is a librarian the description is more likely to
description than if the person was a farmer p(description|farmer) = 0.1. Instead, we want
the probability of the person being a librarian given the description, i.e., the posterior

p(librarian|description) =
p(description|librarian)p(librarian)

p(description)
. (4.7)

We must now incorporate the prior which in this case is p(librarian) = 1/21 (the 20:1) ratio
(or the proportion of grey to green people) while the evidence p(description) is the num-
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Figure 4.2: Examples of gaussian, uniform and Jeffreys priors (Shariff, 2017).

ber of people to which the description matches them i.e., everyone highlighted in blue
p(description) = p(librarian)p(description|librarian) + p(farmer)p(description|farmer) =
24/210 giving us a true posterior of 16% or 4/24 which makes sense as in our popula-
tion of 210 people, the description matched 24 of them to which 4 were librarians. As
you can see, even with the likelihood being 4 times higher, our priors can hugely affect the
outcome. Which they should, our beliefs are not founded on the data in front of us but on all
the data of previous experiments.

4.1.3 Choice Of Priors

This idea of constantly updating beliefs so that the current posterior becomes the following
experiments prior means likelihoods can be constantly multiplied onto each other. As long
as the prior is non-zero in regions where the likelihood is significant, repetitions of the
same experiment will lead to the posterior converging to a single function (Leclercq, 2015),
much as our belief in a hypothesis would also reach a convergence point. With that in mind
choosing the correct prior is of high importance, which usually comes in 2 forms, either
informative or uninformative.

An informative prior would be one based on prior knowledge that has been collected and
can be the posterior of a recent experiment or be synthetic based on outside knowledge, such
as boundary conditions to the accepted answer, or as we saw above, based on population
numbers. A classic example would be to go back to the coin-flipping experiment one may
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use a Gaussian prior of p(flipping heads ∼ N (0.5,0.12)) (Shariff, 2017) where you are
very sure that the coin is fair (as shown through the low variance around 0.5). These priors
are examples in Figure 4.2. Due to the very nature of being based on the knowledge of
that experiment, informative priors are usually highly context-specific, which is much more
general and exposes some of the nuances of prior choice that come through non-informative
priors. These priors are supposed to state that we have no prior information on the correct
parameter values. The most obvious would be a uniform prior p(θ) =U [θmin,θmax],

U [θmin,θmax] =

 1
θmax−θmin

, θmin ≤ θ ≤ θmax

0, otherwise.
(4.8)

This is to say that within the boundary conditions, every θ value is just as likely as any
other. A perfect example of its use is back to our coin, where if we wanted to not presume
at all that it was fair or not, we would attribute the prior probability of getting heads to
p(flipping heads) =U [0,1]. At first glance, this should be the end of the discussion as what
can be less informative than a prior that treats all possible θ values as equally possible?
Unfortunately, issues begin to arise if one needs to re-parameterise. Consider the following
thought experiment by Alsing (2017); You are trying to find the value of some parameter θ , as
you have no prior knowledge of θ other than it is a probability you chose to assign a uniform
prior of p(θ) = U [0,1] (just as we did previously with the coin). Later on, it is decide to
re-parameterised to a new parameter of interest λ = ln(θ/(1−θ)) as you equally do not
know λ it seems sensible to use the same uniform prior of p(λ ) =U [0,1]. However, due to
the relationship between λ and θ you have unintentionally changed the prior of θ to p(θ) ∝

(1−2θ)/(θ(1−θ)) as p(θ) = p(λ )×|dλ/dθ |. The more parameterised, complicated and
interconnected a scientific problem becomes, the harder it is to blindly attribute parameters
to uniform priors without potentially biasing other aspects of the analysis. Thus different
methods were created to have priors potentially independent of the parameterisation. One
such example is the Jeffreys prior (Jeffreys, 1998) which formally is defined as

p(θ) ∝
√

F (θ), (4.9)

where F(θ) is the Fisher information, a measure of how much information one can get on
the parameter θ given the data available

F (θ) =−
∫

p(D̂|θ)∂ 2 log p(D̂|θ)
∂θ 2 dθ . (4.10)



162 Bayesian Redshift Statistics

The exact details of the Fisher information are beyond this thesis but at its most basic the
Jeffreys prior is uniform in log space i.e. p(log(θ)) = constant and p(θ) ∝ 1/θ . This
can be especially important if one does not know the scale on which θ exists (i.e. very
small 10∗−10 or very big 1010). If one used a very wide uniform prior, then most of the
probability will lie with the larger numbers, i.e. there is more probability for θ > 1 than
0 ≤ θ ≤ 1). Whereas the Jeffreys prior would be the same weight at all magnitudes. Jeffreys
is a 1-dimensional version of a more general reference prior; however, finding such priors
for all problems can be taxing recurring the solving of calculus-of-variation problems and
thus is not covered in more detail. Alternatively, there are maximum entropy priors seen as
computationally less intense. They state that the least informative prior would maximise
entropy given a set of prior constraints where the entropy of the probability distribution is
given as

H(p) =−
∫

p(x) log p(x)dx. (4.11)

This allowed for a constraint-focused instead of a model-focused approach and removed
the options of choice to something more principled in what is least informatively prior. If the
only constraint is

∫
p(x)dx = 1 (a constraint required for this method to work), the maximum

entropy prior is uniform. The maximum entropy prior is a gaussian if the mean and variance
are fixed. However, unlike above, they are not insensitive to parameterisation, so they should
be used with care.

4.1.4 Hierarchical Models and Marginalisation

The above showed how Bayesian statistics changes the way we consider probability and how
best to incorporate prior knowledge in a way not suitable to the frequentist approach. That
said, it is always possible to include prior knowledge within the frequentist analysis. For ex-
ample, this could be achieved by adding a weighting function (say one that weighted towards
the outcomes of previous experiments) within your likelihood function. This mathematically
is true and would lead to a likelihood result proportional to its posterior counterpart. Unfortu-
nately, it is principally dubious; by modifying your likelihood, you, in a sense, modify your
model and thus the theory behind it, implying that experiments (and the random variables
they produce) are not giving independent results but are dependent on the experiments that
have come before it.

Bayesian thinking allows for a clear answer to this issue. The underlying model remains
intact with the modelled likelihood and the prior knowledge as separate functions that only
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join to give a posterior. This same trail of thinking can be applied to another topic in which
both approaches differ; the dealing and propagating of uncertainties.

In its most basic form were are constantly dealing with a set of observed data D̂ and a
model to explain that data with particular parameters θ . Under the frequentist framework, one
would maximise the likelihood p(D̂|θ) to find which parameters best produce the observed
data. Other than the misgiving mentioned above, if this is the function we want to maximise,
another question or issue arises. What does the rest of the likelihood distribution represent?
Why would it not produce the same data every time? Why is there a probability attached at
all?

Let us remove the idea of the model having some underlying uncertainty by making it based
exclusively on classical physics. Under this assumption, the only form of uncertainty and
thus the need for distribution comes from how we observe that data, for example, the quality
of our instrumentation leading to error. The frequentist approach includes measurement error
within the likelihood function, which for small enough models is fine (an utterly working
example being the photometric redshift likelihood function used for both Bayesian and
frequentist approaches alike). However, this can lead to 2 issues, the first being the principled
issue mentioned above; should the model depend on my instrumentation? If I upgraded my
instrumentation, this would potentially sharpen the likelihood. The physics model now seems
to be affected by my choices. On the other hand, the mathematical issue deals with what
happens when those uncertainties affect different parameters (say, one within a sin function,
for example). Such propagation requires mathematical rigour and attention to ensure they
affect the output data correctly.

The Bayesian answer, as with prior knowledge, is to keep the observed data’s uncertainties
as a separate entity. However, seeing as the terms of Bayes Theorem have already been
accounted for, how does one do this? One uses a hierarchical model. Unlike above, where
one goes from parameters to observed data through one likelihood function, now we have
multiple likelihood functions. The first is the physical model p(D|θ) linking the true data
D to the parameters and the second is a completely separate instrumentation model p(D̂|D)

linking the true data D to the observed data D̂. We can rewrite the Bayes theorem so that to 2
things we now care to find are parameters and the correct data given the observed data

p(D,θ |D̂) ∝ p(D̂|D,θ)p(D,θ). (4.12)

Proportionality refers to the fact that the evidence has been ignored. This is allowed as direct
comparisons of 2 posteriors cancel out the denominator. It is, in a sense, a normalisation
constant. We can use the multiplicative law to rewrite the prior in terms of the physical
model, i.e. p(D,θ) = p(D|θ)p(θ). Through the fact that we have already stated that there is
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Figure 4.3: An example of a basic Bayesian hierarchical model based on the toy model used above,
consisting of 3 main components: the physical model likelihood; the instrumentation error likelihood;
and the prior.

no direct model linking observed data to parameters (only observed data to real data), we
can also rewrite the likelihood in terms of the instrumentation model p(D̂|D,θ) = p(D̂|D).
Leading to our joint posterior

p(D,θ |D̂) ∝ p(D̂|D)p(D|θ)p(θ), (4.13)

as models become enlarged with more and more variables. Hierarchical models are best
described through directed acyclic graphs as seen in Figure 4.3 one has a path from prior
knowledge to observed data for which all models can be accounted for.

Of course, there is one remaining issue, we don’t want the joint posterior p(θ ,D|D̂) we
want the posterior to the parameters alone p(θ |D̂) and they are not equivalent. Under these
circumstances, the actual data D becomes known as a nuisance parameter, something we
want to take account of but not includes in the final distribution (i.e. we ultimately do not
care what the actual data should have been, that is just a comment on our instruments, not the
physical model). This becomes especially important for much larger Bayesian hierarchical
models with many different uncertainties and thus many nuisance parameters. To deal with
them, we use a method known as marginalisation to integrate all possible values of that
variable weighted by its probability of occurring

p(θ |D̂) ∝

∫
dDp(θ ,D|D̂). (4.14)
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Under this framework, we now have a consistent approach that keeps models independent,
and uncertainties accounted for. Although, for a complete picture, one may still wonder why
there is a model likelihood if the parameters would produce the same data every time (under
our classical view). Under these circumstances, our model likelihood would become a direct
delta function and thus is still viable for calculation.

4.2 Application

4.2.1 Computation

So with the apparent benefits and philosophical consistencies, Bayesian statistics offers
advantages that should not have been ignored. However, they were with frequentist statistics
still being the overall analysis used in modern science. For starters, as the number of
observations tends to infinity, the two methods converge in their conclusions negating the
said benefits. One concern for Bayesians is in this choice of prior, which can affect your
overall result, an effect frequentists can ignore outright. However, this argument can be used
in reverse, with frequentists having to take great care in propagating their errors correctly,
especially with implicit Gaussianity of χ2, something Bayesians do not have to worry about.
Due to their hierarchical modelling, we can propagate the errors with whatever distribution
we require. There is no constraint forcing Gaussianity. The area in which Bayesian statistics
falls short and thus is ignored in favour of its frequentist counterpart is computation.

If we were to take the basic Bayesian hierarchical model of Figure 4.3 if one were to
compute the frequentist Gaussian likelihood, one would have an analytical function to
simply plot. With the Bayesian approach, we must multiply the individual components
(prior, physical model, instrumentation error) and integrate all possible data combinations
to evaluate the posterior. This can cause 2 major computational problems. The first is that
with that many components, there is no guarantee of an easy analytical function to compute.
Efforts can be made to simplify some mathematics by using conjugate priors. These are the
priors of which their distribution was chosen so that they can easily be multiplied by the
likelihood. One such example would be the conjugate before a Gaussian likelihood would be
a Gaussian prior, as when their product (and thus proportional to the posterior) would also be
Gaussian. The issue with this approach is that you now choose your prior for convenience as
opposed to any principled reason, and even then, not all easy computations can be guaranteed.
Some posterior functions are not analytic at all and require simulation to compute. Each one
of these computations can be costly.
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Figure 4.4: An illustration of samples being taken from a normalised distribution proportional to the
distribution itself regardless of normalisation, these samples can then be used for statistical analysis
(Rocca, 2019).

The second computation issue comes from what we are trying to extract, saying we had
a posterior (and thus a likelihood) that was reasonably easy to compute individually. The
frequentist approach only requires the likelihood to be maximised. Thus many different
optimisation tools can be used. Bayesian, however, desires the entire distribution to be
evaluated. One can imagine simply splitting the distribution into N equally spaced points
on the parameters axis and evaluating each point to plot the distribution. This does work
and is entirely viable for 1-dimensional problems. However, as seen with the hierarchical
model, nuisance parameters add up. In the case of complete cosmological analysis, there are
multiple cosmological parameters of which one would be evaluated. If there are k parameters,
that would be at least Nk evaluations. Computational time can quickly skyrocket to untenable
in what is known as the ‘curse of dimensionality (Bellman, 1958).

Due to this curse, one cannot simply evaluate every point. Even at low dimensions, the
issue resides in finding the balance between a possible computational number of points and
the required level of precision. Instead, one needs to employ a sampling method in which
samples of the distributions are taken (where each sample would consist of the parameter
values), and the number of samples taken within any θmax −θmin region is proportional to
the posterior distributions within that region. Put regions of the high posterior will have had
more samples obtained than regions of the low posterior, as shown in Figure 4.4. Besides
being computationally less expensive than a complete distribution evaluation, the sampling
method also contains other valuable by-products. Say one has a table of samples consisting
of columns of parameter values where every row is a sample. The first thing to notice is
that, as shown in Figure 4.4, there is no retaining posterior information. The number of
samples only implies this. Thus there is no need to normalisation the distribution as this
is done automatically. Secondly, under these circumstances, statistical analysis becomes a
much easier task. If you wish to marginalise a particular parameter, one no longer needs
to integrate over the entire distribution. They need to ignore all columns other than their



4.2 Application 167

Figure 4.5: An example of the MCMC MH algorithm, containing a proposal distribution and the
uptake of samples both rejected and accepted to the proportions of the posterior distribution (Dong
et al., 2020).

parameter of interest. With sampling outputs, the checks of quantities such as mean, variance
and correlation with other parameters become a trivial exercise of data manipulation instead
of computation.

Thankfully such computational methods exist that allow us to sample the distribution. The
most efficient family of known methods are Markov Chain Monte Carlo (MCMC) methods
in which one collects a ‘chain’ of samples of which the following chain sample in the chain
θi+1 is probabilistically linked to the current sample in the chain θi. The simplest and
most popular version of this method is The Metropolis-Hastings (MH) algorithm (Hastings,
1970)(Metropolis et al., 1953). The algorithm can be seen illustrated in Figure 4.5 and
contains the following steps.

1. Randomly select an initial sample θi from a distribution (such as the prior p(θ))

2. choose a proposal sample θi+1 based on a proposal distribution depended on the
previous sample p(θi+1|θi)

3. selected a random number r from a uniform distribution of U [0,1]

4. if r < Q(θi,θi+1) where Q(θi,θi +1) = p(θi+1|D̂)/p(θi|D̂) is the acceptance criteria,
accept the sample

5. if r > Q(θi,θi+1) reject the sample and declare the new sample θi+1 = θi

6. repeat steps 2-6 for the next sample θi+2 up to θNs where Ns is number of samples.

As you can see, the acceptance criteria is a ratio of the 2 posteriors. This ensures that the
algorithm does not just become an optimisation procedure (if that was the case, only higher
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Figure 4.6: An example of a simple 2-dimensional posterior distribution on the left being converted
to a potential energy distribution on the right of which samples are drawn (pink) (Rogozhnikov, 2016).

and higher posteriors would be chosen) but always has a chance of sampling a low posterior
region if a tiny chance. The method’s weaknesses come through mainly in its proposal
distribution p(θi+1|θi) this is where the ad hoc choices are made to ensure convergence of the
whole distribution. It’s usual to see a Gaussian distribution be used in these circumstances
such as p(θi+1|θi) = N (θi,Σ) one can that the size of the jump from one sample to the next
is dependent on Σ. It is this choice that requires care. Too small a jump, the procedure will
take too long to cover their entire distribution. Too large, and the differences in the posterior
between samples would be so large that one will face a large number of rejections and be
incredibly inefficient. This acceptance rate becomes a prominent issue as we move to higher
dimensions to which even small jumps can lead to large changes in the posterior. This MH
becomes impractical at dimensions of ≥ 10. For these situations, alternative MCMCs are
required, such as Hamiltonian Monte Carlo, which treats samples slightly like travelling
particles where their potential energy is determined by the probability distribution and the
kinetic energy determined by a chosen ‘temperature’, as can be seen in Figure 4.6. This
method allows us to look at much larger dimensional problems (with dimensions > 106))
(Neal, 2012) but with a cost, computing individual jumps is much more difficult, requiring
the gradients of the posterior, a quantity that cannot always be assured.

An alternative approach (and the sampling approach used for the majority of this thesis)
for jumping from sample to sample does not require the full posterior. Instead, one can use
conditional probability (in some cases, such as in 5 the conditionals are exponentially easier
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to compute). To explain the algorithm, we will consider a simple probability distribution
p(x1,x2). This may seem like an oversimplification because it is not conditioned on data nor
contains a higher amount of dimensions; however, the algorithm below would apply the same
for both cases. The algorithm is illustrated in Figure 4.7

1. choose a random initial sample x(t) = (x(t)1 ,x(t)2 )

2. take a new sample along the x1 axis by random choosing from a point along the condi-
tional distribution x(t+1)

1 ∼ p(x1|x(t)2 ) so that the new sample is x(t+1) = (x(t+1)
1 ,x(t)2 )

3. take a another sample along the opposing x2 axis so that the next sample is x(t+2) =

(x(t+1)
1 ,x(t+2)

2 ∼ p(x2|x(t+1)
1 ))

4. repeat stages 2 and 3 until we have Ns samples

The only alterations to include the points mentioned earlier are that one would include the
observed data and loop through all possible dimensions so that the conditional probability
used is p(xi|x j ̸=i, D̂). Since the conditional probabilities are considered in all dimensions
and no samples are rejected, Gibbs sampling is a very efficient way of sampling highly
dimensional distributions (as seen in 5). However, there is a weakness to the method, which
restricts its use somewhat in weak lensing. As you can see from Figure 4.7, the size of the
‘jumps’ is determined by the width of the distribution along that axis. This is fine for mainly
circular distributions like the one in the example. However, in highly correlated distributions
such as the banana-shaped distribution of Figure 2.8 climbing up and down the banana one
dimension at a time can be incredibly inefficient.

With this in mind, there are weaknesses to all MCMC and Gibbs-based methods that
become highly important, especially when sampling the probability distribution of cosmo-
logical parameters. First, they all revolve around jumping methods that suffer from taking
a minimal number of samples at low distributions (as there is such a low probability of
those samples being accepted). At first, this is fine as we want the number of samples to
be proportional to their distribution, but this can lead to samples becoming trapped within
a region of high probability (local maxima) of the distribution is bimodal, but the maxima
are considerably distant it can take a long time to escape one of the maxima. Secondly,
ignoring the lower probabilities reveals an issue with one of our advantages. We initially said
that these methods do not care if the distribution is normalised as we only care about the
proportions, not the individual probability values. Once again, this is fine unless one wants
to use the distribution for an untouched (within this thesis) advantage of Bayesian statistics,
the ability to compare models. This is an aspect of analysis that requires the evidence and
thus integrals of the entire distribution.
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Figure 4.7: An illustration of the steps required in a 2-dimensional example of a Gibbs sampling
procedure (Mackay, 1995).

Under these circumstances, nested sampling becomes a convenient approach (and the
approach used for the cosmological analysis of Chapter 5 as well.). The exact algorithm
is slightly more complicated than we have seen previously. If one wanted to compute the
evidence seen within the Bayes theorem, one is looking at the volume (in parameter space)
of the un-normalised distribution

Z =
∫

L (θ)π(θ)dθ , (4.15)

where Z ,L (θ) and π(θ) are the evidence, likelihood and prior respectively. This is a
multidimensional integral, so it can be difficult to compute. Instead, imagine a load of
random points are taken along the distribution and contours are formed around lines of
similar likelihood (see Figure 4.8 left). The prior volume contained within these contours is
known as

X(L ) =
∫
L (θ)>L

π(θ)dθ . (4.16)

If we then integrate this volume X(L ) along the contours as one can see in Figure 4.8 right
we extract the evidence Z

Z =
∫ 1

0
L (X )dX . (4.17)
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Figure 4.8: left: An illustration of the likelihood contours that are created around a probability
distribution right: A plot of X against L (X) showing how the integral leads to the evidence Z
(Pritchard, 2016).

4.2.2 BPZ

For the first direct implementation of Bayesian statistics into photometric redshift estimation,
we do not need to worry about sampling methods due to the small parameter space in which
our problem lies. As a reminder, 3.2.3 look at template-based methods of estimating redshift,
showing huge promise due to their performance not being linked to spectroscopic data
availability but instead based on physical theory. The main issue left lingering was that of
template degeneracy. What can one do about the likelihood that functions of template-based
methods are inherently poly-modal due to template degeneracy? One possible remedy comes
from BPZ: Bayesian Photometric redshifts (Benitez, 2000).

Benitez realised that under the previous frequentist approach to template-based methods,
simply increasing the number of templates to solve the template incompleteness issue only
increased the colour/redshift degeneracies problem. This was due to all templates having
equal status within the analysis, and thus likelihood functions on their own are not informative
enough.

To take a fully Bayesian approach, one must evoke the Bayes theorem from equation 4.6
in which we want to find the posterior probability that an object has a curtain redshift z given
its colour C and magnitude m0:

p(z|C,m0) =
p(C|z)p(z|m0)

p(C)
∝ p(C|z)p(z|m0). (4.18)

The most important new segment is the inclusion of a prior p(z|m0). This allows us to ‘sway’
redshift estimations in the correct direction if the likelihood has very different redshifts with
an equally high likelihood. The most obvious example would be the inclusion of a prior
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that states that there should be a low probability of finding high redshift objects of high
magnitude, as we may not have the practical capabilities of detecting the said object. The
prior even allows us to take into account the fact that the magnitude observed m0 is not
necessarily the same as the true magnitude of the object m̂0 assuming the probability of
change from true to observed is Gaussian gives the following prior

p(z|m0) ∝

∫
dm̂0 p(m̂0)p(m0|m̂0)p(z|m̂0) (4.19)

The issue of degeneracy can now be truly attacked as different templates no longer have to
be weighed equally. We can include that certain template types T would be less likely than
others given a certain magnitude

p(z,T |m0) = p(T |m0)p(z|T,m0). (4.20)

The effect can be seen in Figure 4.9, of which p(C|z,T ) is the likelihood so that under a
usual ML method, this object would be considered high redshift. However, due to a prior
that favours all template types at lower redshifts, when one marginalises over all types, one
reveals a posterior that favours a low redshift.

As one might expect, as the introduction of a prior is the main differentiator between
BPZ and previous likelihood-based methods, the choice or creation of said prior is of much
interest. In the situation where the prior is very vague, the original BPZ paper introduced
a calibration method, assuming the underlining prior follows a particular analytic function
with a set of free parameters λ . The fixing of this set of parameters will be governed using
the available galaxy catalogue through the following estimation;

p(λ |C,m0) ∝ p(λ )p(C|m0,λ ) = p(λ ) ∏
j, j ̸=i

p(C j|m0 j,λ ), (4.21)

then the posterior would be found through marginalising over λ

p(z|C,m0) ∝

∫
dλ p(λ |C,m0)∑

T
p(z,T |m0,λ )p(C|z,T ). (4.22)

Benitez provided an example where the method was applied across the Hubble Deep Field
North data (Williams and team, 1996). The underlining function was assumed to be expo-
nential and low probability at high redshifts leading to the p(T |m0) = ft exp{−kt(m0 −20)}
for the spectral type prior and p(z|T,M0) ∝ zαt exp

{
−
[
z/zmt(m0)

]}
were zmt(m0) is the

medium redshift given by zmt(m0) = z0t + kmt(m0 −20) which leads to 11 free parameters
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Figure 4.9: Example of how a probability distribution may change with the introduction of a prior
choice, the first row shows the likelihood for each galaxy type, row 2: the prior, row 3: the posterior,
row 4: the posterior marginalised over each galaxy type (Benitez, 2000).
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Figure 4.10: Prior in redshift and different given magnitudes p(z|m0) estimated through using the
calibration method on the HDF-N data (Benitez, 2000).

λ = {αt ,z0t ,kmt ,kt} these free parameters are found through the method mentioned above
and a prior is found as shown in Figure 4.10.

The advantages of such a method are compelling. One can start with a very loose idea
of what the prior should be and still gain a usable prior through the same galaxy sample.
Furthermore, due to its rational nature, the resulting redshift function is smooth, and the
effects of cosmic variance are reduced. There are, however, a few downfalls; the selection
criteria of the galaxy catalogue may not be taken into account by the analytic form of the
prior, and assumptions need to be made to constrain the fit of the free parameters (Feldmann
et al., 2006).

To counter the limitations mentioned above, a new approach was suggested in which an
iterative prior is used (Brodwin et al., 2006). In this method, they do not apply individual
likelihoods of each galaxy to the prior but instead directly sum up the normalised likelihood
functions Ln for each galaxy. This summed-up likelihood is the initial stage of the prior
iterative method

[p(z,T |N(z))]0 = ∑
i

L n
i (z) = ∑

i

Li(z)∫
∞

0 Li(z)dz
, (4.23)

where N(z) is the underlining redshift distribution of the sample. Using this prior, a first
stage posterior is found, which is considered our new Ln and the iterative process is repeated
until convergence. If this were spectroscopy, the first stage prior would be the correct red-
shift distribution (or at the very least a much more accurate estimate) but the photometry,
particularly at the fainter magnitude, limits the derived first stage before containing artificial
peaks. Continuing the iterative process, the bulk information is used to modify the likeli-
hoods, which minimises degeneracy. One large assumption is that a prior is required for a
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Figure 4.11: left:Results of a Monte Carlo simulation based on CNOC2 evolving luminosity functions
(solid circle) well as the N(z) distribution estimated by peak-ML (open circles), initial iteration (dashed
line) and final iteration (solid line) right: The χ2 contribution of the same N(z) distribution (Brodwin
et al., 2006)

galaxy regardless of its type or magnitude. Thus individual photometric estimations are not
necessarily improved only the complete statistical redshift distribution. The smoothing of the
prior can be seen in Figure 4.11, where the initial prior shows unwanted peaks that reduce the
correct peak. Directly comparing the total χ2 give { peak-ML,initial-iterative,final-iterative
}= {4.02,14.5,1.25} showing the effectiveness of the method.

The advantage of this approach is that it can match over/under densities due to cosmic
variance where for example, the smooth functions of BPZ would not pick up. However,
with this said, the method no longer shows improvement to the initial prior at very low
signal-to-noise ratios. It thus is recommended only to be used in the 0.2 ≤ z ≤ 1.3 redshift
range (With this said, Figure 4.11 recovered the correct N(z) outside of this suggested range,
so it still has its uses).

Due to the success of this approach, it was adopted for the Zurich Extragalactic Bayesian
Redshift Analyser (ZEBRA) (Feldmann et al., 2006) with the formulation extension of
applying it across redshift and template leading to the following prior:

pnew(z, t) = pold(z, t)
1

NG

NG

∑
i=1

Li(z, t)
∑z′,t′ pold(z′, t′)Li(z′, t′)

, (4.24)

with NG being the number of galaxies in the sample and the initial pold(z, t) is a user-specific
guess prior (usually flat). Other improvements include the fact that unreliable redshift
estimations are excluded in the process. A ‘bad fit’ is any estimation with χ2 values more



176 Bayesian Redshift Statistics

significant than the threshold χ2
0.99. In practice, this only excludes 1% of the data. The

smoothing of the prior is also a noticeable improvement; due to a finite number of galaxies
being observed, there are often high-frequency fluctuations in the observed N(z), and these
sharp features become more prominent with every iteration leading to a spiky prior. To
account for this, the prior is smoothed after each iteration. This is achieved by smoothing
the number counts with a Gaussian kernel of width σ = max(σML,σL ,σP) were σML is
the standard error of the maximum likelihood estimator, σL is the typical broadness of the
likelihood functions and σP the characteristic scale due to finite Poisson sampling, most of
which are found through Monte Carlo simulations. With all these improvements, studies
suggest that ZEBRA and BPZ, when applied to the same samples out, perform their likelihood
only (HYPERZ etc.) counterparts with the same templates (Abdalla et al., 2008).

4.3 Redshift Distributions

4.3.1 Stacked Likelihoods

With an understanding of how Bayesian statistics can be directly involved in producing
photometric redshift distributions, it is worth returning to the overall goal of improving weak
lensing analysis. For this, we must go back to the lensing efficiency equation, and the term
of great interest to us is n(χ)i or, more specifically, n(z)i as n(χ)idχ = n(z)idz. n(z)i refers
to the redshift distributions of the ith tomographic bins sources. As stated in chapter 2, we
must group our observed sources into different groups to measure their correlations with
each other. The way the sources are grouped does not matter, but if one was to group vaguely
by redshift, one could potentially gather extra information by seeing how the lensing of
galaxies (and thus the amount of matter the light had travelled through) changes with redshift.
In this sense, BPZ is used directly. Even the most modern studies of weak lensing use the
maximum posterior acquired by BPZ to place the sources into groups characterised by the
maximum and minimum BPZ redshift estimations they would allow (Asgari et al., 2020).
With that said, due to the probabilistic nature of BPZ, ‘bleeding’ can occur when galaxies
are placed in entirely wrong bins. This can affect intrinsic alignment, which may use the
ordering or sources to identify which ones can lens others. Due to this bleeding, it is essential
to understand how much overlap between different bins, the same overlap described in our
most crucial variable of interest, the redshift distribution itself n(z).

The n refers to the number of sources between any particular z−δ ,z+δ interval so that
the n(z) is just an exemplary histogram of collected sources. Of curse, the histogram area can
always be normalised to give a probabilistic value; what is the probability that a randomly
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selected source within a tomographic bin lives within the redshift interval z− δ ,z+ δ?
Note that this is a very different question from the ones being answered by BPZ and other
photometric codes. We are no longer interested in individual galaxies but in the collective
statistics of all the gathered sources. The traditional technique in this situation would be to
reduce the photo-z PDFs down to delta functions δ (z, ẑ) where ẑ is a point estimate such as
maximum posterior (Abruzzo and Haiman, 2019). This makes sense in terms of intuitively.
We are forming a histogram, and a galaxy can only be at one point at any time. That said, such
a method negates the work above, as so much information is stored within the probability
distribution of the photo-z estimate. This is mainly due to the inherent error and uncertainties
within the template-based methods. If these were spec-z estimations using this method would
be entirely agreeable. Instead, the most common method across weak lensing has been to
‘stack’ the likelihood or posterior (Kelly et al., 2012)(Benjamin et al., 2013)

n̂(z) =
1
N

N

∑
i

p(z|D̂i), (4.25)

where N is the number of galaxies in the group. You are, in a sense taking a mean distribution
by all the individual redshift distributions. Once again, there is some intuitive reasoning
behind this choice. If one has a set of bimodal distributions of which the lower redshift
peak is always highest, the delta method above would say the entire population is at the
peak redshift, while the stack method says that ‘on average you would expect some of the
population to exist near the second peak and that they only appear to be lower redshift due
to errors in observation. The stacked likelihood method then uses the entire distribution.
Because of these benefits, the stacked method has been used successfully in weak lensing
studies for years. Take Figure 4.12 which shows the estimated redshift distribution through
stacked likelihoods doing a fairly good job compared to their spec-z ‘true’ distribution.

With that said, one can already see the failings that have led to the modern phasing out of
stacked approaches to the extent to which modern weak lensing studies such as (Hildebrandt
et al., 2017) KiDS-450 rejected the technique outright due to being "biased at a level that
cannot be tolerated by contemporary and especially future cosmic shear measurements"
(Newman et al., 2015). As we can see from Figure 4.12 stacking removes the ability to
notice sharp features in the distribution because by averaging over all distributions, you
are ‘smoothing’ any of their features. Secondly, the distribution begins to fail for the last
tomographic bin, which could be linked to a higher redshift source probably being of higher
magnitude and thus may be of much lower signal to noise leading to the catastrophic errors
in distributions typical of template degeneracy. The issues with stacked likelihood are 2 fold.
Firstly consider this practical example of why bias can develop; we have a set of galaxies
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Figure 4.12: From the CFHTlens weak lensing analysis. Comparison of the stacked n(z) posterior
distribution for different tomographic bins against the ‘true’ distribution given through spectroscopic
redshifts (Benjamin et al., 2013).

all of the low redshift z = 0.1 but with significant errors in their observations. For the sake
of simplicity, we can limit ourselves to one template and say that the posterior distribution
mimics a gaussian. The issue is that due to the nature of redshift, we know that z > 0 so
the tail of the gaussian only develops on one side. The outcome of the stacked likelihood
approach would be a gaussian distribution cut short at low redshifts and with a high redshift
tail. Not only is this distribution not matching the actual 0.1 delta function, but the mean
redshift of the distribution would bias to higher redshifts, and as we saw earlier, it is this
mean redshift that can directly affect our lensing power spectrum results just as much as
cosmological parameters. The second is that fundamentally the method is mathematically
inconsistent (Hogg, 2012). If we examine equation 4.25 again, we can see that it almost
resembles a marginalisation but with discreet instead of continuous variables. It looks as if
we have ‘marginalised’ out the individual data of individual sources to produce the n(z) of the
whole survey. This is mathematical; one cannot integrate over a fixed value on the right side
of conditional probability. Integrating over a free variable on the left side of a conditional
(Malz, 2021) is only valid. So how is it that stacked likelihoods were so prominent for so
long? Malz (2021) examined this exact problem and concluded that there are 2 situations in
which stacked posteriors recover the exact redshift distribution:

1. when ones have perfect informative data

2. when one has a perfectly informative prior
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Figure 4.13: Illustration of the nearest neighbours method to which the yellow dots represent
photometric samples, the green dots the nearest spectroscopic neighbours of our chosen galaxy and
blue the volume of radius dαγ of who is density must be recalibrated. In this case, the magnitude space
is 3 dimensional, but in reality, the number of dimensions would be the number of filters (Gomes
et al., 2018).

2 conditions that were only weakly violated in the past. Nevertheless, as we move towards
deeper surveys of decreasing signal to noise, these conditions will continue to be violated to
a larger extent.

4.3.2 Spectroscopic Based Methods

With stacked likelihoods/posteriors clearly show a lack of ability to work under the conditions
of modern weak lensing surveys. The commonality to which photometric redshifts were
used directly for redshift distribution estimations dwindled to such an extent that their use
by weak lensing surveys has been close to abandoned with the likes of the Dark Energy
Survey (Hoyle et al., 2018), the Kilo Degree Survey (Hildebrandt et al., 2017) only using
photometric redshifts for the original grouping but not the distribution estimation at all. For
that, modern surveys have returned to using spectroscopic data.

Although the first use can be seen in an application directly to weak lensing statistics in
the work of Bonnett et al. (2016), the method was developed and described in its entirety in
the works of Lima et al. (2008). Known as the weighted direct calibration method (DIR), the
method seeks to calibrate the much more accurate redshift distribution of a spectroscopic
survey using the magnitude data of the photometric data. In more detail, the method begins
by taking photometric and spectroscopic surveys. In the case of the KiDS-450 photometric
survey, a combination of multiple spectroscopic surveys was used, including the Cosmic
evolution survey (COSMOS) (Scoville et al., 2007), specifically a non-public catalogue
provided by the zCOSMOS team (Lilly et al., 2009), the DEEP2 catalogue (Newman et al.,
2013b), and a compilation of spec-z from Chandra Deep Field South (CDFS) (Vaccari et al.,
2012) released by ESO. A redshift distribution pT (z) (where the T denotes the training
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sample) is known for the spectroscopic sample, but it has not yet been calibrated. Both
surveys are plotted separately on a magnitude hypersurface based on their filter bin values.
The goal is to reweigh the spectroscopic galaxies so that their magnitude surface density
matches the photometric one. This is achieved through the nearest neighbours approach
as illustrated in Figure 4.13; one by one, a single spectroscopic galaxy is selected, and the
euclidian distance dαγ between that galaxy (α) and every other galaxy (γ) is calculated dαγ

(dαγ)
2 =

N f

∑
i
(mi

α ,m
i
γ)

2, (4.26)

where N f is the number of filters. A hyper-volume of radius dαNnei is formed as the distance
between the selected galaxy and its Nth

nei closest neighbour (a fixed value chosen by the user).
We now go to the same magnitude-based location of the chosen spectroscopic galaxy but on
the photometric magnitude surface and count the number of galaxies that are fully within its
volume so that dαγ < dαNnei . With the number of galaxies within the volume on both surfaces
known, one can construct a weighting Wα

Wα =
1

Np,tot

Np(mα)

NT (mα)
, (4.27)

where Np,tot and Np(mα) are the total number of photometric galaxies and the number
of photometric galaxies within the distance dαNnei around the magnitude of the chosen
spectroscopic galaxy mα . While Np(mα) = Nnei is the fixed number of nearest neighbours
around the α galaxy. After the weight has been found for every spectroscopic galaxy, the
photometric redshift of the survey pT (z) is recalculated by counting the number of galaxies
within each histogram bin [z−δ ,z+δ ]. However, this time instead of having their discrete
values of 1 and 0 (they are there or not), they use their weighted value if they are there so that
spectroscopic galaxies whose magnitudes are not well represented within the photometric
survey have less impact on the overall distribution.

As with many methods, weaknesses and possible sources of error come through its ad-hoc
choices. In this case, the choice of what Nnei to use. Ideally, Nnei needs to be small enough
to preserve locality, smaller than the typical size to which Np(m) varies; otherwise, one
would be smoothing over differences in the distribution. However, the issue of locality can
have quite an effect. For example, imagine a galaxy with 4 other galaxies closely clustered
in magnitude space. When one wishes to use a Nnei = 5 nearest neighbours approach,
the hypersphere volume will be huge, incorporating the fifth galaxy much further away in
magnitude space. When this vast volume is replicated in photometric space, it may collect
many photometric galaxies under its volume, meaning these galaxies that are already sharply
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Figure 4.14: left: An example of the self-organised maps used by KiDs-1000 where the cells have
been fictitiously coloured based on which spectroscopy galaxies from which survey are contained
within them. All black cells represent cells containing only no spectroscopic galaxies right: The
survey-based colour scheme (Wright et al., 2020).

clustered in one magnitude region will be considered up weighted, giving a false magnitude-
redshift relation. With that said, choose a number a Nnei to small, and once it is susceptible
to large amounts of shot noise, random noise would appear statistically significant to the
distribution. Another issue of high importance is that this method relies on the spectroscopic
survey being a good representation of the photometric survey. If it is not, then regions
of the photometric magnitude space will be completely ignored and not considered in the
final calibration. Plus, photometric galaxies with completely different redshifts to their
spectroscopic magnitude neighbour may influence weightings. In reality, they should not
be involved in the calibration of theta galaxy at all (or, more importantly, that spectroscopic
galaxy should not be a representative of that photometric galaxy).

With this in mind, a new method was developed to tackle these issues systematically and is
the current state-of-the-art method used by KiDS for their most recent weak lensing surveys
(Hildebrandt et al., 2020). On the surface, both methods seem incredibly similar, taking a
spectroscopic survey and reweighting the individual galaxies to match the magnitude space
of a photometric survey. The difference comes in how the magnitude of space is constructed.
Instead of using a N f -dimensional field, a 2-D Self-organised map is used (the same maps
as seen in Figure 3.9). The self-organised map was formed using the spectroscopic and
photometric data, as shown in Figure 4.14. Spectroscopic galaxies are reweighed so that
every cell contains the same number of photometric and spectroscopic galaxies.

Already this looks to address the first issue, clusters of galaxies will no longer be linked to
an outlier because of a chosen Nnei instead, galaxies will only be reweighed based on other
galaxies within their cell, ensuring that all galaxies have similar magnitude characteristics.
In terms of the issue of the spectroscopic survey not representing the photometric survey
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accurately enough, a culling process takes place in which any photometric galaxy placed in a
cell containing no spectroscopic galaxies (i.e. black cells in Figure 4.14) are removed from
the entire weak lensing analysis so that all relevant magnitude spaces are covered. A similar
culling takes place by removing all photometric galaxies whose redshifts differ too much
from those of the spectroscopic galaxies. This is decided by seeing the differences between
the estimated zspec and the mean photometric redshift of the photometric galaxies. In this
sense, galaxies cannot be reweighted by galaxies in completely different redshift spaces.

The SOM approach marks the current best method for constructing redshift distributions,
but through its successes, it is again leaning on resources and technologies one wishes to
avoid for more profound surveys. For starters, relying on spectroscopic data is limited by
how well they cover the photometric surveys in magnitude space. Even the KiDS-1000 saw
their number density of photometric galaxies per square arcmin fall from 7.4 in their DIR
approach to 6.2 approach due to this culling (Hildebrandt et al., 2020). These galaxies are
no longer usable for where they are most needed, the weak lensing analysis. This fall will
only continue as surveys become more profound and may become inefficient going forward.
Secondly, they rely on machine learning techniques such as self-organising maps of which
ad-hoc changes to cell size may have unknown ramifications to the redshift distribution, let
alone the biases caused by using specific spectroscopic survey training data.

With this in mind, as successful as the above methods are, we are still left wanting a
genuinely Bayesian method of inferring a redshift distribution with correctly propagated
uncertainties through the use of the photometric data we have, without the inclusion of
spectroscopic data and machine learning.

4.3.3 Principled Approaches

We return to constructing an appropriate Bayesian model for estimating the redshift distri-
bution of a weak lensing survey through photometric data alone. To do we consider the
work of Malz and Hogg (2020) who takes the following steps to allow for such parameter
inference, construct a forward model and thus the likelihood, specify prior beliefs, and
compute the posterior (Alsing, 2017). By forwarding the model, we are referring to the
order in which Bayesian Hierarchical Models are constructed in which the starting point is
parameters, and the ending is the observed data. Named Cosmological Hierarchical Inference
with Probabilistic Photometric Redshifts (CHIPPR) (Malz and Hogg, 2020) the model is
constructed in simple form in Figure 4.15 and expressed through 3 steps

1. A redshift distribution that has been parameterised so that f (z;φ) = n(z) where φ is a
set of hyperparameters
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Figure 4.15: A direct acyclic graph of the CHIPPR model consisting of the φ the hyperparameters
that describe the redshift distribution n(z), a set of redshifts z j and their corresponding photometric
data d⃗ j for a set of J galaxies (Malz and Hogg, 2020).

2. A set of J galaxies have there redshifts z j independently drawn from the redshift
distribution so that z j ∼ p(z|φ) = f (z;φ)

3. observed photometric data d⃗ j is gathered drawn from a likelihood function p(d⃗ j|z j)

Some other assumptions are worth delving into in more detail. For example, the model
presumes there is a higher dimensional probability space p(z, d⃗) such that the n(z) can be
described as an integral

n(z) =
∫

p(z, d⃗)dd⃗. (4.28)

This particular distribution does not have to be 1-1 as galaxies of the same redshift can have
different observed photometry (such as being different galaxy types), just as galaxies of
different redshifts can have the same photometry (due to template degeneracy). Furthermore,
we do not care about the galaxies’ redshifts under this framework. We only care about the
underlying distribution (and thus the parameters that make it) to which the redshifts are
drawn so that the posterior of which we are trying to infer is p(φ |d⃗ j) (notice no z j).In this
simple form, we have missed out on some of the subtle points that make BHMs, such as all
the latent variables underlying the relationships between the main steps. Returning to our
idea of the joint probability p(z, d⃗) if one was to estimate a single galaxies redshift they are
essentially replicating equation 4.28 for the special case where d⃗ = d, one can even bring
in our hyperparameters as the true joint probability if which we are marginalising over is
p(z, d⃗|φ †) where φ † is the true redshift distribution parameters. In reality, φ † is unknown
and yet an underlying distribution is assumed by every redshift estimation method we have
seen so.
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By the construction of a model, either machine learnt or template-based one has constructed
a joint probability between redshift and photometry that can be described as p(z, d⃗|φ∗) where
φ∗ is the parameters of the underlying distribution as dictated by the chosen model. This
may seem like an unnecessary step but is a direct consequence of both equation 4.28 and the
rewriting of n(z) as f (z;φ) = n(z). If a chosen model implies a relationship between redshift
and photometry, then a distribution p(z|φ∗) can always be found through marginalisation.
Thus, an underlying distribution as dictated by the chosen model must exist. This underlying
distribution is known as the implicit prior and also is rarely known so that individual redshift
posteriors are usually conditional to it p(z|d⃗,φ∗). An explicit prior p(φ) which enforces
our prior beliefs not on the parameters of the underlying distribution of the model φ∗ but
on the parameters of the distribution of the survey φ (the parameter we care about). Such
priors may be direct in prescribing some regions of z to be denser than others, or they may
be less direct such as prescribing smoothness to the whole distribution. Through the terms
mentioned above, one can construct a full posterior (for the full derivation, please see the
Appendix of the work of Malz and Hogg (2020))

p(φ |d⃗ j) ∝ p(φ)
∫ J

∏
j

p(z|d⃗,φ∗)
p(z|φ) p(z|φ∗)dz, (4.29)

which is sampled for the truth distribution. The model can be incredibly effective and
demonstrates some floors with previous approaches of using single redshift estimations or
stacked methods. Take Figure 4.16 as an example. On the left, we can see the simulated data.
In this case, we have the perfect scenario where the implicit prior is uniform (thus, it is a model
in which there is no bias for any particular redshift) but the photometric redshifts do suffer
from scattering and catastrophic error when compared to their spectroscopic counterparts. If
we compare different methods for obtaining the redshift distribution as we see from right, the
CHIPPR samples maintain the true distribution, whereas the other approaches suffer from
their known weaknesses. Taking the maximum posterior from each zphoto (MODE-yellow)
reveals it to be completely dictated by the outliers as it does not have access to the rest of the
distribution. Whereas the stack posterior (Stacked-red) full prey to its large high redshift tails

The discrepancy becomes even more evident if we consider the expected results within a
template-based framework (to be clear, the results can be replicated with very similar results
using a machine learning framework as well). By this, we mean the simulated data now
have an implicit prior that biases specific redshifts, as seen in Figure 4.17 left. This bias
can be from template degeneracy in which certain zspec produce different data that all point
towards the same zphoto as well as the expected level of scattering and catastrophic error.
Under these conditions, CHIPPR is still incredibly robust, whereas MODE and Stacked are
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Figure 4.16: left: Example of simulated data plotting their true spectroscopic redshifts against their
expected photometric redshifts, in this case, there is a non-biased uniform implicit prior (grey line in
histograms) but with a level of scattering and catastrophic error so that they photometric distribution
(grey) differs from the spectroscopic distribution (bold black line). right: A comparison of the
posterior samples of CHIPPR (blue) against the true distribution (black) as well as other distribution
techniques (Malz and Hogg, 2020).

wholly dictated by their model, i.e. the implicit prior. This is quite damming in terms of how
helpful said methods can be if the estimation model choice can have such an effect.

As effective as these results seem, our analysis has glaring omissions. The first is relatively
minor, which is that the computing posterior is computationally costly (through being both
a product and an integral), and thus methods of optimisation are left wanted by Malz and
Hogg (2020). The second major weakness is that all the simulations above did not simulate
photometric data. Instead, it implied the redshift estimation step has already taken place,
and what one has is a set of redshift posteriors p(z j|d⃗ j,φ

∗). This is to ensure φ∗ is known
and fixed so one can implement the implicit prior into equation 4.29. In reality, knowing the
implicit prior can be incredibly difficult, yet it is imperative. For example, consider Figure
4.18, in this case, the same data has been used from Figure 4.17, but in this case, the implicit
prior used in the analysis is uniform and thus incorrect (grey line). Under these conditions,
CHIPPR fails, performing as bad if not worse than its MODE and Stacked counterparts. Thus
for this method to be valid, methods must be developed that allow one to access the implicit
prior. As said, this may be incredibly difficult. For template-based methods, at least we know
the model which was constructed (we chose the templates), but this does not mean one has
access to the joint p(z,SED) posterior, let alone a method to marginalise it and find a set of
hyperparameters. It may be even worse for machine learning estimation methods due to the
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Figure 4.17: left: Example of simulated data plotting their true spectroscopic redshifts against their
expected photometric redshifts, in this case, there is a template-based implicit prior (grey line in
histograms) but with a level of scatter and catastrophic error so that they photometric distribution
(grey) differs from the spectroscopic distribution (bold black line). right: A comparison of the
posterior samples of CHIPPR (blue) against the true distribution (black) as well as other distribution
techniques (Malz and Hogg, 2020).

black box nature of which data leads to estimation. CHIPPR may be the most principled
and mathematically correct approach to understanding distributions, but its current form is
unusable due to the need for a correct implicit prior.

4.4 Summary

The above chapter considered a completely different way of looking at probability. Instead of
the frequency at which an event would take place (frequentist), it is the belief one has that an
event will occur (Bayesian). This framework is much more approachable for cosmological
science due to the single set of observables available to us (the universe) instead of the
many millions of repeated experiments that can take place in other fields such as particle
physics. Furthermore, the Bayesian approach allows us to consider priors, the information we
know before the experiment has taken place that may contribute towards the final probability.
This prior differentiates the probability of Bayesian statistics (the posterior) from that of
frequentist statistics (the likelihood). Even so, great care is needed in choosing said prior due
to its influence on the final result.

Due to the computation involved in Bayesian statistics, new methods of the sampling
distribution (as opposed to evaluating every parameter value) were invented to dramatically
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Figure 4.18: A comparison of the posterior samples of CHIPPR (blue) against the true distribution
(black) as well as other distribution techniques, in this case, the same data from Figure 4.17 is used
but an incorrect uniform implicit prior in the analysis (Malz and Hogg, 2020).
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lower the number of single posterior evaluations required to analyse the whole distribution
statistically. The Bayesian approach was then applied to template-based redshifts in the form
of BPZ, showing the power that adding an informative prior does to help the issue of template
degeneracy.

Lastly, we considered the true goal of the thesis, which is to obtain redshift distributions
of the entire weak lensing survey as opposed to individual estimates so that one can use
the n(z) when computing the shear (or convergence) power spectrum and thus relate to the
cosmological parameters involved in the matter power spectrum. Until recently, the most
common methods have been to use the posterior point estimates or to average across all the
distributions (stacking), but in recent years this is obsolete due to the reduction in signal to
noise found in deeper weak lensing surveys. Instead, spectroscopic calibration methods have
taken favour in the form of DIR and self-organising maps. Although practical, both methods
rely on spectroscopic data that correctly covers the photometric data. If said coverage cannot
be guaranteed, one may lead to incorrect calibrations (as for DIR) of significant reductions in
usable data (self-organising maps). With this in mind, we returned to the Bayesian approach
to solve the problem of redshift distributions based only on the photometric data. In this case,
the most principled way was constricted by Malz and Hogg (2020) showing great promise
compared to its stacked counterparts. However, due to its requirements for an implicit prior,
the method is unusable in practical terms until methods of obtaining the implicit prior are
developed. Instead, we will consider a different approach that still relies only on photometric
data, exists as a Bayesian Hierarchical Model, but most importantly, through the work of
this thesis is shown to work under practical circumstances, such as with the data of the Kilo
Degree Survey to infer not only n(z)’s but complete weak lensing analysis in the form of S8

inference.
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Chapter 5

Algorithmic Development

Inference of cosmological parameters has become the primary goal of extensive galactic
surveys. One can test cosmological models and constrain parameters within these models to
agree with observational data from said surveys. One such observation would be the cosmic
shear map; the contortion of the image of galaxies we see due to weak gravitational lensing,
the bending of light in our line of sight by large-scale structure (Kilbinger, 2014).

As seen in Chapter 2, matching this map back to cosmological parameters requires an
integral along the line of sight weighted by the source galaxy distribution n(z). Thus the
redshift distribution of galaxies (a crude estimation of the distance a galaxy is from us)
within the survey is of utmost importance (Mandelbaum, 2017) and some methods to infer
it were covered in 4.3. At first order the convergence power spectrum Pκ has comparable
sensitivity to both cosmological parameters and median redshift z̄ (Bernardeau et al., 1996;
Huterer et al., 2006; Jain and Seljak, 1997). The accuracy of these distributions is critical
in avoiding significant biases in final results. The demand for accurate z̄ is exacerbated by
using tomographic bins, the grouping of different galaxies to test correlation, usually by
redshift. To deal with the vast amount of data required, most surveys rely on photometric
redshifts, the measurement of redshifts through a small number of filters as opposed to entire
spectra. Methods have been developed to deal with accurate estimations of low-resolution
data, such as template fitting (Walcher et al., 2010) and, more specifically, BPZ (Benitez,
2000). Template fitting is the matching of photometric data to that of spectra of known
redshift weighted by the appropriate filters.

As accurate as these approaches give estimations and posteriors to individual galaxies, they
do not translate to developing usable and accurate n(z) for an entire survey. Previous surveys
such as CFHTLenS and DES used the stacking of individual redshift posterior distributions
(Bonnett, 2015; Hildebrandt et al., 2012) (see 4.3.1). However, this approach magnifies the
scatter of the underlying n(z) and may not be the most suitable way to infer the distribution
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(Hikage et al., 2019; Padmanabhan et al., 2005). This may make biases at a level intolerable
for current and future surveys (Choi et al., 2016; Newman et al., 2015). It also does not give
uncertainties in its n(z) values.

Current surveys have attempted to alleviate this problem by using a complementary
spectroscopic survey (see 4.3.2). One such method is the weighted direct calibration, DIR.
First proposed by Lima et al. (2008), the method takes the individual redshift estimations
gathered from the more accurate spectroscopic redshift estimations and calibrates the final
n(z) by re-weighting the spectroscopic redshift estimations so that the spectroscopic survey
matches the broader but much less accurate photometric survey in magnitude-band space.
This method is accurate and gives uncertainties in their estimations through bootstrap samples
of said surveys. Unfortunately, this accuracy relies on an over-lapping spectroscopic survey
(Joudaki et al., 2020), a luxury one will not have as photometric surveys become deeper in
redshift and broader in scope (Euclid Collaboration et al., 2019; LSST Science Collaboration
et al., 2009), both an issue of note for recent analysis (Joudaki et al., 2020). Furthermore,
uncertainties are produced, but samples cannot be taken in a strictly Bayesian sense. Cosmic
shear analysis from the first year data of the Hyper Suprime-Cam (Hikage et al., 2019) used
a similar approach to DIR for gaining redshift distributions. The main difference is that
overlapping spectroscopic surveys to HSC (Liske et al., 2015) do not have galaxy numbers
large enough for the reweighing process to represent the properties of the photometric sources
accurately. Alternatively, the HSC uses the COSMOS 30-Band Photo-z catalogue (Ilbert et al.,
2008) as its accurate redshift estimates to be reweighed, but with this comes the extended
uncertainties that come with base photometric data, be it with a significantly larger amount
of bands when compared to KiDS. Alternative techniques for inferring the n(z) redshift
distributions are the CC and BOR methods, developed by Newman (2008) and Bordoloi et al.
(2010) respectively. The CC method uses the cross-correlation functions between photometric
and spectroscopic objects to find the photometric redshift distributions. On the other hand,
Bordoloi et al. (2010) proposed the BOR method, which is strictly a recalibration of the
posterior probability of each galaxy estimated using BPZ. A method gaining appropriate
n(z) distributions and uncertainties from photometric data alone is paramount to future weak
lensing cosmology.

Instead of spectroscopic methods, Bayesian approaches were considered to get uncertain-
ties and principled estimations for the redshift distributions. With that said, previous attempts
(see 4.3.3) have been effective but unusable in a practical sense. With that in mind, below,
we consider a different method to obtain their n(z)′s. We expand on the previous work by
Leistedt et al. (2016), who presented a Bayesian Hierarchical Method (BHM) to infer both
the redshift distributions and individual redshifts from photometric galaxy catalogues. The
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methodology of said method is elaborated on below, with extensions included to make the
method best suited to the tomographic bin nature of weak lensing data. Simulated data is
created and used to validate the method and then applied to actual data to show its practical
use. We then apply the redshift distributions to an actual cosmological data analysis problem
and infer cosmological parameters whilst marginalising the nuisance parameters. Finally, the
results are presented and discussed over the challenges associated with inferring n(z) redshift
distributions.

5.1 Method

5.1.1 Background Theory

The crux of the Bayesian approach is to consider the entire distribution of galaxies as a
set of coefficients { fi jk} where i jk are the index for the template, redshift and magnitude
bins, respectively. This model allows the survey to be represented as a 3-D histogram that
approximates p(t,z,m) such that

fi jk =
∫ z j,max

z j,min

∫ mk,max

mk,min

p(ti,z,m)dzdm. (5.1)

In the real use case, one would sum over the j,k cells to reveal the redshift distribution
fi. Each coefficient is now considered and individual parameters are inferred, the prior of
which is uniform subject to constraints 0 < fi jk < 1 and ∑i jk fi jk = 1 which is a Dirichlet
distribution.

The advantages of such a distribution are the ability to capture inter-bin correlations, which
are vital for parameter inference. Furthermore, secondary redshift peaks usually associated
with unwanted degeneracies in template methods are also suppressed -to an extent- as an
additional advantage. Most importantly, the conditional posterior distribution of a Dirichlet
is easily sampled by allowing the use of a 2-step Gibbs sampler between the individual
{tg,zg,mg} and population { fi jk} parameters, respectively. The individual components are
expressed through the hierarchical forward model in Figure 5.1.

Weak lensing analysis does not rely on the template, redshift and magnitudes of each
galaxy but instead requires the distribution of the whole population. Under this requirement,
one can speed the process using memory, and the speed-efficient version of the Gibbs
sampler was suggested in the original paper. Moreover, in this form, one no longer requires
the likelihood of each galaxy having any values for z,m, t but instead the likelihood that they
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Figure 5.1: Hierarchical forward model for the the observed fluxes F̂b of a survey of galaxies within
a given band b where Wb(ν) is the bth filter and Lt(ν) the spectral template of type t.{ fi jk} is the
distribution given the redshift, magnitude and template bins (i,j,k respectively), Fb the actual flux and
σ the error on this flux.

will be within an {i, j,k} bin from the 3D histogram

p({F̂b}g|i jk) =
∫ z j,max

z j,min

∫ mk,max

mk,min

p({F̂b}g|ti,z,m)dzdm, (5.2)

this allows the writing of a simplified joint distribution,

p(i jk,{ fi jk}|{F̂b}g) ∝ p({ fi jk})
Ngal

∏
g=1

p({F̂b}g|i jk)p(i jk|{ fi jk}). (5.3)

The Gibbs sampling procedure then simplifies; given a sample of { fi jk}, number counts
for the number of galaxies in each point in the histogram ni jk are drawn by drawing bin
location samples from there likelihood function

p(i jk|{ fi jk},{F̂b}g) = fi jk × p({F̂b}g|i jk). (5.4)

Using this ni jk one draws samples for fi jk following a multinominal distribution,
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p({ fi jk}|{ni jk}) =(Ngal +NtNzNm −1)!δD(1−∑
i jk

fi jk))

Nt

∏
i=1

Nz

∏
j=1

Nm

∏
k=1

Θ( fi jk) f
ni jk
i jk

ni jk!
.

(5.5)

The memory efficiency comes from the input being a likelihood distribution of much broader
bins. Furthermore, there is no need for Ngal posterior distributions per sample as only the
overall distribution is required. A necessity when dealing with large numbers of galaxies
Ngal > 100000, as with extensive photometric surveys. The individual parameters are dis-
carded through this method, and template and magnitude parameters are marginalised to
provide samples for n(z).

The choice of a Dirichlet distribution can be considered in slightly more detail. For
example, in its most traditional form, a Dirichlet distribution Dir(θ |α) can be expressed
through Beta functions

Dir(θ |α) =
1

Beta(α)

K

∏
i

θ
αi−1
i , (5.6)

where for the context of work, θ ,α is the probability and number count of an ith bin and K
is the total number of bins. Note that form is 1 dimensional and may seem different to our
3 dimensional fi jk; however, one can always reduce the dimensions as a Dirichlet has no
context to the physical nature of the bins, increasing computational efficiency. In one case,
see its as a generalisation of a Beta function. Beta functions Beta(α,β ) intuitively give the
probability of a binomial function having a certain success probability when the results of a
repeated experiment give α −1 successes and β −1 failures, as shown in Figure 5.2. A clear
example is given by Beta(5,5) which corresponds to 4 surceases and 4 failures, thus given
distribution peaking at a success rate of 0.5, a peak that would only become narrower with
more experiments.

Beta distributions can then be used as conjugate priors binomial distributions allowing for
easy inference to 2D outcomes. Plus, the diversity of shapes (bell, U-shape, gaussian-like)
makes them very useful for modelling real measurements. However, in the case of our
redshift distributions, we have > 2 bins and thus > 2 outcomes. It is not a binomial but a
multinomial distribution to which a Dirichlet is a conjugate prior. To visualise the distribution
consider a random number generator that can only produce a 1,2 or 3 (we limited ourselves
to 3 to allow for intuitive visualisation). We want to gather the probability associated with
the generator producing each number, and for that, we observe a set of numbers produced, in
the case we θ being the probability of each number and α = (α1,α2,α3) being how many
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Figure 5.2: The beta distribution for varying values of α and β (Kim, 2020).

of each number (−1) was produced by the generator. The different Dirichlet distributions
corresponding to different results can be seen in Figure 5.3. The α set (1,1,1) corresponds to
no numbers being generated yet and thus the Dirichlet shown a uniform distribution of which
any probabilities are equally likely under the constraint that p1 + p2 + p3 = 1. Whereas both
(5,5,5) and 50,50,50 point towards a peak probability that the random number generator
is fair, just as with the beta distribution, the distribution becomes sharper as we take more
results.

You may have noticed that both the Dirichlet and beta distributions, especially in the cases
of fair results, seem to mimic Gaussian distributions. This is not simply a visual coincidence
but a direct consequence of Dirichlet’s reduction to Gaussian’s in the limit of large number
counts and uncorrelated bins. Alternative approaches to describing the histogram nature of a
n(z) distribution that used a Gaussian approximation (see Appendix A in the work of Leistedt
et al. (2016))

p( fi jk|ni jk) = ∏
i jk

N (
ni jk

Ngal

ni jk

Ngal
). (5.7)

This may seem like an appropriate approximation especially considering the visual ev-
idence above. However, the different bins are inherently correlated through the ∑i pi = 1
constraint; if one probability goes up, the others must go down to compensate. Such lack of
inter bin correlation can lead to further violations such as obtaining negative probability for
our fi jk’s; thus, this approximation is not usable compared to the full Dirichlet.

Other than being a conjugate prior and giving intuitive distributions that stay within
the constraints, the other advantage of this model is the idea of ‘Bayesian Shrinkage’ or
‘borrowing strength’. Putting the posterior for a single galaxy becomes more based on
the population as a whole than on the individual galaxies’ photometry. In this sense, one
can deal with the issue of degeneracy as secondary peaks of individual galaxies become
suppressed, especially if they indicate the galaxy exists in a low-population region. Consider
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Figure 5.3: A set of Dirichlet distributions shown on the triangle of which the corners indicate a
probability of [1.0,0.0,0.0] for that outcome. The colour indicates the value of the probability on a
scale of black to white, corresponding with 0.0 to 1.0 (Liu, 2022).

the differences in likelihood to posterior in the following z, t distributions inferred from the
simulated data in the work of Leistedt et al. (2016) as seen in Figure 5.4. One can see that
the strong degeneracy in the form of prominent secondary peaks in the likelihood function is
suppressed by the posterior distribution due to the inferred population distribution. For more
details of this suppression, please see Appendix B in the work of Leistedt et al. (2016).

While the above section presents the Bayesian Hierarchical model for inferring the redshift
distributions, we now consider modification and extensions to consider critical ingredients
needed for weak lensing analysis.

5.1.2 Template sensitivity

One of the fundamental assumptions of this model is that all galaxies within the survey are
of the same template set used in the analysis. Thus, one of the critical issues is template
incompleteness. One requires a large enough set of templates covering the photometric data’s
spectral range. This would point to using large enough template sets as possible. However, in
past photometric codes, this can have detrimental effects because every template is as likely
as any other. Take the following example if a set contained 6 elliptical templates and 1 spiral,
you have, in a sense, introduced a prior favouring elliptical estimation. This imbalance can
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Figure 5.4: Likelihood and posterior distributions of 3 objects from the simulated set where the
dashed line indicates the true redshift (Leistedt et al., 2016).

lead to catastrophic errors as different templates are susceptible to biases and degeneracies,
allowing for differences in over-distribution results.

This issue does not hold for this method. As one can see from equation 5.5 the overall
distribution is inferred from the cell number counts ni jk of which a single galaxy can only be
allocated to one cell (thus one template) at any one time. Similar templates (or even complete
duplications) would be down-weighted due to the galaxy only being allocated to one of them
at a time. In other words, if a single template represents the photometric survey, it will be
up-weighted within the changing fi jk regardless of the other surrounding templates.

With this in mind, the only issue restricting template size was the efficiency of which
samples can be taken in future. However, this may not be an issue as much larger template
sizes can be investigated. So instead, we looked for the smallest amount of templates that
still allowed for the most prominent representation. This was achieved by using an aspect of
the approach seen in the work of Ronen et al. (1999); taking a collection of 215 templates (a
list of names of said templates can be seen in Table 5.1) used across photo-z tools including
BPZ, Le-Phare (Ilbert et al., 2006), Hyper-Z (Bolzonella et al., 2000) and EAZY (Brammer
et al., 2008) code and running them through principled component analysis (PCA).

PCA, first mentioned by Pearson (1901) and Hotelling (1933) is a technique to which one
given a set of µ dimensional data creates a set of variables that are linear combinations of the
original dimensions so that in this new variable space variance is maximised, and correlation



5.1 Method 197

Table 5.1: Collection of 215 tables used in PCA analysis.

Template Name
CWW_E_ext_Hyperz.sed SB11_A_0_Calzetti_EBV0.5.sed SB9_A_0_Calzetti_EBV0.3.sed
CWW_Im_ext_Hyperz.sed SB11_A_0_nodust.sed SB9_A_0_Calzetti_EBV0.4.sed
CWW_Sbc_ext_Hyperz.sed SB1_A_0.sed SB9_A_0_Calzetti_EBV0.5.sed
CWW_Scd_ext_Hyperz.sed SB1_A_0_Calzetti_EBV0.1.sed SB9_A_0_nodust.sed

El_cww.sed SB1_A_0_Calzetti_EBV0.2.sed Sb_A_0.sed
El_cww_DES_corr.sed SB1_A_0_Calzetti_EBV0.3.sed Sb_A_0_Calzetti_EBV0.1.sed

El_cww_capak.sed SB1_A_0_Calzetti_EBV0.4.sed Sb_A_0_Calzetti_EBV0.2.sed
Ell1_A_0.sed SB1_A_0_Calzetti_EBV0.5.sed Sb_A_0_Calzetti_EBV0.3.sed

Ell1_A_0_Calzetti_EBV0.1.sed SB1_A_0_nodust.sed Sb_A_0_Calzetti_EBV0.4.sed
Ell1_A_0_Calzetti_EBV0.2.sed SB2_A_0.sed Sb_A_0_Calzetti_EBV0.5.sed
Ell1_A_0_Calzetti_EBV0.3.sed SB2_A_0_Calzetti_EBV0.1.sed Sb_A_0_nodust.sed
Ell1_A_0_Calzetti_EBV0.4.sed SB2_A_0_Calzetti_EBV0.2.sed Sb_A_1.sed
Ell1_A_0_Calzetti_EBV0.5.sed SB2_A_0_Calzetti_EBV0.3.sed Sb_A_1_Calzetti_EBV0.1.sed

Ell2_A_0.sed SB2_A_0_Calzetti_EBV0.4.sed Sb_A_1_Calzetti_EBV0.2.sed
Ell2_A_0_Calzetti_EBV0.1.sed SB2_A_0_Calzetti_EBV0.5.sed Sb_A_1_Calzetti_EBV0.3.sed
Ell2_A_0_Calzetti_EBV0.2.sed SB2_A_0_nodust.sed Sb_A_1_Calzetti_EBV0.4.sed
Ell2_A_0_Calzetti_EBV0.3.sed SB2_B2004a.norm.sed Sb_A_1_Calzetti_EBV0.5.sed
Ell2_A_0_Calzetti_EBV0.4.sed SB2_kin.sed Sb_A_1_nodust.sed
Ell2_A_0_Calzetti_EBV0.5.sed SB2_kin_DES_corr.sed Sbc_cww.sed

Ell3_A_0.sed SB2_kin_capak.sed Sbc_cww_DES_corr.sed
Ell3_A_0_Calzetti_EBV0.1.sed SB2_kin_mod3_Hyperz.sed Sbc_cww_capak.sed
Ell3_A_0_Calzetti_EBV0.2.sed SB3_A_0.sed Sc_A_0.sed
Ell3_A_0_Calzetti_EBV0.3.sed SB3_A_0_Calzetti_EBV0.1.sed Sc_A_0_Calzetti_EBV0.1.sed
Ell3_A_0_Calzetti_EBV0.4.sed SB3_A_0_Calzetti_EBV0.2.sed Sc_A_0_Calzetti_EBV0.2.sed
Ell3_A_0_Calzetti_EBV0.5.sed SB3_A_0_Calzetti_EBV0.3.sed Sc_A_0_Calzetti_EBV0.3.sed

Ell4_A_0.sed SB3_A_0_Calzetti_EBV0.4.sed Sc_A_0_Calzetti_EBV0.4.sed
Ell4_A_0_Calzetti_EBV0.1.sed SB3_A_0_Calzetti_EBV0.5.sed Sc_A_0_Calzetti_EBV0.5.sed
Ell4_A_0_Calzetti_EBV0.2.sed SB3_A_0_nodust.sed Sc_A_0_nodust.sed
Ell4_A_0_Calzetti_EBV0.3.sed SB3_B2004a.norm.sed Sc_A_1.sed
Ell4_A_0_Calzetti_EBV0.4.sed SB3_kin.sed Sc_A_1_Calzetti_EBV0.1.sed
Ell4_A_0_Calzetti_EBV0.5.sed SB3_kin_DES_corr.sed Sc_A_1_Calzetti_EBV0.2.sed

Ell5_A_0.sed SB3_kin_capak.sed Sc_A_1_Calzetti_EBV0.3.sed
Ell5_A_0_Calzetti_EBV0.1.sed SB3_kin_mod3_Hyperz.sed Sc_A_1_Calzetti_EBV0.4.sed
Ell5_A_0_Calzetti_EBV0.2.sed SB4_A_0.sed Sc_A_1_Calzetti_EBV0.5.sed
Ell5_A_0_Calzetti_EBV0.3.sed SB4_A_0_Calzetti_EBV0.1.sed Sc_A_1_nodust.sed
Ell5_A_0_Calzetti_EBV0.4.sed SB4_A_0_Calzetti_EBV0.2.sed Sc_A_2.sed
Ell5_A_0_Calzetti_EBV0.5.sed SB4_A_0_Calzetti_EBV0.3.sed Sc_A_2_Calzetti_EBV0.1.sed

Ell6_A_0.sed SB4_A_0_Calzetti_EBV0.4.sed Sc_A_2_Calzetti_EBV0.2.sed
Ell6_A_0_Calzetti_EBV0.1.sed SB4_A_0_Calzetti_EBV0.5.sed Sc_A_2_Calzetti_EBV0.3.sed
Ell6_A_0_Calzetti_EBV0.2.sed SB4_A_0_nodust.sed Sc_A_2_Calzetti_EBV0.4.sed
Ell6_A_0_Calzetti_EBV0.3.sed SB5_A_0.sed Sc_A_2_Calzetti_EBV0.5.sed
Ell6_A_0_Calzetti_EBV0.4.sed SB5_A_0_Calzetti_EBV0.1.sed Sc_A_2_nodust.sed
Ell6_A_0_Calzetti_EBV0.5.sed SB5_A_0_Calzetti_EBV0.2.sed Scd_cww.sed

Ell7_A_0.sed SB5_A_0_Calzetti_EBV0.3.sed Scd_cww_DES_corr.sed
Ell7_A_0_Calzetti_EBV0.1.sed SB5_A_0_Calzetti_EBV0.4.sed Scd_cww_capak.sed
Ell7_A_0_Calzetti_EBV0.2.sed SB5_A_0_Calzetti_EBV0.5.sed Sd_A_0.sed
Ell7_A_0_Calzetti_EBV0.3.sed SB5_A_0_nodust.sed Sd_A_0_Calzetti_EBV0.1.sed
Ell7_A_0_Calzetti_EBV0.4.sed SB6_A_0.sed Sd_A_0_Calzetti_EBV0.2.sed
Ell7_A_0_Calzetti_EBV0.5.sed SB6_A_0_Calzetti_EBV0.1.sed Sd_A_0_Calzetti_EBV0.3.sed

Im_cww.sed SB6_A_0_Calzetti_EBV0.2.sed Sd_A_0_Calzetti_EBV0.4.sed
Im_cww_DES_corr.sed SB6_A_0_Calzetti_EBV0.3.sed Sd_A_0_Calzetti_EBV0.5.sed

Im_cww_capak.sed SB6_A_0_Calzetti_EBV0.4.sed Sd_A_0_nodust.sed
SB0_A_0.sed SB6_A_0_Calzetti_EBV0.5.sed Sd_A_1.sed

SB0_A_0_Calzetti_EBV0.1.sed SB6_A_0_nodust.sed Sd_A_1_Calzetti_EBV0.1.sed
SB0_A_0_Calzetti_EBV0.2.sed SB7_A_0.sed Sd_A_1_Calzetti_EBV0.2.sed
SB0_A_0_Calzetti_EBV0.3.sed SB7_A_0_Calzetti_EBV0.1.sed Sd_A_1_Calzetti_EBV0.3.sed
SB0_A_0_Calzetti_EBV0.4.sed SB7_A_0_Calzetti_EBV0.2.sed Sd_A_1_Calzetti_EBV0.4.sed
SB0_A_0_Calzetti_EBV0.5.sed SB7_A_0_Calzetti_EBV0.3.sed Sd_A_1_Calzetti_EBV0.5.sed

SB0_A_0_nodust.sed SB7_A_0_Calzetti_EBV0.4.sed Sd_A_1_nodust.sed
SB10_A_0.sed SB7_A_0_Calzetti_EBV0.5.sed Sd_A_2.sed

SB10_A_0_Calzetti_EBV0.1.sed SB7_A_0_nodust.sed Sd_A_2_Calzetti_EBV0.1.sed
SB10_A_0_Calzetti_EBV0.2.sed SB8_A_0.sed Sd_A_2_Calzetti_EBV0.2.sed
SB10_A_0_Calzetti_EBV0.3.sed SB8_A_0_Calzetti_EBV0.1.sed Sd_A_2_Calzetti_EBV0.3.sed
SB10_A_0_Calzetti_EBV0.4.sed SB8_A_0_Calzetti_EBV0.2.sed Sd_A_2_Calzetti_EBV0.4.sed
SB10_A_0_Calzetti_EBV0.5.sed SB8_A_0_Calzetti_EBV0.3.sed Sd_A_2_Calzetti_EBV0.5.sed

SB10_A_0_nodust.sed SB8_A_0_Calzetti_EBV0.4.sed Sd_A_2_nodust.sed
SB11_A_0.sed SB8_A_0_Calzetti_EBV0.5.sed Sdm_A_0.sed

SB11_A_0_Calzetti_EBV0.1.sed SB8_A_0_nodust.sed Sdm_A_0_Calzetti_EBV0.1.sed
SB11_A_0_Calzetti_EBV0.2.sed SB9_A_0.sed Sdm_A_0_Calzetti_EBV0.2.sed
SB11_A_0_Calzetti_EBV0.3.sed SB9_A_0_Calzetti_EBV0.1.sed Sdm_A_0_Calzetti_EBV0.3.sed
SB11_A_0_Calzetti_EBV0.4.sed SB9_A_0_Calzetti_EBV0.2.sed Sdm_A_0_Calzetti_EBV0.4.sed
SB11_A_0_Calzetti_EBV0.5.sed SB9_A_0_Calzetti_EBV0.3.sed Sdm_A_0_Calzetti_EBV0.5.sed

SB11_A_0_nodust.sed SB9_A_0_Calzetti_EBV0.4.sed Sdm_A_0_nodust.sed
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Figure 5.5: left: The mean of the first 4 components extracted from PCA from a large template set,
the flux has been scaled and offset for visual purposes. right: A 4x4 scatter plot of all templates
plotted against component i,j (where i=[1,4]). The colours indicate the different sets of which the K
mean clustering algorithm placed the template.

minimised. This is achieved by considering a data n×µ data set X of which n is the number
of individual data points. The value of a new variable based on a linear combination of the
original variables would be given as Xa where a = [a1, ...,aµ ] is a set of coefficients and
the variance of this new variable by var(Xa) = aT Sa where S is the covariance matrix of
the original data.We are then interested in maximising aT Sa which when combined with
the constraint aT a = 1 (unit-norm vectors) can be transformed into an eigenvalues problem
(Jollife and Cadima, 2016)

Sa = λa, (5.8)

where the coefficients are the eigenvectors and λ the variance as aT S = λaT a = λ , the eigen-
values can then be ranked in order of size in order to keep as many principled components as
required.

Using the sklearn PCA package, we uncovered 4 components to which a linear combination
of the 4 best describes the complete template set. The 4 components can be seen in Figure
5.5 left to which prominent characteristics of specific templates such as emission lines can
be visible. The reason for this step was to use PCA as a form of data reduction as it has
been shown that machine learning algorithms based around classification train quicker and
perform more accurately when using PCA data as opposed to raw data, especially when the
raw data is spectra (Howley et al., 2006). Then, a k clustering algorithm was used to group
the templates into 5 sets. The algorithm looks to 5 points on PCA variable space to which the
objects classified to a certain point are closer than any other data points. Figure 5.5 shows
that the sets are pretty distinctively grouped based on the PCA components. From these
groups, an equal amount of 10 templates were randomly sampled from the individual groups
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Figure 5.6: The median redshift based on the redshift distribution of the KiDS450 -Viking data in
the first tomographic bin and their variance compared to 6 random template sets (3 containing 50
templates and 3 containing 100 templates), these sets are compared to the same result gathered from
PCA analysis (grey). This is the same results as displayed in the first tomographic bin of 6.7 left

giving a set of 50 templates. To test how well this set represents the photometric survey, the
redshift distribution analysis will be taken with different sets of randomly selected templates
to examine the level of variability as well as random sets of much larger template sizes, ones
of which minimal variability is expected due to there completeness but are impractical to use
on large scales. By testing only the first tomographic bin as seen in Figure 5.6 the use of the
50 PCA templates seems promising as the medium redshift is in agreement with the random
100 template sets while the random 50 template sets show to much variance in there results
to be of use. For further validation the the same test will take place across all tomographic
bins in the final result.

5.1.3 Selection Effects

The model assumes that outside of the reference band magnitude (a dimension of the
distribution p(t,z,m)), no selection effects are being applied to the galaxy sample and that
the survey is a random sample of the actual distribution. Not accounting for these selection
effects can lead to artificial peaks in the redshift distribution. To understand our method for
dealing with the selection effects of a typical weak lensing survey, it is first worth exploring
the approach suggested by the original paper and why it would not be appropriate for our
needs.

As stated by Leistedt et al. (2016) the accounting of said effects can be applied by
modifying the likelihood to include a selection term s for whether a galaxy is included in the
survey.
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Figure 5.7: Hierarchical forward model for the selection effects of all possible observed fluxes F̂ to
those kept within the survey in their separate tomographic bins F̂1...5. The selection effect sBPZ is the
categorising of sources by BPZ redshift estimates zBPZ . The b superscripts have been omitted.

p({F̂b}|s, t,z,m,σ) =
p({F̂b}|t,z,m,σ)p(s|{F̂b})

p(s|t,z,m,σ)
. (5.9)

In most cases p(s|{F̂b}) is binary and ignored leaving the inclusion of selection with the
denominator

p(s|t,z,m,σ) =
∫

p(s|{F̂b})p({F̂b}|t,z,m,σ)dF̂1...dF̂Nb. (5.10)

The most prominent selection to take place in weak lensing surveys comes through the
categorising of data into tomographic bins. This is achieved by finding their photo-z estimate
ẑBPZ({F̂b}) (most probable Bayesian redshift from BPZ) and matching the estimates to their
appropriate bin. An effect of this kind can be demonstrated as an extension to Figure 5.1
through the selection variable s as shown in Figure 5.7. Such a selection would have a
complex function such as

p(si|{F̂b}) = Θ(ẑBPZ({F̂b})− zmini)Θ(zmaxi − ẑBPZ({F̂b})). (5.11)

Due to the photo-z estimate, ẑBPZ({F̂b}) is based on a code. There is no analytic solution
for p(s|z, t,m) (as opposed to a selection based on flux limit where the analytical solution
p(s|t,z,m,σ) = 2−Nb ∏

Nb
b (1− er f ((Fminb −Fmodb(t,z,m))/σ

√
2)) exists). Instead, an inte-

gration of equations 5.9 and 5.10 can, through the Monte-Carlo approach which one simulates
fluxes at each (i, j,k) point of the histogram and observe how many are attached to each
tomographic bin using said BPZ criteria.

The approach described above is what was used in the original paper. However, in weak
lensing surveys, one answers a slightly different question than the above. We are not looking
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for the underlying distribution of which our survey is a sample of ie. fi jk instead. We are
looking for the distribution of that survey which is provided to us through the parameter ni jk.
The subtle change in the parameter substantially affects what one records as the ni jk is not
as directly influenced by the uniform distribution prior as fi jk. One may argue that this is
not an issue at high populations seen in weak lensing surveys as the posteriors would not be
prior dominated, and the distribution would approximate to a ni jk dictated Gaussian as seen
in equation 5.7 but this is also not the case. A minor reason would be that even if the entire
population is high, if the population per t,z,m cell is low, it would still be influenced by the
uniform prior in those cells and produce inaccuracies even in regions of high S/N.

A major reason is that this change in parameter also changes our use of selection effects.
When looking for the underlying distribution, one must mitigate all selection effects as seen
in equation 5.7 whereas when we look for the distribution of the survey itself, any selection
effect should also be included. For clarity consider Figures 5.1 and 5.7 combined. If all the
selection effects were correctly accounted for, no matter which tomographic bin of data F̂i

one was analysing, one would still end up with the same distribution fi jk be it with different
levels of uncertainty.

That said, one wants to maximise the available information, so one does not apply the
method to each tomographic bin individually, as the sources provided in equation 2 are both
a smaller number and heavily skewed towards their selection criteria. Instead, the method
is applied to the entire population to get the distribution of the entire survey, and then the
selection effects are applied afterwards to get the individual populations.

This can be achieved in one of 2 ways, if one knows the probability of the source of a
particular z, t,m being selected into one of the tomographic bins si, i.e. p(si|z, t,m) One can
sample from a multinomial distribution where the mean distribution of a tomographic bin is
given as

n̄i jk,bin = ni jk,survey × p(sbin|z, t,m), (5.12)

however, this approach has weaknesses:

1. As explained above, there is no analytical solution for p(si|z, t,m), so one relies on
Monte-Carlo simulations to replicate the distribution. Although such a simulation
would require every detail between a source being observed and placed into a bin to
be effective as the simulation needs to replicate the pipeline, this kind of information
might not always be available, let alone public.

2. For the Monte Carlo simulation to be effective, it would also require the sources
included within the simulation to replicate the sources seen within the survey, both in
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fluxes and flex errors. Such a simulation would be doubling down on the assumption
that every source within the survey can be described entirely through the z, t,m as one
will be simulating sources for z, t,m cells of which the actual survey might be of the
low population the simulated sources may not be a good representation of the sources
in that region.

3. Alternatively, as long as one has access to the selected sources, one can apply their
selections directly. This can be achieved by no longer using ni jk. As stated, ni jk is
the number of sources allocated to a particular cell (in any particular sample). This
summarises the actual parameter, allocating each source in each cell.

With the above in mind, the actual sample parameters of interest are the {i, j,k}g the
magnitude, redshift and type allocation of each source from the first part of the Gibbs
sampler in equation 5.4. By collecting these samples, one not only gains individual posterior
distributions for each source by separating the sources by tomographic bin allocation and
weighting them by their lens-fit weights; one can also gain samples for the individual redshift
distributions.

One of the downsides of this approach is that one no longer gets the speed and memory
benefits of only wanting the fi jk’s; instead, every sample consists of Ngal data points leading
to a heavy slow down in memory capacity and computational speed. In order to tackle these
issues, choices had to be made that, on the surface, would lower the accuracy. The first
was the cut in the number of templates used, this may increase template incompleteness,
but due to our PCA method as described in 5.1.2, this can be mitigated. The second was to
limit the number of galaxies used in the analysis to 100,000. To be clear, this is only in the
photometric portion of the analysis, not the cosmological portion.
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Chapter 6

KV450 Analysis

With the hierarchical model set so that we can apply its use to topographical bins and the
choice of templates selected, we are now in a position to apply our approach to a weak
lensing survey. Both real and simulated.

6.1 Data

6.1.1 Simulation

To demonstrate the validity of the method and the new implementations beyond the original
paper and in the realm of the KV-450 survey and set if simulated data was created.

To begin, Ngal = 100,000 r-band magnitudes are drawn from a distribution replicating
the r-band distribution from the KV-450 survey. Although the number is fewer factors
than the survey, it is sufficient to replicate the issues with the high populations mentioned
above. Secondly, low S/N sources are primarily associated with high magnitude sources,
so replicating the actual survey’s magnitude distribution is highly important to test the
robustness. The allocation of true z, t to each true m was decided to test potential weaknesses
in the method while staying realistic. A chosen amount of correlations were removed to
minimise information on which populations can be formed in the Gibbs sampler. For example,
types were drawn independently through a uniform distribution on t with the only changes
being due to shot noise. The templates used were the same as mentioned above in Table 5.1.
This was chosen to replicate the variability of real-world galaxy spectra and test the level of
representation of our PCA template set. At the same time, actual z values were drawn from
the following distribution:

p(z|mi) =
4
5
N (µ1,i,σ

2
1,i)+

1
5
N (µ2,i,σ

2
2,i), (6.1)
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where µ,σ are the means and variance of the Gaussian distributions chosen to increase with
magnitude bin to replicate some of the behaviour seen in the BPZ priors. The inclusion of
the secondary minor Gaussian N (µ2,i,σ

2
2,i) is necessary to test to what extent secondary

peaks are suppressed even when they reflect reality, especially in regions of low S/N. Lastly,
5% of the simulated population was given redshifts independently of magnitude and type
following a uniform distribution to test the method’s ability to correctly allocate sources even
when their values go against the major distributions of the population.

Based on the allocated true z, t,m true fluxes in the 9 filters (Fb where b is the filter)
associated with KV-450 are drawn directly from the model

Fb(t,z) =
1+ z

4πD2
L(z)

∫
∞

0

dν

nu
Lν ,t [ν(1+ z)]Wb(ν), (6.2)

where Lν ,t(ν) is the rest-frame luminosity density (as used by Leistedt et al. (2016)) of
the extragalactic source of type t as a function of frequency ν and Wb(ν) are functions
characterising the response of the photometric filters. Dividing by the r-band reveals the flux
ratios, which are then multiplied by the r-band fluxes drawn above.

In order to simulate observable fluxes F̂b are drawn from a Gaussian distribution N (Fb,g,σ
2
b,g).

Where σb,g is the variances on a flux given its filter b and source g. To best represent er-
rors seen in actual KV-450 data, a neural network containing 100 hidden layers through
sklearn.neural_network.MLPRegressor was trained on KV-450 data. Where the inputs and
outputs were the observed fluxes and their errors for each source, respectively. A similar
approach was used for applying lens-fit weights to each source (though this network could
be improved through the inclusion of size data on the sources). A similar neural network
shown from the one above was used. In this case, the inputs were the fluxes and the errors of
each source, while the outputs were the lens-fits weights trained on the same data above.

Allocating each source to the correct tomographic bin took a more direct approach. As
stated previously, a source is allocated to a tomographic bin depending on its photo-z
estimation ẑBPZ which is the mean redshift from the BPZ redshift posteriors. However, the
simulated observed fluxes and their errors could not be inputted directly into BPZ but instead
followed the same pipeline of KV-450. Sources in the KV-450 pipeline were applied to BPZ
as magnitudes, not fluxes so the data had to be converted using mb =−2.5log10(F̂b) for the
flux to magnitude conversion and me,b = 1.086×σb/F̂b to convert flux errors to magnitude
errors to a first order approximation. Sources have filters classed as ‘unobserved’ if they
fall under 1 of 2 conditions, ether σb > F̂b or m > limb where limb is the magnitude limit
for a certain panel of the sky, these limits were randomly allocated to sources. Although
technically these sources are ‘undetected’, due to a bug in the original survey they were
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classed as unobserved (in reality information can still be gathered from undetected sources
due to flux limits), the simulation looks to replicate the BPZ data of the original survey
and thus the bug is also replicated here. The classification of ‘unobserved’ means setting
m = 99 BPZ and then treating the filter to have the maximum error, and no information can
be gathered from it. BPZ also takes a M0 input. KV-450 data is labelled ‘MAG_AUTO’ and
consists of a non-linear combination of r and i filters and their errors and extractions. It is the
M0 value that interacts with the BPZ priors. M0 values were also simulated using a trained
neural network where mr,i are the inputs and M0 the output.

BPZ mean distributions ẑBPZ aloud the allocation of each source to each tomographic bin
based on the following categories ẑBPZ = [0.1,0.3], [0.3,0.5], [0.5,0.7], [0.7,0.9], [0.9,1.2].
To justify the method, the simulated survey is analysed using the same template set to which
the survey was created.

6.1.2 KiDS + VIKING 450

The data used for the cosmological parameter inference and demonstration of the application
of this Bayesian hierarchical model was the KiDS+VIKING-450 data set (Kannawadi et al.,
2019; Wright et al., 2019). This combines optical (KiDS) and near-infrared (VIKING)
photometric data. KiDS is a wide-angle photometric survey which uses the OmegaCAM
camera within the VLT Survey Telescope (de Jong et al., 2012). With a target area of ∼
1500 deg2, the survey intends to reveal cosmological information through the large-scale
distribution of matter. Although multiple data realises have taken place (de Jong et al., 2015;
De Jong et al., 2017) KiDS-450 refers to DR3 of which 450 deg2 of sources in the ugri bands
have become available.

Infrared data is collected from the VISTA Kilo-degree infrared Galaxy survey, which used
the Visible and Infrared CAMera (VIRCAM) on ESO’s 4m VISTA telescope (Venemans
et al., 2015). The planned target is for VIKING to cover ∼ 1350 deg2 of sky across the
ZY JHKs IFR bands. However, mainly due to masking and slightly due to incompleteness in
the coverage of VIKING, to ensure that the combined data set of KV-450 is fully covered in
all nine bands, it has a reduced unmasked area to 341 deg2.

The specific data used was the Gaussian Aperture and PSF magnitudes (GAAP), a post-
processing stage of data reduction unchanged from previous releases (Kuijken, 2008; Kuijken
et al., 2015). However, other forms of multi-band data are available, including the GAAP
magnitude/fluxes and the default used by KiDS. As the Bayesian Hierarchical Model (BHM)
method is much more heavily reliant on photometric data for n(z) estimation than that of
DIR (which also has spectroscopic data), another data filtering process took place to ensure
optimal photo-z estimations. The process replicates that of other recent photo-z studies
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(Bilicki et al., 2018). Sources removed that do not include magnitude errors in every band, as
well as removing any source that is flagged by requiring GAAP_Flag_ugriZYJHKs==0. This
requirement reduced the KV-450 area by ∼ 5%. We have not used the GAAP magnitudes,
unlike the analysis of KiDS for their DIR and BPZ pipelines for full redshift distribution
and tomographic bin location. Instead, the GAAP fluxes have been used as our input. These
are available in the KiDS data set as ‘FLUX_GAAP_b’ and ‘FLUXERR_GAAP_b’ for the
fluxes and their errors, respectively, where ‘b’ is the 9 filters. The fluxes need to be corrected
before analysis using offset and extinction terms

Fcorrected,b = Fb ×10
2
5 (extinctionb−offsetb), (6.3)

where Fcorrected,b is the final flux (although equation 6.3 applies the same to the flux errors)
used for analysis and Fb the catalogued flux. The extinction term is taken directly from the
‘EXTINCTION_b’ column of the data set. The offset term exists as we do not have access to
all the corrections that need to be calculated. T approximately recover those said corrections
sources are grouped by the tile of the sky in which they were observed. This is found under
‘THELI_NAME’. Sources within the same tile have the same offset, calculated as the median
value of the following quantity

offsetb = MAG_GAAP_b+2.5log10(FLUX_GAAP_b). (6.4)

Using the median is particularly important as one can not calculate the individual offsets
for sources that have been classified as ‘undetected’ or ‘unobserved’. The tomographic bin
allocation is determined by the BPZ values reported in the original data’ Z_b’, whereas the
weights are also taken directly from ‘recal_weight’. The galaxies are not premade from
particular templates as this is actual data. With this in mind, the entire catalogue of over 300
templates available through BPZ was used for the analysis.

6.2 Cosmological Analysis

This section expands on the data products used and the forward theoretical modelling. In
short, we replicate the KV-450 analysis with a new set of redshift distributions, as inferred
using our method. All other data products, such as the data vector and the covariance matrix,
are similar to the ones used by Hildebrandt et al. (2020). See Figures 6.2 and 6.1 for reference.
We will discuss the data in §6.2.2, the forward modelling approach in §6.2.3 before touching
briefly on the different systematics in §6.2.4. We refer the reader to the work of Hildebrandt
et al. (2020) for a more detailed and comprehensive study.
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6.2.1 Sample Implementation

Even after n(z) samples have been correctly taken from the Gibbs sampling, how one
implements them into the cosmological analysis also has to be chosen. There are multiple
ways in which the n(z) samples could have been implemented into the parameter inference.
We consider two different methods, both of which have been implemented in previous KiDS
studies; they have advantages and disadvantages. Firstly, the method is similar to the ones
used in the original KV-450 analysis (Hildebrandt et al., 2018), where the mean redshift and
error on this means are extracted from the n(z) samples for each tomographic bin. This mean
and error are then used on the µ and σ in a Gaussian prior for a set of nuisance parameters
δ zi (where i is the tomographic bin). The nuisance parameter defines a linear shift in z for
the used ni(z) in the parameter inference

ni(z)→ ni(z+δ zi). (6.5)

Alternatively, one can use the samples directly. See, for example, the KiDS-450 analysis
(Hildebrandt et al., 2017). In this case, a different sample of ni(z) is used with every likelihood
evaluation. The linear method contains the nuisance parameters allowing the n(z) to converge
on the correct distribution. On the other hand, sampling directly has its benefits. Firstly, the
explored parameter space is smaller by not including the nuisance parameters, leading to
more efficient inference. Secondly, the n(z) samples allow for inter-bin correlations that the
linear shift would ignore. This usually forms significant anti-correlation between adjacent
inter-bins, an expected property of the Dirichlet model. Thirdly, the convergence issue would
not apply to the BHM model as the chain of n(z) samples have already converged to a correct
distribution for the n(z) as shown through the Gelman-Rubin test. We also consider merging
the two methods and applying them to the original KV-450 analysis to see if the results
remain consistent. Finally, we use the linear shift method to create 1000 samples of the n(z)
gaining our δ zi values straight from the Gaussian prior, then use the samples directly as
with the case of the second method. The advantage is that we get the more generous error
associated with the linear shift but the efficiency of having fewer parameters associated with
the direct method. All three methods (random samples, nuisance parameters, hybrid) were
compared through parameter inference, and no statistically significant difference is visible.
However, using the samples directly means one is not forcing particular distributions onto
their n(z) uncertainties but instead taking on the uncertainties as they appear to form the
data, which may affect future works in which data quality varies at different redshifts and
magnitudes, with no computational efficiency lost it was decided that the raw samples were
the chosen implementation route.
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Figure 6.1: The data correlation matrix used in this analysis. Each element in the original covariance
matrix, C ∈ R195×195 is scaled such that the maximum possible entry is 1 for illustration.

6.2.2 Data

The original KV-450 analysis employs the TREECORR code to estimate the shear correlation
function between two tomographic bins i and j, that is,

ξ̂
i j
± (θ) =

∑ab wawb

[
ε i

t (xa)ε
j

t (xb)± ε i
×(xa)ε

j
×(xb)

]
∑ab wawb

(6.6)

where w is the lensfit weight, εt and ε× correspond to the tangential and cross ellipticities
of a galaxy with reference to the vector xa − xb between a pair of galaxies a and b. Nine
logarithmically spaced bins are used within the interval θ ∈ [0′.5, 300′]. We follow the
same procedure as used by Hildebrandt et al. (2020) and use the first seven bins for ξ+ and
the last six bins for ξ−. Since we have five tomographic redshift distributions, we have
five auto and ten cross pairs to tomographic redshift bins. The total number of data points
is 15× (7+ 6) = 195. In Figure 6.2, we show the 195 data points and their associated
uncertainties. Hildebrandt et al. (2020) also generated the data covariance matrix via an
analytical recipe, and this covariance matrix, normalised such that the maximum entry is one,
is shown in Figure 6.1. In §6.2.3, we cover the forward theoretical model, and throughout
this work, we assume a Gaussian likelihood for the data with a fixed covariance matrix, that
is,

−2logL = (d −µ)TC−1(d −µ)+ log |C|+ constant. (6.7)
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6.2.3 Theory

The two-point correlation functions between bins i and j are used as the forward cosmological
model to model the data. It is strictly a linear combination of the E- and B-mode power
spectra, that is,

ξ
i j
± (θ) =

∫
∞

0
dℓ

ℓ

2π
J0/4(ℓθ)[C

EE
ℓ,i jC

BB
ℓ,i j] (6.8)

and the Bessel functions of the first kind, J0/4 are the weight functions. In the absence of
systematics, the B-mode power spectra are assumed to be zero, and the main contribution
is due to the convergence power spectra, CEE

ℓ,i j = Cκκ
ℓ,i j. Under the Limber approximation

(Loverde and Afshordi, 2008) and assuming a flat universe. The EE power spectrum is given
by

CEE
ℓ,i j =

∫
χH

0
dχ

wi(χ)w j(χ)

χ2 Pδ (k; χ) (6.9)

where Pδ (k; χ) is the non-linear matter power spectrum. The weight function w(χ) is

wi(χ) = Aχ(1+ z)
∫

χH

χ

dχ
′ ni(χ)

(
χ ′−χ

χ ′

)
(6.10)

and A = 3H2
0 Ωm/2c2. The weight functions, w depends on the redshift distribution,

ni(z)dz = ni(χ)dχ . The redshift distributions are also properly normalised such that∫
n(z)dz = 1.

In this analysis, we sample five cosmological parameters, which we denote as Φ:

Φ =
[
Ωcdmh2, ln1010As,Ωbh2, ns, h

]
and two massless neutrinos and one massive neutrino are assumed. The latter is fixed at
mν = 0.06eV . We also record two derived quantities, namely Ωm and S8 ≡ σ8

√
Ωm/0.3.

Sampling is done in MontePython (Brinckmann and Lesgourgues, 2018), which also wraps
CLASS (Blas et al., 2011). Apart from the cosmological parameters, we also have to account
for nuisance parameters, which we discuss briefly in the next section.



210 KV450 Analysis

θ

z1× z1

θ

z2× z1

θ

z3× z1

θ

z4× z1

θ

θ
×

ξ −

z5× z1

θ
−4
−2

0
2
4

θ
×

ξ +

×10−4

z1× z1

θ

z2× z2

θ

z3× z2

θ

z4× z2

θ

θ
×

ξ −

z5× z2

θ
−4
−2

0
2
4

θ
×

ξ +

×10−4

z2× z1

θ

z2× z2

θ

z3× z3

θ

z4× z3

θ

θ
×

ξ −

z5× z3

θ
−4
−2

0
2
4

θ
×

ξ +

×10−4

z3× z1

θ

z3× z2

θ

z3× z3

θ

z4× z4

θ

θ
×

ξ −

z5× z4

θ
−4
−2

0
2
4

θ
×

ξ +

×10−4

z4× z1

θ

z4× z2

θ

z4× z3

θ

z4× z4

θ

θ
×

ξ −

z5× z5

θ
−4
−2

0
2
4

θ
×

ξ +

×10−4

z5× z1

θ

z5× z2

θ

z5× z3

θ

z5× z4

θ

z5× z5

Figure 6.2: The correlation functions multiplied by the angular scales, θ . We have seven ξ+ and six
ξ− per pair of tomographic redshift distributions, which results in a total of 13×15 = 195 correlation
functions. Hence, the data vector, x ∈ R195 is shown in blue above. The error bars correspond to the
standard deviation, computed using the diagonal elements of the covariance matrix. The red curve
shows the fit to the data using the mean of the inferred cosmological and nuisance parameters with
the Combined set.

6.2.4 Systematics

The shear lensing signal is a biased tracer of the convergence power spectrum. The model
which is commonly used in recent weak lensing analyses incorporates additional terms due
to intrinsic alignments, II and GI, that is,

Ctot
ℓ,i j =Cκκ

ℓ,i j +A2
IACII

ℓ,i j −AIACGI
ℓ,i j. (6.11)

The II term, which arises due to the correlation of ellipticities in the local environment,
contributes positively to the total lensing signal. In contrast, the GI term arises due to the
correlation between intrinsic ellipticities of foreground and gravitational shear of background
galaxies (Hirata and Seljak, 2004). The II power spectrum is modelled as

CII
ℓ,i j =

∫
χH

0
dχ

ni(χ)n j(χ)

χ2 Pδ (k; χ)F2(χ) (6.12)

where F(χ) =C1ρcritΩm/D+(χ). C1 is a constant given by 5×10−14 h−2M−1
⊙ Mpc3, D+(χ)

is the linear growth factor normalised to unity today and ρcrit is the critical density of the
Universe today. On the other hand, the GI power spectrum is modelled as
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CGI
ℓ,i j =

∫
χH

0
dχ

wi(χ)n j(χ)+w j(χ)ni(χ)

χ2 Pδ (k; χ)F(k; χ). (6.13)

Note that AIA in Equation 6.11 is a free amplitude parameter, which is marginalised over in
the sampling procedure. Taking into account the two effects due to intrinsic alignment, the
shear correlation function can be written as

ξ
tot
± = ξ

EE
± +A2

IAξ
II
± −AIAξ

GI
± . (6.14)

Another possible source of theoretical systematics is baryon feedback. The latter causes a
reduction in the non-linear matter power spectrum at small scales. In the analysis of KiDS-
450 data (Köhlinger et al., 2017), baryon feedback was modelled using fitting formulae
as derived by Harnois-Déraps et al. (2015). However, it is worth highlighting that these
processes are not very well understood, and hydrodynamical simulations were not strictly
carried out to match them to weak lensing observations but rather to understand the processes
behind galaxy formation and feedback effects.

In this work, following the same approach used by Hildebrandt et al. (2020) for a com-
parative study, we use HMCode (Mead et al., 2015) where the halo bloating parameter,
η = 0.98−0.12cmin changes the halo density profile. cmin ∈ [2.0, 3.13] is a free parameter
marginalised over in the likelihood analysis. A value of cmin = 2.0 corresponds to an extreme
feedback model (AGN) while cmin = 3.13 corresponds to dark matter only.

In addition to the above nuisance parameters, two additional parameters, δc and Ac, were
introduced to account for the additive shear bias and position-dependent additive bias pattern,
respectively. In short, the set of nuisance parameters, which we denote as Ψ is:

Ψ = [AIA,cmin,δc,Ac] . (6.15)

The new n(z) method developed in this work is coupled with the KV-450 likelihood, and
both sets of cosmological, Φ and nuisance, Ψ parameters are inferred.

6.3 Results

6.3.1 Simulation

As the simulated catalogue contains the true redshift distribution, one can compare this
directly to the n(z) samples gained from the BHM model. For the full survey distribution,
50000 samples (though a full convergence analysis may show that even less is required)
were collected on each source’s z, t,m cell allocations. Weights were placed on each source
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Figure 6.3: The weighted N(z) of the entire survey with the true distribution, posterior distribution
and the stacked posterior in green, red and blue, respectively. The posterior is split into 3 tones from
deepest to lightest representing the mean, 68% uncertainty and 95% uncertainty distribution.

before totalling the number of sources per z-bin. Figure 6.3 shows the posterior distribution
(red) against the true distribution (green). A comparison of mean redshifts shows a much
more accurate value than predicted by the stacked posterior and the inclusion of particular
uncertainties.

Furthermore, with the inclusion of the BPZ results, one can consider this under the
circumstances of tomographic bins with the mock catalogue galaxies separated by peak
posterior estimation into the same bins used by KV-450. The BHM model was applied
to these smaller samples, as seen in Figure 6.4 and the stacked posterior approach for
comparison. Figure 6.4 illustrates the superiority of the BHM model over the obsolete stack
likelihood, which suffers from broad distributions and secondary peaks due to degeneracies.

Quantitatively the average χ2 across the 5 tomographic bins is calculated to be χ̄2 = 102.13
and χ̄2 = 18.22 for the stacked posterior method and BHM model respectively. Thus the
BHM model shows significant improvement. It should also be noted that both approaches
perform worse in the 5th bin as opposed to any other bin (with stacked posterior and BHM
having a 5th bin χ2 of χ2

5th = 307.80 and χ2
5th = 33.74 respectively). A possible consequence

is that the photometric data is less clear at higher redshifts where more filters would be
used. Furthermore, the bias of both approaches (defined as b(θ̂) = Eθ [θ̂ −θ ] where θ̂ is the
estimated value and θ the true value) is much more comparable but still significantly low
being b =−0.012 and b =−0.010 for stacked posterior and BHM respectively.



6.3 Results 213

Figure 6.4: Redshift distributions using simulated data with marginalisation over the reference
magnitude and type over 5 tomographic bins. The green histogram shows the true input distributions.
While the distributions obtained with the inferred parameters fi jk are shown in red. The n(z) gained
from the stacked posterior is also included (blue). The posterior is split into 3 tones from deepest to
lightest representing the mean, 68% uncertainty and 95% uncertainty distribution.

Table 6.1: The average redshift and its variance for every redshift bin using the 2 models, the stacked
posterior (SP) and the BHM model of this paper.

Model zB range ∆µz ∆σ2
z ∆Sz

BHM Full Survey 0.004 -0.003 -0.063
0.1 < zB ≤ 0.3 0.003 0.015 -0.119
0.3 < zB ≤ 0.5 -0.002 -0.0005 -0.601
0.5 < zB ≤ 0.7 0.004 -0.003 0.127
0.7 < zB ≤ 0.9 0.001 -0.002 -0.050
0.9 < zB ≤ 1.2 0.005 -0.003 -0.063

SP Full Survey -0.011 0.035 0.509
0.1 < zB ≤ 0.3 0.004 0.213 0.518
0.3 < zB ≤ 0.5 0.004 0.003 3.904
0.5 < zB ≤ 0.7 0.014 0.076 0.544
0.7 < zB ≤ 0.9 0.012 0.035 0.825
0.9 < zB ≤ 1.2 0.004 0.035 0.509
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Although it is not visually clear from the tomographic bins where the added accuracy
comes from, to truly appreciate the differences between stack likelihood results and the
BHM, consider Figure 6.5. In this case, the entire survey is again observed with only the
templates t marginalised instead of the templates and magnitudes. Under these conditions,
we can isolate some of the data sections of the lowest signal-to-noise. As stated in the 6.1,
the simulated data was created to lower signal to noise as the magnitude was increased. This
demonstrates that we have less information on the faintest of sources. In the stacked posterior,
the lowering of signal to noise is shown through the broadening of the peak likelihoods as we
move to fainter magnitude bins. This broadening is an inaccurate survey representation and
a complete departure from the actual distribution (green). One may argue that this is what
should happen; as one has less information, so does there surety that a galaxy is at any one
redshift; thus, the uncertainty grows with the broadening of the likelihood. Unfortunately,
this is not the case and confusion about the differences between a single galaxy estimation
and a survey estimation. If the last magnitude bin represented a single galaxy’s likelihood,
it would show the proper growth of uncertainties. However, being a survey estimation, the
stacked posterior is more akin to a single-point estimation. There is no PDF of the PDF;
thus, with a lack of uncertainties, the stack likelihood is to say that the broad distribution
is the actual distribution. Contrast this with our posterior, which, although it suffers from a
small extent of broadening, is mitigated through the correct growing of uncertainty as shown
through the 68% and 95% uncertainty bands.

Other advantages can also be visible: stacked posteriors average out and smooth down
a distribution acceptable in high signal-to-noise areas. However, as one can see in the
final 2 magnitude bins, this has the negative effect of completely losing the secondary peak
and showing an inability to move away from the uniform prior, as demonstrated through
the probabilities never approaching zero for regions where the actual distribution shows
no galaxy is to exist. Whereas with the BHM model, the secondary peaks continue to be
inferred even if they are slightly dilute by the growing uncertainty (as shown by the bump as
opposed to a peak in the last magnitude bin). It may seem paradoxical how a method that
actively suppresses secondary peaks could lead to the survival of one, yet this is once again a
confusion of individual galaxies to a complete survey. Individual galaxies have secondary (or
even primary) peaks suppressed through the distribution, favouring one over the other, thus
breaking the template degeneracy problem. However, on the scale of the entire survey, the
Gibbs sampler is actively sampling the distribution for features that can inform the individual
galaxies. Such features may include the prominence of galaxies at a second redshift peak.
The same can be said for regions of low galaxy count; due to broad individual likelihoods,
the raising of the posterior away from zero cannot be avoided entirely, but the damage is
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Figure 6.5: The weighted N(z,m) of the entire survey with the true distribution, posterior distribution,
and the stacked posterior in green, red and blue, respectively, in this case, the templates t have been
marginalised out. The posterior is split into 3 tones from deepest to lightest representing the mean,
68% uncertainty and 95% uncertainty distribution.

suppressed by distribution as a whole, not expecting galaxies to be in this region. For the best
example, consider magnitude bins m = 23.5−24.5 where the stack likelihood has a high
probability at high redshift, whereas the posterior lower much quicker in these regions.

6.3.2 KiDS + VIKING 450

A randomly picked set of 100,000 galaxies from the KiDS Survey were analysed using
our BHM method to infer n(z) samples. The weighted n(z) for the 5 tomographic bins can
be seen in Figure 6.6. Although one cannot make quantitative assessments in the same
way seen for the simulated data due to the lack of true distribution, one can still make a
qualitative comparison to the results based on the same data for stacked posteriors and DIR
approaches. One of the main features is that at low tomographic bins, much like the stacked
posterior, the posterior cannot find the tail of high redshift sources appearing in the DIR
analysis. This agreement with stacked posterior is expected as one can see from the simulated
results that low tomographic bins correspond with low magnitudes and thus high signal to
noise which would lead to sharp likelihood distributions as we have small errors on their
fluxes. The distribution would not easily sway these sharp likelihoods as a whole being at a
different redshift and thus the lack of difference between the 2. The discrepancy from the
DIR result is troubling only if we believe DIR to be the truth. If we instead look toward our
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Figure 6.6: Redshift distributions using KV-450 data with marginalisation over the reference mag-
nitude and type over 5 tomographic bins. The cream histogram shows the results from KiDS DIR
samples used for their analysis. The stacked posterior is in blue. While the distributions obtained
with the inferred parameters fi jk are shown in red. The n(z) gained from the stacked posterior is also
included (blue). The posterior is split into 3 tones from deepest to lightest representing the mean, 68%
uncertainty and 95% uncertainty distribution.

simulated data, then our low tomographic assessments are correct, and in 4.3.1 we covered
the situations in which the stacked posterior can also be reliable, a situation that may cover
the low tomographic bins. The other prominent feature is the ‘spikiness’ of the distribution,
which may lead to artificially large peaks, as seen in almost every tomographic bin. Reasons
and potential remedies for this spikiness will be addressed below.

To examine the issue of template sensitivity, 3 groups of randomly chosen 50 template
sets and 3 groups of randomly chosen 100 template sets were used to produce redshift
distributions for the 5 tomographic bins. The median redshift of the distributions was then
compared to the PCA result to prove consistency. The median redshift was chosen as the
comparison statistic due to its influence over the weak lensing power spectrum; thus, any
variability in its value may affect cosmological results. For example, from Figure 6.7 left,
we can see that when choosing 50 random templates, there is too much variability within
the median redshift result. However, the issue is no longer present when one chooses a set
of 100. Showing 100 templates to be an adequate number leads to template insensitivity.
Furthermore, when compared to the 50 templates present in the PCA analysis, one can
see that the PCA result is in complete agreement with the 100 template results showing
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Figure 6.7: left: The median redshift based on the redshift distribution of the KiDS450 -Viking data
and their variance compared to 6 random template sets (3 containing 50 templates and 3 containing
100 templates), these sets are compared to the same result gathered from PCA analysis (grey). right:
The median Redshift based on the redshift distribution of the KiDS450 -Viking data and their variance
compared to 3 randomly chosen sets of 100,000 galaxies, all of which used the PCA template set.
The set used for cosmological analyses is highlighted in grey.

that the reduced number of 50 templates within the PCA set still contains similar levels of
completeness when compared to the 100 template counterparts.

A similar analysis was taken in the decision to use only 100000 galaxies for the redshift
analysis, as can be seen in Figure 6.7 right when we look at the median redshift using the
PCA templates set on different randomly chosen sets of galaxies (all though random no set
contained the same galaxies as another set). Again, we find complete agreement meaning
100,000 galaxies is an adequate number for the correct analysis while mentioning efficiency.

For the cosmological analysis, we randomly picked sets of 105 galaxies and inferred the
n(z) tomographic redshift distributions. For consistency check, we repeat the experiments
four times and store all the samples of the heights of the redshift distributions. We also
generate a fifth set by combining all the samples for each independent set. We will henceforth
refer to the fifth set as the “Combined set". We then take the second half of the MCMC chains
and use an appropriate thinning factor to generate 5000 and 15,000 n(z) samples. We then
sample the posterior using each set, with the 5000 and 15,000 samples separately. We did
not find any significant change in the values of the parameters inferred, and throughout this
work, we report only the results obtained with the 15,000 n(z) samples. Note that Köhlinger
et al. (2017) marginalised over the n(z) uncertainties using 1000 samples of n(z). In some
analyses, only the mean of the n(z) is used in the sampling procedure. See, for example, the
work by Hildebrandt et al. (2020).

In Figure 6.8, we show the full 1D and 2D marginalised posterior distribution of all the
cosmological and nuisance parameters. The inner and outer contours are plotted at 68% and
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Figure 6.8: The full marginalised 1D and 2D posterior distribution of both sets of cosmological and
nuisance parameters. The inner and outer contours correspond to the 68% and 95% credible intervals.
A top-hat prior is assumed for all parameters except for δc and Ac, for which Gaussian priors are
adopted.



6.3 Results 219

Figure 6.9: left: The marginalised posterior distribution in the Ωm −S8 plane for the KV-450 analysis
(in green) and Planck (in blue). The inner and outer contours correspond to the 68% and 95% credible
intervals, respectively.right: The marginalised posterior distribution for the S8 parameter in various
experiments. The broken curves correspond to the results obtained when different sets of n(z) are
used, and the purple curve shows the results when the sets are combined. The distribution of S8, as
obtained by the Planck 2018 results (Aghanim et al., 2020) is also plotted in brown.

95% credible intervals, respectively. A flat uniform prior is assumed for most parameters
except for δc and Ac for which Gaussian priors are assumed. The mean and 1σ credible
intervals are also reported in Table 6.2. We find a slightly higher value in the value of
S8 = 0.756+0.039

−0.039 compared to the original KV-450 analysis.
In Figure 6.9 left, we compare the S8 −Ωm plane as obtained in this work using the

combined set of n(z) with the one in the latest Planck 2018 results. Similarly, in Figure
6.9right, we focus only on the 1D marginalised posterior distribution of S8 and compare
the results obtained with each set (1, 2, 3, 4, “combined") with the Planck 2018 result. As
expected, the posterior due to the combined set is roughly centred around the other posterior
distributions for KV-450.

To quantify the statistical distance in the value of S8 among the different experiments
performed in this work, we choose to compute the Kullback-Leibler divergence, which is
given by

DKL(P||Q) =
∫

p log
(

p
q

)
dx, (6.16)

where q is the reference distribution. In the first case, we take the distribution due to the
combined set as the reference distribution, and the KL-divergence measures are 0.0663,
0.0451, 0.0259 and 0.0578 due to Sets 1, 2, 3 and 4, respectively. On the other hand, we take
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Figure 6.10: The inferred values of S8 in different surveys and collaborations. The third row
corresponds to the value obtained in this work.

the distribution of S8 inferred by Aghanim et al. (2020) as the reference distribution, and
the KL-divergence measures are 10.2, 16.4, 11.4, 16.8 and 13.7 due to Sets 1, 2, 3, 4 and
Combined respectively. By visually inspecting Figure 6.9 right, these values are aligned with
the positions of the different distributions.

Moreover, in Figure 6.10, our result is compared to other surveys and obtained with the
DIR method in the original KV-450 analysis. In the latter, the "marginalisation" over the
n(z) uncertainty is carried out by including uncorrelated shifts along the redshift axis for
each tomographic redshift bin. Hence, the original KV-450 analysis has five additional
nuisance parameters. Our method differs because samples of the n(z) are first generated
using the Bayesian Hierarchical model. These samples are then used to marginalise the n(z)
uncertainty in the likelihood analysis. While most of the results from weak lensing analyses
tend to agree with each other, there remains the tension with the value of S8 from Planck,
although, in this work, this tension is further alleviated with our method for determining the
n(z) distributions.

We have presented a novel approach for generating redshift distribution samples under
a Bayesian Hierarchical framework without needing spectroscopic re-calibrations, as with
modern redshift methods. The approach was tested using the simulated data specifically
designed to highlight the weaknesses of current photometric techniques and was found to
be robust in capturing accurate redshift distributions even in areas of high magnitude and
low signal to noise, the area of most concern for weak lensing surveys. Furthermore, by
comparing the distribution to that gained from the stacked posterior method, we have shown
that the BHM model is more accurate in estimating redshift distribution in photometric data
analysis.
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Table 6.2: Result for KV-450 analysis with new n(z) redshift distribution.

Parameter Symbol Value

CDM density Ωcdmh2 0.146+0.050
−0.051

Scalar spectrum amplitude ln1010As 2.700+0.785
−0.744

Baryon density Ωbh2 0.022+0.002
−0.002

Scalar spectral index ns 1.005+0.155
−0.154

Hubble parameter h 0.739+0.056
−0.058

IA amplitude AIA −0.530+0.489
−0.490

Baryon feedback amplitude cmin 2.529+0.352
−0.342

Constant c−term offset 104δc −0.026+2.035
−2.031

2D c−term amplitude Ac 1.024+0.131
−0.133

Matter density Ωm 0.311+0.095
−0.099

σ8
√

Ωm/0.3 S8 0.756+0.039
−0.039

We have also used the samples of the n(z) redshift distribution gathered from using KV-450
data for constraining cosmological parameters with the KV-450 data products. We keep
all configurations fixed and replace only the original n(z) redshift distributions, generated
using the DIR technique, with the samples obtained in this work. Note that we marginalise
over the n(z) by drawing random samples of n(z) at each likelihood evaluation, whilst the
original KV-450 analysis employs offsets in the n(z) distribution along the redshift axis.
As a result, our analysis yields a slightly higher value of S8 = 0.756+0.039

−0.039 compared to the
original KV-450 analysis, which reports a value of S8 = 0.737+0.040

−0.036.
The tension in S8 between weak lensing analyses and the Planck analyses has been a topic

of heated debate, and in this work, we show that using Bayesian Hierarchical modelling and
effectively marginalising over the n(z) uncertainty leads to a reduction in the tension between
the two probes. Identifying the exact source of the discrepancy in S8 remains an open research
question. One school of thought might argue that modelling the systematic in either analysis
is a complex problem, while another posits that there can also be other Physics models to
explain the underlying data. Much is left open for improvement, especially on our code’s
computational aspect, which limited us to a small population and template size. Furthermore,
the spikiness of the BHM distribution could be investigated further to clarify their existence.
However, further refinement of personalising inference for each survey through template
choice (or an external distribution error to approximate template sensitivity) and relevant
priors to the distribution could be included as all priors of this work were considered uniform.
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As well as the implementation and relevance of selection effects. When derived using this
method, the n(z) distributions should be useful for parameter estimation for future surveys
such as DES, LSST and Euclid, of which deep and numeral spectroscopic data will not be
available.
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Chapter 7

KiDS-1000

Through the previous chapter, we were able to show the benefits of using a Bayesian
hierarchical approach to redshift distribution inference and how samples from said distribution
can be used for cosmological analysis. However, improvements could be made and will
be required to reach the precision and accuracy needed for the next generation of weak
lensing surveys. With that in mind, this chapter covers our unfinished work into possible
improvements one could make and apply our method to one of the most recent weak lensing
surveys, KiDS-1000.

7.1 Regularisation

As stated in 6.3, there is sometimes a ‘spiky’ quality to the redshift distributions inferred from
the BHM, a quality one presumes is a fault of the method and not necessarily a true reflection
of the redshift distribution. Below are our first attempts to understand and potentially remedy
this spikiness.

One of the main advantages of the original theory was the suppression of secondary peaks
through a process already mentioned as ‘Bayesian Shrinkage’. A source of quite ambiguous
z,m, t can be allocated to a cell with very little flexibility, especially if other members of its
population highly favour that cell. This helps develop the 2 original effects seen. Firstly
the model can infer set (m, t) or (m,z) relations without the need for specific non-uniform
priors, as with BPZ. Secondly, it helps remove the tails one usually associates with stacked
likelihoods as the ambiguous source can still have highly peaked posteriors even with broad
likelihoods. Both effects and their advantages can be seen at work in Figure 6.5.

However, as valuable as the Bayesian Shrinkage is, some issues develop under modern
weak lensing surveys, specifically in the case of high populations with low S/N. Under these
conditions, the uniform prior that suggests an equal amount of sources per cell has minimal
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impact on the possible Dirichlet distributions. The variance in possible distributions from
equation 5.5 is minimised. Furthermore, a large population of low S/N sources will trend
towards a small set of z, t,m cells as long as a tiny amount of higher S/N sources of the same
population have less overall likelihood in this region regardless of if that region represents
the truth.

Thus, a large population of low S/N sources can have a very peaked redshift distribution
with minimal variance. Lastly, due to the Dirichlet distributions having every cell anti-
correlated with every other cell (a direct consequence of ∑i jk fi jk = 1 so if one cell rises,
the rest must fall) and the likelihood functions having a positive correlation with nearest
neighbours in redshift (as the likelihood is Gaussian) the combination of the 2 means nearest
neighbours in z-cells anti-correlate leading to a lack of smoothness one expects to find in
redshift distributions.

In this sense, the model has proscribed a distribution quality that may bias results and
something that will only grow worse with a higher population and lower S/N data. To remedy
this issue, regularisation may be used to ensure smoothness in the redshift distribution.
This same regularisation was not required for the m, t bins for different reasons. Although
neighbouring m-bins would have the same correlation issues mentioned above, the likelihood
distributions in m are exceptionally constrained due to the wealth of information from the
flux data. This favours the likelihood peaks over any peaks suggested by the population as a
whole, negating the issue. While t-bins are allocated randomly, so have no association with
their t-neighbours.

The simplest method would be to smooth the distribution post-production through a
convolution operator applied to the distribution in the z-axis after all samples have been
acquired. This method was swiftly rejected due to not being a true reflection of the inferred
samples and also that the damage has already been done as a source have already located
in areas they may not have been in at all thus smoothing them to nearest neighbours is just
spreading the problem not solving it. An improvement on this regularisation attempt was a
3-point moving average applied to fi jk in the z-direction after every Gibbs sample. This is
to say that the distribution is smoothed between equations 5.5 and 5.4. This means that the
following collection of ni jk samples is informed by the fact that the underlying distribution
fi jk is smooth, which makes sense. We expect the underlying distribution to be smooth, but
not necessarily the number counts of the sources themselves. Aware that the use of a 3-point
moving average is a departure from the Gibbs-sampling method and courses of the chance
of over-smoothing (as it takes place in every sample) in a potentially non-smooth redshift
population, we chose to weight our 3-point moving average to the ratio of [1,20,1] this was
the ratio that had a minor impact on the distribution wiliest still having the desired effect.
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Figure 7.1: The weighted N(z) of the entire survey with the true distribution, posterior distribution
and the stacked likelihood in green, red and blue, respectively. The posterior is split into 3 tones from
deepest to lightest representing the mean, 68% uncertainty and 95% uncertainty distribution. The
version has samples based on the smoothed variant.

In Figure 7.1, we can see the full distribution results, which can be directly compared to
Figure 6.3 as there based on the same simulated data. Again, one can see a reduction in
spikiness, and at redshifts of < 1.7, the inferred distribution is both more accurate (as the
mean is closer to the actual distribution) and more precise (the 68% and 95% error bars are
smaller) but the smoothed samples do a worse job of identifying the secondary peak.

Even with the successes, we ultimately believe this idea requires more research the sheer ad
hoc nature to which we apply a smoothing function of chosen weight removes the principled
nature of the BHM approach, i.e. the smoothness of the function needs to be inherently baked
into the model and be physically motivated. Also, the success may result from the smooth
simulated model instead of the model inferring this distribution any better. For baking the
smoothness, one can use additional priors. For example, a higher number of uniform α

values in prior would imply a more substantial uniformity to the distribution preventing
peaks from becoming too high. With that said, a consequence would be the broadening of
distributions as seen with the stacked likelihood. Alternatively, one may want to consider
using a different kind of Dirichlet function, such as a generalised Dirichlet function (or
‘hyperdirichlet’) (Hankin, 2010) to which control over correlation and meta-structure may
be possible. With that said, this would introduce multiple new parameters and consider the
computational difficulties one has already had. This may not be practically possible.
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7.2 Gaussian Processes

Regarding computational difficulties, cosmology was one area of an extreme bottleneck
during the analysis of Chapter 6. To compute cosmological parameter inference, we require
a forward model in the form of CLASS. This is already very time-consuming due to the
n(n+1)/2 auto- and cross-correlations needed at every probed angular scale where n is the
number of tomographic bins. An issue is exacerbated by adding n(n+ 1) power spectra
if intrinsic alignments are included. The issue is just manageable in its current state, as
demonstrated through the ability to gather cosmological parameters as seen above; however,
this will not be the case going forward in new weak lensing surveys with multi-year estimates
being made for the time scale of weak lensing analysis for future surveys based on current
methods (Heitmann et al., 2009).

With this in mind, we plan to future-proof the practical use of our n(z) samples by showing
their ability to be used with an emulator, a device that replaces the full forward model
simulation with an approximate mathematical function. Thus future studies of our BHM
model will make its cosmological inferences using the Gaussian processes emulator as
created by Mootoovaloo et al. (2020). In this work, 25 Gaussian processors (one for each
band power) are formed by training them on the band powers created on a set of parameters
(training points) for CLASS. The advantage of Gaussian processes is that it produces a mean
value and a variance, allowing for total uncertainties to be accounted for, just as we saw in
the previous BHM. As one can see from Figure 7.2 the processor does an outstanding job
at replicating the parameter inference one would have got would a CLASS-based forward
model, both through using just the mean or including the variance on the emulations. This
comes with the added benefit of being at least 20 times faster than the current methods. Work
has begun on incorporating the samples; currently, they work using the mean distribution (as
in the mean probability in every z-bin within a tomographic bin, not the mean value of the
distribution as seen in Figure 6.7) but further work needs to take place for all n(z) samples to
be incorporated.

7.3 KiDS-1000

The next set of data we wish to use our current BHM n(z) inferred as well as the Gaussian
processes emulator for the cosmology is with the Kilo-Degree surveys 4th data release
(Kuijken et al., 2019). Through the use of the square 268-million pixel, CCD mosaic camera
OmegaCAM (Kuijken, 2011), and the VIKING survey (Edge et al., 2013) the amount of sky
coverage available in all 9 bands ugriZYJHK has more than doubled from 450 square degrees
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Figure 7.2: The full 1D and 2D marginalised posterior distributions were obtained using three
different methods - The one in tan colour corresponds to posterior distributions with the full simulator
(CLASS), while the solid brown one corresponds to the Gaussian Process emulator when random
functions of the band powers are drawn, marginalising the Gaussian Process uncertainty. The posterior
in blue shows, the distributions obtained when only the mean of the Gaussian Process was used in the
inference routine. The contours denote the 68% and 95% credible interval, respectively. Note that
some parameters are dominated by their respective priors and are not constrained at all. A similar
conclusion was drawn by Köhlinger et al. (2017). However, the important point here is that the
posterior from the GP is close to that obtained with CLASS Mootoovaloo et al. (2020).
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to 1006. The added coverage can be seen visually in Figure 7.3 which all the releases are
shown in green, whereas blue represents the new data in the most recent data release and grey
the goal of 1350 square degrees in the future. As well as a considerable increase in area, this
latest release also represents some technological improvements. One of the main changes is
that KiDS are now using the deep, optical, all-sky catalogue of Gaia data release 2 (Brown
et al., 2018) to calibrate the observed photometry. This is because each KiDS square degree
tile contains 1000s of stars that Gaia observed in broadband filters with accuracy better than
0.01 magnitudes, far beyond the accuracy of KiDS. The colour-colour diagrams of similar
regions are compared, and offsets are calculated for KiDS to be in line with Gaia allowing
more accuracy in the observed galaxies. The data by which our studies are preoccupied is
the GAAP-b, where b are the 9 filter bands. This data column (unlike KiDS-450) is itself not
a single observation but an optimum choice between 2 aperture images (1.0" or 0.7"). The
following conditions decide the optimum choice:

1. For all bands b calculate the flux error ratios:

Rb =
FLUXERR-GAAP-1p0-x
FLUXERR-GAAP-0p7-x

. (7.1)

2. If max(Rb)×min(Rb)< 1 use the 1.0" image otherwise use the 0.7" image

This ensures that the smaller aperture is used unless the rare circumstance applies (in about
4% of all cases) where the larger aperture gives more minor flux errors. This allows for a
second chance for better image quality on the rare occasion when the smaller aperture fails.
To use these fluxes, the extinction needs to be subtracted just as we did for KiDS-450. The
only difference is that the extinction values are not just interpolated from the extinction maps
by Schlegel et al. (1997) but also combined with the conversion coefficients of (Schlafly and
Finkbeiner, 2010) for added accuracy. To allocate sources to different tomographic bins,
the same BPZ photometric code is used as before, but this time with prior from KV450 as
opposed to K450 (Raichoor et al., 2014). The choice was made to change from the default
prior as this new one reduces uncertainties and catastrophic errors on faint galaxies; however,
it comes with a biasing of bright low-redshift galaxies to slightly higher redshifts, so the
results should only be seen as a categorising tool and not an accurate measurement on the
redshifts of the sources.

With this in mind, we applied the same BHM code used for the KiDS-450 analysis to our
new flux data. Once again, we used 100,000 randomly selected sources and the 50 PCA
templates for the best balance in completeness and efficiency. 50,000 samples were selected
to ensure convergence, and sources were separated into their tomographic bins based on the
BPZ data given by the DR4 release. The results can be seen in Figure 7.4.
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Figure 7.3: The sky coverage of the KiDS survey 4th data release DR4, the blue represents all the
accumulated data from the first 3 releases culminating in KiDS-450, whereas the blue represents all
the new data. The grey represents the end goal coverage of 1350 square degrees (Kuijken et al., 2019)
.

Note that these results are highly preliminary, given that no other improvements to the
code were used. However, on first inspection, the results seem promising, with the peak
redshifts being more in line with DIR and SOMz than we saw previously. However, there
is a glaring issue of very high redshift sources, especially in the first 2 tomographic bins.
Simply put, there are sources that KiDS have allocated to low redshift that we have allocated
to high. The high redshift sources also appear in the stacked likelihood suggesting this is not
an issue with the Gibbs sampling side of the code directly. Instead, this looks like a common
degeneracy in which low redshift sources can appear high, a degeneracy not suppressed by
our code but seems to be identified and suppressed by KiDS, potentially in their prior change.
To investigate the issue further, we repeated the experiment of completing the analysis again
for 5 sets of randomly chosen 100,000 sources to see if the results were consistent and not
just a consequence of shot noise.

Figure 7.5 suggests that even though the survey size has gone from 13,241,807 sources in
KiDS-450 to 21,262,011 sources in KiDS-1000, the median redshifts based on a randomly
selected 100,000 is even more consistent than their KiDS-450 counterparts (you may have
noticed that the number of sources has not doubled even though the coverage has, this is due
to the reduction in sources being used as the culling has taken place that was mentioned in
the SOMz analysis 4.3.2). Also, in the first tomographic bin, the median redshift is consistent
at z > 1.2, much larger than the 0.1 < z < 0.3 region to categorise.
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Figure 7.4: Redshift distributions using KiDS-1000 DR4 data release with marginalisation over the
reference magnitude and type over 5 tomographic bins. The cream histogram shows the results from
KiDS-450 DIR samples, while the green shows the mean redshift distribution of the SOMz work used
for their analysis. While the distributions obtained with the inferred parameters fi jk are shown in red.
The n(z) gained from the stacked likelihood is also included (blue). The posterior is split into 3 tones
from deepest to lightest representing the mean, 68% uncertainty and 95% uncertainty distribution.
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Figure 7.5: The median redshift based on the redshift distribution of the KiDS-1000 DR4 data release
and their variance compared to 5 randomly chosen sets of 100,000 galaxies, all of which used the
PCA template set. The first set used above is highlighted in grey.

To continue investigating this issue may give us a chance to focus more, such as by
categorising our templates to see if certain types of galaxies are appearing at particular
redshifts. We may also look into incorporating priors directly so that our analysis does
contain physical knowledge of the relationships between magnitude and redshift and does
not wholly rely on the method itself to discover said relationships.
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Chapter 8

Conclusion

In this thesis, we have demonstrated how Bayesian Hierarchical Models can be applied to
new problems in order to gauge accurately and precisely the values and uncertainties of
redshift distributions through the use of photometric data alone and thus, without the need
for overlapping spectroscopic surveys, these same redshift distributions can be sampled and
applied to current cosmological pipelines in order to gather constraints on cosmological
parameters.

Chapter 1 delved into how we have those cosmological parameters in the first place.
Specifically, we considered the different assumptions and models our parameters rely on,
such as General Relativity and our assumption of the cosmological principle. We showed
that through these theories and principles, one could use 2-point correlation functions as a
primary statistical tool for gathering insight into our known universe. We then consider some
of the probes we have for estimating the power spectra that describe these 2-point correlation
functions, such as the CMB and Lyα forest. Finally, we also looked into the areas in which
our current understanding does not fully describe our universe externally to the standard
model in the form of dark energy and dark matter and internally in the form of parameter
tensions between different observables.

Chapter 2 looked into one of the probes that currently courses that tension; weak lensing
(which currently has a S8 tension with CMB studies). We saw how through Einstein’s
equations, Fermat’s principle and the Born approximation, one can correctly describe the
relationship between an image’s distortion and the masses between the emitter and observer
that coursed said distortion in the trajectory of a photon. Finally, we tackled the question of
how one can determine the level of distortion without access to the actual image through the
use of mean convergence and shear across multiple galaxies and how an understanding of
that statistical distortion can help infer the matter power spectra and thus constrain values of
Ωm,σ8 and S8 as a direct consequence of the first 2 parameters.
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Chapter 3 looked into one of the areas of weakness of current weak lensing surveys, which
is how one can accurately yet efficiently gauge the redshift of observed galaxies. Through
an understanding of a galaxy’s origin and morphology, one can see how particular spectral
features are expected from the light observed from far away galaxies and how these features
are moved and distorted but, importantly, not removed by redshift and thus the difference
between the observed and expected spectra can determine a galaxies redshift. We considered
the most accurate way to use spectral information for redshift estimation in the form of
spectroscopy but rejected it due to the sheer amount of data and lack of quality in that data
collected from weak lensing survey, which makes spectroscopy impractical. Instead, we
focused on photometric redshifts, a similar method that uses more broad light filters. We
look into the different methods used to estimate photometric redshifts from empirical-based
methods, which use machine learning techniques, to template-based methods, which use
physical modelling and consider the advantages and disadvantages.

Chapter 4 considers how we can alleviate some of the disadvantages of template-based
methods by considering a different statistical framework. Up to this point, all template-based
methods have used a frequentist approach to gathering statistical insight from data. This
approach is described and explained in more detail so that we can contrast with the focus
of this chapter which is the Bayesian approach to statistics. First, we derive and explain
the benefits of Bayes Theorem and why this requires a different way of thinking and apply
the new approach to rudimentary questions. Next, we consider some of the choices one has
to make when using Bayesian methods, such as which prior to use and how to best collect
samples from the posterior. With this information, we show how Bayesian statistics has been
used in the past for photometric redshifts in the form of BPZ. Lastly, we consider the main
problem of weak lensing photometric redshifts, which is the redshift distribution of the entire
survey, how the method of the past (stacked likelihood) has worked, why in future they will
fail, how current methods work but rely on spectroscopic data and how at least in theory a
fully Bayesian model can be formed to answer said question.

Chapter 5 takes the issue of inferring the redshift distribution issue through a Bayesian
approach from the theoretical to the practical through the work of Leistedt et al. (2016),
we demonstrate that through changes to the parameter of interest, one can not only form a
Bayesian Hierarchical Model for the relationship between individual galaxies, their photom-
etry and the full redshift distribution but also deal with the requirements of weak lensing
surveys such as fainter sources, lower signal to noise and most importantly the weighting of
galaxies and splitting of said galaxies into tomographic bins. We show in Chapter 6 through
simulation that we can accurately infer the redshift distribution (and its uncertainties) of 5
desperate tomographic bins and demonstrate its superiority over current photometric-based
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methods. We then applied the method to the current KiDS-450 weak lensing survey and
showed how through sampling the redshift distribution, we could use said samples as inputs
for an entire cosmological pipeline leading to a slightly higher value of S8 = 0.756+0.039

−0.039

compared to the original KV450 analysis, which reports a value of S8 = 0.737+0.040
−0.036. This

value reduces the tension between weak lensing and CMB studies showing that the tensions
may be due to systematic errors in our redshift estimation as opposed to new physics. Lastly,
through Chapter 7 we showed how our method might be improved for more modern surveys
such as KiDS-1000 through Gaussian Processes and changes to the prior and displayed
preliminary results to which further work needs to occur.



236 Conclusion



Bibliography 237

Bibliography

Aalseth, C.E. et al. CoGeNT: A search for low-mass dark matter using p-type point contact
germanium detectors. Physical Review D - Particles, Fields, Gravitation and Cosmology,
88(1):012002, 7 2013. ISSN 15507998. doi: 10.1103/PhysRevD.88.012002. URL
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.012002.

Aartsen, M.G. et al. IceCube Search for Dark Matter Annihilation in nearby Galaxies and
Galaxy Clusters. Physical Review D - Particles, Fields, Gravitation and Cosmology, 88(12):
41, 7 2013. doi: 10.1103/PhysRevD.88.122001. URL http://arxiv.org/abs/1307.3473http:
//dx.doi.org/10.1103/PhysRevD.88.122001.

Aartsen, M.G. et al. Search for annihilating dark matter in the Sun with 3 years of IceCube
data IceCube Collaboration. Eur. Phys. J. C, 77:146–163, 2017. doi: 10.1140/epjc/
s10052-017-4689-9.

Abbott, B.P. et al. Observation of gravitational waves from a binary black hole merger. Phys-
ical Review Letters, 116(6):061102, 2 2016. ISSN 10797114. doi: 10.1103/PhysRevLett.
116.061102. URL https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102.

Abdalla, F.B. et al. Photometric redshifts for weak lensing tomography from space: the role of
optical and near infrared photometry. Monthly Notices of the Royal Astronomical Society,
387(3):969–986, 7 2008. ISSN 00358711. doi: 10.1111/j.1365-2966.2008.13151.x. URL
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2008.13151.x.

Abdalla, F.B. et al. A comparison of six photometric redshift methods applied to 1.5
million luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 417
(3):1891–1903, 11 2011. ISSN 00358711. doi: 10.1111/J.1365-2966.2011.19375.X/2/
M{\_}MNRAS0417-1891-MU2.GIF. URL https://academic.oup.com/mnras/article/417/
3/1891/1089504.

Abolfathi, B. et al. The Fourteenth Data Release of the Sloan Digital Sky Survey: First
Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from
the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. The
Astrophysical Journal Supplement Series, 235(2):42, 4 2018. ISSN 1538-4365. doi:
10.3847/1538-4365/aa9e8a. URL https://doi.org/10.3847/1538-4365/aa9e8a.

Abruzzo, M.W. and Haiman, Z. The impact of photometric redshift errors on lensing
statistics in ray-tracing simulations. Monthly Notices of the Royal Astronomical Society,
486(2):2730–2753, 6 2019. ISSN 0035-8711. doi: 10.1093/MNRAS/STZ1016. URL
https://academic.oup.com/mnras/article/486/2/2730/5475123.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.012002
http://arxiv.org/abs/1307.3473 http://dx.doi.org/10.1103/PhysRevD.88.122001
http://arxiv.org/abs/1307.3473 http://dx.doi.org/10.1103/PhysRevD.88.122001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2008.13151.x
https://academic.oup.com/mnras/article/417/3/1891/1089504
https://academic.oup.com/mnras/article/417/3/1891/1089504
https://doi.org/10.3847/1538-4365/aa9e8a
https://academic.oup.com/mnras/article/486/2/2730/5475123


238 Bibliography

Adams, W.S. The Relativity Displacement of the Spectral Lines in the Companion of Sirius.
Proceedings of the National Academy of Sciences, 11(7):382–387, 7 1925. ISSN 0027-
8424. doi: 10.1073/pnas.11.7.382. URL https://www.pnas.org/content/11/7/382https:
//www.pnas.org/content/11/7/382.abstract.

Aghanim, N. et al. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si
muove. Astronomy and Astrophysics, 571:30, 11 2014. ISSN 14320746. doi: 10.1051/
0004-6361/201321556. URL http://www.esa.int/Planck.

Aghanim, N. et al. Planck 2018 results: VI. Cosmological parameters. Astronomy and
Astrophysics, 641:A6, 9 2020. ISSN 14320746. doi: 10.1051/0004-6361/201833910.
URL https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract.

Agnese, R. et al. Silicon detector dark matter results from the final exposure of CDMS II.
Physical Review Letters, 111(25), 12 2013. ISSN 00319007. doi: 10.1103/PhysRevLett.
111.251301. URL https://arxiv.org/abs/1304.4279v3.

Ahn, C.P. et al. The ninth data release of the sloan digital sky survey: First spectroscopic
data from the sdss-iii baryon oscillation spectroscopic survey. Astrophysical Journal,
Supplement Series, 203(2):2012, 12 2012. ISSN 00670049. doi: 10.1088/0067-0049/203/
2/21. URL https://ui.adsabs.harvard.edu/abs/2012ApJS..203...21A/abstract.

Alam, S.M.K., Bullock, J.S. and Weinberg, D.H. Dark Matter Properties and Halo Central
Densities. The Astrophysical Journal, 572(1):34–40, 9 2001. URL http://arxiv.org/abs/
astro-ph/0109392.

Alsing, J. Bayesian analysis of weak gravitational lensing. PhD thesis, Imperial College
London, London, 2017. URL https://spiral.imperial.ac.uk/handle/10044/1/44571.

Angloher, G. et al. Results from 730 kg days of the CRESST-II Dark Matter
search. European Physical Journal C, 72(4):1–22, 4 2012. ISSN 14346052. doi:
10.1140/epjc/s10052-012-1971-8. URL https://link.springer.com/article/10.1140/epjc/
s10052-012-1971-8.

ANTARES collaboration et al. Limits on Dark Matter Annihilation in the Sun using the
ANTARES Neutrino Telescope. Physics Letters, Section B: Nuclear, Elementary Particle
and High-Energy Physics, 759:69–74, 3 2016. doi: 10.1016/j.physletb.2016.05.019. URL
http://arxiv.org/abs/1603.02228http://dx.doi.org/10.1016/j.physletb.2016.05.019.

Antilogus, P. et al. The brighter-fatter effect and pixel correlations in CCD sensors. JInst, 9
(3):C03048, 2014. doi: 10.1088/1748-0221/9/03/C03048. URL https://ui.adsabs.harvard.
edu/abs/2014JInst...9C3048A/abstract.

Appelquist, T., Cheng, H.C. and Dobrescu, B.A. Bounds on Universal Extra Dimensions.
Physical Review D, 64(3), 12 2000. doi: 10.1103/PhysRevD.64.035002. URL http:
//arxiv.org/abs/hep-ph/0012100http://dx.doi.org/10.1103/PhysRevD.64.035002.

Aramaki, T. et al. Antideuteron Sensitivity for the GAPS Experiment. Astroparticle Physics,
74:6–13, 6 2015. doi: 10.1016/j.astropartphys.2015.09.001. URL http://arxiv.org/abs/
1506.02513http://dx.doi.org/10.1016/j.astropartphys.2015.09.001.

https://www.pnas.org/content/11/7/382 https://www.pnas.org/content/11/7/382.abstract
https://www.pnas.org/content/11/7/382 https://www.pnas.org/content/11/7/382.abstract
http://www.esa.int/Planck
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract
https://arxiv.org/abs/1304.4279v3
https://ui.adsabs.harvard.edu/abs/2012ApJS..203...21A/abstract
http://arxiv.org/abs/astro-ph/0109392
http://arxiv.org/abs/astro-ph/0109392
https://spiral.imperial.ac.uk/handle/10044/1/44571
https://link.springer.com/article/10.1140/epjc/s10052-012-1971-8
https://link.springer.com/article/10.1140/epjc/s10052-012-1971-8
http://arxiv.org/abs/1603.02228 http://dx.doi.org/10.1016/j.physletb.2016.05.019
https://ui.adsabs.harvard.edu/abs/2014JInst...9C3048A/abstract
https://ui.adsabs.harvard.edu/abs/2014JInst...9C3048A/abstract
http://arxiv.org/abs/hep-ph/0012100 http://dx.doi.org/10.1103/PhysRevD.64.035002
http://arxiv.org/abs/hep-ph/0012100 http://dx.doi.org/10.1103/PhysRevD.64.035002
http://arxiv.org/abs/1506.02513 http://dx.doi.org/10.1016/j.astropartphys.2015.09.001
http://arxiv.org/abs/1506.02513 http://dx.doi.org/10.1016/j.astropartphys.2015.09.001


Bibliography 239

Arina, C., Del Nobile, E. and Panci, P. Dark matter with pseudoscalar-mediated interactions
explains the DAMA signal and the galactic center excess. Physical Review Letters, 114(1),
6 2015. ISSN 10797114. doi: 10.1103/PhysRevLett.114.011301.

Arnouts, S. et al. Measuring and modelling the redshift evolution of clustering: The Hubble
Deep Field North. Monthly Notices of the Royal Astronomical Society, 310(2):540–556,
12 1999. ISSN 00358711. doi: 10.1046/J.1365-8711.1999.02978.X/2/310-2-540-TBL004.
JPEG. URL https://academic.oup.com/mnras/article/310/2/540/1048431.

Asencio, E., Banik, I. and Kroupa, P. A massive blow for $\Lambda$CDM $-$ the high
redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts
concordance cosmology. Monthly Notices of the Royal Astronomical Society, 500(4):5249–
5267, 12 2020. doi: 10.1093/mnras/staa3441. URL https://arxiv.org/abs/2012.03950v1.

Asgari, M. et al. KiDS-1000 Cosmology: Cosmic shear constraints and comparison between
two point statistics. Astronomy and Astrophysics, 645, 7 2020. doi: 10.1051/0004-6361/
202039070. URL http://arxiv.org/abs/2007.15633http://dx.doi.org/10.1051/0004-6361/
202039070.

Asztalos, S.J. et al. Searches for astrophysical and cosmological axions, 10 2006. ISSN
01638998. URL www.annualreviews.org.

Aubourg, E. et al. Cosmological implications of baryon acoustic oscillation (BAO) measure-
ments. Physical Review D - Particles, Fields, Gravitation and Cosmology, 92(12):9, 11
2014. doi: 10.1103/physrevd.92.123516. URL https://arxiv.org/abs/1411.1074v3.

Audit, E. and Simmons, J.F.L. The use of light polarization for weak-lensing inversions.
Monthly Notices of the Royal Astronomical Society, 303(1):87–95, 9 1998. doi: 10.1046/j.
1365-8711.1999.02226.x. URL http://arxiv.org/abs/astro-ph/9809355http://dx.doi.org/10.
1046/j.1365-8711.1999.02226.x.

Avgoustidis, A. et al. Constraints on cosmic opacity and beyond the standard model physics
from cosmological distance measurements. Journal of Cosmology and Astroparticle
Physics, 2010. doi: 10.1088/1475-7516/2010/10/024.

Bacon, D., Refregier, A. and Ellis, R. Detection of Weak Gravitational Lensing by Large-scale
Structure. Monthly Notices of the Royal Astronomical Society, 318(2):625–640, 3 2000.
doi: 10.1046/j.1365-8711.2000.03851.x. URL https://arxiv.org/abs/astro-ph/0003008v2.

Bacon, D.J. et al. Numerical simulations of weak lensing measurements. Monthly Notices
of the Royal Astronomical Society, 325(3):1065–1074, 8 2001. ISSN 0035-8711. doi:
10.1046/J.1365-8711.2001.04507.X. URL https://academic.oup.com/mnras/article/325/3/
1065/960747.

Bartelmann, M. and Maturi, M. Weak gravitational lensing. Scholarpedia, 12(1):32440, 12
2016. URL http://arxiv.org/abs/1612.06535.

Bartelmann, M. and Schneider, P. Weak Gravitational Lensing. Physics Report, 340(4-5):
291–472, 12 1999. doi: 10.1016/S0370-1573(00)00082-X. URL http://arxiv.org/abs/
astro-ph/9912508http://dx.doi.org/10.1016/S0370-1573(00)00082-X.

https://academic.oup.com/mnras/article/310/2/540/1048431
https://arxiv.org/abs/2012.03950v1
http://arxiv.org/abs/2007.15633 http://dx.doi.org/10.1051/0004-6361/202039070
http://arxiv.org/abs/2007.15633 http://dx.doi.org/10.1051/0004-6361/202039070
www.annualreviews.org
https://arxiv.org/abs/1411.1074v3
http://arxiv.org/abs/astro-ph/9809355 http://dx.doi.org/10.1046/j.1365-8711.1999.02226.x
http://arxiv.org/abs/astro-ph/9809355 http://dx.doi.org/10.1046/j.1365-8711.1999.02226.x
https://arxiv.org/abs/astro-ph/0003008v2
https://academic.oup.com/mnras/article/325/3/1065/960747
https://academic.oup.com/mnras/article/325/3/1065/960747
http://arxiv.org/abs/1612.06535
http://arxiv.org/abs/astro-ph/9912508 http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://arxiv.org/abs/astro-ph/9912508 http://dx.doi.org/10.1016/S0370-1573(00)00082-X


240 Bibliography

Bashkansky, M. and Reintjes, J. Scattering: Stimulated Scattering. In Encyclopedia of Mod-
ern Optics, Five-Volume Set, pages 330–340. Elsevier Inc., 1 2004. ISBN 9780123693952.
doi: 10.1016/B0-12-369395-0/00748-X.

Bass, S.D. and Krzysiak, J. Vacuum energy with mass generation and Higgs bosons. Physics
Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 803:135351, 4
2020. ISSN 03702693. doi: 10.1016/j.physletb.2020.135351.

Baum. Problems of extragalactic research . IAU Symposium, 1962. URL https://cir.nii.ac.
jp/crid/1570572700182521984.

Baum. Multicolour Photometry of Spiral Arms. Spectral Classification and Multicolour
Photometry, Proceedings from Symposium no. 24, 1966. URL https://ui.adsabs.harvard.
edu/abs/1966IAUS...24..288B/abstract.

Bautista, J.E. et al. Measurement of baryon acoustic oscillation correlations at z = 2.3 with
SDSS DR12 Ly α-Forests. Astronomy and Astrophysics, 603:12, 7 2017. ISSN 14320746.
doi: 10.1051/0004-6361/201730533. URL http://www.sdss.org/dr12/algorithms/ancillary/
boss/.

B.Carter. Relativistic Fluid Dynamics. Noto, 1984.

Bekenstein, J.D. Relativistic gravitation theory for the modified Newtonian dynamics
paradigm. Physical Review D - Particles, Fields, Gravitation and Cosmology, 70(8):
083509, 10 2004. ISSN 15502368. doi: 10.1103/PhysRevD.70.083509. URL https:
//journals.aps.org/prd/abstract/10.1103/PhysRevD.70.083509.

Bellhouse, D.R. The Reverend Thomas Bayes, FRS: A Biography to Celebrate
the Tercentenary of His Birth. https://doi.org/10.1214/088342304000000189,
19(1):3–43, 2 2004. ISSN 0883-4237. doi: 10.1214/088342304000000189.
URL https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/
The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/
088342304000000189.fullhttps://projecteuclid.org/journals/statistical-science/
volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.
1214/088342304000000189.short.

Bellman, R. Dynamic programming and stochastic control processes. Information and
Control, 1(3):228–239, 9 1958. ISSN 0019-9958. doi: 10.1016/S0019-9958(58)80003-0.

Benitez, N. Bayesian Photometric Redshift Estimation. The Astrophysical Journal, 536(2):
571–583, 6 2000. ISSN 0004-637X. doi: 10.1086/308947. URL https://ui.adsabs.harvard.
edu/abs/2000ApJ...536..571B/abstract.

Benjamin. Cosmological Probes of Light Relics. PhD thesis, University of Cambridge, 2018.

Benjamin, J. et al. CFHTLenS tomographic weak lensing: quantifying accurate redshift
distributions Downloaded from. MNRAS, 431:1547–1564, 2013. doi: 10.1093/mnras/
stt276. URL http://mnras.oxfordjournals.org/.

Bernabei, R. et al. First model independent results from DAMA/LIBRA-phase2. Nuclear
Physics and Atomic Energy, 19(4):307–325, 5 2018. doi: 10.15407/jnpae2018.04.307.
URL http://arxiv.org/abs/1805.10486http://dx.doi.org/10.15407/jnpae2018.04.307.

https://cir.nii.ac.jp/crid/1570572700182521984
https://cir.nii.ac.jp/crid/1570572700182521984
https://ui.adsabs.harvard.edu/abs/1966IAUS...24..288B/abstract
https://ui.adsabs.harvard.edu/abs/1966IAUS...24..288B/abstract
http://www.sdss.org/dr12/algorithms/ancillary/boss/
http://www.sdss.org/dr12/algorithms/ancillary/boss/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.70.083509
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.70.083509
https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.full https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.short
https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.full https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.short
https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.full https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.short
https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.full https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.short
https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.full https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Reverend-Thomas-Bayes-FRS--A-Biography-to-Celebrate/10.1214/088342304000000189.short
https://ui.adsabs.harvard.edu/abs/2000ApJ...536..571B/abstract
https://ui.adsabs.harvard.edu/abs/2000ApJ...536..571B/abstract
http://mnras.oxfordjournals.org/
http://arxiv.org/abs/1805.10486 http://dx.doi.org/10.15407/jnpae2018.04.307


Bibliography 241

Bernardeau, F., van Waerbeke, L. and Mellier, Y. Weak Lensing Statistics as a Probe of
Omega and Power Spectrum. Astronomy and Astrophysics, 322(1):1–18, 9 1996. URL
https://arxiv.org/abs/astro-ph/9609122v2.

Bernstein, G.M. Shape measurement biases from underfitting and ellipticity gradients.
Monthly Notices of the Royal Astronomical Society, 406(4):2793–2804, 1 2010. doi:
10.1111/j.1365-2966.2010.16883.x. URL https://arxiv.org/abs/1001.2333v2.

Bessell, M.S. Standard Photometric Systems. Annu.Rev.Astron.Astrophys, 43:293–336,
8 2005. ISSN 00664146. doi: 10.1146/ANNUREV.ASTRO.41.082801.100251. URL
https://www.annualreviews.org/doi/abs/10.1146/annurev.astro.41.082801.100251.

Bharadwaj, S., Bhavsar, S. and Sheth, J.V. The Size of the Longest Filaments in the
Universe. The Astrophysical Journal, 606(1):25–31, 11 2003. doi: 10.1086/382140. URL
http://arxiv.org/abs/astro-ph/0311342http://dx.doi.org/10.1086/382140.

Bilicki, M. et al. Photometric redshifts for the Kilo-Degree Survey: Machine-learning
analysis with artificial neural networks. Astronomy and Astrophysics, 616:69, 8 2018.
ISSN 14320746. doi: 10.1051/0004-6361/201731942. URL https://doi.org/10.1051/
0004-6361/201731942.

Birkedal, A. et al. Little Higgs Dark Matter. Physical Review D - Particles, Fields, Gravitation
and Cosmology, 74(3), 3 2006. doi: 10.1103/PhysRevD.74.035002. URL http://arxiv.org/
abs/hep-ph/0603077http://dx.doi.org/10.1103/PhysRevD.74.035002.

Birkinshaw, M., Gull, S.F. and Hardebeck, H. The Sunyaev–Zeldovich effect towards three
clusters of galaxies. Nature 1984 309:5963, 309(5963):34–35, 1984. ISSN 1476-4687.
doi: 10.1038/309034a0. URL https://www.nature.com/articles/309034a0.

Blas, D., Lesgourgues, J. and Tram, T. The Cosmic Linear Anisotropy Solving System
(CLASS). Part II: Approximation schemes. Journal of Cosmology and Astroparticle
Physics, 2011(7):034, 2011. ISSN 14757516. doi: 10.1088/1475-7516/2011/07/034. URL
https://ui.adsabs.harvard.edu/abs/2011JCAP...07..034B/abstract.

Blum, K. DAMA vs. the annually modulated muon background. ArXiv, 10 2011. URL
http://arxiv.org/abs/1110.0857.

Bolton, A.S. et al. SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT
FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. The
Astronomical Journal, 144(5):144, 10 2012. ISSN 1538-3881. doi: 10.1088/0004-6256/
144/5/144. URL https://iopscience.iop.org/article/10.1088/0004-6256/144/5/144https:
//iopscience.iop.org/article/10.1088/0004-6256/144/5/144/meta.

Bolzonella, M., Miralles, J.M. and Pelló, R. Photometric Redshifts based on standard SED
fitting procedures. Astronomy and Astrophysics, 363(2):476–492, 3 2000. ISSN 00046361.
doi: 10.48550/arxiv.astro-ph/0003380. URL https://arxiv.org/abs/astro-ph/0003380v2.

Bonamente, M. et al. Determination of the Cosmic Distance Scale from Sunyaev-Zel’dovich
Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters. The As-
trophysical Journal, 647(1):25, 8 2006. ISSN 0004-637X. doi: 10.1086/505291.
URL https://iopscience.iop.org/article/10.1086/505291https://iopscience.iop.org/article/
10.1086/505291/meta.

https://arxiv.org/abs/astro-ph/9609122v2
https://arxiv.org/abs/1001.2333v2
https://www.annualreviews.org/doi/abs/10.1146/annurev.astro.41.082801.100251
http://arxiv.org/abs/astro-ph/0311342 http://dx.doi.org/10.1086/382140
https://doi.org/10.1051/0004-6361/201731942
https://doi.org/10.1051/0004-6361/201731942
http://arxiv.org/abs/hep-ph/0603077 http://dx.doi.org/10.1103/PhysRevD.74.035002
http://arxiv.org/abs/hep-ph/0603077 http://dx.doi.org/10.1103/PhysRevD.74.035002
https://www.nature.com/articles/309034a0
https://ui.adsabs.harvard.edu/abs/2011JCAP...07..034B/abstract
http://arxiv.org/abs/1110.0857
https://iopscience.iop.org/article/10.1088/0004-6256/144/5/144 https://iopscience.iop.org/article/10.1088/0004-6256/144/5/144/meta
https://iopscience.iop.org/article/10.1088/0004-6256/144/5/144 https://iopscience.iop.org/article/10.1088/0004-6256/144/5/144/meta
https://arxiv.org/abs/astro-ph/0003380v2
https://iopscience.iop.org/article/10.1086/505291 https://iopscience.iop.org/article/10.1086/505291/meta
https://iopscience.iop.org/article/10.1086/505291 https://iopscience.iop.org/article/10.1086/505291/meta


242 Bibliography

Bonnett, C. et al. Redshift distributions of galaxies in the Dark Energy Survey Science
Verification shear catalogue and implications for weak lensing. Physical Review D, 94
(4):042005, 8 2016. ISSN 24700029. doi: 10.1103/PHYSREVD.94.042005/FIGURES/1/
SMALL. URL https://ui.adsabs.harvard.edu/abs/2016PhRvD..94d2005B/abstract.

Bonnett, C. Using neural networks to estimate redshift distributions. An application to
CFHTLenS. Monthly Notices of the Royal Astronomical Society, 449(1):1043–1056, 5
2015. ISSN 0035-8711. doi: 10.1093/MNRAS/STV230. URL https://academic.oup.com/
mnras/article/449/1/1043/1302387.

Bordag, M., Mohideen, U. and Mostepanenko, V.M. New Developments in the Casimir Effect.
Physics Report, 353(1-3):1–205, 6 2001. doi: 10.1016/S0370-1573(01)00015-1. URL http:
//arxiv.org/abs/quant-ph/0106045http://dx.doi.org/10.1016/S0370-1573(01)00015-1.

Bordoloi, R., Lilly, S.J. and Amara, A. Photo-z performance for precision cosmology.
Monthly Notices of the Royal Astronomical Society, 406(2):881–895, 8 2010. ISSN 0035-
8711. doi: 10.1111/J.1365-2966.2010.16765.X. URL https://academic.oup.com/mnras/
article/406/2/881/999103.

Borgani, S. and Guzzo, L. X-ray clusters of galaxies as tracers of structure in the Universe.
Nature 2001 409:6816, 409(6816):39–45, 1 2001. ISSN 1476-4687. doi: 10.1038/
35051000. URL https://www.nature.com/articles/35051000.

Born, M. and Wolf, E. Principles of Optics: 60th Anniversary Edition. Principles of Optics,
12 2019. doi: 10.1017/9781108769914. URL https://www.cambridge.org/core/books/
principles-of-optics/9D54D6FF0317074912CB285C3FF7341C.

Boruah, S.S., Hudson, M.J. and Lavaux, G. Cosmic flows in the nearby Universe: new
peculiar velocities from SNe and cosmological constraints. Monthly Notices of the Royal
Astronomical Society, 498(2):2703–2718, 12 2019. doi: 10.1093/mnras/staa2485. URL
http://arxiv.org/abs/1912.09383http://dx.doi.org/10.1093/mnras/staa2485.

Boylan-Kolchin, M., Bullock, J.S. and Kaplinghat, M. Too big to fail? The puzzling
darkness of massive Milky Way subhaloes. Monthly Notices of the Royal Astronomical
Society: Letters, 415(1):1–6, 2 2011a. doi: 10.1111/j.1745-3933.2011.01074.x. URL
http://arxiv.org/abs/1103.0007http://dx.doi.org/10.1111/j.1745-3933.2011.01074.x.

Boylan-Kolchin, M., Bullock, J.S. and Kaplinghat, M. The Milky Way’s bright satellites as
an apparent failure of LCDM. Monthly Notices of the Royal Astronomical Society, 422(2):
1203–1218, 11 2011b. doi: 10.1111/j.1365-2966.2012.20695.x. URL http://arxiv.org/abs/
1111.2048http://dx.doi.org/10.1111/j.1365-2966.2012.20695.x.

Boynton, P.E. Objects at the Highest Redshift. Symposium - International Astronomical
Union, 92:293–303, 1980. ISSN 0074-1809. doi: 10.1017/S0074180900068686. URL
https://www.cambridge.org/core/journals/symposium-international-astronomical-union/
article/objects-at-the-highest-redshift/4B2030396D8C6C9AD8E19680995E29FB.

Brammer, G.B., van Dokkum, P.G. and Coppi, P. EAZY: A Fast, Public Photometric Redshift
Code. The Astrophysical Journal, 686(2):1503–1513, 7 2008. doi: 10.1086/591786. URL
http://arxiv.org/abs/0807.1533http://dx.doi.org/10.1086/591786.

https://ui.adsabs.harvard.edu/abs/2016PhRvD..94d2005B/abstract
https://academic.oup.com/mnras/article/449/1/1043/1302387
https://academic.oup.com/mnras/article/449/1/1043/1302387
http://arxiv.org/abs/quant-ph/0106045 http://dx.doi.org/10.1016/S0370-1573(01)00015-1
http://arxiv.org/abs/quant-ph/0106045 http://dx.doi.org/10.1016/S0370-1573(01)00015-1
https://academic.oup.com/mnras/article/406/2/881/999103
https://academic.oup.com/mnras/article/406/2/881/999103
https://www.nature.com/articles/35051000
https://www.cambridge.org/core/books/principles-of-optics/9D54D6FF0317074912CB285C3FF7341C
https://www.cambridge.org/core/books/principles-of-optics/9D54D6FF0317074912CB285C3FF7341C
http://arxiv.org/abs/1912.09383 http://dx.doi.org/10.1093/mnras/staa2485
http://arxiv.org/abs/1103.0007 http://dx.doi.org/10.1111/j.1745-3933.2011.01074.x
http://arxiv.org/abs/1111.2048 http://dx.doi.org/10.1111/j.1365-2966.2012.20695.x
http://arxiv.org/abs/1111.2048 http://dx.doi.org/10.1111/j.1365-2966.2012.20695.x
https://www.cambridge.org/core/journals/symposium-international-astronomical-union/article/objects-at-the-highest-redshift/4B2030396D8C6C9AD8E19680995E29FB
https://www.cambridge.org/core/journals/symposium-international-astronomical-union/article/objects-at-the-highest-redshift/4B2030396D8C6C9AD8E19680995E29FB
http://arxiv.org/abs/0807.1533 http://dx.doi.org/10.1086/591786


Bibliography 243

Bridle, S. and King, L. Dark energy constraints from cosmic shear power spectra: impact
of intrinsic alignments on photometric redshift requirements. New Journal of Physics,
9, 5 2007. doi: 10.1088/1367-2630/9/12/444. URL http://arxiv.org/abs/0705.0166http:
//dx.doi.org/10.1088/1367-2630/9/12/444.

Bridle, S. et al. Results of the GREAT08 Challenge: An image analysis competition for
cosmological lensing. Monthly Notices of the Royal Astronomical Society, 405(3):2044–
2061, 8 2009. doi: 10.1111/j.1365-2966.2010.16598.x. URL https://arxiv.org/abs/0908.
0945v1.

Briel, U.G. and Henry, J.P. An X-ray Temperature Map of Coma. ArXiv, 11 1997. URL
http://arxiv.org/abs/astro-ph/9711237.

Brinckmann, T. and Lesgourgues, J. MontePython 3: boosted MCMC sampler and other
features. Physics of the Dark Universe, 24, 4 2018. ISSN 22126864. doi: 10.48550/arxiv.
1804.07261. URL https://arxiv.org/abs/1804.07261v2.

Broadhurst, T.J. et al. Large-scale distribution of galaxies at the Galactic poles. Nature,
343(6260):726–728, 1990. ISSN 00280836. doi: 10.1038/343726a0. URL https://www.
nature.com/articles/343726a0.

Brodwin, M. et al. The Canada-France Deep Fields Survey. III. Photometric Redshift
Distribution to I AB = 24 . The Astrophysical Journal Supplement Series, 162(1):20–37, 1
2006. ISSN 0067-0049. doi: 10.1086/497990/FULLTEXT/. URL https://iopscience.iop.
org/article/10.1086/497990https://iopscience.iop.org/article/10.1086/497990/meta.

Brown, A.G. et al. Gaia Data Release 2 - Summary of the contents and survey
properties. Astronomy & Astrophysics, 616:A1, 8 2018. ISSN 0004-6361. doi:
10.1051/0004-6361/201833051. URL https://www.aanda.org/articles/aa/full_html/
2018/08/aa33051-18/aa33051-18.htmlhttps://www.aanda.org/articles/aa/abs/2018/08/
aa33051-18/aa33051-18.html.

Brown, M.L. et al. Measurement of intrinsic alignments in galaxy ellipticities. Monthly
Notices of the Royal Astronomical Society, 333(3):501–509, 9 2000. doi: 10.1046/j.
1365-8711.2002.05354.x. URL http://arxiv.org/abs/astro-ph/0009499http://dx.doi.org/10.
1046/j.1365-8711.2002.05354.x.

Brown, M.L. and Battye, R.A. Polarization as an indicator of intrinsic alignment in radio
weak lensing. Monthly Notices of the Royal Astronomical Society, 410(3):2057–2074, 5
2010. doi: 10.1111/j.1365-2966.2010.17583.x. URL http://arxiv.org/abs/1005.1926http:
//dx.doi.org/10.1111/j.1365-2966.2010.17583.x.

Bruzual A., G. et al. On the interpretation of colors of faint galaxies. ApJ, 241:25–40, 10
1980. ISSN 0004-637X. doi: 10.1086/158314. URL https://ui.adsabs.harvard.edu/abs/
1980ApJ...241...25B/abstract.

Bryan, G.L. and Norman, M.L. Statistical Properties of X-Ray Clusters: Analytic and
Numerical Comparisons. The Astrophysical Journal, 495(1):80–99, 3 1998. ISSN 0004-
637X. doi: 10.1086/305262/FULLTEXT/. URL https://iopscience.iop.org/article/10.1086/
305262https://iopscience.iop.org/article/10.1086/305262/meta.

http://arxiv.org/abs/0705.0166 http://dx.doi.org/10.1088/1367-2630/9/12/444
http://arxiv.org/abs/0705.0166 http://dx.doi.org/10.1088/1367-2630/9/12/444
https://arxiv.org/abs/0908.0945v1
https://arxiv.org/abs/0908.0945v1
http://arxiv.org/abs/astro-ph/9711237
https://arxiv.org/abs/1804.07261v2
https://www.nature.com/articles/343726a0
https://www.nature.com/articles/343726a0
https://iopscience.iop.org/article/10.1086/497990 https://iopscience.iop.org/article/10.1086/497990/meta
https://iopscience.iop.org/article/10.1086/497990 https://iopscience.iop.org/article/10.1086/497990/meta
https://www.aanda.org/articles/aa/full_html/2018/08/aa33051-18/aa33051-18.html https://www.aanda.org/articles/aa/abs/2018/08/aa33051-18/aa33051-18.html
https://www.aanda.org/articles/aa/full_html/2018/08/aa33051-18/aa33051-18.html https://www.aanda.org/articles/aa/abs/2018/08/aa33051-18/aa33051-18.html
https://www.aanda.org/articles/aa/full_html/2018/08/aa33051-18/aa33051-18.html https://www.aanda.org/articles/aa/abs/2018/08/aa33051-18/aa33051-18.html
http://arxiv.org/abs/astro-ph/0009499 http://dx.doi.org/10.1046/j.1365-8711.2002.05354.x
http://arxiv.org/abs/astro-ph/0009499 http://dx.doi.org/10.1046/j.1365-8711.2002.05354.x
http://arxiv.org/abs/1005.1926 http://dx.doi.org/10.1111/j.1365-2966.2010.17583.x
http://arxiv.org/abs/1005.1926 http://dx.doi.org/10.1111/j.1365-2966.2010.17583.x
https://ui.adsabs.harvard.edu/abs/1980ApJ...241...25B/abstract
https://ui.adsabs.harvard.edu/abs/1980ApJ...241...25B/abstract
https://iopscience.iop.org/article/10.1086/305262 https://iopscience.iop.org/article/10.1086/305262/meta
https://iopscience.iop.org/article/10.1086/305262 https://iopscience.iop.org/article/10.1086/305262/meta


244 Bibliography

Bucher, M. Physics of the cosmic microwave background anisotropy. International Journal
of Modern Physics D, 24(2), 1 2015. doi: 10.1142/S0218271815300049. URL http:
//arxiv.org/abs/1501.04288http://dx.doi.org/10.1142/S0218271815300049.

Bull, P. et al. Beyond $\Lambda$CDM: Problems, solutions, and the road ahead. Physics
of the Dark Universe, 12:56–99, 12 2015. doi: 10.1016/j.dark.2016.02.001. URL http:
//arxiv.org/abs/1512.05356http://dx.doi.org/10.1016/j.dark.2016.02.001.

Burns, J. et al. Global 21-cm Cosmology from the Farside of the Moon. ArXiv, 3 2021. doi:
10.48550/arxiv.2103.05085. URL https://arxiv.org/abs/2103.05085v1.

Cabayol, L. et al. The PAU survey: Estimating galaxy photometry with deep learning.
Monthly Notices of the Royal Astronomical Society, 506(3):4048–4069, 4 2021. doi:
10.1093/mnras/stab1909. URL http://arxiv.org/abs/2104.02778http://dx.doi.org/10.1093/
mnras/stab1909.

Camelio, G. and Lombardi, M. On the origin of intrinsic alignment in cosmic
shear measurements: an analytic argument. Astronomy & Astrophysics, 575:
A113, 3 2015. ISSN 0004-6361. doi: 10.1051/0004-6361/201425016. URL
https://www.aanda.org/articles/aa/full_html/2015/03/aa25016-14/aa25016-14.htmlhttps:
//www.aanda.org/articles/aa/abs/2015/03/aa25016-14/aa25016-14.html.

Cao, S. and Zhu, Z.H. Cosmic equation of state from combined angular diameter distances:
Does the tension with luminosity distances exist? Physical Review, 90(8), 10 2014. ISSN
15502368. doi: 10.1103/PHYSREVD.90.083006.

Cao, S. et al. Ultra-compact structure in intermediate-luminosity radio quasars: Building
a sample of standard cosmological rulers and improving the dark energy constraints
up to z ˜ 3. Astronomy and Astrophysics, 606:15, 10 2017. ISSN 14320746. doi:
10.1051/0004-6361/201730551. URL http://nrl.northumbria.ac.uk/.

Capozziello, S., Carloni, S. and Troisi, A. Quintessence without scalar fields. Recent
Res.Dev.Astron.Astrophys, 1(625), 3 2003. URL http://arxiv.org/abs/astro-ph/0303041.

Capozziello, S., Alberto Mantica, C. and Guido Molinari, L. COSMOLOGICAL PERFECT-
FLUIDS IN f (R) GRAVITY. International Journal of Geometric Methods in Modern
Physics, 16(1), 2018.

Capranico, F., Merkel, P.M. and Schäfer, B.M. Intrinsic ellipticity correlations of galaxies:
models, likelihoods and interplay with weak lensing. Monthly Notices of the Royal
Astronomical Society, 435(1):194–206, 10 2013. ISSN 0035-8711. doi: 10.1093/MNRAS/
STT1269. URL https://academic.oup.com/mnras/article/435/1/194/1104047.

Carliles, S. et al. RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS. The Astrophys-
ical Journal, 712(1):511, 3 2010. ISSN 0004-637X. doi: 10.1088/0004-637X/712/1/511.
URL https://iopscience.iop.org/article/10.1088/0004-637X/712/1/511https://iopscience.
iop.org/article/10.1088/0004-637X/712/1/511/meta.

Carlsten, S.G. et al. Wavelength Dependent PSFs and their impact on Weak Lensing
Measurements. MNRAS, 000(0000):0–000, 2018. URL https://hsc-release.mtk.nao.ac.jp/.

http://arxiv.org/abs/1501.04288 http://dx.doi.org/10.1142/S0218271815300049
http://arxiv.org/abs/1501.04288 http://dx.doi.org/10.1142/S0218271815300049
http://arxiv.org/abs/1512.05356 http://dx.doi.org/10.1016/j.dark.2016.02.001
http://arxiv.org/abs/1512.05356 http://dx.doi.org/10.1016/j.dark.2016.02.001
https://arxiv.org/abs/2103.05085v1
http://arxiv.org/abs/2104.02778 http://dx.doi.org/10.1093/mnras/stab1909
http://arxiv.org/abs/2104.02778 http://dx.doi.org/10.1093/mnras/stab1909
https://www.aanda.org/articles/aa/full_html/2015/03/aa25016-14/aa25016-14.html https://www.aanda.org/articles/aa/abs/2015/03/aa25016-14/aa25016-14.html
https://www.aanda.org/articles/aa/full_html/2015/03/aa25016-14/aa25016-14.html https://www.aanda.org/articles/aa/abs/2015/03/aa25016-14/aa25016-14.html
http://nrl.northumbria.ac.uk/
http://arxiv.org/abs/astro-ph/0303041
https://academic.oup.com/mnras/article/435/1/194/1104047
https://iopscience.iop.org/article/10.1088/0004-637X/712/1/511 https://iopscience.iop.org/article/10.1088/0004-637X/712/1/511/meta
https://iopscience.iop.org/article/10.1088/0004-637X/712/1/511 https://iopscience.iop.org/article/10.1088/0004-637X/712/1/511/meta
https://hsc-release.mtk.nao.ac.jp/


Bibliography 245

Carroll, S.M. The Cosmological Constant. Living Reviews in Relativity, 4(1), 4 2000.
doi: 10.12942/lrr-2001-1. URL http://arxiv.org/abs/astro-ph/0004075http://dx.doi.org/10.
12942/lrr-2001-1.

Casimir. On the attraction between two perfectly conducting plates. Indag. Math., 10(4):
261–263, 1948.

Catalan, P. and Theuns, T. Evolution of the angular momentum of protogalaxies from tidal
torques: Zel’dovich approximation. Monthly Notices of the Royal Astronomical Society,
282(2):436–454, 9 1996. ISSN 0035-8711. doi: 10.1093/MNRAS/282.2.436. URL
https://academic.oup.com/mnras/article/282/2/436/1040262.

Catinella, B., Giovanelli, R. and Haynes, M.P. Template Rotation Curves for Disk Galaxies.
The Astrophysical Journal, 640(2):751–761, 4 2006. ISSN 0004-637X. doi: 10.1086/
500171. URL https://iopscience.iop.org/article/10.1086/500171https://iopscience.iop.org/
article/10.1086/500171/meta.

Cembranos, J.A.R., Dobado, A. and Maroto, A.L. Brane-world dark matter. Physical
Review Letters, 90(24):4, 2 2003. doi: 10.1103/PhysRevLett.90.241301. URL http:
//arxiv.org/abs/hep-ph/0302041http://dx.doi.org/10.1103/PhysRevLett.90.241301.

Chabanier, S. et al. The one-dimensional power spectrum from the SDSS DR14 Ly$\alpha$
forests. Journal of Cosmology and Astroparticle Physics, 2019(7), 12 2018. doi: 10.1088/
1475-7516/2019/07/017. URL http://arxiv.org/abs/1812.03554http://dx.doi.org/10.1088/
1475-7516/2019/07/017.

Chabanier, S., Millea, M. and Palanque-Delabrouille, N. Matter power spectrum: from
Ly$\alpha$ forest to CMB scales. Monthly Notices of the Royal Astronomical Society,
489(2):2247–2253, 5 2019. doi: 10.1093/mnras/stz2310. URL http://arxiv.org/abs/1905.
08103http://dx.doi.org/10.1093/mnras/stz2310.

Chang, C. et al. Atmospheric point spread function interpolation for weak lensing in short
exposure imaging data. Monthly Notices of the Royal Astronomical Society, 427(3):
2572–2587, 12 2012. ISSN 0035-8711. doi: 10.1111/J.1365-2966.2012.22134.X. URL
https://academic.oup.com/mnras/article/427/3/2572/1106605.

Chiosi, C., Bertelli, G. and Bressan, A. No Title. A&A, 196(84), 1988.

Choi, A. et al. CFHTLenS and RCSLenS: testing photometric redshift distributions using
angular cross-correlations with spectroscopic galaxy surveys. Monthly Notices of the
Royal Astronomical Society, 463(4):3737–3754, 12 2016. ISSN 0035-8711. doi: 10.1093/
mnras/stw2241. URL https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/
stw2241.

Choi, K. et al. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter
Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14):141301, 4
2015. ISSN 10797114. doi: 10.1103/PhysRevLett.114.141301. URL https://journals.aps.
org/prl/abstract/10.1103/PhysRevLett.114.141301.

Cholis, I., Linden, T. and Hooper, D. Anti-Deuterons and Anti-Helium Nuclei from Annihilat-
ing Dark Matter. Physical Review D, 102(10), 1 2020. doi: 10.1103/PhysRevD.102.103019.
URL http://arxiv.org/abs/2001.08749http://dx.doi.org/10.1103/PhysRevD.102.103019.

http://arxiv.org/abs/astro-ph/0004075 http://dx.doi.org/10.12942/lrr-2001-1
http://arxiv.org/abs/astro-ph/0004075 http://dx.doi.org/10.12942/lrr-2001-1
https://academic.oup.com/mnras/article/282/2/436/1040262
https://iopscience.iop.org/article/10.1086/500171 https://iopscience.iop.org/article/10.1086/500171/meta
https://iopscience.iop.org/article/10.1086/500171 https://iopscience.iop.org/article/10.1086/500171/meta
http://arxiv.org/abs/hep-ph/0302041 http://dx.doi.org/10.1103/PhysRevLett.90.241301
http://arxiv.org/abs/hep-ph/0302041 http://dx.doi.org/10.1103/PhysRevLett.90.241301
http://arxiv.org/abs/1812.03554 http://dx.doi.org/10.1088/1475-7516/2019/07/017
http://arxiv.org/abs/1812.03554 http://dx.doi.org/10.1088/1475-7516/2019/07/017
http://arxiv.org/abs/1905.08103 http://dx.doi.org/10.1093/mnras/stz2310
http://arxiv.org/abs/1905.08103 http://dx.doi.org/10.1093/mnras/stz2310
https://academic.oup.com/mnras/article/427/3/2572/1106605
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw2241
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw2241
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.141301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.141301
http://arxiv.org/abs/2001.08749 http://dx.doi.org/10.1103/PhysRevD.102.103019


246 Bibliography

Clarkson, C. Establishing homogeneity of the universe in the shadow of dark energy, 7 2012.
ISSN 16310705.

Clausius, R. XVI. On a mechanical theorem applicable to heat . The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 40(265):122–127, 8 1870.
ISSN 1941-5982. doi: 10.1080/14786447008640370. URL https://www.tandfonline.com/
doi/abs/10.1080/14786447008640370.

Clowe, D. et al. A direct empirical proof of the existence of dark matter. The Astrophysical
Journal, 648(2):L109–L113, 8 2006. doi: 10.1086/508162. URL http://arxiv.org/abs/
astro-ph/0608407http://dx.doi.org/10.1086/508162.

Coil, A.L. The large-scale structure of the universe. Planets, Stars and Stellar Systems:
Volume 6: Extragalactic Astronomy and Cosmology, pages 387–421, 1 2013. doi: 10.1007/
978-94-007-5609-0{\_}8/COVER. URL https://link.springer.com/referenceworkentry/10.
1007/978-94-007-5609-0_8.

Coil, A.L. et al. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SUR-
VEY OVERVIEW AND CHARACTERISTICS. The Astrophysical Journal,
741(1):8, 10 2011. ISSN 0004-637X. doi: 10.1088/0004-637X/741/1/8.
URL https://iopscience.iop.org/article/10.1088/0004-637X/741/1/8https://iopscience.iop.
org/article/10.1088/0004-637X/741/1/8/meta.

Cole, S. et al. The 2dF galaxy redshift survey: Near-infrared galaxy luminosity functions.
Monthly Notices of the Royal Astronomical Society, 326(1):255–273, 9 2001. ISSN
00358711. doi: 10.1046/J.1365-8711.2001.04591.X/2/M{\_}326-1-255-FIG010.JPEG.
URL https://academic.oup.com/mnras/article/326/1/255/1026734.

Coleman, G.D., Wu, C.C. and Weedman, D.W. Colors and magnitudes predicted for high
redshift galaxies. The Astrophysical Journal Supplement Series, 43:393, 7 1980. ISSN
0067-0049. doi: 10.1086/190674. URL http://adsabs.harvard.edu/doi/10.1086/190674.

Collaboration, P. et al. Planck 2018 results. VI. Cosmological parameters. Astronomy and
Astrophysics, 641, 7 2018. doi: 10.1051/0004-6361/201833910. URL https://arxiv.org/
abs/1807.06209v3.

Comer, G.L., Peter, P. and Andersson, N. Multi-fluid cosmology: An illustration of fundamen-
tal principles. Physical Review D - Particles, Fields, Gravitation and Cosmology, 85(10),
11 2011. doi: 10.1103/PhysRevD.85.103006. URL http://arxiv.org/abs/1111.5043http:
//dx.doi.org/10.1103/PhysRevD.85.103006.

Connolly, A.J. et al. Slicing Through Multicolor Space: Galaxy Redshifts from Broadband
Photometry. The Astronomical Journal, 110:2655, 12 1995. ISSN 00046256. doi: 10.
1086/117720. URL https://www.researchgate.net/publication/1810942_Slicing_Through_
Multicolor_Space_Galaxy_Redshifts_From_Broadband_Photometry.

Coulton, W.R. et al. Exploring the brighter fatter effect with the Hyper Suprime-Cam.
The Astronomical Journal, 155(6):258, 11 2017. doi: 10.3847/1538-3881/aac08d. URL
https://arxiv.org/abs/1711.06273v1.

https://www.tandfonline.com/doi/abs/10.1080/14786447008640370
https://www.tandfonline.com/doi/abs/10.1080/14786447008640370
http://arxiv.org/abs/astro-ph/0608407 http://dx.doi.org/10.1086/508162
http://arxiv.org/abs/astro-ph/0608407 http://dx.doi.org/10.1086/508162
https://link.springer.com/referenceworkentry/10.1007/978-94-007-5609-0_8
https://link.springer.com/referenceworkentry/10.1007/978-94-007-5609-0_8
https://iopscience.iop.org/article/10.1088/0004-637X/741/1/8 https://iopscience.iop.org/article/10.1088/0004-637X/741/1/8/meta
https://iopscience.iop.org/article/10.1088/0004-637X/741/1/8 https://iopscience.iop.org/article/10.1088/0004-637X/741/1/8/meta
https://academic.oup.com/mnras/article/326/1/255/1026734
http://adsabs.harvard.edu/doi/10.1086/190674
https://arxiv.org/abs/1807.06209v3
https://arxiv.org/abs/1807.06209v3
http://arxiv.org/abs/1111.5043 http://dx.doi.org/10.1103/PhysRevD.85.103006
http://arxiv.org/abs/1111.5043 http://dx.doi.org/10.1103/PhysRevD.85.103006
https://www.researchgate.net/publication/1810942_Slicing_Through_Multicolor_Space_Galaxy_Redshifts_From_Broadband_Photometry
https://www.researchgate.net/publication/1810942_Slicing_Through_Multicolor_Space_Galaxy_Redshifts_From_Broadband_Photometry
https://arxiv.org/abs/1711.06273v1


Bibliography 247

Cruz, M. et al. Detection of a non-Gaussian Spot in WMAP. Monthly Notices of the Royal
Astronomical Society, 356(1):29–40, 5 2004. doi: 10.1111/j.1365-2966.2004.08419.x/abs/.
URL https://arxiv.org/abs/astro-ph/0405341v2.

Cuesta-Lazaro, C. et al. Gravitational corrections to light propagation in a perturbed
FLRW-universe and corresponding weak lensing spectra. Monthly Notices of the Royal
Astronomical Society, 477(1):741–754, 1 2018. doi: 10.1093/mnras/sty672. URL
https://arxiv.org/abs/1801.03325v1.

Cypriano, E.S. et al. Cosmic shear requirements on the wavelength dependence of telescope
point spread functions. Monthly Notices of the Royal Astronomical Society, 405(1):
494–502, 6 2010. ISSN 0035-8711. doi: 10.1111/J.1365-2966.2010.16461.X. URL
https://academic.oup.com/mnras/article/405/1/494/1023433.

D’Agostini, G. Fits, and especially linear fits, with errors on both axes, extra variance of the
data points and other complications. ArXiv, 11 2005. doi: 10.48550/arxiv.physics/0511182.
URL https://arxiv.org/abs/physics/0511182v1.

Dahlen, T. et al. A CRITICAL ASSESSMENT OF PHOTOMETRIC RED-
SHIFT METHODS: A CANDELS INVESTIGATION. The Astrophysical Jour-
nal, 775(2):93, 9 2013. ISSN 0004-637X. doi: 10.1088/0004-637X/775/2/93.
URL https://iopscience.iop.org/article/10.1088/0004-637X/775/2/93https://iopscience.iop.
org/article/10.1088/0004-637X/775/2/93/meta.

Dai, X. et al. Mid-infrared galaxy luminosity functions from the agn and galaxy evo-
lution survey. Astrophysical Journal, 697(1):506–521, 2009. ISSN 15384357. doi:
10.1088/0004-637X/697/1/506. URL https://ui.adsabs.harvard.edu/abs/2009ApJ...697.
.506D/abstract.

Das, A. et al. Perfect fluid cosmological Universes: One equation of state and the most
general solution. Pramana, 90:19, 2017. doi: 10.1007/s12043-017-1511-z. URL https:
//doi.org/10.1007/s12043-017-1511-z.

Davis, T.M., Lineweaver, C.H. and Webb, J.K. Solutions to the tethered galaxy problem
in an expanding universe and the observation of receding blueshifted objects. American
Journal of Physics, 71(358), 2003.

Davis, T.M. et al. The effect of peculiar velocities on supernova cosmology. Astrophysical
Journal, 741(1), 12 2010. doi: 10.1088/0004-637X/741/1/67. URL http://arxiv.org/abs/
1012.2912http://dx.doi.org/10.1088/0004-637X/741/1/67.

de Bernardis, P. et al. A Flat Universe from High-Resolution Maps of the Cosmic Microwave
Background Radiation. Nature, 404(6781):955–959, 4 2000. doi: 10.1038/35010035.
URL http://arxiv.org/abs/astro-ph/0004404http://dx.doi.org/10.1038/35010035.

de Jong, J.T.A. et al. The Kilo-Degree Survey. Experimental Astronomy, Volume 35, Issue
1-2, pp. 25-44, 35:25–44, 6 2012. ISSN 0922-6435. doi: 10.1007/s10686-012-9306-1.
URL http://arxiv.org/abs/1206.1254http://dx.doi.org/10.1007/s10686-012-9306-1.

de Jong, J.T.A. et al. The first and second data releases of the Kilo-Degree Survey. Astronomy
& Astrophysics, 582:A62, 10 2015. ISSN 0004-6361. doi: 10.1051/0004-6361/201526601.
URL http://www.aanda.org/10.1051/0004-6361/201526601.

https://arxiv.org/abs/astro-ph/0405341v2
https://arxiv.org/abs/1801.03325v1
https://academic.oup.com/mnras/article/405/1/494/1023433
https://arxiv.org/abs/physics/0511182v1
https://iopscience.iop.org/article/10.1088/0004-637X/775/2/93 https://iopscience.iop.org/article/10.1088/0004-637X/775/2/93/meta
https://iopscience.iop.org/article/10.1088/0004-637X/775/2/93 https://iopscience.iop.org/article/10.1088/0004-637X/775/2/93/meta
https://ui.adsabs.harvard.edu/abs/2009ApJ...697..506D/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJ...697..506D/abstract
https://doi.org/10.1007/s12043-017-1511-z
https://doi.org/10.1007/s12043-017-1511-z
http://arxiv.org/abs/1012.2912 http://dx.doi.org/10.1088/0004-637X/741/1/67
http://arxiv.org/abs/1012.2912 http://dx.doi.org/10.1088/0004-637X/741/1/67
http://arxiv.org/abs/astro-ph/0004404 http://dx.doi.org/10.1038/35010035
http://arxiv.org/abs/1206.1254 http://dx.doi.org/10.1007/s10686-012-9306-1
http://www.aanda.org/10.1051/0004-6361/201526601


248 Bibliography

De Jong, J.T. et al. The third data release of the Kilo-Degree Survey
and associated data products. Astronomy & Astrophysics, 604:A134, 8
2017. ISSN 0004-6361. doi: 10.1051/0004-6361/201730747. URL
https://www.aanda.org/articles/aa/full_html/2017/08/aa30747-17/aa30747-17.htmlhttps:
//www.aanda.org/articles/aa/abs/2017/08/aa30747-17/aa30747-17.html.

De Paolis, F. et al. MACHOs as brown dwarfs. ArXiv, 3 1998. URL http://arxiv.org/abs/
astro-ph/9803200.

de Vaucouleurs, G., Vaucouleurs, d. and Gerard. Classification and Morphology of External
Galaxies. HDP, 53:275, 1959. doi: 10.1007/978-3-642-45932-0{\_}7. URL https:
//ui.adsabs.harvard.edu/abs/1959HDP....53..275D/abstract.

Desjacques, V., Jeong, D. and Schmidt, F. Large-Scale Galaxy Bias. Physics Reports, 733:
1–193, 11 2016. doi: 10.1016/j.physrep.2017.12.002. URL http://arxiv.org/abs/1611.
09787http://dx.doi.org/10.1016/j.physrep.2017.12.002.

Díaz Tello, J. et al. Star formation activity in Balmer break galaxies at z< 1.5. Astronomy &
Astrophysics, 587:A136, 3 2016. ISSN 0004-6361. doi: 10.1051/0004-6361/201526315.
URL https://www.aanda.org/articles/aa/full_html/2016/03/aa26315-15/aa26315-15.
htmlhttps://www.aanda.org/articles/aa/abs/2016/03/aa26315-15/aa26315-15.html.

D’Isanto, A. and Polsterer, K.L. Photometric redshift estimation via deep learning. Astronomy
and Astrophysics, 609, 6 2017. doi: 10.1051/0004-6361/201731326. URL http://arxiv.org/
abs/1706.02467http://dx.doi.org/10.1051/0004-6361/201731326.

Donato, F., Fornengo, N. and Salati, P. Antideuterons as a signature of supersymmetric
dark matter. Physical Review D - Particles, Fields, Gravitation and Cosmology, 62
(4):1–13, 8 2000. ISSN 05562821. doi: 10.1103/PhysRevD.62.043003. URL https:
//journals.aps.org/prd/abstract/10.1103/PhysRevD.62.043003.

Dong, T., An, D. and H. Kim, N. Prognostics 102: Efficient Bayesian-Based Prognostics
Algorithm in MATLAB. Fault Detection, Diagnosis and Prognosis, 2 2020. doi: 10.5772/
INTECHOPEN.82781.

Doroshkevich, A.G. et al. Large-scale galaxy distribution in the Las Campanas Redshift
Survey. Monthly Notices of the Royal Astronomical Society, 322(2):369–388, 4 2001.
ISSN 00358711. doi: 10.1046/j.1365-8711.2001.04121.x. URL https://academic.oup.
com/mnras/article/322/2/369/963406.

Dressler, A. et al. Spectroscopy and photometry of elliptical galaxies. I - A new distance
estimator. The Astrophysical Journal, 313:42, 2 1987. ISSN 0004-637X. doi: 10.1086/
164947. URL https://ui.adsabs.harvard.edu/abs/1987ApJ...313...42D/abstract.

Driver, S. Galaxy Spectra, 2014. URL http://star-www.st-and.ac.uk/~spd3/Teaching/
PHYS1002/phys1002_lecture6.pdf.

Durrer, R. The Cosmic Microwave Background: The history of its experimental investigation
and its significance for cosmology. Classical and Quantum Gravity, 32(12), 6 2015. doi:
10.1088/0264-9381/32/12/124007. URL http://arxiv.org/abs/1506.01907http://dx.doi.org/
10.1088/0264-9381/32/12/124007.

https://www.aanda.org/articles/aa/full_html/2017/08/aa30747-17/aa30747-17.html https://www.aanda.org/articles/aa/abs/2017/08/aa30747-17/aa30747-17.html
https://www.aanda.org/articles/aa/full_html/2017/08/aa30747-17/aa30747-17.html https://www.aanda.org/articles/aa/abs/2017/08/aa30747-17/aa30747-17.html
http://arxiv.org/abs/astro-ph/9803200
http://arxiv.org/abs/astro-ph/9803200
https://ui.adsabs.harvard.edu/abs/1959HDP....53..275D/abstract
https://ui.adsabs.harvard.edu/abs/1959HDP....53..275D/abstract
http://arxiv.org/abs/1611.09787 http://dx.doi.org/10.1016/j.physrep.2017.12.002
http://arxiv.org/abs/1611.09787 http://dx.doi.org/10.1016/j.physrep.2017.12.002
https://www.aanda.org/articles/aa/full_html/2016/03/aa26315-15/aa26315-15.html https://www.aanda.org/articles/aa/abs/2016/03/aa26315-15/aa26315-15.html
https://www.aanda.org/articles/aa/full_html/2016/03/aa26315-15/aa26315-15.html https://www.aanda.org/articles/aa/abs/2016/03/aa26315-15/aa26315-15.html
http://arxiv.org/abs/1706.02467 http://dx.doi.org/10.1051/0004-6361/201731326
http://arxiv.org/abs/1706.02467 http://dx.doi.org/10.1051/0004-6361/201731326
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.62.043003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.62.043003
https://academic.oup.com/mnras/article/322/2/369/963406
https://academic.oup.com/mnras/article/322/2/369/963406
https://ui.adsabs.harvard.edu/abs/1987ApJ...313...42D/abstract
http://star-www.st-and.ac.uk/~spd3/Teaching/PHYS1002/phys1002_lecture6.pdf
http://star-www.st-and.ac.uk/~spd3/Teaching/PHYS1002/phys1002_lecture6.pdf
http://arxiv.org/abs/1506.01907 http://dx.doi.org/10.1088/0264-9381/32/12/124007
http://arxiv.org/abs/1506.01907 http://dx.doi.org/10.1088/0264-9381/32/12/124007


Bibliography 249

Dvali, G., Gabadadze, G. and Porrati, M. 4D Gravity on a Brane in 5D Minkowski Space.
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 485
(1-3):208–214, 5 2000. doi: 10.1016/S0370-2693(00)00669-9. URL http://arxiv.org/abs/
hep-th/0005016http://dx.doi.org/10.1016/S0370-2693(00)00669-9.

Dyson, F.W. et al. A Determination of the Deflection of Light by the Sun’s Gravitational
Field, from Observations Made at the Total Eclipse of May 29, 1919. RSPTA, 220
(571-581):291–333, 1 1920. ISSN 1364-503X. doi: 10.1098/RSTA.1920.0009. URL
https://ui.adsabs.harvard.edu/abs/1920RSPTA.220..291D/abstract.

Eddington, A.S. Einstein shift and Doppler shift, 1 1926. ISSN 00280836. URL https:
//www.nature.com/articles/117086a0.

Edge, A. et al. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: Bridging the
Gap between Low and High Redshift - NASA/ADS. The Messenger, 154:32–34, 12 2013.
URL https://ui.adsabs.harvard.edu/abs/2013Msngr.154...32E/abstract.

Efstathiou, G., Bond, J.R. and White, S.D. COBE background radiation anisotropics
and large-scale structure in the Universe. Monthly Notices of the Royal Astronomical
Society, 258(1):1P–6P, 9 1992. ISSN 13652966. doi: 10.1093/mnras/258.1.1P. URL
https://academic.oup.com/mnras/article/258/1/1P/967069.

Efstathiou, G. To H0 or not to H0? Monthly Notices of the Royal Astronomical Society,
505(3):3866–3872, 6 2021. ISSN 0035-8711. doi: 10.1093/MNRAS/STAB1588. URL
https://academic.oup.com/mnras/article/505/3/3866/6293858.

Einstein, A. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der
Physik, 340(10):898–908, 1 1911. ISSN 1521-3889. doi: 10.1002/ANDP.19113401005.
URL https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19113401005https:
//onlinelibrary.wiley.com/doi/abs/10.1002/andp.19113401005https://onlinelibrary.
wiley.com/doi/10.1002/andp.19113401005.

Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik,
354(7):769–822, 1 1916. ISSN 1521-3889. doi: 10.1002/ANDP.19163540702.
URL https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19163540702https:
//onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702https://onlinelibrary.
wiley.com/doi/10.1002/andp.19163540702.

Einstein, A. and Rosen, N. On gravitational waves. Journal of the Franklin Institute, 223(1):
43–54, 1 1937. ISSN 00160032. doi: 10.1016/S0016-0032(37)90583-0.

Einstein, A., Einstein and A. Erklarung der Perihelionbewegung der Merkur aus der allge-
meinen Relativitatstheorie. SPAW, 47:831–839, 1915. URL https://ui.adsabs.harvard.edu/
abs/1915SPAW...47..831E/abstract.

Einstein, A. On the Electrodynamics of Moving Bodies. Annalen der Physik, 1905.

Einstein, A. Cosmological Considerations in the General Theory of Relativity. Sitzungs-
ber.Preuss.Akad.Wiss.Berlin (Math.Phys.), 1917:142–152, 1917.

http://arxiv.org/abs/hep-th/0005016 http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://arxiv.org/abs/hep-th/0005016 http://dx.doi.org/10.1016/S0370-2693(00)00669-9
https://ui.adsabs.harvard.edu/abs/1920RSPTA.220..291D/abstract
https://www.nature.com/articles/117086a0
https://www.nature.com/articles/117086a0
https://ui.adsabs.harvard.edu/abs/2013Msngr.154...32E/abstract
https://academic.oup.com/mnras/article/258/1/1P/967069
https://academic.oup.com/mnras/article/505/3/3866/6293858
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19113401005 https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19113401005 https://onlinelibrary.wiley.com/doi/10.1002/andp.19113401005
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19113401005 https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19113401005 https://onlinelibrary.wiley.com/doi/10.1002/andp.19113401005
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19113401005 https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19113401005 https://onlinelibrary.wiley.com/doi/10.1002/andp.19113401005
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19163540702 https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702 https://onlinelibrary.wiley.com/doi/10.1002/andp.19163540702
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19163540702 https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702 https://onlinelibrary.wiley.com/doi/10.1002/andp.19163540702
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19163540702 https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702 https://onlinelibrary.wiley.com/doi/10.1002/andp.19163540702
https://ui.adsabs.harvard.edu/abs/1915SPAW...47..831E/abstract
https://ui.adsabs.harvard.edu/abs/1915SPAW...47..831E/abstract


250 Bibliography

Einstein, A. and Cohen, E.R. The Meaning of Relativity. Physics Today, 9(10):30, 1 1956.
ISSN 0031-9228. doi: 10.1063/1.3059795. URL https://physicstoday.scitation.org/doi/
abs/10.1063/1.3059795.

Eisenstein, D.J. et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation
Function of SDSS Luminous Red Galaxies. The Astrophysical Journal, 633(2):560–
574, 1 2005. doi: 10.1086/466512. URL http://arxiv.org/abs/astro-ph/0501171http:
//dx.doi.org/10.1086/466512.

Eisenstein, D.J. and Weinberg, D.H.e.a. SDSS-III: Massive Spectroscopic Surveys of the
Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems. Astronomical
Journal, 142(3):19, 1 2011. doi: 10.1088/0004-6256/142/3/72. URL http://arxiv.org/abs/
1101.1529http://dx.doi.org/10.1088/0004-6256/142/3/72.

Ellis, J. et al. Gravitino Dark Matter in the CMSSM. Physics Letters, Section B: Nuclear,
Elementary Particle and High-Energy Physics, 588(1-2):7–16, 12 2003. doi: 10.1016/j.
physletb.2004.03.021. URL http://arxiv.org/abs/hep-ph/0312262http://dx.doi.org/10.1016/
j.physletb.2004.03.021.

Er, X. et al. Calibration of colour gradient bias in shear measurement using HST/CANDELS
data. Monthly Notices of the Royal Astronomical Society, 476(4):5645–5657, 8 2017. doi:
10.1093/mnras/sty685. URL https://arxiv.org/abs/1708.06085v3.

Erdogdu, P. et al. Reconstructed Density and Velocity Fields from the 2MASS Redshift
Survey. Monthly Notices of the Royal Astronomical Society, 373(1):45–64, 9 2006.
doi: 10.1111/j.1365-2966.2006.11049.x. URL http://arxiv.org/abs/astro-ph/0610005http:
//dx.doi.org/10.1111/j.1365-2966.2006.11049.x.

Etherington, I. LX. On the definition of distance in general relativity . The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 15(100):761–
773, 4 1933. ISSN 1941-5982. doi: 10.1080/14786443309462220. URL https://www.
tandfonline.com/doi/abs/10.1080/14786443309462220.

Euclid Collaboration, E. et al. Euclid Preparation IV. Impact of undetected galaxies on
weak lensing shear measurements. Astronomy & Astrophysics, 627:A59, 1 2019. URL
http://arxiv.org/abs/1902.00044.

Fairall, A.P., Fairall and P., A. A caution to those who measure galaxy redshifts. The
Observatory, 112:286–287, 1992. ISSN 0029-7704. URL https://ui.adsabs.harvard.edu/
abs/1992Obs...112..286F/abstract.

Famaey, B. and McGaugh, S. Modified Newtonian Dynamics (MOND): Observational
Phenomenology and Relativistic Extensions. Living Reviews in Relativity, 15, 12 2011.
doi: 10.12942/lrr-2012-10. URL http://arxiv.org/abs/1112.3960http://dx.doi.org/10.12942/
lrr-2012-10.

Feldman, H.A., Kaiser, N. and Peacock, J.A. Power Spectrum Analysis of Three-Dimensional
Redshift Surveys. The Astrophysical Journal, 426:23, 4 1993. doi: 10.1086/174036. URL
http://arxiv.org/abs/astro-ph/9304022http://dx.doi.org/10.1086/174036.

https://physicstoday.scitation.org/doi/abs/10.1063/1.3059795
https://physicstoday.scitation.org/doi/abs/10.1063/1.3059795
http://arxiv.org/abs/astro-ph/0501171 http://dx.doi.org/10.1086/466512
http://arxiv.org/abs/astro-ph/0501171 http://dx.doi.org/10.1086/466512
http://arxiv.org/abs/1101.1529 http://dx.doi.org/10.1088/0004-6256/142/3/72
http://arxiv.org/abs/1101.1529 http://dx.doi.org/10.1088/0004-6256/142/3/72
http://arxiv.org/abs/hep-ph/0312262 http://dx.doi.org/10.1016/j.physletb.2004.03.021
http://arxiv.org/abs/hep-ph/0312262 http://dx.doi.org/10.1016/j.physletb.2004.03.021
https://arxiv.org/abs/1708.06085v3
http://arxiv.org/abs/astro-ph/0610005 http://dx.doi.org/10.1111/j.1365-2966.2006.11049.x
http://arxiv.org/abs/astro-ph/0610005 http://dx.doi.org/10.1111/j.1365-2966.2006.11049.x
https://www.tandfonline.com/doi/abs/10.1080/14786443309462220
https://www.tandfonline.com/doi/abs/10.1080/14786443309462220
http://arxiv.org/abs/1902.00044
https://ui.adsabs.harvard.edu/abs/1992Obs...112..286F/abstract
https://ui.adsabs.harvard.edu/abs/1992Obs...112..286F/abstract
http://arxiv.org/abs/1112.3960 http://dx.doi.org/10.12942/lrr-2012-10
http://arxiv.org/abs/1112.3960 http://dx.doi.org/10.12942/lrr-2012-10
http://arxiv.org/abs/astro-ph/9304022 http://dx.doi.org/10.1086/174036


Bibliography 251

Feldmann, R. et al. The Zurich Extragalactic Bayesian Redshift Analyzer (ZEBRA) and
its first application: COSMOS. Monthly Notices of the Royal Astronomical Society, 372
(2):565–577, 9 2006. doi: 10.1111/j.1365-2966.2006.10930.x. URL http://arxiv.org/abs/
astro-ph/0609044http://dx.doi.org/10.1111/j.1365-2966.2006.10930.x.

Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection.
Annual Review of Astronomy and Astrophysics, 48:495–545, 3 2010. doi: 10.1146/
annurev-astro-082708-101659. URL http://arxiv.org/abs/1003.0904http://dx.doi.org/10.
1146/annurev-astro-082708-101659.

Feng, J.L., Rajaraman, A. and Takayama, F. Superweakly Interacting Massive Particles.
Physical Review Letters, 91(1), 2 2003. doi: 10.1103/PhysRevLett.91.011302. URL
http://arxiv.org/abs/hep-ph/0302215http://dx.doi.org/10.1103/PhysRevLett.91.011302.

Ferreras, I. et al. Confronting MOND and TeVeS with strong gravitational lensing over
galactic scales: An extended survey. Physical Review D - Particles, Fields, Gravitation and
Cosmology, 86(8):083507, 10 2012. ISSN 15507998. doi: 10.1103/PhysRevD.86.083507.
URL https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.083507.

Fisher, K.B. et al. The power spectrum of IRAS galaxies. The Astrophysical Journal, 402:42,
1 1993. ISSN 0004-637X. doi: 10.1086/172110. URL https://ui.adsabs.harvard.edu/abs/
1993ApJ...402...42F/abstract.

Forman, W. et al. The fourth Uhuru catalog of X-ray sources. ApJS, 38:357–412, 12 1978.
ISSN 0067-0049. doi: 10.1086/190561. URL https://ui.adsabs.harvard.edu/abs/1978ApJS.
..38..357F/abstract.

Francis, M.J. et al. Expanding Space: the Root of all Evil? Publications of the Astronomical
Society of Australia, 24(2):95–102, 7 2007. doi: 10.1071/AS07019. URL http://arxiv.org/
abs/0707.0380http://dx.doi.org/10.1071/AS07019.

Freedman, W.L. et al. Calibration of the Tip of the Red Giant Branch (TRGB). arXiv,
2 2020. doi: 10.3847/1538-4357/ab7339. URL http://arxiv.org/abs/2002.01550http:
//dx.doi.org/10.3847/1538-4357/ab7339.

Freese, K. Review of Observational Evidence for Dark Matter in the Universe and in
upcoming searches for Dark Stars. EAS Publications Series, 36:113–126, 12 2008. doi:
10.1051/eas/0936016. URL http://arxiv.org/abs/0812.4005http://dx.doi.org/10.1051/eas/
0936016.

Friedman, A. Über die Krümmung des Raumes. Zeitschrift für Physik, 10(1):377–386, 12
1922. ISSN 14346001. doi: 10.1007/BF01332580.

Friedmann, A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des
Raumes. Zeitschrift für Physik, 21(1):326–332, 12 1924. ISSN 14346001. doi: 10.1007/
BF01328280. URL https://ui.adsabs.harvard.edu/abs/1924ZPhy...21..326F/abstract.

Fry, J.N. and Gaztanaga, E. Biasing and Hierarchical Statistics in Large-scale Structure. The
Astrophysical Journal, 413:447, 2 1993. doi: 10.1086/173015. URL http://arxiv.org/abs/
astro-ph/9302009http://dx.doi.org/10.1086/173015.

http://arxiv.org/abs/astro-ph/0609044 http://dx.doi.org/10.1111/j.1365-2966.2006.10930.x
http://arxiv.org/abs/astro-ph/0609044 http://dx.doi.org/10.1111/j.1365-2966.2006.10930.x
http://arxiv.org/abs/1003.0904 http://dx.doi.org/10.1146/annurev-astro-082708-101659
http://arxiv.org/abs/1003.0904 http://dx.doi.org/10.1146/annurev-astro-082708-101659
http://arxiv.org/abs/hep-ph/0302215 http://dx.doi.org/10.1103/PhysRevLett.91.011302
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.083507
https://ui.adsabs.harvard.edu/abs/1993ApJ...402...42F/abstract
https://ui.adsabs.harvard.edu/abs/1993ApJ...402...42F/abstract
https://ui.adsabs.harvard.edu/abs/1978ApJS...38..357F/abstract
https://ui.adsabs.harvard.edu/abs/1978ApJS...38..357F/abstract
http://arxiv.org/abs/0707.0380 http://dx.doi.org/10.1071/AS07019
http://arxiv.org/abs/0707.0380 http://dx.doi.org/10.1071/AS07019
http://arxiv.org/abs/2002.01550 http://dx.doi.org/10.3847/1538-4357/ab7339
http://arxiv.org/abs/2002.01550 http://dx.doi.org/10.3847/1538-4357/ab7339
http://arxiv.org/abs/0812.4005 http://dx.doi.org/10.1051/eas/0936016
http://arxiv.org/abs/0812.4005 http://dx.doi.org/10.1051/eas/0936016
https://ui.adsabs.harvard.edu/abs/1924ZPhy...21..326F/abstract
http://arxiv.org/abs/astro-ph/9302009 http://dx.doi.org/10.1086/173015
http://arxiv.org/abs/astro-ph/9302009 http://dx.doi.org/10.1086/173015


252 Bibliography

Gamow, G. The evolution of the universe. Nature, 162(4122):680–682, 1948. ISSN
00280836. doi: 10.1038/162680a0. URL https://www.nature.com/articles/162680a0.

Gelmini, G.B. TASI 2014 Lectures: The Hunt for Dark Matter. ArXiv, 2 2015. URL
http://arxiv.org/abs/1502.01320.

Giblin, J.T., Mertens, J.B. and Starkman, G.D. Observable Deviations from Homogeneity
in an Inhomogeneous Universe. The Astrophysical Journal, 833(2):247, 8 2016. doi:
10.3847/1538-4357/833/2/247. URL http://arxiv.org/abs/1608.04403http://dx.doi.org/10.
3847/1538-4357/833/2/247.

Gomes, Z. et al. Improving photometric redshift estimation using GPZ: Size information,
post processing, and improved photometry. Monthly Notices of the Royal Astronomical
Society, 475(1):331–342, 3 2018. ISSN 13652966. doi: 10.1093/MNRAS/STX3187.

Graff, P. et al. SkyNet: an efficient and robust neural network training tool for machine
learning in astronomy. Monthly Notices of the Royal Astronomical Society, 441(2):
1741–1759, 6 2014. ISSN 0035-8711. doi: 10.1093/MNRAS/STU642. URL https:
//academic.oup.com/mnras/article/441/2/1741/1071156.

Gromov, A., Baryshev, Y. and Teerikorpi, P. Two-fluid matter-quintessence FLRW models:
energy transfer and the equation of state of the universe. Astronomy and Astrophysics,
415(3):813–820, 9 2002. doi: 10.1051/0004-6361:20031693. URL http://arxiv.org/abs/
astro-ph/0209458http://dx.doi.org/10.1051/0004-6361:20031693.

Group, P.D. et al. Review of Particle Physics. Progress of Theoretical and Experimental
Physics, 2020(8):1–2093, 8 2020. doi: 10.1093/PTEP/PTAA104. URL https://academic.
oup.com/ptep/article/2020/8/083C01/5891211.

Guidorzi, C. et al. Improved constraints on H0 from a combined analysis of gravitational-
wave and electromagnetic emission from GW170817, 10 2017. ISSN 23318422. URL
https://doi.org/10.3847/2041-8213/aaa009.

Gunn, J.E. et al. Investigations of the optical fields of 3CR radio sources to faint limiting
magnitudes – IV. Monthly Notices of the Royal Astronomical Society, 194(1):111–123,
1 1981. ISSN 0035-8711. doi: 10.1093/MNRAS/194.1.111. URL https://academic.oup.
com/mnras/article/194/1/111/985910.

Gunn, J.E. and Peterson, B.A. On the Density of Neutral Hydrogen in Intergalactic Space.
The Astrophysical Journal, 142:1633, 11 1965. ISSN 0004-637X. doi: 10.1086/148444.
URL https://ui.adsabs.harvard.edu/abs/1965ApJ...142.1633G/abstract.

Ha, T. et al. Classification of the FRW universe with a cosmological constant and a perfect
fluid of the equation of state p = wρ . General Relativity and Gravitation, 44:1433–1458,
2012.

Hamilton, A.J.S. Uncorrelated modes of the non-linear power spectrum. Monthly Notices
of the Royal Astronomical Society, 312(2):257–284, 2 2000. ISSN 0035-8711. doi:
10.1046/J.1365-8711.2000.03071.X. URL https://academic.oup.com/mnras/article/312/2/
257/972743.

https://www.nature.com/articles/162680a0
http://arxiv.org/abs/1502.01320
http://arxiv.org/abs/1608.04403 http://dx.doi.org/10.3847/1538-4357/833/2/247
http://arxiv.org/abs/1608.04403 http://dx.doi.org/10.3847/1538-4357/833/2/247
https://academic.oup.com/mnras/article/441/2/1741/1071156
https://academic.oup.com/mnras/article/441/2/1741/1071156
http://arxiv.org/abs/astro-ph/0209458 http://dx.doi.org/10.1051/0004-6361:20031693
http://arxiv.org/abs/astro-ph/0209458 http://dx.doi.org/10.1051/0004-6361:20031693
https://academic.oup.com/ptep/article/2020/8/083C01/5891211
https://academic.oup.com/ptep/article/2020/8/083C01/5891211
https://doi.org/10.3847/2041-8213/aaa009
https://academic.oup.com/mnras/article/194/1/111/985910
https://academic.oup.com/mnras/article/194/1/111/985910
https://ui.adsabs.harvard.edu/abs/1965ApJ...142.1633G/abstract
https://academic.oup.com/mnras/article/312/2/257/972743
https://academic.oup.com/mnras/article/312/2/257/972743


Bibliography 253

Hamilton, A.J.S., Gott, J. Richard, I. and Weinberg, D. The topology of the large-scale
structure of the universe. The Astrophysical Journal, 309:1, 10 1986. ISSN 0004-637X.
doi: 10.1086/164571. URL https://ui.adsabs.harvard.edu/abs/1986ApJ...309....1H/abstract.

Hand, N. et al. First measurement of the cross-correlation of CMB lensing and galaxy lensing.
Physical Review D - Particles, Fields, Gravitation and Cosmology, 91(6), 3 2015. ISSN
15502368. doi: 10.1103/PHYSREVD.91.062001.

Hankin, R.K.S. A Generalization of the Dirichlet Distribution. Journal of statistical software,
33(11), 2 2010.

Harnois-Déraps, J. et al. Baryons, neutrinos, feedback and weak gravitational lens-
ing. Monthly Notices of the Royal Astronomical Society, 450(2):1212–1223, 4 2015.
ISSN 13652966. doi: 10.1093/mnras/stv646. URL https://ui.adsabs.harvard.edu/abs/
2015MNRAS.450.1212H/abstract.

Harvey, D. et al. The non-gravitational interactions of dark matter in colliding galaxy
clusters. Science, 347(6229):1462–1465, 3 2015. doi: 10.1126/science.1261381. URL
http://arxiv.org/abs/1503.07675http://dx.doi.org/10.1126/science.1261381.

Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 4 1970. ISSN 0006-3444. doi: 10.1093/BIOMET/57.1.97.
URL https://academic.oup.com/biomet/article/57/1/97/284580.

Heavens, A. Weak Gravitational Lensing. Lecture Notes in Physics, 665:585–600, 2008.
doi: 10.1007/978-3-540-44767-2{\_}18. URL https://link.springer.com/chapter/10.1007/
978-3-540-44767-2_18.

Heavens, A. 3D weak lensing. Monthly Notices of the Royal Astronomical Society, 343(4):
1327–1334, 4 2003. doi: 10.1046/j.1365-8711.2003.06780.x. URL http://arxiv.org/abs/
astro-ph/0304151http://dx.doi.org/10.1046/j.1365-8711.2003.06780.x.

Heavens, A., Alsing, J. and Jaffe, A. Combining Size and Shape in Weak Lensing. Monthly
Notices of the Royal Astronomical Society: Letters, 433(1):0–000, 2 2013. doi: 10.1093/
mnrasl/slt045. URL https://arxiv.org/abs/1302.1584v2.

Heitmann, K. et al. The coyote universe. II. cosmological models and precision emulation
of the nonlinear matter power spectrum. Astrophysical Journal, 705(1):156–174, 2009.
ISSN 15384357. doi: 10.1088/0004-637X/705/1/156. URL https://ui.adsabs.harvard.edu/
abs/2009ApJ...705..156H/abstract.

Heros, C.P.d.l. Status of direct and indirect dark matter searches. Proceedings of Science,
364, 1 2020. URL http://arxiv.org/abs/2001.06193.

Heymans, C. and Heavens, A. Weak gravitational lensing: Reducing the contamination by
intrinsic alignments. Monthly Notices of the Royal Astronomical Society, 339(3):711–720,
3 2003. ISSN 00358711. doi: 10.1046/J.1365-8711.2003.06213.X/2/339-3-711-FIG006.
JPEG. URL https://academic.oup.com/mnras/article/339/3/711/971367.

https://ui.adsabs.harvard.edu/abs/1986ApJ...309....1H/abstract
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1212H/abstract
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1212H/abstract
http://arxiv.org/abs/1503.07675 http://dx.doi.org/10.1126/science.1261381
https://academic.oup.com/biomet/article/57/1/97/284580
https://link.springer.com/chapter/10.1007/978-3-540-44767-2_18
https://link.springer.com/chapter/10.1007/978-3-540-44767-2_18
http://arxiv.org/abs/astro-ph/0304151 http://dx.doi.org/10.1046/j.1365-8711.2003.06780.x
http://arxiv.org/abs/astro-ph/0304151 http://dx.doi.org/10.1046/j.1365-8711.2003.06780.x
https://arxiv.org/abs/1302.1584v2
https://ui.adsabs.harvard.edu/abs/2009ApJ...705..156H/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJ...705..156H/abstract
http://arxiv.org/abs/2001.06193
https://academic.oup.com/mnras/article/339/3/711/971367


254 Bibliography

Hikage, C. et al. Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-
Cam first-year data. Publications of the Astronomical Society of Japan, 71(2), 4 2019.
ISSN 0004-6264. doi: 10.1093/pasj/psz010. URL https://academic.oup.com/pasj/article/
doi/10.1093/pasj/psz010/5370019.

Hilbert, S. et al. Ray-tracing through the Millennium Simulation: Born corrections and
lens-lens coupling in cosmic shear and galaxy-galaxy lensing. Astronomy & Astrophysics,
499(1):31–43, 5 2009. ISSN 0004-6361. doi: 10.1051/0004-6361/200811054. URL
https://www.aanda.org/articles/aa/abs/2009/19/aa11054-08/aa11054-08.html.

Hildebrandt, H., Van Waerbeke, L. and Erben, T. Astrophysics CARS: The CFHTLS-Archive-
Research Survey III. First detection of cosmic magnification in samples of normal high-z
galaxies. A&A, 507:683–691, 2009. doi: 10.1051/0004-6361/200912655.

Hildebrandt, H. et al. PHAT: PHoto-z Accuracy Testing. Astronomy & Astrophysics,
523(2):A31, 11 2010. ISSN 0004-6361. doi: 10.1051/0004-6361/201014885. URL
https://www.aanda.org/articles/aa/full_html/2010/15/aa14885-10/aa14885-10.htmlhttps:
//www.aanda.org/articles/aa/abs/2010/15/aa14885-10/aa14885-10.html.

Hildebrandt, H. et al. CFHTLenS: Improving the quality of photometric redshifts with
precision photometry. Monthly Notices of the Royal Astronomical Society, 421(3):
2355–2367, 4 2012. ISSN 00358711. doi: 10.1111/J.1365-2966.2012.20468.X/2/
MNRAS0421-2355-F10.JPEG. URL https://academic.oup.com/mnras/article/421/3/2355/
1078193.

Hildebrandt, H. et al. KiDS-450: cosmological parameter constraints from tomographic
weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 465
(2):1454–1498, 2 2017. ISSN 0035-8711. doi: 10.1093/MNRAS/STW2805. URL
https://academic.oup.com/mnras/article/465/2/1454/2417034.

Hildebrandt, H. et al. KiDS+VIKING-450: Cosmic shear tomography with optical+infrared
data. Astronomy and Astrophysics, 633, 12 2018. doi: 10.1051/0004-6361/201834878.
URL http://arxiv.org/abs/1812.06076http://dx.doi.org/10.1051/0004-6361/201834878.

Hildebrandt, H. et al. KiDS-1000 catalogue: Redshift distributions and their calibration.
Astronomy and Astrophysics, 647, 7 2020. ISSN 14320746. doi: 10.1051/0004-6361/
202039018. URL https://arxiv.org/abs/2007.15635v2.

Hirata, C.M. and Seljak, U. Intrinsic alignment-lensing interference as a contaminant
of cosmic shear. Physical Review D - Particles, Fields, Gravitation and Cosmology,
70(6):11, 2004. ISSN 15502368. doi: 10.1103/PhysRevD.70.063526. URL https:
//ui.adsabs.harvard.edu/abs/2004PhRvD..70f3526H/abstract.

Hivon, E. et al. MASTER of the Cosmic Microwave Background Anisotropy Power Spec-
trum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave
Background Data Sets. The Astrophysical Journal, 567(1):2–17, 3 2002. ISSN 0004-
637X. doi: 10.1086/338126/FULLTEXT/. URL https://iopscience.iop.org/article/10.1086/
338126https://iopscience.iop.org/article/10.1086/338126/meta.

https://academic.oup.com/pasj/article/doi/10.1093/pasj/psz010/5370019
https://academic.oup.com/pasj/article/doi/10.1093/pasj/psz010/5370019
https://www.aanda.org/articles/aa/abs/2009/19/aa11054-08/aa11054-08.html
https://www.aanda.org/articles/aa/full_html/2010/15/aa14885-10/aa14885-10.html https://www.aanda.org/articles/aa/abs/2010/15/aa14885-10/aa14885-10.html
https://www.aanda.org/articles/aa/full_html/2010/15/aa14885-10/aa14885-10.html https://www.aanda.org/articles/aa/abs/2010/15/aa14885-10/aa14885-10.html
https://academic.oup.com/mnras/article/421/3/2355/1078193
https://academic.oup.com/mnras/article/421/3/2355/1078193
https://academic.oup.com/mnras/article/465/2/1454/2417034
http://arxiv.org/abs/1812.06076 http://dx.doi.org/10.1051/0004-6361/201834878
https://arxiv.org/abs/2007.15635v2
https://ui.adsabs.harvard.edu/abs/2004PhRvD..70f3526H/abstract
https://ui.adsabs.harvard.edu/abs/2004PhRvD..70f3526H/abstract
https://iopscience.iop.org/article/10.1086/338126 https://iopscience.iop.org/article/10.1086/338126/meta
https://iopscience.iop.org/article/10.1086/338126 https://iopscience.iop.org/article/10.1086/338126/meta


Bibliography 255

Hobson, M.P., Efstathiou, G.P. and Lasenby, A.N. General Relativity: An Introduction for
Physicists. Cambridge University Press, 2 2006. ISBN 9780521829519. doi: 10.1017/
CBO9780511790904. URL https://www.cambridge.org/core/books/general-relativity/
ADB781FA6C986E3C941B3ECB5D1EF01A.

Hogg, D.W. Distance measures in cosmology. ArXiv, 5 1999. URL http://arxiv.org/abs/
astro-ph/9905116.

Hogg, D.W. Data analysis recipes: Probability calculus for inference. ArXiv, 5 2012. doi:
10.48550/arxiv.1205.4446. URL https://arxiv.org/abs/1205.4446v1.

Hogg, D.W. et al. The K correction. ArXiv, 10 2002. doi: 10.48550/arxiv.astro-ph/0210394.
URL https://arxiv.org/abs/astro-ph/0210394v1.

Holanda, R.F.L., Lima, J.A.S. and Ribeiro, M.B. Cosmic distance duality relation and the
shape of galaxy clusters. A&A, 528:14, 2011. doi: 10.1051/0004-6361/201015547.

Hosseini, R. and Bethge, M. Spectral Stacking: Unbiased Shear Estimation for Weak Gravi-
tational Lensing Spectral Stacking: Unbiased Shear Estimation for Weak Gravitational
Lensing Spectral Stacking: Unbiased Shear Estimation for Weak Gravitational Lensing.
Technical report, Max Planck Institute for Biological Cybernetics, 2009.

Hotelling, H. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6):417–441, 9 1933. ISSN 00220663. doi:
10.1037/H0071325. URL /record/1934-00645-001.

Howley, T. et al. The effect of principal component analysis on machine learning accuracy
with high-dimensional spectral data. Knowledge-Based Systems, 19(5):363–370, 9 2006.
ISSN 0950-7051. doi: 10.1016/J.KNOSYS.2005.11.014.

Hoyle, B. et al. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing
source galaxies. Monthly Notices of the Royal Astronomical Society, 478(1):592–610, 7
2018. ISSN 0035-8711. doi: 10.1093/MNRAS/STY957. URL https://academic.oup.com/
mnras/article/478/1/592/4975790.

Hu, W. Power Spectrum Tomography with Weak Lensing. The Astrophysical Journal, 522
(1):L21–L24, 9 1999. ISSN 0004637X. doi: 10.1086/312210.

Hu, W. and Dodelson, S. Cosmic Microwave Background Anisotropies. Annu. Rev. Astron.
and Astrophys, 2002.

Hubble, E. A relation between distance and radial velocity among extra-galactic nebulae.
Proceedings of the National Academy of Sciences, 15(3):168–173, 3 1929. ISSN 0027-
8424. doi: 10.1073/pnas.15.3.168. URL https://www.pnas.org/content/15/3/168https:
//www.pnas.org/content/15/3/168.abstract.

Huff, E.M. et al. Cosmic shear without shape noise. ArXiv, 11 2013. URL https://arxiv.org/
abs/1311.1489v2.

https://www.cambridge.org/core/books/general-relativity/ADB781FA6C986E3C941B3ECB5D1EF01A
https://www.cambridge.org/core/books/general-relativity/ADB781FA6C986E3C941B3ECB5D1EF01A
http://arxiv.org/abs/astro-ph/9905116
http://arxiv.org/abs/astro-ph/9905116
https://arxiv.org/abs/1205.4446v1
https://arxiv.org/abs/astro-ph/0210394v1
/record/1934-00645-001
https://academic.oup.com/mnras/article/478/1/592/4975790
https://academic.oup.com/mnras/article/478/1/592/4975790
https://www.pnas.org/content/15/3/168 https://www.pnas.org/content/15/3/168.abstract
https://www.pnas.org/content/15/3/168 https://www.pnas.org/content/15/3/168.abstract
https://arxiv.org/abs/1311.1489v2
https://arxiv.org/abs/1311.1489v2


256 Bibliography

Huterer, D. et al. Systematic errors in future weak-lensing surveys: Requirements and
prospects for self-calibration. Monthly Notices of the Royal Astronomical Society,
366(1):101–114, 2 2006. ISSN 13652966. doi: 10.1111/J.1365-2966.2005.09782.X/
3/366-1-101-FIG008.JPEG. URL https://academic.oup.com/mnras/article/366/1/101/
1058840.

Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using
the VIMOS VLT deep survey. Astronomy & Astrophysics, 457(3):841–856, 10 2006. ISSN
0004-6361. doi: 10.1051/0004-6361:20065138. URL https://www.aanda.org/articles/aa/
abs/2006/39/aa5138-06/aa5138-06.html.

Ilbert, O. et al. COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2.
The Astrophysical Journal, 690(2):1236, 12 2008. ISSN 0004-637X. doi: 10.1088/
0004-637X/690/2/1236. URL https://iopscience.iop.org/article/10.1088/0004-637X/690/
2/1236https://iopscience.iop.org/article/10.1088/0004-637X/690/2/1236/meta.

J.A Peacock et al. Modern Cosmology. IOP Publishing, Bristol, 2001.

Jaffe, R.L. Casimir effect and the quantum vacuum. Physical Review D - Particles, Fields,
Gravitation and Cosmology, 72(2):1–5, 7 2005. ISSN 15507998. doi: 10.1103/PhysRevD.
72.021301. URL https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.021301.

Jain, B. and Seljak, U. Cosmological Model Predictions for Weak Lensing: Linear and
Nonlinear Regimes. The Astrophysical Journal, 484(2):560–573, 8 1997. ISSN 0004-
637X. doi: 10.1086/304372/FULLTEXT/. URL https://iopscience.iop.org/article/10.1086/
304372https://iopscience.iop.org/article/10.1086/304372/meta.

Jarvis, M. et al. The DES Science Verification weak lensing shear catalogues. MNRAS,
460(2):2245–2281, 8 2016. ISSN 0035-8711. doi: 10.1093/MNRAS/STW990. URL
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.2245J/abstract.

Jeffreys, H. Theory of probability. Oxford University Press, 11 1998. ISBN 9780198503682.

Joachimi, B. and Schneider, P. The removal of shear-ellipticity correlations from the cosmic
shear signal: Influence of photometric redshift errors on the nulling technique. Astronomy
and Astrophysics, 507(1):105–129, 5 2009. doi: 10.1051/0004-6361/200912420. URL
http://arxiv.org/abs/0905.0393http://dx.doi.org/10.1051/0004-6361/200912420.

Jollife, I.T. and Cadima, J. Principal component analysis: A review and recent developments.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 374(2065), 4 2016. ISSN 1364503X. doi: 10.1098/RSTA.2015.0202. URL
http://dx.doi.org/10.1098/rsta.2015.0202.

Joudaki, S. et al. KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear.
Astronomy and Astrophysics, 638:L1, 6 2020. ISSN 14320746. doi: 10.1051/0004-6361/
201936154. URL https://ui.adsabs.harvard.edu/abs/2020A&A...638L...1J/abstract.

Kacprzak, T. et al. Sérsic galaxy models in weak lensing shape measurement: model bias,
noise bias and their interaction. MNRAS, 441:2528–2538, 2014. doi: 10.1093/mnras/
stu588. URL https://academic.oup.com/mnras/article/441/3/2528/1108396.

https://academic.oup.com/mnras/article/366/1/101/1058840
https://academic.oup.com/mnras/article/366/1/101/1058840
https://www.aanda.org/articles/aa/abs/2006/39/aa5138-06/aa5138-06.html
https://www.aanda.org/articles/aa/abs/2006/39/aa5138-06/aa5138-06.html
https://iopscience.iop.org/article/10.1088/0004-637X/690/2/1236 https://iopscience.iop.org/article/10.1088/0004-637X/690/2/1236/meta
https://iopscience.iop.org/article/10.1088/0004-637X/690/2/1236 https://iopscience.iop.org/article/10.1088/0004-637X/690/2/1236/meta
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.021301
https://iopscience.iop.org/article/10.1086/304372 https://iopscience.iop.org/article/10.1086/304372/meta
https://iopscience.iop.org/article/10.1086/304372 https://iopscience.iop.org/article/10.1086/304372/meta
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.2245J/abstract
http://arxiv.org/abs/0905.0393 http://dx.doi.org/10.1051/0004-6361/200912420
http://dx.doi.org/10.1098/rsta.2015.0202
https://ui.adsabs.harvard.edu/abs/2020A&A...638L...1J/abstract
https://academic.oup.com/mnras/article/441/3/2528/1108396


Bibliography 257

Kaiser, N. and Peacock, J.A. Power-spectrum analysis of one-dimensional redshift surveys.
The Astrophysical Journal, 379:482, 10 1991. ISSN 0004-637X. doi: 10.1086/170523.
URL https://ui.adsabs.harvard.edu/abs/1991ApJ...379..482K/abstract.

Kaiser, N. Clustering in real space and in redshift space. Monthly Notices of the Royal
Astronomical Society, 227(1):1–21, 7 1987. ISSN 0035-8711. doi: 10.1093/mnras/227.1.1.
URL https://academic.oup.com/mnras/article/227/1/1/1065830.

Kaiser, N., Kaiser and Nick. Weak Gravitational Lensing of Distant Galaxies. ApJ, 388:272,
4 1992. ISSN 0004-637X. doi: 10.1086/171151. URL https://ui.adsabs.harvard.edu/abs/
1992ApJ...388..272K/abstract.

Kaiser, N. et al. Mapping the Dark Matter with Weak Gravitational Lensing. ApJ, 404:441,
2 1993. ISSN 0004-637X. doi: 10.1086/172297. URL https://ui.adsabs.harvard.edu/abs/
1993ApJ...404..441K/abstract.

Kaiser, N., Kaiser and Nick. A New Shear Estimator for Weak-Lensing Observations.
ApJ, 537(2):555–577, 7 2000. ISSN 0004-637X. doi: 10.1086/309041. URL https:
//ui.adsabs.harvard.edu/abs/2000ApJ...537..555K/abstract.

Kannawadi, A. et al. Towards emulating cosmic shear data: revisiting the calibration of the
shear measurements for the Kilo-Degree Survey. Astronomy &amp; Astrophysics, 624:A92,
4 2019. ISSN 14320746. doi: 10.1051/0004-6361/201834819. URL https://hdl.handle.
net/1887/83079https://scholarlypublications.universiteitleiden.nl/handle/1887/83079/.

Karachentsev, I.D. et al. Peculiar Velocities of 3000 Spiral Galaxies from the 2MFGC
Catalog. Astrophysics, 49(4):450–461, 11 2006. doi: 10.1007/s10511-006-0044-9. URL
http://arxiv.org/abs/astro-ph/0611945http://dx.doi.org/10.1007/s10511-006-0044-9.

Kelly, P.L. et al. Weighing the Giants II: Improved Calibration of Photometry from Stellar
Colors and Accurate Photometric Redshifts. Mon. Not. R. Astron. Soc, 000:1–21, 2012.
URL http://smoka.nao.ac.jp/.

Kiessling, A. et al. Galaxy alignments: Theory, modelling and simulations. Space Science
Reviews, 193(1-4):67–136, 4 2015. doi: 10.1007/s11214-015-0203-6. URL http://arxiv.
org/abs/1504.05546http://dx.doi.org/10.1007/s11214-015-0203-6.

Kilbinger, M. Cosmology with cosmic shear observations: a review. Reports on Progress in
Physics, 78(8), 11 2014. doi: 10.1088/0034-4885/78/8/086901. URL http://arxiv.org/abs/
1411.0115http://dx.doi.org/10.1088/0034-4885/78/8/086901.

Kilbinger, M. et al. CFHTLenS: combined probe cosmological model comparison using
2D weak gravitational lensing. Monthly Notices of the Royal Astronomical Society,
430(3):2200–2220, 4 2013. ISSN 0035-8711. doi: 10.1093/MNRAS/STT041. URL
https://academic.oup.com/mnras/article/430/3/2200/981767.

Kim, A. Beta Distribution — Intuition, Examples, and Derivation | by Aerin
Kim | Towards Data Science, 2020. URL https://towardsdatascience.com/
beta-distribution-intuition-examples-and-derivation-cf00f4db57af.

https://ui.adsabs.harvard.edu/abs/1991ApJ...379..482K/abstract
https://academic.oup.com/mnras/article/227/1/1/1065830
https://ui.adsabs.harvard.edu/abs/1992ApJ...388..272K/abstract
https://ui.adsabs.harvard.edu/abs/1992ApJ...388..272K/abstract
https://ui.adsabs.harvard.edu/abs/1993ApJ...404..441K/abstract
https://ui.adsabs.harvard.edu/abs/1993ApJ...404..441K/abstract
https://ui.adsabs.harvard.edu/abs/2000ApJ...537..555K/abstract
https://ui.adsabs.harvard.edu/abs/2000ApJ...537..555K/abstract
https://hdl.handle.net/1887/83079 https://scholarlypublications.universiteitleiden.nl/handle/1887/83079/
https://hdl.handle.net/1887/83079 https://scholarlypublications.universiteitleiden.nl/handle/1887/83079/
http://arxiv.org/abs/astro-ph/0611945 http://dx.doi.org/10.1007/s10511-006-0044-9
http://smoka.nao.ac.jp/
http://arxiv.org/abs/1504.05546 http://dx.doi.org/10.1007/s11214-015-0203-6
http://arxiv.org/abs/1504.05546 http://dx.doi.org/10.1007/s11214-015-0203-6
http://arxiv.org/abs/1411.0115 http://dx.doi.org/10.1088/0034-4885/78/8/086901
http://arxiv.org/abs/1411.0115 http://dx.doi.org/10.1088/0034-4885/78/8/086901
https://academic.oup.com/mnras/article/430/3/2200/981767
https://towardsdatascience.com/beta-distribution-intuition-examples-and-derivation-cf00f4db57af
https://towardsdatascience.com/beta-distribution-intuition-examples-and-derivation-cf00f4db57af


258 Bibliography

Kind, M.C. and Brunner, R.J. TPZ : Photometric redshift PDFs and ancillary information
by using prediction trees and random forests. Monthly Notices of the Royal Astronomical
Society, 432(2):1483–1501, 3 2013a. doi: 10.1093/mnras/stt574. URL http://arxiv.org/
abs/1303.7269http://dx.doi.org/10.1093/mnras/stt574.

Kind, M.C. and Brunner, R.J. SOMz: photometric redshift PDFs with self organizing maps
and random atlas. Monthly Notices of the Royal Astronomical Society, 438(4):3409–
3421, 12 2013b. doi: 10.1093/mnras/stt2456. URL http://arxiv.org/abs/1312.5753http:
//dx.doi.org/10.1093/mnras/stt2456.

Kind, M.C. and Brunner, R.J. Sparse representation of photometric redshift probability
density functions: preparing for petascale astronomy. Monthly Notices of the Royal
Astronomical Society, 441(4):3550–3561, 7 2014. ISSN 0035-8711. doi: 10.1093/
MNRAS/STU827. URL https://academic.oup.com/mnras/article/441/4/3550/1229381.

King, L.J. and Schneider, P. Separating cosmic shear from intrinsic galaxy alignments:
Correlation function tomography. Astronomy & Astrophysics, 398(1):23–30, 1 2003. ISSN
0004-6361. doi: 10.1051/0004-6361:20021614. URL https://www.aanda.org/articles/aa/
abs/2003/04/aa3114/aa3114.html.

Kinney, A.L. et al. Template Ultraviolet to Near-Infrared Spectra of Star-forming Galaxies
and Their Application to K-Corrections. ApJ, 467:38, 8 1996. ISSN 0004-637X. doi:
10.1086/177583. URL https://ui.adsabs.harvard.edu/abs/1996ApJ...467...38K/abstract.

Kippenhahn, R., Weigert, A. and Weiss, A. Stellar Structure and Evolution. Astronomy
and Astrophysics Library. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN
978-3-642-30255-8. doi: 10.1007/978-3-642-30304-3. URL http://link.springer.com/10.
1007/978-3-642-30304-3.

Kitching, T.D. et al. 3D cosmic shear: cosmology from CFHTLenS. Monthly Notices of the
Royal Astronomical Society, 442(2):1326–1349, 8 2014. ISSN 0035-8711. doi: 10.1093/
MNRAS/STU934. URL https://academic.oup.com/mnras/article/442/2/1326/985112.

Kitching, T. et al. GRAVITATIONAL LENSING ACCURACY TESTING 2010 (GREAT10)
CHALLENGE HANDBOOK. The Annals of Applied Statistics, 5(3):2231–2263, 2011.
doi: 10.1214/11-AOAS484. URL http://www.pascal-network.org/.

Kitching, T.D. et al. The limits of cosmic shear. Monthly Notices of the Royal Astronomical
Society, 469(3):2737–2749, 8 2017. ISSN 0035-8711. doi: 10.1093/MNRAS/STX1039.
URL https://academic.oup.com/mnras/article/469/3/2737/3786432.

Klypin, A.A. et al. Where are the missing galactic satellites? The Astrophysical Journal, 522
(1):82–92, 1 1999. doi: 10.1086/307643. URL http://arxiv.org/abs/astro-ph/9901240http:
//dx.doi.org/10.1086/307643.

Knox, L. and Millea, M. The Hubble Hunter’s Guide, 8 2019. ISSN 23318422. URL
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.043533.

Köhlinger, F. et al. KiDS-450: The tomographic weak lensing power spectrum and constraints
on cosmological parameters. Monthly Notices of the Royal Astronomical Society, 471
(4):4412–4435, 6 2017. doi: 10.1093/mnras/stx1820. URL http://arxiv.org/abs/1706.
02892http://dx.doi.org/10.1093/mnras/stx1820.

http://arxiv.org/abs/1303.7269 http://dx.doi.org/10.1093/mnras/stt574
http://arxiv.org/abs/1303.7269 http://dx.doi.org/10.1093/mnras/stt574
http://arxiv.org/abs/1312.5753 http://dx.doi.org/10.1093/mnras/stt2456
http://arxiv.org/abs/1312.5753 http://dx.doi.org/10.1093/mnras/stt2456
https://academic.oup.com/mnras/article/441/4/3550/1229381
https://www.aanda.org/articles/aa/abs/2003/04/aa3114/aa3114.html
https://www.aanda.org/articles/aa/abs/2003/04/aa3114/aa3114.html
https://ui.adsabs.harvard.edu/abs/1996ApJ...467...38K/abstract
http://link.springer.com/10.1007/978-3-642-30304-3
http://link.springer.com/10.1007/978-3-642-30304-3
https://academic.oup.com/mnras/article/442/2/1326/985112
http://www.pascal-network.org/.
https://academic.oup.com/mnras/article/469/3/2737/3786432
http://arxiv.org/abs/astro-ph/9901240 http://dx.doi.org/10.1086/307643
http://arxiv.org/abs/astro-ph/9901240 http://dx.doi.org/10.1086/307643
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.043533
http://arxiv.org/abs/1706.02892 http://dx.doi.org/10.1093/mnras/stx1820
http://arxiv.org/abs/1706.02892 http://dx.doi.org/10.1093/mnras/stx1820


Bibliography 259

Kollatschny, W. and Zetzl, M. The shape of broad-line profiles in active galactic
nuclei. Astronomy & Astrophysics, 549:A100, 1 2013. ISSN 0004-6361. doi:
10.1051/0004-6361/201219411. URL https://www.aanda.org/articles/aa/full_html/
2013/01/aa19411-12/aa19411-12.htmlhttps://www.aanda.org/articles/aa/abs/2013/01/
aa19411-12/aa19411-12.html.

Koo, D.C., Koo and C., D. Optical multicolors : a poor person’s Z machine for galaxies. AJ,
90(3):418–440, 3 1985. ISSN 0004-6256. doi: 10.1086/113748. URL https://ui.adsabs.
harvard.edu/abs/1985AJ.....90..418K/abstract.

Koo, D.C. Photometric Redshifts: A Perspective from an Old-Timer on Its Past, Present,
and Potential. Photometric Redshifts and High Redshift Galaxies, page 10, 7 1999. doi:
10.48550/arxiv.astro-ph/9907273. URL https://arxiv.org/abs/astro-ph/9907273v1.

Koposov, S. et al. The Luminosity Function of the Milky Way Satellites. The Astrophysical
Journal, 686(1):279–291, 6 2007. doi: 10.1086/589911. URL http://arxiv.org/abs/0706.
2687http://dx.doi.org/10.1086/589911.

Kraus, H. et al. Eureca - The future of cryogenic dark matter detection in Europe. In EAS Pub-
lications Series, volume 36, pages 249–255. EDP Sciences, 2009. ISBN 9782759804399.
doi: 10.1051/eas/0936035. URL https://www.eas-journal.org/articles/eas/abs/2009/03/
eas0936035/eas0936035.html.

Kuijken, K. GaaP: PSF- and aperture-matched photometry using shapelets. Astronomy &
Astrophysics, 482(3):1053–1067, 5 2008. ISSN 0004-6361. doi: 10.1051/0004-6361:
20066601. URL http://www.aanda.org/10.1051/0004-6361:20066601.

Kuijken, K. OmegaCAM: ESO’s Newest Imager - NASA/ADS. The Messenger, 146:8–11,
12 2011. URL https://ui.adsabs.harvard.edu/abs/2011Msngr.146....8K/abstract.

Kuijken, K. et al. The fourth data release of the Kilo-Degree Survey: Ugri imaging and
nine-band optical-IR photometry over 1000 square degrees. Astronomy and Astrophysics,
625:A2, 5 2019. ISSN 14320746. doi: 10.1051/0004-6361/201834918. URL https:
//ui.adsabs.harvard.edu/abs/2019A&A...625A...2K/abstract.

Kuijken, K. et al. Gravitational lensing analysis of the Kilo-Degree Survey. Monthly Notices
of the Royal Astronomical Society, 454(4):3500–3532, 12 2015. ISSN 0035-8711. doi:
10.1093/MNRAS/STV2140. URL https://academic.oup.com/mnras/article/454/4/3500/
993789.

Kunnen, J. A Search for Dark Matter in the Center of the Earth with the IceCube Neutrino
Detector. PhD thesis, Vrije U., Brussels, 2015.

Lahav, O. Observational Tests for the Cosmological Principle and World Models. Structure
Formation in the Universe, pages 131–142, 2001. doi: 10.1007/978-94-010-0540-1{\_}7/
COVER. URL https://link.springer.com/chapter/10.1007/978-94-010-0540-1_7.

Lahav, O. and Liddle, A.R. The Cosmological Parameters 2014. ArXiv, 1 2014. URL
http://arxiv.org/abs/1401.1389.

https://www.aanda.org/articles/aa/full_html/2013/01/aa19411-12/aa19411-12.html https://www.aanda.org/articles/aa/abs/2013/01/aa19411-12/aa19411-12.html
https://www.aanda.org/articles/aa/full_html/2013/01/aa19411-12/aa19411-12.html https://www.aanda.org/articles/aa/abs/2013/01/aa19411-12/aa19411-12.html
https://www.aanda.org/articles/aa/full_html/2013/01/aa19411-12/aa19411-12.html https://www.aanda.org/articles/aa/abs/2013/01/aa19411-12/aa19411-12.html
https://ui.adsabs.harvard.edu/abs/1985AJ.....90..418K/abstract
https://ui.adsabs.harvard.edu/abs/1985AJ.....90..418K/abstract
https://arxiv.org/abs/astro-ph/9907273v1
http://arxiv.org/abs/0706.2687 http://dx.doi.org/10.1086/589911
http://arxiv.org/abs/0706.2687 http://dx.doi.org/10.1086/589911
https://www.eas-journal.org/articles/eas/abs/2009/03/eas0936035/eas0936035.html
https://www.eas-journal.org/articles/eas/abs/2009/03/eas0936035/eas0936035.html
http://www.aanda.org/10.1051/0004-6361:20066601
https://ui.adsabs.harvard.edu/abs/2011Msngr.146....8K/abstract
https://ui.adsabs.harvard.edu/abs/2019A&A...625A...2K/abstract
https://ui.adsabs.harvard.edu/abs/2019A&A...625A...2K/abstract
https://academic.oup.com/mnras/article/454/4/3500/993789
https://academic.oup.com/mnras/article/454/4/3500/993789
https://link.springer.com/chapter/10.1007/978-94-010-0540-1_7
http://arxiv.org/abs/1401.1389


260 Bibliography

Lake, S.E. UCLA UCLA Electronic Theses and Dissertations Title A WISE Measurement
of the 2.4 µm Galaxy Luminosity Function and its Implications for the Extragalactic
Background Light at 3.4 µm, 2017. URL https://escholarship.org/uc/item/6hh4c2nt.

Lançon, A. and Wood, P.R. A library of 0.5 to 2.5 µm spectra of luminous cool stars.
Astronomy and Astrophysics Supplement Series, 146(2):217–249, 10 2000. ISSN 0365-
0138. doi: 10.1051/AAS:2000269. URL https://aas.aanda.org/articles/aas/abs/2000/17/
h2019/h2019.html.

Laureijs, R. et al. Euclid Definition Study Report. Euclid Consortium, 10 2011. URL
http://arxiv.org/abs/1110.3193.

Lavaux, G. et al. Cosmic flow from two micron all-sky redshift survey: The origin of cosmic
microwave background dipole and implications for ΛcDM cosmology. Astrophysical
Journal, 709(1):483–498, 1 2010. ISSN 15384357. doi: 10.1088/0004-637X/709/1/483.
URL https://iopscience.iop.org/article/10.1088/0004-637X/709/1/483https://iopscience.
iop.org/article/10.1088/0004-637X/709/1/483/meta.

Le Fèvre, O. et al. The VIMOS VLT deep survey First epoch VVDS-deep survey. Astronomy
& Astrophysics, 439(3):845–862, 9 2005. ISSN 0004-6361. doi: 10.1051/0004-6361:
20041960. URL https://www.aanda.org/articles/aa/abs/2005/33/aa1960-04/aa1960-04.
html.

Le Verrier, U.J., Verrier, L. and J., U. Theorie du mouvement de Mercure. Technical report,
Annales de l’Observatoire imperial de Paris, 1859. URL https://ui.adsabs.harvard.edu/abs/
1859AnPar...5....1L/abstract.

Leauthaud, A. et al. Weak Gravitational Lensing with COSMOS: Galaxy Selection and
Shape Measurements. The Astrophysical Journal Supplement Series, 172(1):219–238,
2007. URL http://snap.lbl.gov.

Lebach, D.E. et al. Measurement of the Solar Gravitational Deflection of Radio Waves
Using Very-Long-Baseline Interferometry. Physical Review Letters, 75(8):1439, 8 1995.
doi: 10.1103/PhysRevLett.75.1439. URL https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.75.1439.

Leclercq, F. Bayesian large-scale structure inference and cosmic web analysis. PhD thesis,
Institut d’Astrophysique de Paris, Pris, 9 2015.

Leistedt, B., Mortlock, D.J. and Peiris, H.V. Hierarchical Bayesian inference of galaxy
redshift distributions from photometric surveys. Monthly Notices of the Royal Astronomical
Society, 460(4):4258–4267, 2 2016. doi: 10.1093/mnras/stw1304. URL http://arxiv.org/
abs/1602.05960http://dx.doi.org/10.1093/mnras/stw1304.

Lejeune, T., Cuisinier, F. and Buser, R. A standard stellar library for evolutionary synthesis:
II. The M dwarf extension. Astronomy and Astrophysics Supplement Series, 130(1):65–75,
5 1998. ISSN 03650138. doi: 10.1051/aas:1998405. URL https://ui.adsabs.harvard.edu/
abs/1998A&AS..130...65L/abstract.

Lematre, A.G. and Eddington, A.S. The Expanding Universe. Monthly Notices of the Royal
Astronomical Society, 91(5):490–501, 3 1931. ISSN 0035-8711. doi: 10.1093/mnras/91.5.
490. URL https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/91.5.490.

https://escholarship.org/uc/item/6hh4c2nt
https://aas.aanda.org/articles/aas/abs/2000/17/h2019/h2019.html
https://aas.aanda.org/articles/aas/abs/2000/17/h2019/h2019.html
http://arxiv.org/abs/1110.3193
https://iopscience.iop.org/article/10.1088/0004-637X/709/1/483 https://iopscience.iop.org/article/10.1088/0004-637X/709/1/483/meta
https://iopscience.iop.org/article/10.1088/0004-637X/709/1/483 https://iopscience.iop.org/article/10.1088/0004-637X/709/1/483/meta
https://www.aanda.org/articles/aa/abs/2005/33/aa1960-04/aa1960-04.html
https://www.aanda.org/articles/aa/abs/2005/33/aa1960-04/aa1960-04.html
https://ui.adsabs.harvard.edu/abs/1859AnPar...5....1L/abstract
https://ui.adsabs.harvard.edu/abs/1859AnPar...5....1L/abstract
http://snap.lbl.gov
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.1439
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.1439
http://arxiv.org/abs/1602.05960 http://dx.doi.org/10.1093/mnras/stw1304
http://arxiv.org/abs/1602.05960 http://dx.doi.org/10.1093/mnras/stw1304
https://ui.adsabs.harvard.edu/abs/1998A&AS..130...65L/abstract
https://ui.adsabs.harvard.edu/abs/1998A&AS..130...65L/abstract
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/91.5.490


Bibliography 261

Lewis, A. Galaxy shear estimation from stacked images. Monthly Notices of the Royal Astro-
nomical Society, 398(1):471–476, 9 2009. ISSN 0035-8711. doi: 10.1111/J.1365-2966.
2009.15161.X. URL https://academic.oup.com/mnras/article/398/1/471/1099856.

Lieu, R. Proving the conservation of surface brightness during the strong and weak lensing
of light by an isothermal sphere. ArXiv, 9 2004. URL https://arxiv.org/abs/astro-ph/
0409655v3.

Lilly, S.J. et al. The zCOSMOS 10k-Bright Spectroscopic Sample. ApJS, 184(2):218–229,
2009. ISSN 0067-0049. doi: 10.1088/0067-0049/184/2/218. URL https://ui.adsabs.
harvard.edu/abs/2009ApJS..184..218L/abstract.

Lima, M. et al. Estimating the redshift distribution of photometric galaxy samples. Monthly
Notices of the Royal Astronomical Society, 390(1):118–130, 10 2008. ISSN 00358711. doi:
10.1111/j.1365-2966.2008.13510.x. URL https://academic.oup.com/mnras/article-lookup/
doi/10.1111/j.1365-2966.2008.13510.x.

Limber, D.N., Limber and Nelson, D. The Analysis of Counts of the Extragalactic Nebulae
in Terms of a Fluctuating Density Field. ApJ, 117:134, 1 1953. ISSN 0004-637X. doi:
10.1086/145672. URL https://ui.adsabs.harvard.edu/abs/1953ApJ...117..134L/abstract.

Liske, J. et al. Galaxy And Mass Assembly (GAMA): end of survey report and data release
2. Monthly Notices of the Royal Astronomical Society, 452(2):2087–2126, 9 2015. ISSN
0035-8711. doi: 10.1093/MNRAS/STV1436. URL https://academic.oup.com/mnras/
article/452/2/2087/1069711.

Liu, L. and Chronopoulos, C. The Hydrogen 21-cm Line and Its Applications to Radio
Astrophysics. ArXiv, 2008.

Liu, S. The Dirichlet Distribution: What Is It and Why Is It Useful? | Built In, 2022. URL
https://builtin.com/data-science/dirichlet-distribution.

Lo, K.H., Young, K. and Lee, B.Y.P. Advance of perihelion. American Journal of Physics, 81
(9):695–702, 9 2013. ISSN 0002-9505. doi: 10.1119/1.4813067. URL http://aapt.scitation.
org/doi/10.1119/1.4813067.

Loverde, M. and Afshordi, N. Extended Limber approximation. Physical Review D -
Particles, Fields, Gravitation and Cosmology, 78(12):123506, 12 2008. ISSN 15507998.
doi: 10.1103/PhysRevD.78.123506. URL https://ui.adsabs.harvard.edu/abs/2008PhRvD.
.78l3506L/abstract.

LSST Science Collaboration, L.S. et al. LSST Science Book, Version 2.0. ArXiv, 12 2009.
URL http://arxiv.org/abs/0912.0201.

Lupton, R.H., Gunn, J.E. and Szalay, A.S. A Modified Magnitude System that Pro-
duces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise
Ratio Measurements. The Astronomical Journal, 118(3):1406–1410, 9 1999. ISSN
00046256. doi: 10.1086/301004/FULLTEXT/. URL https://iopscience.iop.org/article/10.
1086/301004https://iopscience.iop.org/article/10.1086/301004/meta.

https://academic.oup.com/mnras/article/398/1/471/1099856
https://arxiv.org/abs/astro-ph/0409655v3
https://arxiv.org/abs/astro-ph/0409655v3
https://ui.adsabs.harvard.edu/abs/2009ApJS..184..218L/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJS..184..218L/abstract
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2008.13510.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2008.13510.x
https://ui.adsabs.harvard.edu/abs/1953ApJ...117..134L/abstract
https://academic.oup.com/mnras/article/452/2/2087/1069711
https://academic.oup.com/mnras/article/452/2/2087/1069711
https://builtin.com/data-science/dirichlet-distribution
http://aapt.scitation.org/doi/10.1119/1.4813067
http://aapt.scitation.org/doi/10.1119/1.4813067
https://ui.adsabs.harvard.edu/abs/2008PhRvD..78l3506L/abstract
https://ui.adsabs.harvard.edu/abs/2008PhRvD..78l3506L/abstract
http://arxiv.org/abs/0912.0201
https://iopscience.iop.org/article/10.1086/301004 https://iopscience.iop.org/article/10.1086/301004/meta
https://iopscience.iop.org/article/10.1086/301004 https://iopscience.iop.org/article/10.1086/301004/meta


262 Bibliography

Lusso, E. et al. Tension with the flat LambdaCDM model from a high redshift Hubble
Diagram of supernovae, quasars and gamma-ray bursts. Astronomy and Astrophysics, 628,
7 2019. doi: 10.1051/0004-6361/201936223. URL https://arxiv.org/abs/1907.07692v4.

Maartens, R. Is the Universe homogeneous? Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 369(1957):5115–5137, 4 2011. doi:
10.1098/rsta.2011.0289. URL http://arxiv.org/abs/1104.1300http://dx.doi.org/10.1098/rsta.
2011.0289.

Mackay, D.J.C. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 9 1995. ISBN 0521642981. URL http://www.inference.phy.cam.ac.uk/
mackay/itila/.

Maggiore, M. et al. Science Case for the Einstein Telescope. Journal of Cosmology and
Astroparticle Physics, 2020(3), 12 2019. doi: 10.1088/1475-7516/2020/03/050. URL
http://arxiv.org/abs/1912.02622http://dx.doi.org/10.1088/1475-7516/2020/03/050.

Malz, A.I. How not to obtain the redshift distribution from probabilistic redshift estimates:
Under what conditions is it not inappropriate to estimate the redshift distribution N(z) by
stacking photo-z PDFs? Physical Review D, 103(8), 1 2021. doi: 10.1103/PhysRevD.103.
083502. URL http://arxiv.org/abs/2101.04675http://dx.doi.org/10.1103/PhysRevD.103.
083502.

Malz, A.I. and Hogg, D.W. How to obtain the redshift distribution from probabilistic redshift
estimates. arXiv, 7 2020. URL http://arxiv.org/abs/2007.12178.

Mandelbaum, R. Weak lensing for precision cosmology. Annual Review of Astronomy and
Astrophysics, 56:393–433, 10 2017. doi: 10.1146/annurev-astro-081817-051928. URL
https://arxiv.org/abs/1710.03235v1.

Mandelbaum, R. et al. Detection of large-scale intrinsic ellipticity-density correlation
from the Sloan Digital Sky Survey and implications for weak lensing surveys. Monthly
Notices of the Royal Astronomical Society, 367(2):611–626, 4 2006. ISSN 00358711.
doi: 10.1111/J.1365-2966.2005.09946.X/2/M{\_}367-2-611-EQ036.JPEG. URL https:
//academic.oup.com/mnras/article/367/2/611/1012784.

Maraston, C. Evolutionary synthesis of stellar populations: a modular tool. Monthly Notices
of the Royal Astronomical Society, 300(3):872–892, 11 1998. ISSN 0035-8711. doi:
10.1046/j.1365-8711.1998.01947.x. URL https://ui.adsabs.harvard.edu/abs/1998MNRAS.
300..872M/abstract.

Maraston, C. Evolutionary population synthesis: Models, analysis of the ingredients
and application to high-z galaxies. Monthly Notices of the Royal Astronomical Soci-
ety, 362(3):799–825, 9 2005. ISSN 00358711. doi: 10.1111/J.1365-2966.2005.09270.
X/2/362-3-799-FIG030.JPEG. URL https://academic.oup.com/mnras/article/362/3/799/
976732.

Martin, S.P. A Supersymmetry Primer. Adv.Ser.Direct.High Energy Phys, 18:1–98, 9 1997.
doi: 10.1142/9789812839657{\_}0001. URL http://arxiv.org/abs/hep-ph/9709356http:
//dx.doi.org/10.1142/9789812839657_0001.

https://arxiv.org/abs/1907.07692v4
http://arxiv.org/abs/1104.1300 http://dx.doi.org/10.1098/rsta.2011.0289
http://arxiv.org/abs/1104.1300 http://dx.doi.org/10.1098/rsta.2011.0289
http://www.inference.phy.cam.ac.uk/mackay/itila/
http://www.inference.phy.cam.ac.uk/mackay/itila/
http://arxiv.org/abs/1912.02622 http://dx.doi.org/10.1088/1475-7516/2020/03/050
http://arxiv.org/abs/2101.04675 http://dx.doi.org/10.1103/PhysRevD.103.083502
http://arxiv.org/abs/2101.04675 http://dx.doi.org/10.1103/PhysRevD.103.083502
http://arxiv.org/abs/2007.12178
https://arxiv.org/abs/1710.03235v1
https://academic.oup.com/mnras/article/367/2/611/1012784
https://academic.oup.com/mnras/article/367/2/611/1012784
https://ui.adsabs.harvard.edu/abs/1998MNRAS.300..872M/abstract
https://ui.adsabs.harvard.edu/abs/1998MNRAS.300..872M/abstract
https://academic.oup.com/mnras/article/362/3/799/976732
https://academic.oup.com/mnras/article/362/3/799/976732
http://arxiv.org/abs/hep-ph/9709356 http://dx.doi.org/10.1142/9789812839657_0001
http://arxiv.org/abs/hep-ph/9709356 http://dx.doi.org/10.1142/9789812839657_0001


Bibliography 263

Massarotti, M., Iovino, A. and Buzzoni, A. A critical appraisal of the SED fitting method to
estimate photometric redshifts. Astronomy & Astrophysics, 368(1):74–85, 3 2001. ISSN
0004-6361. doi: 10.1051/0004-6361:20000553. URL https://www.aanda.org/articles/aa/
abs/2001/10/aah2454/aah2454.html.

Massey, R. et al. Origins of weak lensing systematics, and requirements on future in-
strumentation (or knowledge of instrumentation). Mon. Not. R. Astron. Soc, 000:1–19,
2011.

Masters, K.L. et al. SFI++ I : A New I -Band Tully-Fisher Template, the Cluster Peculiar
Velocity Dispersion, and H 0 . The Astrophysical Journal, 653(2):861–880, 12 2006.
ISSN 0004-637X. doi: 10.1086/508924. URL https://iopscience.iop.org/article/10.1086/
508924https://iopscience.iop.org/article/10.1086/508924/meta.

Masters, K.L., Springob, C.M. and Huchra, J.P. 2MTF. I. the tully-fisher relation
in the two micron all sky survey J, H, and K bands. Astronomical Journal, 135
(5):1738–1748, 5 2008. ISSN 00046256. doi: 10.1088/0004-6256/135/5/1738.
URL https://iopscience.iop.org/article/10.1088/0004-6256/135/5/1738https://iopscience.
iop.org/article/10.1088/0004-6256/135/5/1738/meta.

Masters, K.L. et al. Galaxy Zoo: Unwinding the Winding Problem - Observations of Spiral
Bulge Prominence and Arm Pitch Angles Suggest Local Spiral Galaxies are Winding.
Monthly Notices of the Royal Astronomical Society, 487(2):1808–1820, 4 2019. doi:
10.1093/mnras/stz1153. URL http://arxiv.org/abs/1904.11436http://dx.doi.org/10.1093/
mnras/stz1153.

Mead, A.J. et al. An accurate halo model for fitting non-linear cosmological power spectra
and baryonic feedback models. Monthly Notices of the Royal Astronomical Society,
454(2):1958–1975, 12 2015. ISSN 13652966. doi: 10.1093/mnras/stv2036. URL
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.1958M/abstract.

Melchior, P. et al. Limitations on shapelet-based weak-lensing measurements. A&A, 510:75,
2010. doi: 10.1051/0004-6361/200912785.

Menanteau, F. et al. The Atacama Cosmology Telescope: ACT-CL J0102-4915 "El Gordo,"
a Massive Merging Cluster at Redshift 0.87. Astrophysical Journal, 748(1), 9 2011. doi:
10.1088/0004-637x/748/1/7. URL https://arxiv.org/abs/1109.0953v3.

Metcalf, R.B. and Silk, J. New constraints on macroscopic compact objects as dark matter
candidates from gravitational lensing of type Ia supernovae. Physical Review Letters,
98(7):071302, 2 2007. ISSN 00319007. doi: 10.1103/PhysRevLett.98.071302. URL
https://link.aps.org/doi/10.1103/PhysRevLett.98.071302.

Metropolis, N. et al. Equation of State Calculations by Fast Computing Machines. The
Journal of Chemical Physics, 12 1953. ISSN 0021-9606. doi: 10.1063/1.1699114. URL
https://aip.scitation.org/doi/abs/10.1063/1.1699114.

Meyers, J.E. and Burchat, P.R. IMPACT OF ATMOSPHERIC CHROMATIC EF-
FECTS ON WEAK LENSING MEASUREMENTS. The Astrophysical Journal,
807(2):182, 7 2015. ISSN 0004-637X. doi: 10.1088/0004-637X/807/2/182.
URL https://iopscience.iop.org/article/10.1088/0004-637X/807/2/182https://iopscience.
iop.org/article/10.1088/0004-637X/807/2/182/meta.

https://www.aanda.org/articles/aa/abs/2001/10/aah2454/aah2454.html
https://www.aanda.org/articles/aa/abs/2001/10/aah2454/aah2454.html
https://iopscience.iop.org/article/10.1086/508924 https://iopscience.iop.org/article/10.1086/508924/meta
https://iopscience.iop.org/article/10.1086/508924 https://iopscience.iop.org/article/10.1086/508924/meta
https://iopscience.iop.org/article/10.1088/0004-6256/135/5/1738 https://iopscience.iop.org/article/10.1088/0004-6256/135/5/1738/meta
https://iopscience.iop.org/article/10.1088/0004-6256/135/5/1738 https://iopscience.iop.org/article/10.1088/0004-6256/135/5/1738/meta
http://arxiv.org/abs/1904.11436 http://dx.doi.org/10.1093/mnras/stz1153
http://arxiv.org/abs/1904.11436 http://dx.doi.org/10.1093/mnras/stz1153
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.1958M/abstract
https://arxiv.org/abs/1109.0953v3
https://link.aps.org/doi/10.1103/PhysRevLett.98.071302
https://aip.scitation.org/doi/abs/10.1063/1.1699114
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/182 https://iopscience.iop.org/article/10.1088/0004-637X/807/2/182/meta
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/182 https://iopscience.iop.org/article/10.1088/0004-637X/807/2/182/meta


264 Bibliography

Mihalas, D. and Routly, P.M. Galactic astronomy. Princeton University Press, 9 1968. ISBN
9780716703266.

Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the
hidden mass hypothesis. The Astrophysical Journal, 270:365, 7 1983. ISSN 0004-637X.
doi: 10.1086/161130.

Monaco, P. Approximate methods for the generation of dark matter halo catalogs in the age
of precision cosmology. Galaxies, 4(4), 5 2016. URL http://arxiv.org/abs/1605.07752.

Moore, B. et al. Dark Matter Substructure in Galactic Halos. The Astrophysical Journal,
524(1):L19–L22, 7 1999. doi: 10.1086/312287. URL http://arxiv.org/abs/astro-ph/
9907411http://dx.doi.org/10.1086/312287.

Moore, C.C. Ergodic theorem, ergodic theory, and statistical mechanics, 2 2015. ISSN
10916490. URL www.pnas.org/cgi/doi/10.1073/pnas.1421798112.

Mootoovaloo, A. et al. Parameter Inference for Weak Lensing using Gaussian Processes and
MOPED. MNRAS, 000:1–15, 2020.

Moster, B.P. et al. A cosmic variance cookbook. Astrophysical Journal, 731(2):113, 4 2011.
ISSN 15384357. doi: 10.1088/0004-637X/731/2/113. URL http://astro.berkeley.edu/.

Moulin, E. Astroparticle Physics with H.E.S.S.: recents results and nearfuture prospects.
EPJ Web of Conferences, 209:01054, 2019. doi: 10.1051/epjconf/201920901054. URL
https://doi.org/10.1051/e.

Mueller, M.W. et al. Propagating star formation and irregular structure in spiral galaxies.
ApJ, 210:670–678, 12 1976. ISSN 0004-637X. doi: 10.1086/154873. URL https:
//ui.adsabs.harvard.edu/abs/1976ApJ...210..670M/abstract.

Munoz, R.R. et al. Exploring Halo Substructure with Giant Stars: The Dynamics and
Metallicity of the Dwarf Spheroidal in Bootes. The Astrophysical Journal, 650(1):L51–
L54, 6 2006. doi: 10.1086/508685. URL http://arxiv.org/abs/astro-ph/0606271http:
//dx.doi.org/10.1086/508685.

Murase, K. and Shoemaker, I.M. Detecting Asymmetric Dark Matter in the Sun with
Neutrinos. Physical Review D, 94(6), 6 2016. doi: 10.1103/PhysRevD.94.063512. URL
http://arxiv.org/abs/1606.03087http://dx.doi.org/10.1103/PhysRevD.94.063512.

Nadler, E.O. et al. Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints
Including the Impact of the Large Magellanic Cloud. arXiv, 19:31, 12 2019. doi: 10.
3847/1538-4357/ab846a. URL http://arxiv.org/abs/1912.03303http://dx.doi.org/10.3847/
1538-4357/ab846a.

Nagamine, K. and Loeb, A. Future Evolution of Nearby Large-Scale Structure in a Universe
Dominated by a Cosmological Constant. New Astronomy, 8(5):439–448, 4 2002. doi:
10.1016/S1384-1076(02)00234-8. URL http://arxiv.org/abs/astro-ph/0204249http://dx.doi.
org/10.1016/S1384-1076(02)00234-8.

http://arxiv.org/abs/1605.07752
http://arxiv.org/abs/astro-ph/9907411 http://dx.doi.org/10.1086/312287
http://arxiv.org/abs/astro-ph/9907411 http://dx.doi.org/10.1086/312287
www.pnas.org/cgi/doi/10.1073/pnas.1421798112
http://astro.berkeley.edu/
https://doi.org/10.1051/e
https://ui.adsabs.harvard.edu/abs/1976ApJ...210..670M/abstract
https://ui.adsabs.harvard.edu/abs/1976ApJ...210..670M/abstract
http://arxiv.org/abs/astro-ph/0606271 http://dx.doi.org/10.1086/508685
http://arxiv.org/abs/astro-ph/0606271 http://dx.doi.org/10.1086/508685
http://arxiv.org/abs/1606.03087 http://dx.doi.org/10.1103/PhysRevD.94.063512
http://arxiv.org/abs/1912.03303 http://dx.doi.org/10.3847/1538-4357/ab846a
http://arxiv.org/abs/1912.03303 http://dx.doi.org/10.3847/1538-4357/ab846a
http://arxiv.org/abs/astro-ph/0204249 http://dx.doi.org/10.1016/S1384-1076(02)00234-8
http://arxiv.org/abs/astro-ph/0204249 http://dx.doi.org/10.1016/S1384-1076(02)00234-8


Bibliography 265

Narlikar, J.V. Spectral shifts in general relativity. American Journal of Physics, 62(10):
903–907, 10 1994. ISSN 0002-9505. doi: 10.1119/1.17679. URL http://aapt.scitation.org/
doi/10.1119/1.17679.

NASA & ESA. Hubble Galaxy Classification, 8 1999. URL https://esahubble.org/images/
heic9902o/.

Neal, R.M. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
pages 1–592, 6 2012. doi: 10.1201/b10905. URL http://arxiv.org/abs/1206.1901http:
//dx.doi.org/10.1201/b10905.

Newman, J. et al. Spectroscopic Needs for Imaging Dark Energy Experiments: Photometric
Redshift Training and Calibration. APh, 63:81–100, 9 2013a. doi: 10.1016/j.astropartphys.
2014.06.007. URL http://arxiv.org/abs/1309.5384http://dx.doi.org/10.1016/j.astropartphys.
2014.06.007.

Newman, J.A. Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-
Correlations. The Astrophysical Journal, 684(1):88–101, 9 2008. ISSN 0004-637X. doi:
10.1086/589982. URL https://ui.adsabs.harvard.edu/abs/2008ApJ...684...88N/abstract.

Newman, J.A. et al. The deep2 galaxy redshift survey: Design, observations, data reduction,
and redshifts. Astrophysical Journal, Supplement Series, 208(1):5, 9 2013b. ISSN
00670049. doi: 10.1088/0067-0049/208/1/5. URL https://ui.adsabs.harvard.edu/abs/
2013ApJS..208....5N/abstract.

Newman, J.A. et al. Spectroscopic needs for imaging dark energy experiments. Astroparticle
Physics, 63:81–100, 3 2015. ISSN 0927-6505. doi: 10.1016/J.ASTROPARTPHYS.2014.
06.007.

Newton, I. Opticks: or, a treatise of the reflections,refraction,inflections,and colours of light.
Sam. Smith, and Benj. Walford„ 1704.

Nicolaou, C. et al. The Impact of Peculiar Velocities on the Estimation of the Hubble Constant
from Gravitational Wave Standard Sirens. Monthly Notices of the Royal Astronomical
Society, 495(1):90–97, 9 2019. doi: 10.1093/mnras/staa1120. URL http://arxiv.org/abs/
1909.09609http://dx.doi.org/10.1093/mnras/staa1120.

Nusser, A. and Dekel, A. Omega and the initial fluctuations from velocity and density fields.
The Astrophysical Journal, 405:437, 3 1993. ISSN 0004-637X. doi: 10.1086/172376.
URL https://ui.adsabs.harvard.edu/abs/1993ApJ...405..437N/abstract.

Oke, J.B. et al. Secondary standard stars for absolute spectrophotometry. ApJ, 266:713–717,
3 1983. ISSN 0004-637X. doi: 10.1086/160817. URL https://ui.adsabs.harvard.edu/abs/
1983ApJ...266..713O/abstract.

Okumura, T., Jing, Y.P. and Li, C. Intrinsic Ellipticity Correlation of SDSS Luminous Red
Galaxies and Misalignment with their Host Dark Matter Halos. Astrophysical Journal,
694(1):214–221, 9 2008. doi: 10.1088/0004-637X/694/1/214. URL http://arxiv.org/abs/
0809.3790http://dx.doi.org/10.1088/0004-637X/694/1/214.

http://aapt.scitation.org/doi/10.1119/1.17679
http://aapt.scitation.org/doi/10.1119/1.17679
https://esahubble.org/images/heic9902o/
https://esahubble.org/images/heic9902o/
http://arxiv.org/abs/1206.1901 http://dx.doi.org/10.1201/b10905
http://arxiv.org/abs/1206.1901 http://dx.doi.org/10.1201/b10905
http://arxiv.org/abs/1309.5384 http://dx.doi.org/10.1016/j.astropartphys.2014.06.007
http://arxiv.org/abs/1309.5384 http://dx.doi.org/10.1016/j.astropartphys.2014.06.007
https://ui.adsabs.harvard.edu/abs/2008ApJ...684...88N/abstract
https://ui.adsabs.harvard.edu/abs/2013ApJS..208....5N/abstract
https://ui.adsabs.harvard.edu/abs/2013ApJS..208....5N/abstract
http://arxiv.org/abs/1909.09609 http://dx.doi.org/10.1093/mnras/staa1120
http://arxiv.org/abs/1909.09609 http://dx.doi.org/10.1093/mnras/staa1120
https://ui.adsabs.harvard.edu/abs/1993ApJ...405..437N/abstract
https://ui.adsabs.harvard.edu/abs/1983ApJ...266..713O/abstract
https://ui.adsabs.harvard.edu/abs/1983ApJ...266..713O/abstract
http://arxiv.org/abs/0809.3790 http://dx.doi.org/10.1088/0004-637X/694/1/214
http://arxiv.org/abs/0809.3790 http://dx.doi.org/10.1088/0004-637X/694/1/214


266 Bibliography

Okura, Y. and Futamase, T. Elliptical Weighted HOLICs for Weak Lensing Shear Mea-
surement part3:Random Count Noise Effect for Image’s Moments in Weak Lensing
Analysis. Astrophysical Journal, 771(1), 8 2012. doi: 10.1088/0004-637x/771/1/37. URL
https://arxiv.org/abs/1208.3564v1.

O’Raifeartaigh, C. et al. One Hundred Years of the Cosmological Constant: from ’Su-
perfluous Stunt’ to Dark Energy. European Physical Journal H, 43(1):73–117, 11
2017. doi: 10.1140/epjh/e2017-80061-7. URL http://arxiv.org/abs/1711.06890http:
//dx.doi.org/10.1140/epjh/e2017-80061-7.

Ostriker, J.P. et al. Generation of Microwave Background Fluctuations from Nonlinear
Perturbations at the ERA of Galaxy Formation. ApJL, 306:L51, 7 1986. ISSN 0004-
637X. doi: 10.1086/184704. URL https://ui.adsabs.harvard.edu/abs/1986ApJ...306L..51O/
abstract.

Padmanabhan, N. et al. Calibrating photometric redshifts of luminous red galaxies. Monthly
Notices of the Royal Astronomical Society, 359(1):237–250, 5 2005. ISSN 00358711. doi:
10.1111/J.1365-2966.2005.08915.X/3/359-1-237-FIG012.GIF. URL https://academic.
oup.com/mnras/article/359/1/237/983557.

Partridge, R.B., Partridge and B., R. A. Search for Primeval Galaxies at High Redshifts. ApJ,
192:241–250, 9 1974. ISSN 0004-637X. doi: 10.1086/153055. URL https://ui.adsabs.
harvard.edu/abs/1974ApJ...192..241P/abstract.

Peacock, J.A. Cosmological Physics. Cambridge University Press, 12 1998. doi: 10.1017/
cbo9780511804533. URL https://www.cambridge.org/core/books/cosmological-physics/
3EA0C68658270C9C3CC48E07A035C327.

Peacock, J.A. A diatribe on expanding space. ArXiv, 9 2008. URL http://arxiv.org/abs/0809.
4573.

Peacock, J.A. and Dodds, S.J. Reconstructing the linear power spectrum of cosmological
mass fluctuations. Monthly Notices of the Royal Astronomical Society, 267(4):1020–1034,
4 1994. ISSN 0035-8711. doi: 10.1093/MNRAS/267.4.1020. URL https://academic.oup.
com/mnras/article/267/4/1020/1227458.

Pearson. LIII. On lines and planes of closest fit to systems of points in space.
https://doi.org/10.1080/14786440109462720, 2(11):559–572, 11 1901. ISSN 1941-5982.
doi: 10.1080/14786440109462720. URL https://www.tandfonline.com/doi/abs/10.1080/
14786440109462720.

Peebles, P.J.E. The Void Phenomenon. The Astrophysical Journal, 557(2):495–504, 8 2001.
ISSN 0004-637X. doi: 10.1086/322254. URL www.astro.princeton.edu/strauss/ors/index.
html.

Penzias, A.A. and Wilson, R.W. A Measurement of Excess Antenna Temperature at 4080
Mc/s. The Astrophysical Journal, 142:419, 7 1965. ISSN 0004-637X. doi: 10.1086/148307.
URL https://ui.adsabs.harvard.edu/abs/1965ApJ...142..419P/abstract.

Perivolaropoulos, L. Sub-millimeter Spatial Oscillations of Newton’s Constant: Theoretical
Models and Laboratory Tests. Physical Review D, 95(8), 11 2016. doi: 10.1103/physrevd.
95.084050. URL https://arxiv.org/abs/1611.07293v3.

https://arxiv.org/abs/1208.3564v1
http://arxiv.org/abs/1711.06890 http://dx.doi.org/10.1140/epjh/e2017-80061-7
http://arxiv.org/abs/1711.06890 http://dx.doi.org/10.1140/epjh/e2017-80061-7
https://ui.adsabs.harvard.edu/abs/1986ApJ...306L..51O/abstract
https://ui.adsabs.harvard.edu/abs/1986ApJ...306L..51O/abstract
https://academic.oup.com/mnras/article/359/1/237/983557
https://academic.oup.com/mnras/article/359/1/237/983557
https://ui.adsabs.harvard.edu/abs/1974ApJ...192..241P/abstract
https://ui.adsabs.harvard.edu/abs/1974ApJ...192..241P/abstract
https://www.cambridge.org/core/books/cosmological-physics/3EA0C68658270C9C3CC48E07A035C327
https://www.cambridge.org/core/books/cosmological-physics/3EA0C68658270C9C3CC48E07A035C327
http://arxiv.org/abs/0809.4573
http://arxiv.org/abs/0809.4573
https://academic.oup.com/mnras/article/267/4/1020/1227458
https://academic.oup.com/mnras/article/267/4/1020/1227458
https://www.tandfonline.com/doi/abs/10.1080/14786440109462720
https://www.tandfonline.com/doi/abs/10.1080/14786440109462720
www.astro.princeton.edu/strauss/ors/index.html.
www.astro.princeton.edu/strauss/ors/index.html.
https://ui.adsabs.harvard.edu/abs/1965ApJ...142..419P/abstract
https://arxiv.org/abs/1611.07293v3


Bibliography 267

Perivolaropoulos, L. and Skara, F. Challenges for $\Lambda$CDM: An update. New
Astronomy Reviews, 95, 5 2021. URL http://arxiv.org/abs/2105.05208.

Perlmutter, S. et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae.
The Astrophysical Journal, 517(2):565–586, 12 1998. doi: 10.1086/307221. URL http:
//arxiv.org/abs/astro-ph/9812133http://dx.doi.org/10.1086/307221.

Petri, A., Haiman, Z. and May, M. On the validity of the Born approximation for beyond-
Gaussian weak lensing observables. ArXiv, 2017.

Petters, A.O., Levine, H. and Wambsganss, J. Singularity Theory and Gravitational Lensing.
Birkhäuser Boston, 2001. doi: 10.1007/978-1-4612-0145-8.

Piattella, O.F. Lecture Notes in Cosmology. arXiv, 2 2018. doi: 10.1007/978-3-319-95570-4.
URL http://arxiv.org/abs/1803.00070http://dx.doi.org/10.1007/978-3-319-95570-4.

Pitrou, C., Uzan, J.P. and Pereira, T.S. Weak lensing B-modes on all scales as a probe of
local isotropy. Physical Review D - Particles, Fields, Gravitation and Cosmology, 87(4), 3
2012. doi: 10.1103/physrevd.87.043003. URL https://arxiv.org/abs/1203.6029v3.

Pitrou, C. et al. Precision big bang nucleosynthesis with improved Helium-4 predictions.
Physics Reports, 754:1–66, 1 2018. doi: 10.1016/j.physrep.2018.04.005. URL https:
//arxiv.org/abs/1801.08023v2.

Planelles, S., Schleicher, D.R. and Bykov, A.M. Large-Scale Structure Formation: From
the First Non-linear Objects to Massive Galaxy Clusters. Space Science Reviews 2014
188:1, 188(1):93–139, 4 2014. ISSN 1572-9672. doi: 10.1007/S11214-014-0045-7. URL
https://link.springer.com/article/10.1007/s11214-014-0045-7.

Polchinski, J. The Cosmological Constant and the String Landscape. The Quantum Structure
of Space and Time : Proceedings of the 23rd Solvay Conference on Physics. Brussels,
Belgium, 3 2006. URL http://arxiv.org/abs/hep-th/0603249.

Polletta, M. et al. Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS
Survey. ApJ, 663(1):81–102, 3 2007. doi: 10.1086/518113. URL http://arxiv.org/abs/
astro-ph/0703255http://dx.doi.org/10.1086/518113.

Polsterer, K.L., D’Isanto, A. and Gieseke, F. Uncertain Photometric Redshifts. ArXiv, 8
2016. doi: 10.48550/arxiv.1608.08016. URL https://arxiv.org/abs/1608.08016v1.

Popesso, P. et al. RASS-SDSS galaxy cluster survey. II. A unified picture of the cluster lumi-
nosity function. A&A, 433(2):415–429, 4 2005. ISSN 0004-6361. doi: 10.1051/0004-6361:
20041870. URL https://ui.adsabs.harvard.edu/abs/2005A&A...433..415P/abstract.

Pössel, M. Interpretations of cosmic expansion: anchoring conceptions and misconceptions.
Physics Education, 55(6), 8 2020. doi: 10.1088/1361-6552/aba3b1. URL http://arxiv.org/
abs/2008.07776http://dx.doi.org/10.1088/1361-6552/aba3b1.

Pound, R.V. and Rebka, G.A. Apparent weight of photons. Physical Review Letters, 4
(7):337–341, 4 1960. ISSN 00319007. doi: 10.1103/PhysRevLett.4.337. URL https:
//journals.aps.org/prl/abstract/10.1103/PhysRevLett.4.337.

http://arxiv.org/abs/2105.05208
http://arxiv.org/abs/astro-ph/9812133 http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/astro-ph/9812133 http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/1803.00070 http://dx.doi.org/10.1007/978-3-319-95570-4
https://arxiv.org/abs/1203.6029v3
https://arxiv.org/abs/1801.08023v2
https://arxiv.org/abs/1801.08023v2
https://link.springer.com/article/10.1007/s11214-014-0045-7
http://arxiv.org/abs/hep-th/0603249
http://arxiv.org/abs/astro-ph/0703255 http://dx.doi.org/10.1086/518113
http://arxiv.org/abs/astro-ph/0703255 http://dx.doi.org/10.1086/518113
https://arxiv.org/abs/1608.08016v1
https://ui.adsabs.harvard.edu/abs/2005A&A...433..415P/abstract
http://arxiv.org/abs/2008.07776 http://dx.doi.org/10.1088/1361-6552/aba3b1
http://arxiv.org/abs/2008.07776 http://dx.doi.org/10.1088/1361-6552/aba3b1
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.4.337
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.4.337


268 Bibliography

Pritchard, J. Nested Sampling, 2016. URL https://www.imperial.ac.uk/
media/imperial-college/research-centres-and-groups/astrophysics/public/icic/
data-analysis-workshop/2016/NestedSampling_JRP.pdf.

Puschell, Owen and Laning. Near-infrared photometry of distant radio galaxies-
Spectral flux distributions and redshift estimates. The Astrophysical Journal, 257,
1982. URL https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=
t3Y8bXAAAAAJ&citation_for_view=t3Y8bXAAAAAJ:7PzlFSSx8tAC.

Qi, J.Z. et al. Testing the Etherington’s distance duality relation at higher redshifts: the
combination of radio quasars and gravitational waves. ArXiv, 2019.

Raichoor, A. et al. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE
PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES. The
Astrophysical Journal, 797(2):102, 12 2014. ISSN 0004-637X. doi: 10.1088/0004-637X/
797/2/102. URL https://iopscience.iop.org/article/10.1088/0004-637X/797/2/102https:
//iopscience.iop.org/article/10.1088/0004-637X/797/2/102/meta.

Randall, L. and Xu, W.L. Searching for dark photon dark matter with cosmic ray an-
tideuterons. Journal of High Energy Physics 2020 2020:5, 2020(5):1–22, 5 2020. ISSN
1029-8479. doi: 10.1007/JHEP05(2020)081. URL https://link.springer.com/article/10.
1007/JHEP05(2020)081.

Rauch, M. The Lyman Alpha Forest in the Spectra of QSOs. Annual Review of Astronomy
and Astrophysics, 36(1):267–316, 6 1998. doi: 10.1146/annurev.astro.36.1.267. URL
http://arxiv.org/abs/astro-ph/9806286http://dx.doi.org/10.1146/annurev.astro.36.1.267.

Refregier, A. Shapelets: I. A Method for Image Analysis. Mon. Not. R. Astron. Soc, 000:
1–13, 2001.

Refregier, A. and Bacon, D. Shapelets: II. A Method for Weak Lensing Measurements. Mon.
Not. R. Astron. Soc, 000:1–9, 2001.

Reid, B.A. et al. Cosmological constraints from the clustering of the Sloan Digital Sky
Survey DR7 luminous red galaxies. Monthly Notices of the Royal Astronomical Society,
404(1):60–85, 5 2010. ISSN 0035-8711. doi: 10.1111/J.1365-2966.2010.16276.X. URL
https://academic.oup.com/mnras/article/404/1/60/3101463.

Reid, M.J., Pesce, D.W. and Riess, A.G. An Improved Distance to NGC 4258 and its
Implications for the Hubble Constant, 8 2019. ISSN 23318422. URL https://doi.org/10.
3847/2041-8213/ab552d.

Renzini, A., Renzini and A. Energetics of stellar populations. AnPh, 6:87–102, 1981. ISSN
0003-4169. doi: 10.1051/ANPHYS/198106060087. URL https://ui.adsabs.harvard.edu/
abs/1981AnPh....6...87R/abstract.

Rhodes, J.D. et al. The stability of the point-spread function of the advanced camera for
surveys on the Hubble Space Telescope and implications for weak gravitational lensing.
Astrophysical journal supplement series, 2007, Vol.172(1), pp.203-218 [Peer Reviewed
Journal], 172(1):203–218, 9 2007. ISSN 0067-0049. doi: 10.1086/516592. URL
http://dx.doi.org/10.1086/516592.

https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/astrophysics/public/icic/data-analysis-workshop/2016/NestedSampling_JRP.pdf
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/astrophysics/public/icic/data-analysis-workshop/2016/NestedSampling_JRP.pdf
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/astrophysics/public/icic/data-analysis-workshop/2016/NestedSampling_JRP.pdf
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=t3Y8bXAAAAAJ&citation_for_view=t3Y8bXAAAAAJ:7PzlFSSx8tAC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=t3Y8bXAAAAAJ&citation_for_view=t3Y8bXAAAAAJ:7PzlFSSx8tAC
https://iopscience.iop.org/article/10.1088/0004-637X/797/2/102 https://iopscience.iop.org/article/10.1088/0004-637X/797/2/102/meta
https://iopscience.iop.org/article/10.1088/0004-637X/797/2/102 https://iopscience.iop.org/article/10.1088/0004-637X/797/2/102/meta
https://link.springer.com/article/10.1007/JHEP05(2020)081
https://link.springer.com/article/10.1007/JHEP05(2020)081
http://arxiv.org/abs/astro-ph/9806286 http://dx.doi.org/10.1146/annurev.astro.36.1.267
https://academic.oup.com/mnras/article/404/1/60/3101463
https://doi.org/10.3847/2041-8213/ab552d
https://doi.org/10.3847/2041-8213/ab552d
https://ui.adsabs.harvard.edu/abs/1981AnPh....6...87R/abstract
https://ui.adsabs.harvard.edu/abs/1981AnPh....6...87R/abstract
http://dx.doi.org/10.1086/516592


Bibliography 269

Richards, G.T. et al. Photometric Redshifts of Quasars. The Astronomical Journal, 122(3):
1151–1162, 9 2001. ISSN 00046256. doi: 10.1086/322132. URL https://ui.adsabs.harvard.
edu/abs/2001AJ....122.1151R/abstract.

Riess, A.G. The Expansion of the Universe is Faster than Expected. Nature Reviews Physics,
2(1):10–12, 1 2020. doi: 10.1038/s42254-019-0137-0. URL http://arxiv.org/abs/2001.
03624http://dx.doi.org/10.1038/s42254-019-0137-0.

Riess, A.G. et al. Observational Evidence from Supernovae for an Accelerating Universe
and a Cosmological Constant. The Astronomical Journal, 116(3):1009–1038, 5 1998. doi:
10.1086/300499. URL http://arxiv.org/abs/astro-ph/9805201http://dx.doi.org/10.1086/
300499.

Riess, A.G. et al. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation
for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond
LambdaCDM. arXiv, 3 2019. doi: 10.3847/1538-4357/ab1422. URL http://arxiv.org/abs/
1903.07603http://dx.doi.org/10.3847/1538-4357/ab1422.

Risaliti, G. and Lusso, E. Cosmological constraints from the Hubble diagram of quasars at
high redshifts. Nature Astronomy, 3(3):272–277, 11 2018. URL https://arxiv.org/abs/1811.
02590v1.

Robertson, H.P. Kinematics and World-Structure. The Astrophysical Journal, 82:284, 11
1935. ISSN 0004-637X. doi: 10.1086/143681. URL https://ui.adsabs.harvard.edu/abs/
1935ApJ....82..284R/abstract.

Robertson, H.P. Kinematics and World-Structure III. The Astrophysical Journal, 83:257, 5
1936. ISSN 0004-637X. doi: 10.1086/143726. URL https://ui.adsabs.harvard.edu/abs/
1936ApJ....83..257R/abstract.

Rocca, J. Bayesian inference problem, MCMC and variational inference | by
Joseph Rocca | Towards Data Science, 2019. URL https://towardsdatascience.com/
bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29.

Rogozhnikov, A. Hamiltonian Monte Carlo explained, 2016. URL https://arogozhnikov.
github.io/2016/12/19/markov_chain_monte_carlo.html.

Ronen, S., Aragón-Salamanca, A. and Lahav, O. Principal component analysis of synthetic
galaxy spectra. Monthly Notices of the Royal Astronomical Society, 303(2):284–296, 2
1999. ISSN 0035-8711. doi: 10.1046/J.1365-8711.1999.02222.X. URL https://academic.
oup.com/mnras/article/303/2/284/1066471.

Ryden, B. Introduction to Cosmology. Technical report, The Ohio State University, 1 2006.

Sadeh, I., Feng, L.L. and Lahav, O. Gravitational Redshift of Galaxies in Clusters from
the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. Physical
Review Letters, 114(7), 10 2014. doi: 10.1103/PhysRevLett.114.071103. URL http:
//arxiv.org/abs/1410.5262http://dx.doi.org/10.1103/PhysRevLett.114.071103.

Salvato, M., Ilbert, O. and Hoyle, B. The many flavours of photometric redshifts. Nature
Astronomy, 3(3):212–222, 5 2018. ISSN 23973366. doi: 10.48550/arxiv.1805.12574.
URL https://arxiv.org/abs/1805.12574v2.

https://ui.adsabs.harvard.edu/abs/2001AJ....122.1151R/abstract
https://ui.adsabs.harvard.edu/abs/2001AJ....122.1151R/abstract
http://arxiv.org/abs/2001.03624 http://dx.doi.org/10.1038/s42254-019-0137-0
http://arxiv.org/abs/2001.03624 http://dx.doi.org/10.1038/s42254-019-0137-0
http://arxiv.org/abs/astro-ph/9805201 http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9805201 http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/1903.07603 http://dx.doi.org/10.3847/1538-4357/ab1422
http://arxiv.org/abs/1903.07603 http://dx.doi.org/10.3847/1538-4357/ab1422
https://arxiv.org/abs/1811.02590v1
https://arxiv.org/abs/1811.02590v1
https://ui.adsabs.harvard.edu/abs/1935ApJ....82..284R/abstract
https://ui.adsabs.harvard.edu/abs/1935ApJ....82..284R/abstract
https://ui.adsabs.harvard.edu/abs/1936ApJ....83..257R/abstract
https://ui.adsabs.harvard.edu/abs/1936ApJ....83..257R/abstract
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html
https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html
https://academic.oup.com/mnras/article/303/2/284/1066471
https://academic.oup.com/mnras/article/303/2/284/1066471
http://arxiv.org/abs/1410.5262 http://dx.doi.org/10.1103/PhysRevLett.114.071103
http://arxiv.org/abs/1410.5262 http://dx.doi.org/10.1103/PhysRevLett.114.071103
https://arxiv.org/abs/1805.12574v2


270 Bibliography

Samuroff, S. Systematic Biases in Weak Lensing Cosmology with the Dark Energy Survey.
PhD thesis, University of Manchester, 2017.

Sandage, A.R. Cosmology: A search for two numbers. Physics Today, 23(2):34–41, 2 1970.
ISSN 0031-9228. doi: 10.1063/1.3021960. URL /physicstoday/article/23/2/34/427263/
Cosmology-A-search-for-two-numbersPrecision.

Sanderson, G. Bayes theorem, the geometry of changing beliefs - YouTube, 2019. URL
https://www.youtube.com/watch?v=HZGCoVF3YvM&ab_channel=3Blue1Brown.

Sarkar, S. and Pandey, B. An information theory based search for homogeneity on the largest
accessible scale. Monthly Notices of the Royal Astronomical Society: Letters, 463(1):
L12–L16, 7 2016. doi: 10.1093/mnrasl/slw145. URL http://arxiv.org/abs/1607.06194http:
//dx.doi.org/10.1093/mnrasl/slw145.

Saulder, C. et al. Calibrating the fundamental plane with SDSS DR8 data. Astronomy & As-
trophysics, 557:A21, 9 2013. ISSN 0004-6361. doi: 10.1051/0004-6361/201321466. URL
https://www.aanda.org/articles/aa/full_html/2013/09/aa21466-13/aa21466-13.htmlhttps:
//www.aanda.org/articles/aa/abs/2013/09/aa21466-13/aa21466-13.html.

Sawicki, M.J., Lin, H. and Yee, H.K.C. Evolution of the Galaxy Population Based on
Photometric Redshifts in the Hubble Deep Field. The Astronomical Journal, 113:1, 10
1996. doi: 10.1086/118231. URL http://arxiv.org/abs/astro-ph/9610100http://dx.doi.org/
10.1086/118231.

Schechter, P., Schechter and P. An analytic expression for the luminosity function for
galaxies. ApJ, 203:297–306, 1 1976. ISSN 0004-637X. doi: 10.1086/154079. URL
https://ui.adsabs.harvard.edu/abs/1976ApJ...203..297S/abstract.

Scherrer, R.J. Linear velocity fields in non-Gaussian models for large-scale structure. The
Astrophysical Journal, 390:330, 5 1992. ISSN 0004-637X. doi: 10.1086/171283. URL
https://ui.adsabs.harvard.edu/abs/1992ApJ...390..330S/abstract.

Schlafly, E.F. and Finkbeiner, D.P. Measuring Reddening with SDSS Stellar Spectra and
Recalibrating SFD. ApJ, 737(2):103, 12 2010. doi: 10.1088/0004-637X/737/2/103. URL
http://arxiv.org/abs/1012.4804http://dx.doi.org/10.1088/0004-637X/737/2/103.

Schlegel, D.J., Finkbeiner, D.P. and Davis, M. Maps of Dust IR Emission for Use in
Estimation of Reddening and CMBR Foregrounds. ApJ, 500(2):525–553, 10 1997. doi:
10.1086/305772. URL http://arxiv.org/abs/astro-ph/9710327http://dx.doi.org/10.1086/
305772.

Schmitz, M.A. et al. Euclid: Nonparametric point spread function field recovery
through interpolation on a graph Laplacian. Astronomy & Astrophysics, 636:
A78, 4 2020. ISSN 0004-6361. doi: 10.1051/0004-6361/201936094. URL
https://www.aanda.org/articles/aa/full_html/2020/04/aa36094-19/aa36094-19.htmlhttps:
//www.aanda.org/articles/aa/abs/2020/04/aa36094-19/aa36094-19.html.

Schneider, P. et al. A new measure for cosmic shear. Monthly Notices of the Royal Astronom-
ical Society, 296(4):873–892, 6 1998. ISSN 0035-8711. doi: 10.1046/J.1365-8711.1998.
01422.X. URL https://academic.oup.com/mnras/article/296/4/873/1064847.

/physicstoday/article/23/2/34/427263/Cosmology-A-search-for-two-numbersPrecision
/physicstoday/article/23/2/34/427263/Cosmology-A-search-for-two-numbersPrecision
https://www.youtube.com/watch?v=HZGCoVF3YvM&ab_channel=3Blue1Brown
http://arxiv.org/abs/1607.06194 http://dx.doi.org/10.1093/mnrasl/slw145
http://arxiv.org/abs/1607.06194 http://dx.doi.org/10.1093/mnrasl/slw145
https://www.aanda.org/articles/aa/full_html/2013/09/aa21466-13/aa21466-13.html https://www.aanda.org/articles/aa/abs/2013/09/aa21466-13/aa21466-13.html
https://www.aanda.org/articles/aa/full_html/2013/09/aa21466-13/aa21466-13.html https://www.aanda.org/articles/aa/abs/2013/09/aa21466-13/aa21466-13.html
http://arxiv.org/abs/astro-ph/9610100 http://dx.doi.org/10.1086/118231
http://arxiv.org/abs/astro-ph/9610100 http://dx.doi.org/10.1086/118231
https://ui.adsabs.harvard.edu/abs/1976ApJ...203..297S/abstract
https://ui.adsabs.harvard.edu/abs/1992ApJ...390..330S/abstract
http://arxiv.org/abs/1012.4804 http://dx.doi.org/10.1088/0004-637X/737/2/103
http://arxiv.org/abs/astro-ph/9710327 http://dx.doi.org/10.1086/305772
http://arxiv.org/abs/astro-ph/9710327 http://dx.doi.org/10.1086/305772
https://www.aanda.org/articles/aa/full_html/2020/04/aa36094-19/aa36094-19.html https://www.aanda.org/articles/aa/abs/2020/04/aa36094-19/aa36094-19.html
https://www.aanda.org/articles/aa/full_html/2020/04/aa36094-19/aa36094-19.html https://www.aanda.org/articles/aa/abs/2020/04/aa36094-19/aa36094-19.html
https://academic.oup.com/mnras/article/296/4/873/1064847


Bibliography 271

Schneider, P. et al. Analysis of two-point statistics of cosmic shear: I. Estimators and
covariances. Astronomy and Astrophysics, 396(1):1–19, 2002. ISSN 00046361. doi:
10.1051/0004-6361:20021341. URL https://www.researchgate.net/publication/2232569_
Analysis_of_two-point_statistics_of_cosmic_shear_I_Estimators_and_covariances.

Schutz, B. A First Course in General Relativity. Cambridge University Press,
1985. doi: 10.1017/cbo9780511984181. URL https://www.cambridge.org/core/books/
first-course-in-general-relativity/3805425203DD91A7436EF6E5F2082263.

Schutz, B.F. Determining the Hubble constant from gravitational wave observations. Nature,
323(6086):310–311, 1986. ISSN 00280836. doi: 10.1038/323310a0. URL https://www.
nature.com/articles/323310a0.

Schwarzschild, K., Schwarzschild and Karl. Über das Gravitationsfeld eines Massenpunktes
nach der Einsteinschen Theorie. SPAW, pages 189–196, 1916. URL https://ui.adsabs.
harvard.edu/abs/1916SPAW.......189S/abstract.

Scoccimarro, R. Transients from initial conditions: A perturbative analysis. Monthly Notices
of the Royal Astronomical Society, 299(4):1097–1118, 10 1998. ISSN 00358711. doi:
10.1046/j.1365-8711.1998.01845.x. URL https://academic.oup.com/mnras/article/299/4/
1097/1108910.

Scoville, N. et al. The Cosmic Evolution Survey (COSMOS): Overview. The Astrophysical
Journal Supplement Series, 172(1):1–8, 9 2007. ISSN 0067-0049. doi: 10.1086/516585.
URL https://ui.adsabs.harvard.edu/abs/2007ApJS..172....1S/abstract.

Scranton, R. et al. Detection of Cosmic Magnification with the Sloan Digital Sky Survey.
ApJ, 633(2):589–602, 11 2005. ISSN 0004-637X. doi: 10.1086/431358. URL https:
//ui.adsabs.harvard.edu/abs/2005ApJ...633..589S/abstract.

SDSS-III collaboration et al. The Eighth Data Release of the Sloan Digital Sky Survey:
First Data from SDSS-III. Astrophysical Journal, Supplement Series, 193(2):31, 1 2011.
doi: 10.1088/0067-0049/193/2/29. URL http://arxiv.org/abs/1101.1559http://dx.doi.org/
10.1088/0067-0049/193/2/29.

Seitz, C. and Schneider, P. Steps towards nonlinear cluster inversion through gravitational
distortions III. Including a redshift distribution of the sources. Astronomy and Astrophysics,
318(3):687–699, 2 1997.

Sérsic, J.L., Sérsic and L., J. Influence of the atmospheric and instrumental dispersion on
the brightness distribution in a galaxy. BAAA, 6:41–43, 1963. ISSN 0571-3285. URL
https://ui.adsabs.harvard.edu/abs/1963BAAA....6...41S/abstract.

Shajib, A.J. et al. STRIDES: a 3.9 per cent measurement of the Hubble constant from the
strong lens system DES J0408-5354. Monthly Notices of the Royal Astronomical Society,
494(4):6072–6102, 10 2019. doi: 10.1093/mnras/staa828. URL http://arxiv.org/abs/1910.
06306http://dx.doi.org/10.1093/mnras/staa828.

Shariff, H.A. Application of Bayesian statistics in Supernovae Ia cosmology. PhD thesis,
Imperial College London, 2017. URL https://spiral.imperial.ac.uk/handle/10044/1/63932.

https://www.researchgate.net/publication/2232569_Analysis_of_two-point_statistics_of_cosmic_shear_I_Estimators_and_covariances
https://www.researchgate.net/publication/2232569_Analysis_of_two-point_statistics_of_cosmic_shear_I_Estimators_and_covariances
https://www.cambridge.org/core/books/first-course-in-general-relativity/3805425203DD91A7436EF6E5F2082263
https://www.cambridge.org/core/books/first-course-in-general-relativity/3805425203DD91A7436EF6E5F2082263
https://www.nature.com/articles/323310a0
https://www.nature.com/articles/323310a0
https://ui.adsabs.harvard.edu/abs/1916SPAW.......189S/abstract
https://ui.adsabs.harvard.edu/abs/1916SPAW.......189S/abstract
https://academic.oup.com/mnras/article/299/4/1097/1108910
https://academic.oup.com/mnras/article/299/4/1097/1108910
https://ui.adsabs.harvard.edu/abs/2007ApJS..172....1S/abstract
https://ui.adsabs.harvard.edu/abs/2005ApJ...633..589S/abstract
https://ui.adsabs.harvard.edu/abs/2005ApJ...633..589S/abstract
http://arxiv.org/abs/1101.1559 http://dx.doi.org/10.1088/0067-0049/193/2/29
http://arxiv.org/abs/1101.1559 http://dx.doi.org/10.1088/0067-0049/193/2/29
https://ui.adsabs.harvard.edu/abs/1963BAAA....6...41S/abstract
http://arxiv.org/abs/1910.06306 http://dx.doi.org/10.1093/mnras/staa828
http://arxiv.org/abs/1910.06306 http://dx.doi.org/10.1093/mnras/staa828
https://spiral.imperial.ac.uk/handle/10044/1/63932


272 Bibliography

Shectman, S.A. et al. The Las Campanas Redshift Survey. The Astrophysical Journal, 470:
172, 10 1996. ISSN 0004-637X. doi: 10.1086/177858. URL https://ui.adsabs.harvard.
edu/abs/1996ApJ...470..172S/abstract.

Shirai, S. and Yamazaki, M. Is Gravity the Weakest Force? Classical and Quantum Gravity,
38(3), 4 2019. URL http://arxiv.org/abs/1904.10577.

Soares, D.S.L. Newtonian gravitational deflection of light revisited. ArXiv, 8 2005. URL
https://arxiv.org/abs/physics/0508030v4.

Sofue, Y. and Rubin, V. Rotation Curves of Spiral Galaxies. Annual Review of Astronomy
and Astrophysics, 39(1):137–174, 10 2000. doi: 10.1146/annurev.astro.39.1.137. URL
http://arxiv.org/abs/astro-ph/0010594http://dx.doi.org/10.1146/annurev.astro.39.1.137.

Solà, J. Cosmological constant and vacuum energy: Old and new ideas. Journal of Physics:
Conference Series, 453(1), 2013. ISSN 17426596. doi: 10.1088/1742-6596/453/1/012015.
URL https://www.researchgate.net/publication/237054399_Cosmological_constant_and_
vacuum_energy_Old_and_new_ideas.

Soldner, J.G.v. Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung,
durch die Attraktion eines Weltk¨orpers, an welchem er nahe vorbei geht. bey dem
Verfasser, Berlin, 1804.

Sousbie, T. et al. The Three-dimensional Skeleton of the SDSS. The Astrophysical Journal,
672(1):L1–L4, 1 2008. ISSN 0004-637X. doi: 10.1086/523669. URL https://iopscience.
iop.org/article/10.1086/523669https://iopscience.iop.org/article/10.1086/523669/meta.

Sparnaay, M.J. Attractive forces between flat plates [6], 1957. ISSN 00280836. URL
https://www.nature.com/articles/180334b0.

Spitzer, L. and L. Physics of Fully Ionized Gases. pfig, 1956. URL https://ui.adsabs.harvard.
edu/abs/1956pfig.book.....S/abstract.

Springob, C.M. et al. The 6dF Galaxy Survey: peculiar velocity field and cosmography.
Monthly Notices of the Royal Astronomical Society, 445(3):2677–2697, 12 2014. ISSN
1365-2966. doi: 10.1093/mnras/stu1743. URL http://academic.oup.com/mnras/article/
445/3/2677/1036663/The-6dF-Galaxy-Survey-peculiar-velocity-field-and.

SubbaRao, M.U. et al. Luminosity Functions from Photometric Redshifts I: Techniques. AJ,
112:929, 6 1996. doi: 10.1086/118066. URL http://arxiv.org/abs/astro-ph/9606075http:
//dx.doi.org/10.1086/118066.

Sutter, P.M. et al. VIDE: The Void IDentification and Examination toolkit. Astronomy and
Computing, 9:1–9, 6 2014a. URL http://arxiv.org/abs/1406.1191.

Sutter, P.M. et al. Voids in the SDSS DR9: observations, simulations, and the impact of the
survey mask. Monthly Notices of the Royal Astronomical Society, 442(4):3127–3137, 8
2014b. ISSN 0035-8711. doi: 10.1093/MNRAS/STU1094. URL https://academic.oup.
com/mnras/article/442/4/3127/1354064.

https://ui.adsabs.harvard.edu/abs/1996ApJ...470..172S/abstract
https://ui.adsabs.harvard.edu/abs/1996ApJ...470..172S/abstract
http://arxiv.org/abs/1904.10577
https://arxiv.org/abs/physics/0508030v4
http://arxiv.org/abs/astro-ph/0010594 http://dx.doi.org/10.1146/annurev.astro.39.1.137
https://www.researchgate.net/publication/237054399_Cosmological_constant_and_vacuum_energy_Old_and_new_ideas
https://www.researchgate.net/publication/237054399_Cosmological_constant_and_vacuum_energy_Old_and_new_ideas
https://iopscience.iop.org/article/10.1086/523669 https://iopscience.iop.org/article/10.1086/523669/meta
https://iopscience.iop.org/article/10.1086/523669 https://iopscience.iop.org/article/10.1086/523669/meta
https://www.nature.com/articles/180334b0
https://ui.adsabs.harvard.edu/abs/1956pfig.book.....S/abstract
https://ui.adsabs.harvard.edu/abs/1956pfig.book.....S/abstract
http://academic.oup.com/mnras/article/445/3/2677/1036663/The-6dF-Galaxy-Survey-peculiar-velocity-field-and
http://academic.oup.com/mnras/article/445/3/2677/1036663/The-6dF-Galaxy-Survey-peculiar-velocity-field-and
http://arxiv.org/abs/astro-ph/9606075 http://dx.doi.org/10.1086/118066
http://arxiv.org/abs/astro-ph/9606075 http://dx.doi.org/10.1086/118066
http://arxiv.org/abs/1406.1191
https://academic.oup.com/mnras/article/442/4/3127/1354064
https://academic.oup.com/mnras/article/442/4/3127/1354064


Bibliography 273

Takada, M. and White, M. Tomography of lensing cross power spectra. The Astrophysical
Journal, 601(1):L1–L4, 11 2003. doi: 10.1086/381870. URL http://arxiv.org/abs/astro-ph/
0311104http://dx.doi.org/10.1086/381870.

Tanaka, M. et al. Photometric redshifts for Hyper Suprime-Cam Subaru Strategic Program
Data Release 1. Publications of the Astronomical Society of Japan, 70(SP1):9–10, 1
2018. ISSN 0004-6264. doi: 10.1093/PASJ/PSX077. URL https://academic.oup.com/
pasj/article/70/SP1/S9/4494086.

The IceCube Collaboration et al. The IceCube Neutrino Observatory - Contributions to ICRC
2015 Part IV: Searches for Dark Matter and Exotic Particles. J. Sandroos, 30, 10 2015.
URL http://arxiv.org/abs/1510.05226.

The MACHO collaboration et al. The MACHO Project: Microlensing Results from 5.7 Years
of LMC Observations. The Astrophysical Journal, 542(1):281–307, 1 2000. doi: 10.1086/
309512. URL http://arxiv.org/abs/astro-ph/0001272http://dx.doi.org/10.1086/309512.

Tollerud, E.J. et al. The SPLASH Survey: Spectroscopy of 15 M31 Dwarf Spheroidal Satellite
Galaxies. Astrophysical Journal, 752(1), 12 2011. doi: 10.1088/0004-637X/752/1/45.
URL http://arxiv.org/abs/1112.1067http://dx.doi.org/10.1088/0004-637X/752/1/45.

Treschman, K.J. Early Astronomical Tests of General Relativity: the anomalous advance in
the perihelion of Mercury and gravitational redshif. Asian Journal of Physics, 23, 2014.

Troxel, M.A. and Ishak, M. The Intrinsic Alignment of Galaxies and its Impact on Weak
Gravitational Lensing in an Era of Precision Cosmology. Physics Reports, 558:1–59,
7 2014. doi: 10.1016/j.physrep.2014.11.001. URL http://arxiv.org/abs/1407.6990http:
//dx.doi.org/10.1016/j.physrep.2014.11.001.

Tucker, W. et al. E0657-56: A CONTENDER FOR THE HOTTEST KNOWN CLUSTER
OF GALAXIES. Technical report, 1998.

Tully, R. and Fisher, J. A New method of determining distances to galaxies. Astron.Astrophys.,
54:661–673, 1977.

Tversky, A. and Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science,
185(4157):1124–1131, 9 1974. ISSN 00368075. doi: 10.1126/SCIENCE.185.4157.1124.
URL https://www.science.org/doi/10.1126/science.185.4157.1124.

Vaccari, M. et al. in Science from the Next Generation Imaging and Spectroscopic Surveys.
page 49, 2012.

Vallinotto, A. Using CMB lensing to constrain the multiplicative bias of cosmic shear.
Astrophysical Journal, 759(1), 10 2011. doi: 10.1088/0004-637X/759/1/32. URL http:
//arxiv.org/abs/1110.5339http://dx.doi.org/10.1088/0004-637X/759/1/32.

Van Waerbeke, L. Shear and magnification: cosmic complementarity. Monthly Notices
of the Royal Astronomical Society, 401(3):2093–2100, 1 2010. ISSN 0035-8711. doi:
10.1111/J.1365-2966.2009.15809.X. URL https://academic.oup.com/mnras/article/401/3/
2093/1099616.

http://arxiv.org/abs/astro-ph/0311104 http://dx.doi.org/10.1086/381870
http://arxiv.org/abs/astro-ph/0311104 http://dx.doi.org/10.1086/381870
https://academic.oup.com/pasj/article/70/SP1/S9/4494086
https://academic.oup.com/pasj/article/70/SP1/S9/4494086
http://arxiv.org/abs/1510.05226
http://arxiv.org/abs/astro-ph/0001272 http://dx.doi.org/10.1086/309512
http://arxiv.org/abs/1112.1067 http://dx.doi.org/10.1088/0004-637X/752/1/45
http://arxiv.org/abs/1407.6990 http://dx.doi.org/10.1016/j.physrep.2014.11.001
http://arxiv.org/abs/1407.6990 http://dx.doi.org/10.1016/j.physrep.2014.11.001
https://www.science.org/doi/10.1126/science.185.4157.1124
http://arxiv.org/abs/1110.5339 http://dx.doi.org/10.1088/0004-637X/759/1/32
http://arxiv.org/abs/1110.5339 http://dx.doi.org/10.1088/0004-637X/759/1/32
https://academic.oup.com/mnras/article/401/3/2093/1099616
https://academic.oup.com/mnras/article/401/3/2093/1099616


274 Bibliography

Van Waerbeke, L. and Mellier, Y. Gravitational Lensing by Large Scale Structures: A Review.
ArXiv, 5 2003. URL https://arxiv.org/abs/astro-ph/0305089v2.

Van Waerbeke, L. et al. Likelihood analysis of cosmic shear on simulated and VIRMOS-
DESCART data. A&A, 393:369–379, 2002. doi: 10.1051/0004-6361:20020932. URL
http://dx.doi.org/10.1051/0004-6361:20020932.

Vanzella, E. et al. Photometric redshifts with the Multilayer Perceptron Neural Network:
Application to the HDF-S and SDSS. Astronomy & Astrophysics, 423(2):761–776, 8
2004. ISSN 0004-6361. doi: 10.1051/0004-6361:20040176. URL https://www.aanda.org/
articles/aa/abs/2004/32/aa3658/aa3658.html.

Venemans, B.P. et al. First discoveries of z \sim 6 quasars with the Kilo-Degree Survey and
VISTA Kilo-Degree Infrared Galaxy survey. Monthly Notices of the Royal Astronomical
Society, 453(3):2259–2266, 11 2015. ISSN 0035-8711. doi: 10.1093/MNRAS/STV1774.
URL https://academic.oup.com/mnras/article/453/3/2259/1079051.

Voigt, L.M. and Bridle, S.L. Limitations of model-fitting methods for lensing shear estimation.
Monthly Notices of the Royal Astronomical Society, 404(1):458–467, 5 2010. ISSN 0035-
8711. doi: 10.1111/J.1365-2966.2010.16300.X. URL https://academic.oup.com/mnras/
article/404/1/458/3101597.

Wagh, S.M. Some fundamental issues in General Relativity and their resolution. ArXiv, 2
2004. URL http://arxiv.org/abs/gr-qc/0402003.

Walcher, C.J. et al. Fitting the integrated Spectral Energy Distributions of Galaxies. Astro-
physics and Space Science, 331(1):1–51, 8 2010. doi: 10.1007/s10509-010-0458-z. URL
http://arxiv.org/abs/1008.0395http://dx.doi.org/10.1007/s10509-010-0458-z.

Ward, B. Tilt Classifications in Perfect Fluid Cosmology. Physics Capstone Projects, 5 2017.
URL https://digitalcommons.usu.edu/phys_capstoneproject/54.

Weinberg, D.H. et al. Cold dark matter: controversies on small scales. Proceedings
of the National Academy of Sciences of the United States of America, 112(40):12249–
12255, 6 2013. doi: 10.1073/pnas.1308716112. URL http://arxiv.org/abs/1306.0913http:
//dx.doi.org/10.1073/pnas.1308716112.

Weinberg, S. The cosmological constant problem. Reviews of Modern Physics, 61(1):1, 1
1989. ISSN 00346861. doi: 10.1103/RevModPhys.61.1. URL https://journals.aps.org/
rmp/abstract/10.1103/RevModPhys.61.1.

Weinberg, S. and Wagoner, R.V. Gravitation and Cosmology: Principles and Applications of
the General Theory of Relativity . Physics Today, 26(6):57–58, 6 1973. ISSN 0031-9228.
doi: 10.1063/1.3128097. URL http://physicstoday.scitation.org/doi/10.1063/1.3128097.

Weinstein, M.A. et al. An Empirical Algorithm for Broadband Photometric Redshifts of
Quasars from the Sloan Digital Sky Survey. The Astrophysical Journal Supplement
Series, 155(2):243–256, 12 2004. ISSN 0067-0049. doi: 10.1086/425355/FULLTEXT/.
URL https://iopscience.iop.org/article/10.1086/425355https://iopscience.iop.org/article/
10.1086/425355/meta.

https://arxiv.org/abs/astro-ph/0305089v2
http://dx.doi.org/10.1051/0004-6361:20020932
https://www.aanda.org/articles/aa/abs/2004/32/aa3658/aa3658.html
https://www.aanda.org/articles/aa/abs/2004/32/aa3658/aa3658.html
https://academic.oup.com/mnras/article/453/3/2259/1079051
https://academic.oup.com/mnras/article/404/1/458/3101597
https://academic.oup.com/mnras/article/404/1/458/3101597
http://arxiv.org/abs/gr-qc/0402003
http://arxiv.org/abs/1008.0395 http://dx.doi.org/10.1007/s10509-010-0458-z
https://digitalcommons.usu.edu/phys_capstoneproject/54
http://arxiv.org/abs/1306.0913 http://dx.doi.org/10.1073/pnas.1308716112
http://arxiv.org/abs/1306.0913 http://dx.doi.org/10.1073/pnas.1308716112
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.61.1
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.61.1
http://physicstoday.scitation.org/doi/10.1063/1.3128097
https://iopscience.iop.org/article/10.1086/425355 https://iopscience.iop.org/article/10.1086/425355/meta
https://iopscience.iop.org/article/10.1086/425355 https://iopscience.iop.org/article/10.1086/425355/meta


Bibliography 275

Weymann, R.J., Carswell, R.F. and Smith, M.G. Absorption Lines in the Spectra of
Quasistellar Objects. Annual Review of Astronomy and Astrophysics, 19(1):41–76,
9 1981. ISSN 0066-4146. doi: 10.1146/annurev.aa.19.090181.000353. URL https:
//ui.adsabs.harvard.edu/abs/1981ARA&A..19...41W/abstract.

Williams, R.E. and team, t.H. The Hubble Deep Field: Observations, Data Reduction, and
Galaxy Photometry. The Astronomical Journal, 112:1335, 7 1996. doi: 10.1086/118105.
URL http://arxiv.org/abs/astro-ph/9607174http://dx.doi.org/10.1086/118105.

Willman, B. et al. A New Milky Way Dwarf Galaxy in Ursa Major. The Astrophysical
Journal, 626(2):L85–L88, 3 2005. doi: 10.1086/431760. URL http://arxiv.org/abs/
astro-ph/0503552http://dx.doi.org/10.1086/431760.

Wittman, D. WHAT LIES BENEATH: USING p(z) TO REDUCE SYSTEM-
ATIC PHOTOMETRIC REDSHIFT ERRORS. The Astrophysical Journal, 700
(2):L174, 7 2009. ISSN 0004-637X. doi: 10.1088/0004-637X/700/2/L174.
URL https://iopscience.iop.org/article/10.1088/0004-637X/700/2/L174https://iopscience.
iop.org/article/10.1088/0004-637X/700/2/L174/meta.

Wojtak, R., Hansen, S.H. and Hjorth, J. Gravitational redshift of galaxies in clusters as
predicted by general relativity. Nature, 477(7366):567–569, 9 2011. doi: 10.1038/
nature10445. URL http://arxiv.org/abs/1109.6571http://dx.doi.org/10.1038/nature10445.

Wolf, C. Bayesian photometric redshifts with empirical training sets. Monthly Notices
of the Royal Astronomical Society, 397(1):520–533, 7 2009. ISSN 0035-8711. doi:
10.1111/J.1365-2966.2009.14953.X. URL https://academic.oup.com/mnras/article/397/1/
520/1007663.

Wong, K.C. et al. H0LiCOW XIII. A 2.4% measurement of $H_{0}$ from lensed quasars:
$5.3\sigma$ tension between early and late-Universe probes. Monthly Notices of the Royal
Astronomical Society, 498(1):1420–1439, 7 2019. doi: 10.1093/mnras/stz3094. URL
http://arxiv.org/abs/1907.04869http://dx.doi.org/10.1093/mnras/stz3094.

Wright, A.H. et al. KiDS+VIKING-450: A new combined optical and near-
infrared dataset for cosmology and astrophysics. Astronomy & Astrophysics,
632:A34, 12 2019. ISSN 0004-6361. doi: 10.1051/0004-6361/201834879. URL
https://www.aanda.org/articles/aa/full_html/2019/12/aa34879-18/aa34879-18.htmlhttps:
//www.aanda.org/articles/aa/abs/2019/12/aa34879-18/aa34879-18.html.

Wright, A.H. et al. Photometric redshift calibration with self-organising maps. Astronomy &
Astrophysics, 637:A100, 5 2020. ISSN 0004-6361. doi: 10.1051/0004-6361/201936782.
URL https://www.aanda.org/articles/aa/full_html/2020/05/aa36782-19/aa36782-19.
htmlhttps://www.aanda.org/articles/aa/abs/2020/05/aa36782-19/aa36782-19.html.

Yèche, C. et al. Constraints on neutrino masses from Lyman-alpha forest power spec-
trum with BOSS and XQ-100. Journal of Cosmology and Astroparticle Physics,
2017(6):047, 6 2017. ISSN 14757516. doi: 10.1088/1475-7516/2017/06/047.
URL https://iopscience.iop.org/article/10.1088/1475-7516/2017/06/047https://iopscience.
iop.org/article/10.1088/1475-7516/2017/06/047/meta.

https://ui.adsabs.harvard.edu/abs/1981ARA&A..19...41W/abstract
https://ui.adsabs.harvard.edu/abs/1981ARA&A..19...41W/abstract
http://arxiv.org/abs/astro-ph/9607174 http://dx.doi.org/10.1086/118105
http://arxiv.org/abs/astro-ph/0503552 http://dx.doi.org/10.1086/431760
http://arxiv.org/abs/astro-ph/0503552 http://dx.doi.org/10.1086/431760
https://iopscience.iop.org/article/10.1088/0004-637X/700/2/L174 https://iopscience.iop.org/article/10.1088/0004-637X/700/2/L174/meta
https://iopscience.iop.org/article/10.1088/0004-637X/700/2/L174 https://iopscience.iop.org/article/10.1088/0004-637X/700/2/L174/meta
http://arxiv.org/abs/1109.6571 http://dx.doi.org/10.1038/nature10445
https://academic.oup.com/mnras/article/397/1/520/1007663
https://academic.oup.com/mnras/article/397/1/520/1007663
http://arxiv.org/abs/1907.04869 http://dx.doi.org/10.1093/mnras/stz3094
https://www.aanda.org/articles/aa/full_html/2019/12/aa34879-18/aa34879-18.html https://www.aanda.org/articles/aa/abs/2019/12/aa34879-18/aa34879-18.html
https://www.aanda.org/articles/aa/full_html/2019/12/aa34879-18/aa34879-18.html https://www.aanda.org/articles/aa/abs/2019/12/aa34879-18/aa34879-18.html
https://www.aanda.org/articles/aa/full_html/2020/05/aa36782-19/aa36782-19.html https://www.aanda.org/articles/aa/abs/2020/05/aa36782-19/aa36782-19.html
https://www.aanda.org/articles/aa/full_html/2020/05/aa36782-19/aa36782-19.html https://www.aanda.org/articles/aa/abs/2020/05/aa36782-19/aa36782-19.html
https://iopscience.iop.org/article/10.1088/1475-7516/2017/06/047 https://iopscience.iop.org/article/10.1088/1475-7516/2017/06/047/meta
https://iopscience.iop.org/article/10.1088/1475-7516/2017/06/047 https://iopscience.iop.org/article/10.1088/1475-7516/2017/06/047/meta


276 Bibliography

Young, B.L. A survey of dark matter and related topics in cosmology. Front. Phys, 12(2):
121201, 2017. doi: 10.1007/s11467-016-0583-4. URL www.springer.com/11467.

Zaidouni, F. Gravitational Lensing. Technical report, University of Rochester, 12 2018.

Zeger, S.L. The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of
Controversy. Physics Today, 65(7):54, 7 2012. ISSN 0031-9228. doi: 10.1063/PT.3.1646.
URL https://physicstoday.scitation.org/doi/abs/10.1063/PT.3.1646.

Zel’Dovich, Y.B., Zel’Dovich and B., Y. Reprint of 1970A&amp;A.....5...84Z. Gravitational
instability: an approximate theory for large density perturbations. A&A, 500:13–18, 1970.
ISSN 0004-6361. URL https://ui.adsabs.harvard.edu/abs/1970A&A.....5...84Z/abstract.

Zhang, P. Self calibration of gravitational shear-galaxy intrinsic ellipticity correlation in
weak lensing surveys. Astrophysical Journal, 720(2):1090–1101, 11 2008. doi: 10.1088/
0004-637X/720/2/1090. URL http://arxiv.org/abs/0811.0613http://dx.doi.org/10.1088/
0004-637X/720/2/1090.

Zhang, T. et al. Impact of point spread function higher moments error on weak gravitational
lensing. Mon.Not.Roy.Astron.Soc., 510(2):1978–1993, 2 2022. ISSN 13652966. doi:
10.1093/MNRAS/STAB3584.

Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. The Astrophysical Journal,
86:217, 10 1937. ISSN 0004-637X. doi: 10.1086/143864. URL https://ui.adsabs.harvard.
edu/abs/1937ApJ....86..217Z/abstract.

www.springer.com/11467
https://physicstoday.scitation.org/doi/abs/10.1063/PT.3.1646
https://ui.adsabs.harvard.edu/abs/1970A&A.....5...84Z/abstract
http://arxiv.org/abs/0811.0613 http://dx.doi.org/10.1088/0004-637X/720/2/1090
http://arxiv.org/abs/0811.0613 http://dx.doi.org/10.1088/0004-637X/720/2/1090
https://ui.adsabs.harvard.edu/abs/1937ApJ....86..217Z/abstract
https://ui.adsabs.harvard.edu/abs/1937ApJ....86..217Z/abstract

	Contents
	List of figures
	List of tables
	1 Cosmological Parameters
	1.1 Einstein's Equations
	1.2 Cosmological Principle
	1.3 Expanding universe 
	1.3.1 Redshift
	1.3.2 Cosmological Constant

	1.4 Standard model
	1.4.1 Densities
	1.4.2 Distance Measures
	1.4.3 Perturbation
	1.4.4 Power spectrum
	1.4.5 Probes

	1.5 Summary

	2 Weak Lensing
	2.1 From Newton to Einstein
	2.2 Lens Equations
	2.2.1 Fermat's Principle
	2.2.2 The Born Approximation
	2.2.3 Lensing Potential

	2.3 Observables
	2.3.1 Convergence
	2.3.2 Shear
	2.3.3 Ellipticity Estimation

	2.4 Shear Prediction
	2.4.1 Shear Power Spectra 
	2.4.2 Approximations

	2.5 Cosmological Analysis
	2.5.1 Estimation
	2.5.2 Prediction
	2.5.3 Challenges

	2.6 Summary

	3 Photometric Redshifts
	3.1 A galaxy's flux
	3.1.1 luminosity function
	3.1.2 Fluxes and magnitudes
	3.1.3 Spectroscopy
	3.1.4 Morphology

	3.2 Photometry
	3.2.1 Origin
	3.2.2 Empirical Methods
	3.2.3 Template Based Methods

	3.3 Summary

	4 Bayesian Redshift Statistics
	4.1 Statistical Theory
	4.1.1 Frequentist Inference
	4.1.2 Bayesian Inference
	4.1.3 Choice Of Priors
	4.1.4 Hierarchical Models and Marginalisation

	4.2 Application
	4.2.1 Computation
	4.2.2 BPZ

	4.3 Redshift Distributions
	4.3.1 Stacked Likelihoods
	4.3.2 Spectroscopic Based Methods
	4.3.3 Principled Approaches

	4.4 Summary

	5 Algorithmic Development
	5.1 Method
	5.1.1 Background Theory
	5.1.2 Template sensitivity
	5.1.3 Selection Effects


	6 KV450 Analysis
	6.1 Data
	6.1.1 Simulation
	6.1.2 KiDS + VIKING 450

	6.2 Cosmological Analysis
	6.2.1 Sample Implementation
	6.2.2 Data
	6.2.3 Theory
	6.2.4 Systematics

	6.3 Results
	6.3.1 Simulation
	6.3.2 KiDS + VIKING 450


	7 KiDS-1000
	7.1 Regularisation
	7.2 Gaussian Processes
	7.3 KiDS-1000

	8 Conclusion
	Bibliography

