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Abstract: The idea of extending the classical RSA protocol using algebraic number fields was introduced by Takagi
and Naito (Construction of RSA cryptosystem over the algebraic field using ideal theory and investigation of its
security. Electron Commun Japan Part III Fund Electr Sci. 2000;83:19–29). Recently, Zheng et al. proposed the use of
the ring of algebraic integers of an algebraic number field and the lattice theory to present a high-dimensional
form of RSA. The authors claim that their proposal is post-quantum and is significant both from the theoretical
and practical point of view. In this article, we prove that the security of Zheng et al.’s scheme is still based on
the factorization problem, and we present a practical quantum attack on this proposed scheme, our attack
is a quantum polynomial time algorithm that employs Shor’s algorithm as a subroutine.
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1 Introduction

Over the past three decades, information and communication technologies have changed our everyday life in
different areas, and many services are provided online. In order to secure sensitive data exchanged or stored
over public networks, many symmetric and asymmetric cryptographic techniques are used. Nowadays,
Advanced Encryption Standard (AES), Rivest-Shamir-Adleman (RSA) encryption and Elliptic Curve
Cryptography (ECC) are examples of schemes widely used for this purpose. Due to the rapid development
of quantum technology in recent years and according to Grover’s algorithm [1], the impact of quantum
algorithms on symmetric cryptographic primitives is not expected to be as severe as Shor’s algorithm [2]
on number-theoretic-based public key constructions such as RSA and its underlying integer factorization
problem. As a result, the current emphasis in post-quantum cryptography is on public-key cryptography.
However, especially during the future standardization process, it is critical to consider the diversity of
cryptographic primitives and the underlying hard mathematical problems. The approaches were studying
new alternatives to public-key cryptosystems based on the integer factorization and discrete logarithm pro-
blems or extending the existing schemes to become post-quantum.

In 2005, Regev introduced the learning with error (LWE) problem [3] and showed that we could construct a
public key scheme where its security is based on the LWE problem, but the scheme was not efficient for
practical use. In 2010, Lyubashevsky et al. introduced the Ring-LWE [4], a variant of the LWE [3], and showed
an efficiently practical scheme construction using elements of the ring of integers of an algebraic number field.
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The search version of the LWE (resp. Ring-LWE) is given ( )A b, such that A is uniformly sampled from � ×m n

(resp. A is uniformly sampled from R, where R is the ring of integers of a number field K ) and
= +b As e qmod , where �∈s n and �∈e m (resp. ∈s R and ∈e R) following some specific distributions

D D,s e, q an integer modulus, and the goal is to find s or e. We refer the reader to previous studies [4–8]
for more details about algebraically structured variants in the literature.

Nowadays, lattice-based constructions are considered to be promising alternatives; indeed, there are two
digital signatures (Falcon [9] and CRYSTALS-Dilithium [10]) and one key-encapsulation mechanism (CRYST-
ALS-Kyber [11]1) based on lattice hard problems, which are selected to be standardized by National Institute of
Systems and Technologies (NIST) in 2022 [12]. Analysing lattice constructions is still an open topic; many
algorithms to solve lattice problems have been improved in the last 20 years, without any success to solve
the problem in lattices of high dimensions [13–15], but lead to estimate more accurately the hardness of such
a lattice instance. (For NTRU cryptanalysis, we refer the reader to [16,17].)

In 1986, introduced the idea to extend RSA to higher dimensions was introduced in the literature; later in
2015, Takagi and Naito [18] demonstrated a variant of the RSA in algebraic number fields; however, this
necessitates that the ring of algebraic integers be a Euclidean ring, a requirement that is significantly more
stringent than the class number one condition.

Zhiyong et al. [19] proposed a new cryptosystem in number fields similar to the RSA cryptosystem,
claiming that the system’s security is dependent on the problem of solving the factorization of ideals in the
number field in question, which is, based on their claim, much more difficult than factorization of integers in
the ring of integers � . As a result, they claim their construction as a new member of post-quantum construc-
tion. In this article, we prove that factorization in the ring of integer � is as hard as factorization in the ring of
integers �K of any number field K is hard. This fact enables us to propose a quantum attack on high-
dimensional RSA system.

The rest of the article is organized as follows: Section 2 recalls some notions on algebraic number theory
and Euclidean lattices, and Section 3 briefly reviews the high-dimensional RSA encryption scheme. The
proposed attack and the corresponding security and efficiency analysis are presented and discussed in Section 4.
Finally, a conclusion is provided. An implementation using the PARI/GP system is given in the Appendix.

2 Preliminaries

This section recalls some notions and known results related to algebraic number fields and lattices. We denote
by In the identity square matrix of n rows and n columns, by 0n m, the zero matrix of n rows and m columns,

we omit m when =m n, by ‖ ‖⋅ the euclidean norm of a vector �( )= ∈x x x, …, n
n

1
, ‖ ‖ = ∑ =x xi

n

i1

2 , and by ⋅t

the transpose for matrices and vectors.

2.1 Algebraic number theory

A field K that contains � is called an extension of �. The dimension of K as �-vector space is called the degree
of the extension and denoted by �[ ]K : . If the degree is finite, then we call K an Algebraic Number Field.

The set �{ ∣ [ ] ( ) }∈ ∃ ∈ =y K P X P ymonic : 0 is called the ring of integers of K and it is a ring under the
induced operations of K and it is denoted by �K . K is called Galois number field if for every irreducible �∈P ,
if P has a root in K , then all the other roots2 are in K . (P splits into simple polynomials3 in K .) Let us denote by
Gal �( )∕K the Galois group of K which is the set of K -automorphisms that fix�. It is known that the number of



1 Kyber now is called ML-KEM, abbreviation of Module-Lattice-Based Key-Encapsulation Mechanism, Dilithium is currently known
as Module-Lattice-Based Digital Signature Standard, link for FIPS https://csrc.nist.gov/publications/fips.
2 In fact, this is the definition of a normal extension, a Galois extension is a separable and normal extension. For separability, this
is the case because � is of characteristic 0, so each of its extensions, it is a separable extension. For more details, see Lang [20].
3 Polynomials of degree 1.
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automorphisms is equal to the degree of number field K , Gal � �( ) { ∣ ( ) }∕ = ⟶ = ∀ ∈K σ K K σ x x x: , . NormN
and trace Tr of an element x of K are defined as follows:N Gal �( ) ( )( )= ∏ ∈ ∕x σ xσ K and Tr Gal �( ) ( )( )= ∑ ∈ ∕x σ xσ K .
Finally the discriminant of K is defined as Tr(( ( )) )= ≤ ≤Δ b bdetK i j i j n1 ,

for a basis { }=B b b, …, n1
.4

Example 1. The number field �( )=K ζn such that =ζ en

iπ

n

2

is a primitive nth-root of unity, i.e., a root of
( ) ( )

( )
= ∏ −≤ <

=
Φ x x ζn

k n

gcd k n
i

k
1

, 1

is called the n-th cyclotomic number field. It is known that �∕K is a Galois number

field of degree ( )φ n and φ is the Euler totient function.

We have the following facts from algebraic number theory:
Let K denote a number field of degree n, then the following properties hold:

1. There exists an α in K such that �( )=K α , such one is called a primitive element of K , and K is isomorphic
to �[ ] ⟨ ( )⟩∕X ϕ X

α
where �( ) [ ]∈ϕ X X

α
is the minimal polynomial of α.

2. Each ideal �p for a prime number p of� has a unique decomposition into product of prime ideals �i in �K :

� �( ) ∏≔ =
=

p p ,K

i

g

i

e

1

i

ei is called index of ramification of �i over p. g is the number of prime ideals of K over p.
3. The index � �� �[ ]∕ ∕p:K i is finite and it is denoted by f

i
and called inertia degree of �i over p, and we

have N �( ) = pi
f
i.

4. We have = ∑ =n e fi

g

i i1
, and if K is Galois, then there exist f and e from�* such that =f f

i
and =e ei for every i,

which implies =n efg . We simply call e and f by index of ramification of p and inertia degree of p,
respectively.

5. It is known that for a prime ideal � of �K above a prime number p in� , its norm isN � � �( ) =∕ pK
f such that

�
f is the residual degree of � above p. Also, for our work, we will use the following important property:

For an ideal A in �K such that there exist a set of prime ideals in �K , � �,…, k1
and �= ∏ =A i

k

i1
, we have

N N �( ) ( )∏=
=

A .

i

k

i

1

In particular, if � �=A
1 2

for two prime ideals �
1
and �

2
in �K above two integer primes p

1

and p
2

respectively, we have

N( ) =A p p
f f

1 2

1 2

such that f
1

and f
2

are the inertia degree of �
1
and �

2
above p

1

and p
2

, respectively.
6. The number of invertible elements of � �� �( ) ( )∕ ∕ ∕pK i is N �( ) − 1i , and in general for an ideal �= ∏A i i

ei

of �K , we have N N �( ) ( )= ∏A i i

ei and the number of invertible elements of � ∕AK is N N� �( ) ( ( ) )∏ −−
1i i

e
i

1i .
In particular for A as in point 5, the number of invertible elements of � ∕AK is N N� �( ( ) )( ( ) )− −1 1

1 2
.

For proofs of the last propositions, we refer the reader to the study of Washington [21].
The following theorem tells us how to compute such a prime decomposition in K .

Theorem 1. [22] Let K be a number field such that �( )=K α for �∈α K defined by an irreducible polynomial
�( ) [ ]∈P X X , and let q be a prime number in � such that5 ��[ [ ]]∣q α̸ :K . Suppose that

( ) ( )∏=
=

P X g X qmod ,

i

g

i

e

1

i



4 Remark that we omit to specify the basis, because the discriminant does not depend on the choice of the basis.
5 If �� [ ]= αK , then the theorem holds for any prime number in � , see Murty and Esmonde [22] pp. 65–66.
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then q splits in �K as follows:

� ( ( ) )∏=
=

q g α q, ,K

i

g

i

e

1

i

and ( )= ∀f g ideg ,
i i

.

To decompose a prime integer in a number field K , it suffices to factor the minimal polynomial that
defines K modulo p and this can be done in polynomial time (see Section 3.4, p. 124, in Cohen [23]).

2.2 Euclidean lattices

In this section, we provide the necessary preliminaries for a better understanding of the subsequent
discussions.

Definition 1. An Euclidean lattice (or simply a lattice) � formally is a discrete subgroup of �n for a norm ‖ ‖⋅ ,
and equivalently it is a free �-module of free rank m contained in �n. A lattice can be represented by a basis

{ }=B b b, …, m1
, for �∈bi

n.

A basis is not unique if < ≤m n1 , so

��( ) ∣∑≔
⎧
⎨
⎩

∈
⎫
⎬
⎭=

B α b α ,

i

m

i i i

0

and C is a basis of � if and only if there is a unimodular matrix U (i.e. ∣ ( )∣ =Udet 1 and �∈ ×U m m) such that
=B CU , consequently for a lattice of rank greater than 2, there are infinite many different bases of that lattice.

If =m n, then the lattice is said a full-rank lattice. From lattices theory, there is a shortest non-zero vector in � ,
and finding such a vector is the well-known problem of the shortest vector problem (SVP).

Definition 2. (SVP)
• Given: �∈ ×B n m,
• Find: � { }∈z \ 0

m , such that ‖ ‖ ‖ ‖≤Bz By for every y in �m.

Another important lattice problem is the closest vector problem (CVP), given a non-lattice target vector,
find the closest lattice vector to the latter.

Definition 3. (CVP)
• Given: �∈ ×B n m, and � �∈t \

n

• Find: � { }∈z \ 0

m , such that ‖ ‖ ‖ ‖− ≤ −Bz t By t for every y in �m.

If � is a subset of �n, then it is called an integral lattice, and for a given q if � contains �q n, then �

is called a q-ary lattice. For more details and discussion of the hardness of the above problems, we refer
the reader to [7,24].

Since there are infinitely many bases for a given lattice, it is natural to ask which of basis is better to work
with. This is a well-studied topic in lattices theory, and there is no precise definition for a good basis and bad
basis. A good basis in general is a basis with short vectors; in contrast, a bad basis is constituted by long vectors
and form a skewed parallelepiped. The operation to find a good basis from a given bad basis is known as lattice
reduction [13,25], and there are many strategies to find such one, and they differ by running time and the
quality of the output basis, precisely the LLL algorithm runs in polynomial time but it produces a base with
exponential approximate short vector, in contrast HKZ-reduction runs in exponential time and produces a

4  Nour-eddine Rahmani et al.



basis containing a shortest vector. We refer the reader to the survey [7] for more details. Finally, good to
mention that improving lattice reductions is still an open research [14] and most known efficient implementa-
tion is known as the general sieve kernel [15].

3 High-dimensional RSA

In this section, we state the ideal factorization problem in number fields, and we recall the high-dimensional RSA
as it is described in the original article. Then, we provide some remarks on the vulnerabilities that we found.

3.1 Coefficient embedding and rotation matrix

In the study of Zhiyong et al. [19], the multiplication of elements in K is defined as the matrix-vector product
which is known in the literature of lattice-based cryptography (e.g. see [7,8]), by using the rotation matrix of an
element a in K and multiply it by the vector corresponding to the coefficients of an element b of K . We respect
the same notation of the paper for clarity.

Every degree n number field �( )=K ζ defines an n-dimensional vector space over � with basis
−ζ ζ1, ,…,

n 1. As a result, any element ∈a K may be expressed as = ∑ =
−

a a ζj

n

j
j

0

1 , where �∈aj .
The isomorphism that sends every element a in K to its coefficient vector ( ) ( )= −τ a a a, …, n

t
0 1

is the
coefficient embedding �→τ K:

n and denoted by ( ) =τ x x̄ . By the coefficient embedding, multiplication by
x can be represented by a matrix multiplication, with the associated matrix denoted by �( ) ∈ ×xRot

n n. More
specifically, it returns ( ) ( ) ( )= ⋅τ a b τ cRot for every a b c, , in K with =a bc. It is worth noting that the matrix

( )aRot is invertible in K for all ≠a 0, and that its concrete form is determined by the number field K .

Definition 4. Let K be a number field. We define⊗ to be the operation between coefficients vectors of α and β,
for α and β from K such that the result is in the number field K . Explicitly

( ( ) ( ))∀ ∈ ⊗ ≔ ⋅−α β K α β τ α τ β, , ¯
¯ Rot .

1

We remark that ⊗α β¯
¯ is an element of K . Clearly, if �= ∑ ∈=

−
a a ζi

n

i
i

K0

1 and �� [ ]= ζK , then ( ) =τ a

�( ) ∈−a a a, , …, n
t n

0 1 1
. The property �� [ ]= ζK is called NC-property in the paper of [19]. They defined and

denoted the rotation matrix by the following matrix:

( ) ( ) [ ( ) ( ) ( )]= = −a H a τ a Hτ a H τ aRot * , , …, ,

n 1

where H depends on the number field defined by the polynomial ( ) = − ∑ =
−

ϕ x x ϕ xn
i

n

i

i
0

1 , and it equals

=

⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥−

−

H

ϕ

ϕ

I

ϕ

0 … 0

.

n

n

0

1

1

1

The product of two elements a and b in K can be computed by ( ( ) ( ))⋅ = −a b τ a τ bRot

1 .

3.2 Description of the high-dimensional RSA

Let ≥n 1 be a positive integer, K be an algebraic number field with the NC-property of degree n, �= ⊂R KK

be the ring of algebraic integers of K , ∈α R, ∈β R be two distinct prime elements of R, =A αβR be a principal
ideal of R, ( )⊗H α β* ¯

¯ be the ideal matrix corresponding to A, ( )= ⊗L L α β¯
¯α β H, *

be the lattice generated by

On the quantum security of high-dimensional RSA  5



( )⊗H α β* ¯
¯ , ( )=B LHNFα β α β, ,

be the basis of Lα β, in Hermite normal form, and { }=B b b b* diag , , …,α β n, 1 2

be the elements in the diagonal of the Bα β, matrix.
Parameters:

�

( ) (∣ ( ( ))∣ ) (∣ ( ( ))∣ )

{ ( ) ∣ }

( ) ( )

( ) ( ( ))

= − ⋅ −
= = ∈ ≤ <

≤ <
≤ < ≡

ϕ α β H α H β

S x x x x x b

e ϕ α β e ϕ α β

d ϕ α β ed ϕ α β

, det * 1 det * 1 ,

, , …, 0 ,

1 , such that coprime with , ,

1 , such that 1 mod , .

α β n
n

i i, 1 2

Public keys: The rotation matrix H , the lattice ( ) =L B Lα β α β, ,
, and the positive integer e are public keys.

Private keys: Ideal matrices ( )H ᾱ and ( )H β̄ , the basis ( )⊗H α β* ¯
¯ of Lα β, , and the positive integer d

are private keys.
Encryption: For any input message ∈a Sα β, , the ciphertext c is given by ( )≡c a Lmod

e
α β, .

Decryption: ( )( )≡ ≡ ≡+c a a a Lmod

d de kϕ α β
α β

, 1

,
. One can find the plaintext a from c in Sα β, .

Decryption success probability: The authors proved that decryption success probability depends on the
norm of ��=A for prime ideals � �, in �K and the splitting behaviour of the integer primes p q, in � �,

respectively, showing that the decryption success probability is

� �

=s
p q

p q
,

f f

n n

where
� �

f f, the residual degree of � �, above p q, , respectively, and n is the degree of K over �.

4 Attacking high-dimensional RSA

While claiming that the proposed scheme has post-quantum security, we do not find any proof for this claim
in the original paper; in this section, we provide remarks on the security of the scheme that lie on the hardness
of factorization in number fields.

4.1 Hardness of factorization in number fields

We prove the following fact:

Theorem 2. Let K be a number field with degree d. There is a polynomial time algorithm that factors elements in
the ring of integers� if and only if there is a polynomial time algorithm that factors ideals in the ring of integers
�K of the number field K.

Proof. It is clear, if there is a polynomial time algorithm to factor an ideal A of �K into a product of prime
ideals in �K in polynomial time leads to factor an integer = ∏ =n pi

r

i

e

1

i in � in polynomial time. Considering the
ideal in �K generated by n and since the ring of integers is a Dedikind domain A factors uniquely into prime
ideals (up to permutation) as follows:

� �∏∏= =
= =

A n K

i

r

j

g

i j

e

1 1

,

i

i j,

in �K where each of �i j, is a prime ideal of �K above p
i
, ei j, is the ramification index of �i j, ’s above p

i
, and g

i
is the

number of prime ideals in �K above p
i
for all i j, . Then, computing � �� ∩ = pi j i,

and { }= ≡e e n pmax : 0 modi i

e

and return ( )p e,
i i for every i.

6  Nour-eddine Rahmani et al.



Now, we prove the other direction. For a fixed number field �∕K , given an ideal �= ∏ =A i

r

i

t

1

i of �K with �i

are prime ideals of �K , and our goal is to find �i and ti for each i. For simplicity, we assume that the prime
ideals are ordered by the prime integers they contain, for each ≤ < ≤i j r1 , there is p

i
and p

j
prime integers in

� such that: ≤p p
i j

, �∈p
i i, and �∈p

j j. Assume that there is an algorithm that solves the problem of integer
factorization in polynomial time. First, we compute the algebraic norm N( )=N A , which is an integer number
in � , the algebraic norm of an ideal is known to be computable in polynomial time by computing the
determinant of its representative matrix (since determinants can be computed in polynomial time using,
for example, Gaussian elimination). Using the integer factorization algorithm to factor N over� , the algorithm
will output ( )p t f,

i i i
for ≤ ≤i r1 such that p

i
is in increasing order, and we have

∏=
=

N p ,

i

r

i

t f

1

i i

where, for each ≤ ≤i r1 , f
i
is the residual degree of �i above p

i
, which is less than d. Now, for each i, the

procedure to find �i and ti is starts by decomposing the prime integers p
i
in �K , which returns a set of prime

ideals �i j, of �K that lie above p
i
, since the prime decomposition is unique in a �K , only one of the �i j, is equal

to �i, which divides A and �i lies above p
i
in �K , thus, running – for example – an exhaustive search for the

right index j and the maximum exponent ti of the prime ideal �i j, above p
i
such that � i j

t

,

i divides A for each i

and j . By the proposition from the fact 2.1, we have less than d many prime ideals above p
i
. Thus, this process

clearly is polynomially bounded in the number field degree d and number of primes that divide N . □

The previous proof has no efficiency concerns, in fact it is only to show that the two problems are equivalent
computationally for any number field K . As a consequence, we conclude that if there is a polynomial time
algorithm that solves one of them in polynomial time, then necessarily there is an algorithm that solves the other
equivalent problem in polynomial time, which implies that the problem is solvable (e.g. using Shor’s algorithm) in
quantum polynomial time. One may wonder if there is a number field K in which it is possible to perform ideal
factorization in polynomial time (may be classical), thus by the theorem we know that the existence of such a field
implies that we can factor integers n of � in polynomial time by factoring �n K using the known algorithm and
computing � �� ∩ = pi which can also be done in polynomial time as described in the proof of Theorem 2.

4.2 Parameter restriction

Assume that p q, are b-bits prime numbers that lie in the prime ideals � , � with inertia degree
� �

f f,

respectively, then we have the following inequalities:

� � � �
( ) ( )( )≤ ≤+ − − + −s2 2 .

b f f n b f f n2 1 2

Since
�

f and
�

f are less than or equal to n, the decryption success probability s is negligible in b and n

unless
� �
= =f f n. This is another inconvenience of the proposed scheme, on the one hand, factorization of

integers is achievable for product of small primes, on the other hand, for larger bit-size prime numbers, if one
of the selected primes does not have inertia degree equals to n in the number field K , then we have a negligible
success probability which makes the scheme useless for. This restriction also makes key generation harder.
The decryption success probability in question is related to the construction, and the proposed scheme does
not provide any additional procedures to make the scheme randomized for public key purpose.

In the next section, we show our last observation using the fact from Theorem 2 and the restriction above,
which make the proposed scheme insecure.

4.3 Attack description

We describe in this section our key recovery attack against the described construction in Algorithm 1, which
we will prove that it runs in (at most quantum) polynomial time.

On the quantum security of high-dimensional RSA  7



We have seen in the previous section that to obtain a negligible decryption failure is to choose α β,

such that � �= =αR βR, are inert prime ideals of � in �K . So, we have to focus on prime ideals of form
� = pR for p in � . The latter have norm pn and for ��= =A pqR the norm of A is clearly N( ) =A p qn n, and
hence, we have decryption failure probability equal to 0. It is known that we can compute the norm of A from
the given Bα β, by computing the determinant of Bα β, . Using the following algorithm, we could retrieve the
private key d. We do not need to retrieve α and β since ( )= −d e ϕ Amod

1 , where ( ) ( )( )= − −ϕ A p q1 1

f f
p q is

computable if we know p and q. Thus, only p and q are sufficient to retrieve and then makes, the construction
insecure.

Algorithm 1: Compute private key d

Input: Public key as lattice basis Bα β,

Output: Private key d

1 Compute ←N Bdet α β, ;
2 Compute ←N N n

1

;
3 F(( ) ( ))←p e q e, , ,p q Factor ( )N its prime factors;
4 Compute ( )( )← − −−d e p qmod 1 1

n n1 ;
5 return d

4.4 Running time and algorithm correctness

Since � = αR and =Q βR, by algebraic number theory, we know that � �� ∩ = p and � �∩ =Q q for prime
numbers �∈p q, . Therefore N( ) ( )= =L L p qdet α β α β

f f
, ,

P Q. The following remarks justify why the algorithm
runs in polynomial time:
• The lattice volume is an invariant of the lattice, which leads to computing the norm from the bad basis Bα β, .
• Step 2 can be done efficiently using sufficient precision, and the result is surely an integer since we restricted
the choice of parameters as in the previous discussion.

• Step 3 can be done by using any factoring algorithm. Using Shor’s algorithm makes this step computable
in quantum polynomial time.

• Step 4 can be done in polynomial time even in a classical computer.

This proves that our suggested algorithm runs at most in quantum polynomial time; therefore,
our recovery attack is efficient, and the proposed scheme is not a post-quantum construction.

Basing the proposed scheme on number fields of large degree may help to resist Shor’s algorithm
(e.g. extensions of degree ≥ 100), but since the proposed construction work with principal maximal ideal of �K

this is not always secure because for example if the primes contained in the ideals splits completely then the
norm of the public key does not get increased sufficiently to make the Shor’s factoring algorithm costly, thus,
one should avoid primes that splits completely in K in the key generation process, and also for inert primes since
we can compute n-th root of the determinant of the lattice which is the result of the norm of the ideals multi-
plication. Conversely, increasing the number field degree makes the computations too slow, which is not
favourable in practice.

Remark 1.We stress that we do not see any role of the lattice structure in the proposed design security, nor the
author of the proposed scheme has presented a security guaranty based on a lattice problem. Our attack does
not exploit any problem related to lattices, and hence, the design has no security guarantee based on any of
the lattice problems (e.g. the SVP).
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Example 2. Let �( )=K 2

3 be the number field defined by the polynomial − = − ⋅ − ⋅ −x X x x2 0 0 2

3 3 2 .
Its ring of integers verifies �� [ ]= 2K

3 . The matrix H related to this field is

=
⎡

⎣
⎢

⎤

⎦
⎥H

0 0 2

1 0 0

0 1 0

.

Let = +a 3 2 2

23 and = + −b 3 2 2

23 3 , then their coefficients vectors are, respectively, ( )=ā 3, 0, 2

t and
( )= −b̄ 3, 1, 1 . Now, to compute the product ab, we need to compute ( ( ) )−τ H a b* ¯

1 . Computing ( )H a* , we find

( ) = [ ] =
⎡

⎣
⎢

⎤

⎦
⎥H a a Ha H a*

¯ ¯ ¯

3 4 0

0 3 4

2 0 3

2

and therefore

( ) = [ ] ⋅ =
⎡

⎣
⎢

⎤

⎦
⎥ ⋅
⎡

⎣
⎢
−

⎤

⎦
⎥ =

⎡

⎣
⎢−

⎤

⎦
⎥H a b a Ha H a b* ¯

¯ ¯ ¯
¯

3 4 0

0 3 4

2 0 3

3

1

1

13

1

3

,
2

hence,

= − +ab 13 2 3 2 .

23 3

A simple verification

( ) ( )= + ⋅ + −

= + − + + −
= − +

xy 3 2 2 3 2 2

9 3 2 3 2 6 2 4 4 2

13 2 3 2

2 2

2 2

2

3 3 3

3 3 3 3

3 3

is needed.
We can verify that x and y are irreducible elements of �K of prime norms 59 and 43, respectively.6

The public key is the product = − +xy 13 2 3 4

3 3 , which corresponds to its rotation matrix in Example 2.
The totient in this case is ( )( )= − − =ϕ 59 1 43 1 2,436

1 1 .
Let the public key be =e 5, and = =−d 5 1,949 mod 2,436

1 . Encrypting the message = + +m 1 2 4

3 3 ,
we obtain = ≡ − − −⊗c m A2 8 2 3 4 mod

e 3 3 . Decrypting c gives = ≡ + +⊗D c A191 97 2 209 4 mod

d 3 3 , which

is clearly different from the starting message m, and for this example, the success probability is =s
1

64,36,369

.
This example shows the weakness of parameters that leads to observable decryption failure.

Example 3. Now, we encrypt the same message using prime ideals of K , which contains an integer prime that
inerts in K . Let = + −x 49 14 2 42 4

3 3 and = + −y 31 93 2 93 4

3 3 , =e 11, we obtain =ϕ 1,01,88,180 and
=d 46,30,991 mod 1,01,88,180 . The encryption then is = ≡ + +⊗c m A36 191 2 67 4 mod

e 3 3 and the decryp-
tion can also be verified to be correct. But the matter here is that given the Hermite normal form of this
parameters, one can compute the norm as the determinant of the matrix

=
⎡

⎣
⎢

⎤

⎦
⎥B

217 0 0

0 217 0

0 0 217

,

which is 217

3 and we have = ×217 7 31.

In order to give a numerical example of the proposed attack, we used Pari/GP software. In this example,
we work with cyclotomic fields, one of the suggested families of number fields by Zhiyong et al. [19] that
satisfies the NC-property.



6 In this example, 59, 43 are not inert primes in K just to show the decryption failing.
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Example 4. We fix =n 128 for the 256th cyclotomic number field with the following parameters:
1. the defining polynomial of the number field is +X 1

128 ,
2. the private keys are
– = − + − − −α x x x x x x2 5 4

126 125 124 123 122 121 + + −x x x6 9

120 119 118 + −x x2

115 114 + − − −x x x4 2

112 110 109

− − − − −x x x x x x2 2

107 106 105 104 103 102 + + − −x x x x2 2

101 99 98 97 + −x x96 95 + − − −x x x x3 3 3

94 93 92 91 +

− + −x x x x5

89 88 86 85 + + − − −x x x x x3 2

84 81 80 78 77 + − +x x x3 5

76 75 74 + + − −x x x x2 21

73 72 71 70 +

+ −x x x11

66 65 64 + − −x x x2 5 6

63 61 60 + + +x x x2 3 7

59 58 57 + − − − − − − −x x x x x x x4 8 2 2

56 55 54 53 52 51 49

−x x2

48 46 + + − − +x x x x x2 4 3 2

44 43 42 40 39 + − + +x x x x3 13

38 37 36 35 + + − −x x x x2 3

34 33 32 31 +

+ + +x x x x2

30 29 28 27 + + − − −x x x x x2 33 2

26 25 24 23 21 + + − −x x x x2 2

20 19 16 15 + − − +x x x x2

14 12 10 9 +

− −x x x3 17 6

8 5 4 + + + −x x x8 1

3 2

– = − + + −β x x x x x3

127 126 125 124 123 + + + − −x x x x x5

122 121 120 119 118 + + − + −x x x x x5

117 116 115 114 113 +

− −x x x2 5 99

111 110 109 + − + + +x x x x x2 2

108 105 103 102 101 + − + −x x x x11 3

99 98 97 96 + − + −x x x2 4

93 92 91

−x x29 2

90 88 + − + − − − − −x x x x x x x x36 13 12

87 86 85 84 82 81 79 78 + − −x x x7

77 76 75 + − +x x x47 5 52

74 73 72

+ − − − − −x x x x x x3 13

71 69 67 66 65 63 + − + −x x x x62 61 60 59 + − − −x x x x8 3

58 57 56 54 + − −x x2 3

53 52

−x x42 3

51 50 + − + + +x x x x x3 2

49 48 46 45 43 + − + − − − −x x x x x x x7 44 3

42 39 38 37 36 35 34 + − −x x3

33 31

− − −x x x x19 5

30 28 27 26 + + + + + − − −x x x x x x x x2 2 6 5

25 23 22 21 20 18 17 16 + + + + −x x x x x4 19 2

15 14 13 12 11

+ − − + + −x x x x x x2

9 8 7 5 4 3 + +x x4 2

2 .
– Computing ( )ϕ α β, we obtain (in hexadecimal):

( )ϕ α β, = bf da fddb db c bb a d d f faf b baee a e a f d da bc f33 97 2 268 31 6 7 846 06 223 0 9 3 105 8152 1413 9 6 5 04 33

dfcc ee c f ff a f c b bb a b d dea ea a d f794 815 61338 2 52 51 05 34 583 84 02 18 05 0505017 0 5936 75869717 49 15883

fa fc a ba b cda e d de c a c d a baf a a d a fea bcf a d d366 4 4 12 022882 0 052 6 2 90 6108 117 55 57 88 02 3 2 25 075 12 3 5 31

c ea fd dbad b fae a c cce d f ec c faf ce f b f3 53 7428 90 14340 40 247133 296697 490 35784648 5492 5 18 06 26 3 647 5

c f af dbf f b c e f df e d d ec4 27961 8 9 5 825 3 10845 0508 70 5642 871 357 00000.
3. The public key which is the given ideal:

A = (−382x127 − 291x126 − 817x125 − 160x124 − 1203x123 − 1148x122 + 297x121 − 544x120 + 14x119 − 199x118 − 952x117 −
201x116 + 309x115 + 1172x114 + 1634x113 − 105x112 + 235x111 − 231x110 + 717x109 − 419x108 + 789x107 − 128x106 + 429x105

+ 14x104 − 106x103 − 685x102 + 99x101 + 332x100 − 747x99 − 81x98 − 1142x97 + 631x96 − 1726x95 − 112x94 + 77x93 +
46x92 + 545x91 + 67x90 + 356x89 + 577x88 − 852x87 + 524x86 − 493x85 − 240x84 − 236x83 + 371x82 + 229x81 + 242x80 −
1103x79 − 85x78 − 375x77 − 652x76 + 660x75 + 795x74 + 209x73 − 722x72 + 10x71 + 581x70 + 29x69 − 82x68 + 351x67 −
479x66 − 288x65 − 11x64 − 537x63 + 384x62 − 212x61 − 116x60 + 1215x59 − 210x58 + 289x57 + 152x56 + 415x55 + 181x54 +
2150x53 − 223x52 + 760x51 + 379x50 + 276x49 + 315x48 + 1238x47 − 215x46 − 591x45 − 41x44 − 142x43 + 52x42 − 4x41 +
464x40 + 847x39 + 544x38 − 927x37 + 150x36 − 576x35 + 160x34 − 366x33 + 163x32 − 95x31 + 168x30 − 699x29 + 416x28 −
101x27 − 283x26 + 140x25 + 598x24 − 309x23 + 249x22 − 14x21 + 274x20 + 325x19 − 1825x18 + 1444x17 − 1069x16 +
296x15 + 160x14 − 137x13 − 570x12 + 22x11 − 594x10 + 323x9 + 37x8 − x7 + 25x6 − 270x5 − 2982x4 − 262x3 − 499x2 −
421x + 111)�K

4. If we choose =e 65537 we obtain (in hexadecimal):
( )= −d e ϕ α βmod ,

1 = c e a ca e d a b b ef fdf bc cf d c a4 8 6 769901 83 2 8 2 98678 60568 0037904341 6479337 1 62 8 51

aef f b fb a e e fbe ac c dddf d b dc add ed ccfac db ff f2 64 811296 304009 45334 7 79 44 9 90 3 83 59 9 11702 0 47 045 47 08

fde b e e e bd da f b f e a c e bbaa d e dab e fc a54 9 480 394 48 2 91 5 5254223 02 7 0 40 9 262508137 3 6 8301504 884204 9 615

dd adafcc d baeec a d b e cb fe a d b f eeefa bb af cf ba c e db bd93 592 2 09 59 8 081 3 98 17 6 426 3 35582 4 82 84482 8 62 2 3 0 7

a d b d ce fe cac d d f e a ea d ee936 8 6 95 5326 2 5 3 05 4028 38 7 6 16 7 570001.

Now, we retrieve the secret decryption key d, given A and e:
1. Computing the norm of A gives (in hexadecimal):

N( ) =A bf da fddb db c bb a d d f faf b baee a e a f d da bc f33 97 2 268 31 6 7 846 06 223 0 9 3 105 8152 1413 9 6 5 04 33 794

dfcc ee c f ff a f c b bb a b d dea ea a d f fa815 61338 2 52 51 05 34 583 84 02 18 05 0505017 0 5936 75869717 49 15883366

fc a c dfe db c c fb b a aa d c bf d ab f c b d b eabf da4 4 42 4 92 3 15 034 7 07 71477 68 81 24 5 9 8 16 65 9257 355 29 38388 239

a d bb e a a e e ffdffa ca ad b a a a f e de de f b f c e fa9 9492281 44 87 8 41 2 134140 0 5 437 62 2 0128977 0 4 21 46 92 07 1 7 1 3

c bb d f a ed77 663 58 433114458551 469925568 474 84263178101.
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2. The factorization into prime numbers gives (in hexadecimal):
=p bf d f cc efc b ad f fa e d ddce b b ac eb ed d113 6817372776 88 58 40 6434929 12638 7 24 63 8 61155 4 68 40459 5 56 51

bf ec a bf c fef e bd e d b b f afd c c b a fb e c fc63 3 6 0479222441 655 2012 9 3 49 49 2 5546 81 6 6227 0 7 5929 8 5 032455 01

and
=q addc ab f bbb e d e ab f becd d eaa e c f a b ad e a300 0 02 3 068 4 1 9 36 095112 16 1 28 617 27 6 672 9142 875550 0525848

e e aabc e de d f b ca dd a cdbf ee c fa12 426 93650867335 528 7 363828 2 3 715 7 48 967220646200 3 2 109 4420907830

e eadc dcbb c ffb ef a e a be d3 0 79 379490 79 3 0 08 80 6 6 58501.
3. We compute the valuation of N at the prime integer p and q, and obtain = =f f 1

p q
.

4. We compute ( ) ( )( )= − −ϕ A p q1 1 and then retrieve ( )= −d e ϕ Amod

1 and obtain the same value of d

as above.

In the previous example, the primes p q, are not inert in the cyclotomic number field �( )=K ζ
256

, and our
goal in this example was to show the ability of retrieving the decryption d even for higher degree number field
with NC property. Also, good to mention that our attack is applicable on general number fields not necessarily
have the NC property.

5 Conclusion

In summary, this study provides insights on the high-dimensional RSA scheme’s vulnerabilities to quantum
polynomial attacks. By disproving the claim that the suggested construction provides post-quantum security
that is more robust than NTRU [26], we highlight the significance of thorough study in the assessment of
cryptographic primitives. Despite having a lattice structure, the suggested design is vulnerable to quantum
attacks, since its hardness is not based on a lattice hard problem. Moreover, our results serve as a warning
story, emphasizing that security against sophisticated attacks is not guaranteed simply by relying on a lattice
structure.
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Appendix
A Pari/GP demonstration

To obtain an idea of the comportment of our attack, we have used the Pari/GP software [27] to implement our
attack on ideals which are the product of two prime ideals over power of two cyclotomic number fields,
and summarized the result in Table A1.

This research was supported through computational resources of HPC-MARWAN (hpc.marwan.ma) pro-
vided by the National Center for Scientific and Technical Research (CNRST), Rabat, Morocco. We run the code
on HPC-Marwan Cluster, using a node of 2 cpus and 64 Go of memory, the running time to complete took 5
hours 12 minutes and 34 seconds. Our demonstrative code can be found in the following link: https://github.
com/ndrahmani/Attack_code.

default("parisize", 64G);

default("timer", 1);

bit = 1024 ; /* Primes bit size */

ns = powers(2, 11);

verbose = 0 ; /* Set to 1 for printing messages, 0 to hide them */

NUM_TEST = 100 ; /* Number of tests */
NUM_PRIM = 2 ; /* Number of primes */

/* Function to safely read a text file if it exists */
read_field(filename) = {

my (result);
iferr(
result = read(filename),
E, /* If an error occurs (e.g., file not found) */
result = 0;

);
result;

}

Table A1: Average CPU time and wall time for different degrees of cyclotomic number fields

Degree 1 1 2 4 8

Average CPU time 143 ms 135 ms 163 ms 311 ms 424 ms
Average wall time 0 ms 0 ms 1 ms 1 ms 1 ms

Degree 16 32 64 128 256

Average CPU time 643 ms 1,007 ms 1,007 ms 1,427 ms 3,459 ms
Average wall time 1 ms 4 ms 1 ms 2 ms 9 ms

Degree 512 1,024

Average CPU time 16,013 ms 1,56,591 ms
Average wall time 72 ms 1,819 ms

On the quantum security of high-dimensional RSA  13

https://github.com/ndrahmani/Attack_code
https://github.com/ndrahmani/Attack_code


/* Function to write number field to a text file */
write_field(filename, field) = {

write(filename, field); /* Create and write the number field to the file */
}

{

for (n_i = 1, #ns -1,

n = ns[n_i];

filename = Str("cyclotomic_field_", n, ".txt");

/* Attempt to read the number field from the file */

K = read_field(filename);

if (!K,

/* File does not exist, compute the cyclotomic polynomial and number field */

P = polcyclo(n);

print1("Computing the ", n, "-th cyclotomic number field defined by the irreducible poly-

nomial: ", P, " of degree: ", poldegree(P));

K = nfinit(P);

/* Store the number field in the file */

write_field(filename, K);

print("... Completed and stored.");

, P = K.pol;

print("Using Stored number field...nThe ", n, "-th cyclotomic number field\ndefined by the

irreducible polynomial: ", P, " of degree: ", poldegree(P));

);

if (verbose,

print("/********************************");
print("Generating starting primes since ");

print("we don’t have a quantum computer");

print("*********************************/");

);

[S, F] = [0, 0];

if (verbose, print("**************************");

print("Number of tests: ", NUM_TEST);

print("**************************");

);

t0 = getwalltime();

t0_ = gettime();

for (test = 1, NUM_TEST,

/* Generate two random primes */

kill(ps);

ps = vector(NUM_PRIM, i, randomprime([2^(bit-1), 2^bit]));

/* Decompose primes in the number field K */
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Ps = vector(#ps, i, idealprimedec(K, ps[i]));

/* Generate a random ideal in K */

A = idealmul(K, 1, 1);

for (i = 1, #Ps,

P_above_p_i = Ps[i][random([1, #Ps[i]])];

P_exp_p_i =1 ;/* random([1, 32]);*/;

A = idealmul(K, A, P_above_p_i);/*idealpow(K, P_above_p_i, P_exp_p_i));*/

);

/* STARTING THE ATTACK */

/************************/
/* Calculate the norm of the ideal A and find prime divisors */

t0 = getwalltime();

normA = idealnorm(K, A);

p_div_normA = [];

for (i = 1, #ps,

if (normA % ps [i] == 0,

p_div_normA = concat(p_div_normA, ps[i])

)
);

/* Verify all primes were used to construct A */

if (verbose, print("Assuring that we got all the primes that we constructed A from: ", ps ==

p_div_normA));

/* Decompose the primes that divide the norm of A */

if (verbose, print("Assume now that we factored the norm of the ideal A then we

decompose the primes and check for each prime divide A and get its valuation: "));

ind_pow = [];

for (i = 1, #p_div_normA,

P_above_p = idealprimedec(K, p_div_normA[i]);
for (j = 1, #P_above_p,
e = idealval(K, A, P_above_p[j]);
if (e != 0,

ind_pow = concat(ind_pow, [[j, e]])

)
)

);

/* Reconstruct the ideal A */

new_A = idealmul(K, 1, 1);

for (i = 1, #Ps,
[pi, e_pi] = ind_pow[i];

P_above_p_i = Ps[i][pi];

P_exp_p_i = e_pi;

new_A = idealmul(K, new_A, idealpow(K, P_above_p_i, P_exp_p_i));

);
t1 = getwalltime();

/* Check if reconstruction was successful */

if (new_A == A,
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S += 1;

,
F += 1;

);
kill(new_A);

kill(Ps);

kill(ps);

kill(A)

);

t1_ = gettime();

t1 = getwalltime();

print("NUMBER OF TESTS : ", NUM_TEST);

print("SUCCESS RATE : ", S/NUM_TEST * 100, " %");

print("AVERAGE WALL TIME: ", strtime(ceil((t1-t0)/NUM_TEST)));

print("AVERAGE CPU TIME : ", strtime(ceil((t1_-t0_)/NUM_TEST)));

print("======================================================");
print();

print();

);

print("DONE");

}

\q
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