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Abstract

In BPS quiver theory of N = 2 supersymmetric pure gauge models with gauge invariance G, primitive 
BPS quivers QG

0 are of two types: QADE
0 and QBCFG

0 . In this study, we first show that QADE
0 have outer-

automorphism symmetries inherited from the outer-automorphisms of the Dynkin diagrams of ADE Lie 
algebras. Then, we extend the usual folding operation of Dynkin diagrams ADE → BCFG to obtain the 
two following things: (i) relate QBCFG

0 quivers and their mutations to the QADE
0 ones and their mutations; 

and (ii) link the BPS chambers of the N = 2 ADE theories with the corresponding BCFG ones. As an 
illustration of this construction, we derive the BPS and anti-BPS states of the strong chambers QG2

stg and 

Q
F4
stg of the 4d N = 2 pure G2 and F4 gauge models.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Few years ago, a BPS quiver theory has been proposed in [1,2] in order to build the com-
plete set of BPS spectra of 4d N = 2 supersymmetric quantum field theories (QFT4) with gauge 
symmetry G. This theory has been smoothly applied to supersymmetric ADE type gauge mod-
els, with and without hypermatter [3–9]; and to Gaiotto type theories describing the low energy 
limit of M5-branes wrapped on a punctured Riemann surface [10–13]; see also refs. [27–37] for 
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previous works and refs. [38–46] for other approaches to the N = 2 BPS spectra. An interesting 
generalisation of this BPS quiver construction beyond ADE type groups has been first proposed 
in [14] where particular BPS configurations have been described. In this study, we want to con-
tribute to this BPS theory by developing a new manner to extend the smooth ADE-construction 
to the subclass of N = 2 supersymmetric pure gauge theories based on a non-simply laced type 
gauge invariance. Our way of doing relies on extending the usual folding method of Lie alge-
bras, mapping ADE Dynkin diagrams into BCFG ones, to the BPS chambers QADE

bps of ADE-type 

theory in order to generate the QBCFG
bps chambers for the case of non-simply laced type gauge 

symmetries.
To fix the ideas, recall that in the standard ADE type formulation of the quiver theory, the 

BPS/anti-BPS states of the 4d N = 2 QFT4’s are composites of elementary BPS particles having 
electric–magnetic (EM) charges γ i . These charges are given by symplectic vectors γ i = (

γ �
i

)
made of two component blocks: electric qI

i components and magnetic pIi ones as follows

γ �
i =

(
qI
i

pIi

)
, γi� =

(
pIi,−qI

i

)
In the particular class of supersymmetric pure gauge theories with gauge symmetry G we will be 
interested in here, that is in absence of couplings to hypermatter, the basic particles are given by 
r elementary monopoles Mi with EM charges γ monopoles

i , denoted below as bi , and r elementary 

dyons Di with EM charges γ dyons
i denoted like ci . They are placed at nodes Ni of a primitive 

quiver QG
0 with oriented links Ni − Nj given by the integral Dirac pairing

γ i ◦ γ j = C�ϒγ �
i γ ϒ

j (1.1)

where C�ϒ = −Cϒ� is the usual metric of real symplectic groups. The EM charge vectors γ i

and the intersection matrix 
(
AG

0

)
ij

= γ i ◦ γ j define the primitive quiver QG
0 which, in some 

sense, resembles formally to the usual Dynkin diagram of Lie algebra of the gauge symmetry G. 
The γ i ’s and the AG

0 play also an important role in the building of the BPS spectra of the N = 2
QFT4. The BPS states S (γ ) of the 4d N = 2 gauge theory and the corresponding anti-BPS ones 
S (−γ ) are bound states made of the Mi =M (bi )’s and the Di =D (ci )’s; the EM charges γ of 
BPS states S (γ ) are given by positive integral linear combinations of the elementary γ i ’s, that is 
EM charge vectors of the form γ = ∑

i N
+
i γ i with N+

i some positive integers. The symplectic 
charge vectors ±γ are obtained in practice by the quiver mutation method whose algorithm may 
roughly be phrased into two main steps as follows: (i) First, start from the primitive QG

0 and a 
given configuration of ordering of the arguments argZi of the central charges Zi = Z

(
γ i

)
of 

the elementary particles γ i ; an ordering of the phases of the complex central charges defines a 
BPS chamber QG

bps in the quiver theory, and has a nice representation in terms of rays in the 

Z-complex plane. (ii) Second, performs successive mutations Mn on the primitive QG
0 generat-

ing descendant quivers QG
n = Mn

(
QG

0

)
with nodes occupied by new BPS states with EM charge 

vectors γ (n)
i = (Mn)

j
i γ j ; these γ (n)

i ’s are precisely the linear positive (negative) integral N±
i γ i

combinations of the elementary charges γ i mentioned above. The building of BPS spectra using 
quiver mutation approach has been applied with success to N = 2 QFT4 with ADE invariance; 
but, due to exotic properties such as diagonal links in QBCFG

0 and 3-cycles as shown on Fig. 2, 
still needs more exploration for the class of non-simply laced type gauge symmetries.



R. Ahl Laamara et al. / Nuclear Physics B 920 (2017) 157–191 159
In this paper, we consider the 4d N = 2 supersymmetric pure gauge models with finite di-
mensional non-simply laced BCFG type gauge symmetries, and develop further the method 
introduced in [15] for the building of BPS/anti-BPS states of this special subclass of N = 2
gauge theories. Here, we focus on the explicit construction of the CPT invariant BPS spectrum 
of the strong chambers QG2

stg and QF4
stg of the 4d N = 2 supersymmetric quantum field G2 and F4

gauge models; but, though it will not be explicitly detailed in present analysis, our method may be 
also applied to other N = 2 QFT4’s including those involving BPS quivers based on generalised 
Dynkin diagrams like the ones of affine Kac–Moody algebras encountered in N = 2 CFT4 first 
considered in [16]; see also [17–19] for indefinite hyperbolic extensions. Our approach consists 
on starting from BPS quivers QADE

0 of type ADE and use outer-automorphisms to fold them into 
BPS quivers of type BCFG in quite similar manner as in the folding of ADE Dynkin diagrams to 
recover BCFG Dynkin ones [20–22]. In this way, the set of BPS states of 4d N = 2 pure gauge 
models with G2 and F4 gauge invariance gets related to the set of BPS states with D4 and E6 type 
gauge symmetries.

To achieve this goal, we proceed as follows: We first recall basic aspects of the primitive 
BPS quivers QG

0 of G = ADE type; and show that they have outer-automorphism symmetries 
inherited from the outer-automorphisms of the Dynkin diagrams of Lie algebras. BPS graphs 
representing the QG

0 ’s, which are given by the lists of Figs. 1 and 2 of section 2, are roughly 
speaking, a kind of a duplication of Dynkin diagrams of finite dimensional ADE Lie algebras; 
but with some specific properties to be exhibited at proper places. Like for the Dynkin diagram 
representing the Cartan matrix 

(
KG

)
ij

= αν
i .αj of the Lie algebra of the gauge symmetry, the 

primitive BPS quiver QG
0 is characterised by a “Cartan like” intersection matrix

(
AG

0

)
ij

= γ i ◦ γ j

but based on Dirac pairing of the electric–magnetic (EM) charges of the BPS states [27–32].
Then, we build the pair of folding operators fja and f̃aj (rectangular matrices) mapping ADE 

Dynkin diagrams to BCFG ones with the property f.f̃ = Iid . After that we extend this folding 
method of Dynkin graphs to BPS quiver theory by constructing the generalised pair of folding 
operators FJ

A and F̃A
J satisfying F.F̃ = Iid and allowing to generate BPS chambers QBCFG out 

of the QADE ones. This generalised folding method constitutes a key ingredient in our way of 
doing. As an application, we derive the BPS states of the strong chambers of the 4d N = 2 super-

symmetric pure G2 and F4 models as well as the group structures of the mutation sets 
{
M

G2
n

}
and 

{
M

F4
n

}
. Recall that the Dynkin diagram of finite G2 can be obtained by folding the three 

external nodes of the diagram of SO8 reducing the rank of the Lie algebra from 4 to 2. Similarly, 
the Dynkin diagram of F4 is obtained by folding nodes in the diagram of exceptional E6.

The organisation of this paper is as follows: In section 2, we build the list of primitive 
BPS quivers QG

0 of 4d N = 2 supersymmetric pure gauge theories and give their outer-
automorphisms. In section 3, we study BPS states in N = 2 pure G2 model; and build explicitly 
the set of BPS/anti-BPS states of the strong chamber QG2

stg . In section 4, we do the same thing as 
in section 3; but for the exceptional F4 gauge invariance. Section 5 is devoted to conclusion and 
comments. To complete this study, we give two Appendices A and B: the first appendix deals 
with the structure of the superpotentials associated with primitive quivers QSO8, QG2 , QE6 , QF4 ;
0 0 0 0
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they have been added in order to make contact with general results in BPS quiver theory liter-
ature. The second appendix concerns the matrix realisation of the fundamental reflections ri of 
the Coxeter groups generating the quiver mutations in the BPS strong chambers.

2. BPS quivers of N = 2 QFT4

In this section, we build the primitive BPS quivers QG
0 of N = 2 supersymmetric pure gauge 

theories with generic gauge symmetry G. Since these QG
0 ’s are intimately related with Dynkin 

diagrams of the Lie algebra of the gauge symmetry; we therefore split the list of BPS graphs into 
two subsets: (a) primitive quivers QADE

0 of type ADE; and (b) primitive quivers QBCFG
0 of type 

BCFG. These primitive quivers together with an ordering of argZi and mutations allow to build 
BPS states of supersymmetric pure gauge theories; the examples of G2 and F4 models will be 
explicitly studied in sections 3 and 4.

Before going into details, recall that BPS quivers in N = 2 supersymmetric QFT4 with gauge 
invariance G encode data on BPS states of the gauge theory. Depending on gauge coupling 
regime, we distinguish two particular chambers: the strong chamber QG

stg and the weak chamber 

Q
G
weak . The content of these chambers can be generated by: (i) starting from QG

0 , with some 
ordering of the arguments argZi of the central charges Z

(
γ i

)
of the elementary BPS particles,

argZi1 > argZi2 > ... > argZi2r
(2.1)

and (ii) performing appropriate and successive quiver mutations on primitive quiver. The length 
l of the successive mutations Mn may be closed, forming a finite cycle, or open and then infinite. 
It happens that the length l of the largest mutation is finite for the strong BPS chambers QG

stg of 

pure gauge theories; and it is infinite for weak chambers QG
weak which include the gauge particles 

as particular limits. Notice that a generic quiver mutation Mn has the structure

Mn = rinrin−1 ...ri2ri1 (2.2)

where the rk’s are non-commuting reflections (r2
k = Iid ) generating a Coxeter group [23]. For 

infinite chambers QG
inf, there are infinitely many mutations; that is n a positive integer taking all 

possible values. But for finite BPS chambers QG
f inite , it happens that the successive reflections 

form a cycle with some length n0; the largest mutation Mn0 = rin0
rin0−1 ...ri2ri1 closes to the 

identity operator M0 = Iid ; in other words

Mn0 = Iid , Mn0 = Mkn0 = M0 (2.3)

This cyclic property of mutations allows to determine exactly the BPS spectrum of the strong 
chambers; for explicit examples and calculations, see the analysis given in section 3 for the 
supersymmetric pure gauge models SO(8) and G2; and in section 4 for the E6 and F4 models. 
For the general algorithm as well as illustrating examples including the method using quiver 
representations and induced superpotentials; see refs. [1,2] and appendix of [15]; see also refs. [5,
6] for explicit details using intersection matrix AG

0 .
After this brief introduction of primitive quivers, mutations and BPS chambers, we turn now 

to give some details on the structure of the primitive quivers QG
0 and useful aspects of their 

properties.
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2.1. ADE type primitive quivers

Given a N = 2 supersymmetric pure gauge theory with a rank r gauge symmetry G of ADE 
type, the corresponding primitive quiver QG

0 is represented by one of the graphs shown on the 
Fig. 1. A generic graph consists of 2r nodes and 3r − 2 links as briefly described below:

i) nodes Ni and links in QADE
0

The 2r nodes of the primitive quiver refer to the elementary BPS states represented by 2r charge 
vectors γ 1, ..., γ 2r ; half of these electric–magnetic (EM) charges, say 

{
γ i

}
1≤i≤r

, are given by 
b1, ..., br ; and the other remaining half charge vectors 

{
γ i+r

}
1≤i≤r

are given by c1, ..., cr as in 

Fig. 1. For the primitive quiver QADE
0 , the bi ’s stand for the EM charge of the r elementary 

monopoles {M1, ...,Mr } and the ci ’s for the EM of the elementary dyons {D1, ...,Dr } of the 
underlying supersymmetric gauge theory.

b�
i =

(
qI
i

pIi

)
, c�

i =
(

qI
i+r

pIi+r

)
(2.4)

with I = 1, ..., r and � = 1, ..., 2r ; each one of above EM charges γ i is then an SP(2r,R)

vector with components as 
(
γ �
i

)
. In the case of N = 2 supersymmetric pure gauge theory, these 

EM charge vectors read in terms of the simple roots �a1, ..., �ar of the Lie algebra of the gauge 
symmetry G as follows

bi =
( �0

�ai

)
, ci =

( �ai

−�ai

)
(2.5)

they are 2r-dimensional vectors with 2r×2r intersection matrix 
(
AG

0

)
ij

= γ i ◦γ j given by (1.1)

and reading explicitly by using the electric qI
i and the magnetic pIj charges like qI

i pIj − qI
j pIi . 

In terms of the EM charges of the elementary monopoles bi and dyons ci , this matrix can be also 
presented in four r × r blocks as follows

AG
0 =

(
bi ◦ bj bi ◦ cj

ci ◦ bj ci ◦ cj

)
(2.6)

For later use, notice the three following features useful in performing explicit calculations.
First, for ADE Lie algebras, the intersection matrix of the simple roots �ai is a symmetric 

matrix given by �ai.�aj = Kij , it is the Cartan matrix of the Lie algebra underlying the gauge 
symmetry and is graphically represented by a Dynkin diagram (for short DDADE).

Second the Dirac pairings of bi ◦ bj vanishes identically and bi ◦ ci = −ci ◦ bi reducing the 
content of the matrix (2.6). Third the simplest AG

0 matrix corresponding to rank r = 1 is just the 
ASU2

0 given by

ASU2
0 =

(
0 −2
2 0

)
(2.7)

This is the elementary matrix in BPS quiver theory; it teaches us that the (b, c) pair is the building 
block in dealing with BPS states. The corresponding elementary quiver QSU2

0 has two nodes that 
might be imagined as following from a “kind” of antisymmetric replication of the usual node of 
the Dynkin diagram of the SU(2) Lie algebra.

ASU2 = KSU2ε = 2ε (2.8)
0
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Fig. 1. BPS primitive quivers of type ADE in N = 2 pure gauge theories.
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Fig. 1. (continued)

where

ε =
(

0 −1
1 0

)
(2.9)

Observe that the BPS quiver QSU2
0 has two nodes and formally resembles to DDC2 , the usual 

Dynkin diagram of the C2 Lie algebra; the two objects are of course different; they are con-
structed by using two different pairing laws.

ii) More on links between Ni − Nj nodes in QADE
0

The 3r − 2 links joining the nodes Ni of QADE
0 given by Fig. 1 are of two types: r oriented 

vertical links and 2 (r − 1) oriented horizontal ones. The r vertical links l1, ..., lr join the two 
nodes of each of the r pairs (b1, c1) , ..., (br , cr ); they are oriented from the node ci to the node 
bi and they carry a charge given by the absolute value of the Dirac pairing bi ◦ ci which is equal 
to 2 as in (2.7). These links define r elementary sub-quivers as follows(

Q
SU2
0

)
1
,
(
Q

SU2
0

)
2
, ...,

(
Q

SU2
0

)
r

(2.10)

The 2 (r − 1) horizontal links lij join two nodes of different pairs (bi , ci ) and 
(
bj , cj

)
; since for 

ADE Lie algebras the pairings bi ◦ bj = ci ◦ cj = 0, it follows that the intersection matrix AG
0

describing the primitive quiver QADE
0 which is given by (2.6) reduces to the bi ◦ cj off diagonal 

blocks. By using (2.5), we have ci ◦ bj ∼ �ai.�aj ; and then the above intersection matrix becomes

AG
0 =

(
0 −KG

KG 0

)
(2.11)

where KG is the r × r Cartan matrix of the ADE type gauge invariance G of the supersym-
metric pure gauge theory. Eq. (2.11) captures the property behind the appearance of QADE

0 as a 
duplication of ADE Dynkin diagram encoding KG ,

AG
0 = KG

(
0 −1
1 0

)
(2.12)

The ADE type graphs QADE
0 of the primitive quivers are as listed in Fig. 1. From the graphic 

representation of QADE , one learns that some BPS quivers of ADE type have outer automor-
0
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phisms leaving invariant their topology. When they exist, these outer automorphisms are given 
by discrete symmetries as follows

primitive quiver gauge symmetry outer-automorphism

Q
A2r

0 SU2r+1 –

Q
A2r−1
0 SU2r Z2

Q
Dr

0 SO2r Z2

Q
D4
0 SO8 Z2,Z3

Q
E6
0 E6 Z2

Q
E7
0 E7 –

Q
E8
0 E8 –

(2.13)

they are similar to the ones we have in Dynkin diagrams of ADE Lie algebras.
Before proceeding, notice that, because of the link between the BPS primitive QG

0 ’s and 
Dynkin diagrams DDG of finite Lie algebras of the gauge symmetry G, the correspondence

QADE
0 ←→ DDADE (2.14)

given by eq. (2.13) may be naturally extended to the case affine Kac–Moody type Dynkin dia-

grams DDG̃ [24–26] like

QG̃
0 ←→ DDG̃ (2.15)

For the case of simply laced affine Lie algebras G̃ = ÃD̃Ẽ; the corresponding affine type BPS 

quivers QG̃
0 can be built in a similar manner as the ordinary QADE

0 BPS ones. In addition to the r 

pairs (bi , ci ), the affine quiver QG̃
0 has an addition pair of elementary BPS states with EM given 

by (b0, c0). As an illustrating example, let us describe briefly the twisted SU(2)k Kac–Moody 
algebra with Kac–Moody level k. This is an infinite dimensional Lie algebra; its root system �̃
is generated by two simple roots �a0 and �a1 with intersection matrix K̃SU2

μν = �aμ.�aν given by

K̃SU2 =
(

2 −2
−2 2

)
, det K̃SU2 = 0 (2.16)

By using the correspondence (2.15), we end with a primitive quiver Q̃SU2
0 with four nodes de-

scribing four elementary BPS particles with electric–magnetic charges b0, b1, c0, c1 and Dirac 
pairings given by the following generalised intersection matrix

Ã
SU2
0 = K̃SU2

(
0 −1
1 0

)
(2.17)

As far as affine extension is concerned, recall that N = 2 quiver gauge theories using generalised 
Cartan matrices K̃ and affine Kac–Moody diagrams DDG̃ are also present in the engineering 
of N = 2 supersymmetric gauge theories; the K̃’s play an important role in: (i) the study 4D 
N = 2 superconformal field theories in presence of bi-fundamental hypermatter; and (ii) the 
classification of these scale invariant theories [16,18].

With in mind the above general picture on simply laced ADE type N = 2 models, we are now 
in position to address the extension to the case of non-simply laced type prototypes that we are 
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interested in this study. In this generalisation, we will focus on the ordinary BCFG quivers; the 
description concerning generalised Dynkin diagrams of affine Kac–Moody type is straightfor-
ward; it is omitted.

2.2. BCFG type primitive quivers

In the N = 2 supersymmetric pure gauge theory with rank r gauge symmetry G of finite 
dimensional BCFG Lie algebra type, the primitive quivers QG

0 are as depicted by the Fig. 2. 
These graphs consist of 2r nodes; but a different number of links compared with QADE

0 . In these 
quivers, one has, in addition to vertical and horizontal links, a diagonal link because for gauge 
symmetries with non-simply laced Lie algebras, the Dirac pairings ci ◦ cj are no longer zero. In 
this case, the intersection matrix AG

0 of the BPS primitive quiver QBCFG
0 has the form

AG
0 =

(
0r×r −KT

K KT − K

)
(2.18)

where K is the Cartan matrix of the underlying gauge invariance. The matrix K

KG
ij = 2�αi.�αj

�αi.�αi

(2.19)

is non-symmetric because simple roots for non-simply laced Lie algebras have two different 
lengths. By substituting KG

ij in the AG
0 , we have for the example of the G = G2 gauge symmetry 

the following intersection matrix

AG2
0 =

⎛
⎜⎜⎝

0 0 −2 3
0 0 1 −2
2 −1 0 −2

−3 2 2 0

⎞
⎟⎟⎠ (2.20)

Notice that for N = 2 supersymmetric pure gauge theory with BCFG gauge invariance, the EM 
charge vectors βi and δi of the r elementary monopoles {M1, ...,Mr} and the elementary dyons 
{D1, ...,Dr } read in terms of the simple roots �α1, ..., �αr of the underlying supersymmetric gauge 
theory as follows

β i =
( �0

2
�αi .�αi

�αi

)
, δi =

( �αi

− 2
�αi .�αi

�αi

)
(2.21)

Notice also that in supersymmetric BCFG gauge models the ratio 2/�αi.�αi is not usually equal 
to one as in case of ADE. The list of the primitive quivers is given by the graphs of Fig. 2; the 
relationships between QADE

0 and QBCFG
0 are as follows

primitive QADE
0 folding primitive QBCFG

0

Q
SU2r

0 Z2 Q
SPr

0

Q
SO2r

0 Z2 Q
SO2r−1
0

Q
SO8
0 Z3 Q

G2
0

Q
E6
0 Z2 Q

F4
0

(2.22)
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Fig. 2. BPS quivers of BCFG type; these graphs contains an extra diagonal link in addition to the horizontal and vertical 
links of quivers with ADE type.
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Fig. 3. Folding three nodes in SO(8) Dynkin diagram lead to the G2 diagram.

They have been obtained by using the correspondence (2.14) as well as the following diagram 
showing that it possible to link QBCFG

0 and QADE
0 by appropriate folding operations

DDADE ←→ QADE
0

↓f olding ↓f olding

DDBCFG ←→ QBCFG
0

(2.23)

3. N = 2 pure G2 theory

In this section, we construct the BPS states of the strong chamber of N = 2 supersymmetric 
pure G2 theory. First we build the folding operators f and f̃ mapping the Dynkin diagram of SO8
down to the Dynkin diagram of G2; see Fig. 3. Then, we extend this folding based construction 
to linking the primitive quivers QSO8

0 and QG2
0 ; this link is obtained by working out the general-

isation of f and f̃ denoted below like F and F̃ . Next, we derive the BPS spectrum of the strong 
chamber of QG2

stg of the supersymmetric theory with G2 invariance.

3.1. Dynkin diagram of G2 as folded DDSO8

To begin recall that the Lie algebra of the 14 dimensional G2 gauge symmetry has 12 roots; 
the six positive roots are generated by the two simple �α1 and �α2 having different lengths taken 
here as �α1.�α1 = 2

3 , �α2.�α2 = 2 and intersection like �α1.�α2 = −1. The root system of G2 is as 
follows

±�α1 , ± (�α1 + �α2) , ± (3�α1 + �α2)

±�α2 , ± (2�α1 + �α2) , ± (3�α1 + 2�α2)
(3.1)

For later use, we revisit some useful features concerning this system; in particular the issue 
regarding their link with the roots of SO(8) Lie algebra. We start by the Cartan matrix of G2

given by KG2
ij = �αν

i .�αj ; the two �αν
i = 2

�αi .�αi
�αi are the coroots associated with the two �αi’s; the 

matrix KG2
ij reads in terms of the usual Euclidean scalar product �αi.�αj as follows

K
G2
ij = 2�αi.�αj

�αi.�αi

(3.2)

this is a non-symmetric integral 2 × 2 matrix which reads explicitly like

KG2 =
(

2 −1
−3 2

)
(3.3)

This matrix is represented by the two nodes Dynkin diagram DDG2 of Fig. 3, which in turns may 
be viewed as given by the folding of three nodes of the Dynkin diagram DDSO8 of the SO(8)

Lie algebra
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DDG2 = DDSO8

Z3
(3.4)

where the discrete Z3 is the outer-automorphism rotating the three external nodes of the DDSO8

diagram; here Z3 is an abelian subgroup of the permutation group S3. Eq. (3.4) implies that the 
Cartan matrix KSO8

JL = �aJ .�aL of the of SO(8) Lie algebra namely

KSO8 =

⎛
⎜⎜⎝

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

⎞
⎟⎟⎠ (3.5)

and the KG2 one given by eq. (3.3) are related to each other by a pair of folding operators f
and f̃ with respective entries as 

(
f J

i

)
and (f̃ i

J ). This means that the two simple roots of G2
may be related in same way to the four real vectors simple roots �aJ of the Lie algebra of SO(8). 
However, due to the difference between the dimensions of KSO8 and KG2 , the bridge between the 
KSO8 and KG2 is not unique; descending from KSO8 down to KG2 involves projections showing 
that, generally speaking, there are infinitely many ways to go from KSO8 down to KG2 . Despite 
this arbitrariness, one may nevertheless find a way to link the two matrices by imposing extra 
conditions to fix this arbitrariness. A manner to go from KSO8 to KG2 is by using the above 
mentioned two folding operators (rectangular matrices) f = (

f J
i

)
and a companion f̃ = (f̃ i

J )

defined as

f̃ = fT
(

ffT
)−1

, ff̃ = I2×2 (3.6)

The role of each one of the f and f̃ folding operators is as described in what follows:

a) The first folding operator f is a rectangular 2 × 4 matrix used to convert 4 × 4 matrix KSO8

into the rectangular 2 × 4 matrix f.KSO8 . It converts as well the G2 Cartan matrix like KG2f. 
Explicitly, the 2 × 4 matrix f is needed to relate the two Cartan matrices and simples roots 
as follows

KG2 .f = f.KSO8 , �αi = fJi �aJ (3.7)

By thinking of the entries of the folding operator f as

f =
(

x1 x2 x3 x4
y1 y2 y3 y4

)
(3.8)

with xJ and yJ numbers, eq. (3.7) leads to the following constraint relations

2x1 − y1 = 2x1 − x2

2x2 − y2 = 2x2 − x1 − x3 − x4

2x3 − y3 = 2x3 − x2

2x4 − y4 = 2x4 − x2

(3.9)

and

2y1 − 3x1 = 2y1 − y2

2y2 − 3x2 = 2y2 − y1 − y3 − y4

2y3 − 3x3 = 2y3 − y2

2y − 3x = 2y − y

(3.10)
4 4 4 2
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These constraint equations are invariant under the S3 discrete permutation group fixing the 
number x2 and permuting (x1, x3, x4) amongst themselves. The same symmetry transforma-
tions is valid for y2, which is fixed, and (y1, y3, y4) permuted among themselves. Using this 
symmetry, we can set

a = x1 = x3 = x4 , ξ = x2

b = y1 = y3 = y4 , ξ ′ = y2
(3.11)

which, up on substituting back into (3.9)–(3.10), lead to b = ξ and ξ ′ = 3a; and then a 
folding operator f as follows

f =
(

a b a a

b 3a b b

)
(3.12)

It depends on two free parameters a and b that remain to be determined; one of them is fixed 
by the �αi = fJi �aJ and the normalisation of the lengths of two simple roots of G2.

b) The second folding operator f̃ is also a rectangular matrix, but of type 4 × 2; it behaves like 
fT namely

fT =

⎛
⎜⎜⎝

a b

b 3a

a b

a b

⎞
⎟⎟⎠ (3.13)

it is needed to extract the KG2 Cartan matrix from eq. (3.7). By multiplying, from the right, 
both sides of (3.7) by f̃, we end with the following 2 × 2 matrix equation

KG2 .ff̃ = f.KSO8 .f̃ (3.14)

To get KG2 from above constraint relation with KSO8 , we demand that the condition ff̃ =
I2×2 leading to the folding relation

KG2 = f.KSO8 .f̃ , det ff̃ = 1 (3.15)

Notice that the condition ff̃ = I2×2 has infinitely many solutions; a particular solution is given 
by

f̃ = fT
(

ffT
)−1

, det
(

ffT
)

�= 0 (3.16)

Explicitly, we have

f̃ = 1

3a2 − b2

⎛
⎜⎜⎜⎝

a − b
3

−b a

a − b
3

a − b
3

⎞
⎟⎟⎟⎠ (3.17)

By substituting in �αi = fJi �aJ and using the properties of simple roots both for G2 and SO8, in 
particular the ratio

�α1.�α1 = 1
(3.18)
�α2.�α2 3
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we end with the condition ab = 0. Solving this constraint by taking a = 0, we then have

f =
(

0 b 0 0
b 0 b b

)
, f̃ =

⎛
⎜⎜⎜⎝

0 1
3b

1
b

0

0 1
3b

0 1
3b

⎞
⎟⎟⎟⎠ (3.19)

where b appears as a scaling parameter like f = bf0 and f̃ = 1
b

f̃0 with

f0 =
(

0 1 0 0
1 0 1 1

)
, f̃0 =

⎛
⎜⎜⎜⎝

0 1
3

1 0

0 1
3

0 1
3

⎞
⎟⎟⎟⎠ (3.20)

Below, we use the folding matrix operators f0 and f̃0; and for convenience, we will drop out the 
extra index; i.e.: f0 ≡ f and f̃0 ≡ f̃.

3.2. BPS states of QG2
stg

To obtain the BPS states of the strong chamber QG2
stg of the N = 2 supersymmetric pure G2

theory, we use the two following things:
(i) the extension of the idea of folding operators f and f̃, relating the Dynkin diagrams DDG2

and DDSO8 , to the two primitive quivers QG2
0 and QSO8

0 of the supersymmetric pure gauge 

models with G2 and SO(8) gauge symmetries. Recall that QG2
0 and QSO8

0 are roughly speaking 
duplications of DDG2 and DDSO8 .

(ii) the knowledge of the BPS states of the strong chamber QSO8
stg of the supersymmetric pure 

SO8 theory. There, the BPS states are obtained by mutating the primitive quiver QSO8
0 ; that is by 

performing transformations like

Mn : QSO8
0 → QSO8

n (3.21)

where the Mn mutation operators are as in (2.2).
In this subsection, we first describe briefly how the machinery works for the derivation of the 

strong chamber QSO8
stg ; and turn after to build the QG2

stg by using the extended folding method.

3.2.1. Strong chamber QSO8
stg

To begin, recall that the set of mutations {Mn} ≡ G
SO8
stg of the strong chamber QSO8

stg is given 

by the Coxeter group GSO8
stg generated by 8 fundamental reflections r1, ..., r8. These reflections 

obey the property(
rirj

)mij = I8×8 (3.22)

where the positive mij integers are given by the Coxeter matrix [6,23]. Recall also that in order 
to get the BPS/anti-BPS states of QSO8

stg , it is enough to use a subgroup HSO8
stg of the Coxeter 

G
SO8
stg ; this subgroup is generated by two particular non-commuting operators L1 and L2 given 

by the composition of four ri reflections (r2
i = Iid ) like

L1 = r4r3r2r1 , L2 = r8r7r6r5 (3.23)
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These composed reflections are also reflections (L2
1 = L2

2 = Iid ); they correspond, on the BPS 
states building side, to taking the arguments argZ

(
γ i

)
of the central charges Z

(
γ i

)
of the ele-

mentary monopoles Mi and dyons Di as follows

argZ (b1) = argZ (b2) = argZ (b3) = argZ (b3)

argZ (c1) = argZ (c2) = argZ (c3) = argZ (c3)
(3.24)

together with the ordering

argZ (ci ) > argZ (bi ) (3.25)

The matrix realisations of the generators L1 and L2 on the space of EM charges (b1, .., b4,

c1, .., c4) have a remarkable form as shown below

L1 =
(

I4×4 R

04×4 −I4×4

)
, L2 =

( −I4×4 04×4
R I4×4

)
(3.26)

where the 4 × 4 matrix R is related to the Cartan matrix like R = 2I4×4 − KSO8 ; explicitly the 
R-matrix is as follows

R =

⎛
⎜⎜⎝

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

⎞
⎟⎟⎠ (3.27)

The 8 × 8 matrix generators (3.26) satisfy the properties

L2
1 = L2

2 = I8×8 , (L2L1)
6 = I8×8 (3.28)

teaching us a set of interesting information on the structure of the subgroup HSO8
stg ; in particular 

the three following things:

• First, the subgroup HSO8
stg is a finite discrete subgroup with matrix elements Mn given by 

particular monomials of the generators like

M2k = (L2L1)
k , M2k+1 = L1M2k (3.29)

with integer k ≥ 0 and M0 = I8×8.
• Second, because of the property M12 = I8×8 and the remarkable relation M6 = −I8×8, the 

cardinality of the subgroup HSO8
stg is equal to 12; and is given by

H
SO8
stg = {±Iid ,±M1,±M2,±M3,±M4,±M5} (3.30)

H
SO8
stg is isomorphic to the dihedral group Dih12 [6,15]. Knowing the explicit expressions of 

L1 and L2 which are as in (3.26), we can write down the explicit expressions of all elements 
in (3.30).

• Third, the BPS/anti-BPS states of the strong chamber QSO8
stg can be read from the rows of the 

Mn matrices of HSO8
stg . The identity M0 = I8×8 gives precisely the elementary monopoles 

and elementary dyons.
By performing the first mutation M1 = L1: Q

SO8
0 → Q

SO8
1 , the resulting quiver QSO8

1 has 

eight new BPS states γ (1)
i with EM charges directly read from the 8 rows of the matrix 

representation of L1 namely
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M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.31)

The first row of this matrix namely (1,0,0,0,0,1,0,0) means that a BPS state with EM 
charge γ (1)

1 = b1 + c2 has been generated by the L1 mutation of QSO8
0 ; the second row 

(0,1,0,0,1,0,1,1) gives another new BPS state with EM charge γ (1)
2 = b2 + c1 + c3 + c4; 

and so on. The BPS/anti-BPS states generated by the first mutation are as follows

b1 + c2 −c1

b2 + c1 + c3 + c4 −c2

b3 + c2 −c3

b4 + c2 −c4

(3.32)

By performing the eleven Mn mutations in (3.30) which corresponds just to building the 
elements of the subgroup HSO8

stg , we obtain the list of the 48 BPS states of QSO8
stg ; it reads as 

follows

±b1 ± (b1 + c2) ± (b1 + b4 + c2)

±b2 ± (b3 + c2) ± (b1 + b3 + c2)

±b3 ± (b4 + c2) ± (b2 + c3 + c4)

±b4 ± (b2 + c1) ± (b3 + b4 + c2)

±c1 ± (b2 + c3) ± (b1 + b3 + b4 + c2)

±c2 ± (b2 + c4) ± (b1 + b3 + b4 + 2c2)

±c3 ± (b2 + c1 + c4) ± (2b2 + c1 + c3 + c4)

±c4 ± (b2 + c1 + c3) ± (b2 + c1 + c3 + c4)

(3.33)

With this construction of the BPS/anti-BPS states of QSO8
stg in mind, we turn now to build the 

BPS spectrum of the strong chamber QG2
stg of the supersymmetric gauge theory with gauge sym-

metry G2.

3.2.2. Strong chamber QG2
stg

By using the method of quiver folding induced from folding of the DDSO8 down to DDG2 as 
in eq. (2.23), the primitive quiver QSO8

0 can be folded into the primitive quiver QG2
0 . The same 

feature holds for the mutation subgroup group HSO8
stg , used above for constructing QSO8

stg , which 

gets then mapped to a group HG2
stg . This set HG2

stg should be also thought of as a subgroup of the 

Coxeter group GG2
stg in the same manner as HSO8

stg is a subgroup of GSO8
stg ; that is:

H
SO8
stg ↪→ G

SO8
stg

↓ ↓
H

G2 ↪→ G
G2

(3.34)
stg stg
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Having QG2
0 and HG2

stg , we can therefore build the strong chamber QG2
stg just by repeating the 

same steps done for constructing the BPS strong chamber QSO8
stg . To get the structure of the set 

H
G2
stg , notice that like the subgroup HSO8

stg , it is as well generated by two operators L1 and L2

related to above L1 and L2 by two folding matrix operators F and F̃ as follows

Li = F .Li .F̃ (3.35)

It happens that the F and F̃ have much to do with the f and ̃f used in relating the Dynkin diagrams 
of G2 and SO(8); the main difference is that these F and F̃ have the double dimensions compared 
to f and f̃ in agreement with eqs. (2.11)–(2.18); the folding operator F is given by a 4 × 8 matrix 
and its companion F̃ is a 8 ×4 matrix; in same way as F T . Recall that f is a 2 ×4 matrix operator 
acting on the simple roots of SO(8); and f̃ is a 4 × 2 matrix. The explicit relationship between 

the pair 
(
F , F̃

)
and the pair 

(
f, f̃

)
reads like

F =
(

f 0
0 f

)
, F̃ =

(
f̃ 0
0 f̃

)
(3.36)

These folding operators obey the property FF̃ = I4×4 which is induced from ff̃ = I2×2 of 
eq. (3.6). Explicitly, the two generators L1 and L2 of the group HG2

stg are given by

L1 =
(

I2×2 R
02×2 −I2×2

)
, L2 =

( −I2×2 02×2
R I2×2

)
(3.37)

with R a 2 × 2 matrix induced by the folding mapping. This matrix R is related to the previous 
4 × 4 matrix R, of the SO(8) gauge theory as in eq. (3.27), by the following transformation as

R = f.R.f̃ (3.38)

The explicit expression of the R matrix is given by

R =
(

0 1
3 0

)
, R = 2I2×2 − KG2 (3.39)

The relationship between R and R (3.38) results from KG2 = f.KSO8 .f̃ by proceeding as follows: 
First splitting the Cartan matrices KSO8 and KG2 by exhibiting the identity matrices I2×2 and 
I4×4 like

KG2 = 2I2×2 −R , KSO8 = 2I4×4 − R (3.40)

Then calculating the folding of the SO(8) Cartan matrix f.KSO8 .f̃ by substituting KSO8 in terms 
of the R-matrix; this gives

KG2 = 2f f̃ − f.R.f̃ (3.41)

Moreover, by using the property ff̃ = I2×2, the above relation reduces to KG2 = 2I2×2 − f.R.f̃. 
By equating with KG2 = 2I2×2 −R, we obtain f.R.f̃ =R.

Having the explicit expressions of the L1 and L2 generators of HG2
stg , we can now build the 

mutation elements Nm of this set by proceeding in similar manner as for HSO8
stg . We find the 

following properties:
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• composite L1 and L2 are reflections
The non-commuting generators L1 and L2 are also reflections; they satisfy

L2
1 = I4×4 , L2

2 = I4×4 (3.42)

showing in turns that the Nm elements HG2
stg have the form

N2k = (L2L1)
k , N2k+1 = L1N2k (3.43)

• the subgroup H
G2
stg

The generators L1 and L2 satisfy as well the properties

N12 = (L2L1)
6 = +I4×4

N6 = (L2L1)
3 = −I4×4

(3.44)

indicating that HG2
stg is a finite discrete group with cardinality 12 as follows

H
G2
stg = {±Iid ,±N1,±N2,±N3,±N4,±N5} (3.45)

it is isomorphic to a 4 × 4 matrix representation of Dih12.
• the strong chamber QG2

stg

The BPS/anti-BPS states of the strong chamber QG2
stg can be read from the rows of the Nn ma-

trices of HG2
stg . The identity N0 = I8×8 gives precisely the EM charges β1, β2 of two elementary 

monopoles and the EM charges δ1, δ2 of the two elementary dyons.
By performing the first mutation N1 = L1 on the primitive quiver QG2

0 of the G2 theory, that 

is N1: Q
G2
0 → Q

G2
1 , the resulting quiver QG2

1 has four new BPS states with EM charges γ (1)
i

directly read from the four rows of the matrix representation of N1 namely

N1 =

⎛
⎜⎜⎝

1 0 0 1
0 1 3 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ (3.46)

The first row of the above mutation matrix namely (1,0,0,1) means that a BPS state with EM 
charge γ (1)

1 = β1 + δ2 has been generated by the first N1 mutation of QG2
0 ; the second row 

(0,1,3,0) gives another new BPS state with EM charge γ (1)
2 = β2 + 3δ1; the third and fourth 

give the EM charges of the anti-dyons. The BPS/anti-BPS states generated by the first mutation 
on QG2

0 are as follows

β1 + δ2 −δ1

β2 + 3δ1 −δ2
(3.47)

By performing the eleven Nn mutations of HG2
stg of (3.45), we obtain the list of the 24 BPS/anti-

BPS states of QG2
stg ; it reads as follows

±β1 ± (β1 + δ2) ± (3β1 + 2δ2)

±β2 ± (β2 + δ1) ± (2β2 + 3δ1)

±δ1 ± (2β1 + δ2) ± (3β1 + δ2)

±δ2 ± (β2 + 2δ1) ± (β2 + 3δ1)

(3.48)
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4. N = 2 pure F4 theory

In this section, we construct the BPS states of the strong chamber QF4
stg of the N = 2 pure F4

theory by proceeding in same manner as for the G2 theory of previous section. First, we build the 
folding (f, ̃f) operators mapping DDE6 down to the Dynkin diagram DDF4 . Then, we extend this 
folding approach to linking the two primitive quivers QE6

0 and QF4
0 by working out the explicit 

expression of the extended (F , F̃) folding operators. After that we build the BPS states of the 
strong chamber of QF4

stg of the supersymmetric pure F4 gauge model.

4.1. DDF4 as folded DDE6

We begin by recalling that the 52 dimensional Lie algebra of the F4 gauge symmetry has 
48 roots; the 24 positive roots are generated by four simple �α1, �α2, �α3, �α4 with two possible 
lengths generally taken like ‖�α1‖2 = ‖�α2‖2 = 2 and ‖�α3‖2 = ‖�α4‖2 = 1 as well as �αi.�αi+1 = −1. 
A weaker normalisation of these simple roots corresponds to thinking of their lengths in terms 
of ratios like

‖�α1‖2

‖�α2‖2
= 1 ,

‖�α3‖2

‖�α4‖2
= 1 ,

‖�α1‖2

‖�α3‖2
= 2 (4.1)

These four simple roots may be expressed in terms of the six �a1, ..., �a6 simple roots of the E6 Lie 
algebra with one length ‖�aK‖2 = 2 as follows

�αi = f K
i �aK (4.2)

where f K
i is a folding 4 × 6 matrix operator. By solving the normalisation constraints of the four 

simple �αi ’s like

�α1 = 1
q

(�a1 + �a5) , �α3 = 1
q
�a3

�α2 = 1
q

(�a2 + �a4) , �α4 = 1
q
�a6

(4.3)

where q is a non-zero real number, it results ‖�α1‖2 = ‖�α2‖2 = 4
q2 and ‖�α3‖2 = ‖�α4‖2 = 2

q2 ; if 

choosing q = √
2 we rediscover the normalisation ‖�α1‖2 = ‖�α2‖2 = 2 and ‖�α3‖2 = ‖�α4‖2 = 1. 

Therefore, the folding matrix operator f takes the generic form

f = 1

q

⎛
⎜⎜⎝

1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎠ (4.4)

depending on a scaling parameter q . From this matrix operator, we can determine the explicit 
expression of its companion f̃ given by fT

(
ffT

)−1
and reading as follows

f̃ = q

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 2 0
0 1 0 0
1 0 0 0
0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.5)
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Fig. 4. Dynkin diagram of F4 by folding the Z2 symmetric nodes in E6 diagram.

The f and f̃ obey the property ff̃ = I4×4. Following the same approach used in section 3 by 
applying the folding operations to the Cartan matrix KE6 of the exceptional E6 Lie algebra, we 
obtain the Cartan matrix KF4 of the exceptional KF4 Lie algebra

KF4 = f.KE6 .f̃ (4.6)

This relation is somehow an illustration of the folding depicted in Fig. 4 and it can be explicitly 
checked by using (4.4)–(4.5) and

KE6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.7)

and

KF4 =

⎛
⎜⎜⎝

2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

⎞
⎟⎟⎠ (4.8)

4.2. BPS states of QF4
stg

To obtain the BPS states of the strong chamber QF4
stg of the N = 2 supersymmetric pure F4

theory, we proceed as in subsection § 3.2. We use the two following data:

• the folding operators f and f̃, given by eqs. (4.4)–(4.5), relating the Dynkin diagrams of F4

and E6, to link the two primitive quivers QF4
0 and QE6

0 of the supersymmetric pure gauge 
models with F4 and E6 gauge symmetries; and

• the BPS states of the strong chamber QE6
stg of the supersymmetric pure E6 theory. There, the 

BPS states

γ m,n =
∑

mibi + nici (4.9)

of QE6
stg are obtained by mutating the primitive quiver QE6

0 ; that is by performing the trans-

formations Mn : QE6
0 → Q

E6
n .

4.2.1. Strong chamber QE6
stg

The content of the chamber QE6
stg is obtained by mutating the primitive quiver QE6

0 . Generally 

speaking the set of the quiver mutations {Mn} ≡ G
E6
stg of the strong chamber QE6

stg is given by 

the Coxeter group of GE6
stg generated by 12 fundamental reflections r1, ..., r12 obeying
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(
rirj

)mij = I12×12 (4.10)

where the positive mij integers are given by the Coxeter matrix [6]. In practice, the content of 
Q

E6
stg can be derived by restricting to a subgroup HE6

stg ≡ {Mn} of the Coxeter GE6
stg . This subgroup 

H
E6
stg is generated by two particular composite reflection operators L1 and L2 given by

L1 = r6r5r4r3r2r1 , L2 = r12r11r10r9r8r7 (4.11)

The matrix realisation of these two non-commuting generators is as follows

L1 =
(

I6×6 R

06×6 −I6×6

)
, L2 =

( −I6×6 06×6
R I6×6

)
(4.12)

with 6 × 6 matrix R given in term of the Cartan matrix of the exceptional Lie algebra by 2I6×6 −
KE6 and reads explicitly like

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.13)

The composite reflections L1 and L2 of eq. (4.12) obey obviously the property L2
1 = L2

2 = I6×6; 
they generate the subgroup HE6

stg of the Coxeter group GE6
stg . As for the group HSO8

stg of the SO8

theory, the elements of the set HE6
stg have quite similar structure as (3.29); HE6

stg has 24 mutations 
matrices Mn of the form

M2k = (L2L1)
k , M2k+1 = L1M2k (4.14)

The finite value of the cardinality of HE6
stg follows from the property

M24 = (L2L1)
12 = I12×12 (4.15)

leading to

H
E6
stg = {M2k,M2k+1}0≤k≤11 (4.16)

By using (4.12), one can write down the explicit expressions of the M2k and M2k+1 matrix 
mutations. These explicit expressions allow to write down the 2 (78 − 6) = 144 BPS/anti-BPS 
states of the strong chamber QE6

stg of the N = 2 supersymmetric pure E6 theory; the full list can 
be found in [6].

4.2.2. QF4
stg from the folding of QE6

stg

By using our quiver folding method, the primitive QE6
0 gets mapped to the primitive QF4

0 ; and 

the mutation set HE6
stg is mapped to HF4

stg . The last group is generated by L1 and L2 related to 
above L1 and L2 as

Li =F .Li.F̃ (4.17)

with

F =
(

f 0
0 f

)
, F̃ =

(
f̃ 0
0 f̃

)
(4.18)
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The non-commuting matrix representations L1 and L2 are given by

L1 =
(

I4×4 R
06×6 −I4×4

)
, L2 =

( −I4×4 04×4
R I4×4

)
(4.19)

with 4 × 4 matrix R = 2I4×4 − KF4 . This matrix reads explicitly as follows

R=

⎛
⎜⎜⎝

0 1 0 0
1 0 2 0
0 1 0 1
0 0 1 0

⎞
⎟⎟⎠ (4.20)

Like for HE6
stg , the generators of HF4

stg obey as well the properties

(L1)
2 = (L2)

2 = I4×4 , (L2L1)
12 = I4×4 (4.21)

teaching us that HF4
stg is also a representation of Dih24. The 24 mutation matrices Nn of this set 

are given by

±N2k = ± (L2L1)
k

±N2k+1 = ±L1N2k

(4.22)

Applying quiver mutations, we can work out explicitly the full list of BPS states of the QF4
stg

strong chamber of the supersymmetric pure F4 gauge theory. In addition to the four elementary 
monopoles βi and the four elementary dyons δi making the primitive quiver QF4

0 , the mutations

Nn : QF4
0 → QF4

n (4.23)

allow to generate the other BPS/anti-BPS states. For example, the first mutation N1 : QF4
0 → Q

F4
1

generated by the mutation matrix

N1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0
0 1 0 0 1 0 2 0
0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.24)

leads to the following BPS states

−δ1 β1 + δ2

−δ2 β2 + δ1 + 2δ3

−δ3 β3 + δ2 + δ4

−δ4 β4 + δ3

(4.25)

The full list of BPS/anti-BPS states of the QF4
stg chamber is directly read form the matrix repre-

sentation of the Nn elements (4.22) of HF4
stg ; it contains 2 × 24 = 48 states. The BPS states with 

integral positive electric–magnetic charges are as listed here below; anti-BPS sates have opposite 
charges.
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β1 β1 + δ2 2β3 + δ2 + 2δ4

β2 β2 + δ1 + 2δ3 2β2 + 2β4 + δ1 + 4δ3

β3 β3 + δ2 + δ4 β1 + 2β3 + 2δ2 + δ4

β4 β4 + δ3 β2 + δ1 + δ3

δ1 β2 + 2δ3 β2 + 2β4 + δ1 + 2δ3

δ2 β1 + 2β3 + 2δ2 + 2δ4 β1 + 4β3 + 3δ2 + 2δ4

δ3 β2 + δ1 + β4 + 2δ3 2β2 + β4 + δ1 + 3δ3

δ4 β3 + δ2 β1 + β3 + δ2 + δ4

(4.26)

and

β1 + 2β3 + 2δ2 β1 + 2β3 + δ2 + 2δ4 2β3 + δ2

3β2 + 2β4 + 2δ1 + 4δ3 3β2 + 2β4 + δ1 + 4δ3 2β2 + 2β4 + δ1 + 2δ3

β1 + 3β3 + 2δ2 + 2δ4 β1 + 3β3 + 2δ2 + δ4 β1 + 2β3 + δ2 + δ4

β2 + β4 + 2δ3 β2 + β4 + δ1 + δ3 β2 + δ3

2β2 + δ1 + 2δ3 β2 + 2β4 + 2δ3 β2 + δ1

2β1 + 4β3 + 3δ2 + 2δ4 β1 + 4β3 + 2δ2 + 2δ4 β1 + 2β3 + δ2

2β2 + 2β4 + δ1 + 3δ3 2β2 + β4 + δ1 + 2δ3 β2 + β4 + δ3

2β3 + δ2 + δ4 β1 + β3 + δ2 β3 + δ4

(4.27)

5. Conclusion and comments

In this paper, we have approached the construction of BPS states of 4d N = 2 supersym-
metric pure gauge theories with gauge invariance G of non-simply laced BCFG type. To that 
purpose, we have proceeded in two main steps: First, we have remarked that BPS quivers QG

0
of supersymmetric pure gauge theories are two types: (i) QADE

0 quivers of ADE-type; and (ii)
QBCFG

0 quivers of BCFG-type. This classification has been borrowed from the classification of 
the Dynkin diagrams of finite dimensional Lie algebras; this is because BPS quivers in 4d N = 2
supersymmetric pure gauge theories might be imagined as a duplication of Dynkin diagram of 
the Lie algebra of the underlying gauge symmetry. In the case of Dynkin diagrams, the basic 
node is given by Ksu2 ; and in the case of primitive quivers QG

0 the basic object is ASU2
0 as shown 

on following table; generic QG
0 ’s correspond to intersecting of several ASU2

0 ’s.

Gauge symmetry Dynkin diagram Matrix AG
0 of primitive QG

0

SU(2) Ksu2 = 2 ASU2
0 =

(
0 −2
2 0

)

ADE KADE = K AADE
0 = K

(
0 −1
1 0

)

BCFG KBCFG = K̃ ABCFG
0 =

(
0 −K̃T

K̃ K̃T − K̃

)
(5.1)

The structure of the various primitive quivers QG
0 is explicitly exhibited on the lists given by 

Figs. 1 and 2; the quivers type QBCFG
0 have a diagonal link in addition to the vertical and hor-

izontal links appearing in the QADE
0 graphs; the diagonal link is therefore a special property of 

QBCFG.
0
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In the second step, we have focused on N = 2 supersymmetric pure gauge theories with 
exceptional G2 and F4 gauge invariance. First, we have constructed the folding operators f and 
f̃ mapping the simply laced Dynkin diagram of the Lie algebra of SO(8) down to the Dynkin 
diagram of the Lie algebra of the gauge symmetry G2.

f : DDSO8 → DG2 , KG2 = fKSO8 f̃ (5.2)

with ff̃ = Iid . Then, we have extended this construction to the BPS quivers; the desired quiver 
Q

G2
0 is obtained by folding QSO8

0 by help of the folding matrix operators f and f̃. Knowing the 

BPS states of the strong chamber of QSO8
stg , we have derived the BPS states of the QG2

stg chamber. 

We have also shown that these BPS states are completely controlled by a non-abelian group HG2
stg

isomorphic to 4 × 4 matrix representation of the dihedral group Dih12.
After that, we have used the relationship between the Dynkin diagrams E6 and F4 to build the 

BPS states of the strong chambers of the supersymmetric pure F4 gauge model. We have derived 
the explicit BPS/anti-BPS states content of the strong chamber of QF4

stg . Here also this content is 

completely controlled by a non-abelian group HF4
stg isomorphic to 8 × 8 matrix representation of 

the dihedral group Dih24.
In the end of this study, we would like to notice that the lists of BPS quivers given by Figs. 1

and 2 is very remarkable; its similarity with Dynkin diagrams is very suggestive; it would be 
interesting to deepen this aspect by shedding more light on this correspondence and its generali-
sation to affine Kac–Moody type diagrams.

Appendix A. Quiver superpotentials

In this appendix, we give the chiral superfields and the superpotentials associated with the 
primitive BPS quivers QG

0 of the N = 2 pure supersymmetric gauge models considered in this 
study; they concern those gauge group symmetries G given by the four following ones: SO(8), 
G2, E6 and F4.

A.1. N = 2 supersymmetric SO(8) and G2 models

We first give the chiral superpotential WSO8
0 (�) of the N = 2 supersymmetric pure SO(8)

theory; then we turn to the derivation of the WG2
0 (�) for the G2 model obtained by folding 

method.
• SO(8) gauge model

The primitive quiver QSO8
0 of the pure SO(8) theory has six 4-cycles and fourteen superfields �

as depicted on Fig. 5. By using the prescription of ref. [2] for building superpotentials, the WSO8
0

is a quartic chiral function given by

W
SO8
0 = (

A1φ
∗
1A2φ1 − B1φ

∗
1B2φ1

)+(
A2φ

∗
2A3φ2 − B2φ

∗
2B3φ2

)+(
A φ∗A φ − B φ∗B φ

) (A.1)
2 3 4 3 2 3 4 3
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Fig. 5. Chiral superfields and cycles of primitive BPS quiver Q
SO8
0 .

The F-term equations, following from WSO8
0 , are as follows

φ∗
1A2φ1 = 0 , B2φ

∗
2φ2 = 0

A2φ
∗
2φ2 = 0 , B2φ

∗
3φ3 = 0

A2φ
∗
3φ3 = 0 , A1φ

∗
1φ1 + A3φ

∗
2φ2 + A4φ

∗
3φ3 = 0

φ∗
1B2φ1 = 0 , B1φ

∗
1φ1 + B3φ

∗
2φ2 + B4φ

∗
3φ3 = 0

(A.2)

and

(A1A2 − B1B2)φ1 = 0 , (A1A2 − B1B2)φ∗
1 = 0

(A2A3 − B2B3)φ2 = 0 , (A2A3 − B2B3)φ∗
2 = 0

(A2A4 − B2B4)φ3 = 0 , (A2A4 − B2B4)φ∗
3 = 0

(A.3)

The solutions of these relations define the moduli space MSO8
γ of the ground state of the super-

symmetric quantum mechanics. Recall that Mγ is the space of solutions to the F-term equations 
subject to a stability condition modulo the action of the complexified gauge group 

∏
i Gl(ni, C); 

for details see [1,2].
• G2 gauge model

The primitive quiver QG2
0 of the G2 theory is given by Fig. 6; it involves 10 chiral superfields 

and has six cycles: two 4-cycles and four 3-cycles. By using the convention notation of [14], the 
superpotential of the G2 theory reads as follows
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Fig. 6. Chiral superfields and cycles of primitive BPS quiver Q
G2
0 .

W
G2
0 = A2φ

∗B1φ − A1φB2ψ
∗

−A1ψη∗ − A1ηφ∗

+B1ψψ∗ + B1ηη∗
(A.4)

The F-term equations are given by

φ∗B1φ = 0 , φB2ψ
∗ + ψη∗ + ηφ∗ = 0

A1φψ∗ = 0 , A2φ
∗φ + ψψ∗ + ηη∗ = 0

(A.5)

and

B1η − A1ψ = 0 , A2B1φ − A1η = 0

B1ψ − A1φB2 = 0 , A2φ
∗B1 − A1B2ψ

∗ = 0
(A.6)

and the diagonal superfields lead to

B1η
∗ − A1φ

∗ = 0 , B1ψ
∗ − A1η

∗ = 0 (A.7)

Like for MSO8
γ , these constraints define the moduli space MG2

γ of the ground state of the super-
symmetric quantum mechanics.

A.2. N = 2 supersymmetric E6 and F4 models

First, we consider superpotential WE6
0 of the pure E6 gauge theory; and turn after to WF4

0 of 
the supersymmetric pure F4 model obtained by the folding approach.

• E6 gauge model
The primitive quiver QE6

0 of this theory involves 22 chiral superfields and ten 4-cycles as shown 

on Fig. 7. The explicit expression of the superpotential WE6
0 reads as follows

W
E6 = (

A3φ
∗A6φ5 − B3φ

∗B6φ5
) + ∑4 (

Aiφ
∗Ai+1φi − Biφ

∗Bi+1φi

)

0 5 5 i=1 i i
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Fig. 7. Chiral superfields and cycles of primitive BPS quiver Q
E6
0 .

The corresponding F-term equations following from above WE6
0 are given by

φ∗
1A2φ1 = 0 , φ∗

1B2φ1 = 0

A4φ
∗
4φ4 = 0 , B4φ

∗
4φ4 = 0

A3φ
∗
5φ5 = 0 , B3φ

∗
5φ5 = 0

A1φ
∗
1φ1 + φ∗

2A3φ2 = 0 , B1φ
∗
1φ1 + φ∗

2B3φ2 = 0

A2φ
∗
2φ2 + φ∗

3A4φ3 = 0 , B2φ
∗
2φ2 + φ∗

3B4φ3 = 0

A3φ
∗
3φ3 + φ∗

4A5φ4 = 0 , B3φ
∗
3φ3 + φ∗

4B5φ4 = 0

(A.8)

and

(A1A2 − B1B2)φ1 = 0 , (A1A2 − B1B2)φ∗
1 = 0

(A2A3 − B2B3)φ2 = 0 , (A2A3 − B2B3)φ∗
2 = 0

(A3A4 − B3B4)φ3 = 0 , (A3A4 − B3B4)φ∗
3 = 0

(A4A5 − B4B5)φ4 = 0 , (A4A5 − B4B5)φ∗
4 = 0

(A3A6 − B3B6)φ5 = 0 , (A3A6 − B3B6)φ∗
5 = 0

• F4 gauge model
The primitive quiver QF4

0 of this theory is given by Fig. 8; it has eight cycles containing six 
4-cycles and two 3-cycles as shown in Fig. 8. By extending the construction of [2,14], the super-
potential of the F4 theory is given by

W
F4
0 = (

A1φ
∗
1B2φ1 − B1φ

∗
1A2φ1

)+(
A2φ

∗
2B3φ2 + A3φ2B2η

∗ + A3ηφ∗
2 + B3ηη∗)(

A φ∗B φ − B φ∗A φ
) (A.9)
3 3 4 3 3 3 4 3
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Fig. 8. Chiral superfields and cycles of primitive BPS quiver Q
F4
0 .

with F-term equations as

φ∗
1B2φ1 = 0 , φ∗

1A2φ1 = 0

B3φ
∗
3φ3 = 0 , A3φ

∗
3φ3 = 0

φ∗
2B3φ2 − B1φ

∗
1φ1 = 0 , A1φ

∗
1φ1 + A3φ2η

∗ = 0

φ2B2η
∗ + ηφ∗

2 + φ∗
3B4φ3 = 0 , A2φ

∗
2φ2 + ηη∗ − φ∗

3A4φ3 = 0

(A.10)

and

(A1B2 − B1A2)φ∗
1 = 0 , (A1B2 − B1A2)φ1 = 0

A2φ
∗
2B3 + A3B2η

∗ = 0 , A2B3φ2 + A3η = 0

A3φ
∗
2 + B3η

∗ = 0 , A3φ2B2 + B3η = 0

(A3B4 − B3A4)φ3 = 0 , (A3B4 − B3A4)φ∗
3 = 0

(A.11)

Appendix B. Mutations HG
stg in chambers QG

stg

In building the BPS states of the QG
stg strong chambers, we have used a subgroup HG

stg of 

the Coxeter GG
stg . The set HG

stg is generated by two non-commuting reflections denoted in the 

core of paper by L1 and L2 and given by products type 
∏

ri with ri standing for fundamental 
reflections ri . In this appendix, we give the explicit expression of the fundamental mutations ri
generating GG

stg .

B.1. Fundamental reflections of GS08
stg and GG2

stg

Here, we give explicit details regarding fundamental reflections of the Coxeter groups GS08
stg

and GG2
stg as well as on their subgroups HS08

stg and HG2
stg used in our analysis of section 3.
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B.1.1. Fundamental reflections of GS08
stg

The set of mutations of the strong chamber of 4d N = 2 supersymmetric pure SO(8) gauge 
model is a group generated by 8 fundamental non-commuting reflections ri acting on the prim-
itive quiver QS08

0 . For convenience, we split these basic reflections into two subsets; one subset 
with 4 reflections associated with the four elementary dyons; they are denoted like r1 = t1, 
r2 = t2, r3 = t3, r4 = t4; and the remaining four others associated with the four elementary 
monopoles; they are denoted like r5 = s1, r6 = s2, r7 = s3, r8 = s4. The reflections ti and si
are realised by 8 × 8 matrices as follows

t
so8
k =

(
I4×4 Rk

04×4 Ek

)
, s

so8
k =

( Ek 04×4

Rk I4×4

)
(B.1)

with k = 1, 2, 3, 4. The Ek is a 4 × 4 diagonal matrix with components (Ek)kk = −1, (Ek)ii = 1
for i �= k and zero elsewhere; in a condensed manner it reads as

(Ek)ij = (−1)δik δij (B.2)

The Rk is a 4 × 4 matrix related to the matrix R of (3.27) like δkjRij and therefore to the KSO8
ij

Cartan matrix as follows

(Rk)ij = δkj

(
2δij − K

SO8
ij

)
(B.3)

The two first t so8
1 and t so8

2 matrices and their sso8
1 and sso8

2 homologue are as follows

t
so8
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t
so8
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.4)

and

s
so8
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, s
so8
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.5)
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The set of quiver mutation GSO8
stg generated by the eight ri’s has a Coxeter group structure; the 

generators are non-commuting and satisfy

(
rirj

)m
SO8
ij = I

SO8
id (B.6)

integers mSO8
ij given by the Coxeter 8 × 8 matrix

MSO8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 2 3 2 2
2 1 2 2 3 2 3 3
2 2 1 2 2 3 2 2
2 2 2 1 2 3 2 2
2 3 2 2 1 2 2 2
3 2 3 3 2 1 2 2
2 3 2 2 2 2 1 2
2 3 2 2 2 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.7)

By using the 4 × 4 matrix J ,

J =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠ (B.8)

we can express it like

MSO8 =
(

2J − I 2J + R

2J + R 2J − I

)
(B.9)

To generate BPS states in the strong chamber QSO8
stg of the supersymmetric pure SO(8) gauge the-

ory, we have used the two composite mutation operators LSO8
1 = r4r3r2r1 and LSO8

2 = r8r7r6r5; 
these are non-commuting reflections generating a subgroup HSO8

stg � Dih12 of the Coxeter GSO8
stg .

B.1.2. Fundamental reflections of GG2
stg

The set GG2
stg of mutations of the strong chamber of 4d N = 2 supersymmetric pure G2 gauge 

model is a group generated by 4 non-commuting reflections: r1 = t1, r2 = t2 generators for the 
two elementary dyons in the primitive quiver; and r3 = s1, r4 = s2 for the elementary monopoles. 
These reflections are realised by 4 × 4 matrices like

t
G2
k =

(
I2 Rk

02×2 Ek

)
, s

G2
k =

(
Ek 02×2
Rk I2

)
(B.10)

with k = 1, 2. The Ek is a 2 × 2 matrix with entries (−1)δik δij and the (Rk)ij is related to the 
matrix Rij of eq. (3.39) like δkjRij . Explicitly, we have

t
G2
1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 3 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , t

G2
2 =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ (B.11)
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and

s
G2
1 =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
3 0 0 1

⎞
⎟⎟⎠ , s

G2
2 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 1 1 0
0 0 0 1

⎞
⎟⎟⎠ (B.12)

The set of mutation GG2
stg has a Coxeter group structure with generators ti satisfying 

(
rirj

)m
G2
ij =

I
G2
id where the mG2

ij integers are the entries of the Coxeter matrix

MG2 =

⎛
⎜⎜⎝

1 2 2 6
2 1 6 2
2 6 1 2
6 2 2 1

⎞
⎟⎟⎠ (B.13)

These reflections are related to the Gso8
stg ones by using Folding matrices F and F̃ (3.36) obeying 

FF̃ = Iid ; we have:

r
G2
1 = F r

so8
2 F̃

r
G2
2 = F

(
r
so8
4 r

so8
3 r

so8
1

)
F̃

s
G2
1 = F s

so8
2 F̃

s
G2
2 = F

(
s
so8
4 s

so8
3 s

so8
1

)
F̃

(B.14)

To generate BPS states in the strong chamber QG2
stg of the 4d N = 2 supersymmetric pure G2

gauge theory, we have used the two composite mutation operators L1 = r2r1 and L2 = r4r3.

B.2. Fundamental reflections of GE6
stg and GF4

stg

In this subsection, we give explicit details regarding the fundamental reflections of GE6
stg , GF4

stg

and their subgroups HE6
stg and HF4

stg used in section 4.

B.2.1. Quiver mutation set GE6
stg

The set of mutations of the strong chamber QE6
stg of 4d N = 2 supersymmetric pure E6 gauge 

model is a group generated by 12 fundamental reflections; six of them r1 = t1, r2 = t2, r3 = t3, 
r4 = t4, r5 = t5, r6 = t6 associated with the elementary dyons; and the other six r7 = s1, r8 = s2, 
r9 = s3, r10 = s4, r11 = s5, r12 = s6 with the elementary monopoles. As in the case of SO8 gauge 
model, these basic reflections can be realised by 12 × 12 matrices as follows:

t
E6
k =

(
I6 Rk

06×6 Ek

)
, s

E6
k =

(
Ek 06×6
Rk I6

)
(B.15)

with k = 1, 2, 3, 4, 5, 6. The Ek and Rk are given by

(Ek)ij = (−1)δik δij

(Rk)ij = δkj

(
2δij − K

E6
) (B.16)
ij
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As an example, we give

t
E6
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.17)

and

s
E6
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.18)

The set of quiver mutation GE6
stg has a Coxeter group structure, with generators satisfying the 

following features 
(
rirj

)m
E6
ij = I

E6
id where mE6

ij are the entries of the Coxeter 12 × 12 matrix

ME6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 2 2 2 3 2 2 2 2
2 1 2 2 2 2 3 2 3 2 2 2
2 2 1 2 2 2 2 3 2 3 2 3
2 2 2 1 2 2 2 2 3 2 3 2
2 2 2 2 1 2 2 2 2 3 2 2
2 2 2 2 2 1 2 2 3 2 2 2
2 3 2 2 2 2 1 2 2 2 2 2
3 2 3 2 2 2 2 1 2 2 2 2
2 3 2 3 2 3 2 2 1 2 2 2
2 2 3 2 3 2 2 2 2 1 2 2
2 2 2 3 2 2 2 2 2 2 1 2
2 2 3 2 2 2 2 2 2 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.19)
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By using the 6 × 6 matrix J

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(B.20)

we can express ME6 like

ME6 =
(

2J − I 2J + R

2J + R 2J − I

)
(B.21)

To generate BPS states in thee strong chamber of the supersymmetric pure E6 gauge theory, 
we have used the two composite mutation operators LE6

1 = r6r5r4r3r2r1, LE6
2 = r12r11r10r9r8r7

generating a subgroup HE6
stg � Dih24 of the Coxeter GE6

stg .

B.2.2. Quiver mutation set GF4
stg

The set GF4
stg of mutations of the strong chamber of 4d N = 2 supersymmetric pure F4 gauge 

model is a group generated by 8 reflections: r1 = t1, r2 = t2, r3 = t3, r4 = t4 generators for the 
elementary dyons in the primitive quiver; and r5 = s1, r6 = s2, r7 = s3, r8 = s4 for corresponding 
monopoles. These reflections are realised by 4 × 4 matrices like

t
G2
k =

(
I4 Rk

04×4 Ek

)
, s

G2
k =

(
Ek 04×4
Rk I4

)
(B.22)

where (Ek)ij = (−1)δik δij and (Rk)ij = δkjRij . As examples, we have

t
F4
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.23)

and

s
F4
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.24)

The set of mutation GF4
stg has a Coxeter group structure with generators ri satisfying 

(
rirj

)m
F4
ij =

I
F4 where the mF4 integers are the entries of the Coxeter matrix
id ij
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MF4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 2 3 2 2
2 1 2 2 3 2 4 2
2 2 1 2 2 4 2 3
2 2 2 1 2 2 3 2
2 3 2 2 1 2 2 2
3 2 4 2 2 1 2 2
2 4 2 3 2 2 1 2
2 2 3 2 2 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.25)

These reflections are related to the GE6
stg ones by using Folding matrices F and F̃ (4.18) obeying 

FF̃ = I ; these matrices have been explicitly constructed in section 4 of present study; we have:

r
F4
1 = F

(
r
E6
5 r

E6
1

)
F̃ , s

F4
1 = F

(
s
E6
5 s

E6
1

)
F̃

r
F4
2 = F

(
r
E6
4 r

E6
2

)
F̃ , s

F4
2 = F

(
s
E6
4 s

E6
2

)
F̃

r
F4
3 = Fr

E6
3 F̃ , s

F4
3 = Fs

E6
3 F̃

r
F4
4 = Fr

E6
6 F̃ , s

F4
4 = Fs

E6
6 F̃

(B.26)

To generate BPS states in the strong chamber of 4d N = 2 supersymmetric pure F4 gauge theory, 
we have used the two composite mutation operators L1 = r4r3r2r1 and L2 = r8r7r6r5.
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