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Abstract

In BPS quiver theory of N = 2 supersymmetric pure gauge models with gauge invariance G, primitive

BPS quivers Qg are of two types: Q(“)‘D E and Qg CFG 1n this study, we first show that Q()“D E have outer-
automorphism symmetries inherited from the outer-automorphisms of the Dynkin diagrams of ADE Lie
algebras. Then, we extend the usual folding operation of Dynkin diagrams ADE — BC F G to obtain the
two following things: (i) relate QgCFG quivers and their mutations to the Q(’)“DE ones and their mutations;
and (ii) link the BPS chambers of the N' =2 ADE theories with the corresponding BC FG ones. As an

illustration of this construction, we derive the BPS and anti-BPS states of the strong chambers Q62

stg
Qgg of the 4d N = 2 pure G, and F4 gauge models.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

and

1. Introduction

Few years ago, a BPS quiver theory has been proposed in [1,2] in order to build the com-
plete set of BPS spectra of 4d A/ = 2 supersymmetric quantum field theories (QFTy4) with gauge
symmetry G. This theory has been smoothly applied to supersymmetric ADE type gauge mod-
els, with and without hypermatter [3-9]; and to Gaiotto type theories describing the low energy
limit of M5-branes wrapped on a punctured Riemann surface [10—13]; see also refs. [27-37] for
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previous works and refs. [38-46] for other approaches to the A" = 2 BPS spectra. An interesting
generalisation of this BPS quiver construction beyond ADE type groups has been first proposed
in [14] where particular BPS configurations have been described. In this study, we want to con-
tribute to this BPS theory by developing a new manner to extend the smooth ADE-construction
to the subclass of N = 2 supersymmetric pure gauge theories based on a non-simply laced type
gauge invariance. Our way of doing relies on extending the usual folding method of Lie alge-
bras, mapping ADE Dynkin diagrams into BCFG ones, to the BPS chambers Qg‘[fz E of ADE-type

theory in order to generate the QEPCSF G chambers for the case of non-simply laced type gauge

symmetries.

To fix the ideas, recall that in the standard ADE type formulation of the quiver theory, the
BPS/anti-BPS states of the 4d A/ = 2 QFT4’s are composites of elementary BPS particles having
electric—-magnetic (EM) charges y;. These charges are given by symplectic vectors y; = (yl.A)
made of two component blocks: electric ql.l components and magnetic p;; ones as follows

A a/ 1
S = i NP— . !
Vl (p][ ) ) J/lA (p[l k] q, )

In the particular class of supersymmetric pure gauge theories with gauge symmetry G we will be

interested in here, that is in absence of couplings to hypermatter, the basic particles are given by
r elementary monopoles 91; with EM charges ylfnonopoles
dyons

dyons ©; with EM charges y;

, denoted below as b;, and r elementary
denoted like ¢;. They are placed at nodes N; of a primitive
quiver Qg with oriented links N; — N; given by the integral Dirac pairing

viov;=Carv v/ (1.1)
where Coy = —Cry 4 is the usual metric of real symplectic groups. The EM charge vectors y;
and the intersection matrix (Ag ) =y oy; define the primitive quiver Qg which, in some

l

sense, resembles formally to the usual Dynkin diagram of Lie algebra of the gauge symmetry G.
The p;’s and the .Ag play also an important role in the building of the BPS spectra of the A/ =2
QFTj4. The BPS states S () of the 4d N = 2 gauge theory and the corresponding anti-BPS ones
S (—y) are bound states made of the 9; = 2 (b;)’s and the ©; =D (¢;)’s; the EM charges y of
BPS states S (y) are given by positive integral linear combinations of the elementary y;’s, that is
EM charge vectors of the form y =), Nl.+y ; with NI.Jr some positive integers. The symplectic
charge vectors £y are obtained in practice by the quiver mutation method whose algorithm may
roughly be phrased into two main steps as follows: (i) First, start from the primitive Qg and a
given configuration of ordering of the arguments arg Z; of the central charges Z; = Z (y l-) of
the elementary particles y;; an ordering of the phases of the complex central charges defines a

BPS chamber ngps in the quiver theory, and has a nice representation in terms of rays in the

Z-complex plane. (i7) Second, performs successive mutations M, on the primitive Qg generat-

ing descendant quivers Q% =M, (Qg ) with nodes occupied by new BPS states with EM charge

vectors yl(") =M ,1){ y j; these y E")’s are precisely the linear positive (negative) integral Niiy ;

combinations of the elementary charges y; mentioned above. The building of BPS spectra using
quiver mutation approach has been applied with success to N'= 2 QFT4 with ADE invariance;
but, due to exotic properties such as diagonal links in QgCF G and 3-cycles as shown on Fig. 2,
still needs more exploration for the class of non-simply laced type gauge symmetries.
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In this paper, we consider the 4d AN/ = 2 supersymmetric pure gauge models with finite di-
mensional non-simply laced BCFG type gauge symmetries, and develop further the method
introduced in [15] for the building of BPS/anti-BPS states of this special subclass of N' =2
gauge theories. Here, we focus on the explicit construction of the CPT invariant BPS spectrum
of the strong chambers QSGé, and Qf;‘g of the 4d N = 2 supersymmetric quantum field G and F4
gauge models; but, though it will not be explicitly detailed in present analysis, our method may be
also applied to other N' =2 QFTy’s including those involving BPS quivers based on generalised
Dynkin diagrams like the ones of affine Kac-Moody algebras encountered in ' = 2 CFTy first
considered in [16]; see also [17-19] for indefinite hyperbolic extensions. Our approach consists
on starting from BPS quivers Q{)‘D E of type ADE and use outer-automorphisms to fold them into
BPS quivers of type BCFG in quite similar manner as in the folding of ADE Dynkin diagrams to
recover BCFG Dynkin ones [20-22]. In this way, the set of BPS states of 4d N = 2 pure gauge
models with G, and F4 gauge invariance gets related to the set of BPS states with D4 and Eg type
gauge symmetries.

To achieve this goal, we proceed as follows: We first recall basic aspects of the primitive
BPS quivers Qg of G = ADE type; and show that they have outer-automorphism symmetries
inherited from the outer-automorphisms of the Dynkin diagrams of Lie algebras. BPS graphs
representing the Qg ’s, which are given by the lists of Figs. 1 and 2 of section 2, are roughly
speaking, a kind of a duplication of Dynkin diagrams of finite dimensional ADE Lie algebras;
but with some specific properties to be exhibited at proper places. Like for the Dynkin diagram
representing the Cartan matrix (K G)l.j =a.a; of the Lie algebra of the gauge symmetry, the
primitive BPS quiver Qg is characterised by a “Cartan like” intersection matrix

<'A((_);).4=yi°}’j
ij

but based on Dirac pairing of the electric-magnetic (EM) charges of the BPS states [27-32].
Then, we build the pair of folding operators f, and f’;’ (rectangular matrices) mapping ADE

Dynkin diagrams to BCFG ones with the property f.f = I;4. After that we extend this folding
method of Dynkin graphs to BPS quiver theory by constructing the generalised pair of folding
operators FI{‘ and F’}‘ satisfying F.F = I;; and allowing to generate BPS chambers Q587G out
of the Q4PF ones. This generalised folding method constitutes a key ingredient in our way of
doing. As an application, we derive the BPS states of the strong chambers of the 4d A/ = 2 super-

symmetric pure G, and F4 models as well as the group structures of the mutation sets {M ,(1; 2}

and {M ,f“} Recall that the Dynkin diagram of finite G5 can be obtained by folding the three
external nodes of the diagram of SOg reducing the rank of the Lie algebra from 4 to 2. Similarly,
the Dynkin diagram of F4 is obtained by folding nodes in the diagram of exceptional Eg.

The organisation of this paper is as follows: In section 2, we build the list of primitive
BPS quivers Qg of 4d N' = 2 supersymmetric pure gauge theories and give their outer-
automorphisms. In section 3, we study BPS states in V' = 2 pure G, model; and build explicitly
the set of BPS/anti-BPS states of the strong chamber QS(Z, In section 4, we do the same thing as
in section 3; but for the exceptional F4 gauge invariance. Section 5 is devoted to conclusion and
comments. To complete this study, we give two Appendices A and B: the first appendix deals

with the structure of the superpotentials associated with primitive quivers Q(S) 08, Qg 2 Qg 6 Qg“;
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they have been added in order to make contact with general results in BPS quiver theory liter-
ature. The second appendix concerns the matrix realisation of the fundamental reflections r; of
the Coxeter groups generating the quiver mutations in the BPS strong chambers.

2. BPS quivers of V' =2 QFT4

In this section, we build the primitive BPS quivers Qg of N = 2 supersymmetric pure gauge

theories with generic gauge symmetry G. Since these Qog’s are intimately related with Dynkin
diagrams of the Lie algebra of the gauge symmetry; we therefore split the list of BPS graphs into
two subsets: (a) primitive quivers QéD E of type ADE; and (b) primitive quivers Qg CFG of type
BCFG. These primitive quivers together with an ordering of arg Z; and mutations allow to build
BPS states of supersymmetric pure gauge theories; the examples of G, and F4 models will be
explicitly studied in sections 3 and 4.

Before going into details, recall that BPS quivers in A/ = 2 supersymmetric QFT4 with gauge
invariance G encode data on BPS states of the gauge theory. Depending on gauge coupling

regime, we distinguish two particular chambers: the strong chamber ngtg and the weak chamber

Dg cak- The content of these chambers can be generated by: (i) starting from Qg , with some

ordering of the arguments arg Z; of the central charges Z (yl-) of the elementary BPS particles,

argZ; > argZy, > ...>argZ 2.1

2r
and (ii) performing appropriate and successive quiver mutations on primitive quiver. The length
[ of the successive mutations M, may be closed, forming a finite cycle, or open and then infinite.
It happens that the length / of the largest mutation is finite for the strong BPS chambers ngt g Of
pure gauge theories; and it is infinite for weak chambers Qg eak Which include the gauge particles
as particular limits. Notice that a generic quiver mutation M,, has the structure

Mn =r,-"r,~n71...r,-2ril (22)

where the r¢’s are non-commuting reflections (r,f = I;4) generating a Coxeter group [23]. For
infinite chambers Dg’lf, there are infinitely many mutations; that is n a positive integer taking all
possible values. But for finite BPS chambers D%’m .» it happens that the successive reflections
form a cycle with some length no; the largest mutation My, = ri, ri, _;---riy"i; closes to the
identity operator M = I;4; in other words

My, =1lia My, =M, = Mo 2.3)

This cyclic property of mutations allows to determine exactly the BPS spectrum of the strong
chambers; for explicit examples and calculations, see the analysis given in section 3 for the
supersymmetric pure gauge models SO(8) and G»; and in section 4 for the E¢ and F4 models.
For the general algorithm as well as illustrating examples including the method using quiver
representations and induced superpotentials; see refs. [1,2] and appendix of [ 15]; see also refs. [5,
6] for explicit details using intersection matrix .Ag .

After this brief introduction of primitive quivers, mutations and BPS chambers, we turn now
to give some details on the structure of the primitive quivers Qg and useful aspects of their
properties.
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2.1. ADE type primitive quivers

Given a N/ = 2 supersymmetric pure gauge theory with a rank r gauge symmetry G of ADE
type, the corresponding primitive quiver Qg is represented by one of the graphs shown on the
Fig. 1. A generic graph consists of 2r nodes and 3r — 2 links as briefly described below:

i) nodes N; and links in Q(‘;‘DE

The 2r nodes of the primitive quiver refer to the elementary BPS states represented by 2r charge
Vectors Y1, ..., ¥o,; half of these electric—-magnetic (EM) charges, say {y ,»} |<j<y> A€ given by
by, ..., b,; and the other remaining half charge vectors { Vi +,}

Fig. 1. For the primitive quiver Qé‘D E the b;’s stand for the EM charge of the r elementary

monopoles {1y, ..., M, } and the ¢;’s for the EM of the elementary dyons {9y, ..., ©,} of the
underlying supersymmetric gauge theory.

1 I
b = ( i ) . = ( Tiver ) 2.4)
Pii Pli+r

with I =1,...,r and A =1, ..., 2r; each one of above EM charges y; is then an SP(2r, R)
vector with components as (yl.A). In the case of N = 2 supersymmetric pure gauge theory, these
EM charge vectors read in terms of the simple roots dp, ..., d, of the Lie algebra of the gauge
symmetry G as follows

0 a;
b; = (al_ ) , ¢ = (—51' ) (2.5)

they are 2r-dimensional vectors with 2r x 2r intersection matrix (Ag) _=y;oy;givenby (l.1)
ij

and reading explicitly by using the electric ql.I and the magnetic pj; charges like ql.l pPIj—q ]I Pli-

In terms of the EM charges of the elementary monopoles b; and dyons c;, this matrix can be also

presented in four r x r blocks as follows

A0g=<biobj b,'OCj) (2.6)

ciobj C,‘OCJ'

|<i<, re given by c1, ..., ¢, asin

For later use, notice the three following features useful in performing explicit calculations.
First, for ADE Lie algebras, the intersection matrix of the simple roots a; is a symmetric
matrix given by d;.dj = K;j, it is the Cartan matrix of the Lie algebra underlying the gauge
symmetry and is graphically represented by a Dynkin diagram (for short D DAPE),
Second the Dirac pairings of b; o b; vanishes identically and b; o ¢; = —c¢; o b; reducing the
content of the matrix (2.6). Third the simplest Ag matrix corresponding to rank r = 1 is just the

.Ag U2 given by

AV (g —02> 2.7)

This is the elementary matrix in BPS quiver theory; it teaches us that the (b, ¢) pair is the building
block in dealing with BPS states. The corresponding elementary quiver Q(S) Y2 has two nodes that
might be imagined as following from a “kind” of antisymmetric replication of the usual node of
the Dynkin diagram of the SU(2) Lie algebra.

AV = kSV2e =26 (2.8)
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Fig. 1. BPS primitive quivers of type ADE in /= 2 pure gauge theories.
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Fig. 1. (continued)

where

e = (? _01> (2.9)

Observe that the BPS quiver QSUZ has two nodes and formally resembles to D D2, the usual
Dynkin diagram of the C, Lie algebra; the two objects are of course different; they are con-
structed by using two different pairing laws.

i) More on links between N; — N j nodes in QS‘DE

The 3r — 2 links joining the nodes N; of Q{)‘D E given by Fig. | are of two types: r oriented
vertical links and 2 (r — 1) oriented horizontal ones. The r vertical links [y, ..., [, join the two
nodes of each of the r pairs (b, ¢1), ..., (b, ¢,;); they are oriented from the node ¢; to the node
b; and they carry a charge given by the absolute value of the Dirac pairing b; o ¢; which is equal
to 2 as in (2.7). These links define r elementary sub-quivers as follows

(@), (e1") . (0",

The 2 (r — 1) horizontal links /;; join two nodes of different pairs (b;, ¢;) and (b i c j); since for
ADE Lie algebras the pairings b; o bj = ¢; o ¢j =0, it follows that the intersection matrix Ag
describing the primitive quiver Q4 P£ which is given by (2.6) reduces to the b; o c; off diagonal
blocks. By using (2.5), we have ¢; o b; ~ G;.d;; and then the above intersection matrix becomes

0 —KY
Aog=<Kg o) 2.11)

where KY is the r x r Cartan matrix of the ADE type gauge invariance G of the supersym-
metric pure gauge theory. Eq. (2.11) captures the property behind the appearance of QAPF as a

0
duplication of ADE Dynkin diagram encoding K g,
¢ _ ¢(0 -1
Ay =K (1 0 ) (2.12)
The ADE type graphs Q(’)w E of the primitive quivers are as listed in Fig. 1. From the graphic

representation of QS‘D E_ one learns that some BPS quivers of ADE type have outer automor-
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phisms leaving invariant their topology. When they exist, these outer automorphisms are given
by discrete symmetries as follows

primitive quiver gauge symmetry outer-automorphism

0 6‘ 2’ SUz 41 -

0 3‘ et SUy, Zy

0y SO Zs

QOD4 SOs . 75 (2.13)
Qg: ¥ E¢ Zy

Q§ ! Eq -

Qg s Eg -

they are similar to the ones we have in Dynkin diagrams of ADE Lie algebras.
Before proceeding, notice that, because of the link between the BPS primitive Qg ’s and
Dynkin diagrams DDY of finite Lie algebras of the gauge symmetry G, the correspondence

Q4PE «—> DDAPE (2.14)

given by eq. (2.13) may be naturally extended to the case affine Kac—Moody type Dynkin dia-
grams DDY [24-26] like

0§ PN DDY (2.15)

For the case of simply laced affine Lie algebras G = ADE; the corresponding affine type BPS
quivers Qog can be built in a similar manner as the ordinary Q{)‘D E BPS ones. In addition to the r

pairs (b;, ¢;), the affine quiver Qg has an addition pair of elementary BPS states with EM given
by (bo, co). As an illustrating example, let us describe briefly the twisted SU(2); Kac-Moody
algebra with Kac—Moody level k. This is an infinite dimensional Lie algebra; its root system &
. . 5 o . . =SU, - s .

is generated by two simple roots ag and a; with intersection matrix K, © = a,.a, given by

kSUz=<_22 _22> . detRSU2 =0 (2.16)

By using the correspondence (2.15), we end with a primitive quiver Q3U2 with four nodes de-

scribing four elementary BPS particles with electric-magnetic charges by, b1, ¢, ¢; and Dirac
pairings given by the following generalised intersection matrix

AV = v ((1) _01> 2.17)

As far as affine extension is concerned, recall that A/ = 2 quiver gauge theories using generalised

Cartan matrices K and affine Kac—Moody diagrams DDY are also present in the engineering
of A =2 supersymmetric gauge theories; the K’s play an important role in: (i) the study 4D
N = 2 superconformal field theories in presence of bi-fundamental hypermatter; and (ii) the
classification of these scale invariant theories [16,18].

With in mind the above general picture on simply laced ADE type N = 2 models, we are now
in position to address the extension to the case of non-simply laced type prototypes that we are
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interested in this study. In this generalisation, we will focus on the ordinary BCFG quivers; the
description concerning generalised Dynkin diagrams of affine Kac—Moody type is straightfor-
ward; it is omitted.

2.2. BCFG type primitive quivers

In the N = 2 supersymmetric pure gauge theory with rank r gauge symmetry G of finite
dimensional BCFG Lie algebra type, the primitive quivers Qg are as depicted by the Fig. 2.
These graphs consist of 2r nodes; but a different number of links compared with Q{;‘D E Tn these
quivers, one has, in addition to vertical and horizontal links, a diagonal link because for gauge
symmetries with non-simply laced Lie algebras, the Dirac pairings ¢; o ¢; are no longer zero. In

this case, the intersection matrix Ag of the BPS primitive quiver Qg CFG has the form

g __ 0r><r _KT
A _< e KT—K) (2.18)

where K is the Cartan matrix of the underlying gauge invariance. The matrix K

2a;.a;
K=" (2.19)
J ;.0
is non-symmetric because simple roots for non-simply laced Lie algebras have two different
lengths. By substituting K g in the Ag , we have for the example of the G = G, gauge symmetry
the following intersection matrix

0 0 -2 3

& [0 o 1 =2

A= 5 o0 (2.20)
-3 2 2 0

Notice that for N = 2 supersymmetric pure gauge theory with BCFG gauge invariance, the EM
charge vectors 8; and §; of the r elementary monopoles {11, ..., 2, } and the elementary dyons
{D1,...,D,} read in terms of the simple roots &y, ..., &, of the underlying supersymmetric gauge
theory as follows

B. = 0 s—( & 2.21)
T\ama) T g '

Notice also that in supersymmetric BCFG gauge models the ratio 2/&;.@; is not usually equal
to one as in case of ADE. The list of the primitive quivers is given by the graphs of Fig. 2; the
relationships between Q0 °F and QFF are as follows

primitive Q6‘D E folding primitive Qg CrG
SU», SP,

Qo > Zy Qo
SO0, SOa_

0y Zo (O -l (2.22)
N G

Qo $ 73 Q()2

ocs Zs ol
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ﬁl 52 ﬁs 57-2 ﬁr—l 57

8, B, S, B
an 2 I I Emsnmnw 2

ﬂl 52 ﬁS 57—2

A,
F, 2
0 2
S

Q02 2 2 2

B, s

Fig. 2. BPS quivers of BCFG type; these graphs contains an extra diagonal link in addition to the horizontal and vertical
links of quivers with ADE type.
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Z3

D4 G2

Fig. 3. Folding three nodes in SO(8) Dynkin diagram lead to the G, diagram.

They have been obtained by using the correspondence (2.14) as well as the following diagram
showing that it possible to link Qg CFG and Q{)‘D E by appropriate folding operations

DDADE > QUPE

| folding | folding (2.23)
BCFG BCFG

DD <> Q()

3. N =2 pure G, theory

In this section, we construct the BPS states of the strong chamber of N =2 supersymmetric
pure Gy theory. First we build the folding operators f and f mapping the Dynkin diagram of SOg
down to the Dynkin diagram of Gj; see Fig. 3. Then, we extend this folding based construction
to linking the primitive quivers Q(S) % and Qg 2, this link is obtained by working out the general-
isation of f and f denoted below like F and F. Next, we derive the BPS spectrum of the strong

chamber of Dgi, of the supersymmetric theory with G, invariance.

3.1. Dynkin diagram of G as folded DDy o,

To begin recall that the Lie algebra of the 14 dimensional G, gauge symmetry has 12 roots;
the six positive roots are generated by the two simple @&; and &, having different lengths taken
here as a1.01 = %, a.ap = 2 and intersection like @j.ap = —1. The root system of Gy is as
follows

ta;, +(@+a) , +Ga+a)
tor , £Qaj+a), +@a+2x)
For later use, we revisit some useful features concerning this system; in particular the issue

regarding their link with the roots of SO(8) Lie algebra. We start by the Cartan matrix of G,

. G Sy o > > . . S,
given by K; /.2 = a}’ .aj; the two a;’ = &_z&ui are the coroots associated with the two «;’s; the
o et

3.1)

matrix K gz reads in terms of the usual Euclidean scalar product a;.a; as follows

0.0
§=== 3.2)
J o .0

this is a non-symmetric integral 2 x 2 matrix which reads explicitly like

Kg, = (_23 _21> (3.3)

This matrix is represented by the two nodes Dynkin diagram D D®? of Fig. 3, which in turns may
be viewed as given by the folding of three nodes of the Dynkin diagram DDS% of the SO(8)
Lie algebra
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DD5%

DD =
Z3

(3.4)

where the discrete Zj3 is the outer-automorphism rotating the three external nodes of the D D398
diagram; here Z3 is an abelian subgroup of the permutation group S3. Eq. (3.4) implies that the
Cartan matrix K fLOS =ay.ay of the of SO(8) Lie algebra namely

2 -1 0 O
-1 2 -1 -
o -1 2 0
0O -1 0 2

1

Kso, = 3.5)

and the K¢, one given by eq. (3.3) are related to each other by a pair of folding operators f
and f with respective entries as ( fiJ ) and ( f }'). This means that the two simple roots of G;
may be related in same way to the four real vectors simple roots @, of the Lie algebra of SO(8).
However, due to the difference between the dimensions of K s, and K, , the bridge between the
K50, and K¢, is not unique; descending from Kgp, down to K, involves projections showing
that, generally speaking, there are infinitely many ways to go from Kgg, down to K¢,. Despite
this arbitrariness, one may nevertheless find a way to link the two matrices by imposing extra
conditions to fix this arbitrariness. A manner to go from Kggo, to Kg, is by using the above

mentioned two folding operators (rectangular matrices) f = ( fij ) and a companion f=(f })
defined as

- -1 -
f=1" (1) . =D (3.6)
The role of each one of the f and f'folding operators is as described in what follows:

a) The first folding operator f is a rectangular 2 x 4 matrix used to convert 4 x 4 matrix Kgo,
into the rectangular 2 x 4 matrix f. K, . It converts as well the G, Cartan matrix like K¢, f.
Explicitly, the 2 x 4 matrix f is needed to relate the two Cartan matrices and simples roots
as follows

K, f=f.Ks0, , a;=t/a; (3.7)

By thinking of the entries of the folding operator f as

f= <x1 2B "4) (3.8)
yroy2 Y3 Y4
with x; and y; numbers, eq. (3.7) leads to the following constraint relations
2x1—y1 = 2x1 —x2
26— y2 = 2xp — X1 — X3 — X4

2x3 —y3 = 2x3 — X2 o
2x4 — y4 = 2X4 — X2
and
2y1 —=3x1 =2y1—y»
2y =3x2 =2y —y1—y3— 4 (3.10)

2y3 — 3x3

2y3 =2
2y4 —3x4 = 2y4—y2
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These constraint equations are invariant under the Sz discrete permutation group fixing the
number x, and permuting (x1, x3, x4) amongst themselves. The same symmetry transforma-
tions is valid for y,, which is fixed, and (y1, y3, y4) permuted among themselves. Using this
symmetry, we can set

= X1 =X3 =X s =X
a=Xx|=X3=1x4 El 2 3.11)
b=y1=y3=y4 , §'=wn

which, up on substituting back into (3.9)—(3.10), lead to b = & and &' = 3a; and then a
folding operator f as follows

a b a a
f_<b 3a b b) (3.12)
It depends on two free parameters a and b that remain to be determined; one of them is fixed
by the &; = f/d, and the normalisation of the lengths of two simple roots of Go.

b) The second folding operator fisalsoa rectangular matrix, but of type 4 x 2; it behaves like

7 namely
a b
T b 3a
' = a0 b (3.13)
a b

it is needed to extract the K, Cartan matrix from eq. (3.7). By multiplying, from the right,
both sides of (3.7) by £, we end with the following 2 x 2 matrix equation

Kg, ff=f.Kso, f (3.14)

To get K¢, from above constraint relation with Kgog, we demand that the condition ff =
1>, leading to the folding relation

Ko, =f.Ksof | detff=1 (3.15)

Notice that the condition ff = I»4 has infinitely many solutions; a particular solution is given
by

~ -1
f=17 (ffT) , det (ffT) £0 (3.16)
Explicitly, we have
b
a -3
fo_ ! b a (3.17)
T 3a2-b2| a —% '
b
a -3

By substituting in @; = fij dy and using the properties of simple roots both for G, and SOg, in
particular the ratio

QL
Q1

1.1

1
» 3

(3.18)

Ql
=

2
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we end with the condition ab = 0. Solving this constraint by taking a = 0, we then have

0 3
1

0 b 0 O x ;3 O
fz( ) - . (3.19)

b 0 b b 0 ?

0 3

where b appears as a scaling parameter like f = bfy and f = Lfy with

1

0 3

01 00 < 1 0
f(]:(l 0 1 1) , fo= 0 % (3.20)

1

0 3

Below, we use the folding matrix operators fo and fo; and for convenience, we will drop out the
extra index; i.e.: fo = f and fy = f.

3.2. BPS states OfQ”g
To obtain the BPS states of the strong chamber 0%
theory, we use the two following things:

(i) the extension of the idea of folding operators f and f, relating the Dynkin diagrams DDg,
N

srg Of the N =2 supersymmetric pure G,

and DDgpy, to the two primitive quivers Q() and Q" of the supersymmetric pure gauge

models with G, and §O(8) gauge symmetries. Recall that Q 92 and Qg % are roughly speaking
duplications of DDg, and DDg,.

(if) the knowledge of the BPS states of the strong chamber Qs,gg of the supersymmetric pure

S Og theory. There, the BPS states are obtained by mutating the primitive quiver Qg 08; that is by
performing transformations like

Qsos N ngg (3.21)

where the M, mutation operators are as in (2.2).
In this subsection we first describe briefly how the machinery works for the derivation of the

strong chamber 959 and turn after to build the Q%2 by using the extended folding method.

vtg ’ Stg

3.2.1. Strong chamber DSS,(;X
To begin, recall that the set of mutations {M,} = GSO8

of the strong chamber Q508 is given

stg stg
by the Coxeter group ng generated by 8 fundamental reflections ry, ..., r3. These reflections
obey the property
(rirj)™" = Isxs (3.22)

where the positive m;; integers are given by the Coxeter matrix [6,23]. Recall also that in order

to get the BPS/anti-BPS states of Q5 s tg Os

Gsstgs, this subgroup is generated by two particular non-commuting operators L1 and Ly given

it is enough to use a subgroup H of the Coxeter

Alg >

by the composition of four r; reflections (rl. = I;4) like

L1 =rar3rr , Ly =rgryrgrs (3.23)
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These composed reflections are also reflections (L% = L% = I;4); they correspond, on the BPS
states building side, to taking the arguments arg Z (y[) of the central charges Z (yi) of the ele-
mentary monopoles 21; and dyons ©; as follows

arg Z (by) =argZ (by) =argZ (b3) =argZ (b3)

(3.24)
argZ (¢1) =argZ(cy) =argZ(c3) =argZ(c3)
together with the ordering
arg Z (¢;) > arg Z (b;) (3.25)

The matrix realisations of the generators L; and L, on the space of EM charges (by, .., bs,
¢y, .., ¢4) have a remarkable form as shown below

Iyxa R —Isxa O4x4
L= , L, = 3.26
! <04><4 _I4><4) 2 < R I4xa ) (3.26)

where the 4 x 4 matrix R is related to the Cartan matrix like R = 214x4 — Ks0,; explicitly the
R-matrix is as follows

0100
S
01 00
The 8 x 8 matrix generators (3.26) satisfy the properties
LY =1L3=1Isxs , (L2L1)® = Igxs (3.28)
teaching us a set of interesting information on the structure of the subgroup Hsstgog; in particular

the three following things:

Os

e First, the subgroup HSS is a finite discrete subgroup with matrix elements M, given by

18

particular monomials of the generators like

Moy = (Lo Ly)* ) Moy = L1 Moy (3.29)
with integer k > 0 and My = Igx«g.

e Second, because of the property M> = I3xg and the remarkable relation Mg = —I3«3, the

cardinality of the subgroup Hg?s is equal to /2; and is given by

HSO® = (14, £My, £M>, £ M5, £ My, +Ms) (3.30)
Hg?g is isomorphic to the dihedral group Dihy, [6,15]. Knowing the explicit expressions of

L1 and L, which are as in (3.26), we can write down the explicit expressions of all elements
in (3.30).
e Third, the BPS/anti-BPS states of the strong chamber thg

M,, matrices of HSS,?. The identity My = Ig«g gives precisely the elementary monopoles

and elementary dyons.
By performing the first mutation My = L;: Qg O _, Qfog, the resulting quiver Q‘fog has

8 can be read from the rows of the

eight new BPS states yl(l) with EM charges directly read from the 8 rows of the matrix
representation of L; namely
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1000 0 1 0 0
0100 1 0 1 1
0010 0 1 0 0
0001 0 1 0 0
Mi={o 000 -1 0 0 o (33D
0000 0 —1 0 0
0000 0 0 —1 0

0000 O O 0 -1
The first row of this matrix namely (1, 0,0, 0, 0, 1,0, 0) means that a BPS state with EM
charge yﬁl) = b1 + ¢ has been generated by the L; mutation of Qg 9. the second row

(0,1,0,0,1,0,1, 1) gives another new BPS state with EM charge ygl) =by)+c1+c3+ey;
and so on. The BPS/anti-BPS states generated by the first mutation are as follows

bi+c —C
by+c1+c3+cq —c (3.32)
b3 +c2 —c3
by +c2 —c4

By performing the eleven M mutations in (3.30) which corresponds just to building the

elements of the subgroup H s,g , we obtain the list of the 48 BPS states of DS,g ; it reads as
follows

+b; + (b1 + ) + (b1 +bs+c2)

+b, + (b3 + ¢2) + (b1 + b3+ c2)

+b3 + (bs + ¢2) +(by+c3+cy)

+by +(by + 1) + (b3 +bs+c2) (3.33)

+c +(by 4+ c3) + (b1 +b3+bg+c2)

+cp + (by + c4) + (b1 + b3+ bs+ 2¢7)

*c3 £ b2 +c1+ca) £ @2by+c1+c3+cq)

*ey + by +c1+c3) 2 +ci1+c3+ca)

With this construction of the BPS/anti-BPS states of ng" in mind, we turn now to build the
BPS spectrum of the strong chamber 0% of the supersymmetric gauge theory with gauge sym-

metry G».

stg

3.2.2. Strong chamber Q”g
By using the method of quiver folding induced from folding of the D Dgo, down to D Dg, as

in eq. (2.23), the primitive quiver QOS 98 can be folded into the primitive quiver Qg 2 The same

feature holds for the mutation subgroup group S, g 8, used above for constructing QF S,g , which
gets then mapped to a group H; ;,3 This set HS,g should be also thought of as a subgroup of the
Coxeter group G”g in the same manner as HS % is a subgroup of Gstgg, that is:

B G0

¢ ¢ (3.34)

HS? < G2

stg stg
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Having Q and HS,

S,g, we can therefore build the strong chamber 0% just by repeating the

stg

same steps done for constructing the BPS strong chamber 95% o get the structure of the set

e
Hstg ’
related to above L and L, by two folding matrix operators F and F as follows

stg -

notice that like the subgroup H it is as well generated by two operators £ and £,

stg >

L;=F.L.F (3.35)

It happens that the F and F have much to do with the f and f used in relating the Dynkin diagrams
of G, and SO(8); the main difference is that these F and F have the double dimensions compared
to fand f in agreement with eqs. (2.11)—(2.18); the folding operator F is given by a 4 x 8 matrix
and its companion F is a 8 x 4 matrix; in same way as FT . Recall that f is a 2 x 4 matrix operator
acting on the simple roots of SO(8); and fis a4 x 2 matrix. The explicit relationship between

the pair (F F ) and the pair (f, f') reads like

f 0 ~ f o0
F=<0 f> , F:(O f> (3.36)

These folding operators obey the property F F = I4,4 which is induced from ff = I, of

eq. (3.6). Explicitly, the two generators £ and L5 of the group H, S,g are given by

D2 R =Dy 0242
L= L L= 3.37
! <02x2 _]2><2> 2 < R ]2><2> (3.37)

with R a 2 x 2 matrix induced by the folding mapping. This matrix R is related to the previous
4 x 4 matrix R, of the SO(8) gauge theory as in eq. (3.27), by the following transformation as

R=fRf (3.38)

The explicit expression of the R matrix is given by
0 1
R = 30 s R=2hx» —Kg, (3.39)

The relationship between R and R (3.38) results from K, =f. K50, f by proceeding as follows:
First splitting the Cartan matrices Kgso, and K¢, by exhibiting the identity matrices I and
144 like

Kg,=2Dhyx2 —R , Ksog =2I4x4 — R (3.40)

Then calculating the folding of the SO(8) Cartan matrix f. K g0, £ by substituting Ko, in terms
of the R-matrix; this gives

Ko, =2f—f.Rf (3.41)

Moreover, by using the property ff = 1>, the above relation reduces to K, =2Irx2 — f.RI.
By equating with KG, =2Ix» — R, we obtain f. R f="R.

Having the explicit expressions of the £; and £, generators of H,,, we can now build the

stg’
mutation elements N,, of this set by proceeding in similar manner as for H, 5% We find the

stg
following properties:
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e composite L1 and Ly are reflections
The non-commuting generators £; and £, are also reflections; they satisfy

L=l . L3=1I4a (3.42)

showing in turns that the N,, elements HS; have the form

Nog = (L2£1)F , Nowy1 =L Ny (3.43)

o the subgroup Hg;

The generators £ and £, satisfy as well the properties

Nip = (L2£1)° = +1axa

3 (3.44)
N¢ = (L2L£1)” = —I4x4
indicating that Hg; is a finite discrete group with cardinality /2 as follows
Hy2 = {£1;4, %N, £N2, £N3, £Ny, £Ns) (3.45)

it is isomorphic to a 4 x 4 matrix representation of Dihy,.
G»

stg
The BPS/anti-BPS states of the strong chamber Dgé

trices of Hg;. The identity No = Igxg gives precisely the EM charges 8, 8, of two elementary
monopoles and the EM charges §1, 8, of the two elementary dyons.

By performing the first mutation N1 = £ on the primitive quiver Qg 2 of the Gy theory, that
1)

1

o the strong chamber Q
can be read from the rows of the N,, ma-

is Np: Qg 2> Q?z, the resulting quiver QIG2 has four new BPS states with EM charges y
directly read from the four rows of the matrix representation of N namely

1o o 1
01 3 0

M=o o 21 o (3.46)
00 0 -1

The first row of the above mutation matrix namely (1, 0, 0, 1) means that a BPS state with EM
charge y(ll) = B, + &2 has been generated by the first N; mutation of Qg %; the second row

(0, 1, 3,0) gives another new BPS state with EM charge yél) = B, + 348;; the third and fourth
give the EM charges of the anti-dyons. The BPS/anti-BPS states generated by the first mutation

G
on O, are as follows

B +é2 —é1

3.47
B, + 38 -0 047

By performing the eleven N, mutations of Hﬁg of (3.45), we obtain the list of the 24 BPS/anti-

BPS states of QSG,E,; it reads as follows

£ £ (B1+62) + (381 +282)
182 £ (B2 +d1) £ (22 +381)
+8 £ (281 +82) +(3B1+62)
+5 + (B2 +281) +(B2+3681)

(3.48)
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4. N =2 pure F, theory

In this section, we construct the BPS states of the strong chamber Df{fg of the N/ =2 pure Fy
theory by proceeding in same manner as for the G theory of previous section. First, we build the
folding (f, f) operators mapping DD g, down to the Dynkin diagram DD, . Then, we extend this
folding approach to linking the two primitive quivers Qg: % and Qg * by working out the explicit
expression of the extended (F, F) folding operators. After that we build the BPS states of the
strong chamber of QSF,‘;, of the supersymmetric pure F4 gauge model.

4.1. DDg, as folded DDg,

We begin by recalling that the 52 dimensional Lie algebra of the F4 gauge symmetry has
48 roots; the 24 positive roots are generated by four simple o, a2, @3, &4 with two possible
lengths generally taken like [|@;[|> = [|@2]|> =2 and ||@3]|®> = |G4]|> = 1 as well as &;.@41 = —1.
A weaker normalisation of these simple roots corresponds to thinking of their lengths in terms
of ratios like

E) - 2 - 2
llee |l llees |l lloe |l
=5 = ) P ) P 4.1)
llee2 | lloall llos|
These four simple roots may be expressed in terms of the six dj, ..., dg simple roots of the E¢ Lie
algebra with one length ||dg [|* = 2 as follows
a; = fX ag (4.2)

where fiK is a folding 4 x 6 matrix operator. By solving the normalisation constraints of the four
simple a;’s like

- 1 ,» - - 1=
ap =4 (a+a) , a3 =a3 “3)
- 1 - - - 1—> .
ay = (@+a) , o4 =_de
. . > 02 = 2 4 > 02 s 2 D
where ¢ is a non-zero real number, it results ||o1||” = [|oz||” = 2 and |la3||” = |lag]” = 7 if

choosing ¢ = v/2 we rediscover the normalisation [|&@;||> = ||@2|* = 2 and ||a3 > = [|as]®> = 1.
Therefore, the folding matrix operator f takes the generic form

100010
11010100

f_;001000 @4
000001

depending on a scaling parameter g. From this matrix operator, we can determine the explicit
. . L= -1 .
expression of its companion f given by 7 (ffT) and reading as follows

1 0 00
0100

= g0 0 20

f_50100 (4.5)
1 000
00 0 2
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I Z
& & & ® ® — ®
Es F4

Fig. 4. Dynkin diagram of F4 by folding the Z, symmetric nodes in Eg diagram.

The f and f obey the property ff = I4,4. Following the same approach used in section 3 by
applying the folding operations to the Cartan matrix K g, of the exceptional E¢ Lie algebra, we
obtain the Cartan matrix K r, of the exceptional K r, Lie algebra

Kp, =fKg I (4.6)

This relation is somehow an illustration of the folding depicted in Fig. 4 and it can be explicitly
checked by using (4.4)—(4.5) and

2 -1 0 0 0 0
1 2 -1 0 0 0
0 -1 2 -1 0 -1
Kes={ 0o o -1 2 -1 o @.7)
0O 0 0 -1 2 0
0 0 -1 0 0 2
and
2 —1 0 0
1 2 -2 0
o P (4.8)

4.2. BPS states of D.f;;

To obtain the BPS states of the strong chamber Qf{fg of the N' = 2 supersymmetric pure Fy
theory, we proceed as in subsection § 3.2. We use the two following data:

o the folding operators f and f, given by eqs. (4.4)—(4.5), relating the Dynkin diagrams of Fj4
and Eg, to link the two primitive quivers Qg“ and Qg: ¢ of the supersymmetric pure gauge
models with F4 and E¢ gauge symmetries; and

o the BPS states of the strong chamber DSEZZ,
BPS states

Ymn = Zmibi +nic; 4.9

of fog are obtained by mutating the primitive quiver Qg %; that is by performing the trans-

formations M, : Q(‘)E6 — 04"

of the supersymmetric pure E¢ theory. There, the

4.2.1. Strong chamber th‘;’;

The content of the chamber QsEfg is obtained by mgtating the primitive quiver QEg %, Generally
st?g st?g
generated by 12 fundamental reflections ry, ..., rj obeying

speaking the set of the quiver mutations {M,} =G
Eg
stg

of the strong chamber . is given by

the Coxeter group of G
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(Virj)mij =Ipx12 (4.10)
where the positive m;; integers are given by the Coxeter matrix [6]. In practice the content of
ng can be derived by restricting to a subgroup H, tg = {M,} of the Coxeter GEs stg- This subgroup

HE

s1g 15 generated by two particular composite reflection operators L and L given by

Ly =rersrarsrary , Ly = riari1riororgrs 4.11)

The matrix realisation of these two non-commuting generators is as follows

Toxe R —Isx6 Osx6
L= , Ly, = 4.12
! (06><6 _[6><6) : < R lox6 (+-12)

with 6 x 6 matrix R given in term of the Cartan matrix of the exceptional Lie algebra by 215x¢ —
K g and reads explicitly like

010000
1 01 00O
01 01 01
k= 0 01 010 “.13)
000 1 00O
0 01 0 00O
The composite reflections L1 and L, of eq. (4.12) obey obviously the property L2 L% = Isx6;
they generate the subgroup H”g of the Coxeter group G”g As for the group H”g of the SOg
theory, the elements of the set HA +¢ have quite similar structure as (3.29); Hfz, has 24 mutations
matrices M,, of the form
Moy = (LyLp) . M2k+1 = L1 My (4.14)
The finite value of the cardinality of H, ”g ¢ follows from the property
Moy = (LoL)"? = Ioxin (4.15)
leading to
Hs;,g {Mog, Mak+1}o<k<11 (4.16)

By using (4.12), one can write down the explicit expressions of the My, and Mpiy; matrix
mutations. These explicit expressions allow to write down the 2 (78 — 6) = 144 BPS/anti-BPS
states of the strong chamber QF6 of the N =2 supersymmetric pure Eg theory; the full list can
be found in [6].

Stg

4.2.2. Qstg Sfrom the folding onS,g
By using our qulver folding method, the primitive Qg ¢ gets mapped to the primitive Qg“; nd

the mutation set HES is mapped to H, Stg The last group is generated by £ and £, related to

stg
above L and L, as
Li=F.L;.F (4.17)
with

f 0 ~ f 0
f=(0 f) ’ fz(o f) 19
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The non-commuting matrix representations £ and £, are given by

I4xa R —I4xa O4xs
L= , Lo = 4.19
! (06><6 —I4><4> 2 < R I4wa ) ( )

with 4 x 4 matrix R = 2144 — K. This matrix reads explicitly as follows

0 1 00
|10 20 )
0 010
Like for Hfz,, the generators of H;Zt, obey as well the properties
L=’ =lxa . (LD =l 4.21)

teaching us that H2*

stg is also a representation of Dihy4. The 24 mutation matrices N, of this set
are given by

+Ny = +(L2Ly)F

(4.22)
ENyy1 = £LINy

Applying quiver mutations, we can work out explicitly the full list of BPS states of the th‘fg

strong chamber of the supersymmetric pure F4 gauge theory. In addition to the four elementary
monopoles B; and the four elementary dyons §; making the primitive quiver Qg“, the mutations

N,: 0 — o (4.23)

allow to generate the other BPS/anti-BPS states. For example, the first mutation N : Qg 4 Qf“
generated by the mutation matrix

1 000 O 1 0 o0
01 0 0 1 0o 2 0
001 0 O 1 0 1
0001 0 O 1 0

NMi=loooo -1 0 0o o (4.24)
0000 O -1 0 O
0000 O O -1 0
00 00 O O 0 -1

leads to the following BPS states
—é; B+
-4 81+ 26
2 ﬂz + 01+ 203 (4.25)
—83 B3+ 32+ 84
—84 By+83

The full list of BPS/anti-BPS states of the Qf{‘g chamber is directly read form the matrix repre-

sentation of the N, elements (4.22) of Hsfz; it contains 2 x 24 = 48 states. The BPS states with
integral positive electric—-magnetic charges are as listed here below; anti-BPS sates have opposite
charges.
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Bi B1+ 82 283+ 82 + 2684
B2 B+ 814283 282 +2B4 + 61 + 463
B3 B3+ 02+ 384 B1+2B3+ 282+ 84
Ba Ba+ 83 B2+ 81+ 83 4.26)
81 Br+ 283 Ba+2B4+ 61+ 2683
19 B1+2B3 42624284 B1+4P3 4352 + 284
83 Bo+ 081+ Pa+ 253 262+ B4+ 61+ 3683
34 B3+ & B1+ B3 +32+ 84
and
B1+ 263+ 25, B1+ 283+ 82 + 2684 283+ 6
382+ 2B4 + 281 + 4683 382+ 284+ 61 + 483 282 + 284+ 81 + 2583
B1+ 363+ 262 + 284 B1+ 363+ 282+ 6ba B1+2B3+ 82+ 64
B2+ Ba+ 283 B2+ Ba+81+ 83 B2+ 83 @27)
2B2 + 81 + 2683 B2+ 284+ 233 B2+ 81
281 +4B3 + 382 + 254 Bi+4B3+25+284 B1+2B3+ &
282 +2B4 + 61 + 383 282 + Ba + 81 + 283 B2+ Ba+ 83
283+ 82+ 84 B1+ B3+ & B3+ 84

5. Conclusion and comments

In this paper, we have approached the construction of BPS states of 4d N/ = 2 supersym-
metric pure gauge theories with gauge invariance G of non-simply laced BCFG type. To that
purpose, we have proceeded in two main steps: First, we have remarked that BPS quivers Qog
of supersymmetric pure gauge theories are two types: (i) QAD E quivers of ADE-type; and (ii)
QB CFG quivers of BCFG-type. This classification has been borrowed from the classification of
the Dynkin diagrams of finite dimensional Lie algebras; this is because BPS quivers in 4d N =2
supersymmetric pure gauge theories might be imagined as a duplication of Dynkin diagram of
the Lie algebra of the underlying gauge symmetry. In the case of Dynkin diagrams, the basic
node is given by Kj,,; and in the case of primitive quivers Qg the basic object is .Ag Y2 as shown

on following table; generic Q ’s correspond to intersecting of several ASUZ’

Gauge symmetry | Dynkin diagram | Matrix AO of primitive Q0
SU. 0 -2
SU((2) Ksu, =2 Ay 2=<2 0 )
— 5.1
ADE KADE:K AADE <? 01> ( )
. 0 —kT

BCFG K =K |[ABCFG=( - _ 7

BCFG Ag FPORT_F

The structure of the various primitive quivers Qg is explicitly exhibited on the lists given by
Figs. | and 2; the quivers type QB CFG have a diagonal link in addition to the vertical and hor-

izontal links appearing in the QAD E graphs; the diagonal link is therefore a special property of
QECFG.
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In the second step, we have focused on N = 2 supersymmetric pure gauge theories with
exceptional G, and F4 gauge invariance. First, we have constructed the folding operators f and
f mapping the simply laced Dynkin diagram of the Lie algebra of SO(8) down to the Dynkin
diagram of the Lie algebra of the gauge symmetry Gy.

f: DDsoy — Dg, , K, =fKso.f 5.2)

with ff = I;;. Then, we have extended this construction to the BPS quivers; the desired quiver
Qg % is obtained by folding Qg % by help of the folding matrix operators f and f. Knowing the

BPS states of the strong chamber of Qf,gg, we have derived the BPS states of the DSG,fg

We have also shown that these BPS states are completely controlled by a non-abelian group HS;
isomorphic to 4 x 4 matrix representation of the dihedral group Dih ;.

After that, we have used the relationship between the Dynkin diagrams Eg and Fy to build the
BPS states of the strong chambers of the supersymmetric pure F4 gauge model. We have derived
the explicit BPS/anti-BPS states content of the strong chamber of Qj.’;;. Here also this content is
completely controlled by a non-abelian group Hsfz
the dihedral group Dih»g4.

In the end of this study, we would like to notice that the lists of BPS quivers given by Figs. 1
and 2 is very remarkable; its similarity with Dynkin diagrams is very suggestive; it would be
interesting to deepen this aspect by shedding more light on this correspondence and its generali-
sation to affine Kac—Moody type diagrams.

chamber.

isomorphic to 8 x 8 matrix representation of

Appendix A. Quiver superpotentials

In this appendix, we give the chiral superfields and the superpotentials associated with the
primitive BPS quivers Qg of the N/ =2 pure supersymmetric gauge models considered in this
study; they concern those gauge group symmetries G given by the four following ones: SO(8),
G2, E@ and F4.

A.l. N =2 supersymmetric SO(8) and G, models

We first give the chiral superpotential Wg Os (®) of the N =2 supersymmetric pure SO(8)
theory; then we turn to the derivation of the Wg 2 (@) for the G, model obtained by folding
method.

e SO(8) gauge model
The primitive quiver Qg 9% of the pure SO(8) theory has six 4-cycles and fourteen superfields ®

as depicted on Fig. 5. By using the prescription of ref. [2] for building superpotentials, the W(S) Os

is a quartic chiral function given by

Wy % = (A19FArp1 — Bidbi Bagr) +
(A205 A3y — Baps Bagha) + (A1)
(A295 Asps — B2} Baghs)
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Fig. 5. Chiral superfields and cycles of primitive BPS quiver Qg 08.

The F-term equations, following from WOS 08, are as follows

and

¢1A201 =0 ., Bapie =0
Arpsdp =0,  Bap3ies =0 (A2)
A3z =0, A19{d1 + A3dida + Asgp3p3 =0
$1Bagp1 =0 ,  Bidié1 + B33 + Bap3s =0
(AjA2 = B1B))¢ =0 ,  (A1A2—B1By)¢] =0
(A2A3 — B2B3) 92 =0, (A2A3 — B2B3)¢; =0 (A.3)
(A2A4 — B2By) 93 =0, (A2A4— BaBy)¢; =0

The solutions of these relations define the moduli space M§08 of the ground state of the super-
symmetric quantum mechanics. Recall that M., is the space of solutions to the F-term equations
subject to a stability condition modulo the action of the complexified gauge group [[; GI(n;, C);

for details see [1,2].

e Gy gauge model
The primitive quiver Qg 2 of the G, theory is given by Fig. 6; it involves 10 chiral superfields
and has six cycles: two 4-cycles and four 3-cycles. By using the convention notation of [14], the
superpotential of the G; theory reads as follows
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Fig. 6. Chiral superfields and cycles of primitive BPS quiver Qg 2

W2 = Ayp*Bip — A1pBayr*
— Ayt — Ang* (A4)
+B1yy* + Binn*

The F-term equations are given by

¢*Bip =0 ,  ¢By* +yYn*+ne* =0 (A5)

Apy* =0 . A p+ Yyt +ant =0 '
and

Bin—Aiy =0 , AxBi¢— Ay =0 (A6)

Biy —A1¢By =0,  Ax*Bi— A1 By* =0 '
and the diagonal superfields lead to

Bin*— A" =0 , Biy*—Amn* =0 (A7)

Like for M;OS, these constraints define the moduli space M? 2 of the ground state of the super-
symmetric quantum mechanics.

A.2. N =2 supersymmetric E¢ and F4 models

First, we consider superpotential WOE6 of the pure E¢ gauge theory; and turn after to W(f 4 of
the supersymmetric pure F4 model obtained by the folding approach.

o Eg gauge model
The primitive quiver Qg: 6 of this theory involves 22 chiral superfields and ten 4-cycles as shown

on Fig. 7. The explicit expression of the superpotential WOE ® reads as follows

Wi = (A32Ashs — BadtBods) + iy (AidF Aiy10i — Bid! Biy19)
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Fig. 7. Chiral superfields and cycles of primitive BPS quiver Qg 6.

The corresponding F-term equations following from above W(f 6 are given by

¢ A201 =0 , @B =0

Asgya =0 ,  Bipi¢s =0

A395¢s =0 , B3¢5¢s =0 (AS)
A19]p1+d5A3¢2 =0 . Bidpid1 +¢3Bsdr =0 '
A3 + 95 A4¢3 =0 . Brdidr + ¢ Bags =0

A3Q5p3+ ¢fAsps =0 . B3dpids + ¢ Bsps =0

and

(A1A2 = B1B)¢1 =0 ,  (A1Ay— B1B)¢f =0

(A2A3 — B2B3) ¢ =0, (A2A3— B2B3)¢; =0

(A3A4— B3By) ¢3 =0 ,  (A3A4— B3By)¢; =0

(A4As — B4Bs)¢ps =0 ,  (A4As5 — ByBs)¢; =0

(A3A6 — B3Bs) s =0 ,  (A3A¢— B3Bs) 95 =0

e F'y gauge model
The primitive quiver Qg“ of this theory is given by Fig. 8; it has eight cycles containing six
4-cycles and two 3-cycles as shown in Fig. 8. By extending the construction of [2,14], the super-
potential of the F4 theory is given by

Wit = (19! Badi — Bigp: Asdpr) +
(A20% B3s + A3a Banf* + Asngs + Bynn®) (A.9)
(A3¢% Bagps — B3gp5 Aughs)
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with F-term equations as

@] B2g
B3¢3¢3
¢35 B3¢y — B19] 1

=0
=0
=0

$2Ban™ +ng5 + ¢3Bas =0

and
(A1B; — B1A2) ¢f =0
A2¢3 B3+ A3Bon* =0
A3} + Ban* =0
(A3B4 — B3A4) ¢35 =0

Appendix B. Mutations H, g

In building the BPS states of the 99

the Coxeter ngtg. The set HY,

stg

stg

in chambers £)

. 9T Axd
. A3pids
. A1g{d1 + Azgon®

(A1B2 — B1A2) 91 =0
AyB3pp +Azn =0
A3¢rBr+B3n =0
(A3By — B3A4) 93 =0

g
stg

stg

=0
=0
=0
. Apidr +nnt — 3 Asds =0

strong chambers, we have used a subgroup Hsg

(A.10)

(A.11)

7g Of

is generated by two non-commuting reflections denoted in the

core of paper by L; and L; and given by products type H r; with r; standing for fundamental
reflections r;. In this appendix, we give the explicit expression of the fundamental mutations r;

generating ggg.

B.1. Fundamental reflections of QSS,(;S and G&2

stg

Here, we give explicit details regarding fundamental reflections of the Coxeter groups QSS,O;

and QS; as well as on their subgroups

S0g G
Ho' and Hgo

used in our analysis of section 3.
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B.1.1. Fundamental reflections of gf,z,s

The set of mutations of the strong chamber of 4d N = 2 supersymmetric pure SO(8) gauge
model is a group generated by 8 fundamental non-commuting reflections r; acting on the prim-
itive quiver Q(S)Og. For convenience, we split these basic reflections into two subsets; one subset
with 4 reflections associated with the four elementary dyons; they are denoted like r; = 71,
rp =t, r3 =13, r4 = t4; and the remaining four others associated with the four elementary
monopoles; they are denoted like rs = s1, rg = 52, r7 = 53, rg = s4. The reflections #; and s;
are realised by 8 x 8 matrices as follows

tzog — <I4><4 Rk> ’ S;og — (51( 04x4> (B.1)
O4x4 &k Ri  Isxa
with k = 1,2, 3,4. The & is a 4 x 4 diagonal matrix with components (&), = —1, (&) =1
for i # k and zero elsewhere; in a condensed manner it reads as

(E)ij = (=D s, (B.2)

The Ry is a 4 x 4 matrix related to the matrix R of (3.27) like & R;; and therefore to the K iSjOs

Cartan matrix as follows

(Ri)yj =15 (26 — K57) (B.3)

508

The two first 7;* and 7,”® matrices and their 5;”* and 5, homologue are as follows

1 000 O O0OO 1 000 0 1 00O
01 00 1 0O0OO 01000 O OO
0 01 0 0 0O0ODO 00100 1 00O
508 _ 0001 0 O0O0O 508 _ 00O0T1TO0O 1 00O
! 0000 —1 00O0O0|° 2 000OT1 O OO
0000 O 1 0O 000O0O0O -1 00
0000 O O0OT10O0 00 0O0OO0O O 1O
0 00O O O0O0O°1 000 O0O0O O 01
(B.4)
and

-1 0 0 00O O OO 1 0 0 0 0 O0 OO
0O 1.0 00 0 OO0 0O -1 0000 0O
0O 01 00 O0OO 0O 0 1 00 O0OTO
Si"}g _ 0 001 0O0O0O0 7 S;OS _ 0O 0 01 00 O0O0
0O 00 010 O0O0 0O 1 001 00O
1 00 0 01 0O 0O 0 00 O0O1O0OTUO
0O 00 00O0OT1O 0O 1 00O0O0OT1O

0 00 0 0 0 O0 1 0O 1 000 O0O0

~
o
)

~
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The set of quiver mutation gf,gOS generated by the eight r;’s has a Coxeter group structure; the
generators are non-commuting and satisfy

S0g
(rirj)" " =1 (B.6)

integers mfjos given by the Coxeter 8 x 8 matrix

1 22 2 2 3 22
21 2 2 3 2 33
2 21 2 2 3 22
2 2212 3 2 2
SO0g __
M™=123 2212 22 (B.7)
32332122
2 322 2 2 12
2 32 2 2 2 21
By using the 4 x 4 matrix J,
1 1 11
1 1 11
T=11 1 11 (B.8)
1 1 11
we can express it like
2J—1 2J+R
$Og _
M _<2J+R 2J—I) (B.9)

SO
stg

. . S0, SO
ory, we have used the two composite mutation operators L ¥ =rqr3ror; and L5 S =rgrirers;

these are non-commuting reflections generating a subgroup Hssté?g =~ Dih, of the Coxeter GSSZZS.

To generate BPS states in the strong chamber £;,,° of the supersymmetric pure SO(8) gauge the-

B.1.2. Fundamental reflections of ng,

The set Ggg of mutations of the strong chamber of 4d A = 2 supersymmetric pure G, gauge
model is a group generated by 4 non-commuting reflections: r; = t1, ro = > generators for the
two elementary dyons in the primitive quiver; and r3 = s1, r4 = s; for the elementary monopoles.
These reflections are realised by 4 x 4 matrices like

G, [ L Rk Gy [ & Oax2
L _<02><2 5k) ’ %k _(Rk I (®.10)

with k = 1, 2. The & is a 2 x 2 matrix with entries (—1)%* d;j and the (Ry);; is related to the
matrix R;; of eq. (3.39) like &;;R;;. Explicitly, we have

10 0 0 1 00 1

e, o1 3 o0 e, o1 0 o0

"=1lo 0o -1 0 - h'=1o 01 o0 (B.11)
00 0 1 000 —1
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and
-1 0 0 O 1 0 00
G,_ | 0 1 00 G, _ |0 -1 0 0
=10 01 0 % =0 1 10 (B.12)
30 01 0 0 0 1
2
The set of mutatlon thg has a Coxeter group structure with generators #; satisfying (rl r j) i =

I, 92 \where the m 2 integers are the entries of the Coxeter matrix

1 2 2 6
21 6 2
Gy _
M>? = 26 1 2 (B.13)
6 2 2 1

These reflections are related to the G;;¢ ones by using Folding matrices F and F (3.36) obeying

stg
FF = id: We have:

rIG2 = Fr;’*F

Gy S08 _S08 S08

r —F(r4 r3 )F

57 = Fs)F

Gz _ s0g S0§ S0g

5,7 = F (5753%s") F

(B.14)

To generate BPS states in the strong chamber Q”g of the 4d N = 2 supersymmetric pure G;
gauge theory, we have used the two composite mutation operators £1 = rpry and Ly = rar3.

B.2. Fundamental reflections of GS,Z, and Gsi“g
In this subsection, we give exphclt details regarding the fundamental reflections of GS,g, GSF,‘L,

and their subgroups H”g and Hstg used in section 4.

B.2.1. Quiver mutation set GS,g

The set of mutations of the strong chamber DY, ¢ of 4d N =2 supersymmetric pure E¢ gauge
model is a group generated by /2 fundamental reflections; six of them r; =, ro =1, r3 =13,
r4 =14, 5 =15, r'e = g associated with the elementary dyons; and the other six r; = 51, rg = s2,
r9 =83, 0 = S4, F11 = S5, 12 = S with the elementary monopoles. As in the case of SOg gauge
model, these basic reflections can be realised by 12 x 12 matrices as follows:

Eo Is Ry $Eo _ & Osxe
t, = , B.15
k <06><6 5k) % (Rk Is (B.15)

with k =1,2,3,4,5,6. The & and Ry are given by

Eij = (=D &

(B.16)
(RO = 85 (20 — K[°)
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188

As an example, we give

B.17)

0 00 0O
0 00 0O
0 00 0O
0 00 0O
0 00 0O
0 00 0O
0 00 0O

0
1
0
0
0
0

-1

0 00 0O

1
1
0
0 0 0

0

0 0 00

0 0 0

1

0
0

1

00 0 00O
00 0 O0O0O
00 0 0 OO
00 00 OO
00 00 OO

0
00 0 O0 OO

1

00 0 0O

1

00 00

0 00O

1
0
0

0
0
0
0
0

0 00

1

0

0
1

1
0 00O

0 00

E¢ _
o=

and

(B.18)

00 0O0OOOOOTO0ODTO0OO0

—1

0 000O0OO0OO0OTO0OTG OO

1
0
0

0
0

0 000 O0O0OO0OTO0OO0

1
0

0000 O0OO0OO0OTO O

1

00 0 0 O0O0O

0 0 0 1

0
0
0
1
0
0
0
0

0 000 O0O
1 000 0O

00 0 0 0O

1

00 00
00 0 0O

0 0 0O

1

0 0 0

1

000 0 O0O0O

0
0

1

0

1

00 0O0OOOOO0OTU OO0

1

00 0 O0O0OO0OO0OO 0
000 O0OOO0OTO 0O

are the entries of the Coxeter 12 x 12 matrix

E¢
L

has a Coxeter group structure, with generators satisfying the
where m

3

stg
E¢
Iid

Eg
ij —

The set of quiver mutation G
following features (r,~ rj )m

(B.19)

2 222 2 2 322 22

1

2
2

2 222323222

1

2

2222323123

1

222 2 3 2 3 2

1

2 2 2

2 22 2 3 2 2

1

2 2 2 2

1 2 2 3 2 2 2

2 2 2 2 2

1 2 2 2 2 2

2 32 2 2 2
323 2 2 2 2

2 2 2 2

1

2 32 3 2 3 2 2

2 2 2

1

2 23 2 32 222

2
2

1

2

1

1
22322 222222

2 22 32222 22

MFEs
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By using the 6 x 6 matrix J

(B.20)

— = e =
— e
— e
[ T N Sy,
— e e
—

we can express M Fe like

2J—-1 2J+4+R
Ee _
M _<2.]+R 2J—I> (B.21)

To generate BPS states in thee strong chamber of the supersymmetric pure E¢ gauge theory,
we have used the two composite mutation operators Lf(’ = rersrarsrary, L, 8 = riar11r10r9r817

generating a subgroup Hfg, >~ Dihyy of the Coxeter gﬁg.

Fy
stg

The set GSI;“g of mutations of the strong chamber of 4d A/ = 2 supersymmetric pure F4 gauge
model is a group generated by 8 reflections: r| = t1, ro = t2, r3 = 13, ra = t4 generators for the
elementary dyons in the primitive quiver; and rs = s1, rg = 52, 7 = 53, r3 = s4 for corresponding
monopoles. These reflections are realised by 4 x 4 matrices like

G, 1a Ry Gy [ & Oaxs
i _(04><4 5k> ’ Sk _<Rk Iy (B.22)

where (€);; = (—1)%ik 8ij and (Ry);; = 8kjRij. As examples, we have

0 0 0 0

B.2.2. Quiver mutation set G

S o~ O

(B.23)

[=NeNeloNo e el
[cNeoNeBoNel S =X=]
[=NeoNeBaol S RNl

SO OO OO~
—
SO = OO OO
o= OO O oo
—_—0 O O O oo

coo |l

and

B _ (B.24)

SO~ OO OO

=NeoNoNoNelel =
S o oo~ OO
S oo OoO R~ OO O
S OO~ OO OO
SO~ OO O OO
=N NeloNcholeol=
—_— O OO oo oo

Fy
_f,‘;, has a Coxeter group structure with generators 7; satisfying (r;r;)"" =

I 554 where the m 54 integers are the entries of the Coxeter matrix

The set of mutation G
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1 222 2 3 22
21 2 2 3 2 4 2
2 21 2 2 4 23
2 2212 2 32
Fy __
MP=12 32212122 (B.25)
3242 21 2 2
2 4 2 3 2 21 2
2 23 2 2 2 21
These reflections are related to the 952 ones by using Folding matrices F and F (4.18) obeying
FF = I; these matrices have been explicitly constructed in section 4 of present study; we have:
rf4=.7-'(r5E6rlEﬁ>j: , sf“:]-'(sfé's?)j:
Fy E¢ E6\ 71 Fy Es Es\ 1
r :]—'(r r )]—" , s :]—'(s s ).7-"
2 4~ 2 2 4~ 2 (B.26)
r3F4 = ]-'r3EG]-' , sf“ = ]-'sfs]:
rf“ = fr6E6j: , sf“ = fsé%j:

To generate BPS states in the strong chamber of 4d A/ = 2 supersymmetric pure F4 gauge theory,
we have used the two composite mutation operators L1 = rqr3rpry and Lo = rgrirers.
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