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SLATER’S THEOREM FOR MAGNETIC MIRROR
BOUNDARY PERTURBATIONS
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A general form of Slater’s formula, taking into account perturbations of Electric as well as Magnetic Mirror
boundaries of a microwave cavity, is presented. The frequency shift induced by the Magnetic Mirror perturbation
has the opposite sign to that of the Electric one.
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1 INTRODUCTION

The procedure shown in Figure 1 is often used to compute frequency shifts induced by
“small” deformations of a cavity under the effects of various forces: helium bath pressure,
thermal stresses, tuning or Lorentz forces. 12

Such a scheme is very useful to evaluate the effect of “small” perturbations of the cavity
shape because it provides good and fast estimates of the frequency shift without need for
time consuming field codes that may, moreover, introduce errors of the same order of the
frequency shift itself because of their finite discretization of boundary walls. The scheme
is however not as simple as it appears at a first glance. For example a not completely
rigorous application of Slater’s theorem may produce an overestimate of the frequency
shift, in particular when a cavity oscillating in a 77 — mode is shortened under the effects
of the perturbation. One must remember in particular that calculating the frequency of
an accelerating @ — mode with a field code requires imposing Magnetic Mirror boundary
conditions on the iris planes.
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FIGURE 1: Procedure to compute “small” frequency shifts.
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In the next section a general derivation of Slater’s theorem, taking into account Electric

(EM) and Magnetic Mirror (MM) boundary conditions, is discussed.

2 DISCUSSION OF SLATER’S THEOREM

The frequency shift of a resonant mode under the effect of a cavity wall perturbation is
calculated from the well-known Slater’s formula:>

Swy 1 ( 2 2
= goE* — uoH )dv 1
T 0 Ko (1
Sv*
where:
T l 2 2
U= 1 g0E* + noH* ) dv )
14

is the average energy stored in the cavity volume V and §v* is the volume variation caused by
the deformation at the neighborhood surface S representing the cavity wall. It is important
to stress that S is a perfectly conducting wall on which EM boundary condition: n x E = 0
applies.

The formula (1) is incorrect for all perturbations of a MM boundary $’ wheren x H = 0
as for example the case of iris plane displacement considering the w _TMojo accelerating
mode. This situation can occur for perturbations leading to a shortening of a cavity, see
Figure 2.

A more general Slater’s formula taking into account the perturbation of EM as well as
MM boundary is the following:

Swy _ 1 2 2 1 2 2
. —40/(80E woH )dv+ﬁ- / (M()H & E )dv 3
Sv*

sv**

The first term coincides with Equation (1) the second is valid on the iris plane (MM) and
has the opposite sign to the first one.

Slater’s theorem has been dealt with and generalized by many authors.*>-6.7.8.9,10.11 Eor
example a useful formula for determining complex electric and magnetic susceptibilities by
measuring the frequency shift produced by introducing a sample into a resonant cavity has
been discussed by Hutcheon ez al..” They show that the Slater’s perturbation formula for a
perfectly conducting sample can be easily derived from their formula as a limiting case of
a sample with i, — 0 (and &, — 00, see also References 9 and 11). This case includes the
one of a local perturbation of the cavity metallic wall, that corresponds to a perturbation of
EM boundary condition. The correspondence with the case of MM boundary perturbation
is not evident, although it could be obtained as a limiting case of a sample with u, — oo
and g, — 0, (see the Appendix for further details).

We have therefore demonstrated the general formula (3) starting directly from the Slater
treatment. We recall now for completeness the main steps by a simplified notation.!?
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FIGURE 2: A schematic drawing of a cavity perturbation. Slater’s theorem must be applied not only in regions
Sv* where Sw<0 but also in region §v** where §w>0 in accelerating 7-mode.

Let E and H be written in terms of the complex cavity field functions {e,, h,} within a
volume V as follows:
E(x,y,2,1) = Sya,(D)ey(x, y, 2)e/® H(x,y,z, 1) = T,b,(H)h,(x, y, 2)e’®" (4)
where {e,, h, } must satisfy the following equations:
[v2 + kf] e, =0 [v2 + kf] h, =0 )
within a volume V, where k,, = w, /c. For solenoidal fields we have:

Vee, =0 Veh,=0 (6)

and the boundary conditions are (EM over a surface S and MM over another surface S’):

nxe,=0overS nxh,=0overS (7a)

n-h,=0o0verS n-e, =0 overS’ (7b)
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where n is a unit vector pointing outward from the cavity surface. The normalization
conditions are:

/e,, ~edev =&y /hv -hI*Ldv = vy ®)
1% 1%
and the coefficients a, (¢), b,(¢) in Equation (4) are given by:
av=/E~e\’jdv bv=/H-h:dv )
1% 1%

From Maxwell’s equations we have:

Vxe, =kh, Vxh, =ke, (10)

and the average stored energy is:

_ 1 1
U= Esozvlaﬂz = Euozulbﬂz (11)

Slater obtained for each component of the field amplitude the following wave
equation:3

1 d?a,
c2 dt?

d
+ k2a, = ro /(n x H) - ejds — ky / (n x E) - hids (12)
8s*

S **

where 8s* and §s** are closed surfaces obtained joining the perturbed and the unperturbed
surfaces of the EM and MM type respectively. In the last equation are taken into account the
contributions of the surface current J, = n x H (first integral) and of the fictitious magnetic
surface current J,, = n x E (second integral), which appear on the perturbed surfaces at
the discontinuity of the tangential component of H and E fields respectively.

Setting now

E=a,()ey, H=0b,(Dh, 13)

the surface integrals in (12) become:
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(n x ayey) - hids = a, / n- (e, x h)ds

(SS** (SS**

=a, / V- (e, x h})dv

81}**

=aU/(h*-Vxev—ev‘Vxh:)dv

su
=a, / (b} - kyh, —e, - kye}) dv
8v**
= kya, f (hﬁ - eﬁ) dv (14)
SUsex

where one applied the divergence theorem to the volume §v** enclosed by the surface 85**
and:

/ (0 x byh,) - e¥ds = kyb, f (eﬁ - hﬁ) dv
8s*

Sv*
=jwveoavf(e§—h3> dv (15)
Sv*

where §v* is the volume enclosed by the surface 8s* and where one used the equality
kyb, = jwyepa, as derived from Maxwell’s equations for a source free cavity.

Introducing the above integrals in Equation (12), calculating the temporal derivatives
da,/dt = jwa, (Where w is the frequency of the perturbed cavity), and multiplying both
sides of Equation (13) by a}}, (a, - a} = |a, |2), one has:

[(ug — wz] |a,,|2 = —a)‘zjla,,l2 / (e‘z, — h%) dv — a)3|av|2 / (h% — ef) dv (16)

Sv* Sv**
To first order in dw,, setting w = w, + dw, one finally obtains:

bl [@e [(-de @

Sv* Su**

which because of Equations (11) and (13) is identical with Equation (3).



222 M. FERRARIO

3 EXAMPLE

We have computed frequency and fields of a TESLA cavity with an improved!? version
of SUPERFISH!3 that performs a discretization of the Helmoltz equation over an irregular
triangular mesh of up to 32000 points (in this example we used 20000 mesh points
corresponding to 0.055 cm mesh size, 76 mesh points on the the boundary and a 1078
frequency accuracy.'!) The surface electric field amplitude is calculated from the relation:
E = (1/kr)a(rH)/94, £ being the path coordinate along the cavity boundary. Because
the quantity » H(r, z) is discretized up to the second order on the mesh points, a spline
interpolation of the electric field was used to calculate the field to the second order also,
instead of the previous linear interpolation.

As an example of the importance of using the complete Slater formula (3), note that
shortening the TESLA cavity by 10~ mm, by cutting off a slice at the iris plane —
where Magnetic Mirror condition has been imposed — while leaving the rest of the cavity
unchanged, gives according to Equation (3) a frequency shift of +2.03 KHz. A test run of
SUPERFISH on the same shortened cavity gives a frequency shift of 4+2.06 KHz which
agrees with the result of Equation (3).

The frequency shifts calculated with Equation (3) for various “cuts” on EM and MM
planes are shown in Figure 3.
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FIGURE 3: Generalized Slater’s formula (3) results: frequency shifts induced by shortening the TESLA cavity
by 10~3 mm, by cutting off a slice at either the iris or at the equator plane — where different boundary condition
are imposed — leaving the rest of the cavity unchanged. (Unperturbed frequencies are: 0_.TMy;¢ = 1276.667 MHz
and 7 -TMo;0 = 1301.016 MHz).
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APPENDIX

The following formula has been discussed by Hutcheon:’

Sw 1
w: =17 (xmuoHs - H + xee0Es - Ej) dv (18)
v

where:

Xe=¢ —1 Xm = My — 1 (19)

are the electric and magnetic susceptibilities, H, and E, are the unperturbed fields,
H; = G,,H, and E; = G_E, are the fields inside the perturbing sample which are related
to the unperturbed fields through the coefficients:

1
a 1+ Xe,mFe,m

where F, ,, are sample form factors (F, ,, = 1/3 for a sphere). The case of a wall displaced
approximately parallel to itself!! corresponds to Gem = 1.
Substituting E; - E} = G.E? and H; H} = G, H? in Equation (18) one has:

Gem (20)

Sw 1 2 2
wvv = E (XmILOGmHo + X280G€E0) dv 21
v

Two limiting cases are included in the previous formula (21):

1) Metallic sample:7'9’11 with e, — ooand u, — 0
Swy, 1 2 2
- E2 — oG H )d 22
Py 4U (80 o I'LO mtio v ( )
v

setting G, = 1 it corresponds to the original Slater’s formula (1) for a EM boundary
perturbation

2) Ideal sample with u, — oo and g, — 0

Swy 1 2 2
- H? — £0G,E )d 23
wy 4U (MO 0 £00¢ o v ( )
v

setting G, = 1 it corresponds to the case of a MM boundary perturbation formula (3)





