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The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ
and electric charge q to extract the Coulomb energy of a charged Reissner–Nordström black hole. The 
rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity 
which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-
scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this 
composed physical system have shown that, in the linearized regime, the inequality q/μ > 1 provides 
a necessary condition for the development of the superradiant instability. In the present paper we use 
analytical techniques to study the instability properties of the charged black-hole bomb in the regime of 
linearized scalar fields. In particular, we prove that the lower bound q

μ >

√
rm/r−−1
rm/r+−1 provides a necessary 

condition for the development of the superradiant instability in this composed physical system (here r±
are the horizon radii of the charged Reissner–Nordström black hole and rm is the radius of the confining 
mirror). This analytically derived lower bound on the superradiant instability regime of the composed 
black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of 
the instability spectrum.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Kerr black holes may contain large amounts of rotational ener-
gies which can be released by bosonic fields that scatter off these 
spinning black holes. In this physical process, which is known 
as superradiant scattering [1–3], an incident bosonic field whose 
proper frequency lies in the superradiant regime [1–4]

0 < ω < m�H (1)

can extract the rotational energy and angular momentum of the 
spinning Kerr black hole (here m is the azimuthal harmonic index 
of the incident bosonic field and �H is the angular velocity of the 
black-hole horizon).

The rate of energy extraction from the black hole can grow ex-
ponentially in time if the bosonic field is prevented from escaping 
to infinity. The required confinement mechanism can be provided 
either by a reflecting mirror which surrounds the black hole [2,5]
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or, for a massive bosonic field, by the mutual gravitational attrac-
tion between the central black hole and the extracting field [6,7].

It should be emphasized that not all bosonic modes trigger the 
black-hole superradiant instability. In particular, it was proved in 
[8] that the inequality

μ <
√

2 · m�H (2)

provides a necessary condition for the development of the super-
radiant instability in the composed Kerr-black-hole-massive-scalar-
field system, where μ is the proper mass of the exploding scalar 
field.

As pointed out by Bekenstein [9], an analogous superradiant 
amplification of bosonic fields may occur when a charged field 
scatters off a charged black hole. In particular, a charged scalar field 
whose proper frequency lies in the superradiant regime [9]

0 < ω < q�H (3)

can extract the Coulomb energy and electric charge of a charged 
Reissner–Nordström (RN) black hole (here q is the charge coupling 
constant of the incident scalar field and �H is the electric potential 
of the charged black hole).
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Interestingly, it was proved in [10] that, contrary to the spin-
ning (Kerr) case, in the charged (RN) case the gravitational at-
traction between the black hole and the massive charged scalar 
field cannot provide the confinement mechanism which is re-
quired in order to trigger the black-hole superradiant instability. 
The charged black-hole bomb must therefore include a reflecting 
mirror which surrounds the black hole and prevents the amplified 
charged bosonic field from escaping to infinity [11–13].

In a very interesting work, Degollado et al. [11] have used nu-
merical techniques to study the instability properties of the com-
posed RN-black-hole-charged-scalar-field-mirror system. In partic-
ular, it was found in [11] that, in the linearized regime [14], the 
inequality

q

μ
> 1 (4)

provides a necessary condition for the development of the super-
radiant instabilities in this charged system.

The main goal of the present paper is to explore the super-
radiant instability regime of the composed RN-linearized-charged-
scalar-field-mirror system (the charged black-hole bomb) using an-
alytical techniques. In particular, below we shall provide an an-
alytical explanation for the characteristic inequality (4) observed 
numerically in the interesting study of Degollado et al. [11]. More-
over, in this paper we shall derive a stronger lower bound [see 
Eq. (45) below] on the dimensionless charge-to-mass ratio which 
characterizes the explosive charged massive scalar fields.

2. Description of the system

We shall study the dynamics of a charged massive scalar field 
� linearly coupled to a non-extremal charged RN black hole of 
mass M and electric charge Q . The charged RN black-hole space-
time is described by the line element [15,16]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2) , (5)

where the metric function f (r) is given by

f (r) = 1 − 2M

r
+ Q 2

r2
. (6)

The zeros of f (r),

r± = M ± (M2 − Q 2)1/2 , (7)

determine the horizon radii of the charged RN black hole [15].
The dynamics of a test scalar field � of proper mass μ and 

charge coupling constant q [17,18] in the background of the RN 
black-hole spacetime is governed by the Klein–Gordon wave equa-
tion [19–21]

[(∇ν − iq Aν)(∇ν − iq Aν) − μ2]� = 0 , (8)

where Aν = −δ0
ν Q /r is the electromagnetic potential of the 

charged black hole. One can decouple the radial and angular parts 
of the scalar field � and express it in the form

�lm(t, r, θ,φ) = eimφ Slm(θ)Rlm(r)e−iωt , (9)

where ω, l, and m are respectively the conserved frequency of the 
field mode and its angular harmonic indices [22,23].

It is worth noting that the sign of �ω in (9) determines the 
(in)stability properties of the scalar field mode: stable modes (that 
is, modes decaying in time) are characterized by �ω < 0, whereas 
unstable modes (that is, modes growing exponentially in time) 
are characterized by �ω > 0. Stationary modes with �ω = 0 mark 
the boundary between stable and unstable solutions of the Klein–
Gordon wave equation (8). These marginally stable field modes are 
characterized by the critical (marginal) frequency [see Eq. (3)]

ωc = qQ

r+
(10)

for the superradiant scattering phenomenon [9].
Substituting the scalar field decomposition (9) into the Klein–

Gordon wave equation (8) and using the line element (5) of the 
RN black-hole spacetime, one finds that the radial function R(r) is 
determined by the characteristic radial equation [19–21]



d

dr

(



dR

dr

)
+ U R = 0 , (11)

where


 ≡ r2 f (r) (12)

and

U ≡ (ωr2 − qQ r)2 − 
(μ2r2 + Kl) . (13)

Here Kl = l(l + 1) (where m and l ≥ |m| are integers) are the char-
acteristic eigenvalues of the angular function S(θ) [19–21].

The characteristic equation (11) for the radial eigenfunction 
R(r) should be supplemented by the physical boundary condition 
of purely ingoing waves at the black-hole horizon [5–7,11]:

R ∼ e−i(ω−qQ /r+)y as r → r+ (y → −∞) , (14)

where the radial coordinate y is determined by the relation dy =
dr/ f (r) [see Eq. (18) below]. For field modes in the superradiant 
regime (3), the near-horizon boundary condition (14) corresponds 
to an outgoing flux of Coulomb energy and electric charge from 
the charged RN black hole [9–13]. In addition, the reflecting mirror 
which surrounds the composed black-hole-field system dictates the 
boundary condition [5,11–13]

R(r = rm) = 0 (15)

for the confined scalar field, where rm is the radial location of the 
mirror.

3. The effective radial potential of the composed 
RN-black-hole-charged-massive-scalar-field system

The radial equation (11), together with the boundary conditions 
(14) and (15), determine a discrete family of complex field reso-
nances {ωn(rm)} [5,11,12,24]. As mentioned above, Degollado et al. 
[11] have performed a very interesting numerical study of these 
characteristic resonances of the composed RN-black-hole-charged-
scalar-field-mirror system. In particular, Degollado et al. [11] have 
found numerically that unstable (exploding) charged field modes 
are characterized by the property q > μ [see Eq. (4)]. The main 
goal of the present paper is to provide an analytical explanation for 
this (numerically observed) characteristic inequality. Moreover, be-
low we shall derive a stronger lower bound on the dimensionless 
charge-to-mass ratio of these explosive (unstable) charged massive 
scalar fields.

In order to analyze the physical properties of the composed 
RN-black-hole-charged-scalar-field-mirror system, we shall first ex-
press the radial equation (11) for the charged massive scalar fields 
in the form of a Schrödinger-like wave equation. To this end, it 
proves useful to define the new radial function

ψ = rR , (16)
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in terms of which the radial equation (11) can be expressed in the 
form

d2ψ

dy2
− V ψ = 0 , (17)

where the radial coordinate y is defined by the relation

dy = dr

f (r)
. (18)

The effective radial potential in (17) is given by

V = V (r; M, Q ,ω,q,μ, l) = −
(
ω − qQ

r

)2 + f (r)H(r)

r2
, (19)

where

H(r; M, Q ,μ, l) = μ2r2 + l(l + 1) + 2M

r
− 2Q 2

r2
. (20)

In the next section we shall analyze the near-horizon prop-
erties of the effective radial potential V (r) that appears in the 
Schrödinger-like wave equation (17) for the charged massive scalar 
fields in the charged RN black-hole spacetime. We shall then use 
these properties in order to study the near-horizon spatial behav-
ior of the radial eigenfunction ψ which characterizes the charged 
massive scalar fields.

4. The near-horizon behavior of the charged scalar 
eigenfunctions

Our main goal is to explore the onset of superradiant insta-
bilities in the composed RN-black-hole-charged-scalar-field-mirror 
system. Thus, we shall henceforth analyze the behavior of the 
marginally stable (stationary) charged field modes (10) which mark 
the boundary of the superradiant instability regime [25]. In partic-
ular, in this section we shall study the near-horizon spatial behav-
ior of the radial eigenfunction ψ which characterizes the stationary 
(marginally stable) resonances of the charged scalar fields in the 
charged RN black-hole spacetime. Specifically, we shall prove be-
low that this characteristic function is a positive [26], increasing, 
and convex function in the near-horizon r−r+

r+−r− � 1 region of the 
RN black-hole spacetime.

To that end, we shall first define the dimensionless variables

x ≡ r − r+
r+

; τ ≡ r+ − r−
r+

, (21)

and study the near-horizon x � τ [27] behavior of the effective 
radial potential (19). Substituting the characteristic resonant fre-
quency (10) of the marginally stable charged scalar fields into the 
expression (19) of the effective radial potential, one finds

r2+V (x → 0) = H(r+)τ · x + O [(qQ )2x2] (22)

in the near-horizon region

x � τ × H(r+)

(qQ )2
, (23)

where [see Eq. (20)]

H(r = r+) = μ2r2+ + l(l + 1) + 1 − Q 2

r2+
. (24)

Remembering that 1 − Q 2/r2+ > 0, one finds the characteristic in-
equality
H(r = r+) > 0 (25)

for the massive charged scalar fields. Equations (22) and (25) imply 
that

V ≥ 0 (26)

in the near-horizon region (23).
Integrating the relation (18) in the near-horizon region,

x � τ , (27)

one finds

y = r+
τ

ln(x) + O (x) , (28)

which implies [28]

x = eτ y/r+[1 + O (eτ y/r+)]. (29)

Taking cognizance of Eqs. (17), (22), and (29), one finds the near-
horizon x � τ behavior

d2ψ

dỹ2
− 4H(r+)

τ
e2 ỹψ = 0 (30)

of the Schrödinger-like wave equation (17), where

ỹ ≡ τ

2r+
y . (31)

The physical solution [29] of the near-horizon Schrödinger-like 
wave equation (30) is given by the modified Bessel function of the 
first kind [30,31]:

ψ(y) = I0

(
2

√
H(r+)

τ
eτ y/2r+

)
. (32)

Using the well-known properties of the modified Bessel function I0
[30], one finds from (32) that the radial eigenfunction ψ , which 
characterizes the charged massive scalar fields in the charged RN 
black-hole spacetime, is a positive, increasing, and convex function 
in the near-horizon region [see Eqs. (23) and (27)]

x � τ × min{1, H(r+)/(qQ )2} . (33)

That is,

{ψ > 0 and
dψ

dy
> 0 and

d2ψ

dy2
> 0}

for 0 < x � τ × min{1, H(r+)/(qQ )2} . (34)

Taking cognizance of the characteristic near-horizon spatial be-
havior (34) of the radial eigenfunction ψ [32], together with the 
boundary condition (15) which is dictated by the presence of the 
reflecting mirror, one concludes that the radial eigenfunction ψ

must have (at least) one maximum point, x = xmax, between the 
black-hole horizon [where ψ is a positive and increasing function, 
see (34)] and the reflecting mirror [where ψ vanishes, see (15)]. 
We note, in particular, that the radial eigenfunction ψ is character-
ized by the relations

{ψ > 0 and
d2ψ

dy2
< 0} for x = xmax (35)

at the maximum point x = xmax.
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5. The superradiant instability regime of the charged black-hole 
bomb

It the previous section we have proved that the radial eigen-
function ψ , which characterizes the confined charged scalar fields 
in the charged RN black-hole spacetime, must have (at least) one 
maximum point, r = rmax, between the black-hole horizon and the 
reflecting mirror. That is,

r+ < rmax < rm . (36)

Taking cognizance of Eqs. (17) and (35), one finds that the effective 
radial potential is characterized by the relation

V (r = rmax) < 0 (37)

at this maximum point. We shall now use this characteristic in-
equality in order to derive a generic bound on the superradiant 
instability regime of the charged black-hole bomb.

Substituting the characteristic resonant frequency (10) of the 
marginally stable charged scalar fields into the expression (19) of 
the effective radial potential, one finds the relation

V (r = rmax;ω = ωc)

= rmax − r+
r2

max

[ rmax − r−
r2

max
H(rmax) − (qQ )2 rmax − r+

r2+

]
, (38)

which yields the inequality [see (37)]

qQ

r+
>

√
rmax − r−
rmax − r+

· H(rmax)

r2
max

. (39)

Using the inequality rmax < rm [see Eq. (36)], one finds

rmax − r−
rmax − r+

>
rm − r−
rm − r+

(40)

and

l(l + 1)

r2
max

>
l(l + 1)

r2
m

. (41)

In addition, for charged RN black holes the expression 2M/r3 −
2Q 2/r4 is a concave function whose maximum is located at r =
4Q 2/3M . One can therefore write [33]

2M

r3
max

− 2Q 2

r4
max

> F

≡
⎧⎨
⎩

r+−r−
r3+

for rm ≤ 4Q 2/3M ;
min{ r+−r−

r3+
, 2M

r3
m

− 2Q 2

r4
m

} for rm > 4Q 2/3M .
(42)

From Eqs. (20), (41), and (42), one finds the lower bound

H(rmax)

r2
max

> μ2 + l(l + 1)

r2
m

+F . (43)

Substituting the inequalities (40) and (43) into (39), one can 
write the lower bound on the dimensionless quantity qQ in terms 
of the physical parameters {r±, rm} of the black hole and its con-
fining mirror:

qQ >

√
rm − r−
rm − r+

·
[
μ2 + l(l + 1)

r2
m

+F
]

r2+ . (44)

It is worth emphasizing that the analytically derived lower bound 
(44) provides a necessary condition for the development of the 
superradiant instabilities in the composed RN-black-hole-charged-
scalar-field-mirror system [34,35].
Table 1
The superradiant instability regime of the composed RN-black-hole-charged-scalar-
field-mirror system (the charged black-hole bomb). We display the dimensionless 
ratio (qQ )stat/(qQ )bound, where (qQ )stat is the numerically computed [11] value of 
the quantity qQ which corresponds to the stationary (marginally stable) charged 
scalar configurations [36], and (qQ )bound is the analytically derived lower bound 
on the superradiant instability regime given by Eq. (44). The data presented is 
for the case Mμ = 0.3, Mq = 0.36, and l = 1. One finds that the superradiant 
instability regime of the charged black-hole bomb is characterized by the re-
lation (qQ )stat/(qQ )bound > 1, in agreement with the analytically derived lower 
bound (44).

Q /M 0.990 0.997 0.999
(qQ )stat/(qQ )bound 1.03 1.09 1.12

6. Numerical confirmation

We shall now verify the validity of the analytically derived 
lower bound (44) on the superradiant instability regime of the 
charged black-hole bomb. The instability spectrum of this com-
posed RN-black-hole-charged-massive-scalar-field-mirror system 
was investigated numerically in [11]. In Table 1 we display the di-
mensionless ratio (qQ )stat/(qQ )bound, where (qQ )stat is the numer-
ically computed [11] value of the quantity qQ which corresponds 
to the stationary (marginally stable) charged scalar configurations 
[36], and (qQ )bound is the analytically derived lower bound on the 
superradiant instability regime given by Eq. (44). One finds from 
Table 1 that the charged black-hole bomb is characterized by the 
relation (qQ )stat/(qQ )bound > 1, in agreement with the analytically 
derived lower bound (44).

7. Summary and discussion

We have studied analytically the superradiant instability regime 
of the charged black-hole bomb. This physical system is composed 
of a charged massive scalar field which, on the one hand, extracts 
the Coulomb energy of a charged Reissner–Nordström black hole 
and, on the other hand, is prevented from escaping to infinity by a 
reflecting mirror which surrounds the black hole. We have proved 
that in order for the superradiant instability to develop in this 
composed charged black-hole bomb, the dimensionless quantity 
qQ of the black-hole-field system must be bounded from below 
as in (44).

In a very interesting study, Degollado et al. [11] have used nu-
merical techniques to study the instability spectrum of the charged 
black-hole bomb. In particular, it was found in [11] that the in-
equality q/μ > 1 [see Eq. (4)] provides a necessary condition for 
the development of the superradiant instability in this composed 
system. We can now provide an analytical explanation for this 
numerically observed [11] necessary condition: Using the relation 
Q 2 = r+r− , one finds from (44) the compact lower bound [37]

q

μ
>

√
rm/r− − 1

rm/r+ − 1
> 1 (45)

on the dimensionless charge-to-mass ratio of the scalar fields in 
the explosive (unstable) regime of the charged black-hole bomb 
[38,39]. It is worth emphasizing that this lower bound provides a 
necessary condition for the development of the superradiant insta-
bilities in the composed RN-black-hole-charged-scalar-field-mirror 
system [40].

Thus far, we have treated the composed charged black-hole 
bomb at the classical level. It should be emphasized, however, that 
the well known Schwinger quantum pair-production mechanism 
[41–44] restricts the physical parameters of the composed RN-
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black-hole-charged-massive-scalar-field system. In particular, this 
vacuum polarization effect sets the upper bound [41–45] E+ �
Ec ≡ μ2/qh̄ on the strength of the black-hole electric field (here 
E+ = Q /r2+ is the electric field at the horizon of the charged 
RN black hole). The quantum production of charged particle/anti-
particle pairs in the charged black-hole spacetime (the Schwinger 
discharge of the RN black hole) therefore sets the upper bound 
qQ � μ2r2+ on the physical parameters of the composed black-
hole-field system. Taking cognizance of Eq. (44) [46] one finds that, 
in the superradiant explosive regime, the dimensionless quantity 
qQ is restricted by the two inequalities

μr+ < qQ � μ2r2+ . (46)

The two inequalities in (46) imply that, in physically acceptable 
situations [47], the explosive charged massive scalar fields must be 
characterized by the strong inequalities

1 � μr+ < qQ . (47)

It is worth noting that the physical restriction μr+ 
 1 [see (47)] 
imposed by the quantum Schwinger pair-production mechanism 
(the vacuum polarization effect) implies that, in physically accept-
able situations [47], the lower bound (44) is well approximated by 
the lower bound (45) [48].

Finally, it is worth emphasizing again that in this study we have 
treated the charged massive scalar fields at the linear level. Our an-
alytical results are therefore expected to be valid in the early stages 
of the development of the superradiant instability (that is, in the 
ignition stage of the black-hole bomb), when the external charged 
scalar fields are weak and can still be regarded as perturbation 
fields on the background of the charged RN black-hole spacetime. 
As we demonstrated explicitly in this paper, the main advantage 
of this perturbative (linearized) approach stems from the fact that 
the physical properties of the composed RN-black-hole-charged-
massive-scalar-field-mirror system (the charged black-hole bomb) 
can be explored analytically in the linear regime. It should be em-
phasized, however, that the late-time (non-linear) development of 
the superradiant instability can only be tackled with numerical
techniques, as recently done in the interesting numerical work of 
Sanchis-Gual et al. [49].
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