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Editor: M. Cvetic scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this

composed physical system have shown that, in the linearized regime, the inequality q/u > 1 provides
a necessary condition for the development of the superradiant instability. In the present paper we use
analytical techniques to study the instability properties of the charged black-hole bomb in the regime of

m/r——1 :
rmjr—7 Drovides a necessary

condition for the development of the superradiant instability in this composed physical system (here ry
are the horizon radii of the charged Reissner-Nordstrém black hole and ry, is the radius of the confining
mirror). This analytically derived lower bound on the superradiant instability regime of the composed
black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of
the instability spectrum.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

linearized scalar fields. In particular, we prove that the lower bound /% >

1. Introduction or, for a massive bosonic field, by the mutual gravitational attrac-
tion between the central black hole and the extracting field [6,7].
Kerr black holes may contain large amounts of rotational ener- It should be emphasized that not all bosonic modes trigger the

gies which can be released by bosonic fields that scatter off these ~ black-hole superradiant instability. In particular, it was proved in
spinning black holes. In this physical process, which is known  [8] that the inequality
as superradiant scattering [1-3], an incident bosonic field whose

w<~2-mQy (2)

proper frequency lies in the superradiant regime [1-4]
provides a necessary condition for the development of the super-

0<®<mly (1) radiant instability in the composed Kerr-black-hole-massive-scalar-

can extract the rotational energy and angular momentum of the field system, where 1 is the proper mass of the exploding scalar

spinning Kerr black hole (here m is the azimuthal harmonic index field. ) ) )

of the incident bosonic field and Qy is the angular velocity of the As pomted out by Bekenstem [9], an analogous superradiant

black-hole horizon). amplification of bosonic fields may occur when a charged field
The rate of energy extraction from the black hole can grow ex- scatters off a charged black hole. In particular, a charged scalar field

ponentially in time if the bosonic field is prevented from escaping ~ Whose proper frequency lies in the superradiant regime [9]

to infinity. The required confinement mechanism can be provided 0<w<qdy (3)

either by a reflecting mirror which surrounds the black hole [2,5]
can extract the Coulomb energy and electric charge of a charged
Reissner-Nordstrom (RN) black hole (here q is the charge coupling
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Interestingly, it was proved in [10] that, contrary to the spin-
ning (Kerr) case, in the charged (RN) case the gravitational at-
traction between the black hole and the massive charged scalar
field cannot provide the confinement mechanism which is re-
quired in order to trigger the black-hole superradiant instability.
The charged black-hole bomb must therefore include a reflecting
mirror which surrounds the black hole and prevents the amplified
charged bosonic field from escaping to infinity [11-13].

In a very interesting work, Degollado et al. [11] have used nu-
merical techniques to study the instability properties of the com-
posed RN-black-hole-charged-scalar-field-mirror system. In partic-
ular, it was found in [11] that, in the linearized regime [14], the
inequality
4y 4)
w
provides a necessary condition for the development of the super-
radiant instabilities in this charged system.

The main goal of the present paper is to explore the super-
radiant instability regime of the composed RN-linearized-charged-
scalar-field-mirror system (the charged black-hole bomb) using an-
alytical techniques. In particular, below we shall provide an an-
alytical explanation for the characteristic inequality (4) observed
numerically in the interesting study of Degollado et al. [11]. More-
over, in this paper we shall derive a stronger lower bound [see
Eq. (45) below] on the dimensionless charge-to-mass ratio which
characterizes the explosive charged massive scalar fields.

2. Description of the system

We shall study the dynamics of a charged massive scalar field
W linearly coupled to a non-extremal charged RN black hole of
mass M and electric charge Q. The charged RN black-hole space-
time is described by the line element [15,16]

1
ds? = — f(rydt* + mdrz +12(d6? + sin® 0d¢?) | (5)
where the metric function f(r) is given by
2M  Q?
f(r)=1—T+r—2- (6)

The zeros of f(r),
re =M+ (M - Q%' (7)

determine the horizon radii of the charged RN black hole [15].

The dynamics of a test scalar field ¥ of proper mass © and
charge coupling constant q [17,18] in the background of the RN
black-hole spacetime is governed by the Klein-Gordon wave equa-
tion [19-21]

[(V" —igA)(Vy —iqAy) — W 1¥ =0, (8)

where A, = —(SBQ/r is the electromagnetic potential of the
charged black hole. One can decouple the radial and angular parts
of the scalar field W and express it in the form

Wi (t, 7,0, §) = €™ S (6) Ry (r)e ", (9)

where w, I, and m are respectively the conserved frequency of the
field mode and its angular harmonic indices [22,23].

It is worth noting that the sign of Jw in (9) determines the
(in)stability properties of the scalar field mode: stable modes (that
is, modes decaying in time) are characterized by Jw < 0, whereas

unstable modes (that is, modes growing exponentially in time)
are characterized by Sw > 0. Stationary modes with Jw = 0 mark
the boundary between stable and unstable solutions of the Klein-
Gordon wave equation (8). These marginally stable field modes are
characterized by the critical (marginal) frequency [see Eq. (3)]
w.=12 (10)
I+

for the superradiant scattering phenomenon [9].

Substituting the scalar field decomposition (9) into the Klein-
Gordon wave equation (8) and using the line element (5) of the
RN black-hole spacetime, one finds that the radial function R(r) is
determined by the characteristic radial equation [19-21]

A%(AZ—?)—#—UR:O, (11)
where

A=rf(r) (12)
and

U= (wr* —qQr? — A(u*r? +K) . (13)

Here K;=I(l+ 1) (where m and [ > |m| are integers) are the char-
acteristic eigenvalues of the angular function S(9) [19-21].

The characteristic equation (11) for the radial eigenfunction
R(r) should be supplemented by the physical boundary condition
of purely ingoing waves at the black-hole horizon [5-7,11]:

R~e @4/ a5 1 51y (y > —00), (14)

where the radial coordinate y is determined by the relation dy =
dr/f(r) [see Eq. (18) below]. For field modes in the superradiant
regime (3), the near-horizon boundary condition (14) corresponds
to an outgoing flux of Coulomb energy and electric charge from
the charged RN black hole [9-13]. In addition, the reflecting mirror
which surrounds the composed black-hole-field system dictates the
boundary condition [5,11-13]

R(r=ryp) =0 (15)

for the confined scalar field, where ry, is the radial location of the
mirror.

3. The effective radial potential of the composed
RN-black-hole-charged-massive-scalar-field system

The radial equation (11), together with the boundary conditions
(14) and (15), determine a discrete family of complex field reso-
nances {wn(rm)} [5,11,12,24]. As mentioned above, Degollado et al.
[11] have performed a very interesting numerical study of these
characteristic resonances of the composed RN-black-hole-charged-
scalar-field-mirror system. In particular, Degollado et al. [11] have
found numerically that unstable (exploding) charged field modes
are characterized by the property q > n [see Eq. (4)]. The main
goal of the present paper is to provide an analytical explanation for
this (numerically observed) characteristic inequality. Moreover, be-
low we shall derive a stronger lower bound on the dimensionless
charge-to-mass ratio of these explosive (unstable) charged massive
scalar fields.

In order to analyze the physical properties of the composed
RN-black-hole-charged-scalar-field-mirror system, we shall first ex-
press the radial equation (11) for the charged massive scalar fields
in the form of a Schrodinger-like wave equation. To this end, it
proves useful to define the new radial function

Y =rR, (16)
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in terms of which the radial equation (11) can be expressed in the
form

d?y
— —Vy =0, 17
o VY (17)
where the radial coordinate y is defined by the relation

dr
dy=——. (18)

f
The effective radial potential in (17) is given by

2 H
V=ve:M Q00 0= (0 12) 4 LI )
where
2M  2Q?

H(r;M,Q,M,l):M2r2+l(l+1)+T—%. (20)

In the next section we shall analyze the near-horizon prop-
erties of the effective radial potential V (r) that appears in the
Schrodinger-like wave equation (17) for the charged massive scalar
fields in the charged RN black-hole spacetime. We shall then use
these properties in order to study the near-horizon spatial behav-
ior of the radial eigenfunction i which characterizes the charged
massive scalar fields.

4. The near-horizon behavior of the charged scalar
eigenfunctions

Our main goal is to explore the onset of superradiant insta-
bilities in the composed RN-black-hole-charged-scalar-field-mirror
system. Thus, we shall henceforth analyze the behavior of the
marginally stable (stationary) charged field modes (10) which mark
the boundary of the superradiant instability regime [25]. In partic-
ular, in this section we shall study the near-horizon spatial behav-
ior of the radial eigenfunction ¥ which characterizes the stationary
(marginally stable) resonances of the charged scalar fields in the
charged RN black-hole spacetime. Specifically, we shall prove be-
low that this characteristic function is a positive [26], increasing,
and convex function in the near-horizon rr:_r;i <« 1 region of the
RN black-hole spacetime.

To that end, we shall first define the dimensionless variables

r—ry4 : TEr+—r7’ (21)

ry ry

and study the near-horizon x <« t [27] behavior of the effective
radial potential (19). Substituting the characteristic resonant fre-
quency (10) of the marginally stable charged scalar fields into the
expression (19) of the effective radial potential, one finds

riV(x—0)=H(r)T-x+ 0[(qQ)*’] (22)
in the near-horizon region

H(ry)

) 23
T e *3)
where [see Eq. (20)]
QZ
+

Remembering that 1 — Q2 /r%r > 0, one finds the characteristic in-
equality

Hr=ry) >0 (25)

for the massive charged scalar fields. Equations (22) and (25) imply
that

V>0 (26)

in the near-horizon region (23).
Integrating the relation (18) in the near-horizon region,

XLT, (27)
one finds

r
y="In(+0(), (28)

which implies [28]

x=e"/" 14 0™/ ™). (29)

Taking cognizance of Egs. (17), (22), and (29), one finds the near-
horizon x <« T behavior

T 30

172 - (30)

of the Schrodinger-like wave equation (17), where

- T

y=5v- (31)
It

The physical solution [29] of the near-horizon Schrodinger-like
wave equation (30) is given by the modified Bessel function of the
first kind [30,31]:

@) =1o(2) T ey (32)

Using the well-known properties of the modified Bessel function Iy
[30], one finds from (32) that the radial eigenfunction , which
characterizes the charged massive scalar fields in the charged RN
black-hole spacetime, is a positive, increasing, and convex function
in the near-horizon region [see Egs. (23) and (27)]

X<t xmin{l, H(ry)/(qQ)*} . (33)
That is,
dy d%y
{y >0 and E>O and W>O}
for 0<x<«t xmin{l,H(r+)/(qQ)2}. (34)

Taking cognizance of the characteristic near-horizon spatial be-
havior (34) of the radial eigenfunction ¢ [32], together with the
boundary condition (15) which is dictated by the presence of the
reflecting mirror, one concludes that the radial eigenfunction
must have (at least) one maximum point, X = Xpax, between the
black-hole horizon [where v is a positive and increasing function,
see (34)] and the reflecting mirror [where ¢ vanishes, see (15)].
We note, in particular, that the radial eigenfunction v is character-
ized by the relations

d>y
{ >0 and — <0} for Xx=Xmax (35)
dy?

at the maximum point X = Xmax.
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5. The superradiant instability regime of the charged black-hole
bomb

It the previous section we have proved that the radial eigen-
function v, which characterizes the confined charged scalar fields
in the charged RN black-hole spacetime, must have (at least) one
maximum point, r = rmax, between the black-hole horizon and the
reflecting mirror. That is,

Tt <Tmax <Tm - (36)

Taking cognizance of Eqs. (17) and (35), one finds that the effective
radial potential is characterized by the relation

V(Ir=rmax) <0 (37)

at this maximum point. We shall now use this characteristic in-
equality in order to derive a generic bound on the superradiant
instability regime of the charged black-hole bomb.

Substituting the characteristic resonant frequency (10) of the
marginally stable charged scalar fields into the expression (19) of
the effective radial potential, one finds the relation

V(1 =Tmax; @ = &)
Tmax — T+ [ Tmax — T— Tmax — T
= [ HOma) — @QP | (38)

T'max T

2
'max

which yields the inequality [see (37)]

(39)

ry max — '+ Trznax

g - \/rmax —r- ) H (rmax)

Using the inequality rmax < rm [see Eq. (36)], one finds

Tmax — T'— Tm—T-

(40)

T'max =T+ Tm— T4

and

I+1)  Id+1)

2 2 :
I'max 'm

(41)

In addition, for charged RN black holes the expression 2M/r3 —
2Q2/r* is a concave function whose maximum is located at r =
4Q?2/3M. One can therefore write [33]

2M  2Q?2
5 4i >F
max  T'max
e for rm<4Q?%/3M;
= .+ - oM 2Q2 ) (42)
min{=5—, 5~ — =5} for rm>4Q°/3M.
+ m m
From Egs. (20), (41), and (42), one finds the lower bound
H(r I1+1
(Zmax)>M2+ ( i )_'_]__‘ (43)
'max 'm

Substituting the inequalities (40) and (43) into (39), one can
write the lower bound on the dimensionless quantity gQ in terms
of the physical parameters {ri,ry,} of the black hole and its con-
fining mirror:

Tm—T_ ) Id+1) )
o . Flri. 44
qQ >\/rm—r+ [u + ) + ]r+ (44)

It is worth emphasizing that the analytically derived lower bound
(44) provides a necessary condition for the development of the
superradiant instabilities in the composed RN-black-hole-charged-
scalar-field-mirror system [34,35].

Table 1

The superradiant instability regime of the composed RN-black-hole-charged-scalar-
field-mirror system (the charged black-hole bomb). We display the dimensionless
ratio (qQ)%t/(qQ)"°ud  where (qQ )5 is the numerically computed [11] value of
the quantity gQ which corresponds to the stationary (marginally stable) charged
scalar configurations [36], and (qQ)P°""d is the analytically derived lower bound
on the superradiant instability regime given by Eq. (44). The data presented is
for the case Mu = 0.3, Mg = 0.36, and | = 1. One finds that the superradiant
instability regime of the charged black-hole bomb is characterized by the re-
lation (qQ)t/(qQ)P°""d > 1, in agreement with the analytically derived lower
bound (44).

Q/M 0.990 0.997 0.999
(qQ ) /(qQ)Pound 1.03 1.09 112

6. Numerical confirmation

We shall now verify the validity of the analytically derived
lower bound (44) on the superradiant instability regime of the
charged black-hole bomb. The instability spectrum of this com-
posed RN-black-hole-charged-massive-scalar-field-mirror system
was investigated numerically in [11]. In Table 1 we display the di-
mensionless ratio (qQ)%t/(qQ)P°u"d where (qQ )52t is the numer-
ically computed [11] value of the quantity gQ which corresponds
to the stationary (marginally stable) charged scalar configurations
[36], and (qQ)P°und is the analytically derived lower bound on the
superradiant instability regime given by Eq. (44). One finds from
Table 1 that the charged black-hole bomb is characterized by the
relation (qQ)5?t/(qQ)P°ud > 1, in agreement with the analytically
derived lower bound (44).

7. Summary and discussion

We have studied analytically the superradiant instability regime
of the charged black-hole bomb. This physical system is composed
of a charged massive scalar field which, on the one hand, extracts
the Coulomb energy of a charged Reissner-Nordstrom black hole
and, on the other hand, is prevented from escaping to infinity by a
reflecting mirror which surrounds the black hole. We have proved
that in order for the superradiant instability to develop in this
composed charged black-hole bomb, the dimensionless quantity
qQ of the black-hole-field system must be bounded from below
as in (44).

In a very interesting study, Degollado et al. [11] have used nu-
merical techniques to study the instability spectrum of the charged
black-hole bomb. In particular, it was found in [11] that the in-
equality q/u > 1 [see Eq. (4)] provides a necessary condition for
the development of the superradiant instability in this composed
system. We can now provide an analytical explanation for this
numerically observed [11] necessary condition: Using the relation
Q2 =r,r_, one finds from (44) the compact lower bound [37]

_—1
ﬂ> L>1 (45)
w m/r+ —1

on the dimensionless charge-to-mass ratio of the scalar fields in
the explosive (unstable) regime of the charged black-hole bomb
[38,39]. It is worth emphasizing that this lower bound provides a
necessary condition for the development of the superradiant insta-
bilities in the composed RN-black-hole-charged-scalar-field-mirror
system [40].

Thus far, we have treated the composed charged black-hole
bomb at the classical level. It should be emphasized, however, that
the well known Schwinger quantum pair-production mechanism
[41-44] restricts the physical parameters of the composed RN-
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black-hole-charged-massive-scalar-field system. In particular, this
vacuum polarization effect sets the upper bound [41-45] E;+ <
Ec = u?/qh on the strength of the black-hole electric field (here
ELr=Q /r?F is the electric field at the horizon of the charged
RN black hole). The quantum production of charged particle/anti-
particle pairs in the charged black-hole spacetime (the Schwinger
discharge of the RN black hole) therefore sets the upper bound
qQ K uzri on the physical parameters of the composed black-
hole-field system. Taking cognizance of Eq. (44) [46] one finds that,
in the superradiant explosive regime, the dimensionless quantity
qQ is restricted by the two inequalities

pre <qQ < urk. (46)

The two inequalities in (46) imply that, in physically acceptable
situations [47], the explosive charged massive scalar fields must be
characterized by the strong inequalities

1< pury <qQ . (47)

It is worth noting that the physical restriction ury > 1 [see (47)]
imposed by the quantum Schwinger pair-production mechanism
(the vacuum polarization effect) implies that, in physically accept-
able situations [47], the lower bound (44) is well approximated by
the lower bound (45) [48].

Finally, it is worth emphasizing again that in this study we have
treated the charged massive scalar fields at the linear level. Our an-
alytical results are therefore expected to be valid in the early stages
of the development of the superradiant instability (that is, in the
ignition stage of the black-hole bomb), when the external charged
scalar fields are weak and can still be regarded as perturbation
fields on the background of the charged RN black-hole spacetime.
As we demonstrated explicitly in this paper, the main advantage
of this perturbative (linearized) approach stems from the fact that
the physical properties of the composed RN-black-hole-charged-
massive-scalar-field-mirror system (the charged black-hole bomb)
can be explored analytically in the linear regime. It should be em-
phasized, however, that the late-time (non-linear) development of
the superradiant instability can only be tackled with numerical
techniques, as recently done in the interesting numerical work of
Sanchis-Gual et al. [49].
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