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Abstract. We show that every Lie algebra or superLie algebra has a canonical braiding
on it, and that in terms of this its enveloping algebra appears as a flat space with braided-
commuting coordinate functions. This also gives a new point of view about ¢-Minkowski
space which arises in a similar way as the enveloping algebra of the braided Lie algebra
gl2,q. Our point of view fixes the signature of the metric on ¢-Minkowski space and hence
also of ordinary Minkowski space at ¢ = 1. We also describe an abstract construction for
left-invariant integration on any braided group.
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1. Introduction

Braided geometry is a generalisation of ordinary geometry based on the
idea of braid statistics between independent systems [1]{2][3][4][5][6]. This
includes as a special case the ideas of supergeometry but with the super-
transposition ¥ = 1 there replaced by a more general braiding where
¥? +# id. Braided differentiation and integration on braided vector spaces,
braided groups and braided Lie algebras are all known. Braided manifolds
and braided Yang-Mills theory are in the pipeline. The main conclusion is
that many constructions familiar in usual or supergeometry can be gen-
eralised to the braided case. Moreover, many constructions which are more
commonly associated with quantum groups and the theory of ¢-deformations
are more properly understood in these terms. There is a review article for
physicists[7] as well as an introductory conference proceedings|8].

Here we would like to use some of this braided geometry to explore a
basic conceptual problem that arises in quantum physics. The problem is
that we think of a quantum algebra of observables on the one hand as a
noncommutative version of the algebra of functions on phase space, or on
the other hand as generated by the algebra of functions on configuration
space and by the enveloping algebra U(g) for g a generalised momentum
symmetry. These points of view are contradictory unless it happens that we
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can view U(g) as like the algebra of functions on some space, the momentum
part of phase space.

We will see in Section 2 that for any Lie algebra g, one can indeed view
U(g) as the algebra of functions on a braided version of IR". So the non-
commutativity of this algebra, which we normally associate with differential
operators and quantisation, can be thought of equally well as statistical
non-commutativity like that of Grassmann variables, albeit with a braid-
ing ¥ rather than 41. We call this phenomenon in which a Lie algebra or
enveloping algebra of operators is thought of instead as the coordinate func-
tions of some space, a quantum~geometry transformation. The very simplest
example is' U(IR™) = C[z;,22, -, 2y] where the enveloping algebra of an
Abelian Lie algebra is thought of instead as polynomials in some bosonic
position coordinates z;. This is the idea behind Fourier transforms and our
quantum-geometry transformation is a generalisation of this.

In fact, we have already explored this idea in the context of quantum
groups in [9][10], where it is related to Hopf algebra duality. We proposed
the ability to make this transformation, which reverses the role of quantum
and gravitational physics, as a guiding principle for physics at the Planck
scale. Now we want to touch upon these same ideas in the context of Lie
algebras and their generalisations. In fact, the above remarks apply just as
well to superLie algebras and the braided Lie algebras introduced in [11]. In
each case the enveloping algebra can be viewed instead as a braided version
of flat space. We develop this in Section 3. It provides a new way to think
about the definition of Lie algebras and braided Lie algebras.

In Section 4 we focus on the example of the braided Lie algebra gl .
Its enveloping algebra recovers a natural definition of g-Minkowski space.
The quantum-geometry transformation takes the subalgebra U,(suz) to the
mass-shell in ¢-Minkowski space. The signature of the metric is also fixed
as a deformation of the Lorentzian one in this approach. As far as I know,
the Euclidean metric on IR* cannot be deformed in the same way. Thus
the ability to ¢-deform spacetime provides in this way a kind of regularity
principle that physics should not be too much an artifact of setting ¢ = 1.
This is in addition to the more usual motivation for ¢-deformation in terms
of regularising infinities in physics[12] and quantum corrections to geometry.

It is hoped that this note will serve as an introduction for physicists
to braided geometry and to some of its motivation. The Appendix demon-
strates some of the mathematical techniques behind braided groups and
braided geometry. We give a self-contained account of braided integration.
This provides in principle the integration on many g¢-deformed spaces.
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2. Canonical Braiding on any Lie Algebra

A braiding on a vector space V is, by definition,amap ¥ : V@RV - VRV
such that

p s
1%=0s
Uyz0 Wip0 Upg = Wiy 0 ¥y3 0 ¥y, ie. (7 " (1)

where the suffices refer to the copy of Vin VQV @ V. If one writes ¥ =X
then this equation expresses that the two sides are topologically the same
braid as shown.

The simplest example is when V is Z;-graded and ¥(v @ w) = (—1)M]
w® v as in supersymmetry. Of course, in this example the exchange law is
not truly braided since ¥? = id.

PROPOSITION 2.1. Let V = € @ g and define the linear map
Y1el)=101, ¥(1®E=E(01l, ¥Y(E®1)=10¢
V(@) =n®E+ (511, V¢ neg.

Then ¥ is a braiding iff [, ]: g®¢g — g obeys the Jacobi identity. It has
minimal polynomial

(02 —id)(¥ +id) =0 (2)
iff [, ] is non-zero and antisymmetric.

This is an elementary computation. It says that the definition of a Lie
algebra is mathematically completely equivalent to looking for a braiding of
a certain form. We will use this principle to give a new point of view on the
definition of a braided Lie algebra in the next section.

Now in the theory of supergeometry, the simplest examples of superspaces
are supercommutative superalgebras. Thus for JR™™ some of the variables
(the bosonic ones) commute and some (the Grassmann ones) anticommute
etc. So the algebra is not commutative in the ordinary sense, but it is com-
mutative in the super sense

oW = . 3

where ¥ is included. Likewise, the universal enveloping algebra U(g) for
non-trivial Lie algebra g is of course not commutative.
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PROPOSITION 2.2. The braiding in Proposition 2.1 extends to a braiding
V:U(g)@U(g) = U(g)®U(g) and U(g) is indeed braided commutative in
the sense of (3).

The proof of this is easy enough at degree 2 for there it says that - o
V(E®n) = nf + [€,7) is to equal &7, which is the defining relation of the
universal enveloping algebra. So imposing the relations of braided-commuta-
tivity at order two and for the above braiding is mathematically equivalent
to the usual definition of the enveloping algebra. The easiest way to prove
the result to all orders is to prove it in complete generality for any Hopf
algebra, of which U(g) is an example with coproduct Aé = (@ 1+ 1@¢. If
H is a Hopf algebra then

U(hog)= ) Ady, (9)®hw),  Adi(g) =Y ha)gShe 4)

for all h,g € H is a braiding, and H is braided commutative with respect to
it in the sense of (3). Here Ah = 37 h(;)® hyy) is the coproduct of the Hopf
algebra and S is its antipode or ‘inverse’ operation.

We see that every enveloping algebra can be regarded as the algebra of
functions on some braided space, and every quantum group too, with a suit-
able choice of braiding. This change in point of view in which an enveloping
algebra gets regarded as a function algebra of some type is what we have
called a quantum-geometry transformation in the introduction. Viewing a
Lie algebra enveloping algebra in this way is significant for it means that the
whole machinery of braided spaces and braided geometry[7], such as braided
differential operators, etc can be applied. We will compute how one or two
of these constructions look for our enveloping algebra.

In particular, given a braided algebra B one has the braided tensor prod-
uct B®B between two copies[2]. This is an algebra in which the two copies
do not commute but rather enjoy braid statistics. The product rule is

(a®b)(c®d) = a¥(b® c)d (5)

where we braid b past ¢ and then multiply up. This is like the supertensor
product of superalgebras. Here is an example of what this is good for:

PROPOSITION 2.3. Let B = U(g) be regarded as a braided space as above.
There is an algebra homomorphism A : B — BQB given by A = 1Q€ —
Q1.

Just as the usual coproduct corresponds to addition (e.g. of angular mo-
mentum), so this map corresponds to subtraction. In a dynamical context
the usual addition provides a realisation of the centre of mass system in the
tensor product of two systems, whereas the above map is more like the re-
alisation of the reduced mass system in the (braided) tensor product. It has
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properties that one would expect for subtraction in relation to the addition.
It also generalises to any quantum group with A(h) = Sh;) ® h(z).

Now we come to a matrix version of the above results, in which we shall
do a few concrete calculations. If we choose a basis V = {z,} and write

¥(z,®2z,)=1250 a:aR"‘,,ﬁ,,

then the requirement for ¥ to be a braiding is the celebrated Quantum
Yang-Baxter Equation (QYBE) for R.
Let ¢ = {z;} fori=1,2,---,n—1and let zo = 1sothat V = C@ g. We

use greek indices when the whole range 0,---,n — 1 is intended. Then the
content of Proposition 2.1 is that
10 00
_10 I 0 ¢
R= 00710 (6)
0 0 0 I

where I are identity matrices and ¢’} are the structure constants of g. The
basis for V @ V' used here is {zo ® zo,Zo ® 2, 2; ® Zo, i ® z;}. Explicitly,

. b ik w0 . .
R%*; = c5j, RYjFi = 6'56%, R%'; = 6'; = R';%, R%% =1

and zero for the rest. This obeys the QYBE iff ¢ obeys the Jacobi-identity.
Next, given any R-matrix, the corresponding braided space V'(R) is the
algebra with z; and 1 as generators and relations

Ty, = xﬁzaR"“ﬁy.

This defines a braided version of IR™. Such a structure arises in many areas in
physics and is often called the Zamolodchikov or exchange algebra. Putting
in the form of our R-matrix (6) we recover the commutation relations

[Ayxi] - 07 {27,',2?]'} = Azkckij

so that the associated braided space is our enveloping algebra U(g) in a
homogenised form where we add the central element A = zg on the right
hand side. This is a concrete version of Proposition 2.2.

In the point of view of quantum or braided linear algebral4], this is just
one of many other constructions. If the {z,} are like a row vector, then
another algebra V(R) defined by generators 1 and {p*} and relations

un v o H Y
R”, ﬁpa p=pp
is more like a column vector. For our R-matrix above, this comes out as

[»*,p"] = 0.
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There is also a notion of braided-quantum mechanics generalising the one-
dimensional case pz — gzp = h to any R-matrix. It is generated by vector
and covector algebras and cross relations

pl":l,'l, - ZaRa‘,“ﬂpﬂ = h&“,,

as studied by several authors[13][5]. See also the contribution of A. Kempf
at this conference. For our R-mattix (6), this comes out as

[, 2;] = Acup® + 86%5, [P A]=0, [rz]=0, [r,A]=h

where # = p°. Some natural zz and pp relations in this context are with
a certain matrix R’ rather than R, for in this case (or in the free case
with no zz or pp relations) the general machinery in [5] says that one can
represent p* by braided differentials 52—“- in analogy with usual quantum
mechanics. One can likewise compute for our R-matrix (6) all the other
R-matrix constructions for quantum groups and braided groups. On the
quantum group side one has for example the usual quantum matrices A(R).
This comes out essentially as a matrix of n copies of the homogenised Lie
algebra, one for each row, and with each copy transforming as an adjoint
tensor operator with respect to the others.

Finally, we note that all the constructions above work equally well if we
begin with a superLie algebra. Now the canonical braiding is

v(een) = (-1)kMpet+ ¢ n o1

and obeys (1) #f [ , ] now obeys the superJacobi identity. It obeys (2) iff
[, ]is graded-antisymmetric. The superenveloping algebra is once again
characterised by (3). More generally, if ¥¢ is any other symmetric braiding
in the sense that ¥2 = id then for

Y(E®n) = Yo(é@n) + [, ®1

to obey (1) and (2) recovers the obvious axioms of a general ¥,-Lie algebra
as in [14]. The corresponding matrix picture is

10 0 O
0 I 0 ¢
R—OOIO
0 0 0 Ro

3. Braided-Lie Algebras

In this section we go beyond the super case and its obvious generalisations,
to the case when our Lie algebra is of a type where the background ¥ is
itself truly braided. The axioms for such a braided Lie algebra have been
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introduced by the author in [11] and consist of a coalgebra £, A, ¢, a braiding
Yo =N LB®L— LQL and a map | C®E—>£suchthat

Q- A

Here A : £ — L ® L should be coassociative in an obvious sense and € : £ —»
€ should be a counit and obey €o[, ] = ¢®e¢. Note that an ordinary Lie
algebra obeys these axioms if one puts [1,£] = ¢, [£,1] = 0 and

L=Chg, Al=1@1,el=1, AL=(@1+1Q¢E, & =0.

So this structure A, ¢ is implicit for an ordinary Lie algebra but we never
think about it because it has this standard form. The same is true for su-
perLie algebras, etc. But for examples of the truly braided type we need to
take a more general form.

THEOREM 3.1. Let £, A, ¢ be a coalgebra and %o = X a compatible braiding.
Then [, ] defines a braided Lie algebra implies that

A
¥ = /
[.1

is a braiding. The braided enveloping algebra U(L) is generated by 1 and L
with the relations (3) of braided commutativity.

The proof of this uses the same diagrammatic techniques as for braided
groups[7]. We shall see some of these techniques in action in the Appendix.
Here we content ourselves with the description of a general class of examples
from [11]. They are of matrix type where

2 ; . . . .
L=C" = {u‘j}, Au‘j = u'k®u"j, eu'; = &,

The only data we need is a matrix solution R € M, ® M, of the QYBE
which is bi-invertible. The ‘second inverse’ here is R and is characterised by

-EiablRajkb = 6ij6kl - Ri;blﬁajkb

We write I = (io,141) etc as multi-indices. Then[15][11]
Vo(us@ur) = ug QurRs X, [ur,us] = uxeXpy
RL KL = R4 R4k R by Rey oy

K D ] -1b 4 k d
cry= RailmbR kotocR 1e%aR aejl
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is a braided Lie algebra. We changed conventions here from [11] to lower
indices for the {us} in order to maintain compatibility with Section 2. The
associated canonical braiding from Theorem 3.1 is

I
Y(us@ur) = ug @uiR ;X
I K -1d, jo_pk i b el
Ry = R %R RN L R,

The braided enveloping algebra U(L) is given by taking u = {u';} as gen-
erators and imposing - o ¥ = -, So this is the algebra

1K
wjur = uguR 5%, ie. RojupRigug = ugRyjug Ryo (7)

where the second puts two of the R’s to the left and uses a popular notation.

Our construction of braided Lie algebras works over the whole moduli
space of bi-invertible solutions R. Inside this moduli space is a subvariety of
so-called triangular solutions where Ro1 R = 1. On this subvariety one has
¥2 = id and our braided Lie algebras are not truly braided. They reduce
in this case to the more obvious notion of ¥y-Lie algebras as at the end
of the last section after one takes a suitable scaling limit. To see this, we
parametrise R in such a way that as a parameter ¢ — 1, we l2nd on the
triangular subvariety. We also change variables to x; = us — §; where é; =
60, . The braided enveloping algebra then looks like

xoxr — xxxiR K = xx (51RIJKL - 6J5KL) (8)

and as ¢ — 1 the right hand side vanishes. But if we rescale x to ¥ =
(¢*> = 1)7x say, then the effective structure constants for ¥ can have a
finite limit and indeed they become those of a usual, super, etc. Lie algebra
depending on the point on the triangular subvariety that we are landing at.
Meanwhile, the coproduct

Ax=%01+10x+(¢*-1)x®%, ex=0

becomes our standard one. In this way, ordinary, super, etc. Lie algebras are
the semiclassical limits of braided Lie algebras as we approach the triangular
subvariety. They are therefore all unified and interpolated by our notion of
braided Lie algebras. Incidentally, this shows why the classification of all
solutions of the QYBE is such a hard problem: it includes the classification
of all Lie algebras, superLie algebras and more generally, of braided-Lie
algebras. Usual quantum enveloping algebras also fit into this picture[11].

So the braided enveloping algebra in the form (8) looks like an enveloping
algebra but in the form (7) it looks like the coordinate functions on a braided
commutative space. This is our quantum-geometry transformation again, in
a braided form.
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In fact, these quadratic algebras (7) and the matrices Ry, R were intro-
duced by the author in [2] exactly as a braided analogue B(R) of the algebra
of functions on M,,. They are the braided matrices associated to R. We recall
that the more well-known quantum matrices A(R) have a matrix of non-
commuting coordinate functions forming a bialgebra or quantum group(16}.
Likewise, B(R) is a braided-bialgebra or braided group. The difference is
that the matrix coproduct above extends to an algebra homomorphism

A': B(R) — B(R)®B(R) (9)

provided we take for @ the braided tensor product algebra (5). This is like
the definition of a supermatrix, but with general braid statistics.

4. ¢-Minkowski Space

There are many approaches to what ¢-Minkowski space should be. Here we
describe our own approach coming out of braided geometry[17]. Generally
speaking, our approach to g-deforming physics is to introduce ¢ as a param-
eter controlling braid statistics but with the geometry otherwise remaining
commutative. Since usual Minkowski space can be thought of as 2 X 2 her-
mitian matrices, we naturally propose that ¢-Minkowski space should be the
algebra of 2 X 2 braided hermitian matrices. This is broadly compatible with
the pioneering approach of [18][19], who were motivated by the possibility of
spinors when defining their ¢-Lorentz group. On the other hand, we under-
stand directly the full structure of g-Minkowski space first and come to the
g-Lorentz group etc. only later as a quantum group that acts covariantly on
it.

We take the well-known R-matrix associated to the Jones knot polyno-
mial and the quantum plane,

qg 0 0 0

01 g—¢gt 0

0 0 1 0 (10)
0 0 0 q

and in this case we have the braided matrix algebra BM,(2) with generators

R=

and relations computed in [2] as u = ((Z Z)

qd + ¢ a central, ba = ¢%ab, ac = ¢*ca, be = cb+ (1 — ¢ *)a(d — a).

The braid statistics from ¥o has qd + ¢~'a bosonic but the others mixing
among themselves. The content of the braided matrix property (9) is that
we can multiply two copies u,u’ as

all blI _ a b al bl
C” d/l - c d C' dl
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provided we remember the corresponding braid statistics. We also showed in
[2] that our algebra has a multiplicative braided determinant BDET(u) =
ad — ¢*cb. It is bosonic and central.

Next, we studiéd *-structures on braided matrices in [17]. For real ¢, we
have

a b\ _f(a ¢
et d*) T \b d
so that these matrices are naturally hermitian. One has also
To(*®*)oA=Aox

where 7 denotes ordinary transposition. This is what one would expect since
the coproduct corresponds to matrix multiplication and (A-B)t = B- A for
ordinary hermitian matrices A, B. We denote the braided matrix bialgebra
BM,(2) with this *-structure by BH,(2), the algebra of braided hermitian
matrices. Note that the situation here is in sharp contrast to the usual
axioms of *-quantum groups, where hermitian quantum matrices cannot be
formulated. BDET is self-adjoint.

All of this makes this particular algebra ideally suited to serve as ¢-

Minkowski space. So we define g-Minkowski space as BH,4(2). The generators
b+c b—c¢

g 0 TPT T
are some natural self-adjoint spacetime coordinates while BDET becomes

2
¢ 2 (41 (qz—l) q

go=qd+q 'a, == z3=d—a

4222 2.2 kS
(q2+1)2x0 T — 97 2(q2+1)2x3+ q2+1 ToT3

2
and provides a real ¢-deformed Lorentz metric.

This ¢-Minkowski space has plenty of geometry associated to it, some of
which we describe now. It is evident from the description of braided matrices
(7) that they can be viewed if we want as a 4-dimensional row vector algebra
of the same general type as the {z,} in Section 2. They therefore transform
as usual under the action of the corresponding quantum matrices A(R).
Thus, :

uy — ’LL[AIJ (11)

is an algebra homomorphism {we have a right comodule algebra) under the
4 X 4 matrix quantum group

R KpAA A8 = AR AT \RA,BL, AN = AT4004,
This quantum group provides the basis for a g-Lorentz group in our picture.

It has a *-algebra structure

AIJ* — A(i),io)(_

71,J0)
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and the coaction and coproduct are *-algebra homomorphisms. We have
taken the quantum group line here because it is more familiar. There is an
equally good braided Lorentz group based on B(R) acting in the same way
as a braided comodule algebra.

Moreover, the quantum Lorentz group here maps into the dual of the
Drinfeld quantum double[20] with the result that our approach is indeed
compatible with other proposals based on' spinors[18}[21]. Thus, our A(R)
can be realised in the quantum group A(R) v« A(R) introduced in [22] and
generated by two copies of the 2 x 2 quantum matrices. We take these in the
form t € A(R) and t' € A(R21) say, with mutual relations and *-structure

taRo Rt = it Ri b e, W=t e, tiRt)=tIRt,.

The abstract picture behind A(R) 0« A(R) as a *-quantum group was found
in [3] as well as its relation to the quantum double. One should use the
inverse-transpose of the dual-quasitriangular structure found there in Propo-
sition 12. The realisation and the resulting 2 x 2 matrix form of the Lorentz
transformation (11) is

ALy =gtio, giv. o afs o oyttt et ie, u— thut.
ol 51 J i

These constructions all work for any R-matrix of real type. For (10), one
should think of our two copies of 2 X 2 quantum matrices as the analogue of
the complexification SL(2,C) of SU(2). Then the diagonal action u — t~'ut
when t is unitary defines an action of the quantum group SU,(2). This
in turn is the double-cover of rotations, which appears here as S0,(3) C
SU4(2), the subHopf algebra generated by expressions quadratic in the t.

All the usual geometrical ideas likewise go though without difficulty. For
example, the mass-shell or Lorentzian sphere in ¢g-Minkowski space is defined
by adding the relation

BDET(u) = 1 (12)

and is preserved under the SO4(3) action as one would expect. There are
also vector fields on ¢-Minkowski space for translation[11], and for Lorentz
transformation from (11). The action of the rotational vectors generates the
quantum group Ug(suy) as

w2 0= (700 ) DG )
(2 8)= (g ) =1 2000)

w (e a)=(x o)1 ) (0 L)
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where the limits are as ¢ — 1 and are as one would expect.

Another interesting feature is that this mass-shell or Lorentzian sphere
forms a braided group. This parallels the way that the Euclidean sphere in
the 2 X 2 quantum matrices M,(2) is the quantum group SU,(2). The big
difference is the %-structure or signature. In fact, this is part of a general
phenomenon. Just as most familiar groups have supergoup analogues, there
is a general procedure in [1] called transmutation which turns a quantum
group into a braided group in a systematic way. The formulae at the lowest
level are

u'; =t u'jukl = tabtdzRiacdejkc, i.e.,, u=t, uyRu; = Rt;t,

etc. and come out of category theory. We also gave a direct quantum groups
point of view to them in [15]. Finally we found in [17] that this transmu-
tation from quantum geometry to braided geometry also has the side-effect
in general of taking us from the unitary picture (our sphere in Fuclidean
space) to the hermitian picture (our Lorentzian sphere). This is the abstract
reason why only braided matrices and not quantum matrices can serve in
the g-deformed picture if we want the Lorentzian signature. One does not
see this constraint at ¢ = 1.

More recently, U. Meyer in [23] has found an addition law for g¢-Minkowski
space by introducing a new braiding suitable for the coaddition Au =
u® 1+ 1® u. The R-matrix for this braiding is different from R. above and
provides for a better g-Lorentz group with the quantum double appearing
as its double cover. The addition law also provides for braided differential
calculus according to the framework of [5] and, in principle, a translation-
invariant integration as we shall see in the Appendix below.

This completes our introduction to the braided geometry of ¢-Minkowski
space. On the other hand, we have seen in the last section that these braided
hermitian matrices are also the braided enveloping algebra of the braided
Lie algebra associated to our R-matrix. In our case this is the 4-dimensional
braided Lie algebra gly 4. It has basis h,z;,z_,v with braided-Lie bracket

(ho4] = (672 4+ Vg %24 = —¢ (24, h]
[hyo-]=—(¢7% + 1)z- = ~¢*[z_,h]
[24,2-]= ¢ %h = —[z_,24]

h h
[h’ h] = (q_4 - 1)h7 [7» { z+] = (1 - q_4) { Z4

T Z..

with zero for the others. We see that as ¢ — 1 the ¥ mode decouples and
we have the Lie algebra sus @ u(1), but for ¢ # 1 these are unified. There
is also a braided Killing form[11] which is non-degenerate as long as ¢ # 1.
So gl is an interesting braided-Lie algebra with potential applications in
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physics, such as in the unification of electroweak interactions in ¢-deformed
Yang-Mills theory[24] with this as the gauge symmetry. Its su; part can also
serve as differential operators of orbital angular momentum etc., along usual
lines.

The quantum-geometry transformation thus connects these two concep-
tually quite distinct structures. Explicitly, it is

h a—d

T —_
e

v ¢ 2a+d- (gt +1)

and gives an isomorphism U (gl 4)B Hy(2). So, provided ¢ # 1 there is only
one braided group in the picture. From one point of view it is the algebra
of functions on ¢-Minkowski space. From another point of view it is the
enveloping algebra of a braided Lie algebra. But what we see at ¢ = 1 is
two structures, depending on how we take the limit. If we work with a,b,¢,d
then in the limit the algebra is the commutative algebra of functions on
usual Minkowski space. If we work with h,z;,z_,v then the limit is the
highly non-commutative enveloping algebra U(sug @ u(1)).

The quantum-geometry transform here is valid for ¢ # 1 and maps Lie
algebras and their properties to geometry. For example, what from the geo-
metrical point of view is the mass-shell constraint (12) in g-Minkowski space,
comes out from the Lie algebra or differential operator point of view as
the quantum enveloping algebra U,(suy). Explicitly, the quantum-geometry
transform at this level becomes

HIE ( ¢ CHg-g e X )

¢ d ¢ Ha- e )Xeq? H 4 (g XX

This follows from some known results in the theory of quantum groups
[16][25] by putting u = I*SI~. This connection with quantum groups is
explained in full detail in [15], to which we refer the reader.

Likewise, what from the geometrical point of view is the time direction
zo appears from the Lie algebra point of view as giving the u(1) mode v
which could appear in a gauge theory or which, for example, acts via[, ] on
¢-Minkowski space by scaling of the space coordinates {z;}. On the mass-
shell it appears as the quadratic Casimir. In summary, U(glz4) is both a
braided enveloping algebra, such as an internal symmetry or an algebra of
differential operators acting on ¢-Minkowski space, and can be identified
with g-Minkowski space itself. Only remnants of this unification are visible
when ¢ = 1. We have seen also that the ability to develop the ¢g-deformed
picture forces us from Euclidean space to Minkowski space.

We have not had room here to describe many other features of quantum
and braided geometry. Notably, in [24] we introduced the theory of quantum
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group principal bundles and connections (gauge fields), including the exam-
ple of a Dirac monopole on a g-sphere. Some of this machinery can be applied
to g-Minkowski space. In short, a systematic g-deformed picture of the main
ingredients of physics is emerging, as well as some unusual phenomena that
are not very evident at the special point ¢ = 1.

Appendix. Braided Integration

In this appendix we introduce the reader to some of the mathematical tech-
niques of braided geometry by deriving here a formula for invariant integra-
tion. This is a problem that is of current interest and which was posed a
couple of times at the conference. Since quantum planes, g-Minkowski space
and many other g-deformed algebras are in fact braided groups, we can ap-
ply the general theory of braided groups. There are still some difficulties in
interpreting and computing the formula for integration, which we offer as a
challenge for the interested reader.

Our main goal is to demonstrate some diagrammatic techniques as used
for the basic properties of braided groups in [7]. We refer there for full details
of the methods and notation. As well as the result here, one can also prove
Theorem 3.1 and the braided version of (4) using the same techniques.

Briefly, let us recall that a braided algebra B is an algebra with a braiding
¥ =X mapping BQ B — B ® B. There should also be a’unit element,
which we view as a map 7 : € — B. The algebra, and indeed all our maps,
should be compatible with the braiding in an obvious way. We view it as
like functions on a braided space. A braided group is such a braided algebra
equipped also with a coproduct A : B — B@B and counit ¢ : B — €. This
is like the definition of a quantum group with the key difference that BRB
is defined with braid statistics as in (5). We saw some concrete examples
in the form of the braided matrices in Sections 3 and 4. Likewise, some
quantum planes are also braided groups with coaddition[3]. We are using
the term ‘braided group’ quite loosely here. In general, there should also be
an antipode S : B — B obeying axioms like the usual ones. One can also
ask for some braided-commutativity as in [2] but we do not need this here.

Crucial for us is the diagrammatic notation in which A = and - =VY.
We also suppose that our braided group has a dual B* and denote the
evaluation ma\,p ev: B*® B — C and coevaluation map coev: C - B® B*
by ev =\ and coev.=/M\. In concrete terms, ev is usual evaluation and
coev(A) =AY e, ® f* for a basis {e,} and dual basis {f°}.

Our goal is to find a map [ : B — € which assigns to a ‘function’in B a
number, and which is translation invariant under the group law. Classically
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this means [b(h({ )) = [b for all h in our group. We find correspondingly

/zz_r_Los?: . (id®/)A=1/

where the first is our definition of [ and the second is its translation-
invariance property. Here Tr is the braided trace as in [11] and L is left
multiplication, which gives the diagrammatic form shown.

A similar formula applies for ordinary quantum groups, and we will use
a similar strategy of proof. We note that braided integrals have also been
studied in [26] but our proof will be different. Our first step in the proof is
a lemma. We assume that S is invertible, then

where the first equality is the property that A is an algebra homomorphism
to the braided tensor product algebra B B. The second equality uses asso-
ciativity and coassociativity of the product and coproduct. The last equality
then cancels the inverse-antipode as explained in [7]. Then

BAARE

where the first equality is our lemma and the second uses that § is a braided
antialgebra homomorphism. Now pick up the coproduct at the top of the
third expression and push it down and to the left (not changing the topol-
ogy), giving the fourth expression. Now we use coassociativity and cancel
the antipode loop. We obtain the desired left-invariance of the integral.
Thus we have a nice formula for the invariant integral on a braided group.
The braided trace plays the role of ‘averaging’. The formula should, however,
be viewed with care because it could easily happen that it gives identically
zero or infinity and may well require a renormalisation to get a finite answer.

To see the nature of this problem, let G be an ordinary finite group and take
I3
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a basis of delta-functions {§,}. The dual basis is the the set of group elements
themselves. Then the formula gives

b= "la.68) = L b(0)t5(0)-

In the continuous case this gives 8(0) times the usual integral. One can
evaluate the trace in any convenient basis. It would be interesting to find a
suitable basis in the case of the quantum plane or ¢-Minkowski space and
likewise evaluate this integral. This is a direction for further work.
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