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Abstract. We show that every Lie algebra or superLie algebra has a canonical braiding 
on it, and that in terms of this its enveloping algebra appears as a fiat space with braided­
commuting coordinate functions. This also gives a new point of view about q-Minkowski 
space which arises in a similar way as the enveloping algebra of the braided Lie algebra 
gh,q· Our point of view fixes the signature of the metric on q-Minkowski space and hence 
also .of ordinary Minkowski space at q = 1. We also describe an abstract construction for 
left-invariant integration on any braided group. 
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1. Introduction 

Braided geometry is a generalisation of ordinary geometry based on the 
idea of braid statistics between independent systems [1][2][3][4][5][6]. This 
includes as a special case the ideas of supergeometry but with the super­
transposition '11 = ±1 there replaced by a more general braiding where 
'11 2 -::/; id. Braided differentiation and integration on braided vector spaces, 
braided groups and braided Lie algebras are all known. Braided manifolds 
and braided Yang-Mills theory are in the pipeline. The main conclusion is 
that many constructions familiar in usual or supergeometry can be gen­
eralised to the braided case. Moreover, many constructions which are more 
commonly associated with quantum groups and the theory of q-deformations 
are more properly understood in these terms. There is a review article for 
physicists[7] as well as an introductory conference proceedings[8]. 

Here we would like to use some of this braided geometry to· explore a 
basic conceptual problem that arises in quantum physics. The problem is 
that we think of a quantum alge'bra of observables on the one hand as a 
noncommutative version of the algebra of functions on phase space, or on 
the other hartd as generated by the algebra of functions on configuration 
space and by the enveloping algebra U(g) for g a generalised momentum 
symmetry. These points of view are contradictory unless it happens that we 
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can view U(g) as like the algebra of functions on some space, the momentum 
part of phase space. 

We will see in Section 2 that for any Lie algebra g, one can indeed view 
U(g) as ~he algebra of functions on a braided version of JRn. So the non­
commutativity of this algebra, which we normally associate with differential 
operators and quantisation, can be thought of equally well as statistical 
non-commutativity like that of Grassmann variables, albeit with a braid­
ing W rather than ±1. We call this phenomenon in which a Lie algebra or 
enveloping algebra of operators is thought of instead as the coordinate func­
tions of some space, a quantum-geometry transformation. The very simplest 
example is U(IRn) = ({;[xi, x2 , • • ·, Xn] where the enveloping algebra of an 
Abelian Lie algebra is thought of instead as polynomials in some bosonic 
position coordinates Xi. This is the idea behind Fourier transforms and our 
quantum-geometry transformation is a generalisation of this. 

In fact, we have already explored this idea in the context of quantum 
groups in [9][10], where it is related to Hopf algebra duality. We proposed 
the ability to make this transformation, which reverses the role of quantum 
and gravitational physics, as a guiding principle for physics at the Planck 
scale. Now we want to touch upon these same ideas in the context of Lie 
algebras and their generalisations. In fact, the above remarks appl:-,· just as 
well to super Lie algebras and the braided Lie algebras introduced in [11]. In 
each case the enveloping algebra can be viewed instead as a braided version 
of flat space. We develop this in Section 3. It provides a new way to think 
about the definition of Lie algebras and braided Lie algebras. 

In Section 4 we focus on the example of the braided Lie algebra gl2,q. 

Its enveloping algebra recovers a natural definition of q-Minkowski space. 
The quantum-geometry transformation takes the subalgebra Uq(su2 ) to the 
mass-shell in q-Minkowski space. The signature of the metric is also fixed 
as a deformation of the Lorentzian one in this approach. As far as I know, 
the Euclidean metric on JR4 cannot be deformed in the same way. Thus 
the ability to q-deform spacetime provides in this way a kind of regularity 
principle that physics should not be too much an artifact of setting q = 1. 
This is in addition to the more usual motivation for q-deformation in terms 
of regularising infinities in physi.cs[12] and quantum corrections to geometry. 

It is hoped that this note will serve as an introduction for physicists 
to braided geometry and to some of its motivation. The Appendix demon­
strates some of the mathematical techniques behind braided groups and 
braided geometry. We give a self-contained account of braided integration. 
This provides in principle the integration on many q-deformed spaces. 
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2. Canonical Braiding on any Lie Algebra 

A braiding on a vector space V is, by definition, a map ili : V 0 V ---+ V 0 V 
such that 

i.e. (1) 

where the suffices refer to the copy of Vin V 0 V 0 V. If one writes ili = X 
then this equation expresses that the two sides are topologically the same 
braid as shown. 

The simplest example is when Vis ~2-graded and ili( v 0 w) = (-l)lvllwl 
w 0 v as in supersymmetry. Of course, in this example the exchange law is 
not truly braided since ili 2 = id. 

PROPOSITION 2.1. Let V =(;EB g and define the linear map 

ili(l01)=101, 1J1(100=~01, 1J1(~01)=10~ 

1ll(~ 017) = 770 ~ + [~, 77] 0 l, 

Then 1JI is a bmiding iff [ , ] : g 0 g ---+ g obeys the Jacobi identity. It has 
minimal polynomial 

(w 2 
- id)(ili +id) = o (2) 

iff [ , ] is non-zero and antisymmetric. 

This is an elementary computation. It says that the definition of a Lie 
algebra is mathematically completely equivalent to looking for a braiding of 
a certain form. We will use this principle to give a new point of view on the 
definition of a braided Lie algebra in the next section. 

Now in the theory of supergeometry, the simplest examples of superspaces 
are supercommutative superalgebras. Thus for .mnlm some of the variables 
(the bosonic ones) commute and some (the Grassmann ones) anticommute 
etc. So the algebra is not commutative in the ordinary sense, but it is com­
mutative in the super sense 

·oW=· (3) 

where 1JI is included. Likewise, the universal enveloping algebra U(g) for 
non-trivial Lie algebra g is of course not commutative. 
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PROPOSITION 2.2. The braiding in Proposition 2.1 extends to a braiding 
W : U(g) 0 U(g) -+ U(g) 0 U(g) and U(g) is indeed braided commutative in 
the sense of (3). 

The proof of this is easy enough at degree 2 for there it says that · o 
w(e 0 7J) = 7Je + re, 7J] is to equal e7J, which is the defining relation of the 
universal enveloping algebra. So imposing the relations of braided-commuta­
tivity at order two and for the above braiding is mathematically equivalent 
to the usual definition of the enveloping algebra. The easiest way to prove 
the result to all orders is to prove it in complete generality for any Hopf 
algebra, of which U(g) is an example with coproduct ~e = e 01+10 e. If 
H is a Hopf algebra then 

(4) 

for all h, g E H is a braiding, and 1l is braided commutative with respect to 
it in the sense of (3). Here ~h = L: h(l) 0 h(2) is the coproduct of the Hopf 
algebra and S is its antipode or 'inverse' operation. 

We see that every enveloping algebra can be regarded as the algebra of 
functions·on some braided space, and every quantum group too, with a suit­
able choice of braiding. This change in point of view in which an enveloping 
algebra gets regarded as a function algebra of some type is what we have 
called a quantum-geometry transformation in the introduction. Viewing a 
Lie algebra enveloping algebra in this way is significant for it means that the 
whole machinery of braided spaces and braided geometry[7], such as braided 
differential operators, etc can be applied. We will compute how one or two 
of these constructions look for our enveloping algebra. 

In particular, given a braided algebra B one has the braided tensor prod­
uct B§!J.B between two copies[2]. This is an algebra in which the two copies 
do not commute but rather enjoy braid statistics. The product rule is 

(a0b)(c0d) = aiIT(b0c)d (5) 

where we braid b past c and then multiply up. This is like the supertensor 
product of superalgebras. Here is an example of what this is good for: 

PROPOSITION 2.3. Let B:;; U(g) be regarded as a braided space as above. 
There is an algebra homomorphism A : B -+ Bfj_B given by Ae = 10 e -
e0L 

Just as the usual coproduct corresponds to addition (e.g. of angular mo­
mentum), so this map corresponds to subtraction. In a dynamical context 
the usual addition provides a realisation of the centre of mass system in the 
tensor product of two systems, whereas the above map is more like the re­
alisation of the reduced mass system in the (braided) tensor product. It has 
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properties that one would expect for subtraction in relation to the addition. 
It also generalises to any quantum group with A{h) = Sh(t) ®h(2)· 

Now we come to a matrix version of the above results, in which we shall 
do a few concrete calculations. If we choose a basis V = {xµ} and write 

-.P(xµ®xv) = x.a®xaRa/v 

then the requirement for ip to be a braiding is the celebrated Quantum 
Yang-Baxter Equation {QYBE) for R. 

Let g ={xi} for i = 1,2, .. ·,n-1 and let xo = 1 so that V = G::EBg. We 
use greek indices when the whole range 0, · · ·, n - 1 is intended. Then the 
content of Proposition 2.1 is that 

( 
1 0 0 0) 

R= 0 I 0 c 
0 0 I 0 
0 0 0 I 

(6) 

where I are identity matrices and ciik are the structure c~nstants of g. The 
basis for V 0 V used here is {xo 0 xo, xo 0 Xj, Xi 0 xo, Xi 0 Xj }. Explicitly, 

R o .k . _ ck.. Ri .k
1 

_ ci . £k
1 

Ro i . _ d. _ Ri .o Ro o _ 1 t ) - •J• ) - V 3V ' 0) - V) - ) 0, 0 0 -

and zero for the rest. This obeys the QYBE iff c obeys the Jacobi identity. 
Next, given any R-matrix, the corresponding braided space V'(R) is the 

algebra with Xi and 1 as generators and relations 

XµXv = Xf3XaRa/Jv• 

This defines a braided version of !Rn. Such a structure arises in many areas in 
physics and is often called the Zamolodchikov or exchange algebra. Putting 
in the form of our R-matrix (6) we recover the commutation relations 

[.A,x;] = 0, [x;,xj] = Axkckii 

so that the associated braided space is our enveloping algebra U(g) in a 
homogenised form where we add the central element A = x0 on the right 
hand side. This is a concrete version of Proposition 2.2. 

In the point of view of quantum or braided linear algebra[4], this is just 
one of many other constructions. If the {xµ} are like a row vector, then 
another algebra V(R) defined by generators 1 and {P'} and relations 

Rµ av 13-}pa = pµpv 

is more like a column vector. For our R-matrix above, this comes out as 
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There is also a notion of braided-quantum mechanics generalising the one­
dimensional case px - qxp = Ii to any R-matrix. It is generated by vector 
and covector algebras and cross relations 

rf':c11 - XaRa.11µ.{Ji/3=1i61.111 

as studied by several authors[13)[l1J. See also the contribution of A. Kempf 
at this conference. For our R-mattix (6), this comes out as 

i i k i . [p,xj]=ACjkP +Mi> [p',A]=O, (11',x;J=O, (11',A]=li 

where 11' = p0 • Some natural xx and pp relations in this context are with 
a certain matrix R' rather than R, for in this case (or in the free case 
with no xx or pp relations) the general machinery in (5] says that one can 
represent pl' by braided differentials -8

8 in analogy with usual quantum 
Xµ 

mechanics. One can likewise compute for our R-matrix (6) all the other 
R-matrix constructions for quantum groups and braided groups. On the 
quantum group side one has for example the usual quantum matrices A(R). 
This comes out essentially as a matrix of n copies of the homogenised Lie 
algebra, one for each row, and with each copy transforming as an adjoint 
tensor operator with respect to the others. 

Finally, we note that all the constructions above work equally _well if we 
begin with a superLie algebra. Now the canonical braiding is 

and obeys (1) iff [ , J now obeys the superJacobi identity. It obeys (2) iff 
[ , ] is graded-antisymmetric. The superenveloping algebra is once again 
characterised by (3). More generally, if ilio is any other symmetric braiding 
in the sense that ili5 = id then for 

to obey (1) and (2) recovers the obvious axioms of a general ilio-Lie algebra 
as in [14]. The corresponding matrix picture is 

(

1 0 0 0) 0 I 0 c 
R= 0 0 I 0 

0 0 0 Ro 

3. Braided-Lie Algebras 

In this section we go beyond the super case and its obvious generalisations, 
to the case when our Lie algebra is of a type where the background ilio is 
itself truly braided. The axioms for such a braided Lie algebra have been 
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introduced by the author in [11] and consist of a coalgebra C, A, f, a braiding 
'lio = X: C 0 C -+ C 0 C and a map [ , J : C 0 C -+ C such that 

~~ - [,] 

[,] [,)[,] [,) 
\6=N.J 

\ [.I 

Here A : C -+ C 0 C should be coassociative in an obvious sense and f : C -+ 

G:; should be a counit and obey f o [ , J = f 0 f. Note that an ordinary Lie 
algebra obeys these axioms if one puts (1, ~] = ~, [~, 1] = 0 and 

.C=d;©g, Al=l®l, d=l, A~=~®l+l®~, f~=O. 

So this structure A, f is implicit for an ordinary Lie algebra but we never 
think about it because it has this standard form. The same is true for su­
perLie algebras, etc. But for examples of the truly braided type we need to 
take a more general form. 

THEOREM 3.1. Let C, A, f be a coalgebra and 'lio = X a compatible braiding. 
Then [ , ]. defines a braided Lie algebra implies that 

~ qi -
[.] 

is a braiding. The braided enveloping algebra U(C) is generated by 1 and C 
with the relations {3} of braided commutativity. 

The proof of this uses the same diagrammatic techniques as for braided 
groups[7]. We shall see some of these techniques in action in the Appendix. 
Here we content ourselves with the description of a general class of examples 
from [11]. They are of matrix type where 

2 . i i k C=d;n ={u'j}, AUj=Uk®u j, i •i 
fU j = u j· 

The only data we need is a matrix solution R E Mn 0 Mn of the QYBE 
which is bi-invertible. The 'second inverse' here is R and is characterised by 

R-i b Ra.k - •i •• - Ri•b R-a.k 
a I J b - u jU I - a I J b• 

We write I = ( i0 , i 1) etc as multi-indices. Then[15][11] 

'lio(UJ®UL) = UK®u1R&JK L, [u1,UJ] = UKCKIJ 

pl K _Rio d R-1a. k1 Ri1 b R-c. lo 
-'"OJ L - a ko •o b c Ii Jl d 

K R-a io R-1b io Rk1 c Rd e 
C IJ = i 1 b ko c e d a ii 
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is a braided Lie algebra. We changed conventions here from [11] to lower 
indices for the { ur} in order to maintain compatibility with Section 2. The 
associated canonical braiding from Theorem 3.1 is 

W( UJ 0 U£) =UK 0 urR1 
JK L 

RI K _ R-ld io Rk1 a. Ri1 b R-c. lo 
J L - ko a b •o c 11 J1 d· 

The braided enveloping algebra U(.C) is given by taking u = {uij} as gen­
erators and imposing · o W = ·. So this is the algebra 

(7) 

where the second puts two of the R's to the left and uses a popular notation. 
Our construction of braided Lie algebras works over the whole moduli 

space of bi-invertible solutions R. Inside this moduli space is a subvariety of 
so-called triangular solutions where R21 R = 1. On this subvariety one has 
wg = id and our braided Lie algebras are not truly braided. They reduce 
in this case to the more obvious notion of w0-Lie algebras as at the end 
of the last section after one takes a suitable scaling limit. To see this, we 
parametrise R in such a way that as a parameter q -+ 1, we l?nd on the 
triangular subvariety. We also change variables to XI = ur - lh where or= 
oio ;1 • The braided enveloping algebra then looks like 

(8) 

and as q -+ 1 the right hand side vanishes. But if we rescale x to x = 
( q2 - 1)-1x say, then the effective structure constants for x can have a 
finite limit and indeed they become those of a usual, super, etc. Lie algebra 
depending on the point on the triangular subvariety that we are landing at. 
Meanwhile, the coproduct 

~x = x 01+10 x + (q2 - 1)x 0 x, Ex= o 
becomes our standard one. In this way, ordinary, super, etc. Lie algebras are 
the semiclassical limits of braided Lie algebras as we approach the triangular 
subvariety. They are therefore all unified and interpolated by our notion of 
braided Lie algebras. Incidentally, this shows why the classification of all 
solutions of the QYBE is such a hard problem: it includes the classification 
of all Lie algebras, superLie algebras and more generally, of braided-Lie 
algebras. Usual quantum enveloping algebras also fit into this picture[ll]. 

So the braided enveloping algebra in the form (8) looks like an enveloping 
algebra but in the form (7) it looks like the coordinate functions on a braided 
commutative space. This is our quantum-geometry transformation again, in 
a braided form. 
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In fact, these quadratic algebras (7) and the ma.trices Ro, R were intro­
duced by the author in [2] exactly as a braided analogue B( R) of the algebra 
of functions on Mn. They are the braided matrices associated to R. We recall 
that thP more well-known quantum matrices A(R) have a matrix of non­
commuting coordinate functions forming a. bialgebra or quantum group[16]. 
Likewise, B(R) is a braided-bialgebra or braided group. The difference is 
that the matrix coproduct above extends to an algebra homomorphism 

~: B(R)--+ B(R)t&B(R) (9) 

provided we take for~ the braided tensor product algebra (5). This is like 
the definition of a supermatrix, but with general braid statistics. 

4. q-Minkowski Space 

There are many approaches to what q-Minkowski space should be. Here we 
describe our own approach coming out of braided geometry[l 7]. Generally 
speaking, our approach to q-deforming physics is to introduce q as a param­
eter controlling braid statistics but with the geometry otherwise remaining 
commutative. Since usual Minkowski space can be thought of as 2 x 2 her­
mitian matrices, we naturally propose that q-Minkowski space should be the 
algebra of 2 X 2 braided hermitian matrices. This is broadly compa~ible with 
the pioneering approach of [18)[19], who were motivated by the possibility of 
spinors when defining their q-Lorentz group. On the other hand, we under­
stand directly the full structure of q-Minkowski space first and come to the 
q-Lorentz group etc. only later as a quantum group that acts covariantly on 
it. 

We take the well-known R-matrix associated to the Jones knot polyno­
mial and the quantum plane, 

R= (~ ~ q-Oq-1 ~) 
0 0 1 0 
0 0 0 q 

(10) 

and in this case we have the braided matrix algebra BMq(2) with generators 

and relations computed in [2] as u = (: ~) 

qd + q-1a central, ba = q2ab, ac =</'ca, be= cb + (1 - q-2 )a(d - a). 

The braid statistics from 'Vo has qd + q-1 a bosonic but the others mixing 
among themselves. The content of the hr.aided matrix property (9) is that 
we can multiply two copies u, u' as 

( 
a" b" ) _ ( a b ) ( a' b' ) 
c" d" - c d c' d' 
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provided we remember the corresponding braid statistics. We also showed in 
[2] that our algebra has a multiplicative braided determinant BDET( u) = 
ad - q2cb. It is bosonic and central. 

Next, we studied •-structures on braided matrices in [17]. For real q, we 
have 

( :: ~: ) = (: ~) 
so that these matrices are naturally hermitian. One has also 

ro(*®*)otl.=6.o* 

where T denotes ordinary transposition. This is what one would expect since 
the coproduct corresponds to matrix multiplication and (A· B)t = B ·A for 
ordinary hermitian matrices A, B. We denote the braided matrix bialgebra 
BMq(2) with this •-structure by BHq(2), the algebra of braided hermitian 
matrices. Note that the situation here is in sharp contrast to the usual 
axioms of *-quantum groups, where hermitian quantum matrices cannot be 
formulated. BDET is self-adjoint. 

All of this makes this particular algebra ideally suited to serve as q­
Minkowski space. So we define q-Minkowski space as BHq(2). The generators 

b+c b-c 
Xo = qd + q-1

a, X1 = -2-, X2 =Ti' X3 = d - a 

are some natural self-adjoint spacetime coordinates while BDET becomes 

q
2 

2 2 2 2 2 ( q
4 + 1 )q

2 
2 ( q

2 
- 1) 

2 
'l. 

(q2 + 1)2Xo - q Xi - q X2 - 2(q2 + 1)2X3 + q2 + 1 2XoX3 

and provides a real q-deformed Lorentz metric. 
This q-Minkowski space has plenty of geometry associated to it, some of 

which we describe now. It is evident from the description of braided matrices 
(7) that they can be viewed if we want as a 4-dimensional row vector algebra 
of the same general type as the { x µ} in Section 2. They therefore transform 
as usual under the action of the corresponding quantum matrices A(R). 
Thus, 

(11) 

is an algebra homomorphism (we have a right comodule algebra) under the 
4 x 4 matrix quantum group 

R 1 AK BAA JABL =AK BA1 ARA JBL, 6.A1 J = A1A ®AA J 

This quantum group provides the basis for a q-Lorentz group in our picture. 
It has a •-algebra structure 

A IJ* = A (ii,io)(. . ) 
JI ,JO 
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and the coaction and coproduct are *-algebra homomorphisms. We have 
taken the quantum group line here because it is more familiar. There is an 
equally good braided Lorentz group based on B(R) acting in the same way 
as a braided comodule algebra. 

Moreov.er, the quantum Lorentz group here maps into the dual of the 
Drinfeld quantum double[20] with the res,ult that our approach is indeed 
compatible with other proposals based on' spinors[18][21]. Thus, our A(R) 
can be realised in the quantum group A(R) l><l A(R) introduced in [22] and 
generated by two copies of the 2 x 2 quantum matrices. We take these in the 
form t E A(R) and it E A(R21 ) say, with mutual relations and *-structure 

tiaRa/bttbl = ttkbRiabltaj, tit= ttij, i.e., tiRt~ = t~Rt1. 
The abstract picture behind A( R) t><l A( R) as a *-quantum group was found 
in [3] as well as its relation to the quantum double. One should use the 
inverse-transpose of the dual-quasi triangular structure found there in Propo­
sition 12. The realisation and the resulting 2 x 2 matrix form of the Lorentz 
transformation (11) is 

i.e., u _, t tut. 

These constructions all work for any R-matrix of real type. For (10), one 
should think of our two copies of 2 x 2 quantum matrices as the analogue of 
the complexification SL(2, G::) of SU(2). Then the diagonal action u _, t-1ut 
when t is unitary defines an action of the quantum group SUq(2). This 
in turn is the double-cover of rotations, which appears here as SOq(3) C 
SUq(2), the subHopf algebra generated by expressions quadratic in the t. 

All the usual geometrical ideas likewise go though without difficulty. For 
example, the mass-shell or Lorentzian sphere in q-Minkowski space is defined 
by adding the relation 

BDET(u) = 1 (12) 

and is preserved under the SOq(3) action as one would expect. There are 
also vector fields on q-Minkowski space for translation[ll], and for Lorentz 
transformation from ( 11 ). The action of the rotational vectors generates the 
quantum group Uq(su2) as 

b)=(-q~c -qt~d1-a))---r(a b),(o 1)1 d 0 q 2C C d 0 0 

~)1 

(a b) ( 0 - 2b) (a b) ( 1 0 ) ] 
H 1> c d = 2c 0 _, [ c d ' 0 -1 
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where the limits are as q -+ 1 and are as one would expect. 
Another interesting feature is that this mass-shell or Lorentzian sphere 

forms a braided group. This parallels the way that the Euclidean sphere in 
the 2 X 2 quantum matrices Mq(2) is the quantum group SUq(2). The big 
difference is the *-structure or signature. In fact, this is part of a general 
phenomenon. Just as most familiar groups have supergoup analogues, there 
is a general procedure in [1] called transmutation which turns a quantum 
group into a braided group in a systematic way. The formulae at the lowest 
level are 

i ti i k ta td R; c R-b k 
U j = j, U jU I= b I a d j c, i.e., 

etc. and come out of category theory. We also gave a direct quantum groups 
point of view to them in [15]. Finally we found in [17] that this transmu­
tation from quantum geometry to braided geometry also has the side-effect 
in general of taking us from the unitary picture (our sphere in Euclidean 
space) to the hermitian picture (our Lorentzian sphere). This is the abstract 
reason why only braided matrices and not quantum matrices can serve in 
the q-deformed picture if we want the Lorentzian signature. One does not 
see this constraint at q = 1. 

More recently, U. Meyer in [23] has found an addition law for q-Minkowski 
space by introducing a new braiding suitable for the coaddition ~u = 
u ® 1 + 1 ® u. The R-matrix for this braiding is different from R above and 
provides for a better q-Lorentz group with the quantum double appearing 
as its double cover. The addition law also provides for braided differential 
calculus according to the framework of [5] and, in principle, a translation­
invariant integration as we shall see in the Appendix below. 

This completes our introduction to the braided geometry of q-Minkowski 
space. On the other hand, we have seen in the last section that these braided 
hermitian matrices are also the braided enveloping algebra of the braided 
Lie algebra associated to our R-matrix. In our case this is the 4-dimensional 
braided Lie algebra g/i,q. It has basis h, x+, x_, / with braided-Lie bracket 

[h,x+] = (q- 2 + l)q-2x+ = -q-2 [x+,h] 
[h,x_] = -(q-2 + l)x_ = -q2[x_,h] 
[x+,x-] = q-2h = -[x"-,x+] 

[h, h) = (•-' - 1)h, [1, { ~~ J = (1- .-•) { =~ 
with zero for the others. We see that as q -+ 1 the / mode decouples and 
we have the Lie algebra su2 EB u(l), but for q -::f 1 these are unified. There 
is also a braided Killing form[ll] which is non-degenerate as long as q -::f 1. 
So gl2,q is an interesting braided-Lie algebra with potential applications in 
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physics, such as in the unification of electroweak interactions in q-deformed 
Yang-Mills theory[24] with this as the gauge symmetry. Its su2 part can also 
serve as differential operators of orbital angular momentum etc., along usual 
lines. 

The quantum-geometry transformation thus connects these two concep­
tually quite distinct structures. Explicitly, it is 

x+ =(q2-1)-1 c (
h) ( a-d ) 

xi_ q-2a + d ~ (q-2 + 1) 

and gives an isomorphism U(gl2,q)~BHq(2). So, provided qi= 1 there is only 
one braided group in the picture. From one point of view it is the algebra 
of functions on q-Minkowski space. From another point of view it is the 
enveloping algebra of a braided Lie algebra. But what we see at q = 1 is 
two structures, depending on how we take the limit. If we work with a, b, c, d 
then in the limit the algebra is the commutative algebra of functions on 
usual Minkowski space. If we work with h,x+,X-,/ then the limit is the 
highly non-commutative enveloping algebra U(su2 EB u{l)). 

The quantum-geometry transform here is valid for q i= 1 and maps Lie 
algebras and their properties to geometry. For example, what from the geo­
metrical point of view is the mass-shell constraint {12) in q-Minkowski space, 
comes out from the Lie algebra or differential operator point of view as 
the quantum enveloping algebra Uq(su2). Explicitly, the quantum-geometry 
transform at this level becomes 

This follows from some known results in the theory of quantum groups 
[16][25] by putting u = z+ sz-. This connection with quantum groups is 
explained in full detail in [15], to which we refer the reader. 

Likewise, what from the geometrical point of view is the time direction 
xo appears from the Lie algebra point of view as giving the u{l) mode / 
which could appear in a gauge theory or which, for example, acts via [ , ] on 
q-Minkowski space by scaling of the space coordinates {x;}. On the mass­
shell it appears as the quadratic Casimir. In summary, U(gl2,q) is both a 
braided enveloping algebra, such as an internal symmetry or an algebra of 
differential operators acting on q-Minkowski space, and can be identified 
with q-Minkowski space itself. Only remnants of this unification are visible 
when q = 1. We have seen also that the ability to develop the q-deformed 
picture forces us from Euclidean space to Minkowski space. 

We have not had room here to describe many other features of quantum 
and braided geometry. Notably, in [24] we introduced the theory of quantum 
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group principal bundles and connections (gauge fields), including the exam­
ple of a Dirac monopole on a q-sphere. Some of this machinery can be applied 
to q-Minkowski space. In short, a systematic q-deformed picture of the ma.in 
ingredients of physics is emerging, as well as some unusual phenomena that 
are not very evident at the special point q = 1. 

Appendix. Braided Integration 

In this appendix we introduce the reader to some of the mathematical tech­
niques of braided geometry by deriving here a formula for invariant integra­
tion. This is a problem that is of current interest and which was posed a 
couple of times at the conference. Since quantum planes, q-Minkowski space 
and many other q-deformed algebras are in fact braided groups, we can ap­
ply the general theory of braided groups. There are still some difficulties in 
interpreting and computing the formula for integration, which we offer as a 
challenge for the interested reader. 

Our ma.in goal is to demonstrate some diagrammatic techniques as used 
for the basic properties of braided groups in [7]. We refer there for full details 
of the methods and notation. As well as the result here, one can also prove 
Theorem 3.1 and the braided version of ( 4) using the same techniques. 

Briefly, let us recall that a braided algebra Bis an algebra with a braiding 
"W' =X mapping B®B -+ B@B. There should also be a'unit element, 
which we view as a map T/ : (; -+ B. The algebra, and indeed all our maps, 
should be compatible with the braiding in an obvious way. We view it as 
like functions on a braided space. A braided group is such a braided algebra 
equipped also with a coproduct Ll : B -+ B0B and counit € : B -+ Q.:;, This 
is like the definition of a quantum group with the key difference that B0B 
is defined with bra.id statistics as in (5). We saw some concrete examples 
in the form of the braided matrices in Sections 3 and 4. Likewise, some 
quantum planes are also braided groups with coaddition(3]. We are using 
the term 'braided group' quite loosely here. In general, there should also be 
an antipode S : B -+ B obeying axioms like the usual ones. One can also 
ask for some braided-commutativity as in (2] but we do not need this here. 

Crucial for us is the diagrammatic notation in which Ll = t\ and · = Y. 
We also suppose that our braided group has a dual B* and denote the 
evaluation m~p ev : B* 0 B -+ (; and coevaluation map coev : (; -+ B 0 B* 
by ev = V and coev. = t"\. In concrete terms, ev is usual evaluation and 
coev(>.) = >.L,ea@r for a basis {ea} and dual basis {r}. 

Our goal is to find a map J: B -+ (; which assigns to a 'function' in B a 
number, and which is translation invariant under the group law. Classically 
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this means J b( h( ) ) = J b for all h in our group. We find correspondingly 

where the first is our definition of f and the second is its translation­
invariance property. Here Tr is the braided trace as in [11] and L is left 
multiplication, which gives the diagrammatic form shown. 

A similar formula applies for ordinary quantum groups, and we will use 
a similar strategy of proof. We note that braided integrals have also been 
studied in (26] but our proof will be different. Our first step in the proof is 
a lemma. We assume that S is invertible, then 

N 
where the first equality is the property that ~is an algebra homomorphism 
to the braided tensor product algebra Bf}_B. The second equality uses asso­
ciativity and coassociativity of the product and coproduct. The last equality 
then cancels the inverse-antipode as explained in [7]. Then 

= 

where the first equality is our lemma and the second uses that S is a braided 
antialgebra homomorphism. Now pick up the coproduct at the top of the 
third expression and push it down and to the left (not changing the topol­
ogy), giving the fourth expression. Now we use coassociativity and cancel 
the antipode loop. We obtain the desired left-invariance of the integral. 

Thus we have a nice formula for the invariant integral on a braided group. 
The braided trace plays the role of 'averaging'. The formula should, however, 
be viewed with care because it could easily happen that it gives identically 
zero or infinity and may well require a renormalisation to get a finite answer. 
To see the nature of this problem, let G be an ordinary finite group and take 
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a basis of delta-functions { 69 }. The dual basis is the the set of group elements 
themselves. Then the formula gives 

j b = ~Jg, b09 ) = I: b(g)o9 (g). 
g g 

In the continuous case this gives 6(0) times the usual integral. One can 
evaluate the trace in any convenient basis. It would be interesting to find a 
suitable basis in the case of the quantum plane or q-Minkowski space and 
likewise evaluate this integral. This is a direction for further work. 



BRAIDED GEOMETRY 77 

References 

[l] Majid S.: Braided groups. J. Pure and Applied Algebra, 86:187-221, 1993. 
[2] Majid S.: Examples of braided groups and braided matrices. J. Math. Phy1., 

32:~246-3253, 1991. 
[3] Majid S.: Braided momentum in the q-Poincare group. J. Math. Phya., 34:2045-

2058, 1993. 
[4] Majid S.: Quantum and braided linear algebra. J. Math. Phya., 34:1176-1196, 1993. 
[5] Majid S.: Free braided differential calculus, braided binomial theorem and the 

braided exponential map. J. Math. Phya., 34:4843-4856, 1993. 
[6] Majid S.: On the addition of quantum matrices. Aug. 1993, to appear in J. Math. 

Phys. 
[7] Majid S.: Beyond supersymmetry and quantum symmetry (an introduction to 

braide.d groups and braided matrices). In M-1. Ge and H.J. de Vega, eds, Quantum 
Groups, Integrable Statiatical Modela and Knot Theory, pp. 231-282. Wld. Sci., 1993. 

[8] Majid S.: Braided geometry: A new approach to q-deformations. To appear in Proc. 
1st Caribb. Spr. Sch., Guadeloupe, May 1999. CUP. 

[9] Majid S.: Hopf algebras for physics at the Planck scale. J. Classical and Quantum 
Gravity, 5:1587-1606, 1988. 

[10] Majid S.: Non-commutative-geometric Groups by a Bicrossproduct Construction. 
PhD thesis, Harvard mathematical physics, 1988. 

[11] Majid S.: Quantum and braided Lie algebras. Feb. 1993, to appear in J. Geom. 
Phys. 

[12] Majid S.: On q-regularisation. Int. J. Mod. Phys. A, 5(24):4689-4696, 1990. 
[13] Kempf A.: Quantum group-symmetric Fock-spaces and Bargmann-Fock represen­

tation. Lett. Math. Phys., 26:1-12, 1992. 
[14] Gurevich D.I.: The Yang-Baxter equations and a generalisation offorma! Lie theory. 

Sov. Math. Dokl., 33:758-762, 1986. 
[15] Ma.jid S.: Braided matrix structure of the Sklyanin algebra a.nd of the quantum 

Lorentz group. Comm. Math. Phys., 156:607-638, 1993. 
[16] Fa.ddeev L.D., Reshetikhin N.Yu. and Ta.khtaja.n L.A.: Quantisation of Lie groups 

and Lie algebras. Leningrad Math J., 1:193-225, 1990. 
[17] Majid S.: The quantum double as quantum mechanics. Sept. 1992, to appear in J. 

Geom. Phys., 13:169-202, 1994. 
[18] Carow-Watamura. U., Schlieker M., Scholl M. and Watamura S.: A quantum Lorentz 

group. Int. J. Mod. Phys., 6:3081-3108, 1991. 
[19] Ogievetsky 0., Schmidke W.B., Wess J. and Zumino B.: q-deformed Poincare alge­

bra.. Comm. Math. Phys., 150:495-518, 1992. 
[20] Drinfeld V.G.: Quantum groups. In A. Gleason, editor, Proceedings of the ICM, 

pa.ges 798-820, Rhode Island, 1987. AMS. 
[21] Podles A. a.nd Woronowicz S.L.: Quantum deformation of Lorentz group. Comm. 

Math. Phys, 130:381-431, 1990. 
[22) Majid S.: More examples of bicrossproduct and double cross product Hopf algebras. 

Isr. J. Math, 72:133-1-48, 1990. 
[23) Meyer U.: A new q-Lorentz group and q-Minkowski space with both braided coad­

dition and q-spinor decomposition. 1993, preprint DAMTP/93-45. 

[24] Brzezinski T. and Majid S.: Quantum group gauge theory on quantum space. Comm. 
Math. Phys., 157:591-638, 1993. 

[25] Reshetikhin N.Yu. and Semenov-Tia.n-Sha.nsky M.A.: Central extensions of quantum 
current groups. Lett. Math. Phys., 19:133-142, 1990. 

[26] Lyuba.shenko V.V.: Tangles and Hopf algebras in braided categories. To appear in 
J. Pure and Applied Algebra. 


