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Abstract

The calorimeter endcaps of the CMS detector are to be completely replaced by a High

Granularity Calorimeter (HGCAL), as part of the Phase-2 upgrades. A novel reconstruc-

tion framework, called The Iterative Clustering (TICL), is under development in CMS

Software (CMSSW) and was recently updated to its fourth version (v4) – centered around

a new, density-based, parallelizable, algorithm for pattern recognition, CLUE3D. CLUE3D

is a single blob shower finder, tuned for high pile-up rejection, meaning showers are often

split into several reconstructed 3D objects, called ‘tracksters’, especially when there are

secondary components like the ones initiated by Bremsstrahlung for electromagnetic ob-

jects or in hadronic showers. A new linking algorithm was developed and integrated as part

of TICL v4 with the goal of accumulating together these tracksters coming from the same

shower. It uses the propagation of tracks and tracksters to the same surface to find links

geometrically, and then build objects intelligently with those links found. Excellent recon-

struction efficiencies were obtained for electromagnetic objects using TICL v4. Separate

components of hadronic showers were also observed to be successfully merged using the

linking algorithm. Moreover, improved jet energy response and resolution were observed

with the new version of TICL. A more advanced approach based on learning structures

of showers on a sparse graph of nearby tracksters, using a Graph Neural Network, was

also explored. The problem was framed as an edge classification task. Communities were

identified in the similarity graph obtained as the model output using spectral clustering.

Clustering results better than those obtained with the geometric algorithm have been ob-

served for both events containing two close-by pions and ten randomly chosen particles

shot in front of the HGCAL. This approach is complementary to the recent efforts using

much lower-level information like hits, and framing the problem as a node classification

task.
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1
Introduction

After the end of Long Shutdown 2, the Large Hadron Collider [1] started its Run 3 in

early July 2022 and has produced proton-proton collisions at an unprecedented energy of

13.6 TeV. At the end of this run, currently scheduled for the end of 2025, the accelerator

and the experiments on it will undergo a major set of upgrades to prepare for the High

Luminosity LHC (HL-LHC). The HL-LHC [2] is planned to produce collisions at five times

the design luminosity of LHC, and record a dataset ten times as large as the initial LHC

goal – greatly increasing its discovery potential. This however introduces huge challenges

for the general-purpose experiments CMS [3] and ATLAS [4], in terms of having to deal

with an extreme radiation dosage for the detectors and making sense out of a very high

number of simultaneous collisions that are expected.

The upgrades planned for CMS [5] are motivated by the requirement to sustain or

improve performance even in these very challenging situations. The upgrades encompass

the inclusion of timing information, and improved granularity to cope with the high pile-

up; usage of radiation hard electronics, and detectors built to survive the radiation dose;

improved coverage in the forward region, and the inclusion of tracks in the Level-1 trigger

for maintaining sensitivity to physics processes.

As part of the comprehensive set of upgrades, the calorimeter endcaps will be com-

pletely replaced with the High Granularity Calorimeter (HGCAL). HGCAL [6] is a novel

1



2 Introduction

detector designed to be radiation hard and capable of handling the very busy environment

expected with pile-up in the forward region. The reconstruction for HCGAL is being de-

veloped to be as resistant as possible to the challenges that the HL-LHC brings forth, by

exploiting the rich information that the detector is able to provide. In this thesis, a new

algorithm is developed for linking clustered energy deposits within the HGCAL and those

with tracks – improving the global event description. A novel approach based on learning

functions on graphs of energy clusters is also studied for the same task.

The thesis is structured as follows: Chapter 2 briefly introduces the CMS experiment

and its various sub-detectors. It also contains a description of the upgrades planned

for Phase-2, including a separate section on the CMS HGCAL. Chapter 3 contains a

description of reconstruction in HGCAL, including the TICL framework [7]. The geometric

linking algorithm developed is described in Chapter 4, along with its performance as part of

the upgraded version of TICL. Chapter 5 discusses the novel Graph Neutral Network based

approach explored for the linking problem. The final Chapter 6 contains the conclusions

and outlook for future work.



2
CMS Experiment

The Compact Muon Solenoid (CMS) experiment [3] is one of the two general-purpose ex-

periments on the Large Hadron Collider (LHC) [1] that co-discovered [8] the Higgs Boson

in 2012. The LHC being the highest energy particle collider in the world makes it very

important as well as challenging that the experiments are able to fully exploit its potential.

The CMS experiment was designed with the primary objectives of finding the Standard

Model (SM) Higgs Boson, searching for Physics beyond the SM, and precision studies of

SM physics processes. The broad detector requirements [9] to meet these physics goals

can be summarized as good muon identification performance and momentum resolution,

good reconstruction of charged particles close to the interaction point – providing infor-

mation on the substructure of jets (a spray of particles produced in a narrow cone from

the hadronization of quarks or gluons), very good resolution for the measurement of elec-

tromagnetic energy deposits and good resolution for the measurement of missing energies

from a collision.

The CMS detector is located in a cavern around a hundred meters underground, in

the French village of Cessy, at “Point-5” on the LHC (Fig. 2.1). The solenoid in its name

refers to the fact that at the heart of the detector lies a superconducting solenoidal magnet,

capable of generating a field intensity of 4 T. This drives many of the other design and

layout choices for the detector. For example, the tracker, electromagnetic, and most of

3



4 CMS Experiment

Figure 2.1: A schematic diagram of the LHC with the sectors numbered. The four interaction
points around the ring, where the four main experiments are located, are marked with blue stars.

the hadron calorimeter are located inside the magnet. A strong magnetic field is required

to ensure good resolution for the momentum measurement of charged particles. Fig. 2.2

shows a cutaway diagram of the CMS detector with its various sub-detectors exposed. It

is useful to refer to it as the sub-detectors are briefly described in the next paragraphs.

Nearest to the interaction point lies the silicon tracking system. It consists of pixel

detectors (four layers in the barrel and three disks at each end) in the innermost region,

followed by ten layers of silicon microstrip detectors in the outer parts. The individual

cells get progressively larger as one goes farther away from the beam pipe. This reflects

the fact that particle flux decreases with distance and larger sensors can be used to still

keep the occupancy under control. Here occupancy refers to the fraction of channels in a

sub-detector that have a signal above the threshold. The long bending path through the

microstrip detectors combined with the strong magnetic field allows for a measurement of

the charged particle momenta with an excellent resolution, and the pixel detectors provide

measurement points close to the beam pipe crucial for track seeding and reconstructing

secondary vertices in decays of hadrons containing b and c quarks.
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SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Pixel (100x150 μm2) ~1 m2 ~66M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 2.2: Cutaway diagram of the CMS detector, with the sub-detectors labeled, as was
used in the LHC Run-2 [10].

The Electromagnetic Calorimeter (ECAL) lies just outside the tracker and is made

entirely of≈ 76,000 lead tungstate (PbWO4) scintillating crystals. This type of calorimeter

in which the whole volume is made of an active material serving both to degrade energies

and generate signals is called a homogeneous calorimeter. PbWO4 has a short radiation

length (X0 = 0.89 cm) and Moliere radius (2.2 cm), meaning electromagnetic showers

are compact and are easier to contain. The crystals are also fast, allowing the ECAL

to be included in the Level-1 (L1) trigger decision. The scintillation light is read out by

silicon avalanche photodiodes (APD) in the barrel and vacuum phototriodes (VPT) in the

end-caps, both being capable of operating in a magnetic field.

The Hadron Calorimeter (HCAL) surrounds the ECAL system and is located partly

inside (Hadron Barrel and Hadron Endcap) and partly outside (Hadron Outer and Hadron

Forward) the superconducting solenoid. Like most other hadron calorimeters, the CMS

HCAL is also a sampling calorimeter, with active regions, generating signals proportional

to the energy deposited by the particles, interleaved by passive absorbers, where most
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of the energy is actually deposited. In the Hadron Barrel and Endcaps, scintillator tiles

are used as the active material with brass as the absorber. The scintillators are read

out by wavelength-shifting fibers, eventually carrying the light out to hybrid-photodiodes

(HPD). As mentioned earlier, one of the goals for CMS is to provide good resolution for

measurements of missing energy Emiss
T ; this translates to good containment of showers and

hermeticity and is majorly taken care of by the HCAL. The fairly short interaction length

of brass and the maximization of the absorbing material inside the solenoid helps with the

containment. Since the Hadron Barrel is physically constrained between the ECAL and

the inner bore of the solenoid, an additional Hadron Outer, placed just outside the coil of

the solenoid, is useful for minimizing leakage from late starting showers. The solenoid coil

conveniently acts as an absorber for this, further increasing the material encountered by a

particle before escaping the calorimeters. To be sensitive also in the very forward region,

3.0 < η < 5.0, the Hadron Forward calorimeter is used. It uses quartz fibers embedded

in steel absorbers, where the signal is the Cherenkov light generated upon the passage of

a relativistic charged particle. The material choices are motivated by the requirement to

have narrow and shallow shower profiles – necessitated by the high occupancy, very high

radiation resistance, and fast signal generation.

As reflected in the name, the muon systems play a crucial part in the experiment.

They are the outermost sub-detectors and are present completely outside the solenoid,

in the return yoke of the superconducting magnet. The primary purpose of the 10000-

ton steel return yoke is to safely confine most of the strong magnetic field so that the

field outside in the experimental cavern stays at a manageable level. It also provides a

region of uniform magnetic field outside the solenoid which can be exploited to measure

the momenta of muons. Since muons, unlike most other particles, can pass through large

amounts of matter almost unharmed, the huge mass of steel also acts as a filter for other

particles produced directly or indirectly in a collision. Muon stations are placed in the

gaps between consecutive layers of the return yoke, both in the barrel and endcap regions.

A few different technologies of gaseous detectors are used, depending on the magnetic field,

radiation levels, and muon incidence rates: Drift Tubes (DT) in the barrel, Cathode Strip

Chambers (CSC), Resistive Plate Chambers (RPC), and a recent addition, Gas Electron

Multipliers (GEM) in the endcaps. Gaseous detectors work on the general principle of

capturing and amplifying charges produced by ionization when a charged particle passes

through a gaseous volume placed in a high-voltage region. The momenta of muons can be

measured both in the inner tracker as well as using the muon systems. At low momenta,

the measurement from the tracker outperforms that from the muon chambers by an order

of magnitude in terms of resolution. However, the muon systems become important at
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high momenta, when its combination with the tracker improves the resolution. The fast

signals from the muon systems are also used to determine the bunch crossing as well as

in the L1 trigger decision. A dedicated muon trigger allows CMS to trigger on and record

final states with high momenta muons, a very important feature towards fulfilling the

physics objectives of the experiment.

The protons in the LHC are accelerated in bunches. Pairs of oppositely circulating

bunches are then made to interact at the four interaction points (IPs) along the ring

(Fig. 2.1), where the four major experiments reside. The design bunch crossing rate for

the LHC is 40 MHz, which corresponds to a bunch separation of 25 ns in time. It is

technically unfeasible to store the data generated from all the bunch crossings, because

of the huge bandwidth and enormous storage required to do so. Moreover, only a tiny

fraction of the bunch crossings actually give rise to hard collisions (with sufficiently high

momentum transfer) where interesting physics processes could take place.

The CMS trigger and data acquisition system has thus been designed to discard unin-

teresting events, thereby greatly reducing the data rate, before they are written out onto

permanent storage. The trigger system is designed in two levels, the Level-1 (L1) trigger

and the High-Level Trigger (HLT). The L1 trigger provides the first level of filtering, re-

ducing the 40 MHz bunch crossing rate to 100 kHz, and is implemented on fast custom

hardware processors like Application Specific Integrated Circuits (ASICs) and Field Pro-

grammable Gate Arrays (FPGAs). The L1 trigger decision is taken based on the presence

of certain “trigger primitive” objects like electrons, photons, muons, and jets above pT

thresholds. These trigger primitive objects are constructed using simplified information

from the calorimeter and muon systems. The total time allocated for the L1 trigger signals

from the detectors to reach the processors, a decision to be taken, and communicated back

to the detector is 3.2 µs, called its latency. Accounting for the delay in signal propagation,

less than 1 µs is available for the actual L1 trigger calculation. During this latency time,

all the high-resolution data from the detectors are held in buffers, waiting to be either

passed on to the HLT upon L1 Accept or rejected. The HLT runs on a computing farm

consisting of commercial computing hardware and reduces the L1 output rate of 100 kHz

to a few kHz for final storage. Software for the HLT is developed akin to the full offline

reconstruction to gain the most from the sophisticated algorithms but streamlined with

time-saving strategies in mind. The HLT algorithms follow a sequence of increasingly

complex reconstruction and filtering, called a “trigger path”. Events are discarded and

the rest of the trigger path is skipped as soon as a filter fails. This helps in reducing the

average event processing time by running the more time-consuming parts of the recon-

struction for fewer events. Moreover, the reconstruction is restricted to narrow regions
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around L1 or higher-level objects saving more CPU time.

Over the past decade or so the CMS experiment has collected around 200 fb−1 of

proton-proton (pp) collision data and contributed to some very important scientific ad-

vances. The detector has also undergone several upgrades to maintain as well as improve

its performance. Following the discovery of the Higgs boson, the scientific effort has shifted

more in the direction of studying the properties of the Higgs boson as well as searching

for new physics in the energy frontier. The LHC provides an unparalleled opportunity to

explore these goals and this was strongly reaffirmed in the European Strategy for Particle

Physics Update (ESPPU) of 2013 [11] and 2020 [12] as well as in the American Snow-

mass process of 2013-2015 [13]. To fully exploit the capabilities of the machine, it was

decided that the LHC will be upgraded to run at five times its original design luminosity,

as what is called the High Luminosity LHC (HL-LHC) [2] or “Phase-2” of its running.

This dramatically increases the physics reach of the experiments by integrating an addi-

tional 3000 fb−1 by the end of the LHC program. A brief overview of the high-luminosity

program (Fig. 2.3) and the upgrades planned for the CMS experiment in preparation for

Phase-2 operations are given in the next section.
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2 x nominal Lumi2 x nominal Luminominal Lumi
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2.1 Phase-2 Upgrades

Instantaneous luminosity L is defined as the number of potential collisions per unit area

per unit time and gives the event rate dR/dt when multiplied by the cross-section of the

process σp,
dR
dt = L σp. The LHC was originally designed with an instantaneous luminosity

goal of 1× 1034 cm−2s−1 and has reached a peak of twice that during operations in 2018.

The HL-LHC is planned to run at a nominal value of 5× 1034 cm−2s−1, with all pieces of

equipment being designed with a margin that can allow pushing the machine luminosity

to 7.5 × 1034 cm−2s−1 – a so-called “ultimate” performance scenario. This introduces

immense challenges in terms of very high radiation damage to the detectors and a major

increase in pile-up, the number of simultaneous collisions during a bunch crossing, for the

experiments. At the nominal HL-LHC luminosity, the average pile-up (PU) expected is

140 which increases to 200 for the ultimate scenario. Additionally, a substantial increase

in computing requirements, both at the online and offline levels and for data transfer

capabilities is expected. Several parts of the current CMS detector will reach the end of

their lifetimes by the end of Run 3 and several other parts and subsystems are simply

not capable to handle the conditions expected during Phase-2. To sustain or improve its

performance, the CMS experiment is planned to go through an extensive set of upgrades [5]

during the three years of Long Shutdown 3, after the end of Run 3 (Fig. 2.3).

The tracking detectors, which are placed closest to the interaction point, receive the

highest dose of radiation. In silicon sensors radiation damage introduces defects in the

crystal lattice, changing its bulk electrical properties. These changes manifest as increased

leakage currents, and reduced charge collection efficiency – leading to reduced signals and

an unsustainable increase in the full depletion voltage (required to make the full thickness

of the sensor depleted, making it fully sensitive to charged particles). This forces operation

with partial depletion, further reducing signals. The current tracker will receive enough

dose by the end of Run 3 that it will need to be completely replaced for Phase-2. The

tracker for Phase-2 [14] is designed to be more granular to cope with the higher number

of tracks from the high pile-up. This is achieved by using strip detectors that are shorter

in length and with smaller pixels. The Outer Tracker is also made significantly lighter,

in terms of the material seen by a particle traversing through it, decreasing the rate of

photon conversions as well as improving the pT resolution. A significant improvement is

the inclusion of tracking in the L1 trigger, where the Outer Tracker provides information

at 40 MHz to L1. Additionally, the coverage of the tracker is extended to |η| = 4 to better

match that of the calorimeter.

The current DT, CSC, and RPC detectors in the muon system can work throughout



10 CMS Experiment

Phase-2 and do not need to be replaced. The upgrades instead focus on improving per-

formance in the higher rate environments expected in Phase-2 [15]. The measurement in

the forward region is augmented by adding new detectors: GEMs for the first two and

improved RPC (iRPC) detectors for the next two muon stations. These would provide

high-resolution measurement points improving the standalone muon track reconstruction,

and also provide an opportunity to trigger on muons produced outside the tracker from

decays of long-lived particles. An additional GEM detector, placed immediately outside

the new endcap calorimeter, is to be used to extend the coverage of the muon system to

|η| = 2.8.

A new Minimum Ionizing Particle (MIP) Timing Detector (MTD) [16] will be placed

in front of the barrel and endcap calorimeters. The MTD will be used to provide precise

timing information for tracks. With a resolution of 30-40 ps, at the beginning of the HL-

LHC, this helps in simplifying the problem of assigning tracks to primary vertices. The

individual interactions in a bunch crossing are spread over a time of 180-200 ps due to the

longitudinal extent of the beams. The time information of a track from the MTD narrows

the time window over which the algorithms have to look for a compatible vertex, thereby

reducing the combinatorics and confusion introduced by high pile-up.

Most of the current barrel ECAL and HCAL are to be retained for Phase-2, with

upgrades planned only for the detector electronics [17]. However, the endcaps, where

the radiation damage is much higher, are not suitable for use in their current condition

during Phase-2. The calorimeter endcaps are thus to be completely replaced with a novel,

radiation hard, High Granularity Calorimeter (HGCAL) [6]. Since the reconstruction for

the HGCAL is the main subject of this thesis, its design is discussed in more detail in the

next section.

The latency of the L1 trigger [18] is to be increased from 3.2 µs to 12.5 µs, allow-

ing more time for tracks from the Outer Tracker to be reconstructed and matched to

calorimeter deposits or muon tracks. Machine learning-based trigger algorithms, exploit-

ing the additional available information, are also under development for event selection

and anomaly detection already at the hardware level. High-speed optical links will be

used to retrieve the detector information. The front-end electronics of all the existing

subdetectors, that are to be retained, have to be upgraded to meet the new requirements

of the L1 trigger. To maintain thresholds comparable to what is currently in place, the

maximum L1 trigger rate will increase from 100 kHz to 500 kHz at PU 140 and 750 kHz

at PU 200. All the detector components are being designed with read-out capabilities

to handle the conditions at PU 200. The HLT [19] has to deal with the challenges of

increased event rate and complexity and efficiently perform a reduction by a factor of
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100, the same as in Phase-I. Algorithms are being developed or overhauled in view of

the new constraints. Additionally, heterogeneous architectures with Graphics Processing

Units (GPUs) accelerating code wherever possible, are being exploited to adhere to the

strict time constraints. Evidently, the data acquisition system has to be upgraded as well

to be able to handle the increased data rate.

2.2 High Granularity Calorimeter (HGCAL)

Calorimeter performance in the endcaps is important for achieving the physics goals of

CMS during Phase-2. For example, the reactions initiated by Vector Boson Fusion (VBF)

give rise to narrow jets, with large angular separation, usually ending up in the detector

endcaps. Despite the busy environment caused by the high pile-up, the endcap calorimeters

should be able to trigger on and reconstruct VBF jets, or merged jets like those from

the hadronic decays of the W and Z bosons. It is also necessary to maintain a good

electromagnetic energy resolution, a feature of the current ECAL.

The High Granularity Calorimeter is being developed as a replacement for the calorime-

ter endcaps which can maintain its performance even after an integrated luminosity of 3000

fb−1. This requires a good inter-cell calibration with MIPs, necessitating the use of small

sensors where the electronics noise after irradiation is still low. Additionally, the entire

calorimeter will be operated at −30 ◦C to keep the energy equivalent of the electronic

noise low. The high transverse granularity caused by the small sensors is useful also in

rejecting energy from pile-up and, with the high density of the calorimeter, in resolving

close-by showers. The HGCAL is a sampling calorimeter and the high longitudinal gran-

ularity is required to maintain the electromagnetic energy resolution and aid in software

compensation for hadronic showers. The high granularity opens possibilities for using

pattern recognition and machine learning algorithms that benefit from the high data di-

mensionality, as well as from using the calorimeter to calculate the directional information

of showers.

The HGCAL consists of an electromagnetic compartment (CE-E), followed by a hadronic

compartment (CE-H) behind it. It was found that silicon as a sensitive material can work

in the radiation levels expected at the endcap, so most of the HGCAL is instrumented with

silicon sensors of size ≈0.5-1 cm2. Three different silicon thicknesses 120, 200, and 300

µm are used respectively in the areas of decreasing fluence. Where the radiation levels are

expected to be low, at large radii at the back of CE-H, several layers are instrumented us-

ing plastic scintillators (≈4-30 cm2 in size) with individual Silicon Photomultiplier (SiPM)

readouts. The silicon sensors have another advantage of having fast response times and
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(a) (b)

Figure 2.4: (a) An isometric view of one endcap of the HGCAL. (b) The longitudinal structure
of the upper half of an endcap shows the electromagnetic (CE-E) and hadronic (CE-H) compart-
ments as well as the different sensor technologies used.

with the front-end electronics can give precise time stamps (with 25 ps resolution) of en-

ergy deposits greater than a certain threshold. As has been discussed before, this helps in

pile-up rejection and in assigning energy deposits to the correct vertex.

In its present design, there are 26 layers in CE-E and 21 in CE-H. In the CE-E the

hexagonal silicon sensors are sandwiched between a WCu baseplate and a printed circuit

board carrying the front-end electronics, forming a silicon module. The silicon modules

are tiled on either side of a copper cooling plate, and lead absorbers clad in stainless steel

are placed on both sides of this module-cooling plate-module sandwich. This makes the

total electromagnetic compartment around 27.7 X0 or ∼1.5λ deep. In CE-H, the silicon

sensors and (in the later layers) scintillators are mounted only on one side of a copper

cooling plate. Stainless steel absorber plates enclose the sensor-cooling plate structure on

both sides, making the total HGCAL around 10λ thick.

The hexagonal silicon sensors will be fabricated on 8-inch silicon wafers. The layout

of the wafers in a layer of CE-E, with only silicon sensors, is shown in Fig. 2.5a. The

scintillators, formed as small tiles, are arranged in a r-ϕ grid, with the tiles getting pro-

gressively larger in size with increasing radii. A layer of CE-H, with both silicon and

scintillator sensors, is shown in Fig. 2.5b. For ease of engineering and assembly, the layers
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(a) (b)

Figure 2.5: (a) Layout of the hexagonal silicon wafers in a layer with only silicon sensors. The
60◦ arcs with different colors represent the cassettes. The three thicknesses of silicon sensors used
are also shown as different shades. (b) The layout of silicon wafers and scintillator tiles in a layer
where both are present. The tiles are arranged in an r,ϕ grid, and get progressively larger with
increasing r. The 30◦ arcs show the cassettes in CE-H [6].

in CE-E are subdivided into 60◦ wide wedges and those in CE-H into 30◦ wide wedges

called “cassettes”. The cassettes in CE-E additionally include the absorbers while those

in CE-H do not.

Information from the HGCAL will be used as part of the L1 Trigger. Energy sums

by combining groups of either 4 (2×2) or 9 (3×3) adjacent silicon cells and 2 scintillator

tiles are calculated by the on-detector front-end electronic systems. These sums in the

so-called “trigger cells” are transmitted to and given as inputs to the off-detector Trigger

Primitive Generator (TPG) present in the service cavern. Energy deposits in all layers of

CE-H but only the alternate layers of CE-E are used for this. The TPG outputs a list

of 3D clusters, reconstructed from the trigger cells, and an energy map of the summed

energy in η, ϕ bins which are then used further in the central L1 Trigger system to form

the trigger decision.
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3
Reconstruction in HGCAL

The high pile-up expected during Phase-2 makes reconstruction a very challenging task.

The unprecedented granularity of the HGCAL helps reduce occupancy, helping resolve

energy deposits in a busy environment, but introduces new challenges as well. Naive

reconstruction algorithms exploring every possible combination and path are expected to

fail due to timing or memory explosion. Highly granular calorimeters are ideal for Particle

Flow-like reconstruction [20, 21], in which information from different parts of the detector

is matched via sophisticated pattern recognition algorithms, akin to tracing the path of a

particle through the detector. Moreover, the 5-Dimensional measurements (E, x, y, z, t) of

energy deposits, that the HGCAL is capable to offer, make it a prime candidate for doing

so.

The signals from the silicon cells or scintillator tiles are digitized and calibrated to

produce the Reconstructed Hits (HGCRecHit). For data in real life, this would be done

by the front-end ASIC called HGCROC, which reads out and digitizes the sensor charge

at every bunch crossing. The time of arrival would also be measured and digitized. The

triggered data is then sent to another digital ASIC, ECON-D, for zero suppression, be-

fore being transmitted off the detector over optical links. In the simulation, a similar

treatment is done by electronic emulations and algorithms. Reconstructed hits form the

input to the reconstruction. Those are first clustered in their respective layers, using a

15
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density-based algorithm called CLUE, to form layer-clusters (LayerCluster). The layer-

clusters from different layers can be connected in several ways, inside what is called The

Iterative Clustering (TICL) framework, to finally output a list of particles along with

their identification probabilities and kinematic properties. TICL also takes into account

non-calorimeter objects like tracks and muons to perform a Particle Flow like treatment

of calorimeter data.

The CLUE algorithm is described in Section 3.1 followed by a brief discussion on the

modular TICL framework in Section 3.2. CLUE3D, the density-based pattern recogni-

tion algorithm made default in the latest update of the TICL framework, is described in

Section 3.2.1.

3.1 CLUE

CLUstering of Energy or CLUE [22] is used as the layer-clustering algorithm in HG-

CAL reconstruction. It is inspired by the Imaging Algorithm [23] and is designed to be

completely parallelizable and optimized using data structures supporting fast queries. As

a density-based algorithm, it is based on the idea that cluster centers are areas of high

density and are relatively distant from other high-density areas.

Figure 3.1: The steps of the CLUE algorithm: (a) calculation of local densities, the color,
and size of points represent their local densities; (b) calculation of nearest highers, the arrows
point from the nearest higher to the point in question; (c) labeling of seeds and outliers, marked
with stars and grey squares respectively; (d) assignment of clusters, colors representing cluster
indices [22].

The first step is the calculation of local densities for every detector cell (Fig. 3.1a).

The local density ρi of a cell i is the weighted sum of energy in its neighboring cells Ndc
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(including itself) which are closer than a distance cut-off dc.

ρi =
∑

j:j∈Ndc (i)

χ(dij)wj ,

where wj is the weight (energy) of cell j, dij is the distance between cells i and j, and

χ(dij) is a convolution kernel, which can be chosen according to the lateral size of showers

and the specific application.

Next, for every cell, the distance δ to its nearest cell with a higher density is calculated

(Fig. 3.1b). If a cell has local density greater than a cut-off ρc and δ higher than δc, it is

flagged as a seed, forming the cores of clusters. The ones with local density less than ρc and

δ greater than δo are marked as outliers (Fig. 3.1c). These are cells that are neither close

to other clusters nor have enough density to form clusters on their own. Each outlier and

all its descendant followers are disallowed to be included in any cluster, providing noise-

rejection from low-density deposits. Every other cell becomes a follower of its nearest cell

with higher density.

Each seed forms a separate cluster with all of its followers (Fig. 3.1d). Cluster indices

are then iteratively passed down from the seeds through its chain of followers. For instance,

if cell X is a seed and a is a follower of X and b is a follower of a, X forms one cluster with

both a and b.

CLUE uses a fixed grid spatial index for neighborhood queries. The spatial index, much

like a two-dimensional histogram, is constructed layer-wise by collecting the indices of the

reconstructed hits into square bins according to their 2D coordinates. The neighborhood

search around a point (xi, yi), within a distance threshold dc, is then restricted within the

bins touched by the window [xi ± dc, yi ± dc]. This prevents a sequential scan over all the

points, making the process significantly more efficient.

If k clusters are found from n reconstructed hits, the calculation of local densities and

distances to nearest cells with higher densities can be done with n-way parallelization,

independently for every hit, while the expansion of clusters from seeds can be done with

k-way parallelization, independently for every seed found.

The four parameters of the algorithm: the distance cut-off for local density calculation

dc, one density cut-off ρc, and two distance cut-offs δc and δo, respectively, for seed and

outlier labeling, are chosen based on the physics requirements (shower sizes, separations)

and the level of noise rejection desired.

Two layer-clusters built by CLUE for a 400 GeV photon shower are shown in Fig. 3.3a.

CLUE has been extensively tested, and has been found to work very well in terms of

clustering performance for the HGCAL [24], even in the presence of a high number of
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simultaneous collisions. Its performance scales linearly, with respect to the number of

hits to be clustered, preventing an explosion in timing or memory in a high occupancy

environment. It has also been shown to effectively reject hits from electronic noise. The

number of layer-clusters produced is typically an order of magnitude less than the number

of hits, greatly reducing the problem size for the rest of the reconstruction.

3.2 The Iterative CLustering (TICL)

The Iterative CLustering [7] is a modular framework for reconstruction in HGCAL, be-

ing developed within CMS Software (CMSSW). Its modularity plays several important

functions. By separating functionalities into modules, as shown in Fig. 3.2, troubleshoot-

ing and debugging becomes easier and the core infrastructure of the CMSSW framework

is abstracted away from the developer. It also allows for quick switching of algorithms,

making the testing and development cycle fast. Moreover, TICL is being developed with

data structures and algorithms keeping parallelism in mind, and porting of code to het-

erogeneous architectures is simultaneously being done at a healthy pace.

Figure 3.2: Flow diagram of the TICL framework. Modules in orange refer to information
obtained from outside the calorimeter. Modules with a red border have dedicated validation and
visualization functionalities in CMSSW [7].

TICL takes the 2D layer-clusters found by CLUE as input. The next step is the so-

called “Pattern Recognition”, which connects the layer-clusters across HGCAL layers to

form 3D particle shower-like objects called “tracksters” (Trackster). There is a possibility

to filter the layer-clusters going into the pattern recognition step to reconstruct special ob-

jects like secondary tracks (using layer-clusters with less than 3 hits) or restrict it around

L1 objects or tracks (using seeding regions). The latter is useful for fast, regional recon-

struction in the HLT. Currently, there are several choices available for the algorithm to be

used for pattern recognition: CLUE3D, Cellular Automaton, and FastJet [25]. CLUE3D



3.2 The Iterative CLustering (TICL) 19

is discussed in more detail in the following subsection. Cellular Automaton uses layer-

clusters from neighboring layers and forms doublets. If these doublets are aligned and

point back to the seeding region, they become neighbors of each other. Neighbors of

doublets form a graph that is then visited by a depth-first search to form the tracksters.

FastJet [25] features a number of cone-based jet clustering algorithms and can be used to

both make both jets and tracksters.

Algorithms can be switched and configured using the plug-in system of CMSSW. Pat-

tern recognition can also be done in iterations; a floating point mask for layer-clusters

keeps track of their usage and allows an iterative workflow to be built. Additionally, the

floating point mask lets layer-clusters be shared between more than one tracksters.

Formally, tracksters are directed acyclic graphs with layer-clusters or hits as nodes,

whose edges depend on the pattern recognition algorithm used. Once tracksters are built

using the algorithm of choice, their aggregated properties are computed. These properties

include the barycenter, direction, and shape using energy weighted Principal Component

Analysis (PCA) of the layer-cluster positions, transverse momentum using the PCA direc-

tion, time, particle identification (PID) probabilities, and regressed energies. A 400 GeV

trackster reconstructed by CLUE3D, corresponding to a photon, is shown in Fig. 3.3b.

(a) (b)

Figure 3.3: (a) Two layers-clusters built by CLUE belonging to a 400 GeV photon shower.
The hexagonal silicon sensors can be recognized. (b) A 400 GeV trackster produced by CLUE3D
for a photon. The red lines denote edges formed by CLUE3D between the layer-clusters. Higher
energies in both images are shown with warmer colors.
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3.2.1 CLUE3D

CLUE3D [24] is a density-based pattern recognition algorithm developed with a logic very

similar to CLUE. Contrary to how its name might be understood, it does not cluster

reconstructed hits directly in three dimensions. Rather, it takes the layer-clusters as input

and clusters them together across layers. It starts with first calculating the local density

of a layer-cluster, by searching for other layer-clusters in its adjacent layers lying within

a distance(projected) window of the original layer-cluster. The next step is the search for

the nearest layer-cluster with higher density. The nearest higher is found by exploring a

grid in binned η-ϕ space on the same set of adjacent layers. Seeds, outliers, and followers

are identified in the same way as in CLUE. Finally, tracksters are created from every seed

and all its followers.

Several performance improvements [26] were observed by using CLUE3D as the pattern

recognition algorithm with respect to the Cellular Automaton algorithm, which was the

default in the previous version of TICL. These include improvements in the separation

of tracksters, the efficiency of energy reconstruction, and scaling of timing with pile-

up. Moreover, the graphs of layer-clusters in CLUE3D tracksters depict the energy flow

better (with directed edges connecting layer-clusters to their nearest higher, which can

be followed back to their respective seeds) and can potentially be used in the future for

trackster characterization and to subsequently trigger splitting, cleaning or linking. Owing

to the improvements in performance, CLUE3D was made the default pattern recognition

algorithm in TICL version 4 (v4). In the rest of this thesis, it should be assumed that

tracksters are obtained using CLUE3D if not stated otherwise.
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Linking in TICL

Particle showers often have secondary components, like the ones initiated by Bremsstrahlung

for electrons, the electromagnetic and hadronic components of a hadronic shower, or from

particles that start showering before entering the calorimeter. For example in HGCAL,

the electromagnetic (CE-E) and hadronic (CE-H) compartments have different material

compositions for the absorbers as well as different sensors. This results in different en-

ergy densities and the tracksters obtained from CLUE3D are often split at the boundary.

Moreover, CLUE3D has been tuned for high pile-up rejection, producing pure but split

tracksters.

This calls for a mechanism that can accumulate spatially separate clusters of energy

deposits coming from the same shower or particle. There is also the requirement that

energy deposits reconstructed in the calorimeter need to be matched to objects recon-

structed elsewhere in the detector, e.g. tracks. As has been alluded to before, HGCAL

is well-equipped for performing this kind of Particle Flow-like reconstruction [6, 20]. This

approach is especially necessary to maintain/improve jet energy resolutions in the busy

environment expected during Phase-2. Once objects reconstructed in the sub-detectors

are matched, this works by taking the most precise measurement of a particle in the de-

tector, for example, from the tracker for charged particles and from the (electromagnetic)

calorimeter for (photons) neutral hadrons.

21
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Due to the high occupancy, this linking step in TICL is not a trivial task. There are

various ways for an algorithm to get confused or explode in its time or memory consump-

tion. Confusion can be introduced in two ways. Firstly, if deposits from a neutral particle

close to those from a charged particle are not resolved and are merged with the latter. The

energy measurement will be from the momentum of the track, thus losing the energy of

the neutral. Secondly, if energy deposits from a single charged particle are not matched to

the track. These then form fake neutrals and contribute to double counting of the energy,

which was already once accounted for from the track.

As part of the TICL v4 upgrade, a new geometric iterative linking algorithm was

developed and deployed in CMSSW. The algorithm is discussed in Section 4.2, the Particle

Flow interpretation of the objects built from the linking is described in Section 4.3, and the

performance of the linking algorithm is reported in Section 4.4. In the next, Section 4.1,

a brief overview is given of the plug-in system introduced for the deployment of multiple

linking algorithms in TICL.

4.1 Plug-in System

The plug-in system allows several different algorithms to exist simultaneously and be con-

veniently plugged-in when required by the user or developer. The same structure is used for

the several algorithms that exist for pattern recognition in TICL. LinkingAlgoFactory.cc

is the so-called PluginFactory where different linking algorithms can be loaded as plug-

ins. The one plug-in, corresponding to the only linking algorithm present now, is registered

as a ValidatedPlugin which uses the ParameterSet validation, an extra layer of checks

when passing parameters to an algorithm. This also makes the parameters easily modifi-

able from the Python configuration files. Once multiple algorithms are present as separate

plug-ins, the one to be used can also be easily changed by specifying in the Python con-

figuration.

4.2 Geometric Iterative Linking Algorithm

The problem at hand is to link tracks to tracksters or tracksters to other tracksters and

exists in three dimensions. The general idea of the algorithm is to reduce the problem into

two dimensions, by propagating the tracks and tracksters onto a common surface, and try

to find neighbors geometrically. This is the link-finding step. Once the entire graph of

links is known, it is then iteratively explored, aided by considerations of energy and time

compatibility, to create the final objects.
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The algorithm is motivated by the assumption that tracks and tracksters belonging to

the same particle would also be geometrically close once projected onto the same surface.

Although not perfect, this is a good enough place to start a general approach. Other ideas

for the future might include 2D clustering of the projected objects or using secondary

tracks reconstructed in the calorimeter to connect separate blobs of energy. The graph

structure of layer-clusters in a trackster, corresponding to the energy flow in the shower,

might also be exploited to aid linking – by inferring whether a trackster is incomplete, and

needs to be linked to other neighboring tracksters, or not.

4.2.1 Propagation of objects

For propagation of tracks, the PropagatorWithMaterial is used. It takes into account

the material effects,1 like multiple scattering and energy loss, as well as the bending due to

the magnetic field. However, for tracksters, a simple linear extrapolation of its barycenter

(energy-weighted average of positions of all its layer-clusters) back to the origin (0, 0, 0) is

used instead. The first principal component obtained from the PCA of the layer-clusters

in the trackster was also used as the trackster direction but produced significantly worse

results. This might be due to the fact that the directions obtained from the PCA for small

tracksters are not reliable, and that the rest have to undergo some sort of cleaning (of

the layer-clusters considered for its calculation) to obtain a good enough estimate of its

direction [27]. The two surfaces chosen for propagation are the layer 1 of HGCAL and the

interface between CE-E and CE-H (lastLayerEE), a natural choice given the geometry

of the problem. The tracksters propagated to a surface are stored in a fixed grid data-

structure TICLLayerTile (TICLLayerTile), binned in η-ϕ space, similar to that used in

CLUE and CLUE3D, for faster querying during link-finding.

4.2.2 Link-finding

For the link-finding step at a given surface, a seeding collection of either tracks or track-

sters, propagated to that surface, is used to look for propagated tracksters in a configurable

η-ϕ window around each seed. The TICLLayerTile, corresponding to the correct side of

the calorimeter, can be conveniently queried for its contents in a window around a certain

η,ϕ. The contents returned are further checked for their distance from the seed, for a more

accurate selection according to the size of the window specified. Every object found inside

the window is called a link. The indices of all those found are stored in a collection of

1At the time of writing the effects arising from the material inside the HGCAL are not accounted for
in the propagator.
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C++ type std::vector<std::vector<unsigned> >, where every element, corresponding

to a seed, is a vector of the indices of objects found as links to that seed, if any.

It is useful to think of a link here as a possible connection between two objects purely

based on their geometrical distance in η-ϕ space. The links found to a seed are sorted in

ascending order of their distance from that seed, so that the ones closer get used up earlier

in the link exploration step.

Four separate such collections are generated for the track-to-trackster or trackster-to-

trackster links found at the two surfaces:

• Tracks to all tracksters, propagated at layer 1

• Tracks to all tracksters, propagated at lastLayerEE

• Electromagnetic tracksters to Hadronic tracksters, propagated at lastLayerEE

• Hadronic tracksters amongst themselves, propagated at lastLayerEE

Here Electromagnetic (EM) or Hadronic (HAD) simply refer to tracksters that have their

barycenters in CE-E or CE-H respectively. For example, to build the collection second

in the list, the collection of tracks propagated to the lastLayerEE is used as the seeding

collection, and for each of those, the links found to all tracksters (propagated to the same

surface) are stored.

Tracks are only considered in the linking algorithm if they are in the HGCAL accep-

tance, have transverse momenta pT above 1 GeV, are highPurity, have less than five

missing outer hits2 and are not associated to muons. Additionally, only those with energy

(using the pion mass hypothesis) above 2 GeV are propagated and allowed to be linked

with tracksters. The ones that are below this threshold are made charged hadrons by

default.

4.2.3 Exploration of links

The links found before are explored in two iterations to build the final TICLCandidates

(TICLCandidate). TICLCandidates are lightweight physics objects that are one of the

outputs of TICL and are used downstream in the reconstruction chain. A TICLCandidate

has zero (created with just a track) or more included tracksters and can possibly include a

track. In addition to kinematic information, it contains the charge, particle identification

probabilities, and time of the candidate. The first iteration of link exploration is for

candidates that are charged, i.e. have a track associated and the next is for neutrals.

2hits expected but not recorded in the tracker after the last (farthest from the interaction point) hit of
a track
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Figure 4.1: The exploration of links found to build charged candidates, beginning from the
collection of tracks and exploring sequentially the deeper collections. Arrows correspond to queries
in the collection pointed to by it, using an element in the collection from which it originates. The
exploration is depth-first. For a given track, the branch on the left-hand side is executed before the
one on the right. Tracksters found are added to a candidate if they are energy and time compatible
(with the track) and have not already been used before.

Given a track/trackster, one can quickly find the list of objects (tracksters) found as

links to it, at a surface, by asking in the appropriate collection.

This forms the basic operation for exploring the graph of links. For making the charged

candidates, this exploration starts with the tracks. For every track, the track to trackster

collection at layer 1 is asked for any links found to it. Every trackster found as a link here

is used to query the EM to HAD trackster collection at lastLayerEE, and any trackster

found here is used to ask in the final HAD to HAD trackster collection at lastLayerEE.

It is a depth-first search, so any link found is immediately used to query further in the

deeper collection before proceeding with other links at the current level. This forms the

branch on the extreme left in Fig. 4.1. The tracksters found as links to the track at layer 1

could also be HAD (i.e. have barycenters in CE-H), and thus are used directly to check in

the trackster HAD to HAD collection at lastLayerEE – forming the second branch from

left in Fig. 4.1. This branch is executed after visiting all the deeper links of the trackster

found as a link to the track, in the track to trackster collection at layer 1, in the previous

branch.

This procedure is repeated, with the same track, starting the exploration at the track
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to trackster collection at lastLayerEE and exploring further links to those in a similar

fashion – shown by the two branches, third and fourth from the left in Fig. 4.1. The

order of exploration is the same as before, i.e., in Fig. 4.1, the fourth branch from left is

executed before the third. The rationale behind the repetition is the observation that this

makes the track-to-trackster linking more robust, recovering some of those links that were

missed in the steps before. If nothing is found linked to a track or all its links were used

up in previous candidates, a charged candidate is made from just the track.

A trackster can be found as a link to more than one track/trackster if it is close to

both. The same link can also be explored more than once due to the iterative logic. To

prevent double counting, a hitherto unused trackster when found as a link is masked,

preventing its reuse.

The collection of tracks in the event is sorted in the decreasing order of their pT, and

this order is maintained while making the charged candidates. Meaning, if a trackster is

found with links to more than one track it is preferably associated with the track with a

higher pT (given that it passes the other compatibility checks, described below).

A trackster is only added to a charged candidate if it is compatible in energy and

time with the track. If a trackster found as a link is incompatible, it is not added to

the TICLCandidate, but the exploration continues with any further links to it in deeper

collections. The energy compatibility checks if the incoming trackster makes the total

energy of the candidate greater than the track momentum by a threshold; if so, it is flagged

incompatible. The threshold currently in use is 10% of the energy of the incoming trackster

or 10 GeV, whichever is smaller. Ideally, this threshold should be calculated by looking

at the energy resolution of the pattern recognition algorithm. For time compatibility, the

trackster and track times, if available for both, are required to be within 3σ of each other.

This can help in rejecting spurious links to out-of-time pile-up. Out-of-time pile-up refers

to the pile-up contributions from temporally adjacent bunch crossings.

The neutral candidate creation proceeds in exactly the same way except that the

exploration starts with using the tracksters to query in the trackster EM to HAD collection

at lastLayerEE. Only tracksters that were not used up in a charged candidate are allowed

to be in a neutral. Tracksters once included in a neutral candidate also become unavailable

for later use. The logic for exploring the rest of the links is exactly the same as was used

in the charged candidate creation and is shown diagrammatically in Fig. 4.2.

The geometric linking algorithm returns the collection of TICLCandidates made to

the TrackstersMergeProducer, from where it was called, and the candidates are final-

ized there. This process is discussed in Section 4.3. A separate collection of tracksters,

labeled ticlTrackstersMerged, is produced by merging the tracksters included in the
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Figure 4.2: The exploration of links for making a neutral candidate starts from the collection
of tracksters and sequentially visits the collections of tracksters linked to it. For a given trackster,
the branch on the left-hand side is executed before the one on the right. The exploration is depth-
first. Tracksters found are added to a candidate if they were not already used up in a charged or
another neutral candidate.

same candidate. If a candidate contains only one trackster it is passed through to the

merged collection as it is.

Figure 4.3: The trackster “image” for a 500 GeV photon, input to the CNN for particle
identification and energy regression. The three “colors” energy, η and ϕ are shown separately. The
horizontal axes represent the HGCAL layers and the vertical axes correspond to the layer-clusters
in the layer [28].
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The energy regression and particle identification are run on the merged tracksters using

a Convolutional Neural Network (CNN) model [29], and the result is also used to set the

energy and PDG id of the candidates. The CNN model takes an “image” (Fig. 4.3) of the

tracksters as an input, where the two dimensions correspond to the HGCAL layers and

up to ten layer-clusters per layer. The images have three “colors” corresponding to the

energy, η and ϕ of the layer-clusters. The model (Fig. 4.4) simultaneously predicts both

the particle type and regressed energy using two separate branches, each with two fully

connected layers, on top of a shared stack of three convolution and two fully connected

layers.

Figure 4.4: The architecture of the CNN model used for particle identification and energy
regression [29].

4.2.4 Parameters

The algorithm takes a few parameters, the most important of which are the window

sizes for the link-finding step. The four windows, corresponding to the four collections

generated, are separately configurable. The window sizes used for the version of the

linking algorithm integrated into CMSSW, as part of the TICL v4 upgrade, are given in

the table below.

Link-Finding Window Half-width

Track - trackster at layer 1 0.02

Track - trackster at lastLayerEE 0.03

Trackster EM - HAD at lastLayerEE 0.03

Trackster HAD - HAD at lastLayerEE 0.03

The window sizes were largely determined by choosing the minimum size that works

satisfactorily for single particle samples. As a validation measure, it was checked that the

sizes are not too big to unnecessarily merge separate showers in more complicated event

topologies. A larger window is used at lastLayerEE due to the decreased occupancy there.
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The other parameters of the algorithm are the thresholds for energy and time compati-

bility checks for charged candidates and the minimum quality for the track time, obtained

from the MTD, to be considered legitimate. A more rigorous tuning of all the parameters

has not been done yet and one might expect some improvements in performance with it.

4.3 Post-processing Candidates

After the TICLCandidates are built by the linking algorithm, their kinematic and other

aggregated attributes can be calculated. This is done after the particle identification

probabilities, regressed energies, and times for the merged tracksters are known. For a

charged candidate, its 4-momentum is set using the track momentum and the regressed

energy of the corresponding merged trackster. For neutrals, the combined barycenter of

the accumulated tracksters is used as the direction, along with the regressed energy of the

merged tracksters. A candidate is marked hadronic if the sum of the probabilities of it

being an electron or a photon is smaller than 0.5. The probabilities are the ones obtained

by running the particle identification on the corresponding merged trackster. If hadronic,

charged candidates are labeled as pions (π±, PDG id ±211) and neutrals as kaons (K0,

130). If not, candidates become electrons (e±, ±11) or photons (γ, 22) depending on if

they are charged or not. The charge (±) is set from the charge of the track. As mentioned

before, tracks without any linked trackster are promoted as pions.

4.4 Performance

The performance validation of the linking algorithm ideally needs to be done at two levels,

how well the tracksters reconstructed from the same particle are linked together and how

well the reconstructed track of a charged particle is linked to its energy deposits recon-

structed in the calorimeter. The complete machinery for the latter task is not currently

in place, so that could not yet be quantitatively verified. However, the HGCAL validation

modules are well suited for the former task, and the performance plots obtained from those

are discussed later in this section.

Fig. 4.5 shows the tracksters reconstructed in HGCAL for a single charged pion pro-

duced at the vertex, before and after the linking. The tracksters are visualized at the

detector hit level, to get a better idea of the extent of the shower. As can be clearly

seen, a majority of the tracksters, and most importantly the two high energy components,

labeled Tracksters 0 and 1 in the image on the left, have been merged together after the

linking. Some small tracksters have not been merged since they are not aligned with the
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Figure 4.5: Tracksters reconstructed from a single charged pion produced at the vertex and
visualized using the Fireworks utility for CMS event display. On the left, the reconstructed track-
sters (in different colors) are shown. The merged tracksters obtained after the linking procedure
are shown on the right.

other ones.

For validation in HGCAL, the association score between a CaloParticle and a recon-

structed trackster is relevant. CaloParticle refers to the parent of a particle in the simulated

decay graph nearest to the vertex. The association score between a CaloParticle i and a

reconstructed trackster j is defined as

scorei,j =

∑
DetId k∈CPi

min
((

frrecok − frMC
k

)2
,
(
frMC

k

)2)× ϵ2k∑
DetId k∈CPi

(
frMC

k

)2 × ϵ2k
,

where DetId refers to a detector cell and frrecok and frMC
k are the fractions of the cell k that

has been assigned to the reconstructed trackster j and to the CaloParticle i respectively. ϵk

is the energy deposited in cell k. A score equal to 0 thus means that the fractions belonging

to the reconstructed and simulated objects match exactly, implying that the two objects

are completely matched as well. On the contrary, a score equal to 1 indicates a complete

mismatch. There is also a similarly defined reco-to-sim score, where the summation (and

the normalization in the denominator) is over the reconstructed object. Pairs of objects

with a score smaller than 0.2 are considered associated.

The efficiency metric is defined as the number of CaloParticles associated with recon-

structed tracksters divided by the total number of generated CaloParticles. Fig. 4.6 shows

the efficiency of merged tracksters, produced from the linking, for single photons of energy

between 10 GeV and 600 GeV. The photons are produced at the vertex, and efficiencies are

calculated for both PU 0 and PU 200 scenarios. The four distributions are with respect to

the energy, pT, ϕ, and η of the generated particle. The first three distributions are plotted
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Figure 4.6: Efficiencies of merged tracksters obtained from the linking procedure for single
photons generated from the vertex, in PU 0 and PU 200, with energies between 10 and 600 GeV,
and distributed uniformly in the HGCAL acceptance. Efficiency distributions are shown with
respect to the energy, pT, ϕ, and η of the generated particle.

for the η range between 1.7 and 2.7 while the last one, with respect to η, is between 1.5

and 3.0. This is to disentangle the effects at the HGCAL boundary. The efficiency stays

at 1 for the entire range of energy, pT and ϕ, at both 0 and 200 PU, indicating excellent

reconstruction performance for electromagnetic objects. The efficiency falls off at low η,
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presumably due to shower leakage, and at high η, for PU 200, due to the high occupancy

there.

Figure 4.7: Efficiencies of merged tracksters obtained from the linking procedure for single
charged pions generated from the vertex, in PU 0 and PU 200, with energies between 10 and
600 GeV, and distributed uniformly in the HGCAL acceptance. Efficiency distributions are shown
with respect to the energy, pT, ϕ, and η of the generated particle.

Fig. 4.7, on the other hand, shows the efficiency of merged tracksters for single charged

pions produced from the vertex and in the same energy range as the photons. Similar η
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ranges as in Fig. 4.6 are used to plot the different distributions. The efficiencies at 0 PU

stay very close to 1 except at low energies or pT-s. At low energies, the tracksters are

less aligned and therefore the angular windows of the linking algorithm fail to accumulate

those, resulting in degraded performance. The efficiencies drop off at higher η. The

efficiencies are lesser in case of the 200 PU scenario, and the drops at low energy and

high η are more pronounced, due to the more challenging conditions. At high η there is

presumably again the effects arising from the detector boundary and the high occupancy

contributing to the loss in efficiencies. To summarize, the algorithm works quite well in

linking the separate tracksters reconstructed for charged pions without pile-up, but high

pile-up negatively affects its performance, especially in the high η region.

There is possibly another effect contributing to the dropping efficiencies at higher η-s.

The physical size of the η-ϕ windows does not remain the same everywhere in the detector

and indeed drops off with increasing η. This might be constraining severely the tracksters

that can be found as geometrical links at higher η, eventually affecting the efficiencies.

A potential workaround to this could be using the projective coordinates that CLUE3D

uses – ( rz zr,
r
z zrϕ), where the r/z from any layer can be projected onto a specific layer zr

allowing the use of absolute values on the projected layer for deltas.

Figure 4.8: Jet pT response with PUPPI enabled for TICL v4 (red circles) and v3 (blue
squares) using a flat QCD sample with 200 pile-up.

To understand how the changes introduced in TICL translate to performance at a

higher level, Particle Flow validation is used. Among other things, it produces the plots

of jet response and jet pT resolution with respect to the pT of particle-level jets obtained

from simulation. Jets in this context refer to Particle Flow jets obtained by clustering



34 Linking in TICL

the reconstructed Particle Flow candidates, which in the case of HGCAL are very similar

to the TICLCandidates. The jet response is the ratio of the reconstructed jet pT to that

of the particle-level jet. Fig. 4.8 compares the jet response obtained from the Particle

Flow Validation, using the latest version of TICL (v4, with a new linking algorithm and

CLUE3D as the pattern recognition algorithm) and the older v3. The plots are obtained

with pile-up per particle identification3 (PUPPI) enabled and without any jet energy

corrections4 (JEC) applied. A flat QCD sample with 200 pile-up is used. The η ranges

cover the region relevant for HGCAL. It can be observed that the jet responses from TICL

v4 are better (higher) than those from v3.

Figure 4.9: Jet pT resolution from RMS with PUPPI enabled for TICL v4 (red circles) and
v3 (blue squares) using a flat QCD sample with 200 pile-up.

Similarly in Fig. 4.9, the jet pT resolutions – obtained from the root mean square (RMS)

of deviations of the jet responses from the mean – using TICL v3 and v4, are compared

using the same sample. Once again, the plots are obtained with PUPPI and without any

JEC. It can be observed that the resolutions with TICL v4 are better (lower) than with v3.

The difference is more pronounced in the lower η range. At higher η, there are presumably

the same effects of high occupancy, smaller windows, and the effects arising from the

HGCAL boundary influencing the performance. But it is clear that with respect to the

last version of TICL, the introduction of CLUE3D as the pattern recognition algorithm

3PUPPI [30] is a pile-up mitigation technique at the per particle level. In addition to excluding charged
particles associated with vertices from PU, it calculates the probability for each neutral particle to have
originated from PU (based on the information of its surrounding particles) and scales their energy based
on that.

4JEC is derived from simulations to bring the measured response of jets to that of generated particle-
level jets on average.
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along with the new linking algorithm leads to gains in reconstruction performance also at

the level of higher-level objects.

The computational performance of the linking algorithm was also investigated. The

time measured is the one required to process one event when running the reconstruction

on a single core of a CPU – in this case, an AMD EPYC 75F3 32-Core processor. For

a TTbar (tt̄) sample, with 200 pile-up, the TrackstersMergeProducer takes a little less

than 400 ms, out of a total of 1120 ms for the entire HGCAL reconstruction. This

amounts to around 35% of the HGCAL reconstruction and 1% of the entire CMS offline

reconstruction. The TrackstersMergeProducer includes the linking algorithm along with

the subsequent merging of tracksters included in the same TICLCandidate, calculation

of the aggregated properties of the merged tracksters – like PCA and regressed energy,

and the post-processing step described in Section 4.3. The time required for the linking

algorithm is thus well under control even in the scenario with 200 simultaneous collisions.
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5
Graph Neural Network for Trackster Linking

Data from particle detectors are usually sparse, meaning detector channels are predomi-

nantly zero, and can be naturally represented as a set – an unordered collection of elements.

For example, hits from the tracking detector or energy deposits in the calorimeter. This

avoids having to represent the data in a grid-like data structure or imposing an order onto

it, both of which might require some loss in the information or simply not possible due

to the arbitrary geometry of the detectors. A graph, broadly speaking, consists of nodes

and edges encoding relationships between the nodes. A set can be easily transformed into

a graph using some relations between the elements, usually from the knowledge of the

detector. Graphs are thus an attractive way of representing data from particle detectors.

Graph Neural Networks (GNNs) [31–33] are a class of deep learning architectures that

are specialized for learning functions on graphs. The functions can be of different types

predicting node-wise, edge-wise, or global targets. This is in contrast to the other popu-

lar deep learning architectures like the fully connected network (FC) [34], convolutional

neural network (CNN) [35, 36], or recurrent neural network (RNN) [37] that work on

data represented as vectors, grids, and sequences respectively. Due to their representation

power and the ability to learn on graphs, GNNs are starting to be explored as the deep

learning architecture of choice for various problems in particle physics, including event

reconstruction.

37



38 Graph Neural Network for Trackster Linking

In this chapter, such an attempt to solve the trackster linking problem by learning

structures on a graph of tracksters is described. The linking task is cast as an edge

classification problem, predicting edges connecting tracksters to be linked, and graph

clustering to subsequently find partitions of the graph. The chapter is structured as

follows: Section 5.1 contains a short overview of the general GNN architecture and some

of its applications in particle physics reconstruction, the construction of the input graph

for the GNN is described in Section 5.2, the GNN model and training in Section 5.3,

followed by the graph clustering applied on the output of the GNN in Section 5.4, and

finally the results obtained from this approach in Section 5.5.

5.1 Overview of Graph Networks

The graph network (GN) formalism from Ref. [32] is used here to describe the fundamental

operations of a GNN. GNs are functions that operate on graphs and preserve the node and

edge structure of the graph in its output. They are therefore graph-to-graph functions. A

graph can be represented by G = (u, V, E), where u represents the global features, V the

set of Nv vertices/nodes and E the set of Ne edges. Every node in V is characterized by

its node attributes and every edge in E by its edge attributes and the indices of the nodes

that the edge is incident on.

The GN works by message passing over the graph. The edge connectivity of the graph

dictates how the messages are passed between the nodes. Formally, the GN consists of the

update and aggregation functions. The update functions take a fixed-size input to generate

a fixed-size output. The aggregation functions take a variable size input to produce an

output of a fixed size. The general function of a GN block can be understood with the

steps listed below and shown in Fig. 5.1:

1. The computation starts with the edge update function calculating the updated edge

attributes for every edge. For each edge, the update function can take the edge

attribute, the attributes of the connected nodes, and the global feature as inputs.

This is represented in Fig. 5.1a.

2. The next step is the aggregation of the calculated edge updates per node. For every

node, the aggregation function considers the edges that are incident on that node.

3. For every node, the aggregated edge attributes from the last step and the current

node attribute are used by the node update function to compute updates. This and

the previous step are combinedly shown in Fig. 5.1b.
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4. The set of all updated edge attributes and the set of all updated node attributes

are aggregated separately and, along with the current global feature, are used to

compute the next global update. This updates the global feature u of the graph.

This is shown in Fig. 5.1c.

The update functions are usually implemented as trainable neural networks, hence the

word “neural” in GNNs. The aggregation functions are permutation invariant, such as

an element-wise sum, mean, or maximum, and ensure that the GN block itself remains

invariant to the permutation of the nodes. Note that there are six functions in a GN block,

one each for the update and aggregation of nodes, edges, and global features. The exact

kind of function depends on the particular GNN architecture used. Problems can be cast

as classification or regression using node, edge, or global features.

Figure 5.1: Updates in a GN block. The element being updated is represented in blue and
the elements that contribute to that update are shown in black. The previous state of the element
being updated is also used in its update [32].

A specific GNN architecture worth discussing separately is the Edge Convolution or

EdgeConv model [38]; this is also the architecture used here for the trackster linking

problem. The specialty of this model is that the edge features are calculated using a

learnable function operating on the node features of its endpoints. If the n nodes are

represented by the set X = {x1, ...,xn}, where xi is the feature vector of node i, and

an edge eij connects nodes i and j, the edge feature eij is calculated as eij = hΘ(xi,xj).

Here hΘ is a nonlinear function with a set of learnable parameters Θ. The updated

node features x′
i are then calculated by aggregating the edge features eij for every node

j that has an edge with node i. The symmetric aggregation operation is usually a sum

or max. There can be a few different choices of h, and those are described as follows.

hΘ(xi,xj) = hΘ(xi), here only the global information of the graph is encoded and the

network is completely oblivious to the local connectivity of the graph; on the other hand

a choice like hΘ(xi,xj) = hΘ(xj − xi) only encodes the local information and loses global

structure; whereas hΘ(xi,xj) = hΘ(xi,xj − xi) captures both the global (in xi) and the
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local structure (in xj−xi). The last choice of h is the one that is used in EdgeConv model

in Ref. [38] as well as in the trackster linking studies described here.

It is also imperative to consider the literature already existing on the use of GNNs

for particle physics reconstruction and contrast it with the approach described in here.

Ref. [39] uses a distance-weighted dynamic GNN to reconstruct particle showers in a highly

granular calorimeter model, “loosely inspired” by the HGCAL. A dynamic GNN means

that the graph connectivity is recomputed after every update of the node features, using

the neighbors in the feature space of the nodes. Additionally, the model takes as input

directly the hits in the calorimeter cells. In the approach described here, the graph of

tracksters, instead of hits, is static and does not change after the updates of node features.

The number of tracksters is O(102) less than the number of hits, reducing significantly

the problem size. The approach described here is quite similar to that used in Ref. [40]

in that it also uses a static graph and casts the task of calorimeter clustering into an

edge classification problem. But Ref. [40] differs in their use of hits as the input (instead

of tracksters) and by considering only single particle scenarios. In general, the approach

described in this thesis is also the first to use graph clustering on the output graph of the

GNN to build the final clusters.

5.2 Graph Building

The input graph for the GNN model is built by using loose angular compatibility to

connect nodes with an edge. Fig. 5.2 shows the input graph for an event with two nearby

pions shot in front of the HGCAL. Every trackster reconstructed by CLUE3D becomes a

node in the graph. Centered on every trackster, every other trackster lying inside a 0.2 η-ϕ

window is connected to it with an edge. Therefore, the edges connect a trackster to all its

neighbors in η-ϕ space. The angular compatibility is motivated by the fact that tracksters

reconstructed from the same particle would mostly lie inside such an angular window and

we want to guide the GNN to connect tracksters that are longitudinally aligned. The

window is kept sufficiently large so that pairs of tracksters that originate from the same

particle have an edge between them or are connected through intermediate nodes in the

input. If a trackster is still too far away, it is connected to its nearest neighbor (in three-

dimensional physical space) with an edge. This can be a trackster that is complete, and

does not need to be linked to any other trackster or a distant part of a shower. Having

an edge, along with the input features of the nodes, helps the model to learn either of

these scenarios. The input node features are the Cartesian coordinates of the trackster

barycenter, first eigenvector, and eigenvalues from PCA (representing the direction and



5.2 Graph Building 41

0

1
2

3

4
5 6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

0

1
2

3

4
5 6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

(a)

0

1
2

3

4
5 6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21
22

23 24

360 380 400 420 440 460
Z [cm]

60

70

80

90

R 
[c

m
]

(b)

Figure 5.2: (a) The input graph structure of an event with two pions shot in front of the
HGCAL. (b) Tracksters in the same event are visualized in R-z coordinates. The numbers and
colors of the nodes in both represent respectively the index of that trackster in the event collection
and the CaloParticle that the trackster is associated with.

shape respectively), size in the number of included layer-clusters, raw energy and raw

electromagnetic energy (energy deposited in the CE-E). The inclusion of two additional

features, shower maximum – the HGCAL layer with maximum energy deposition for a

trackster, and shower length – the extent of a trackster in terms of HGCAL layers, did not

improve the model performance. This is probably because shower maximum is strongly

correlated to the z coordinate of the barycenter and shower length to the size, as shown

for double pion events in Fig. 5.3.

It is also interesting to note the positive correlation between the x (y) coordinate of

the trackster barycenter and the x (y) component of the first eigenvector – indicating

trackster directions pointing back to the z-axis. Eigenvalues 1 and 2, which measure

the extent of the trackster in the plane perpendicular to its principal axis, are strongly

correlated – indicating the symmetry of tracksters in the transverse plane. The trackster

size is negatively correlated to shower maximum and the z coordinate of barycenter –

implying tracksters that are reconstructed later in the calorimeter are usually smaller.

There is also an obvious positive correlation between trackster size and energy.

For the truth labeling, edges in the input graph connecting two tracksters associated to

the same SimTrackster from CaloParticle are labeled as true else false. To remind the

reader, CaloParticle refers to the parent of a particle in the simulated decay graph nearest
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Figure 5.3: Correlation matrix of the node features used for the GNN, with two additional
variables shower max and shower len, explained in the text. The correlations are calculated for
tracksters reconstructed for two close-by pions shot in front of the HGCAL.

to the vertex. A SimTrackster from CaloParticle is a trackster made with all the layer-

clusters associated with the same CaloParticle. So if a particle starts showering even before

entering the HGCAL, all the reconstructed tracksters from those showers will be associated

with the same SimTrackster from CaloParticle. Clearly, the tracksters reconstructed from

the secondary components of a shower inside the calorimeter will also be associated with

the same SimTrackster from CaloParticle. The associations of a reconstructed object

(e.g. layer-cluster, trackster) to a simulated one (e.g. CaloParticle, SimTrackster) are

obtained from the validation modules of HGCAL by an energy fraction matching done at

the detector hit level.
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5.3 Model and Training

The PyTorch Geometric [41] Graph Neural Network library, built upon PyTorch [42], is

used for the model and training. The structure of the model used is fairly simple. An initial

two-layer fully connected (FC) network is used to obtain the latent representation of the

nodes. It takes the node features described before as input and outputs the 64-dimensional

latent representation for every node. A static graph EdgeConv block is used for message

passing in the graph. A two-layer FC network is used to calculate the messages (from

the latent representation of the connected nodes) and the aggregation function used is the

summation. Since there are no natural directions of the edges in the input graph, they are

made undirected before the message passing. Additionally, self-loops are added to allow

the information of a node to be included in its update. Four iterations of the EdgeConv

block are used. The number of iterations defines the receptive field of a node, and the

idea is to allow a trackster to have information about both its immediate surroundings

(in the same shower) as well as from showers in its neighborhood. After the message

passing, another three-layer FC network is used to get the edge representations from the

embeddings of connected nodes and subsequently obtain a classification score per edge,

representing its probability of being legitimate. A legitimate edge would be one connecting

tracksters coming from the same particle.

Since there is an almost 3:1 imbalance in the true-to-false edges in the training data

(cross shower edges are discouraged due to the angular window used to build the edges),

a focal loss with α = 0.25 and γ = 2 is used to stress more on the misclassified examples.

The model is trained with a batch size of 32 and for 50 epochs separately on two types of

simulated events: two close-by pions shot in front of the detector (around 100,000 events)

and ten randomly selected particles from a list of electrons, photons, charged and neutral

hadrons shot in front of the detector (around 50,000 events). In both cases, generated

particles are uniformly distributed in energy between 10 and 600 GeV, in η between 1.8

and 2.5, and between 0 and 2π in ϕ. For double pions the showers could be overlapping

and are shot in a 30 cm wide window, opened at an η and ϕ randomly chosen from the

intervals mentioned above. The Adam optimizer is used with the initial learning rate of

10−3 and weight decay of 5×10−4. A learning rate scheduler is configured to decrease the

learning rate by a factor of 0.1 once the validation loss stops decreasing, with a patience

of 5 epochs. The choice of hyperparameters was made based on testing a few different

combinations and finding the ones with the best performance.
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5.4 Building Clusters

The model predicts a score for every edge in the input graph representing the probability

of that edge being true. With the edge scores, the graph of tracksters becomes a similarity

graph – the scores being a measure of how “similar” the connected nodes are – or in this

case, the probability of those to belong to the same shower. One naive way to proceed

from here would be to find the connected components in the output graph, perhaps after

dropping the edges with low scores. A connected component of a graph is a set of nodes,

in which every pair is either connected with an edge or there is a path between the two

via other intermediate vertices. Every connected component would thus form a cluster

containing the tracksters that the model predicts should be linked. This was seen to

work when showers are well separated and the model can confidently classify any cross-

cluster edges as false. But in other scenarios, this can easily go wrong if there is even

one misclassified edge between two otherwise well-separated clusters – eventually merging

those two showers.

Even though the model predictions are not perfect at the per-edge level, it was observed

that the model successfully learns the community structure of showers. The community

structure in a graph or network refers to the much stronger connections within a commu-

nity (shower, in our case) compared to those between two communities. Apart from just

true or false edges (after thresholding at a certain score), the continuum of edge scores

obtained from the model provide another dimension to this, encoding rich information

about the structure. This information can then be used to detect communities in the

graph. This is indeed a well-established domain in network science, known by several

names such as community detection or graph clustering.

5.4.1 Graph Clustering

To reiterate, the general idea is to find a partitioning of the graph such that the edges

between groups have very low weights compared to those within a group. There can be

various ways to solve this and one of them is a Spectral Clustering of the graph. The word

spectral refers to the use of the eigenvectors of the graph connectivity matrix, in this case,

the graph Laplacian. The (unnormalized) graph Laplacian L is defined as

L = D −W,

where W = (wij)i,j=1,...,n is the weighted adjacency matrix with wij being the score of the

edge connecting nodes i and j (if any, else is zero) and D is the diagonal degree matrix
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with elements

di =
n∑

j=1

wij .

The normalized Laplacian is defined as D−1L. There can be several different spectral

clustering algorithms using different graph Laplacians (unnormalized/normalized) but a

general type is described below. For implementation in code, SpectralClustering from

the scikit-learn toolkit [43] is used for the graph clustering step, which uses a slightly

different normalized graph Laplacian. Additionally, the edges with scores below 0.5 are

dropped from the graph before finding communities in it.

The general logic of a spectral clustering algorithm is as follows: given the Laplacian

(of shape n×n, n being the number of nodes in the graph), its first k eigenvectors u1, ..., uk

are calculated, where k is the desired number of clusters to construct. A matrix, called

U , is constructed containing the k eigenvectors as its columns. Hence U is of shape n× k.

If yi ∈ Rk is a vector corresponding to the i-th row of U , the n points (yi)i=1,...,n are

clustered to form k clusters C1, ..., Ck, using any standard algorithm such as k-means.

The clusters of the n original nodes can be assigned from their one-to-one correspondence

with yi. Due to the properties of the graph Laplacian, the change of representation to

yi ∈ Rk enhances the cluster properties which can then be easily identified using any

simple clustering algorithm.

The desired number of clusters to input to the spectral clustering algorithm is still

unknown. The eigengap heuristic is used to infer this from the connectivity of the graph.

This uses the spectrum of eigenvalues of the graph Laplacian to find the number k such

that all the eigenvalues λ1, ..., λk are very small but λk+1 is relatively large. A justification

for this can be given based on perturbation theory. For a graph with k completely discon-

nected clusters (connected components), the eigenvalues from 1 through k are zero and

there is a gap to the (k + 1)-th eigenvalue (top row of Fig. 5.4). The same graph, where

the k components are not fully disconnected, but are connected only by a few edges of

low weights, can be represented as a perturbed case of the previous Laplacian. Perturba-

tion theorems state that the eigenvalues or eigenvectors of the original and the perturbed

matrix are similar and the “distance” between them is bounded by the magnitude of the

perturbation times a constant – which usually depends on the eigenvalue under considera-

tion and how far it is from the rest of the spectrum. Thus, for a small enough perturbation

and a large enough eigengap |λk − λk+1| in the original Laplacian, the first k eigenvalues

of the perturbed matrix, though not all zero, will still have a gap to the (k+1)-th (bottom

row of Fig. 5.4).

The eigengap heuristic is implemented to find the first occurrence of a gap between
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Figure 5.4: (a) A graph of tracksters with two completely disconnected components and (b)
the eigenvalue spectrum of its normalized Laplacian, showing the first two eigenvalues to be exactly
zero and the eigengap between eigenvalues two and three. (c) A similar graph with a single edge
(in red) connecting the two communities with (d) the first eigenvalue of its normalized Laplacian
still zero (corresponding to the only one connected component), and the second eigenvalue greater
than zero but still separated from the third by a large gap.

consecutive eigenvalues to be more than a threshold, set at 0.2. But if the following

difference is more than thrice this threshold, the next gap is considered to be relevant –
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corresponding to a more accurate description of the community structure of the graph.

The thresholds were set empirically from the observed eigenvalue spectra of the graph

Laplacians.

The eigengap method works best when communities in the graph are balanced – the

number of nodes and their inter-connectivities are similar in clusters. The nodes with

no edges left after thresholding the edge scores from the model are removed from the

Laplacian before inferring the number of clusters in the rest of the graph. The number of

nodes removed is added back when passing the number of clusters to the spectral clustering

step.

A more involved discussion of the properties of the graph Laplacian, spectral clustering

algorithms, or the eigengap heuristic is beyond the scope of this thesis. The interested

reader is warmly encouraged to consult Ref. [44], which gives an excellent overview of the

subject, or the numerous references therein.

5.5 Results

The clusters obtained from the GNN with the graph clustering approach, for two pions

shot in front of the detector, are shown and compared to the truth in Fig. 5.5. One can
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Figure 5.5: Predicted (left) clusters from the GNN with graph clustering approach compared
with the truth (right) for two pions shot in front of the HGCAL. Every point is a trackster with
sizes proportional to its energy. Different colors represent different clusters.

visually observe that the clusters obtained are quite similar to the truth, and most of the
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smaller, distant tracksters are also assigned to the correct cluster.

To quantify the quality of clusters obtained from this approach, an energy intersection

over union (EIoU) score is calculated between the clusters of tracksters, SuperTracksters

for convenience, and the truth – SimTrackster from CaloParticle. To remind oneself, the

association of a reconstructed trackster to a SimTrackster is obtained from the validation

modules of HGCAL. The score between a SuperTrackster i and a SimTrackster j (Eqn. 5.1)

is obtained by dividing the sum of the energy of tracksters that are common to both by

the sum of energy of tracksters that are contained in their union.

score(suptsi, simtsj) =

∑
tn∈ suptsi∩ simtsj

Etn∑
tn∈ suptsi∪ simtsj

Etn

(5.1)

So a score of 1 would mean a perfect match between the two and 0 indicates no intersection.

For a SuperTrackster, this score is initially calculated to all the SimTracksters in the event,

and the highest among those is taken as its final score. The scores for the tracksters merged

with the geometric linking is calculated in the same way.
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Figure 5.6: The histogram of EIoU scores of SuperTracksters obtained from the GNN approach
compared with that of the scores of the merged tracksters from TICLCandidates obtained using the
geometric linking – with 2000 events of double pions shot in front of the detector. Each histogram
is separately normalized by its total number of entries.
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The comparison of scores obtained for the GNN SuperTracksters and the merged track-

sters from the TICLCandidates (geometric linking), for two pions shot in front of the

detector, is shown in Fig. 5.6. The model used was also trained on a (different) sample of

double pions. The number of clusters produced from the geometric linking is more than

an order of magnitude larger than using the GNN approach and hence the histograms

shown are normalized separately by their total number of entries. It can be observed that

a much higher fraction of clusters produced using the GNN approach have scores closer

to 1 – implying that those are better matched to the truth than the ones obtained from

geometric linking.

(a) (b)

Figure 5.7: Energy vs. EIoU score distributions of (a) SuperTracksters and (b) merged track-
sters from TICLCandidates, plotted for 2000 events of double pions shot in front of the detector.

To understand how the quality of the produced clusters depend on their energy, the

energy versus score distributions for the GNN SuperTracksters and the merged tracksters

from TICLCandidates are shown in Fig. 5.7. These are plotted with the same double

pion sample and for 2000 events. As expected from Fig. 5.6, a significant fraction of the

SuperTracksters have scores near 1 and the fraction is larger compared to the case of the

merged tracksters. One can further notice two more things, firstly that the low score

clusters from the GNN are of low energy, and secondly that the GNN merges more than

the geometric linking, noticeable from the points at the higher energy regions. This also

corroborates the observation that on an average the GNN approach produces around 1.8

SuperTracksters per event. In comparison, the geometric linking produces around 18.9
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TICLCandidates from around 28.1 tracksters per event.

Another way to evaluate performance over a full event is by looking at the event-wise

fraction of energy correctly clustered. A cluster is labelled as correct if its score is greater

than 0.5. The fraction of energy correctly clustered per event is obtained by dividing

the total energy contained in clusters which are labelled correct, by the total energy of

tracksters reconstructed in that event. Fig. 5.8 compares the distribution of the fraction

of energy correctly clustered per event, over 2000 events, from the GNN with that in the

tracksters merged with the geometric linking. The double pion sample used is the same as

before. In almost all of the events, the GNN manages to cluster close to all of the energy

correctly. The peak at the highest bin is quite sharp, with the next higher bin containing

almost two orders of magnitude less events. The geometric linking, on the other hand,

manages to cluster a bit more than 80% of the energy in most of the events. But the peak

in this case is much broader. It is thus quite clear that the GNN approach can correctly

cluster a higher fraction of energy in a significantly more number of events when compared

to the geometric linking.
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Figure 5.8: Histograms of the fraction of energy correctly clustered in an event using the GNN
approach and in the merged tracksters from TICLCandidates, for 2000 events of double pions shot
in front of the detector.

As mentioned in Section 5.3, the model was also trained on a sample of 10 randomly
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selected particles shot in front of the HGCAL. The same metrics as before are calculated to

test the performance of the approach on this sample. Fig. 5.9 compares the scores obtained

for the SuperTracksters and the merged tracksters from geometric linking. The higher

fraction of scores close to 1 for the SuperTracksters indicates that the clusters from this

approach are better matched to the truth. However, when compared to the SuperTrackster

scores for double pions (Fig. 5.6), we can see a slightly degraded performance – observable

as the higher fraction of SuperTracksters with low scores. Also, a linking algorithm with

slightly larger windows was used for all the plots with the multiparticle sample, due to the

unavailability of these samples with the latest version of the linking. This is presumably1

why a higher fraction of merged tracksters have scores closer to 1 in the case of the

multiparticles when compared to the double pions.
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Figure 5.9: The histogram of EIoU scores of SuperTracksters obtained from the GNN ap-
proach compared with that of the merged tracksters from the TICLCandidates obtained using the
geometric linking – with 2000 events of 10 randomly chosen particles shot in front of the detector.
Each histogram is separately normalized by its total number of entries.

Fig. 5.10 shows the energy versus score distributions for the SuperTracksters and the

merged tracksters with the multiparticle sample. The number of events used is however

400, both to keep a parity with the total number of particles in Fig. 5.7 and for a cleaner

1Showers can be more separated in the multiparticle sample, but this effect was also observed in double
pions when comparing the two versions of linking.
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(a) (b)

Figure 5.10: Energy vs. EIoU score distributions of (a) SuperTracksters and (b) merged
tracksters from TICLCandidates, plotted for 400 events of 10 randomly chosen particles shot in
front of the detector.

visualization (every event has five times the number of particles now). In addition to low

energy clusters contributing to the low scores, one can observe a significant number of

clusters between scores of around 0.4 and 0.8 that have energies larger than 600 GeV, the

maximum energy a single particle can have in the sample. This indicates some merging

of clusters and is also consistent with the observed, on average, ∼7.7 SuperTrackters

produced per event. For comparison, there were around 32.6 merged tracksters and 80.7

tracksters produced on average in an event.

Similarly, the distributions of the event-wise fraction of energy clustered correctly, over

2000 events, in SuperTracksters and in merged tracksters are compared in Fig. 5.11. Even

though there are more events where close to the entire energy is clustered correctly with

the GNN approach, there is also an appreciable number of events when this approach fails

to correctly cluster a significant chunk of the available energy – most probably for the

instances when the GNN approach merges clusters. However, this tail of events, with a

low fraction of energy correctly clustered, is not as pronounced with the geometric linking.

To summarize the performance on the multiparticle sample, the clusters from the GNN

approach are in general better in quality, when compared to the merged tracksters obtained

from the geometric linking. But there is also some merging of clusters observed and this
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Figure 5.11: Histograms of the fraction of energy correctly clustered in an event using the
GNN approach and in the merged tracksters from TICLCandidates, for 2000 events of 10 randomly
chosen particles shot in front of the detector.

possibly also contributes to the instances when an appreciable fraction of the energy in an

event is not clustered correctly. The threshold (currently 0.5) applied to the edge scores is

a parameter that affects this and with a higher threshold, the number of clusters inferred

using the eigengap heuristic increases – for example to around 10.7 per event with 0.6.

But this also results in clusters that are not as good, presumably due to the additional

loss of information.
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6
Conclusion and Outlook

Reconstruction for the CMS High Granularity Calorimeter, the Phase-2 upgrade for the

calorimeter endcaps, is a challenging task. The high expected pile-up and the novelty of

the detector contribute to the challenges. The work on developing a reconstruction that

can handle the challenges and turn the novelty of the detector into its strength is currently

underway. The granular, 5-Dimensional information obtained from the HGCAL makes it

an ideal candidate for Particle Flow calorimetry.

As part of this thesis, a new geometric linking algorithm was developed and deployed in

CMSSW, in the recently upgraded version 4 of the TICL reconstruction framework. The

linking of clustered energy deposits in the calorimeter, to themselves and to off-calorimeter

objects, is essential for a Particle Flow interpretation of the event. The new linking

algorithm was introduced along with a plug-in system where several such algorithms could

reside simultaneously and be switched as required. The developed algorithm is based on

the idea of finding geometrically close objects to be linked after projecting tracks and

tracksters onto the same surface. The graph of such geometrically close by objects is then

explored, aided with considerations of energy and time compatibility, to build the final

objects. An excellent reconstruction efficiency was observed for electromagnetic objects

and an overall good efficiency for reconstruction of charged pions, which have notoriously

fluctuating shower profiles and produce separated reconstructed clusters of energy in the

55
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detector. The linking algorithm could successfully accumulate most of those. With the

new energy density based pattern recognition algorithm, CLUE3D, that the new version of

TICL is built around, improvements in the reconstruction of higher level objects were also

observed, namely in the jet response and efficiency. The time and memory consumption

of the developed algorithm were observed to be under control even in the scenario with

200 pile-up.

There are several important parameters of the algorithm, like the window sizes for

geometrical compatibility, that have not been rigorously tuned yet and can lead to further

improvements in performance. Moreover, the tuning will also lead to a better understand-

ing of how the parameters affect the linking performance, especially in the presence of

high pile-up. Furthermore, the availability of truth matching of reconstructed tracks will

be important in quantifying and therefore understanding the track-to-trackster linking

performance better. To sum up, the algorithm presented is a step in the way of exploring

and improving similarly motivated solutions for the linking problem.

A novel approach for linking tracksters using Graph Neural Networks and graph clus-

tering was explored in the other part of this thesis. The segmentation/clustering task was

framed as an edge classification problem. The static graph EdgeConv model was trained

to learn the structure of showers on a loose graph of tracksters – predicting the probabil-

ities of edges connecting two tracksters that should be linked. The similarity graph thus

generated was then used to find strongly connected communities using spectral clustering.

The model was trained and tested separately on events containing two close by pions and

ten particles randomly chosen from a list containing electrons, photons, charged and neu-

tral hadrons. This approach was observed to perform very well for two pions, managing to

assign even distant and small tracksters to the correct clusters. The low quality clusters

produced were of low energy and the approach could correctly cluster close to the entire

energy available in the event in a significantly higher number of events, when compared

to the geometric linking. The performance in the case of multiparticles was not as good,

with some merging of clusters being observed. However, in both the cases, the clusters

of tracksters produced by this approach were better matched to the truth than the ones

obtained from the geometric linking algorithm.

The situations where the clustering was unsatisfactory could be separately studied in

more detail to better understand the point(s) of failure. For example, it is not clear if

in some cases the showers were overlapping – and hence could not possibly be separately

clustered – or not. The implementation of the eigengap heuristic, responsible for inferring

the number of clusters, is a weak point. The logic used for that can be improved to better

take care of the edge cases. It was found that the model trained on the multiparticle
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sample does also work for double pions; it would indeed be interesting to repeat the exercise

with more complicated event topologies, e.g. containing jets – to also understand if this

approach is feasible for global linking or more profitable for use in local reconstruction,

e.g. Bremsstrahlung recovery around electrons, or accumulating separate components of

hadronic showers. Moreover, only the linking of tracksters has been considered so far, and

it is interesting to extend it to also include tracks – perhaps using its propagated state to

the HGCAL front as an additional node in the graph.

Nevertheless, this approach demonstrates that the linking problem can be solved start-

ing from a sparse graph of already clustered energy deposits, benefiting from a reduction

of O(102) in problem size compared to starting from the hits, and learning structures

on it. The very small Graph Neural Network model of only around 42,000 parameters

provides fast inference, and efficient methods exist for computing the first eigenvalues of

a sparse matrix. Efficient linear algebra libraries are also available in C++ that can be

used for the eigenvalue calculation, e.g., Eigen [45], Spectra [46]. All things considered,

this approach of combining a Graph Neural Network and graph clustering can have fast

implementations, potentially making it a viable alternative.





Acknowledgments

First of all, I would like to express my deepest appreciation for Prof. Alexander Schmidt

and Dr. Felice Pantaleo for their patient guidance and supervision, academic or otherwise,

and for giving me this opportunity to work on a very interesting problem for my master’s

thesis. I am grateful to Prof. Johannes Erdmann for agreeing to be the second examiner.

I would also like to extend my deepest gratitude to Dr. Marco Rovere, of the HGCAL

DPG, for providing many valuable inputs from the physics side of reconstruction in our

weekly meetings and maintaining a jovial work environment. This thesis could not have

been completed in a year if not for the innumerable times Wahid Redjeb answered to my

calls for help. He also provided the datasets, wrote the code for the beautiful visualization

of the graphs and helped with the development of the graph neural network approach

during the TICL ML hackathon. I could not have imagined a better mentor, thank you

for everything!

I would like to thank Prof. Alexander Schmidt again and the Institute IIIA for sup-

porting my travel to CERN. I must also thank Dr. Shamik Ghosh, Dr. Benedikt Maier,

Dr. Davide Valsecchi, Dr Huilin Qu at CERN, and almost everyone else present at the

TICL ML Hackathon for the helpful discussions, and the many people involved in TICL

for their insightful comments during the meetings.

The world has been a challenging place to live in the last few years. I must thank the

people who made it slightly less so: Vasilis, Alena (for also being the best office mate),

Andrey, Ming-Yan, Purna, Bernardo, Andrzej at Aachen; Toni, Nikos, Juan, Giorgio,

Nicolo, Yassine, Luca, Aurora at CERN and Ashutosh, Varun at neither of those two

places – Thank you!

Last, but definitely not the least, I thank my parents for all their love, support and

encouragement – and maybe also for teaching me to ask questions and be curious in the

first place.

59





References

[1] Lyndon Evans and Philip Bryant. LHC Machine. Journal of Instrumentation, 3(08):
S08001, aug 2008. doi: 10.1088/1748-0221/3/08/S08001. URL https://dx.doi.

org/10.1088/1748-0221/3/08/S08001. 1, 3
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