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Abstract To investigate the model and extra frictional
effects in standard siren simulation of f (Q) cosmologies,
we simulated three types of standard siren data based on
different fiducial models (�CDM and f (Q) models). Both
effects are important in standard siren simulation. Explic-
itly, the f (Q)P and f (Q)E models need more observational
data (e.g. growth factor) to further study. The f (Q)PE model
could be ruled out by the EM data. And both the f (Q)HT

models will be excluded by the future standard siren data.

1 Introduction

The standard siren (SS) of gravitational wave (GW) provides
an absolute measurement of distance without dependence on
other sources [1]. This standard siren method is widely used
to constrain cosmological models especially for the modified
gravity. Presently, the direct detection of gravitational wave
has discovered at least 99 standard siren events [2–8], but only
one single confirmed standard siren event (GW170817) and
one possible standard siren event (GW1905 21) have been
detected. These two events are unable to do effective cos-
mological constraints. In the coming decade, ground-based
(e.g.Einstein Telescope (ET) [9–11] and space-based tele-
scopes (e.g.Taiji [12], Tianqin [13], and LISA [14]) experi-
ments are predicted to discover more standard siren sources.
Therefore, to forecast fundamental properties of gravity, the
mock catalogs of standard sirens should be created.

In the standard siren method, the luminosity distance DL

could be extracted from the GW amplitude hA. And the stan-
dard siren simulation should be based on the background
cosmology but it could not be determined at present. The
cosmological constant called �CDM model is the simplest
theoretical explanation for our accelerating universe which
is preferred by the majority of observational survey releases
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(e.g.Planck data [15,16]). And, dark energy and modified
gravity are the candidates of explaining the accelerating uni-
verse as well. All the cosmological models could affect the
amplitude of standard siren. Then conversely, the standard
siren data could constrain cosmological models. Here, the
choice of fiducial model of standard siren simulation is called
the model effect. And compared with the �CDM and dark
energy models of general relativity (GR), the propagation
equation of gravitational wave in modified gravity has an
extra friction term which affects the standard siren simulation
as well. It is called the extra frictional effect. Roughly, based
on affine connections [17–22], there are mainly three types of
modified gravity: f (R), f (T ) and f (Q) cosmologies. Here,
we choose the �CDM model in general relativity (GR) as
baseline and discuss the f (Q) cosmologies which are rel-
atively simple. Among the various f (Q) models [23–66],
two �CDM-like models (the power-law f (Q)P [23,24] and
square-root exponential f (Q)E [25] models) which could
come back to �CDM model are chosen to discuss. Corre-
spondingly, two non �CDM-like models (the power expo-
nential f (Q)PE [26,27] and hyperbolic tangent f (Q)HT

[28–30] models) are chosen to constrain as well.1

To invest the mode and extra friction effects, we intend
to simulate three types of mock standard siren data in this
paper: the first one (SSI�) is based on the �CDM model; the
second one (SSII) is based on f (Q) cosmologies but assum-
ing the extra friction term zero; the third one (SSIII) is based
on the f (Q) model as well and using its true extra friction
term. Then we could compare the SSI� and SSII to see the
model effect, and compare SSII and SSIII to see the effect of
extra friction term. The electromagnetic (EM) data is used as

1 The description of gravity using Teleparallel Gravity with
Weitaenböck connection T which is called torsion scalar is equivalent
with the Symmetric Teleparallel gravity using the non-metricity scalar
Q in the background level. In the both gravities, the curvature R in GR
is replaced by T or Q [67–84].
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baseline in all models, including direct determination of the
Hubble parameters derived from cosmic chronometer (CC)
method [85,86], baryon acoustic oscillations (BAO) of Dark
Energy Spectroscopic Instrument (DESI) [87] and the type
Ia supernovae of PantheonPlus compilation (PantheonPlus)
[88,89].

The rest of this paper is organized as follows. In Sect. 2,
we will introduce the standard siren of gravitational wave. In
Sect. 3, we will introduce the EM observational data and the
mock standard siren data. In Sect. 4, we will briefly describe
the f (Q) cosmologies. In Sect. 5, we will summarize the
used data. In Sect. 6, we will report the constraint results.
Finally, a brief summary will be given in Sect. 7.

2 The standard siren

The gravitational waves from compact systems are viewed as
standard sirens to probe the evolution of the universe [1,90].
From the GW signal, the luminosity distance DSS

L is mea-
sured directly, without invoking the cosmic distance ladder,
since the standard sirens are self-calibrating. And it could be
extracted from the GW amplitude

hA = 4

DSS
L

(
GMc

c2

)5/3(
π fGW

c

)2/3

, (1)

where hA is the SS amplitude, “A”could be “+”or “×”, DSS
L

is the luminosity distance for gravitational wave standard
siren, Mc is the chirp mass, and fGW is the GW frequency.
Obviously, the amplitude of gravitational wave standard siren
will be affected by the background cosmological model.

Especially, the propagation equation of standard siren in
Fourier form is [91,92]

h
′′
A + 2H [1 + δ(η)]h′

A + k2hA = 0, (2)

where hA denotes the Fourier mode of the standard siren
amplitude, the prime “′”denotes a derivative with respect to
conformal time η, and H = a′/a. And especially, δ is the
so-called extra friction term which is zero for the �CDM
model or dark energy model in General Relativity.

In order to simplify the propagation equation within mod-
ified gravity theories, by defining a modified scale factor
ã′/ã = H [1 + δ(z)] and χA = ãh A, we get [93]

χ ′′
A +

(
k2 − ã′′

ã

)
χA = 0. (3)

Then, the relation between the EM luminosity distance and
the SS luminosity distance could be expressed as

DSS
L (z) = exp

(∫ z

0

δ(z′)
1 + z′

dz′
)
DEM

L (z), (4)

where DEM
L (z) and DSS

L (z) are EM and GW luminosity dis-
tances separately. Obviously, the extra friction term δ char-
acterizes the difference between the GW luminosity dis-
tance and the EM luminosity distance. When δ is negative,
DEM

L > DSS
L , there is a smaller DSS

L which denotes a larger
Hubble parameter H , and then a larger Hubble constant H0

which parameterizes the current expansion rate of our uni-
verse.

The H0 parameter is related with the famous “Hubble
tension” problem. Cosmologically, H0 could be measured
from the cosmic microwave background which fit to a cos-
mological model such as �CDM (for instance, from Planck
[94]). And locally, H0 could be measured from the observed
redshift−distance relation in the Hubble flow for distant
objects (for instance, from Cepheid variables and Type Ia
supernovae by the SH0ES Team based on the three-rung dis-
tance ladder method [95–97]). Explicitly, the Hubble tension
refers to a discrepancy of more than 5σ between H0 mea-
sured using these two measurements (see reviews by Refs.
[98,99]). In cosmology, many models which could return to
�CDM meet Hubble tension problem as the �CDM does
[100,101]. Here, we will discuss Hubble tension for various
f (Q) cosmologies in the standard siren simulation. The cal-
culated values of Hubble tension could be denoted as [102]

T1(θ) = |θ(D1) − θ(D2)|√
σ 2

θ (D1) + σ 2
θ (D2)

. (5)

where θ is the best fitted values of H0 from different data sets;
the first data set D1 represents the constraining results of cos-
mological fitting; the second data set D2 is the chosen base-
line measurement which is H0 = 73.17 ± 0.86 km/s/Mpc
from the latest SH0ES Team [95–97]; and σθ (D1) and
σθ (D2) represent the errors from D1 and D2 data sets respec-
tively.

3 The method

The Markov Chain Monte Carlo (MCMC) package
CosmoMC [103] is employed to infer the posterior proba-
bility distributions of parameters, and further to derive the
best fitted values and their corresponding errors. And numer-
ical simulation is also used to forecast results of surveys and
targeted observations. We choose the Einstein Telescope as
the representative of third generation instruments which will
detect thousands of Neutron Star Binary (NSB) and Black
Hole Binary (BHB) mergers to probe the cosmic expansion
at high redshifts [91,104]. Here, we simulate the standard
siren data by using the best fitted parameter values from EM
combination and Einstein Telescope design index.

Firstly, we employ current EM observational data sets
which are related to the cosmic distance, including the type
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Ia supernovae of PantheonPlus compilation (PantheonPlus)
[88,89], the direct measurements of the Hubble parameter
derived from cosmic chronometer method (CC) [85,86], and
baryon acoustic oscillations of Dark Energy Spectroscopic
Instrument (DESI) [87], to perform the MCMC analysis
which give out the fiducial parameter values required by stan-
dard siren simulation.

The PantheonPlus compilation is acquired from 18 dis-
tinct surveys [88,89]. It contains 1701 distance modulus data
spanning within a redshift range of 0.00122 < z < 2.26137.
The distance modulus, which is the observable quantity in
the supernovae (SN) data, is defined as

μ = m − M = 5 log10[dL(z)] + 5 log10

[
c/H0

Mpc

]
+ 25, (6)

where the luminosity distance is

dL = (1 + z)
∫ z

0

dz̃

H(z̃)
. (7)

In general, the goodness of fit for theoretical model is mea-
sured by χ2 and likelihood functions (L) which is expressed
as χ2 = −2lnL . To get best fit, the value of χ2 is needed
to minimize. In the context of the PantheonPlus compilation,
the χ2 likelihood function could be computed by

χ2
PantheonPlus =

1701∑
i=1

	μTC−1
stat+sys	μ, (8)

where the covariance matrix (Cstat+sys) includes both the
systematic and statistical errors, 	μ is the vector of 1701
SN distance modulus residuals computed as

	μi = μmodel(zi ) − μdata
i . (9)

The Hubble parameter data could be obtained through the
cosmic chronometer (CC) method which calculate the dif-
ferential ages of passively evolving galaxies. Here, the used
CC compilation contains 32 data points [105–114] which are
tabulated in Table 1 of Ref. [86]. And we use the covariance
matrix for computations as described in Ref. [85]. Then, the
form of χ2 of Hubble parameter data through the cosmic
chronometer (CC) method is

χ2
CC =

32∑
i=1

	H(z)TC−1
stat+model+young+met	H(z), (10)

where 	H(z) = H(zi )model − Hdata
i , “stat”, “young”,

“model” and “met” denote the contributions to the covari-
ance due to statistical errors, young component contamina-
tion, dependence on the chosen model, and stellar metallicity
respectively.

Furthermore, the properties of BAO are derived from the
matter power spectrum which are related with the matter

fluctuation perturbation. In the clustering of matter of late
universe, they could serve as a standard ruler to map the
expansion history of the universe. Here, we adopt the first-
year data released by the DESI collaboration [87], which
includes observations from four different classes of extra-
galactic targets: the bright galaxy sample (BGS) [115], lumi-
nous red galaxies (LRG) [116], emission line galaxies (ELG)
[117], and quasars (QSO) [118]. The DESI provides robust
measurements of the transverse comoving distance (DM ),the
Hubble distance (DH ) and the angle-average distance (DV )
relative to the drag-epoch sound horizon (rd ) in seven redshift
bins from over 6 million extragalactic objects. The DESI data
are summarized in Table 1 of Ref. [87]. Firstly, we calculate
the χ2 related to the BGS and QSO data as below

χ2
DESI1 =

2∑
i=1

((DV /rd)model − (DV /rd)data)2

σ 2
zi

. (11)

And, the data of DM/rd and DH/rd from tracers LRG1,
LRG2, LRG3+ELG1, ELG2, and Lya QSO, degenerate at
the same redshift z. Following Ref. [119,120], the data vector
D could be constructed as

D ≡
(
DM/rd
DH/rd

)
, (12)

with its covariance matrix defined as [119,120]:

CovDESI2 =
[

σ 2
1 r · σ1 · σ2

r · σ1 · σ2 σ 2
2

]
, (13)

where σ1 and σ2 denote the standard deviations of DM/rd
and DH/rd respectively. The correlation coefficient between
DM/rd and DH/rd , which is denoted as r , is provided in
Table 1 of Ref. [87]. Then the second χ2

DESI2 is expressed
as

χ2
DESI2 =

10∑
i

	DT
i Cov−1

DESI2	Di , (14)

where 	Di = Dmodel
i −Ddata

i is the data vector constructed
by Eq. (12).

We combine the PantheonPlus, CC and DESI observa-
tional data as EM compilation which has 1745 data points.
And the best fitted values of EM compilation, which corre-
spond to the minimum of sum of χ2

PantheonPlus , χ2
CC and

χ2
DESI , is used as fiducial parameter values in standard siren

simulations.
Meanwhile, the strain h(t) in the gravitational wave inter-

ferometers could be written as [104]

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (15)
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where F+, F× are the antenna pattern functions sensed by
the gravitational wave detector. The redshift range is chosen
as 0 < z < 5. And the standard siren sources considered in
this work include the merger events from black hole-neutron
star systems and binary neutron star systems, both of which
are expected to exhibit afterglows in the EM radiation after
they emit bursts of gravitational wave. Thus, BNS and BHNS
could be observed not only as a transient standard siren event,
but also as an EM counterpart, and could be used as standard
siren candidates.

In this work, to calculate the errors of the simulated data,
we utilize the one-sided noise power spectral density (PSD)
which characterizes performance of the gravitational wave
detector. The measurement errors of luminosity distance is
also related to the weak lensing effects. Following the studies
in Refs. [104,121], this weak lensing error is assumed to be
0.05z. Thus, the total uncertainty on the measurement of DL

is taken as

σDL =
√

σ 2
inst + σ 2

lens =
√√√√(

2DL

ρ

)2

+ (0.05zDL)2, (16)

where σ 2
inst is the instrumental error calculated by Fisher

Matrix and ρ is the ratio of signal to noise which is usu-
ally chosen as ρ > 8. In this paper, we will simulate 1000
standard siren data points expected to be detected by Ein-
stein Telescope in its 10-year observation. To achieve this,
the Fisher matrix approach is utilized [91]. And, we roughly
assume that there are 500 BNS events and 500 BHNS events.
The χ2 of SS data could be expressed as below:

χ2
SS =

1000∑
i=1

(Dmodel
L (zi ) − (Ddata

L )i )
2

σ 2
zi

. (17)

Then, the standard sirens method offers a new independent
way to probe the cosmic expansion.

4 The f (Q) cosmologies

In the Symmetric Teleparallel gravity, the non-metricity Q,
which represents the variation in length of a vector during
parallel transport, is used to describe the gravitational inter-
action. And, its natural extension, the f (Q) modified grav-
ity, has revealed many interesting cosmological phenomena
as shown in the literature.

The action of f (Q) cosmology could be given by [31–33],

S =
∫ √−g

[
− 1

16πG
f (Q) + Lm

]
d4x, (18)

where f (Q) is an arbitrary function of the non-metricity
scalar Q; Lm is the matter Lagrangian density and g is the
determinant of metric gμν .

As the homogeneous and isotropic Friedmann-Robertson-
Walker (FRW) spacetime is considered, we obtain the exact
value of non-metricity scalar

Q = 6H2. (19)

Here, H = ȧ/a is the Hubble parameter. Note that in the
f (Q) gravity, the non-metricity scalar Q plays the role
of Ricci scalar R in GR, which indicates these two cate-
gories of modified gravity theories ( f (Q) and f (R)) are
equivalent in the background level. It is convenient to set
f (Q) = Q+ F(Q) where the F(Q) part represents the cos-
mic acceleration effect. Then the Friedmann equations for
flat spacetime take the following form [31–33]

3H2 = ρ + F

2
− QFQ, (20)

Ḣ = F − Q − 2QFQ

4(2QFQQ + FQ + 1)
, (21)

where ρ and p are the energy density and pressure for the
matter fluid, and satisfy conservation equation:

ρ̇ + 3H(1 + w)ρ = 0, (22)

where w is the equation-of-state (EoS) parameter.
Correspondingly, the effective energy density ρeff and

effective pressure peff for the acceleration part that is sourced
from F(Q) could be described as

ρeff = F

2
− QFQ, (23)

peff = 2Ḣ(2QFQQ + FQ) − ρeff . (24)

Thus, the effective EoS parameter could be given by

weff = −1 + 1 − 1/(F/Q − 2FQ)

1 + 1/(2QFQQ + FQ)
. (25)

In the framework of f (Q) gravity, the extra friction term
in Eq. (2) takes the below form:

δ(z) = d ln fQ
2H dη

. (26)

And the dimensionless Hubble parameter could be expressed
as

E(z) = H

H0
, (27)

where the subscript “0”denotes the present time.
Especially, the �CDM model could be regarded as

F(Q) = � where weff = −1 and δ = 0. Here, for
convenience, the constraining models are divided into the
�CDM-like one (the power-law f (Q)P [23,24] and square-
root exponential f (Q)E [25] models) and non �CDM-like
one (the power exponential f (Q)PE [26,27] and hyperbolic
tangent f (Q)HT [28–30] models). Next, we will introduce
them one by one.
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4.1 The power-law form: f (Q)P model

The power-law f (Q) model [23,24] (hereafter f (Q)P
model) is a simple and notable model,

F(Q) = αQb, (28)

where α = Q1−b
0 (1 − �m0)/(1 − 2b), and b is the new free-

dom which quantifies deviation from �CDM model. When
b = 0, this model degenerates to �CDM model. When
b = 1/2, this model reduces to the Dvali-Gabadadze-Porrati
(DGP) model [122]. When b = 1 the model is the same as
the standard cold dark matter model after re-scaling the New-
ton’s constant. Then it is required that b < 1 in order to obtain
an accelerating cosmic expansion. Ref. [92] gave out that the
f (Q)P model could be distinguished from �CDM model
by using GW and EM combined data. This phenomenon is
worthy checking by the updating data.

4.2 The square-root exponential form: f (Q)E model

And, we introduce the square-root exponential model [25]
(hereafter f(Q)E model )

F(Q) = αQ0(1 − e−p
√
Q/Q0), (29)

where α = (1 − �m0)(1 − (1 + p)e−p) and p is model
parameter. Usually, we set b = 1/p for convenience. As
the f (Q)P model, the f (Q)E model comes back to �CDM
model when b = 0. And b �= 0 in f (Q)E model indicates an
essential deviation from �CDM model. However, b → +0
corresponds to p → +∞, while b → −0 corresponds to
p → −∞. Then, getting across b = 0 means crossing the
singularity p. And when b < 0, e−p

√
Q/Q0 grows exponen-

tially. Therefore, to avoid the singularity, we set the prior
b > 0 for all constraints which is favored by Ref [78]. In the
literature [92], the EM constraint with Pantheon included
shows the Hubble tensions as large as 3.21σ . So we con-
strain it with PantheonPlus included data to see whether the
Hubble tension could be alleviated.

4.3 The power exponential form: f (Q)PE model

In Refs. [26,27], a power exponential form of f (Q) model
has been introduced (hereafter f (Q)PE model), and it could
be expressed as:

F(Q) = Q

(
eλ

Q0
Q − 1

)
, (30)

where the derived parameter λ which is determined by �m0

could be described as

λ = 1

2
+ W0

(
−�m0

2e
1
2

)
, (31)

andW0 is the Lambert function. Similar to the �CDM model,
the f (Q)PE model has two free parameters �m0 and H0.
Note that, the f (Q)PE model theoretically could not come
back to the �CDM for any values of λ, thus it is called the
non �CDM-like model here.

At high-redshift where Q0 � Q, FQ 	 −λ2Q2
0/Q

2 and
FQQ 	 λ2Q2

0/Q
3. The effective EoS can be expanded as

weff = −1 − λ
Q0

Q
. (32)

If λ > 0, the weff would approach to −1 from the phantom
side. And the extra friction term could be expressed as

δ = −3

2
λ2

(
Q0

Q

)2

, (33)

which tends to 0 from negative side.
The power exponential model has the same free parame-

ters with �CDM model, but does not degenerate with�CDM
model. As it has been proved to alleviate the Hubble tension
[26,27], it will be interesting to constrain this model.

4.4 The hyperbolic tangent form: f (Q)HT model

For the purpose of realizing the crossing of the phantom
divide line [28], the hyperbolic tangent form of the f (Q)

model is proposed as [29,30] (hereafter f (Q)HT model):

F(Q) = αQ0

(
Q0

Q

)−b

tanh
Q0

Q
, (34)

where b is an additional free parameter compared with
�CDM model or f (Q)PE model. And the dimensionless
parameter α could be expressed as

α = 1 − �m0

(1 − 2b) tanh 1 + 2 sech2 1
. (35)

The f (Q)HT model could not come back to the �CDM for
any values of b as well.

When Q 
 Q0, tanh(Q0/Q) 	 Q0/Q and sech(Q0/Q)

	 1. Then, FQ 	 α(b − 1)(Q0/Q)(2−b) and FQQ 	 α(1 −
b)(2 − b)(Q0/Q)(2−b)/Q which are small as well at high
redshift. And, the EoS and extra friction are approximately
to be

weff = −2 + b, (36)

δ = −α(1 − b)(2 − b)

(
Q0

Q

)2−b

. (37)

As the effective energy density must be larger than 0, we
need to give a prior of b for the model. So, we divide the
Hyperbolic Tangent model to two branches:

f(Q)HT1: We set a prior b < 0.5 for this model. The weff

would approach to the phantom side at high red-
shifts. The δ tends to 0 from negative side.
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Table 1 The best fitted values with 1σ and 2σ standard errors from the
constraints of EM and SS related data for the �CDM and f (Q) mod-
els. The best fitted values of EM is used as baseline parameter values
in standard siren simulations. Explicitly, the best fitted EM values of
�CDM model are used for SSI� simulation. The best fitted EM values

of f (Q) models are used for SSII and SSIII simulations. Especially, we
list the Hubble tension at the end of the table where the reference Hub-
ble constant value H0 = 73.17 ± 0.86 km/s/Mpc is from the SH0ES
Team [95,96] as Sect. 2 stated. We did not list the Hubble tensions of
SSI� and SSII data for f (Q) models because they are not physical

Model Data �m0 H0(km/s/Mpc) b δ0 weff0 Hubble tension

�CDM EM 0.322+0.011+0.023
−0.011−0.022 73.23+0.17+0.34

−0.17−0.34 − 0 −1 0.07σ

SSI� 0.316+0.014+0.028
−0.014−0.027 73.56+0.54+1.11

−0.54−1.11 − 0 −1 0.38σ

f (Q)P EM 0.327+0.012+0.024
−0.012−0.023 73.35+0.19+0.38

−0.19−0.38 −0.082+0.061+0.111
−0.053−0.122 −0.024+0.017+0.033

−0.017−0.032 −1.025+0.017+0.033
−0.017−0.035 0.20σ

SSI� 0.281+0.059+0.084
−0.031−0.101 73.09+0.88+1.81

−0.88−1.70 0.201+0.401+0.601
−0.252−0.672 0.153+0.073+0.481

−0.252−0.332 −0.915+0.121+0.241
−0.121−0.230 −

SSIIP0 0.330+0.036+0.054
−0.019−0.066 73.74+0.91+1.61

−0.80−1.71 −0.211+0.421+0.642
−0.350−0.711 −0.032+0.036+0.221

−0.131−0.150 −1.048+0.072+0.202
−0.130−0.181 −

SSIIIP 0.383+0.028+0.047
−0.018−0.053 73.88+0.86+1.51

−0.73−1.59 −0.420+0.281+0.599
−0.442−0.580 −0.090+0.022+0.160

−0.096−0.101 −1.118+0.049+0.190
−0.131−0.151 0.61σ

f (Q)E EM 0.322+0.011+0.023
−0.011−0.022 73.19+0.18+0.35

−0.18−0.37 0.106+0.035+0.103
−0.106−0.106 0.005+0.001+0.018

−0.004−0.005 −0.992+0.001+0.030
−0.007−0.008 0.02σ

SSI� 0.289+0.038+0.054
−0.017−0.070 72.55+1.11+1.70

−0.88−1.91 0.424+0.077+0.577
−0.424−0.424 0.098+0.048+0.171

−0.097−0.098 −0.861+0.073+0.221
−0.139−0.139 −

SSIIE0 0.306+0.048+0.066
−0.025−0.084 71.23+1.00+2.01

−1.00−1.91 0.572+0.209+0.726
−0.438−0.572 0.146+0.078+0.181

−0.143−0.146 −0.791+0.141+0.231
−0.161−0.209 −

SSIIIE 0.327+0.019+0.036
−0.015−0.038 72.36+0.78+1.31

−0.60−1.40 0.220+0.056+0.277
−0.220−0.220 0.038+0.013+0.101

−0.036−0.038 −0.941+0.024+0.151
−0.059−0.059 0.74σ

f (Q)PE EM 0.347+0.012+0.024
−0.012−0.023 73.78+0.18+0.35

−0.18−0.36 − −0.092+0.001+0.002
−0.001−0.002 −1.132+0.004+0.008

−0.004−0.008 0.69σ

SSI� 0.336+0.013+0.027
−0.013−0.025 74.52+0.54+1.11

−0.54−1.11 − −0.091+0.001+0.002
−0.001−0.002 −1.129+0.005+0.009

−0.005−0.009 −
SSIIPE0 0.339+0.016+0.032

−0.016−0.029 74.37+0.67+1.31
+0.67−1.31 − −0.091+0.001+0.003

−0.001−0.002 −1.130+0.005+0.010
−0.005−0.011 −

SSIIIPE 0.404+0.017+0.033
−0.017−0.031 73.94+0.62+1.21

−0.62−1.21 − −0.094+0.001+0.001
−0.001−0.001 −1.151+0.005+0.010

+0.005−0.010 0.73σ

f (Q)HT 1 EM 0.336+0.012+0.023
−0.012−0.022 72.65+0.24+0.46

−0.24−0.47 0.218+0.045+0.081
−0.038−0.084 0.048+0.024+0.056

−0.028−0.050 −0.827+0.042+0.099
−0.050−0.086 0.58σ

SSI� 0.349+0.016+0.033
−0.016−0.031 72.30+1.50+2.41

−1.21−2.70 0.171+0.291+0.329
−0.097−0.431 0.070+0.081+0.311

−0.171−0.242 −0.777+0.131+0.572
−0.310−0.421 −

SSIIHT 10 0.345+0.018+0.035
−0.018−0.034 71.07+1.21+2.71

−1.61−2.52 0.319+0.181+0.181
−0.030−0.318 0.190+0.131+0.302

−0.201−0.272 −0.558+0.231+0.571
−0.392−0.491 −

SSIIIHT 1 0.435+0.019+0.037
−0.019−0.036 70.96+0.96+2.20

−1.31−2.01 0.310+0.190+0.190
−0.035−0.311 0.164+0.141+0.261

−0.161−0.242 −0.542+0.281+0.562
−0.362−0.492 1.56σ

f (Q)HT 2 EM 0.322+0.012+0.025
−0.012−0.024 73.37+0.18+0.35

−0.18−0.36 1.624+0.016+0.032
−0.016−0.032 −0.415+0.023+0.041

−0.021−0.045 −0.988+0.015+0.030
−0.015−0.030 0.23σ

SSI� 0.265+0.044+0.084
−0.054−0.081 73.06+0.63+1.41

−0.71−1.30 1.778+0.161+0.168
−0.051−0.193 −0.238+0.170+0.201

−0.078−0.231 −0.839+0.140+0.171
−0.073−0.202 −

SSIIHT 20 0.327+0.048+0.064
−0.021−0.085 73.86+0.49+0.94

−0.49−0.99 1.629+0.029+0.191
−0.129−0.129 −0.415+0.069+0.231

−0.161−0.190 −0.985+0.038+0.190
−0.121−0.132 −

SSIIIHT 2 0.398+0.002+0.002
−0.001−0.004 84.74+0.33+0.65

−0.33−0.63 1.944+0.002+0.002
−0.001−0.004 −0.031+0.002+0.003

−0.001−0.001 −0.483+0.004+0.005
−0.001−0.009 12.56σ

f(Q)HT2 : As Big Bang Nucleosynthesis (BBN) give the
constraint b < 1.946 [123],2 we set a prior
1.500 < b < 1.946 for this model. At high red-
shifts, the weff would approach to the quintessence
side, while the δ tends to 0 from positive side.

Meanwhile, under the constraining of existing data, the
hyperbolic tangent ( f (Q)HT ) model is “punished”by Akaike
information criterion (AIC) and Bayesian information crite-
rion (BIC) [65,66] which worth further study.

5 The simulted standard siren data

And, we summary the used data as below:

2 Another BBN constraints for the f (Q)HT 2 model are satisfied b �
1.88 [29].

EM: The observational data of PantheonPlus, CC and
DESI are combined as EM compilation which has
1745 data. Its best fitted values is used as baseline
parameter values in standard siren simulations. And
we list the constraining results of EM in Table 1.

SSI� : The SSI� simulation used in �CDM and f (Q)

models is based on the �CDM model with �m0 =
0.322 and H0 = 73.23. The “SS”is the abbreviation
of standard siren. And the subscript “�”denotes the
�CDM fiducial model. This simulation is mainly
used for testing model effect in f (Q) models.

SSII: As Table 1 shows, we use f (Q)P model with�m0 =
0.327, H0 = 73.35 and b = −0.082 for the SSIIP0

simulation; use f (Q)E model with �m0 = 0.322,
H0 = 73.19 and b = 0.106 for the SSIIE0 sim-
ulation; use f (Q)PE model with �m0 = 0.347
and H0 = 73.78 for the SSIIPE0 simulation; use
f (Q)HT 1 model with �m0 = 0.336, H0 = 72.65
and b = 0.218 for the SSIIHT 10 simulation; and use
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Table 2 The χ2, AIC and BIC values of the PantheonPlus, CC, DESI,
EM and SSI� data for �CDM model and f (Q) cosmologies. Because
SSII and SSIII are simulated based on different f (Q) models, we could

not compare their χ2s (AICs, BICs). Then, the χ2s (AICs, BICs) of
SSII and SSIII are not list here

EM Model χ2
PantheonPlus χ2

CC χ2
DESI χ2

EM AICEM BICEM 	AICEM 	BICEM

�CDM 1758.9 17.6 22.6 1799.1 1803.1 1814.0 0 0

f (Q)P 1761.6 17.5 20.3 1799.4 1805.4 1821.8 2.3 7.8

f (Q)E 1758.3 17.6 24.6 1800.5 1806.5 1822.9 3.4 8.9

f (Q)PE 1774.6 17.9 29.2 1821.7 1825.7 1836.6 22.6 22.6

f (Q)HT 1 1750.4 17.3 14.6 1782.3 1788.3 1804.7 −14.8 −9.3

f (Q)HT 2 1763.7 17.2 22.5 1803.4 1809.4 1825.8 6.3 11.8

SSI� Model − − − χ2
SSI�

AICSSI� BICSSI� 	AICSSI� 	BICSSI�

�CDM − − − 983.9 987.9 997.7 0 0

f (Q)P − − − 984.1 990.1 1004.8 2.2 7.1

f (Q)E − − − 984.3 990.3 1005.0 2.4 7.3

f (Q)PE − − − 986.9 990.9 1000.7 3.0 3.0

f (Q)HT 1 − − − 985.1 991.1 1005.8 3.2 8.1

f (Q)HT 2 − − − 984.2 990.2 1004.9 2.3 7.2

f (Q)HT 2 model with �m0 = 0.322, H0 = 73.37
and b = 1.624 for the SSIIHT 20 simulation. Espe-
cially, δ = 0 is assumed for all the SSII simulations.
Physically, the SSII simulations do not correspond
to any true data. This simulation is used to denote
the model and extra friction effects by comparing
with SSI� and SSIII. The subscripts “P”, “E”, “PE”,
“HT1”and “HT2”denotes the simulated model. And
the subscript “0”denotes δ = 0.

SSIII: The model parameter values are the same as SSII
except that we use δ0 = −0.024, δ0 = 0.005, δ0 =
−0.092, δ0 = 0.048 and δ0 = −0.415 which are
the EM constraining results listed in Table 1 for the
SSIIIP , SSIIIE , SSIIIPE , SSIIIHT 1 and SSIIIHT 2

simulations separately.

Here, the EM and SSI� data will be applied to all the mod-
els. While as SSII and SSIII simulations are based on different
f (Q) model, they will be applied to their fiducial model. To
compare the real and simulated data we will plot the evolution
of luminosity distances. And, we will use the dashed/dotted
lines for SSI�/SSII in f (Q) cosmologies. While we use the
solid lines for all the EM data, for the simulated data SSI�
in �CDM model and for the simulated data SSIII in f (Q)

models.
And to determine the most suitable model according to

data, we will make a comparison for the EM and SSI�
results by using the minimum of χ2 value which stands for
the best fit. However, a higher number of parameters can
artificially improve the fit, leading to a smaller χ2, making
it unreliable for model comparison. To address this issue,
we employ the Akaike information criterion (AIC) where
AIC = χ2 + 2N with N as the number of free parameter

[124] and the Bayesian information criterion (BIC) where
BIC = χ2+N lnm withm as the number of data points used
in the fit [125]. Here, the χ2

SSs should be around the number of
data 1000. And, for Gaussian errors, the difference between
two models could be written as 	AIC = 	χ2 +2	N . Sim-
ilar to the AIC, the difference denoted by BIC has the form
	BIC = 	χ2 + 	N lnm. The 	AIC = 5(	BIC ≥ 2
)and 	AIC = 10(	BIC ≥ 6) are considered to be the
positive and strong evidence against the weaker model.

6 Results and discussion

To see the precision values, the constraining best fitted
parameter values with 1σ and 2σ standard errors are pre-
sented in Table 1. We also list the χ2, AIC and BIC results
in Table 2 as supplements. The main results of �CDM and
f (Q) cosmologies are presented in Figs. 1, 2, 3, 4, 5 and 6
respectively. Explicitly, the data comparisons, the parameter
probability density functions (pdfs) with its 1σ and 2σ con-
fidence regions, and the evolutions of δ and weff within 1σ

confidence intervals are plotted here.
As the data comparison figures shows, the evolution values

of DSS
L in f (Q)E model are un-distinguished. And the evolu-

tion values of DSSI�
L are un-distinguished with that of DSSI I

L
in the f (Q)P and f (Q)HT 2 models. Meanwhile, the evolu-
tion values of DSSI�

L are slightly smaller than that of DSSI I
L in

the f (Q)HT 1 model, but slightly larger than that of DSSI I
L in

the f (Q)PE model. And the evolution values of DL related
to SSIII simulation are smaller than that of SSI� and SSII
simulations. Explicitly, for SSII simulations, DSSI IPE

L <

DSSI IP
L 	 DSSI IE

L 	 DSSI IHT 2
L 	 DSSI�

L < DSSI IHT 1
L ; for
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Fig. 1 In the left panel, the DL s of real and simulated data are com-
pared. The red one with error-bar are from the PantheonPlus combina-
tion; the green one with error-bar are from simulated SSI� data; and
the green line denotes the evolution of DL following the assumption of

SSI� data which are based on �CDM model with its best fitted EM
values (�m0 = 0.322 and H0 = 73.23). In the right panel, the prob-
ability density functions (pdfs) with its 1σ and 2σ confidence regions
for the parameters of �CDM model (�m0 and H0) are shown

SSIII simulations, DSSI I IHT 2
L � DSSI I IHT 1

L 	 DSSI I IPE
L <

DSSI I IP
L < DSSI I IE

L 	 DSSI�
L .

And as the triangle plots show, the contours of f (Q)E
model are not closed because of the prior b > 0. While in
the other models, the contours are smoothly closed and the
probability density functions (pdfs) are Gaussian-distributed.
Roughly, for all the models, the tightest constraints come
from the EM data. Especially, for the �CDM, f (Q)E and
f (Q)HT 2 models, �m0 is around 0.322 with 0.024 (0.045) as
1σ (2σ ) error range. In the other models, the error ranges are
similar but the best fitted �m0s sightly shift. Furthermore, the
error ranges of H0 in EM constraints are similar. In another
saying, all the simulations are based on similar �m0 and
H0. The Hubble tension could be alleviated to 0.07σ level
under the constraint of EM in �CDM model. Then, it is
not surprising that the Hubble tension could be alleviated in
other constraints except that of SSIIIHT 2. Surprisingly, the
simulation of SSIIIHT 2 is problematical where the �m0 is
very closed to its upper limit with 12.56σ Hubble tension.

In this discussion, the �CDM model is used as baseline.
As Fig. 1 shows, the �m0−H0 contour of EM is much smaller
than that of the SSI� data in the �CDM model. The direction
of �m0 − H0 contour is changed slightly as well. In the next,
we discuss all the f (Q) models one by one.

6.1 Discussion on the f (Q)P model

As Table 1 shows, by comparing the results from SSI� and
SSIIP0, the model effect brings a large shift of the best fitted
value of �m0 which is 	�m0 = 0.049 in f (Q)P model.
And by comparing SSIIP0 and SSIIIP constraints, the extra
friction term brings shift of the best fitted value of �m0 as
	�m0 = 0.053 which is 221% of the 1σ regime of EM con-
straint (	�1σ

m0 = 0.024). The model effects are comparable
with the extra friction term effects in the f (Q)P model.

As Fig. 2 shows, the constraining tendencies of SS related
data are similar. And their contours are overlapped with the
EM ones in 2σ ranges. Especially, the �m0 related to SSIIIP
is as large as 0.383+0.028+0.047

−0.018−0.053. The correlation of �m0 −H0

contour is negative in the EM constraint while it is positive
in the SS related constraints. This phenomenon could help to
break the degeneration between parameters.

Furthermore, the b = 0, δ = 0 and weff = −1 are not
included in 1σ range of EM and SSIIIP data for f (Q)P
model. In another saying, the f (Q)P model could be distin-
guished from �CDM in 1σ ranges. And at high z, the devi-
ations from �CDM model become evident if weff �= −1,
while most δs tends to 0 which correspond to a flat weff .

As Table 2 shows, theχ2
CC andχ2

DESI of f (Q)P model are
smaller than that of �CDM model. While, the χ2

PantheonPlus
of f (Q)P model is larger than that of �CDM model.
After EM data combination, 	AICEM = 2.3, the f (Q)P
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Fig. 2 The two upper panels are similar as Fig. 1. In the upper left
panel, the DL s of real and simulated data are compared. The red one
with error-bar denote the PantheonPlus data as Fig. 1. And we change
the green solid line for SSI� in Fig. 1 to the dashed green one for com-
parison. Additionally, the orange line denotes the simulated SSIIP0
data with the best fitted EM values of f (Q)P model (�m0 = 0.327,
H0 = 73.35, b = −0.082 and δ0 = 0). The blue ones with error-bar

are SSIIIP data which has the same baseline values of �m0, H0 and b as
SSIIP0 simulation, but has a non-zero friction term (δ0 = −0.024). In
the upper right panel, the probability density functions with its 1σ and
2σ confidence regions for the parameters of f (Q)P model (�m0, H0, b,
δ0 and weff0) are shown. And in the two bottom panels, the evolutions of
δ and weff within 1σ confidence intervals for the f (Q)P model under
the constraints of EM and SS related data are shown

model could be regarded as equal as �CDM model. But
	BICEM = 7.8 denotes the f (Q)P model is “punished”by
the EM data. And in the SSI� constraint, 	AICSSI� = 2.2
and 	BICSSI� = 7.1 which are similar to the EM case.

6.2 Discussion on the f (Q)E model

As Table 1 shows, by comparing the results from SSI� and
SSIIE0, the model effect brings a shift of the best fitted value
of �m0 which is 	�m0 = 0.017 in f (Q)E model. While

the extra friction term brings shift of the best fitted value of
�m0 as 	�m0 = 0.021 by comparing SSIIE0 and SSIIIE .
The �m0 shifts of f (Q)E model are comparable in the model
and extra friction effects.

As the f (Q)P model, the shapes of SS related data are
similar and the smallest contours are still from the SSIIIE
simulation. Comparing with the EM and SS related data,
the direction of �m0 − H0 contour is changed. Specially,
the Hubble tension from EM constraint is as small as 0.02σ

which is smallest among all constraints.
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Fig. 3 The fiducial values in the f (Q)E simulations are �m0 = 0.322, H0 = 73.19 and b = 0.106 with δ0 = 0 for SSIIE0 and δ0 = 0.005 for
SSIIIE . The others are the same as Fig. 2

And we obtain a positive δ0 and a quintessence-like weff in
all f (Q)E constraints. The evolutions of weff and δ, which
are quite flat, almost follow �CDM model at z > 2. In
the other saying, the deviations from �CDM model become
ignored at high z.

In contrast to the f (Q)P model, the χ2
DESI of f (Q)E

model is larger than that of �CDM model, while the χ2
CC

is equal to that of �CDM model. And the χ2
PantheonPlus of

f (Q)E model is smaller than that of �CDM model. Finally
after combination of EM data, the information criterion gives
similar results to f (Q)E model as f (Q)P model. Explic-
itly, 	AICEM = 3.4 shows the f (Q)E model could be
regarded as equal as �CDM model. And 	BICEM = 8.9
which denotes the f (Q)E model is “punished”by the EM

data. Furthermore in the SSI� constraint, 	AICSSI� = 2.4
and 	BICSSI� = 7.3 which are similar to the EM case as
well.

6.3 Short summary on the �CDM-like models

Generally, both the f (Q)P and f (Q)E models give out small
Hubble tensions as �CDM model. And the 1σ (2σ ) con-
straining regions of all the SS related data of f (Q)P ( f (Q)E )
model are much larger than that of EM data. Especially, the
best fitted �m0 of SSI� are much smaller than that of other
data while the plots of DL are un-distinguishable. This phe-
nomenon hints the model effect, which is comparable with
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Fig. 4 The fiducial values in the f (Q)PE simulations are �m0 = 0.347 and H0 = 73.78 with δ0 = 0 for SSIIPE0 and δ0 = −0.092 for SSIIIPE .
The others are the same as Fig. 2

the friction term, could not be ignored in the �CDM-like
model simulations.

In the EM and SSI� data, the f (Q)P and f (Q)E mod-
els are favored by AIC, but “punished”by BIC. Theoreti-
cally, the b parameter may effect cosmic perturbations giving
an intriguing division between background and perturbation
behavior in terms of model parameters [24,126,127]. In the
future, the growth factor data which are derived from matter
perturbations could be used to give out more information.

6.4 Discussion on the f (Q)PE model

The f (Q)PE model has the same free parameters with
�CDM model. As Fig. 4 shows, the H0 related contours
derived from the SS related data are parallel. The SSI�

and SSIIPE0 related contours are closed to each other. And
they have overlapped with the EM contours whose direc-
tions are changed. While the SSIIIPE related contours are
separated with the other data because of its �m0 as large
as 0.404+0.017+0.033

−0.017−0.031. The shapes of contours �m0 − weff0,
�m0 −δ0 and δ0 −weff0 are narrow. By comparing the results
from SSI� and SSIIPE0, the model effect brings a slight shift
of the best fitted value of �m0 which is 	�m0 = 0.003.
While the extra friction term brings a much larger shift of the
best fitted value of �m0 which is 	�m0 = 0.065.

In the f (Q)PE model, as Table 1 and Fig. 4 show, the
parameter δ0 is always smaller than 0 in 2σ ranges. The best
fitted values of δ and their 2σ regimes are around −0.092
for all the data. Precisely speaking, the δ0 = 0 is excluded
in all the constraints of the f (Q)PE model where the extra
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Fig. 5 The fiducial values in the f (Q)HT 1 simulations are �m0 = 0.336, H0 = 72.65 and b = 0.218 with δ0 = 0 for SSIIHT 10 and δ0 = 0.048
for SSIIIHT 1. The others are the same as Fig. 2

friction term plays an important role in the simulations. All
the constraint results exclude weff0 = −1 in 2σ regimes as
well which means this model could be distinguished from the
�CDM model. As z increasing, the shapes of evolution of
weff and δ are similar which corresponds to the narrow pos-
itive correlation between weff and δ. The value of weff grad-
ually approaches −1, which mimics the standard �CDM
model while it is still in the phantom range which did not
cross weff0 = −1. And, δ gradually tends to 0 which corre-
sponds to �CDM model as well. These results are consistent
with the analytic calculations in Eqs. (32) and (33).

As Table 2 shows, the χ2
CC and χ2

DESI of f (Q)PE model
are larger than that of �CDM model. In the contrast, the
difference between the χ2

PantheonPlus of f (Q)PE model and

that of �CDM model is as large as 15.7. After combination
of EM data, 	AICEM = 22.6 and 	BICEM = 22.6 which
denote the f (Q)PE model could be excluded. And in the
SSI� constraint, 	AICSSI� = 3.0 and 	BICSSI� = 3.0
are opposite to the EM constraint.

6.5 Discussion on the f (Q)HT 1 model

As Fig. 5 shows, the parallel contours in f (Q)HT 1 model
are the �m0 related ones which are derived from the SS
related data. Both the SSI� and SSIIHT 10 related contours
have overlapped with the EM contours where the directions
are changed. The shapes of contours δ0 − weff0 are narrow
for all the constraints as well.
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Fig. 6 Here, as the constraining result of �m0 of SSIIIHT 2 is very
close to its upper prior, we assume �m0 < 0.4 for SSIIIHT 2 and list the
results at the right panel. The others are the same as Fig. 2, except that

the fiducial values in the f (Q)HT 2 SS simulations are �m0 = 0.322,
H0 = 73.37 and b = 1.624 with δ0 = 0 for SSIIHT 20 and δ0 = −0.415
for SSIIIHT 2

Surprisingly, in the constraining results of SSIIIHT 1

data, the best fitted result of �m0 reaches as large as
0.435+0.019+0.037

−0.019−0.037 which are out of all the existing reasonable
constraints. There is a tension between the EM and SSIIIHT 1

data. And by comparing the results from SSI� and SSIIHT 10,
the model effect brings a slight shift of the best fitted value
of �m0 which is 	�m0 = 0.004 in f (Q)HT 1 model. While
the extra friction term brings a rather large shift of the best
fitted value of �m0 which is 	�m0 = 0.090 by comparing
SSIIHT 10 and SSIIIHT 1 constraints.

The δ = 0 and weff0 = −1 are excluded in 1σ confidence
interval in the EM and SSIIIHT 1 results, while it is included
in the SSI� related results. The evolutions of δ cross 0 and
the evolutions of weff cross −1 in most 1σ intervals. And
with increasing of z, δs gradually approach 0, weff s gradu-
ally deviate from −1. These results are consistent with the
analytic calculations in Eqs. (36) and (37).

As Table 2 shows, the χ2
PantheonPlus , χ2

CC and χ2
DESI of

f (Q)HT 1 model are smaller than that of �CDM model. As
a result, 	AICEM = −14.8 and 	BICEM = −9.3 which
denote the f (Q)HT 1 model is favored by the EM data. And
in the SSI� constraint, 	AICSSI� = 3.2 which denotes the
f (Q)HT 1 model is favored and 	BICSSI� = 8.1 which
denotes the f (Q)HT 1 model is “punished”. Considering the
large value of �m0 in the SSIIIHT 1 constraint, the future
standard siren data may rule out the f (Q)HT 1 model.

6.6 Discussion on the f (Q)HT 2 model

As Fig. 6 shows, the evolution values of DL related to
SSIIIHT 2 simulation are much smaller than that of SSIIHT 20

and SSI� simulation. And compared with the PantheonPlus
data, the simulated SSIIIHT 2 data, which are based on a large
negative δ0 = −0.415, have much smaller DL values.

The EM constraint is the tightest one as well. But when
the SSIIIHT 2 data is used, it could not give out an effective
�m0 even after set a prior 0 < �m0 < 0.4 as Table 1 and
Fig. 6 show. Explicitly, the constraining results of SSIIIHT 2

is �m0 = 0.398+0.002+0.002
−0.001−0.004 under the prior 0 < �m0 <

0.4 with χ2
SSI I IHT 2

= 1197.2. Because of such poor fitting
results, we do not plot the evolutions of δ and weff for this
model.

As Table 2 shows, the χ2
CC and χ2

DESI of f (Q)HT 2

model are smaller than that of �CDM model. While,
the χ2

PantheonPlus of f (Q)HT 2 model is larger than that
of �CDM model. Furthermore, 	AICEM = 6.3 and
	BICEM = 11.8 which denotes the f (Q)HT 2 model is
excluded by the EM data. And, based on SSIIIHT 2 simula-
tion and constraint, we conclude that the f (Q)HT 2 model
will be ruled out by the future standard siren observational
data as well.

6.7 Short summary on the non �CDM-like models

Here, the model effects are much smaller than the extra fric-
tion effects in both models. While the two effects are com-
parable in the �CDM-like models, e.g.the model effect of
f (Q)PE model (	�m0 = 0.003) is 12.5% of the 1σ range of
EM constrained �m0 (	�1σ

m0 = 0.024). As for the extra fric-
tion effect of f (Q)PE model (	�m0 = 0.065), it is 270.8%
of the 1σ range of EM constrained �m0. As the errors caused
by model effect could be at the level of 10%, it should not be
ignored.

And, the Hubble tensions in the non �CDM-like mod-
els are slightly larger than that in the �CDM-like models.
Anyway, compared with the DLs derived from f (Q)P and
f (Q)E models, the ones related to the simulated SSIII data of
non �CDM-like model are smaller. Especially, DSSI I IHT 2

L s

123



  358 Page 14 of 16 Eur. Phys. J. C           (2025) 85:358 

seem to smaller than the PantheonPlus data. All the �SSI I I
m0

for the non �CDM-like models are larger than 0.370 in
2σ ranges which are out of most existing constraints. The
f (Q)PE model could be ruled out by the EM data, and both
the f (Q)HT models will be excluded by the future standard
siren data.

7 Conclusion

To study the model and extra frictional effects in stan-
dard siren simulation, we simulated standard siren data
based on �CDM (SSI�), based on the f (Q) models with
δ = 0 (SSII) and based on the true f (Q) models with
δ �= 0 (SSIII) by using the real EM observational data
as baseline. And two �CDM-like models ( f (Q)P and
f (Q)E ) and two non �CDM-like models ( f (Q)PE and
f (Q)HT ) are chosen to constrain. The evolution values of
DL related to SSII and SSIII simulation are DSSI IPE

L <

DSSI IP
L 	 DSSI IE

L 	 DSSI IHT 2
L 	 DSSI�

L < DSSI IHT 1
L

and DSSI I IHT 2
L � DSSI I IHT 1

L 	 DSSI I IPE
L < DSSI I IP

L <

DSSI I IE
L 	 DSSI�

L .
And the tightest constraints are from the EM data in all

f (Q) cosmologies. The model effects are smaller than the
extra friction effects in non �CDM-like models. While they
are comparable in �CDM-like models. Both effects play
important roles in standard siren simulation and could not be
ignored. By comparing the constraining results, especially
the χ2, AIC and BIC, the f (Q)P and f (Q)E models need
more observational data (e.g.growth factor) to further study;
the f (Q)PE model could be ruled out by the EM data; and
both the f (Q)HT models will be excluded by the future stan-
dard siren data.
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