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Abstract To investigate the model and extra frictional
effects in standard siren simulation of f(Q) cosmologies,
we simulated three types of standard siren data based on
different fiducial models (ACDM and f(Q) models). Both
effects are important in standard siren simulation. Explic-
itly, the f(Q)p and f(Q)g models need more observational
data (e.g. growth factor) to further study. The f(Q) pr model
could be ruled out by the EM data. And both the f(Q)gT
models will be excluded by the future standard siren data.

1 Introduction

The standard siren (SS) of gravitational wave (GW) provides
an absolute measurement of distance without dependence on
other sources [1]. This standard siren method is widely used
to constrain cosmological models especially for the modified
gravity. Presently, the direct detection of gravitational wave
has discovered at least 99 standard siren events [2—8], but only
one single confirmed standard siren event (GW170817) and
one possible standard siren event (GW1905 21) have been
detected. These two events are unable to do effective cos-
mological constraints. In the coming decade, ground-based
(e.g.Einstein Telescope (ET) [9-11] and space-based tele-
scopes (e.g.Taiji [12], Tianqin [13], and LISA [14]) experi-
ments are predicted to discover more standard siren sources.
Therefore, to forecast fundamental properties of gravity, the
mock catalogs of standard sirens should be created.

In the standard siren method, the luminosity distance Dy,
could be extracted from the GW amplitude / 4. And the stan-
dard siren simulation should be based on the background
cosmology but it could not be determined at present. The
cosmological constant called ACDM model is the simplest
theoretical explanation for our accelerating universe which
is preferred by the majority of observational survey releases
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(e.g.Planck data [15,16]). And, dark energy and modified
gravity are the candidates of explaining the accelerating uni-
verse as well. All the cosmological models could affect the
amplitude of standard siren. Then conversely, the standard
siren data could constrain cosmological models. Here, the
choice of fiducial model of standard siren simulation is called
the model effect. And compared with the ACDM and dark
energy models of general relativity (GR), the propagation
equation of gravitational wave in modified gravity has an
extra friction term which affects the standard siren simulation
as well. It is called the extra frictional effect. Roughly, based
on affine connections [17-22], there are mainly three types of
modified gravity: f(R), f(T) and f(Q) cosmologies. Here,
we choose the ACDM model in general relativity (GR) as
baseline and discuss the f(Q) cosmologies which are rel-
atively simple. Among the various f(Q) models [23-66],
two ACDM-like models (the power-law f(Q)p [23,24] and
square-root exponential f(Q)g [25] models) which could
come back to ACDM model are chosen to discuss. Corre-
spondingly, two non ACDM-like models (the power expo-
nential f(Q)pg [26,27] and hyperbolic tangent f(Q)ur
[28-30] models) are chosen to constrain as well.!

To invest the mode and extra friction effects, we intend
to simulate three types of mock standard siren data in this
paper: the first one (SSI, ) is based on the ACDM model; the
second one (SSII) is based on f(Q) cosmologies but assum-
ing the extra friction term zero; the third one (SSIII) is based
on the f(Q) model as well and using its true extra friction
term. Then we could compare the SSI, and SSII to see the
model effect, and compare SSII and SSIII to see the effect of
extra friction term. The electromagnetic (EM) data is used as

1" The description of gravity using Teleparallel Gravity with

Weitaenbock connection T which is called torsion scalar is equivalent
with the Symmetric Teleparallel gravity using the non-metricity scalar
Q in the background level. In the both gravities, the curvature R in GR
is replaced by T or Q [67-84].
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baseline in all models, including direct determination of the
Hubble parameters derived from cosmic chronometer (CC)
method [85,86], baryon acoustic oscillations (BAO) of Dark
Energy Spectroscopic Instrument (DESI) [87] and the type
Ia supernovae of PantheonPlus compilation (PantheonPlus)
[88,89].

The rest of this paper is organized as follows. In Sect. 2,
we will introduce the standard siren of gravitational wave. In
Sect. 3, we will introduce the EM observational data and the
mock standard siren data. In Sect. 4, we will briefly describe
the f(Q) cosmologies. In Sect. 5, we will summarize the
used data. In Sect. 6, we will report the constraint results.
Finally, a brief summary will be given in Sect. 7.

2 The standard siren

The gravitational waves from compact systems are viewed as
standard sirens to probe the evolution of the universe [1,90].
From the GW signal, the luminosity distance Dfs is mea-
sured directly, without invoking the cosmic distance ladder,
since the standard sirens are self-calibrating. And it could be
extracted from the GW amplitude

4 (GMC>5/3(nwa)2/3 o
A= g i s\ 2 B )

where /1 4 is the SS amplitude, “A”could be “+”or “x”, Dfs

is the luminosity distance for gravitational wave standard

siren, M. is the chirp mass, and fgw is the GW frequency.

Obviously, the amplitude of gravitational wave standard siren

will be affected by the background cosmological model.

Especially, the propagation equation of standard siren in
Fourier form is [91,92]

By + 20 + 8y + k*ha =0, )

where %4 denotes the Fourier mode of the standard siren
amplitude, the prime “/’denotes a derivative with respect to
conformal time 7, and 5# = a’/a. And especially, § is the
so-called extra friction term which is zero for the ACDM
model or dark energy model in General Relativity.

In order to simplify the propagation equation within mod-
ified gravity theories, by defining a modified scale factor
a'Ja =711+ 8(z)]and xa = aha, we get [93]

" 2 a’
XA+ k —3 XAZO. (3)

Then, the relation between the EM luminosity distance and
the SS luminosity distance could be expressed as

Sy _ ©0E) L\ pEM
Dy (z)-exp(/o 1+Z/dz>DL (2), 4

@ Springer

where DfM (z) and Dfs (z) are EM and GW luminosity dis-
tances separately. Obviously, the extra friction term § char-
acterizes the difference between the GW luminosity dis-
tance and the EM luminosity distance. When § is negative,
Df M D“ZS , there is a smaller DES which denotes a larger
Hubble parameter H, and then a larger Hubble constant H
which parameterizes the current expansion rate of our uni-
verse.

The Hp parameter is related with the famous “Hubble
tension” problem. Cosmologically, Hy could be measured
from the cosmic microwave background which fit to a cos-
mological model such as ACDM (for instance, from Planck
[94]). And locally, Hy could be measured from the observed
redshift—distance relation in the Hubble flow for distant
objects (for instance, from Cepheid variables and Type Ia
supernovae by the SHOES Team based on the three-rung dis-
tance ladder method [95-97]). Explicitly, the Hubble tension
refers to a discrepancy of more than 50 between Hp mea-
sured using these two measurements (see reviews by Refs.
[98,99]). In cosmology, many models which could return to
ACDM meet Hubble tension problem as the ACDM does
[100,101]. Here, we will discuss Hubble tension for various
f(Q) cosmologies in the standard siren simulation. The cal-
culated values of Hubble tension could be denoted as [102]

|0(D1) — 6(D2)]
\/092(01) + 02(D2)

T (0) = &)

where 6 is the best fitted values of Hy from different data sets;
the first data set D represents the constraining results of cos-
mological fitting; the second data set D, is the chosen base-
line measurement which is Hy = 73.17 & 0.86 km/s/Mpc
from the latest SHOES Team [95-97]; and op(D;) and
op (D») represent the errors from D1 and D, data sets respec-
tively.

3 The method

The Markov Chain Monte Carlo (MCMC) package
CosmoMC [103] is employed to infer the posterior proba-
bility distributions of parameters, and further to derive the
best fitted values and their corresponding errors. And numer-
ical simulation is also used to forecast results of surveys and
targeted observations. We choose the Einstein Telescope as
the representative of third generation instruments which will
detect thousands of Neutron Star Binary (NSB) and Black
Hole Binary (BHB) mergers to probe the cosmic expansion
at high redshifts [91,104]. Here, we simulate the standard
siren data by using the best fitted parameter values from EM
combination and Einstein Telescope design index.

Firstly, we employ current EM observational data sets
which are related to the cosmic distance, including the type
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Ia supernovae of PantheonPlus compilation (PantheonPlus)
[88,89], the direct measurements of the Hubble parameter
derived from cosmic chronometer method (CC) [85,86], and
baryon acoustic oscillations of Dark Energy Spectroscopic
Instrument (DESI) [87], to perform the MCMC analysis
which give out the fiducial parameter values required by stan-
dard siren simulation.

The PantheonPlus compilation is acquired from 18 dis-
tinct surveys [88,89]. It contains 1701 distance modulus data
spanning within a redshift range of 0.00122 < z < 2.26137.
The distance modulus, which is the observable quantity in
the supernovae (SN) data, is defined as

M = Slogoldy ()] + Sloggo | L2 | 125, (6)
= m — = I
M gioldL(Z 210 Mpc
where the luminosity distance is
Z dz
=0+ [ )
o H@®@)

In general, the goodness of fit for theoretical model is mea-
sured by %2 and likelihood functions (L) which is expressed
as x> = —2InL. To get best fit, the value of x2 is needed
to minimize. In the context of the PantheonPlus compilation,
the x 2 likelihood function could be computed by

1701
2 — T -1
XPantheonPlus = Z Ap Cstat+xys A, (8)
i=1

where the covariance matrix (Cg;qs45ys) includes both the
systematic and statistical errors, Au is the vector of 1701
SN distance modulus residuals computed as

Api = w4 @) — e, ©)

The Hubble parameter data could be obtained through the
cosmic chronometer (CC) method which calculate the dif-
ferential ages of passively evolving galaxies. Here, the used
CC compilation contains 32 data points [105—114] which are
tabulated in Table 1 of Ref. [86]. And we use the covariance
matrix for computations as described in Ref. [85]. Then, the
form of x? of Hubble parameter data through the cosmic
chronometer (CC) method is

32
Xg'C = Z AH(Z)Tcsjit+m0del+young+metAH(Z)’ (10)
i=1
where AH(z) = H(z;)model — Hl.d‘”“, “stat”, “young”,
“model” and “met” denote the contributions to the covari-
ance due to statistical errors, young component contamina-
tion, dependence on the chosen model, and stellar metallicity
respectively.
Furthermore, the properties of BAO are derived from the
matter power spectrum which are related with the matter

fluctuation perturbation. In the clustering of matter of late
universe, they could serve as a standard ruler to map the
expansion history of the universe. Here, we adopt the first-
year data released by the DESI collaboration [87], which
includes observations from four different classes of extra-
galactic targets: the bright galaxy sample (BGS) [115], lumi-
nous red galaxies (LRG) [116], emission line galaxies (ELG)
[117], and quasars (QSO) [118]. The DESI provides robust
measurements of the transverse comoving distance (D ),the
Hubble distance (Dy) and the angle-average distance (Dy)
relative to the drag-epoch sound horizon (r4) in seven redshift
bins from over 6 million extragalactic objects. The DESI data
are summarized in Table 1 of Ref. [87]. Firstly, we calculate
the x? related to the BGS and QSO data as below

2 model data\2
D — (D
Koy = 3 (RULr" = Dy jrayy?,

2
O‘Zi

(11)

i=1
And, the data of Dys/rq and Dpy/rq from tracers LRGI,
LRG2, LRG3+ELGI, ELG2, and Lya QSO, degenerate at
the same redshift z. Following Ref. [119, 120], the data vector
D could be constructed as

_ (Dm/ra
D = (DH/rd> , (12)

with its covariance matrix defined as [119,120]:
012 r-o]-0p
Covpesiz = 2 ) (13)
r-o]-0p 05
where o1 and o, denote the standard deviations of Dy /rg
and Dy /r, respectively. The correlation coefficient between
Dy /rq and Dy /rq, which is denoted as r, is provided in
Table 1 of Ref. [87]. Then the second X12) £sr2 18 expressed
as

10
XbEsn = Z AD] Covy g, AD;, (14)

1

where AD; = Dl.m"dd — Dl.d‘”“ is the data vector constructed
by Eq. (12).

We combine the PantheonPlus, CC and DESI observa-
tional data as EM compilation which has 1745 data points.
And the best fitted values of EM compilation, which corre-
spond to the minimum of sum of X%amhwnmw, Xéc and
X%) ESI> is used as fiducial parameter values in standard siren
simulations.

Meanwhile, the strain /(¢) in the gravitational wave inter-
ferometers could be written as [104]

h(t) = F (0, ¢, ¥)hy (1) + Fx (0, ¢, y)h (1), 15)

@ Springer
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where F,, Fx are the antenna pattern functions sensed by
the gravitational wave detector. The redshift range is chosen
as 0 < z < 5. And the standard siren sources considered in
this work include the merger events from black hole-neutron
star systems and binary neutron star systems, both of which
are expected to exhibit afterglows in the EM radiation after
they emit bursts of gravitational wave. Thus, BNS and BHNS
could be observed not only as a transient standard siren event,
but also as an EM counterpart, and could be used as standard
siren candidates.

In this work, to calculate the errors of the simulated data,
we utilize the one-sided noise power spectral density (PSD)
which characterizes performance of the gravitational wave
detector. The measurement errors of luminosity distance is
also related to the weak lensing effects. Following the studies
in Refs. [104,121], this weak lensing error is assumed to be
0.05z. Thus, the total uncertainty on the measurement of Dy,
is taken as

2Dy, 2
aDLz\/mz <T) +(0.05zD1)?,  (16)

where oi%m is the instrumental error calculated by Fisher
Matrix and p is the ratio of signal to noise which is usu-
ally chosen as p > 8. In this paper, we will simulate 1000
standard siren data points expected to be detected by Ein-
stein Telescope in its 10-year observation. To achieve this,
the Fisher matrix approach is utilized [91]. And, we roughly
assume that there are 500 BNS events and 500 BHNS events.

The %2 of SS data could be expressed as below:

1000
2=y (DFo%el(z;) — (D7) a7
Xss = _ ) .
i=1 Zi
Then, the standard sirens method offers a new independent
way to probe the cosmic expansion.

4 The f(Q) cosmologies

In the Symmetric Teleparallel gravity, the non-metricity Q,
which represents the variation in length of a vector during
parallel transport, is used to describe the gravitational inter-
action. And, its natural extension, the f(Q) modified grav-
ity, has revealed many interesting cosmological phenomena
as shown in the literature.

The action of f(Q) cosmology could be given by [31-33],

S—/Fg[ lént(Q)Jan} d*x, (18)

where f(Q) is an arbitrary function of the non-metricity
scalar Q; .2, is the matter Lagrangian density and g is the
determinant of metric g .

@ Springer

As the homogeneous and isotropic Friedmann-Robertson-
Walker (FRW) spacetime is considered, we obtain the exact
value of non-metricity scalar

Q = 6H>. (19)

Here, H = a/a is the Hubble parameter. Note that in the
f(Q) gravity, the non-metricity scalar Q plays the role
of Ricci scalar R in GR, which indicates these two cate-
gories of modified gravity theories (f(Q) and f(R)) are
equivalent in the background level. It is convenient to set
f(Q) = O+ F(Q) where the F'(Q) part represents the cos-
mic acceleration effect. Then the Friedmann equations for
flat spacetime take the following form [31-33]

2 F
3H =p+3—QFQ, (20)
- F—0-20Fy
~ 4Q2QFgg + Fo+ 1)’
where p and p are the energy density and pressure for the
matter fluid, and satisfy conservation equation:

2

p+3H( 4+ w)p =0, (22)

where w is the equation-of-state (EoS) parameter.

Correspondingly, the effective energy density perr and
effective pressure peg for the acceleration part that is sourced
from F'(Q) could be described as

per = 5 — QFo, 23)
pett = 2H(2QFgo + Fo) — petr- 24)
Thus, the effective EoS parameter could be given by
1-1/(F/Q —2Fp)
1+1/2QFpg + Fp)

In the framework of f(Q) gravity, the extra friction term
in Eq. (2) takes the below form:

_dinfp
T 2#dny’

And the dimensionless Hubble parameter could be expressed
as

weff = —1 + (25)

8(2) (26)

E i 27
(z) = o (27
where the subscript “0”denotes the present time.

Especially, the ACDM model could be regarded as
F(Q) = A where wef = —1 and § = 0. Here, for
convenience, the constraining models are divided into the
ACDM-like one (the power-law f(Q) p [23,24] and square-
root exponential f(Q)g [25] models) and non ACDM-like
one (the power exponential f(Q)pg [26,27] and hyperbolic
tangent f(Q)gr [28-30] models). Next, we will introduce
them one by one.
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4.1 The power-law form: f(Q)p model

The power-law f(Q) model [23,24] (hereafter f(Q)p
model) is a simple and notable model,

F(Q)=aQb, (28)

where o = Q(l)_b(l — Q0)/(1 —2b), and b is the new free-
dom which quantifies deviation from ACDM model. When
b = 0, this model degenerates to ACDM model. When
b = 1/2, this model reduces to the Dvali-Gabadadze-Porrati
(DGP) model [122]. When b = 1 the model is the same as
the standard cold dark matter model after re-scaling the New-
ton’s constant. Then itis required that b < 1 in order to obtain
an accelerating cosmic expansion. Ref. [92] gave out that the
f(Q)p model could be distinguished from ACDM model
by using GW and EM combined data. This phenomenon is
worthy checking by the updating data.

4.2 The square-root exponential form: f(Q)g model

And, we introduce the square-root exponential model [25]
(hereafter f(Q)gz model )

F(Q) = aQo(l — e PV2/Q0), (29)

where = (1 — Q,,0)(1 — (1 4+ p)e™?) and p is model
parameter. Usually, we set b = 1/p for convenience. As
the f(Q)p model, the f(Q)r model comes back to ACDM
model when b = 0. And b # 0in f(Q)g model indicates an
essential deviation from ACDM model. However, b — +0
corresponds to p — o0, while » — —0 corresponds to
p — —oo. Then, getting across b = 0 means crossing the
singularity p. And when b < 0, e=P¥2/20 grows exponen-
tially. Therefore, to avoid the singularity, we set the prior
b > 0 for all constraints which is favored by Ref [78]. In the
literature [92], the EM constraint with Pantheon included
shows the Hubble tensions as large as 3.21o0. So we con-
strain it with PantheonPlus included data to see whether the
Hubble tension could be alleviated.

4.3 The power exponential form: f(Q)pr model

In Refs. [26,27], a power exponential form of f(Q) model
has been introduced (hereafter f(Q) pg model), and it could
be expressed as:

F(Q) =0 (eAQQ“ - 1) , (30)

where the derived parameter A which is determined by €2,,0
could be described as

1 Q
x=—+wo(— ’"P) 31)
2 2e?

and Wy is the Lambert function. Similar to the ACDM model,
the f(Q)pg model has two free parameters €2,,0 and Hp.
Note that, the f(Q)pr model theoretically could not come
back to the ACDM for any values of A, thus it is called the
non ACDM-like model here.

At high-redshift where Qo < Q, Fo ~ —1*>Q3/0Q?% and
Foo ~ A*Q3/ Q3. The effective EoS can be expanded as

Qo

Weff 1—X 0 (32)
If A > 0, the wesr would approach to —1 from the phantom
side. And the extra friction term could be expressed as

3.,(Q0)\
- (g)

which tends to 0 from negative side.

The power exponential model has the same free parame-
ters with ACDM model, but does not degenerate with ACDM
model. As it has been proved to alleviate the Hubble tension
[26,27], it will be interesting to constrain this model.

4.4 The hyperbolic tangent form: f(Q)yr model

For the purpose of realizing the crossing of the phantom

divide line [28], the hyperbolic tangent form of the f(Q)

model is proposed as [29,30] (hereafter f(Q)y7 model):
- Qo

F(Q)=aQp (%) tanh E (34)

where b is an additional free parameter compared with
ACDM model or f(Q)pr model. And the dimensionless
parameter o could be expressed as

1— Q0
o = .
(1 — 2b) tanh 1 4 2 sech? 1

The f(Q)pT model could not come back to the ACDM for
any values of b as well.

When Q >> Qo, tanh(Qo/ Q) =~ Qo/Q and sech(Qo/ Q)
~ 1. Then, Fp =~ a(b — 1)(Qo/Q)? ™ and Fpp ~ a(l —
b)(2 — b)(Qo/Q)? P /O which are small as well at high
redshift. And, the EoS and extra friction are approximately
to be

35)

Weif = —2 + b, (36)
Q 2—b
§=—a(l —b)2—b) <§°) . (37)

As the effective energy density must be larger than 0, we
need to give a prior of b for the model. So, we divide the
Hyperbolic Tangent model to two branches:

f(Q)gr1: We set a prior b < 0.5 for this model. The wegr

would approach to the phantom side at high red-
shifts. The § tends to O from negative side.

@ Springer
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Table 1 The best fitted values with 1o and 2o standard errors from the
constraints of EM and SS related data for the ACDM and f(Q) mod-
els. The best fitted values of EM is used as baseline parameter values
in standard siren simulations. Explicitly, the best fitted EM values of
ACDM model are used for SSI, simulation. The best fitted EM values

of f(Q) models are used for SSII and SSIII simulations. Especially, we
list the Hubble tension at the end of the table where the reference Hub-
ble constant value Hy = 73.17 & 0.86 km/s/Mpc is from the SHOES
Team [95,96] as Sect. 2 stated. We did not list the Hubble tensions of
SSI, and SSII data for f(Q) models because they are not physical

Model Data Q10 Hy(km/s/Mpc) b 8o Weff) Hubble tension
ACDM  EM 03224001 00 73.23%0177 03 — -1 0.070
SSIa 0316700100 73.56 039 — -1 0.380
F@p  EM 0327HO00 3357010000 0052 000l 0004000008 1025000 0,200
SSIa 02815555001 7309505170 02019535 06 04535555705, —091555 151655 —
SSIpo  0.330%5010 006 7374 050 171 —0-21150350 051 —0.032%5 1517075 ~1.04855 150 0T —
SSHIp  0.383%5015 005 73887033130 —0.420%03, 7055 —0.090% 5656 0161 — 111870151 515t 0610
f(@r EM 032270511 00 731975157037 010670158 0106 00057500 G005 09925507 Tho0s  0.020
SSIn - 0.289%501 00 7255 0 ior 04247000 000 00985005 Goss  —08615 1567 —
SSlpo 0306705 00 71237100 e 0.572%03T05 046010 —0791 1 0% —
SSHIe  0.327%55i3 003 7236050 130 022015507050 0.038%0035 Goss  —0.941 0555 Go39 0740
f(@pr  EM 034770012 002 73785157035 — —0.092%5501 00> —1-132%50s "o o05  0-690
SSIa 03367003 005 742G - —0.091 55501 600 —1129%556 0000 —
SSHppo  0.339%5516 000 437106 151 — —0.091%5501 000 — 113055065 0011 —
SSHlpe 0404755170031 394005151 — —0.09455501 6001 — 115145005 0ot0 0730
f(@ur1 EM 033670015700 72.65762,7045 02187053 005 0.048TGRN0E  —0-827 0055 ose 0580
SSIa 03497001 00 72300355 017155505 007001563 —07TT R ne o —
SSIurio 034555015 003 710756755 0319 0050 05 01905050760 —0.558%535,76351 —
SSHIyr1 043555010 003 7096057550 0310755550571 016455167058 —0.54255357635 1560
f(@nur2 EM 032270515 000 73375515T03 16247006 00 04157051 oas —0.98875013 005 0.230
SSIa 0.265%005 oo 73060515 LT8G0 Tusy  —0.238% 507005 —0.839%0075 0o —
SSIura0 032785051 00ss 738603 00 162970150 01 —0.415%55677035  —0.985 51615 —
SSHIyr>  0.398%5061 000 8474705 063 194475001 0o —0-031%5501 01 —0483 %0501 os  12:560
f(Q)ur2 : As Big Bang Nucleosynthesis (BBN) give the EM: The observational data of PantheonPlus, CC and

constraint b < 1.946 [123],2 we set a prior
1.500 < b < 1.946 for this model. At high red-
shifts, the wegr would approach to the quintessence
side, while the § tends to O from positive side.

SSIA .

Meanwhile, under the constraining of existing data, the
hyperbolic tangent ( f (Q) y7) model is “punished”’by Akaike
information criterion (AIC) and Bayesian information crite-
rion (BIC) [65,66] which worth further study.

5 The simulted standard siren data

And, we summary the used data as below:

SSII:

2 Another BBN constraints for the f(Q) g2 model are satisfied b <

1.88 [29].

@ Springer

DESI are combined as EM compilation which has
1745 data. Its best fitted values is used as baseline
parameter values in standard siren simulations. And
we list the constraining results of EM in Table 1.
The SSIA simulation used in ACDM and f(Q)
models is based on the ACDM model with €,,,0 =
0.322 and Hy = 73.23. The “SS”is the abbreviation
of standard siren. And the subscript “A”denotes the
ACDM fiducial model. This simulation is mainly
used for testing model effect in f(Q) models.
AsTable 1 shows, weuse f(Q)p model with 2,0 =
0.327, Hy = 73.35 and b = —0.082 for the SSIIpg
simulation; use f(Q)g model with 2,0 = 0.322,
Hy = 73.19 and b = 0.106 for the SSIIgq sim-
ulation; use f(Q)pr model with 2,0 = 0.347
and Hy = 73.78 for the SSIIpgo simulation; use
f(Q)gr1 model with Q,,0 = 0.336, Hy = 72.65
and b = 0.218 for the SSII 5710 simulation; and use



Eur. Phys. J. C (2025) 85:358

Page 7 of 16

358

Table 2 The xz, AIC and BIC values of the PantheonPlus, CC, DESI,
EM and SSI, data for ACDM model and f(Q) cosmologies. Because
SSII and SSIIT are simulated based on different f(Q) models, we could

not compare their X2$ (AICs, BICs). Then, the xzs (AICs, BICs) of
SSII and SSIII are not list here

EM Model Xlz’antheonPlus XZ‘C X[2)ESI
ACDM 1758.9 17.6 22.6
f(Q)p 1761.6 17.5 203
F(O)E 1758.3 17.6 24.6
F(O)rE 1774.6 17.9 29.2
f(Qum 1750.4 17.3 14.6
f(Qura 1763.7 17.2 22.5

SSIa Model — — —
ACDM — — —
f(Qp - - -
S(QE - - -
f(Q)rE - - -
f(Qur - - -
f(Qura - - -

X%M AlICgm BICgm AAICEgy ABICEgy
1799.1 1803.1 1814.0 0 0

1799.4 1805.4 1821.8 2.3 7.8
1800.5 1806.5 1822.9 34 8.9
1821.7 1825.7 1836.6 22.6 22.6
1782.3 1788.3 1804.7 —14.8 -9.3
1803.4 1809.4 1825.8 6.3 11.8
XgSIA AICSSIA BICSSIA AA1C551A ABIC551A
983.9 987.9 997.7 0 0

984.1 990.1 1004.8 2.2 7.1

984.3 990.3 1005.0 2.4 7.3

986.9 990.9 1000.7 3.0 3.0

985.1 991.1 1005.8 32 8.1

984.2 990.2 1004.9 2.3 7.2

f(Q)mT2 model with 2,0 = 0.322, Hy = 73.37
and b = 1.624 for the SSIIy 720 simulation. Espe-
cially, § = 0 is assumed for all the SSII simulations.
Physically, the SSII simulations do not correspond
to any true data. This simulation is used to denote
the model and extra friction effects by comparing
with SSI and SSIII. The subscripts “P”, “E”, “PE”,
“HT1”and “HT2”denotes the simulated model. And
the subscript “0”denotes § = 0.

The model parameter values are the same as SSII
except that we use §o = —0.024, 5o = 0.005, §p =
—0.092, 8o = 0.048 and 59 = —0.415 which are
the EM constraining results listed in Table 1 for the
SSHIP, SSHIE, SSHIPE, SSHIHTl and SSIHHT2
simulations separately.

SSIII:

Here, the EM and SSI, data will be applied to all the mod-
els. While as SSII and SSIII simulations are based on different
f(Q) model, they will be applied to their fiducial model. To
compare the real and simulated data we will plot the evolution
of luminosity distances. And, we will use the dashed/dotted
lines for SSIA/SSITin f(Q) cosmologies. While we use the
solid lines for all the EM data, for the simulated data SSI
in ACDM model and for the simulated data SSIIT in f(Q)
models.

And to determine the most suitable model according to
data, we will make a comparison for the EM and SSIy
results by using the minimum of x 2 value which stands for
the best fit. However, a higher number of parameters can
artificially improve the fit, leading to a smaller x2, making
it unreliable for model comparison. To address this issue,
we employ the Akaike information criterion (AIC) where
AIC = x? + 2N with N as the number of free parameter

[124] and the Bayesian information criterion (BIC) where
BIC = x?+N Inm withm as the number of data points used
in the fit [125]. Here, the X§ ¢ should be around the number of
data 1000. And, for Gaussian errors, the difference between
two models could be written as AAIC = Ax2+2AN. Sim-
ilar to the AIC, the difference denoted by BIC has the form
ABIC = Ax?+ ANlInm. The AAIC = 5(ABIC > 2
Jand AAIC = 10(ABIC > 6) are considered to be the
positive and strong evidence against the weaker model.

6 Results and discussion

To see the precision values, the constraining best fitted
parameter values with 1o and 20 standard errors are pre-
sented in Table 1. We also list the XZ, AIC and BIC results
in Table 2 as supplements. The main results of ACDM and
f(Q) cosmologies are presented in Figs. 1, 2, 3,4, 5 and 6
respectively. Explicitly, the data comparisons, the parameter
probability density functions (pdfs) with its 1o and 20 con-
fidence regions, and the evolutions of § and wes within lo
confidence intervals are plotted here.

As the data comparison figures shows, the evolution values
of D fs in f(Q)f model are un-distinguished. And the evolu-

tion values of DESIA are un-distinguished with that of D“ZS "
inthe f(Q)p and f(Q)pyr2 models. Meanwhile, the evolu-
tion values of DiSI A are slightly smaller than that of D ‘ZSI T'in
the f(Q) g1 model, but slightly larger than that of Dfs Il'in
the f(Q)pg model. And the evolution values of Dy related
to SSIII simulation are smaller than that of SSI, and SSII
simulations. Explicitly, for SSII simulations, DiS”P E

SSIIp . SSIg . ~SSIIyrs . SSIA SSTIy71,
D; ~ D; ~ Dy ~ Dy < D; ; for

@ Springer
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Fig. 1 In the left panel, the Dy s of real and simulated data are com-
pared. The red one with error-bar are from the PantheonPlus combina-
tion; the green one with error-bar are from simulated SSI, data; and
the green line denotes the evolution of Dy, following the assumption of

SSIII simulations, DiS”IH” < DiS”IHT‘ ~ DiS”IPE <

SSIIIp SSITIg | SSIp
pe < pydtHE ~ pSia,

And as the triangle plots show, the contours of f(Q)g
model are not closed because of the prior b > 0. While in
the other models, the contours are smoothly closed and the
probability density functions (pdfs) are Gaussian-distributed.
Roughly, for all the models, the tightest constraints come
from the EM data. Especially, for the ACDM, f(Q)fr and
f(Q) g2 models, 2,,,0 is around 0.322 with 0.024 (0.045) as
lo (20) error range. In the other models, the error ranges are
similar but the best fitted €2,0s sightly shift. Furthermore, the
error ranges of Hy in EM constraints are similar. In another
saying, all the simulations are based on similar €2,,0 and
Hy. The Hubble tension could be alleviated to 0.07¢ level
under the constraint of EM in ACDM model. Then, it is
not surprising that the Hubble tension could be alleviated in
other constraints except that of SSIIIg77. Surprisingly, the
simulation of SSIIg7> is problematical where the €2, is
very closed to its upper limit with 12.560 Hubble tension.

In this discussion, the ACDM model is used as baseline.
AsFig. 1 shows, the €2,,,0 — Hy contour of EM is much smaller
than that of the SSI data in the ACDM model. The direction
of Q,,0 — Ho contour is changed slightly as well. In the next,
we discuss all the f(Q) models one by one.
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SSI, data which are based on ACDM model with its best fitted EM
values (2,0 = 0.322 and Hy = 73.23). In the right panel, the prob-
ability density functions (pdfs) with its 1o and 20 confidence regions
for the parameters of ACDM model (£2,,0 and Hp) are shown

6.1 Discussion on the f(Q)p model

As Table 1 shows, by comparing the results from SSI, and
SSIIpg, the model effect brings a large shift of the best fitted
value of €2,,0 which is AQ,,,0 = 0.049 in f(Q)p model.
And by comparing SSIIpg and SSIIIp constraints, the extra
friction term brings shift of the best fitted value of €2,,9 as
AQ,,0 = 0.053 which is 221% of the 1o regime of EM con-
straint (AQ};’O = 0.024). The model effects are comparable
with the extra friction term effects in the f(Q)p model.

As Fig. 2 shows, the constraining tendencies of SS related
data are similar. And their contours are overlapped with the
EM ones in 20 ranges. Especially, the €2,,,0 related to SSIII p
is as large as 0.383f8:8%§f8:8§; The correlation of €2,,0 — Hy
contour is negative in the EM constraint while it is positive
in the SS related constraints. This phenomenon could help to
break the degeneration between parameters.

Furthermore, the b» = 0, § = 0 and wes = —1 are not
included in lo range of EM and SSIIIp data for f(Q)p
model. In another saying, the f(Q)p model could be distin-
guished from ACDM in lo ranges. And at high z, the devi-
ations from ACDM model become evident if wegr %= —1,
while most §s tends to O which correspond to a flat wefs.

As Table 2 shows, the ch and XIZJESI of f(Q)p model are
smaller than that of ACDM model. While, the x5, . ..
of f(Q)p model is larger than that of ACDM model.
After EM data combination, AAICgpy = 2.3, the f(Q)p
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Fig. 2 The two upper panels are similar as Fig. 1. In the upper left
panel, the Dy s of real and simulated data are compared. The red one
with error-bar denote the PantheonPlus data as Fig. 1. And we change
the green solid line for SSI, in Fig. 1 to the dashed green one for com-
parison. Additionally, the orange line denotes the simulated SSIIpg
data with the best fitted EM values of f(Q)p model (2,0 = 0.327,
Hy = 73.35, b = —0.082 and §p = 0). The blue ones with error-bar

model could be regarded as equal as ACDM model. But
ABICEgy = 7.8 denotes the f(Q) p model is “punished”’by
the EM data. And in the SSI, constraint, AAICgssy, = 2.2
and ABICgsy, = 7.1 which are similar to the EM case.

6.2 Discussion on the f(Q)g model
As Table 1 shows, by comparing the results from SSI, and

SSII o, the model effect brings a shift of the best fitted value
of ©,,0 which is AQ,;,0 = 0.017 in f(Q)g model. While

Wetto

Holkm/s/Mpc)

- M
Sl

f\ T

-10 \
-12 \ 1

7 72 73 74 75 76 10 05 00 05 00 05 10 15
Ho(kmy/s/Mpc) b o

12 10 08 -06

Werro

— EM

—— SsIy
SSTlpg

— SSIlIp

-

are SSIII p data which has the same baseline values of 2,0, Hp and b as
SSIIpg simulation, but has a non-zero friction term (59 = —0.024). In
the upper right panel, the probability density functions with its 1o and
20 confidence regions for the parameters of f(Q) p model (2,0, Ho, b,
80 and wefro) are shown. And in the two bottom panels, the evolutions of
8 and wegr within 1o confidence intervals for the f(Q)p model under
the constraints of EM and SS related data are shown

the extra friction term brings shift of the best fitted value of
Qmo as AR,,0 = 0.021 by comparing SSIIgo and SSHIg.
The 2,0 shifts of f(Q)g model are comparable in the model
and extra friction effects.

As the f(Q)p model, the shapes of SS related data are
similar and the smallest contours are still from the SSIIIg
simulation. Comparing with the EM and SS related data,
the direction of €2,,0 — Hp contour is changed. Specially,
the Hubble tension from EM constraint is as small as 0.02¢
which is smallest among all constraints.
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Fig. 3 The fiducial values in the f(Q)g simulations are €2,,0 = 0.322, Hy = 73.19 and b = 0.106 with 6o = 0 for SSIlg¢ and 8o = 0.005 for

SSIIIg. The others are the same as Fig.2

And we obtain a positive §p and a quintessence-like wegr in
all f(Q)E constraints. The evolutions of wef and §, which
are quite flat, almost follow ACDM model at z > 2. In
the other saying, the deviations from ACDM model become
ignored at high z.

In contrast to the f(Q)p model, the X%)ESI of f(Q)E
model is larger than that of ACDM model, while the Xéc
is equal to that of ACDM model. And the Xl%antheon pius OF
f(Q)E model is smaller than that of ACDM model. Finally
after combination of EM data, the information criterion gives
similar results to f(Q)g model as f(Q)p model. Explic-
itly, AAICEgy = 3.4 shows the f(Q)r model could be
regarded as equal as ACDM model. And ABICgy = 8.9
which denotes the f(Q)r model is “punished”by the EM

@ Springer

data. Furthermore in the SSI5 constraint, AAICgssy, = 2.4
and ABICgssy, = 7.3 which are similar to the EM case as
well.

6.3 Short summary on the ACDM-like models

Generally, both the f(Q)p and f(Q) g models give out small
Hubble tensions as ACDM model. And the 1o (20) con-
straining regions of all the SS related data of f(Q)p(f(Q)E)
model are much larger than that of EM data. Especially, the
best fitted €2,,,0 of SSI, are much smaller than that of other
data while the plots of Dy, are un-distinguishable. This phe-
nomenon hints the model effect, which is comparable with
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Fig. 4 The fiducial values in the f(Q) pfr simulations are 2,0 = 0.347 and Hy = 73.78 with §o = 0 for SSIlpgo and §9 = —0.092 for SSHIp£.

The others are the same as Fig.2

the friction term, could not be ignored in the ACDM-like
model simulations.

In the EM and SSI, data, the f(Q)p and f(Q)fr mod-
els are favored by AIC, but “punished”’by BIC. Theoreti-
cally, the b parameter may effect cosmic perturbations giving
an intriguing division between background and perturbation
behavior in terms of model parameters [24,126,127]. In the
future, the growth factor data which are derived from matter
perturbations could be used to give out more information.

6.4 Discussion on the f(Q)pg model

The f(Q)pr model has the same free parameters with
ACDM model. As Fig.4 shows, the Hy related contours
derived from the SS related data are parallel. The SSIp

and SSIIpgq related contours are closed to each other. And
they have overlapped with the EM contours whose direc-
tions are changed. While the SSIIIpg related contours are
separated with the other data because of its 2,0 as large
as 0.404f8:8};f8:8§?. The shapes of contours 2,,0 — Wefo,
Q1m0 — 8o and 89 — wefro are narrow. By comparing the results
from SSI, and SSIIp o, the model effect brings a slight shift
of the best fitted value of €2,,0 which is AQ,,,0 = 0.003.
While the extra friction term brings a much larger shift of the
best fitted value of £2,,0 which is A€2,,,0 = 0.065.

In the f(Q)pg model, as Table 1 and Fig.4 show, the
parameter Jg is always smaller than O in 20 ranges. The best
fitted values of § and their 20 regimes are around —0.092
for all the data. Precisely speaking, the §o = 0 is excluded
in all the constraints of the f(Q)pr model where the extra
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Fig. 5 The fiducial values in the f(Q) g7 simulations are €2,,0 = 0.336, Hy = 72.65 and b = 0.218 with §9 = 0 for SSIly 710 and 8o = 0.048

for SSIIIy71. The others are the same as Fig.2

friction term plays an important role in the simulations. All
the constraint results exclude weffp = —1 in 20 regimes as
well which means this model could be distinguished from the
ACDM model. As z increasing, the shapes of evolution of
wett and § are similar which corresponds to the narrow pos-
itive correlation between wegr and §. The value of wegr grad-
ually approaches —1, which mimics the standard ACDM
model while it is still in the phantom range which did not
cross weffp = —1. And, § gradually tends to 0 which corre-
sponds to ACDM model as well. These results are consistent
with the analytic calculations in Egs. (32) and (33).

As Table 2 shows, the Xéc and X12)E51 of f(Q)pEg model
are larger than that of ACDM model. In the contrast, the
difference between the X%: antheonPius ©F f (@) pE model and

@ Springer

that of ACDM model is as large as 15.7. After combination
of EM data, AAICgy = 22.6 and ABICgy = 22.6 which
denote the f(Q)pr model could be excluded. And in the
SSIA constraint, AAICgssy, = 3.0 and ABICss7, = 3.0
are opposite to the EM constraint.

6.5 Discussion on the f(Q) g1 model

As Fig.5 shows, the parallel contours in f(Q)g71 model
are the 2,0 related ones which are derived from the SS
related data. Both the SSI, and SSIIg710 related contours
have overlapped with the EM contours where the directions
are changed. The shapes of contours §g — wefrg are narrow
for all the constraints as well.
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Fig. 6 Here, as the constraining result of €2,,0 of SSIllg7, is very
close to its upper prior, we assume £2,,0 < 0.4 for SSIII ;7> and list the
results at the right panel. The others are the same as Fig. 2, except that

Surprisingly, in the constraining results of SSIIgyr
data, the best fitted result of 2,0 reaches as large as
0.4351’8:8%&8:8% which are out of all the existing reasonable
constraints. There is a tension between the EM and SSII 71
data. And by comparing the results from SSI and SSIIg 710,
the model effect brings a slight shift of the best fitted value
of 2,0 which is AQ;,,0 = 0.004 in f(Q)pgr1 model. While
the extra friction term brings a rather large shift of the best
fitted value of €2,,0 which is A€2,,0 = 0.090 by comparing
SSIl gy 710 and SSIIl 7 constraints.

The § = 0 and wefrg = —1 are excluded in 1o confidence
interval in the EM and SSIII g7 results, while it is included
in the SSI related results. The evolutions of § cross 0 and
the evolutions of wef cross —1 in most 1o intervals. And
with increasing of z, §s gradually approach 0, wegrs gradu-
ally deviate from —1. These results are consistent with the
analytic calculations in Eqgs. (36) and (37).

As Table 2 shows, the Xf,amhwnplm, Xéc and X%)ESI of
f(Q) g1 model are smaller than that of ACDM model. As
aresult, AAICgy = —14.8 and ABICgy = —9.3 which
denote the f(Q)gr1 model is favored by the EM data. And
in the SSIA constraint, AAICssy, = 3.2 which denotes the
f(Q)ur1 model is favored and ABICgss;, = 8.1 which
denotes the f(Q)gr1 model is “punished”. Considering the
large value of €2,,0 in the SSIlIy7; constraint, the future
standard siren data may rule out the f(Q)gr1 model.

6.6 Discussion on the f(Q) g2 model

As Fig.6 shows, the evolution values of Dy related to
SSIII 72 simulation are much smaller than that of SSIIg 720
and SSI, simulation. And compared with the PantheonPlus
data, the simulated SSIII 5 7, data, which are based on a large
negative 8o = —0.415, have much smaller Dy, values.

HolkmisMpc)

the fiducial values in the f(Q)g72 SS simulations are 2,0 = 0.322,
Hy = 73.37 and b = 1.624 with §) = 0 for SSII 720 and §g = —0.415
for SSHIHT2

The EM constraint is the tightest one as well. But when
the SSIIIy 7> data is used, it could not give out an effective
Q0 even after set a prior 0 < 2,0 < 0.4 as Table 1 and
Fig. 6 show. Explicitly, the constraining results of SSIIg 72
is Q0 = 0.398f8:88%f8:883 under the prior 0 < 2,0 <
0.4 with X§5111H72 = 1197.2. Because of such poor fitting
results, we do not plot the evolutions of § and wegr for this
model.

As Table 2 shows, the x2. and x3 .5, of f(Q)ur2
model are smaller than that of ACDM model. While,
the X%umhwnmw of f(Q)pr> model is larger than that
of ACDM model. Furthermore, AAICgy = 6.3 and
ABICEg)y = 11.8 which denotes the f(Q)pgr2 model is
excluded by the EM data. And, based on SSIllg7, simula-
tion and constraint, we conclude that the f(Q) g2 model
will be ruled out by the future standard siren observational
data as well.

6.7 Short summary on the non ACDM-like models

Here, the model effects are much smaller than the extra fric-
tion effects in both models. While the two effects are com-
parable in the ACDM-like models, e.g.the model effect of
f(Q)pg model (AR2;,0 = 0.003)is 12.5% of the 1o range of
EM constrained €2, (Aern% = 0.024). As for the extra fric-
tion effect of f(Q) pr model (AL2,,0 = 0.065), itis 270.8%
of the 1o range of EM constrained €2,,,0. As the errors caused
by model effect could be at the level of 10%, it should not be
ignored.

And, the Hubble tensions in the non ACDM-like mod-
els are slightly larger than that in the ACDM-like models.
Anyway, compared with the Dy s derived from f(Q)p and
f(Q) g models, the ones related to the simulated SSIIT data of

non ACDM-like model are smaller. Especially, DiS”I” 2g
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seem to smaller than the PantheonPlus data. All the Q55717
for the non ACDM-like models are larger than 0.370 in
20 ranges which are out of most existing constraints. The
f(Q) pg model could be ruled out by the EM data, and both
the f(Q)pyr models will be excluded by the future standard

siren data.

7 Conclusion

To study the model and extra frictional effects in stan-
dard siren simulation, we simulated standard siren data
based on ACDM (SSI,), based on the f(Q) models with
8 = 0 (SSII) and based on the true f(Q) models with
8 # 0 (SSHI) by using the real EM observational data
as baseline. And two ACDM-like models ( f(Q)p and
f(Q)E) and two non ACDM-like models (f(Q)pr and
f(Q)nr) are chosen to constrain. The evolution values of

D; related to SSII and SSIII simulation are D‘zS”” £

DSSIIP ~ DSSIIE ~ DSSIIHTZ ~ DSSIA - DSSIIHn

and DSSIIIHm < DiSIIIHTI ~ DiSIIIpE < DiSIIIp <

SSITIE SSIp
D3SUIE o pSSIn

And the tightest constraints are from the EM data in all
f(Q) cosmologies. The model effects are smaller than the
extra friction effects in non ACDM-like models. While they
are comparable in ACDM-like models. Both effects play
important roles in standard siren simulation and could not be
ignored. By comparing the constraining results, especially
the Xz, AIC and BIC, the f(Q)p and f(Q)g models need
more observational data (e.g.growth factor) to further study;
the f(Q)pg model could be ruled out by the EM data; and
both the f(Q) g7 models will be excluded by the future stan-
dard siren data.
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