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Abstract

Over the last decade, nuclear theory has made dramatic progress in few-body and ab initio many-body calculations. These
great advances stem from chiral effective field theory (yEFT), which provides an efficient expansion and consistent treat-
ment of nuclear forces as inputs of modern many-body calculations, among which the in-medium similarity renormalization
group (IMSRG) and its variants play a vital role. On the other hand, significant efforts have been made to provide a unified
description of the structure, decay, and reactions of the nuclei as open quantum systems. While a fully comprehensive and
microscopic model has yet to be realized, substantial progress over recent decades has enhanced our understanding of open
quantum systems around the dripline, which are often characterized by exotic structures and decay modes. To study these
interesting phenomena, Gamow coupled-channel (GCC) method, in which the open quantum nature of few-body valence
nucleons coupled to a deformed core, has been developed. This review focuses on the developments of the advanced IMSRG
and GCC and their applications to nuclear structure and reactions.

Keywords Ab initio calculations - Chiral effective field theory - In-medium similarity renormalization group - Gamow
coupled channel - Resonance and continuum - Open quantum systems

1 Introduction

In the past decades, great progress in nuclear forces [1, 2],
and ab initio many-body theories [3—10] has been made.
Using low-energy expansion with nucleons and pions
as explicit degrees of freedom, the chiral effective field
theory (yEFT) [1, 2] with Weinberg’s power counting
(WPC) [11-13] provides a powerful framework in which
two- and many-nucleon interactions, and electroweak
currents can be naturally derived with the uncertainties
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associated with each expansion order. The three-nucleon
force (3NF) has been shown to be crucial in the quantitative
predictions of nuclear structure [14-30].

However, it still challenges current calculations to extend
the ab initio frontier to heavier nuclei. In ab initio calcula-
tions, one needs to handle the coupling between low and high
momenta of nuclear forces. In recent years, new approaches
to nuclear forces have been developed based on the ideas of
the renormalization group (RG), whereby high-momentum
degrees of freedom are decoupled by lowering the resolution
(or cutoff) scale in nuclear forces to typical nuclear struc-
ture momentum scales, which greatly accelerates the con-
vergence of the nuclear structure calculations [31-33]. The
similarity renormalization group (SRG) [34, 35] provides a
powerful method to decouple the high-momentum degrees
of freedom, using continuous unitary transformations that
suppress off-diagonal matrix elements and drive the Ham-
iltonian toward a band-diagonal form. The SRG softened
nuclear forces can accelerate many-body calculations with-
out compromising the nature of realistic nuclear forces or
the accuracy of calculations.

The ab initio SRG method has been further developed to
treat the nuclear many-body problems, which are in-medium
similarity renormalization group (IMSRG) [36-38] for the
ground states of closed-shell nuclei and valence-space
IMSRG (VS-IMSRG) [21, 28, 39] for open-shell nuclei.
The IMSRG employs a continuous unitary transformation
of the many-body Hamiltonian to decouple the ground state
from all excitations, thereby solving the many-body prob-
lems [10, 21, 28, 37, 39, 40]. Other advanced ab initio many-
body methods include coupled-cluster (CC) theory [41-43],
many-body perturbation theory (MBPT) [6, 44, 45], and
self-consistent Green’s function (SCGF) [27, 46]. Current
ab initio many-body approaches have become possible to
accurately describe more than one hundred fully interacting
nucleons in a controlled way [7, 47].

The traditional spherical symmetry-conserving sin-
gle-reference scheme of IMSRG is applicable only to
closed-shell nuclei. To calculate open-shell nuclei, sym-
metry-breaking schemes have been developed, which
include single- and multi-reference approaches [48-52].
To capture the strong collective correlations, Yuan
et al. developed an ab initio deformed single-reference
IMSRG approach for open-shell nuclei in the m-scheme
Hartree—Fock (HF) basis, referred to as D-IMSRG [53].
Using the m-scheme, a single HF reference state can be
constructed for any even—even nuclei. The deformed refer-
ence state efficiently includes the important configurations
of the deformed nucleus and captures more correlations
through symmetry restoration, which would be many-par-
ticle-many-hole excitations in the spherical scheme. The
calculations under the axially deformed HF basis break
the SU(2) rotational symmetry associated with angular
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momentum conservation. The broken rotation symmetry
can be restored by angular momentum projection.

Next-generation rare isotope beam (RIB) facilities have
the ability to produce most of the rare isotopes located at
the edge of the nuclear landscape, thereby shedding light on
the origin of elements, the fundamental problems of nuclear
structure, and nuclear forces. However, providing theoreti-
cal descriptions of proton- or neutron-rich nuclei in these
regions is challenging due to the complexity of theoretical
methods and computational demands. As nuclei approach
the dripline, the effects of single-particle long-distance
asymptotic behavior and coupling to the continuum become
crucial for understanding the open quantum systems [54].
The complex-energy Berggren basis provides an efficient
framework to treat bound, resonant, and scattering con-
tinuum states on an equal footing [55, 56]. To include the
coupling to the continuum, Hu et al. developed a Gamow
IMSRG (G-IMSRG) [57] in the complex-energy Berggren
basis. The advanced G-IMSRG is capable of describing the
resonance and non-resonant continuum properties of weakly
bound and unbound nuclei. The known heaviest Borromean
halo ?2C is a challenging nucleus for many theoretical cal-
culations [58-60]. The halo structure of 22C can be clearly
visualized by calculating the density distribution in which
the continuum s channel plays a crucial role, and the low-
lying resonant excited states in >2C are predicted via the
G-IMSRG [57].

Significant efforts have been made to develop theoretical
frameworks in an alternative direction to provide a compre-
hensive description of dripline systems, which often exhibit
exotic structures and decay modes. These approaches aim
to unify the treatment of structure, decay, and reactions
within a single framework. Although a fully comprehen-
sive and microscopic model achieving this goal does not
yet exist, substantial advances have been made over the past
few decades [61-63]. Notably, in [64, 65], a method was
demonstrated for integrating structural and reaction aspects
starting from an ab initio framework. I. In this framework,
each component of the three-body system is calculated using
the no-core shell model (NCSM) in Jacobi coordinates. The
inter-cluster motion is described using the resonating group
method (RGM), which has been widely applied in nuclear
reactions. Recent developments have also incorporated
continuum effects, exemplified by the Gamow shell model
coupled channel (GSM-CC) [54, 66] and Gamow coupled-
channel (GCC) method [67, 68]. The former focuses on con-
figuration mixing with self-consistent continuum effects [54,
69], whereas the latter emphasizes the open quantum nature
of few-body valence nucleons coupled to a deformed
core [68, 70, 71]. This review primarily focuses on the recent
advancements in the GCC method and its applications to
exotic decays in the dripline region.
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This review is organized as follows. The basic IMSRG
approach and its extensions are expounded in Sects. 2.1-2.4.
The theory of GCC method is formulated in Sect. 2.5. Sec-
tion 3 describes the main results of the corresponding IMSRG
and GCC computations of atomic nuclei. Finally, a summary
is presented in Sect. 4.

2 Outline of developed methods

In this section, the basic formulae for the developed IMSRG
and GCC approaches are presented. Section 2.1 is dedicated
to the main ideas and previous developments of IMSRG
itself. The symmetry-breaking m-scheme D-IMSRG is
introduced in Sect. 2.2 for open-shell nuclei applications.
Another approach to treat the open-shell nuclei while pre-
serving the spherical symmetry is the VS-IMSRG, which
combines the shell model and IMSRG, as presented in
Sect. 2.3. The G-IMSRG with the Berggren basis for the
description of weakly bound and unbound nuclei is formu-
lated in Sect. 2.4. Finally, the reaction-related GCC method
and its extensions to deformed systems and time-dependent
approaches are briefly introduced in Sects. 2.5 and 2.6.

2.1 The in-medium similarity renormalization
group

The SRG is to evolve the Hamiltonian H(s) to be band-diag-
onal by using the continuous unitary transformation as [34,
35]

H(s) = U(s)HU (s) = H%(s) + H*(s) » H%(0), 1))

where s denotes the so-called flow parameter and H%(s) and
H®4(s) are appropriately defined as the “diagonal” and “off-
diagonal” parts of the Hamiltonian, respectively. Although
the evolution should continue up to s — oo, a finite number
of evolution steps is usually sufficient to make H(s) approach
the band-diagonal form of H%(oco).

Equation (1) expresses a general ideal. In practice, taking
the derivative of Eq. (1), a flow equation is defined to evolve
the Hamiltonian H(0),

%mpmmmm 2)

where the anti-Hermitian generator #(s) is related to the uni-
tary transformation U(s) by

_ dU(s)
B S

n(s) Ut (s) = —n'(s). A3)

A commonly used generator is defined as

n(s) = [H(s), H(s)| = [H(s), H(s)]. @)

which guarantees that the off-diagonal coupling of H* is
driven exponentially to zero with increasing in the value
of the flow parameter s [35]. In practice, the demand for
strict diagonality is usually relaxed to band diagonality of
the Hamiltonian matrix in a chosen basis, such as in relative
momentum or harmonic oscillator (HO) spaces. In nuclear
physics, the SRG is used to decouple the momentum or
energy scales in free space to construct “soft” NN and 3N
interactions, thereby rendering the nuclear Hamiltonian
more suitable for ab initio many-body calculations [31, 33,
72-74].

The SRG is used to soften the nuclear force which has
a hard core in free space. This renormalization can signifi-
cantly accelerate ab initio calculations of nuclei. Another
development of the SRG theory is the in-medium SRG
(IMSRG) [36-38] which evolves the many-body Hamilto-
nian to block diagonal form. The decoupling between the
lowest-energy ground state and excited states of the Ham-
iltonian directly provides the energy of the ground state
of the nucleus. A distinct advantage of IMSRG, compared
to the SRG free-space evolution, is its ability to approxi-
mately evolve 3,...,A-body operators using only two-
body machinery. This simplification is primarily achieved
through the use of normal ordering with respect to a refer-
ence state |®), usually the Hartree—Fock (HF) state.

The intrinsic Hamiltonian of A-body nuclear system is
expressed as

2 A A
_ 1\P; w_PiPj 3N
H_Z<1_Z>2m+z<v’7_ mA>+.. Vi ©)
i<j i<j<k

where p; is the nucleon momentum in laboratory coordi-
nates and m is the nucleon mass, with v and v3" denoting
the NN and 3N interactions, respectively. In order to gener-
ate the reference state in the IMSRG calculation, the HF
equation for the intrinsic Hamiltonian Eq. (5) is first solved.
The Wick’s theorem is applied to normal order all opera-
tors starting from a general second-quantized Hamiltonian
with two- and three-body interactions, with respect to the
HF ground state.

I R
H=E,+ ny taa; +ﬁ ZFW La;a;aiay
ij Tkl
1 ot ©
+ e Z Wiikdmn a;a;a,a,a,q .,
© ijkimn
where E,, f, I', and W correspond to the normal-ordered
zero-, one-, two-, and three-body terms, respectively, given
by
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E, + dQ B gt
U 2 i+ 5 Z( ijij z/u)n i T Z k_ do (), (13)
1 w @) =0
+ I3 Z Viikij i e where B, denote the Bernoulli numbers and
ik
adg,(n) =1 (14)
1
- NN 3N

=T+ Z(Tikjk + Vg + ) Z Viktjrr" " (8) . e
k kl adg,(n) = [Q,ad§; ' ()] (15)
1 W In practical calculations, # and Q are truncated along with
Ui = T + vt]kl 7 2 L Vijmkim"'m> (9)  their commutators at the two-body level, called the Mag-
" nus(2) approximation. The series of nested commutators
w generated by ad];2 are recursively evaluated until a satis-
Wiiktmn = Vijitmn® (10)  factory convergence of the right-hand side of Eq. (13) is

where n; = Q(eF - ei) represents the occupation numbers in
the reference state |®), with e, denoting the Fermi energy of
the reference state and T representing the kinetic part of the
Hamiltonian. From Egs. (7)-(10), it is evident that all the
zero-, one- and two-body parts of the Hamiltonian contain
the in-medium effects from the free-space 3N interactions.

The exact treatment of the 3NF is computationally expen-
sive. Therefore, the residual 3NF is usually neglected, which
provides a reasonably good approximation in nuclear struc-
ture calculations. The omission of the residual normal-
ordered three-body component of the Hamiltonian has been
shown to result in only 1-2% discrepancy in ground-state
and excited-states energies for light and medium-mass
nuclei [16, 75]. The approximation of normal-ordered two-
body (NO2B) for the Hamiltonian has been proved to be
useful and beneficial in practical calculations, offering an
efficient method to include 3NF effects in nuclear many-
body calculations, thereby avoiding the computational bur-
den of directly dealing with three-body operators.

Similar to the evolution of the Hamiltonian, the opera-
tors of other observables can also be evolved using the flow
equation
d
EO(S) = [n(s), O(s)]. 1D
The Magnus expansion was usually used in matrix differ-
ential equations [76] and was applied to reformulate the
IMSRG [77] for more efficient calculations. In the Magnus
approach, the IMSRG transformation can be written as an
exponential expression [76],

U(s) = . (12)

The Magnus evolution operator Q(s) works for both the
Hamiltonian and other observable operators, which allows
the derivation of the flow equation for the anti-Hermitian
Magnus operator €(s),

@ Springer

reached [77]. At each integration step, U(s) is used to con-
struct the Hamiltonian H(s) via the Baker—Campbell-Haus-
dorff (BCH) formula

[c)

H(S) = OHOC ) = Y, 2ads (HO). (16)
k—O

The Magnus formulation offers a significant advantage, as it
enables the evaluation of arbitrary observables by utilizing
the final Magnus operator (o),

O(0) = 4 0(0)e™¥), (17)

The computational effort for solving the IMSRG(2) flow
equations is primarily dictated by the two-body flow equa-
tion, which exhibits polynomial complexity of O(N 6) based
on the single-particle size N.

2.2 The deformed IMSRG

The use of deformations as degrees of freedom in nuclear
many-body problems can make the calculations more effi-
cient [78, 79]. The standard IMSRG conserves spherical
symmetry with a single reference, which works for closed-
shell nuclei. To calculate open-shell nuclei, symmetry-
breaking schemes have been developed, including both sin-
gle- and multi-reference approaches. The single-reference
Hartree—Fock—Bogoliubov (HFB) IMSRG, which selects
a single HFB state as the reference state, has been pro-
posed [48]. The HFB quasiparticle state breaks the parti-
cle number conservation, necessitating that particle num-
ber projection be performed. To choose a reference state
closer to the true solution, the multi-reference IMSRG with
particle-number-projected spherical HFB [49, 50] has been
suggested. Calculations based on the Bogoliubov quasi-
particle states significantly complicate the formalism and
increase computational costs. Using the m scheme, a single
HF reference state can be constructed for any even—even
nuclei, with the particle number conserved but rotational
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symmetry broken. This deformed reference state may better
reflect the intrinsic structure of a deformed nucleus and cap-
ture more correlations through symmetry restoration, which
would otherwise be many-particle-many-hole excitations in
the spherical scheme. The expected symmetry preconsidera-
tions, e.g., as in the symmetry-adapted approach [80, 81],
provide an efficient way to capture the expected features of
nuclear states of interest while simultaneously reducing the
computational cost.

As indicated in Sect. 2.1, the standard IMSRG is lim-
ited to extracting the ground-state energy of a closed-shell
nucleus. An extension of the IMSRG to the deformed
scheme would be useful for the description of open-shell
nuclei. Therefore, we developed the D-IMSRG method [53]
within the deformed HF basis, i.e., the m-scheme HF basis.
First, the axially deformed HF equation of the even—even
nucleus is solved within the spherical HO basis. Under the
Jj-scheme, the initial Hamiltonian is typically expressed in
the spherical HO basis. Using the Wigner—Eckart theorem,
the matrix elements of operators, including the Hamiltonian
in the j-scheme, can be converted to the matrix elements in
the m-scheme,

<aljiml

qu|ajm> =(jimkq | j'm’)
1 , .
X ————=(a'j'[| Okl 7).

NoEs

where |ajm) are quantum states with good angular momen-
tum j and projection m. The quantity @ contains all other
quantum numbers needed to completely specify the quantum
state. Oy, is a spherical tensor of rank k; (jmkq | j'm’) is the
Clebsch-Gordan coefficient; and {a'j’||O||aj) denotes the
reduced matrix elements. The one-, two-, and three-body
matrix elements can thus be converted from j-scheme to
m-scheme through Eq. (18). The m-scheme HF single-par-
ticle levels obtained are twofold degenerate with respect to
the angular momentum projection quantum number m of
the orbital (i.e., the energies are the same with respect to
+m). Filling the deformed HF single-particle levels up to the
Fermi surfaces of neutrons and protons in +m pairing from
low to high Iml, keeps the axial, parity, and time-reversal
symmetries of the even—even ground state, thereby creat-
ing an oblate or prolate deformed HF reference state [82].
Subsequently, the intrinsic A-body Hamiltonian in Eq. (5) is
normal ordered with respect to the deformed A-dependent
reference state |®@) (i.e., the m-scheme HF ground state of
the target nucleus). The off-diagonal parts of the Hamil-
tonian are consistent with the standard IMSRG, and the
flow equations are evolved using the Magnus expansion
Egs. (16)-(17).

Subsequently, the ground-state energy and other observ-
ables can be calculated using the D-IMSRG ground-state

(18)

wave function |¥) = e~?|®) (here | D) is the deformed HF
reference state of the nucleus) expressed as

E = (P|H|¥) = (P|eHe | D) = (D|H|D), (19)

0 = (P|0|¥) = (®|20e™ 8| D) = (P|O|D). (20)

In the D-IMSRG, the reference state is just the ground state
of the deformed even—even nucleus. However, performing
exact symmetry restoration of the D-IMSRG wave function
is mathematically cumbersome and computationally expen-
sive due to the exponential increase of configurations in pro-
jecting the wave function |¥) = ¢~9|®).

Therefore, an HF projection correction is introduced as
a first approximation, to account for the angular momen-
tum projection effect. The projection correction to the
ground-state energy is estimated by

(O|HPI®)  (D]H|®)
Aol = “oPI0) T (@l@)

_ 2+l .
where P, = s / dwDir

momentum projection operator. This provides a D-IMSRG
ground-state energy given by E + AE, . with the projection
correction estimated by the HF wave function (here E is
obtained by Eq. (19), that is, the ground-state energy without
the projection).

A deformed coupled-cluster calculation has estimated
that the angular-momentum projection of the HF state
reduced the HF energy by approximately 3—5 MeV in the
sd shell [82], corresponding to the static correlation, which
is not size extensive. Since modern ab initio calculations
already include some of the correlations associated with
the projection, the energy correction obtained by project-
ing the ab initio wave function would be slightly smaller
than the HF projection correction [82, 83].

In the spherical j-scheme, single-particle levels within
the same j shell are degenerate. However, this degeneracy
is broken with the onset of deformation although a twofold
degeneracy with respect to +m persists in axially sym-
metric shapes, significantly increasing the model-space
dimension. The dimension of D-IMSRG calculation
depends on the nucleon number A and basis-space size
Ngon (the number of spherical HO major shells considered
in solving the deformed HF). For Mg, the number of
D-IMSRG Hamiltonian matrix elements already exceeds
10° at N, = 10. Nonetheless, such a large model space
may still not be sufficient to make the calculation con-
verged. To estimate the converged ground-state energy, a
simple exponential fitting method was applied with respect
to Ny, to extrapolate the D-IMSRG result to an infinite
basis space, similar to the ones used in NCSM [16, 84-87]
and multi-reference IMSRG [19] calculations,

@n

(w)R(w) is the angular
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ENgen) = by + b1exp(=byNen) (22)

where by, b, and b, are the fitting parameters. The value of
by = E(Ng,; — o) provides the estimate for the fully con-
verged energy.

2.3 The valence-space IMSRG

The spherical j-scheme IMSRG can only treat closed-shell
nuclei. The m-scheme D-IMSRG was designed to calculate
open-shell nuclei. Unfortunately, the D-IMSRG does not
conserve the angular momentum, and the exact angular-
momentum projection D-IMSRG has not been available.

The nuclear shell model (SM) has served as one of
the most powerful theoretical and computational tools
for nuclear structure calculations [38, 88-91]. In the SM,
valence nucleons move in the mean field generated by the
inert core and interact via residual effective interactions.
While the SM has been used predominantly in a phenomeno-
logical context [91, 92], there have been efforts dating back
to decades ago to derive shell-model parameters based on a
realistic interaction between nucleons [93, 94], the ab initio
effective shell-model interactions. For open-shell systems,
in addition to solving the full A-body problem, such as the
D-IMSRG mentioned in Sect. 2.2, it is beneficial to follow
the shell-model paradigm to construct and diagonalize the
effective Hamiltonian in which the active degrees of freedom
are A, valence nucleons confined to a few orbitals near the
Fermi level. As for the IMSRG, a valence-space effective
interaction can be derived using the spherical symmetry-
conserving single-reference IMSRG at a shell closure to
perform ab initio shell-model calculations for open-shell
nuclei. This method, which combines the IMSRG and SM,
is referred to as the VS-IMSRG [39].

The utility of the IMSRG lies in its flexibility to custom-
ize the definition of H° to address specific problems. For
the ground state of closed-shell nuclei, all terms that couple
the reference state |®) to the rest of the Hilbert space can be
eliminated, as in the standard IMSRG. For open-shell nuclei,
|<I)v) is decoupled from states containing non-valence states.
This can be achieved by defining the H°® using the following
matrix elements,

HOd = {-fph’f[vw/ ’fhh” Fpp’hh" Fpp’vh’ quvvr } + H.C., (23)

where p= v, q. These off-diagonal parts of the generators
evolve the Hamiltonian to diagonal HY form, where states
outside the valence space are decoupled using the flow equa-
tion, as illustrated in Fig. 1, non-perturbatively satisfying the
decoupling equation:

PH%(c0)Q = QH%(0)P = 0, (24)

@ Springer
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Fig.1 (Color online) Schematic illustration of the VS-IMSRG decou-
pling from the initial Hamiltonian H(0) to obtain the final Hamilto-
nian H(co) for the two valence nucleons

with P =} |®,)(®,|and Q = 1 — P. After the evolution is
complete, the effective shell-model Hamiltonian is obtained.
The last step is to use the SM code, such as KSHELL [95],
to diagonalize the effective Hamiltonian and express it as a
reduced eigenvalue problem in the valence-particle space.

The current VS-IMSRG is at two-body approximation
without explicitly considering 3NF or three-body correla-
tions. To reduce the residual 3NF effect, a fractional fill-
ing of open-shell orbitals in an open-shell nucleus, named
ensemble normal ordering (ENO), has been suggested [40].
Using the ENO approximation of the VS-IMSRG, nucleus-
dependent valence-space effective Hamiltonian and effective
operators of other observables can be obtained.

2.4 The Gamow IMSRG with coupling to continuum

Weakly bound and unbound nuclei belong to the category
of open quantum systems, where coupling to the particle
continuum profoundly affects the system behavior [96,
97]. Many novel phenomena, including halos [98, 99],
genuine intrinsic resonances [100, 101], and new collective
modes [102—-104], have been observed or predicted in exotic
nuclei. However, the majority of IMSRG calculations are
performed within the HO or real-energy HF basis. Here the
real-energy HF means that the HF approach is performed
under the HO basis, which is bound and localized and hence
isolated from the environment of unbound scattering states
because of the Gaussian falloff of the HO functions. Simi-
larly, the real-energy HF basis cannot include the continuum
effect in IMSRG calculations.

The complex-energy Berggren basis offers an elegant
framework for treating bound, resonant, and scattering con-
tinuum states on an equal footing [55, 56]. This basis is a
generalization of the standard completeness relation from
the real-energy axis to the complex-energy plane. Complete-
ness encompasses a finite set of bound and resonance states
together with a complex-energy scattering continuum:
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Z u, (En, r) u, (En, r/)

n

(25)
+ /dEu(E, r)u(E, r') = 5(r— r'),
L
where
U, (E,, 1) ~ Oy(k,r) ~ e*. (26)

Here, k,=ix,(x,>0) for bound states and
k, =y, — ik, (Kn, ¥, > 0) for decaying resonances located in
the fourth quadrant of the complex-momentum (complex-k)
plane.

In practical applications, it is more convenient to express
Eq. (25) in momentum space,

> Iun><un|+/ (k) (uk)|dk = 1. 27
L+

ne(b,d)

As depicted in Fig. 2, bound and resonant states appear
as poles of the scattering matrix within the complex-k plane,
and the scattering continuum is represented by the blue con-
tour. Within the Berggren basis, the GSM [23, 100, 101,
105-115] and complex coupled cluster [18, 116] methods

im(k) T

Resonance

sdje)s punog

@
T

ol
h-Y

g |

Capturing states Decaying states

§9)E)S punoquruy
]

Fig.2 (Color online) Location of one-body states in the complex-k
plane. The Berggren completeness relation in Eq. (25) involves the
bound states (brown-filled circles) lying on the imaginary k-axis,
scattering states lying on the contour (solid blue line), and decaying
resonant states (blue-filled circles) in the fourth quarter of the com-
plex-k plane lying between the real axis and scattering contour. The
capturing states (purple-filled circles) and antibound states (cyan-
filled circles) are not included in the present completeness relation

have been well developed and widely applied to the calcula-
tions of weakly bound and unbound nuclei.

For calculations within the Gamow—-Berggren framework,
selecting an appropriate one-body potential is essential for
generating resonance and the continuum Berggren basis,
frequently using the phenomenological Woods—Saxon poten-
tial [100, 101, 105, 111, 117]. In our approach, we used the
Gamow Hartree—Fock (GHF) method with chiral potentials to
produce an ab initio Berggren single-particle basis, which is
convenient for computing the Berggren basis using an analyti-
cal continuation of Schrédinger’s equation in complex-k space.
The complex-k single-particle GHF equation is formulated as
follows:
h2k?

Sowil + / dk'K2U (4K k) (K)
2u L+

= eill/i(k)»

(28)

where y = m/ <1 - %), and k(k’) is defined on the scattering
contour. U(ljk'k) is the GHF single-particle potential,

U(K'K) = (KUK = (K la)alUIBYAIR. (50
ap

where /, j are the orbital and total angular momenta of a
single-particle orbital, respectively. Greek letters denote HO
states, indicating that (f|k) is the HO basis wave functions
| B) expressed in the complex-k plane

<ﬁ|k> =(_i)2n+le—l/2b2k2 (bk)l

% 2n—lb3L’+1/2(bzk2). (30)
Tn+i+3/2) "

Here Li,H/ ? denotes the generalized Laguerre polynomial;

b = \/h/mw; and w is the frequency of the oscillator basis.

Since Lf,+l/ is analytic, it can be extended to the complex
momentum space, expressing its real part as

n
2

i
RelL,(x + iy)] = 2( DA
=0

!

L) 31

and its imaginary part as

n—1

2

m(L,(x+iy)] = )

Jj=0

(—l)i_lij"'l 2itl
DR (32)

where x and y represent the real and imaginary parts of 5k,
respectively; (a|U|B) is the HF single-particle potential
which can be obtained by solving the real-energy HF equa-
tion in the HO basis
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(a|U|p) = i Z <a7’vw|ﬁ6>D;iD§i

+ = Z > (arev™|psc )0;,05,04D;,

ij=1yéed

(33)

where D is the coefficient of the HF single-particle state. In
numerical calculations, the GHF equation is solved using
the Gauss-Legendre quadrature scheme [107, 112, 118] with
discrete points on the contour L,

h’k?
—y,

7 Vilke) + ;wﬂk§<ka|U|kﬂ>wi(kﬂ) = ewi(k,)- (34)

Here k, (k4) are the discrete momentum points, and @, (@)
are the corresponding Gauss-Legendre quadrature weights.
We define
ll/il (kll ) =

ZACHLAVER (35)

Then, Eq. (34) can be written as

D hogw] (kg) = e (k,), (36)
p

with

hoy = kgaaﬁ + \J@ 05 (k| Ulky ). (37)

The bound, resonant, and continuum GHF basis can be
obtained by diagonalizing the complex-energy in Eq. (36).

Within the GHF basis, the G-IMSRG calculations can be
conducted. Notably, the Hamiltonian in real-energy space
is Hermitian, H = H'. Therefore, in practice, the similarity
transformation U(s) is a unitary transformation, satisfying
U(s)U(s) =U()U(s) = Land n(s) = LU (s) = =7 (s)
is the anti-Hermitian generator. However m the G-IMSRG
framework, the Hamiltonian is complex symmetric,
H = H" (here T indicates the transpose). Therefore,
employing a continuous orthogonal transformation,

U(s)UT(s) = U(s)U~'(s) = 1, and the Hamiltonian H(s) can
be transformed into a band or block diagonal form,
H(s) = U(s)H(O)U (s). (38)

Correspondingly, the generator #(s) becomes

dU
1 = 0T = ) (39)

The G-IMSRG method can directly compute the ground
state of a closed-shell nucleus by decoupling the Hamil-
tonian from the excitations above the closed-shell Fermi
surface. To handle open-shell nuclei or excited states, we
employed G-IMSRG using the equation-of-motion (EOM)
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approach [119]. This approach offers a useful alternative to
the shell model strategy for calculating excited states, espe-
cially when extended valence spaces lead to prohibitively
large shell-model basis dimensions. Within the EOM frame-
work, the Schrodinger equation is rewritten using ladder
operators, which create excited eigenstates from the exact
ground state,

H|lP”> = Enllp> I HX;HIPO) = EanT,|lPO>’ (40)
where X' is given by the dyadic product |¥,)(¥,|. Further

rewriting Eq. (40) as EOM

[H.X:1[%o) = (E, — Eg) X} |¥o) = @,X;|¥y). (1)
The amplitudes of X; are determined by solving a general-
ized eigenvalue problem [120].

Coupling EOM methods with G-IMSRG is natural, as
the reference state |<1>0) corresponds to the ground state of
H = U(c0)HU"(c0). Multiplying Eq. (41) by U(co) and
recalling that

U(c0)|¥y) = |®y), 42)

we obtain the similarity transformed EOM

[H.X,]|®0) = ,X,[ @), 43)
where Xk U(oo)XkUT(oo) The solutions XT can then be
used to obtam the eigenstates of the unevolved Hamiltonian
via

[¥,) = UT(c0)X|®,). (44)

Currently, in our applications, we include up to 2p2h excita-
tions in the ladder operator [120]

(n) (n)
XT ZX {a ah} Z pr,hh,{aTa ah,ah} (45)

P Rl
In principle, the EOM ladder operator can include any exci-
tation rank up to ApAh, which would constitute an exact
diagonalization of H and can be computationally expen-
sive. In practical applications, the EOM-G-IMSRG method
is commonly employed in an approximative systematically
improbable form, referred to as EOM-G-IMSRG(m, n),
where m and n denote the truncation level in EOM and
G-IMSRG, respectively. The calculations in the present
work were performed using the EOM-G-IMSRG(2,2)
approximation.

2.5 The Gamow coupled-channel method
To provide a thorough description of open quantum systems,

the GCC method [67, 68, 70] has been advanced as an alter-
native approach, focusing on the few-body decay processes
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influenced by continuum and structural factors [121, 122].
The methodology involves constructing a robust three-body
framework, utilizing the Berggren basis [55]. As elucidated in
Sect. 2.4, the Berggren basis is specifically designed to incor-
porate continuum effects, thereby facilitating the analysis of
weakly bound and unbound nuclear systems.

2.5.1 Spherical system with an inert core
In the context of the three-body GCC model, the nucleus com-

prises a core and two valence nucleons or clusters. The GCC
Hamiltonian is formulated as follows:

3 22 3
H= Z _’1’1 + Z Vl/(;;l]) T (46)
i=1 ! i>j=1

where V;; denotes the interaction between clusters i and j,
and 7., represents the kinetic energy of the center-of-mass.
Each i-th cluster (i = c, ny, n,) is characterized by its position
vector 7; and linear momentum %i. To accurately describe
three-body asymptotics and eliminate the spurious center-
of-mass motion, it is advantageous to utilize the relative
(Jacobi) coordinates:

(47)

where i; = n,, i, = n, and i3 = ¢ for T-coordinates, whereas
i; = n,, i, = cand i; = n, for Y-coordinates, as depicted in
Fig. 3. Here, A, represents the mass number of the i-th clus-

(A;, +A)A;
and y, = ——=—2 are the reduced masses
Yy Aj HA,HA;,

associated with X and y, respectively. For analytical

Jacobi-Y

Fig.3 (Color online) Illustration of the coordinate and momen-
tum configurations in a core + nucleon + nucleon system: a Jacobi
T (solid lines) and Y (dashed lines) coordinates, where the former
is used to describe the interactions between the nucleons (n, and n,)
and the latter for interactions involving the core (c). b Correspond-
ing momentum scheme within the c.m. frame. Here, A denotes the
mass number; Mj; TEpresents the reduced mass between clusters i and
J; and ky, k,, and k_ indicate the momenta of nucleons n,, n,, and core
¢, respectively. The figure is taken from [70]

convenience, the hyperradius p = 1/x2 + y2, which remains
invariant across different Jacobi coordinate transformations,
is introduced.

Experimental measurements in the momentum space
necessitate the definition of relative momenta as follows:

: Lok
.. - (48)

- ki +k; k;

k,=p|l —2 -2

yo A +A, A

In the absence of c.m. motion, it is evident that Zi 7(1» =0,
and notably, k, is oriented in the opposite direction to k; . The
angles 6, and 0,’{ represent the opening angles of the vectors

(%X, %y) in T- and Y-Jacobi coordinates, respectively (refer to

Fig. 3). For example, in the scenario of two-nucleon decay,

the kinetic energy associated with the relative motion of the
P

= —= with E,
2u,

emitted nucleons is expressed as E,, core-p/n

p/nn
pertaining to the kinetic energy of the core-nucleon pair. The
distribution types T (6, E,pnn) and Y (0}, Eqore. ) €lucidate
the nucleon—nucleon correlations and provide insights into
the structural dynamics of the progenitor nucleus. The total
k2

momentum k is defined as

vV 2mQ2p/2n

approaches ~——= as time progresses, where Q,,,, is the
two-nucleon decay energy derived from the binding energy
difference between parent and daughter nuclei.

The presence of Pauli forbidden states in three-body mod-
els represents a challenge arising from the lack of antisym-
metrization between core and valence particles. To address
this issue, the orthogonal projection method [123-125],
which entails the inclusion of a Pauli operator in the GCC
Hamiltonian, was adopted and formulated as:

Q=AY 1" N @™, (49)

2
+ ”— , which asymptotically

X

where A is a large constant, and | /") represents a two-
body state comprising forbidden single-particle (s.p.) states
of core nucleons. By setting A to high values, Pauli forbid-
den states are elevated to higher energies, which effectively
suppresses their influence within the physical spectrum of
the system.

This standard projection technique [67] may introduce
minor numerical errors in the asymptotic region because of
coordinate transformations. The supersymmetric transforma-
tion method [125-127] offers an alternative solution for the
exclusion of Pauli-forbidden states. This method employs
an auxiliary repulsive “Pauli core” within the original core-
proton interaction, thereby effectively eliminating the influ-
ence of Pauli-forbidden states from the system.
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The total wave function is expressed using hyperspherical
harmonics as:

M (p, Qg) = p72 ZK vV (Qs), (50)
v

where K denotes the hyperspherical quantum number. The
sety = {s1,52,53,912,5, 7, fy,L}encapsulates the quantum
numbers other than K. Here, s represents spin and £ denotes

orbital angular momentum. The function q/yj <(p) specifies
the hyperradial wave function, and y% (Q5) represents the
corresponding hyperspherical harmonic [125].

The resulting Schrodinger equation for the hyperradial
wave functions can be written as a set of coupled-channel
equations:

(& (K+3/2)(K+5/2)
dp? P2
+ YV (W (p)

K/y/

2m

> - E] vz ()

(51
+ Z / Wiy k(P P W5 (9)dp" = 0,
0
where
3
VET k(0 = (Ul X Vi@l Vi) (52)
i>j=1
and
Wiy i, (0 0) = (Vi |QIVI) (53)

is the non-local potential generated by the Pauli projection
operator, as defined in Eq. 49.

To properly treat the positive-energy continuum space,
the Berggren expansion technique is utilized for the hyper-
radial wave function:

Wﬁé(ﬂ) = Z C;;[%B%(P), (54)
where B]J/g(p) denotes an s.p. state within the Berggren
ensemble [55] (detailed in Sect. 2.4). To compute radial
matrix elements using the Berggren basis, exterior complex
scaling [128] is employed, whereby integrals are evaluated
along a complex radial trajectory:

R
(B,IV(p)IB,) = / B.(p)V(p)B,,(p)dp
o (55)
+ / B.(R + pe®)V(R + pe')B,,(R + pe)dp.
0

For potentials that decay as O(1/p?) (such as the centrifugal
potential) or more rapidly (such as the nuclear potential),
R should be large enough to circumvent all singularities,
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with the scaling angle 0 selected to ensure that the inte-
grals converge (see [129] for further details). Since the Cou-
lomb potential is not square-integrable, its matrix elements
diverge when the complex momenta k, = k,,. To address
this, the “off-diagonal method” introduced in [130], where
a slight offset +6k is added to the linear momenta of the
involved scattering wave-functions, was applied to facilitate
the convergence of the resulting diagonal Coulomb matrix
elements. The complex-momentum representation has also
been adopted in other methods, e.g., in mean-field calcula-
tions [131, 132], to describe the continuum effect.

2.5.2 Deformed core

The fact that the open-shell nuclei are often accompanied by
deformation, particularly around the dripline region, sub-
stantially changes the corresponding nuclear structure and
affects the decay process. To this end, GCC method was
extended to the deformed system by allowing the pair of
nucleons to couple to the collective states of the core. Con-
sequently, the wave function of the parent nucleus can be
written as ¥/* = ¥ I, [(I)Jn’”n ® ¢"f”c]h, where ®’»" and
¢/ are the wave functions of the two valence protons and
the core, respectively. Similar to the spherical case, the wave
function ®’»% for the valence nucleons is constructed in
Jacobi coordinates using the hyperspherical harmonics

y: '}(M(Q) for the hyperangle part, and the hyperradial part
¥, k(p) is expanded in the Berggren ensemble [67, 133].
In the deformed case, the core+p+p Hamiltonian of GCC
is
3 ﬁz 3
H= Y T+ PIRAGHET A (56)

i=c,p1.py ! i>j=1

This definition is similar to Eq. 46, except that I-ic is the
core Hamiltonian represented by excitation energies of the
core E/". For nuclei exhibiting small shape deformations,
the vibrational coupling model is utilized, following the
methodologies outlined in [134, 135]. Conversely, for large
quadrupole deformations, rotational coupling is employed,
consistent with the non-adiabatic approach to deform proton
emitters as in [136, 137]. This approach allows for the dif-
ferentiated treatment of nuclear dynamics depending on the
extent of deformation, thereby enhancing the accuracy of
theoretical predictions in nuclear structure analysis.

By employing hyperspherical harmonics and the Berg-
gren basis, the Schrodinger equation can be formulated as a
coupled-channel equation. This formulation incorporates
couplings not only among the hyperspherical basis states but
also among the collective states of the core. The resulting
complex eigenvalues provide information about the reso-
nance energies and decay widths. However, in the case of



Progress in ab initio in-medium similarity renormalization group and coupled-channel method...

Page 110f31 215

medium-mass nuclei, proton decay widths typically fall
below the numerical precision of calculations. Nevertheless,
decay widths can be estimated using the current expression
presented in [138], as demonstrated in previous works [67,
139, 140]. According to R-matrix theory, if the contribution
from the off-diagonal part of the Coulomb interaction in the
asymptotic region is neglected, the hyperradial wave func-
tion of the resonance, y, x(p), is proportional to the outgoing
Coulomb function HIJE+3/2(’77K’ kpp) [141-143]. By assuming
a small decay width and adopting the expression
v' [y = kaJf'/H+ [136, 137], the numerical derivative of
the small-wave function in the asymptotic region that
appears in the original current expression can be avoided,
thereby significantly enhancing numerical precision [144].

2.6 Time-dependent approach

To tackle the decay process, a time-dependent formalism
was developed, to allow precise, numerically stable, and
transparent investigations of a broad range of phenomena,
such as configuration evolution [145], decay rates [146], and
fission [147]. For two-nucleon decay, the measured inter-
particle correlations can be interpreted by propagating the
solutions over long times. Despite previous efforts in this
direction [148-150], capturing the asymptotic correlation
of emitted particles still requires a precise description of the
resonance wave function at large distances. To this end, we
utilized the complex-momentum state ‘Pg” obtained using
the GCC method. This state can be decomposed into real-
momentum scattering states using the Fourier—Bessel series
expansion in the real-energy Hilbert space [151]. The result-
ing wave packet is propagated by the time evolution operator
through the Chebyshev expansion [152, 153]:

e = 3 0" (2= 6,0) (O, /D), ©7)
=0

where J, are the Bessel functions of the first kind and 7, are
the Chebyshev polynomials.

The time evolution was limited to the real momentum
space, to restore the Hermitian property of the Hamiltonian
matrix and ensure conservation of total density. Our imple-
mentation of the time-dependent approach is based on the
integral equation, which allows maintaining high numerical
precision by utilizing the Chebyshev expansion’s good con-
vergence rate [153, 154]. Furthermore, the evolving wave
packet has an implicit cutoff at large distances, prevent-
ing the divergence of the Coulomb interaction in momen-
tum space. In practice, we considered interactions within
a sphere of radius of approximately 500 fm, and the wave
function remained defined in momentum space beyond this
cutoff, preventing unwanted reflections at the boundary.

3 The calculations and discussions

In this section, we primarily review the calculations by our
developed D-IMSRG, G-IMSRG, and GCC. Section 3.1
presents the ground-state energies of ®1°Be isotopes as
benchmark, along with the ground-state energies and
charge radii of even—even nuclei from light beryllium to
medium-mass magnesium isotopes using D-IMSRG. In
Sect. 3.2, using VS-IMSRG, the residual proton—neutron
interaction 6V, values in the upper fp shell were inves-
tigated, indicating the important role played by 3NF in
explaining the experimental observations. Resonant states
observed in the neutron-dripline *O and the halo struc-
ture of the known heaviest Borromean nucleus 2*C are
presented in Sect. 3.3 for G-IMSRG. Furthermore, the
low-lying resonant excited states in 22C are also predicted.
Section 3.4 presents the applications of the GCC method,
focusing on the exotic few-body decay beyond the dripline
and the intriguing phenomena in open quantum systems.
Specifically, the decay dynamics and properties of exotic
two-proton (2p) emissions are discussed, including the
impact of structure, deformation, and continuum effects.

3.1 The D-IMSRG calculations of deformed light
nuclei

In [53], Yuan and his collaborators developed D-IMSRG,
as formulated in Sect. 2.2, which better reflects the
intrinsic structure of the deformed nucleus and captures
more correlations through symmetry restoration. As a
test ground, the D-IMSRG was first performed to cal-
culate the ground-state energies of ¢Be and ;,Be, which
are exotic nuclei with 2a cluster structure or elongated
shapes, benchmarked against NCSM and VS-IMSRG. Sub-
sequently, D-IMSRG was applied to describe the ground-
state properties of even—even nuclei ranging from light
beryllium to medium-mass magnesium isotopes. The opti-
mized chiral NN interaction NNLOopt [156, 157], which
gives good descriptions of nuclear binding energies, exci-
tation spectra and neutron matter equation of state without
the inclusion of the 3N force, was used during the calcula-
tion in [53] with Aiw = 24 MeV.

The ground-state energies of 3Be and '°Be were first
studied though D-IMSRG, as shown in Fig. 4, with and
without the approximate angular momentum projection.
It was found out that the trend of calculated energy by
D-IMSRG is similar to those of NCSM [16, 84—-87] and
multi-reference IMSRG [19] calculations, exhibiting
an exponential convergence with respect to the basis-
space size Ng.,. The energies extrapolated to infinite
model space using an exponential fit based on Eq. (22)
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Fig.4 (Color online) Ground-state energies for ®Be and '°Be cal-
culated by D-IMSRG, with and without projection correction,
are shown as a function of basis-space size Ng,;. Symbols below
“Extrap” represent the energies extrapolated to the infinite basis space
using an exponential fit, based on different data points: Ny = 3-7,

are depicted in Fig. 4. The extrapolated "Extrap" results
fitted with different data points are provided in Fig. 4
along with their uncertainties, verifying that the calcula-
tion results of D-IMSRG converge exponentially with an
increase in Ny, thereby demonstrating the reliability of
the calculations.

In Fig. 4, the angular momentum projection corrections
are —7.2 MeV and —5.9 MeV for ®Be and !°Be, respectively.
These significant corrections are caused by the large defor-
mations of these two nuclei. The results of NCSM and VS-
IMSRG and the experimental data are also shown in Fig. 4.

The results of VS-IMSRG underestimate the ground-state
energy in ¥!1°Be, which may be attributed to the omission
of higher-order collective excitations that are not handled
well in VS-IMSRG at the IMSRG(2) level, as discussed
in [158, 159]. However, this omission can be compensated
by the angular momentum projection correction through
D-IMSRG, as illustrated in Fig. 4.

The ground-state energies and two-neutron separation
energies calculated by D-IMSRG for 6~19Be are shown in
Fig. 5 (top panel and bottom panel, respectively), along with
VS-IMSRG calculations and experimental data. The angu-
lar momentum projection lowered the ground-state ener-
gies of 3-1°Be by about 5-6 MeV, making the calculated
energies closer to the data. Both D-IMSRG and VS-IMSRG
calculations indicated that the neutron dripline of beryllium
isotopes was at '”Be, contrary to the experimental position
of *Be, which may be due to the absence of a continuum
effect [57, 105, 107, 160].

In [53], the heavier nuclei of C, O, Ne, and Mg isotopes
were also calculated by D-IMSRG, as shown in Fig. 6
along with VS-IMSRG calculations and experimental data.
The D-IMSRG calculations with the projection correc-
tion agreed well with VS-IMSRG results and experimen-
tal data. The angular momentum projection corrections
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3-10, and 6-10. The fitting uncertainties are indicated by error bars.
Extrapolation uncertainties in NCSM and VS-IMSRG calculations
are also represented by error bars. Experimental data were taken from
AME2020 [155], and the figure was taken from [53]
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Fig.5 (Color online) Ground-state energies (upper panel) and two-
neutron separation energies S,, (lower panel) of ®~'Be calculated by
D-IMSRG with and without projection correction. The VS-IMSRG
results and experimental data [155] are also presented for compari-
son. The figure is taken from [53]

were zero for the closed-shell nuclei '4C and !416-22.24.28Q
indicating the spherical characteristics of these nuclei.
However, for the expected closed-shell nuclei of '>?2C,
the angular momentum projection corrections were not
zero but —5.5MeV and —2.7 MeV, respectively, indicating
their deformation. For Ne and Mg isotopes, the projection
results provided energy gains of about 3—6 MeV near the
neutron number N = 20 island of inversion [161, 162].
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Fig.6 (Color online) Ground-state energies of C, O, Ne, and Mg iso- 6=14C; protons in 0ps/5.1/> and neutrons in 1s, ;,0ds,, 5, for 14-22¢.

topes. D-IMSRG results are extrapolated to the infinite basis space
using the Ny, = 6—10 data points, whereas the VS-IMSRG results
are extrapolated based on Ny, = 8—13. In VS-IMSRG calculations,
the model space includes both protons and neutrons in Op;, ;, for

There is strong configuration mixing between sd and pf
shells in nuclei located in the region of the island of inver-
sion. This cross-shell mixing is missing in the VS-IMSRG
calculations although a multi-shell VS-IMSRG has been
proposed [163]. Therefore, it can be concluded that defor-
mation effectively brings the deformation orbitals into the
wave function of the state in D-IMSRG calculations.

For nuclei, another important observable is the charge
radius. The radii of the studied isotopes were also cal-
culated in [53]. Compared with the calculation of the
ground-state energy, the convergence of the radius calcu-
lation showed a different trend with increasing basis-space
size, as discussed in [32, 87, 168] and as also observed in
the D-IMSRG calculations [53], indicating that the expo-
nential fit was not applicable to the radius. Therefore, the
authors in [53] did not use extrapolation to fit the radius
in the calculations. The angular momentum projection
correction was also estimated by the HF wave function
in the study. As shown in Fig. 7, the charge radii of Be,
C, O, Ne, and Mg isotopes were investigated, along with
the VS-IMSRG calculations and experimental data. The
projection correction to the charge radius is small, mak-
ing the D-IMSRG radii with and without the projection
correction close to each other and in good agreement with
the VS-IMSRG calculations except for ®Be, where the

and both protons and neutrons in Ls, ;,0ds 5 5, for O, Ne, and Mg iso-
topes. The experimental data were taken from AME2020 [155]. The
figure was taken from [53]

D-IMSRG radius is larger. This difference can be attrib-
uted to the large deformation of 8Be. Therefore, it can be
concluded that the calculated charge radii by D-IMSRG
and VS-IMSRG are reasonable compared with experiment
data, as shown in Fig. 7 although the NNLO,,, interaction
tends to underestimate the nuclear radii, as noted in [157].

3.2 6V, bifurcation by the VS-IMSRG

The VS-IMSRG was first introduced by Tsukiyama et al.
in 2012 [39]. This method combines the SM and IMSRG
to non-perturbatively derive effective valence-space Ham-
iltonians and operators, as detailed in Sect. 3.2. Recently, it
has been applied to describe the 6V, values in the upper fp
shell, incorporating a chiral three-nucleon force (3NF), as
reported in [169].

Nuclear binding energy B(Z, N) represents the total inter-
action energy of interacting nucleons in the nucleus with Z
protons and N neutrons. Differences in binding energy can
isolate specific types of interactions and provide insights into
modifications in nuclear structure [170, 171]. The double
binding energy difference denoted as 6V, has been used as
an important mass filter to extract the residual proton—neu-
tron (pn) interaction [172—174], particularly for the N = Z
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Fig.7 (Color online) Charge radii calculated by D-IMSRG in a basis space with N, = 10 and using VS-IMSRG with N, = 13 for Be, C, O,
Ne, and Mg isotopes. Experimental data were taken from [157, 164—167]. The figure was taken from [53]

nuclei. The residual proton-neutron interaction 6V,,, can be
extracted using

6Va(Z.N) :%[B(Z, N)-B(Z,N—-2)—-B(Z-2,N)

(58)
+B(Z-2,N -12)],
for the nucleus with N = Z = an even number, and
6V°°(Z,N) =[B(Z,N)— B(Z,N—1)—-B(Z - 1,N)
> (59)

+B(Z-1,N-1)],

for the nucleus with N = Z = an odd number.

Weakly bound proton-rich nuclei are attracting interest in
novel structure [175]. In [169], the masses of %2Ge, **As,
%Se, and "°Kr were measured for the first time. Additionally,
the masses of six N = Z — 1 nuclides ' Ga, ©3Ge, 5 As, 9 Se,
"IKr, and >Sr were redetermined with improved accuracy,
using a novel method of isochronous mass spectrometry con-
ducted at the Heavy lon Research Facility in Lanzhou
(HIRFL). These newly measured masses provide updated
6V, values, which offer great test ground for state-of-the-art
theoretical calculations. The updated 6V, values show a
clear increasing trend in 5VI§’I‘1’ beyond Z = 28, which is inter-
preted as an indication of the restoration of pseudo-SU(4)
symmetry in the fp shell, as suggested in [176, 177]. In con-
trast, 5V§§ shows a decreasing trend that was previously
observed in the lower mass region [173, 178]. These 5Vpn
values were extracted using predicted masses from fre-
quently used mass models; however, none of these models
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successfully reproduce the bifurcation in 5V, values [169],
except for the ab initio VS-IMSRG calculations. Within the
ab initio VS-IMSRG calculation, a chiral 2NF plus 3NF,
labeled by EM1.8/2.0 [24], is adopted, which can reproduce
well the ground-state energies up to A =~ 100 region

6000 [ — VS-IMSRG 2NF + 3NF (e-e) 7 (a) ]
[ === VS-IMSRG 2NF + 3NF (0-0) J/ 1
| --- VS-IMSRG 2NF-only (0-0) I/
| —— VS-IMSRG 2NF-only (e-e) 4
4000 |
S 2000 s
(0]
X 1
g L 4
> L .
1) ot .
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Mass number A

Fig.8 (Color online) Experimental 6V, for a N=Z and b
N =Z + 2 nuclei beyond A = 56, compared with the ab initio VS-
IMSRG calculations. Data uncertainties are indicated by the size of
symbols. 6V, values from ab initio calculations using 2NF + 3NF
and only 2NF plotted as red and blue lines (solid lines for even—
even and dashed lines for odd—odd), respectively. The figure is taken
from [169]
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nuclei [7, 28, 179]. The effective Hamiltonian in the full fp-
shell above the *°Ca core was derived using the VS-IMSRG,
and the final diagonalization of the valence-space Hamilto-
nian was realized using KSHELL [95].

As shown in the lower panel of Fig. 8, VS-IMSRG calcu-
lations with chiral 2NF plus 3NF reproduce the experimental
6V, for the N = Z + 2 nuclei exceptionally well. For the
odd—odd N = Z nuclei, ®>Ga,®® As,’ Br and 7*Rb, the ground
states have been identified as (T,J”") = (1,0+) [155]. VS-
IMSRG calculations, which inherently incorporate both
T =0and T = 1 pn correlations, achieve a commendable
match with the experimental 5V}‘)’§ values for nuclei ranging
from *3Cu to "°Br. Particularly noteworthy is that the calcu-
lation successfully reproduces the observed increasing trend
ind V,(;: with an increase in nucleon number A. Our calcula-
tions consistently attributed an isospin of 7 = 1to the ground
states of these odd—odd nuclei, aligning with experimental
results, with the exception of 58Cu. Moreover, the decreased
trend in the even—even 5V§E was also well reproduced by our
VS-IMSRG calculations.

In mass regions with extremely asymmetric N/Z ratios,
3NF usually provides a repulsive effect on the neutron—neu-
tron (nn) and proton—proton (pp) interactions [28, 180],
which is essential for the emergence of new magic num-
bers [180] and also for reproducing the neutron or proton
dripline [28]. To understand the role played by 3NF in the
6V, of upper fp-shell nuclei, we performed calculations
using only a chiral 2NF at N3LO. The results using only
2NF show significant deviations from those calculated with
3NF included, as demonstrated in Fig. 8. Specifically, the
agreement with experimental 5V, values was markedly poor
in the calculations without the 3NF included. Additionally,
the predicted isospins of ground states for odd—odd nuclei
ranging from %>Ga to 7*Rb were all erroneously identified as
T = 01in the calculations with the 3NF included, contradict-
ing experimental data. Furthermore, without the inclusion
of 3NF, the calculated 5Vg§ values of N = Z nuclei were
lower than 6V§§ calculated with 3NF included. The 3NF
enhances the pn correlations in N = Z nuclei favoring a
T = lisospin coupling, which changes the 6V,,, behavior.

3.3 The G-IMSRG with the coupling
to the continuum

A novel G-IMSRG [57] was developed by Hu et al., using
the complex-energy Berggren representation, as introduced
in Sect. 2.4. This advanced G-IMSRG is capable of describ-
ing the weakly bound and unbound nature of nuclei in the
vicinity of nuclear driplines. We applied G-IMSRG to oxy-
gen and carbon isotopes. Recent experiments [181-184]
highlight that 22C is a Borromean halo nucleus, with an
experimentally deduced root-mean-squared matter radius

of 3.44 + 0.08 fm [184]. The continuum coupling plays a
vital role in generating the extended density distribution.
Notably, experimental information about the excited states
of 22C, which can offer additional insights into its halo
structure, is lacking. In this study, we performed an ab ini-
tio G-IMSRG calculation of the halo ?>C, using both chiral
2NF NNLO,, and 2NF plus 3NF NNLO,,, interactions. The
NNLO,,, interaction matrix elements were expanded within
12 major HO shells at a frequency of aw = 20 MeV, whereas
the NNLO,,, interaction was truncated at 13 major HO shells
with hew = 22 MeV [158, 185]. The NNLO,, potential pro-
vides a good description of nuclear structure, including
binding energies, excitation spectrum, and dripline position
without the need for 3NF [156]. The NNLO,, interaction
can provide accurate descriptions of charge radii in light-
and mid-mass isotopes [186].

For the sd shell, the neutron 0ds ), is a narrow-resonance
orbital. With no centrifugal barrier of the / = 0 s partial
wave, a weakly bound 1s; , orbital can significantly affect
the spatial distribution of the wave functions of weakly
bound nuclei. Therefore, the 0d;, and 1s; /, orbitals should
be treated in the Berggren basis, which includes coupling
to the continuum, whereas other orbitals can be treated in
the real-energy HF basis to reduce the computational cost,
as in [57].

Although the Hamiltonian (5) is intrinsic, the IMSRG
wave functions are expressed in laboratory coordinates.
Therefore, considering center-of-mass (CoM) motion cor-
rections may be necessary. Our previous work has indicated
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Fig.9 (Color online) **O spectra calculated using NNLO,,, and
NNLO,, interactions. The first two columns display the results
from real-energy EOM-IMSRG calculations (denoted as R-IMSRG)
without and with CoM treatment fH.,, using the multiplier f =
5. The subsequent three columns present the EOM-G-IMSRG cal-
culation (denoted as G-IMSRG), which are compared with the data
from [188, 189]. Resonant states are highlighted by shading, and
their widths (in MeV) are annotated nearby. The gray shading indi-
cates the continuum region above the particle emission threshold. The
figure is taken from [57]
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that the CoM effect on an intrinsic Hamiltonian is small for
low-lying states [105]. Thus, the approximation method sug-
gested in [37, 187] can be adopted to estimate the CoM
effect in IMSRG calculations. Figure 9 presents real-energy
EOM-IMSRG calculations without and with the CoM mul-
tiplication term fHy = f8 < % + %mAd)sz - %hd)) Note
that the value of the CoM vibration frequency & can differ
from the o frequency of the HO basis [187]. As illustrated
in Fig. 9, the CoM effect remains negligible for these low-
lying states.

As described in Sect. 2.4, the equation-of-motion
approach can be used to calculate nuclear excited states. Fig-
ure 9 presents the calculated spectrum of 2O, showing reso-
nant excited states. The EOM Gamow IMSRG (indicated by
EOM-G-IMSRG) calculations reproduced the experimental
excitation energies and resonance widths of the observed
states well. A high excitation energy of the first 2% state
supports the shell closure at N = 16 in the oxygen chain.
Additionally, the calculation predicted three resonant states
around the excitation energies of 8 MeV with J* = 2+ — 4%,
aligning with the experimentally ambiguous states observed
around 7.6 MeV [189]. This finding is consistent with the
complex coupled cluster calculation which uses a schematic
3NF [18].

The Borromean halo nucleus ?>C poses significant chal-
lenges for many theoretical models [58-60]. Our GHF
calculations suggested that the neutron vls, , orbital is
weakly bound. Therefore, the two-neutron configuration
(vls, /2)2 is responsible for the formation of the halo struc-
ture [181-184]. Figure 10 presents the ground-state densities
of 22C calculated by the real-energy R-IMSRG and complex-
energy G-IMSRG using two different chiral interactions. The
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Fig. 10 22C ground-state densities calculated by real-energy IMSRG
(R-IMSRG) and Gamow IMSRG (G-IMSRG), displayed on a loga-
rithmic scale. The inset provides a detailed view of the densities in
the central region of the nucleus on a standard scale. The figure is
taken from [57]
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density was computed by an effective density operator evolv-
ing within the Magnus framework (16, 17). The G-IMSRG
calculation revealed a long tail in the density distribution,
supporting the halo structure of >2C.

To assess the continuum effect of the s channel on the
properties of 22C, we performed two types of G-IMSRG
calculations using: (i) discrete s states obtained from the
real-energy HF calculation, and (ii) Berggren s states
obtained from the complex-energy GHF calculation. In
both calculations, the neutron d; , channel remained in the
GHF basis. Calculations using NNLO,, with discrete real-
energy HF s states yielded a radius of 2.798 fm for the 22C
ground state, which increased to 2.928 fm upon incorporat-
ing the continuum s wave. Similarly, the calculations using
NNLO,,, yielded a radius of 2.983 fm for the real-energy
discrete s states and 3.139 fm for the continuum GHF s wave.
The experimentally estimated radius was reported to be
5.4 +£ 0.9 fm in an earlier work [181], and later works found
ittobe3.44 + 0.08 fm [184] and 3.38 + 0.10 fm [190]. These
findings highlight the crucial role of the continuum s wave in
predicting the radius and understanding the halo structure.

Currently, no experimental data are available for the
excited states in >C. Figure 11 displays the EOM-G-IMSRG
predictions of low-lying states, benchmarked against results
from complex CC calculations. Both methods yielded con-
sistent results. The first 2% excited state was bound in both
G-IMSRG and coupled cluster calculations. We found that
the ZT state was dominated by the proton 1plh excitation
from the proton Op3/2 hole to proton Op1/2 particle orbits.
The proton 2T excited state was lower in energy than the
neutron 27 state calculated by the real-energy SM with the

Berggren channel(s): d3/2 ase (s1/2,d3/2) (s1/2,d3/2)
r 1.250 1+ ]
- / -
6F 1l —— / :
—~ [ 2 N osoa.,/ 0812 o+ 3
2 sE RN o SRl S e
= f of 0704~ "0540 0597  ~ggeg g+ 3
[ 3% N /0461 4% 7
Sak 3, ———igses 0.266 7/ -
GE: E l: \Q\\\ s _ oA 0135 / 0343 2*
c o = < = DA/ ]
w3k 0.224 0.120 0.245 —
s 200 E
=2 / ot ]
T 2F / .
Qb - - ! :
iRl T 3
0 At _ _ _ _ + 4
L 0 NNLOp NNLOgy 0 ]

R-IMSRG G-IMSRG cC G-IMSRG G-IMSRG

Fig. 11 Excited states in 2>C predicted by R-IMSRG and G-IMSRG
using two different chiral interactions compared with complex cou-
pled cluster results. The channels listed at the top of the panel indi-
cate that the partial waves are treated in the resonance and continuum
Berggren representation. The other labels are the same as those in
Fig. 9. The figure is taken from [57]
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14C core [191, 192]. The real-energy R-IMSRG results in
Fig. 11 show a neutron 2% energy similar to that in [191,
192]. Additionally, there were superposed resonant states
with J” = 11 — 4" at energies of 3.5-4.0 MeV and widths of
0.15 — 0.25 MeV. The NNLO,,, calculations yielded slightly
higher excitation energies and broader resonant widths for
these states, as illustrated in Fig. 11. The resonances were
primarily characterized by neutron 1plh excitations from
the v0ds , hole to v0d; ), particle orbitals. Structure and
decay modes of loosely bound nuclei are of interest in many
respects [193, 194].

3.4 Few-body decay by GCC

In this section, the discussion centers on the decay proper-
ties of open quantum systems, with a particular focus on
two-proton (2p) emitters, exploring how deformation and
continuum effects influence the decay dynamics of these sys-
tems. Previous research highlighted the significant role that
these factors play in shaping the decay characteristics of 2p
emitters. A critical aspect of our analysis involves extract-
ing structural information from these systems through the
measurement of asymptotic nucleon—nucleon correlations,
which are experimentally accessible.

In analyzing these correlations, the objective is to deepen
our understanding of the universal properties inherent to
open quantum systems. This approach not only elucidates
the fundamental interactions within these systems but also
provides a framework for interpreting experimental results
in terms of underlying nuclear structure and dynamics. Such
insights are invaluable for advancing our comprehension of
the complex behaviors exhibited by open quantum systems
under various conditions.

3.4.1 Impact of structure on the decay process

As the heaviest 2p emitter identified to date, °’Kr serves as
a pivotal case study for examining the influence of structure
on decay properties. Notably, shape coexistence is often
observed with Kr isotopes. In addition, the deformation
effects can significantly impact the lifetime of a decaying
system, as evidenced by prior research on one-proton (1p)
emitters [135-137, 144, 195-199]. This offers a good oppor-
tunity to study how the 2p decay properties change as a func-
tion of deformation.

As discussed in [68], Fig. 12a illustrates the proton
Nilsson levels (labeled by asymptotic quantum numbers
[Nn,A]) within the core-p potential. At modest deforma-
tions, specifically |f,| < 0.1, the valence protons predomi-
nantly occupy the f;,, shell. The half-life predicted under
vibrational conditions, calculated as T1/2 > 218 ms, sig-
nificantly surpasses the experimentally observed value by
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Fig. 12 Top: Nilsson levels Q[Nn_A] of the deformed core-p potential
as a function of the oblate quadrupole deformation S, of the core. The
dotted line indicates the valence level primarily occupied by the two
valence protons. Bottom: Decay width (half-life) of the 2p ground
state radioactivity of ’Kr. The solid and dashed lines mark the results
for the rotational and vibrational couplings, respectively. The rota-
tional-coupling calculations were carried out by assuming that the
1/2[321] orbital is either occupied by the core (9/2[404]-valence) or
valence (1/2[321]-valence) protons. The figure is taken from [68]

more than an order of magnitude, as depicted in Fig. 12b.
This discrepancy underscores the need for further theoreti-
cal refinement and is consistent with prior theoretical esti-
mates [200, 201], suggesting an intricate interplay between
nuclear structure and decay dynamics in *’Kr.

As the core deformation increases, a notable oblate gap
at Z = 36 emerges due to the descending 9/2[404] Nilsson
level, which stems from the 0gy/, shell. This gap plays a
crucial role in shaping the oblate ground state (g.s.) con-
figurations of proton-deficient Kr isotopes [202-204]. As the
oblate deformation intensifies, the structure of the valence
proton orbital transitions from the 9/2[404] (£ = 4) state
to the 1/2[321] orbital, featuring a significant £ = 1 com-
ponent. The precise level crossing between 1/2[321] and
9/2[404] is contingent on the specifics of the core-proton
parametrization, yet the overarching pattern remains consist-
ent as depicted in Fig. 12a: a shift from the 2p wave function
dominated by £ = 4 components toward £ = 1 components
as the oblate deformation progresses.

@ Springer



215 Page 18 of 31

X.-Y. Xu et al.

Figure 12b illustrates the predicted 2p decay width within
the rotational model for two scenarios: (i) the 1/2[321] level
is integrated into the core with the valence protons predomi-
nantly residing in the 9/2[404] level, and (ii) the valence
protons primarily occupy the 1/2[321] level. Consequently,
the reduction in # content within the 2p wave function mark-
edly enhances the decay width.

At a deformation of f, ~ —0.3, aligned with estimates
from mirror nuclei and various theoretical models [202, 205,
205-208], the calculated 2p ground state half-life of ®’Kr is
242O ms. This estimation not only concurs with experimen-
tal findings [209] but also underscores the significant impact
of nuclear shape and structural dynamics on the decay prop-
erties of ®’Kr.

3.4.2 Dynamics of two-proton decay

For the light 2p emitters, both direct and sequential decays
are possible [210, 211], providing a good opportunity to
study the decay dynamics as well as the interplay between
nucleon—nucleon correlation and single-particle emission.

An illustrative example is the decay of °Be, where the
neighboring g.s. of °Li exists as a broad resonance, charac-
terized by a proton decay width of I' = 1.23 MeV [212]. The
complex three-body decay dynamics of °Be remain an area
of active research and debate, with existing studies indicat-
ing unresolved aspects of the decay [141, 211, 213-219].
Theoretical predictions of a diproton structure and experi-
mental observations of broad angular correlations between
emitted protons lead to conflicting interpretations.

Based on the time-dependent approach, Fig. 13a, b
depicts the temporal evolution of the 2p density and momen-
tum distribution in the ground state of °Be across an exten-
sive time frame. Initially, at # = 0, the wave function inside
the nucleus shows a localized character with a density dis-
tribution exhibiting two maxima. These maxima represent
diproton (compact) and cigar-like (extended) configura-
tions based on the relative distances between the valence
protons [220].

As the decay progresses, Fig. 13b highlights two pre-
dominant flux branches. The primary branch shows protons
emitted at narrow angles, indicating the presence of a dipro-
ton structure during the tunneling phase. This phenomenon
is interpreted through nucleonic pairing, which favors low
angular momentum states, reducing the centrifugal barrier
and enhancing the 2p tunneling likelihood [149, 150, 216,
220]. The secondary branch illustrates protons emitted in
nearly opposite directions. Despite their spatial separa-
tion, these protons exhibit simultaneous decay, suggesting
three-body decay dynamics characterized by correlated
decay pathways of the protons with respect to the core. This
configuration reveals intricate interplays within the decay
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Fig. 13 The density and momentum distributions of two-nucleon
decays from the g.s. of ®Be (left) and SHe’ (right) for four differ-
ent time slices. The density distributions are shown in the Jacobi-T
coordinates (see Fig. 3). The momentum distribution of the sec-
ond nucleon is depicted with respect to the momentum of the first
nucleon. To clearly show the asymptotic wave function, all the parti-
cle densities (in fm™") are multiplied by the polar Jacobi coordinate p.
The dimensionless momentum (angular) distributions are divided by
the total momentum k. The figure is taken from [70]

process, shedding light on the multifaceted nature of three-
body decays in light 2p emitters.

After tunneling through the Coulomb barrier, the two
emitted protons tend to gradually separate due to Coulomb
repulsion. This is reflected in the bent trajectory of the dipro-
ton decay branch and gradual reduction of the momentum
alignment observed in Fig. 13a, b. Eventually, the 2p density
becomes spatially diffuse, which is consistent with the broad
angular distribution measured in [217]. One may notice that
even beyond 100 fm (at r &~ 2 pm/c), the Coulomb repulsion
tends to reduce the inter-proton correlation. According to
our calculations, the angular correlation starts to stabilize
only after very long times greater than 9 pm/c. Therefore,
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to obtain meaningful estimates of asymptotic observables,
very long propagation times are required.

After the protons tunnel through the Coulomb barrier,
the Coulomb repulsion between them leads to an increasing
spatial separation, impacting their trajectories and momen-
tum alignment. This dynamic is depicted in the bending
trajectory of the diproton decay branch, and a reduction in
momentum alignment is observed in Fig. 13a, b. Over time,
the 2p density distribution becomes increasingly diffuse,
aligning with the broad angular distributions reported in
experimental studies such as [217].

To provide insights into the nuclear-Coulomb interplay in
two-nucleon decay processes, an artificially unbound variant
of ®He, denoted as ®He’, was built to study its two-neutron
decay. Initially, the density distributions of ®He’ and °Be
display similarities, as depicted in Fig. 13, a consequence of
the isospin symmetry inherent in the nuclear force.

However, the absence of Coulomb repulsion in the 6
He' scenario significantly influences the decay dynamics.
In the case of °He’, the dineutron decay branch is more
pronounced, with the emitted neutrons maintaining their
spatial correlations over time more robustly than their pro-
ton counterparts in °Be. This differential behavior leads to
distinct nucleon—nucleon correlation patterns in the asymp-
totic regime. As a result, the nucleon—nucleon correlations
observed in *He’, as illustrated in Fig. 14, diverge markedly
from those in ®Be, underscoring the critical role of Coulomb
forces in shaping the decay pathways and final-state interac-
tions in these mirror nuclei.
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Fig. 14 Asymptotic energy (left) and angular (right) correlations of
emitted nucleons from the g.s. of ®Be (top) and ®He’ (bottom) calcu-
lated at r = 15 pm/c with different strengths of the Minnesota inter-
action [221]: standard (solid line), strong (increased by 50%; dashed
line), and weak (decreased by 50%; dash-dotted line). Also shown are
the benchmarking results obtained using the Green’s function method
(GF; dotted line) with standard interaction strength; 6, is the opening
angle between %x and %] in the Jacobi-Y coordinate system, and E,,
is the kinetic energy of the relative motion of the emitted nucleons
(see Fig. 3 for definitions). The figure is taken from [70]

3.4.3 Nucleon-nucleon correlations

The experimental measurements of nucleon—nucleon cor-
relations among emitted nucleons provide data pertinent to
the nuclear structure. This methodology serves as a distinc-
tive avenue for investigating the internal structure and decay
mechanisms of 2p emitters. However, the nucleon—nucleon
correlations recorded by detectors are influenced by final-
state interactions and distort the original nuclear correla-
tions. Consequently, self-consistent theoretical frameworks
are urgently required to establish a linkage between the
nuclear structure and observed asymptotic correlations. In
this section, we elucidate how the GCC method and time-
dependent (TD) approach have been effectively employed to
address such challenges.

Compared to the neutron dripline, the proton dripline
is relatively closer to the line of f-stability, facilitating the
acquisition of 2p correlation data in several instances, as
evidenced by the findings reported in studies [222, 223].
Remarkably, the energy correlation of protons emitted from
the ground state of 120 closely resembles those observed
in other sd-shell 2p emitters, such as '°Ne and '"Mg. This
resemblance suggests potential structural similarities in
the configurations of valence protons across these isotopes
despite their differing proton numbers. This observation
underscores the intricate interplay between nuclear struc-
ture and decay processes, hinting at underlying uniformities
in the spatial and energetic distributions of valence protons
within this specific shell.

To elucidate the 2p correlation patterns observed in 'O
and its isotonic neighbor 'O, a time-dependent approach
was employed, as detailed in recent research [71]. The ini-
tial 2p density configurations in !!'20 exhibit a prominent
diproton arrangement alongside a secondary, cigar-like
structure [220, 224], bearing resemblance to configurations
typical of p-shell nuclei. However, in the case of 120, the
protons emerging from these configurations coalesce, lead-
ing to a broad distribution as reported in [71]. This pattern
contrasts starkly with the decay dynamics of °Be, as shown
in Fig. 13 and [70]. These observations align with the flux
current calculations presented in [220], which indicate a
competitive interplay between diproton and cigar-like decay
modes, culminating in a so-called democratic decay process.
This comparative analysis underscores the complex interde-
pendencies within nuclear decay pathways and highlights the
distinctive decay characteristics of 120 relative to its nuclear
peers.

Consequently, the asymptotic 2p correlations for 120,
as depicted in Fig. 15, demonstrate robust alignment with
the empirical data [223] and corroborate prior theoreti-
cal investigations [225]. Notably, the subtle discrepancies
between the experimental results and theoretical predic-
tions, enhanced via Monte Carlo simulations incorporating
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Fig. 15 Asymptotic a energy and b angular correlations of the pro-
tons emitted from the two-proton unbound 20 isotope. Also shown
is ¢ the momentum scheme for three-body system. Theoretical distri-
butions were obtained within the time-dependent approach (TD, red
line) at r = 15pm/c. MC (green line chart) labels the Monte Carlo
simulation of TD results which include experimental resolution and
efficiency [223]. The calculated 2p correlations (TD and MC) are
compared with experimental data (Exp, blue histogram) of [223]. A is
the mass number and k,, k,, and k, are the momenta of the nucleons n,
and n,, and the core c, respectively, in the c.m. coordinate frame. The
figure is taken from [71]

experimental acceptance and resolution, might be mitigated
by refining the Minnesota force initially utilized for mode-
ling the nucleon—nucleon interactions. More importantly, the
absence of distinct diproton emissions during the temporal
evolution suggests that a low-E, correlation does not inher-
ently imply a diproton decay. Moreover, recognizing that the
2p system may manifest as a subthreshold resonance char-
acterized by a broad decay width around 1 MeV [226], is
critical. This continuum characteristic potentially influences
the energy correlation observed in 2p emitters possessing
minimal decay energies, underscoring the complex interplay
between nuclear structure and decay dynamics.

@ Springer

Fig. 16 a Theoretical and b experimental Jacobi-Y correlations of the
two protons emitted from the broad low-energy structure in 'O; c—f
the corresponding contributions predicted from each low-lying state.
The experimental resolution and efficiency have been considered in
(a) Monte Carlo simulations. Also shown are the corresponding g
energy and h angular correlations obtained in the time-dependent
(TD) calculations (red line), Monte Carlo (MC) simulations (green
step chart), and experiments (Exp, blue histogram). The figure is
taken from [71]

To further illustrate, the lightest oxygen isotope, ''O, has
been characterized as a broad structure encompassing multi-
ple resonances [224, 227-230]. Utilizing GCC calculations,
four low-lying states with quantum numbers J* = 3/27,
5/27.3/25, and 5/27 were predicted within the experi-
mental energy range [220]. Each state exhibits a substantial
decay width ranging from 1 MeV to 2MeV. In the time-
dependent calculations [71], these states were propagated
individually, effectively disregarding potential interference
effects. This approach underscores their significant decay
widths, which foster robust continuum coupling, resulting
in a more homogeneous density distribution throughout the
decay process compared to 20, as noted in [71].

The emergent Y-type correlations exhibit a pronounced
dependency on angular momentum, which can be instru-
mental in experimentally determining spin assignments. To
simulate the asymptotic correlations of the emitted valence
protons, the correlations of these four states were amalga-
mated, utilizing the weights derived from resonance-shape
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fitting [224]. This composite correlation, depicted in
Fig. 16a, closely aligns with the experimental observations
shown in Fig. 16b, lending credence to the hypothesis that
the observed broad structure integrates states with J* = 3 /2~
and 5/2% [224, 227]. Moreover, Fig. 16g, h illustrates the
energy and angular correlations, respectively, adjusted for
experimental resolution and efficiency. The qualitative
agreement between these corrected simulations and experi-
mental data provides additional support for the multi-reso-
nance composition within the observed peak, further validat-
ing the complex resonance structure of ''O.

3.4.4 Exotic decays in open quantum systems

In addition to 2p decay, there exist several other exotic
decay modes in nuclear physics, such as two-neutron decay,
two-alpha decay, and multi-particle emission. These decay
processes exhibit intriguing behaviors that are unique to
the quantum realm. The classical understanding of radioac-
tive decay is based on the principle that the rate of decay
is directly proportional to the quantity of the radioactive
substance present. This model fundamentally assumes that
the decay is a stochastic process at the level of individual
particles, meaning that the probability of decay is independ-
ent of the system’s previous history.

However, this classical perspective is challenged within
the quantum framework due to phenomena such as memory
effects and quantum entanglement. These effects introduce
deviations from the exponential decay law, traditionally used
to describe radioactive decay. Notably, quantum mechanics
reveals that decay probabilities can exhibit non-exponential
behavior at very short and very long timescales. Theoretical
and experimental studies have demonstrated that quantum
systems do not always follow the expected exponential decay
pattern [151, 231-241].

These findings underscore the complex nature of decay
processes in quantum systems, where the inherent properties
of the particles and their interactions can lead to observable
departures from classical predictions. The implications of
these quantum behaviors are profound, impacting our under-
standing of fundamental decay processes and the predictive
models used in nuclear physics.

In analyzing the non-exponential decay in quantum sys-
tems, one crucial concept is the survival amplitude A(f).
This amplitude is defined as the overlap between the ini-
tial quantum state W(0) and the state at a later time W(¢).
Mathematically, the survival amplitude can be expressed and
computed using the Fourier transform of the spectral func-
tion p(E), as illustrated in [242]:

+00 E
A = (FO)[¥(®) = / p(E)e”" +'dE. (60)
0

In this formulation, p(E), which is the probability density of
finding a system with energy E, is derived from the squared
modulus of the projection of the state vector ¥ onto the real-
energy eigenstates (E|W). Thus, p(E) = |(E|W)|? represents
the distribution of the initial state over the various energy
eigenstates.

The survival probability S(¢), which is a measure of the
likelihood that the system remains in its initial state at time
t, is then calculated in a straightforward manner from the
survival amplitude:

NOERF G (61)

This probabilistic measure reflects how the state evolves over
time, deviating from its initial configuration. This deviation
is a key indicator of quantum mechanical effects in decay
processes and provides insight into the complex nature of
quantum dynamics.

Non-exponential decay of a threshold resonance. The
survival probability of a quantum state is intrinsically
linked to the energy distribution described by the spectral
function of the system. Typically, for a system exhibit-
ing exponential decay, the spectral function is expected
to follow a Breit—Wigner distribution, characterized by a
Lorentzian shape centered around the resonance energy
with a width corresponding to the decay rate. However,
this does not hold for near-threshold states, particularly
those with large decay widths [151, 233, 240, 241, 243].

These near-threshold states often display significant
deviations from the exponential decay law. The temporal
evolution of resonance states has been shown to involve
both exponential and non-exponential components [244,
245]. The exponential components, characterized by a
rapid decrease in probability, dominate the early time
behavior of the decay process. However, as these compo-
nents decay, the non-exponential elements become more
prominent.

Over time, as the influence of the exponential decay
wanes, a transition to a power-law regime becomes inevita-
ble. This regime is indicative of the long-time tail behavior
common to quantum systems with broad spectral distribu-
tions. Such transitions are crucial for understanding the full
dynamics of decay processes, particularly in scenarios where
classical exponential decay laws fail to capture the complexi-
ties introduced by quantum mechanical principles.

Figure 17a, c illustrates this transition, highlighting how
the decay initially follows an exponential decrease before
transitioning to a power-law decay. This behavior under-
scores the complex nature of quantum decay processes
and the need for a deeper exploration into the underlying
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Fig. 17 Survival probability S(#) as a function of time (relative to
Ty,) for a the 1/2" state of “He for different depths V,, of the Woods—
Saxon (WS) potential, and ¢ the low-lying states of °N. The near-
threshold behavior of the spectral function p (relative to the Breit—
Wigner distribution) is shown for b neutron and d proton s, p, d
partial waves. The polar angle ¢ indicates the location of the resonant
state in the complex-k plane. Also shown is the survival probability
for the virtual 1/2* state in “He. For this state, T /2 Was assumed to be
20 fm/c. The figure is taken from [246]

physics, particularly for states near the energy threshold
or those with significant quantum mechanical interactions.

The universality of the transition from exponential to
non-exponential decay is a key characteristic of quantum
decay processes, the specific dynamics of which are deeply
influenced by several factors. These include the structure
of the initial state, the chosen decay channel, and notably,
the nature of the scattering continuum which drives the
post-exponential decay behavior [246].

To provide a concrete example of these dynamics, the sur-
vival probability of the 1/2~ resonant state in °He has been
analyzed by adjusting the depth of core-nucleon potential
used in the calculations [246]. This adjustment affects the
resonant states, which can be characterized in the complex-
k plane. The positioning of these states is determined using
the polar angle ¢ = — cot™!(2E/T) /2, which offers insights
into the relative contributions of the exponential and non-
exponential decay components in state evolution.

In this analysis, as depicted in Fig. 17a, the deviations
from exponential decay become increasingly pronounced
as @ shifts toward —45°. This angular movement suggests
a strengthening of the non-exponential decay component,

@ Springer

particularly in threshold resonances where the resonant
energy E, is approximately equal to the decay width I". This
result is consistent with [240, 247, 248], which indicate
that post-exponential decay features tend to dominate more
rapidly in systems where the resonance lies near the decay
threshold. Such resonances provide a clearer and more read-
ily observable transition to non-exponential decay, making
them ideal subjects for experimental and theoretical studies
aiming to explore quantum decay dynamics beyond the con-
ventional exponential model.

Interference between near-lying states. Besides the
threshold effect, the decay dynamics of quantum systems
can also be significantly influenced by the interaction
between closely lying resonances, particularly when these
states share the same spin-parity configuration. This sce-
nario leads to an intricate interplay due to the interference
between overlapping resonances, which in turn modify the
decay characteristics [249-251].

The mechanism underlying this behavior is related to the
quantum interference effects, whereby the wavefunctions of
the resonant states overlap and coherently interact with the
continuum states. This interplay can lead to a redistribution
of decay widths among the resonances, with one or more
states experiencing an enhancement in decay widths due to
the increased coupling [252-255]. This enhanced coupling is
a critical factor in the non-exponential decay characteristics
observed in such systems, as it directly impacts the decay
pathways and probabilities.

To provide a detailed examination of how continuum
coupling affects the spectral functions of overlapping reso-
nances, a hypothetical study was conducted on a two-level
0* system in an artificial nucleus labeled as He’ [246]. This
recent study [246] explored how two 0% states, lying close
in energy, interact with each other and the continuum, high-
lighting that the interference between these states not only
affects their individual decay rates but also alters the overall
spectral shape of the system. This interaction leads to one of
the resonances showing a collective enhancement in decay
width, which is a direct manifestation of the increased cou-
pling with the continuum.

In this scenario, the excited state |1) predominantly
features a d configuration, whereas the ground state |2)
mainly consists of a p? configuration. Figure 18 illustrates
the evolution of the spectral functions and the correspond-
ing survival probabilities for different energy splittings,
AE = |E,(1) — E.(2)|, of the doublet states.

When the energy splitting AE is large, only a minor sup-
pression occurs at the tail of the spectral function for state
|2), and both states exhibit comparable decay widths. How-
ever, as the states begin to overlap, significant interference
effects arise, which dramatically impact the spectral func-
tions of the doublet (Fig. 18e, f). This interference leads to
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Fig. 18 Interference between
two close-lying 0% resonances
in *He' for the three values of
the doublet AE (in MeV) energy
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pronounced deviations from the exponential decay regime
in survival probabilities.

Specifically, state | 1) decays much more rapidly than its
intrinsic decay width would suggest, whereas state |2) exhib-
its a remarkably slow decay. These observations are consist-
ent with the findings of previous studies [253, 255], which
discuss how such exponential deviations during the decay
process can occur between any near-lying resonances of the
same spin-parity. This phenomenon is driven by virtual tran-
sitions governed by the scattering continuum and differing
orbital angular momentum structures of the doublet states.

This behavior highlights the complex dynamics that can
arise from interference effects in quantum decay processes,
particularly when closely spaced resonances are involved.
The interplay between the initial state configurations, decay
channels, and the nature of the continuum coupling leads
to non-trivial modifications in decay rates and survival
probabilities, underscoring the intricate nature of quantum
mechanical decay processes.

4 Summary

In this paper, recent developments in IMSRG were reviewed,
focusing on our work on deformed IMSRG and Gamow
IMSRG. The developed IMSRG approaches were suc-
cessfully applied to nuclei which are elongated in shape
or exhibit weakly bound or even unbound resonance. The
reaction-related GCC method and its extensions to deformed
systems and time-dependent approaches are also summa-
rized. Starting with the axially deformed HF reference state,

1.0 6 12 18 24
t/ Tl/,fg

the D-IMSRG enables the IMSRG to compute open-shell
nuclei and includes important deformed configurations. The
valence-space IMSRG was first developed by Tsukiyama
et al. to derive an ab initio shell-model effective interaction
in a non-perturbative way. We used this method to inves-
tigate the residual neutron—proton interaction 6V}, in the
upper fp shell with chiral 3NF included. The bifurcation of
even—even and odd—odd 6V, values were found experimen-
tally in this region.

Without 3NF, we could not reproduce the bifurcation in
this region, which in turn means that 3NF plays a vital role
on the behavior of 6V, by enhancing the pn correlations
with a stronger 7' = 1isospin coupling. The G-IMSRG uses
the Berggren basis to include effects from continuum cou-
pling and describes the resonance and non-resonant con-
tinuum properties of weakly bound and unbound nuclei.

There are still many challenges on the path to developing
IMSRG. The IMSRG(2) approximation is computationally
efficient and capable of accurately capturing dynamic cor-
relations. However, when treating observables character-
ized by strong static or collective correlations, such as E2
transition probabilities, IMSRG(2) usually fails to precisely
reproduce experimental values. This is typically attributed
to the lack of contributions from many-particle many-hole
excitations [256] and the large uncertainty of the nuclear
force [165]. IMSRG(3) was developed by [257]; however,
its computational demands are so immense that it cannot
be applied to medium- and heavy-mass nuclei. Several new
approximations have been proposed that aim to capture as
many of the essential IMSRG(3) correlations as possible
while minimizing the computational cost [258, 259] and it
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is still an open problem. G-IMSRG is a powerful tool to treat
weakly bound and unbound nuclei but is currently limited to
closed-shell nuclei. New methods that combine G-IMSRG
and VS-IMSRG are on the way to broaden the applicability
of G-IMSRG to open-shell nuclei.

Notably, methods such as GSM-CC and GCC are dedi-
cated to providing a unified description of the structure,
decay, and reactions within open quantum systems. These
developments enable a meticulous study of exotic decays
in the dripline region. Deformation and continuum effects
have been demonstrated to significantly influence the 2p
decay process. Additionally, the observed nucleon—nucleon
correlations serve as a valuable tool for probing the inter-
nal structure of dripline nuclei. These studies enhance our
understanding of the complex dynamics and universal prop-
erties within open quantum systems.

Meanwhile, the existing framework of GCC remains
incomplete at a microscopic level; the description of the
core wave function is relatively simplistic, capturing only
the collective motions. Thus, advancements toward a more
detailed, microscopic framework are anticipated in future
developments. Another avenue can involve extending the
model to multi-particle decay studies near or beyond the
dripline, which have garnered significant interest recently.
Their applications to reaction-related problems, such as ana-
lyzing cross sections and reaction mechanisms, would be
invaluable in providing structural and reactive insights in
both theoretical and experimental studies.
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