

A MEASUREMENT OF $\alpha_s(Q^2)$ FROM THE GROSS LLEWELLYN SMITH SUM RULE

D. A. Harris⁸, C. G. Arroyo⁴, P. Auchincloss⁸, P. de Barbaro⁸, A. O. Bazarko⁴,
 R. H. Bernstein⁵, A. Bodek⁸, T. Bolton⁶, H. Budd⁸, J. Conrad⁴, R. B. Drucker⁷,
 R. A. Johnson³, J. H. Kim⁴, B. J. King⁴, T. Kinnel⁹, G. Koizumi⁵, S. Koutsolotas⁴,
 M. J. Lamm⁵, W. C. Lefmann¹, W. Marsh⁵, K. S. McFarland⁵, C. McNulty⁴, S. R. Mishra⁴,
 D. Naples⁵, P. Nienaber¹⁰, M. Nussbaum³, M. J. Oreglia², L. Perera³, P. Z. Quintas⁴,
 A. Romosan⁴, W. K. Sakumoto⁸, B. A. Schumm², F. J. Sciulli⁴, W. G. Seligman⁴,
 M. H. Shaevitz⁴, W. H. Smith⁹, P. Spentzouris⁴, R. Steiner¹, E. G. Stern⁴, M. Vakili³,
 U. K. Yang⁸

¹ Adelphi University, Garden City, NY 11530² University of Chicago, Chicago, IL 60637³ University of Cincinnati, Cincinnati, OH 45221⁴ Columbia University, New York, NY 10027⁵ Fermi National Accelerator Laboratory, Batavia, IL 60510⁶ Kansas State University, Manhattan, KS 66506⁷ University of Oregon, Eugene, OR 97403⁸ University of Rochester, Rochester, NY 14627⁹ University of Wisconsin, Madison, WI 53706¹⁰ Xavier University, Cincinnati, OH 45207

Talk Presented by D.A. Harris

Abstract

The Gross Llewellyn Smith sum rule has been measured at different values of four-momentum transfer squared (Q^2) by combining the precise CCFR neutrino data with data from other deep-inelastic scattering experiments at lower values of Q^2 . A comparison with the $\mathcal{O}(\alpha_s^3)$ predictions of perturbative QCD yields a determination of α_s and its dependence on Q^2 in the range $1 \text{ GeV}^2 < Q^2 < 20 \text{ GeV}^2$. Low Q^2 tests have greater sensitivity to $\alpha_s(M_Z^2)$ than high Q^2 tests, since at low Q^2 α_s is large and changing rapidly.

To leading order in perturbative QCD, the structure function xF_3 measured in νN scattering is the difference between the quark and anti-quark momentum distributions. The GLS sum rule predicts that the integral over x of F_3 is simply 3, the number of valence quarks in a nucleon [1]. There are corrections to the sum rule which introduce a dependence of the GLS integral on α_s , the strong coupling constant, in the following way [2]:

$$\int_0^1 x F_3(x, Q^2) \frac{dx}{x} = 3 \left(1 - \frac{\alpha_s}{\pi} - a(n_f) \left(\frac{\alpha_s}{\pi} \right)^2 - b(n_f) \left(\frac{\alpha_s}{\pi} \right)^3 \right) - \Delta HT \quad (1)$$

where a and b depend on the number of quark flavors, n_f , accessible at a given x and four-momentum transfer squared, Q^2 . ΔHT represents a higher twist contribution, which has been estimated using QCD sum rules, a Vector Meson Dominance Model, and a Non-relativistic Quark Model to be $0.27 \pm 0.14/Q^2(GeV^2)$ [3]. The Q^2 dependence of α_s is as follows [4]:

$$\frac{\alpha_s(Q^2)}{4\pi} = \frac{1}{\beta_0(n_f) \ln \left(\frac{Q^2}{\Lambda_{MS}^2} \right)} - \frac{\beta_1(n_f)}{\beta_0(n_f)} \frac{\ln \left(\ln \left(\frac{Q^2}{\Lambda_{MS}^2} \right) \right)}{\beta_0(n_f)^2 \ln^2 \left(\frac{Q^2}{\Lambda_{MS}^2} \right)} + \mathcal{O} \left(\frac{1}{\ln^3 \left(\frac{Q^2}{\Lambda_{MS}^2} \right)} \right). \quad (2)$$

The challenge in evaluating $\int F_3 dx$ is that for a given Q^2 value, there is a limited x region that is accessible by any one experiment. The incoming neutrino energy imposes a minimum x constraint and detector acceptance imposes a maximum x constraint. CCFR has data at low Q^2 and low x ($10^{-2} < x < 10^{-1}$), and at high Q^2 and high x ($10^{-1} < x < 1$). The CCFR detector and the measurement of $x F_3$ have been described in detail elsewhere [5]. One way to evaluate $\int F_3 dx$ over all x is to extrapolate $x F_3$ from all Q^2 regions to a Q_0^2 value where the data is predominantly at low x . A previous CCFR analysis found that for $Q_0^2 = 3 GeV^2$, $\int F_3 dx = 2.50 \pm 0.018(stat) \pm 0.078(syst)$ [6]. By using QCD to extrapolate $x F_3$ to Q_0^2 however, one introduces α_s *a priori* into the problem. Furthermore, higher twist effects are not included in QCD extrapolations.

The goal of this analysis is to evaluate $\int F_3 dx$ without introducing any *ad hoc* Q^2 dependence. By combining the CCFR data with that of several other experiments enough data at different energies are obtained to measure $\int F_3 dx$ without Q^2 extrapolation at values of Q^2 between $1 GeV^2$ and $20 GeV^2$. The $x F_3$ measurements from experiments WA59, WA25, SKAT, FNAL-E180 [7], and BEBC-Gargamelle [8] were normalized to the CCFR $x F_3$ measurements in the Q^2 regions of overlap and then were used along with the CCFR $x F_3$ data. Furthermore, since at high x the structure function $F_2 \approx x F_3$, one can use F_2 data from $e^- N$ scattering at SLAC [9] in this region ($x > 0.5$) by normalizing it to the ratio of $x F_3 / F_2$ as measured in the CCFR data. This is particularly important at low Q^2 where there is no $x F_3$ data at high x . The published CCFR $x F_3$ data were modified for new electroweak radiative corrections (Bardin[10]). In addition, the CCFR data were corrected for the contribution from the strange sea [11] of events containing two oppositely charged muons. Finally, by comparing the F_2 values of CCFR to those from SLAC [9], NMC and BCDMS [12], the overall normalization of the CCFR data was determined to be 1.019 ± 0.011 . To integrate over all x , this analysis sums the binned data for $x > 0.02$. For the contribution to the integral at lower x , the data below $x = 0.1$ is fit to a power law and then that function is integrated over $0 < x < 0.02$. Figure 1a shows the combined $x F_3$ data and the corrected F_2 data for the four lowest Q^2 bins, as well as the power law fit to the low x data and the χ^2 for those fits. To be consistent with theoretical predictions of higher twist effects on the sum rule, the ν -nucleon elastic contribution (described in [8]) was added to the integral, and both the elastic and inelastic contributions were corrected for target mass effects [8]. Figure 1b shows $\int F_3 dx$ as a function of Q^2 and the theoretical prediction (see equations 1 and 2) assuming $\Lambda_{MS}^{(5)} = 150 MeV$.

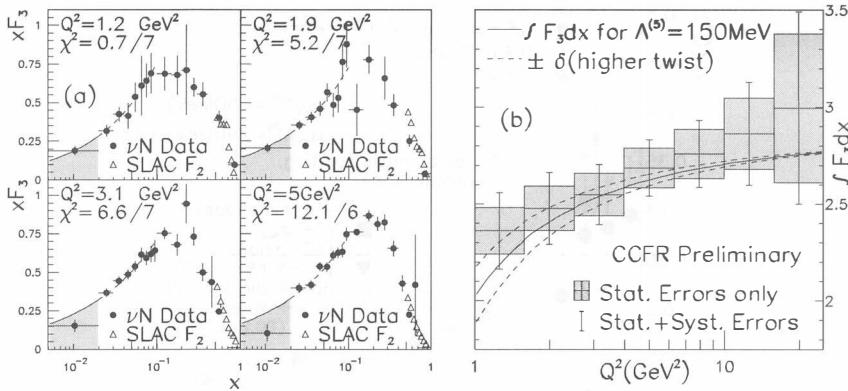


Figure 1: (a) $x F_3$ vs. x for four different low Q^2 values. The function shown is a power law fit to data below $x = 0.1$. (b) $\int F_3 dx$ vs. Q^2 , and the theoretical prediction for the integral for $\Lambda_{MS}^{(5)} = 150 \text{ MeV}$. The dashed lines represent the uncertainty in the higher twist correction.

One can determine $\alpha_s(Q^2)$ from $\int F_3 dx$ by using equation 1. The values of $\alpha_s(Q^2)$ determined by this technique are shown in figure 2. The curves plotted in figure 2 show the evolution of α_s as a function of Q^2 (see equation 2), for two different values of Λ_{MS} . From this plot it is clear that low Q^2 measurements have large potential to constrain α_s not only because α_s is large in this kinematic region, but because it is changing rapidly as a function of Q^2 . However, the higher twist uncertainty in $\int F_3 dx$ is also large in this kinematic region and is the largest single systematic error in this analysis. Evolving the four lowest data points for α_s to M_Z^2 , we obtain the following value for $\alpha_s(M_Z^2)$:

$$\alpha_s(M_Z^2) = 0.108 \pm .003(\text{stat}) \pm .004(\text{syst}) \pm .004 \text{ (higher twist)}$$

For comparison with other low Q^2 α_s measurements, this corresponds to $\alpha_s(Q^2 = 3.0 \text{ GeV}^2) = 0.26 \pm .02(\text{stat}) \pm .02(\text{syst}) \pm .03(\text{higher twist})$. Figure 2 puts this result in the context of other measurements by plotting them as a function of Q^2 . In general, the low Q^2 data systematically favor a lower Λ_{MS} than do the higher Q^2 data. The result from this analysis is consistent with low energy measurements of α_s . In particular, it is consistent with the CCFR determination of α_s from the Q^2 evolution of $x F_3$ and F_2 for $Q^2 > 15 \text{ GeV}^2$ ($\alpha_s(M_Z^2) = 0.111 \pm .004$), and about 2σ lower than that measured from the high Q^2 data [13]. With future experimental improvements (Fermilab NuTeV experiment) and improved theoretical work on higher twist corrections, this fundamental prediction of QCD has promise for being a stringent test of the model.

References

- [1] D.J. Gross and C.H. Llewellyn Smith, Nucl. Phys. **B14** 337 (1969)
- [2] S.A. Larin and J.A.M. Vermaasen, Phys. Lett. **B259** 345 (1991)
- [3] V.M. Braun and A. V. Kolesnichenko, Nucl. Phys. **B283** 723 (1987)

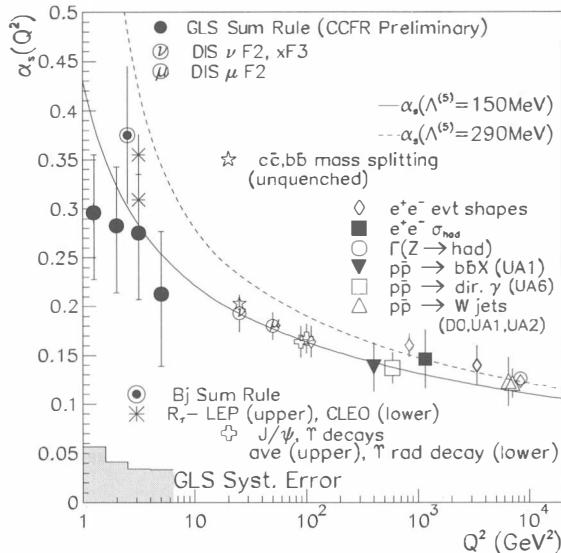


Figure 2: α_s as measured at several different Q^2 values, and the expected Q^2 dependence of the 3-loop (see equation 2) α_s for $\Lambda_{\overline{MS}}^{(5)} = 150 \text{ MeV}$, and $\Lambda_{\overline{MS}}^{(5)} = 250 \text{ MeV}$. Only the statistical errors on the GLS points are plotted at the GLS values, the systematic errors (which are correlated from one Q^2 bin to the next) are shown at the bottom of the plot.

- [4] W.J. Marciano, Phys. Rev. **D29** 580 (1984)
- [5] W.K. Sakumoto *et al.*, Nucl. Inst. Meth. **A294** 179 (1990); B.J. King *et al.*, Nucl. Inst. Meth. **A302** 254 (1991); P.Z. Quintas *et al.*, Phys. Rev. Lett. **71** 1307 (1993)
- [6] W.C. Leung *et al.*, Phys. Lett. **B317** 655 (1993);
- [7] Varvell *et al.*, Z. Phys. **C36**, 1 (1987); Allasia *et al.*, Z. Phys. **C28**, 321 (1985); Ammosov *et al.*, Z. Phys. **C30**, 175 (1986); Ammosov *et al.*, JETP **36**, 300 (1982);
- [8] P.C. Bosetti *et al.*, Nucl. Phys. **B142** 1 (1978)
- [9] L.W. Whitlow *et al.*, Phys. Lett. **B282** 475 (1992)
- [10] D. Yu. Bardin and O.M. Fedorenko, Sov. J. Nucl. Phys. **30**(3), 418 (1979)
- [11] A.O. Bazarko *et al.*, Z. Phys. **C65** 189 (1995)
- [12] BCDMS Collab., A.C. Benvenuti *et al.*, Phys. Lett. **B237** 592 (1990); BCDMS Collab., A.C. Benvenuti *et al.*, Phys. Lett. **B195** 91 (1987); NMC Collab., P. Amaudruz *et al.*, Phys. Lett. **B295** 159 (1992)
- [13] S. Bethke, "Summary of α_s Measurements", PITPA-94/30