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Identification of Symmetry-Protected Topological States on Noisy Quantum Computers
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Identifying topological properties is a major challenge because, by definition, topological states do not
have a local order parameter. While a generic solution to this challenge is not available yet, a broad class of
topological states, namely, symmetry-protected topological (SPT) states, can be identified by distinctive
degeneracies in their entanglement spectrum. Here, we propose and realize two complementary protocols
to probe these degeneracies based on, respectively, symmetry-resolved entanglement entropies and
measurement-based computational algorithms. The two protocols link quantum information processing to
the classification of SPT phases of matter. They invoke the creation of a cluster state and are implemented
on an IBM quantum computer. The experimental findings are compared to noisy simulations, allowing us
to study the stability of topological states to perturbations and noise.
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One of the most important achievements in modern
physics is the discovery and classification of topological
phases of matter. Topological states do not break any local
symmetry and, hence, are robust against local perturba-
tions. In the context of quantum computation, this protec-
tion can be used to perform quantum protocols that are
robust to local noise sources. The downside of this
protection is that local probes are insufficient to identify
topological states. Hence, even if one is able to create a
topological state, demonstrating its topological character
can be very challenging.

In this Letter, we address this question for a specific class
of topological states, known as symmetry-protected topo-
logical (SPT) states. SPT phases can be identified by
inspecting their entanglement spectrum (ES), i.e., the set
of eigenvalues of the reduced density matrix of a subsystem
pa- In particular, for ground states of one-dimensional (1D)
SPT phases, the ES is formed by degenerate pairs (or
multiplets), while in topologically trivial states there is no
protected degeneracy [1-4]. A simple explanation for the
existence of ES degeneracies is offered by the symmetry-
resolved structure of p, [5,6]. Consider a SPT phase
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protected by a unitary symmetry G = G4 X G, where
G4 and Gy act on subsystems A and B, respectively.
Because G commutes with the Hamiltonian, the ground
state of the SPT phase [y,) is an eigenstate of the sym-
metry operator G. When performing a partial trace
pa = Trp[|wes) (Wl the conservation of G guarantees
that p, is block diagonal in Gy, see Fig. 1. One can then
define symmetry-resolved reduced density matrices as
pa = IyupIl,, where 1, projects a state on a specific
symmetry sector. For simple SPT states, like the Haldane
phase of integer spins or Kitaev chains, it was found [7,8]
that p, that belong to different sectors are identical, leading
to a degenerate ES [9].

A related property of SPT phases is the possibility to use
their ground states as resources for measurement-based
quantum computation (MBQC), where the process of
computation is driven by local measurements [11-13]. A
paradigmatic example of MBQC is offered by the quantum-
wire protocol, for which the goal is to transfer quantum
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information between the two edges of a one-dimensional
chain. In this protocol, the input state is implemented in
the protected edge state of the SPT phase and measure-
ments are used to progressively reduce the size of the
chain and transfer the information to the opposite edge.
Reference [13] established that the quantum-wire pro-
tocol is a uniform property of all ground states belonging
to a given SPT phase of 1D spin chains. This result was
subsequently extended to include measurement-based
quantum gates in 1D SPT phases [14,15] and, finally, to
universal MBQC in 2D SPT phases [16-19].

Here, we propose to use symmetry-resolved density
matrices and MBQC protocols to identify the SPT proper-
ties of a quantum state. First, we develop and implement a
new quantum protocol that accesses each symmetry sector
individually. The equivalence of the different sectors helps
us identify SPT states and distinguish them from trivial
ones. Next, we extend the MBQC wire protocol [13] to
include local perturbations. We demonstrate that the pro-
tocol can be disturbed only by perturbations that break the
symmetry and make the state trivial, hence providing a
complementary method to identify SPT states.

Cluster state.—Having in mind the physical realization
of our algorithm using qubits, we focus on the 1D cluster
Ising Hamiltonian

Hcluster = _Zhi = _Zzi—lxizi-‘rl’ (1)
i

i

where {X, Y, Z} are Pauli matrices and h; are referred to as
stabilizers [12,20-31]. Its ground state, also known as the
1D cluster state [y quseer)» 1S @ topological state protected by
the Z, x Z, symmetry associated with the conservation of
Poaa = [ i maiv1 = [ X2ix1 and Peyen =[] h2i =[] X2s-
These operators correspond to parities on the sublattices of
odd and even sites, respectively. For periodic boundary
conditions, the reduced density matrix p, of the cluster
state has four identical eigenvalues A = 1/4, one for each
sector of the Z, x Z, symmetry (see Sec. D of the
Supplemental Material [32]).

The Hamiltonian H .4, can be obtained from a trivial
Hamiltonian H ;i = — > _; X; by the transformation X; —
Zi1XiZiyy and Z; - Z; [33]. Similarly, [y user) can be
prepared in two steps [34,35]: (i) Hadamard gates that bring
the system to the ground state of Hiyiar [Wiivia) = | +
-+ + ---) and (ii) controlled-Z gates that realize the trans-
formation [see Fig. 2(a)] [36—40]. If the first and last qubits
are not linked [see Fig. 2(a)], one obtains a system with
open boundary conditions. In this case, the first and last
terms of the corresponding Hamiltonian [see Eq. (1)]
become h; = X,Z, and h; = Z;_;X; and the state con-
serves the total parity P = (—1)L L, by = V1 X5X5, ..,
X _1Y,.

Symmetry-resolved entropies.—As mentioned in the
Introduction, we use symmetry-resolved reduced density
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FIG. 2. Building blocks of the quantum circuits used in this
Letter: (a) Preparation of the cluster state |y uger). (b) Basic
SWAP test, which takes the singlet to |11) and the triplets to a
mixture of [00),|01),]10), reproduced from Refs. [41,42].
(c) Moditied SWAP test, which identifies all four eigenvectors
of (Z; ® I)SWAP. This gate is used to compute symmetry-
resolved purities. (d) MBQC teleportation algorithm, using the
state U |y pusier) s a resource. See also Sec. F of the Supplemental
Material [32] for the full quantum circuits.

matrices p, to identify the SPT nature of the cluster state. A
direct measure of these matrices (state tomography)
requires an exponentially large number of measurements.
We overcome this difficulty by addressing the moments of
these matrices, S, = Tr[p/}], which can be measured by
realizing n copies of the state [43-52]. Specifically, for
n = 2, this approach is based on the identity

Tr[p?] = Tr[p ® pPSWAP]. (2)

Here, p ® p is the combined state of two independently
prepared copies of a state, and the operator SWAP swaps
the states of the two copies. By applying the SWAP
operator only to the subsystem A, one can compute the
purity of A, Tr[p}]. Finally, if the SWAP operator is
measured along with the projector to the conserved sectors,
one can directly obtain the symmetry-resolved entropy S,
[47,53-55].

To implement these ideas on a quantum computer, we
create two copies of the cluster state with L = 4 qubits,
using twice the circuit of Fig. 2(a). Next, we measure the
SWAP operator on each pair of qubits of the two copies,
using the quantum circuit introduced by Refs. [41,42],
see Fig. 2(b) (see also Supplemental Material [32]). By
repeatedly measuring the output of the circuit, we infer
the expectation values of the products of the SWAP
operators of each site of a subsystem A, which correspond
to S, = Tr[p3]. In Fig. 3, we plot — In S,, also known as the
“second Rényi entropy”, as a function of the subsystem size
L,. The result of this calculation matches the known
properties of the cluster state with open boundary con-
ditions: For any 0 < L, < L, p, has two identical eigen-
values 4 = 1/2, one for each sector of the symmetry P, and
one has S, = 1/2. Importantly, for L, = L, one has
S, = Tr[p?] = 1, indicating that the system is pure.
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FIG. 3. Realization and characterization of a cluster state

[Weluster) With L = 4 qubits. Second Rényi entropy as a function
of the subsystem size L,.

We now turn to symmetry-resolved measurements,
which unveil the SPT nature of a state. The first moment,
S| = Tr[p,], is simply the probability to find a subsystem
in a specific sector of the symmetry. To compute the second
moment, we develop a method to measure the product of
the SWAP and P operators, where P acts on one copy only,
see Fig. 2(c). This method can be generalized to richer
symmetries with a larger number of topological phases; see
Sec. A of the Supplemental Material [32] for details. The
results of these calculations are shown in the upper row of
Fig. 4: For the trivial state, the entire weight lies in the even
parity sector, P = +1. For the cluster state, the full system
(Ly = L) is still an eigenvector of P with P =+1. In
contrast, smaller subsystems (L, < L) occupy with equal
probabilities the sectors P = +1 and P = —1, in agreement
with the topologically protected degeneracy of the sym-
metry-resolved reduced density matrices.

Noisy SPT states.—To understand actual experiments, it
is necessary to study the effect of noise on topological
states. Several earlier works addressed this question by

(a) Probability Sy = Tr[j4]
Trivial Topological

extending the topological classification of pure states to
density matrices [56-64]. Here, we focus on the effect of
noise on the degeneracies of the ES, as probed by
symmetry-resolved reduced density matrices. We define
a noise source to be symmetry preserving if it preserves
this degeneracy (and vice versa); see Refs. [65—67] and
Sec. B of the Supplemental Material [32] for a formal
definition.

Let us consider the results of a noisy simulation,
obtained using QISKIT Aer [68]. The simulator computes
the evolution of the density matrix by taking into account
realistic noise sources in terms of Kraus operators. The
parameters used in the simulation are determined by direct
measurements of the success probability of the gates in
the physical system [69]. Interestingly, all noise sources
present in this simulation are symmetry preserving [70],
with the exception of a measurement bias that leads to a
systematic error toward zero outcomes. To study the effects
of symmetry-preserving noise sources, we manually elimi-
nate this bias from the simulations. In this case, if the
system is prepared in a SPT state belonging to the same
universality class as the cluster state, the noise does not lift
the ES degeneracies.

We first consider the effects of noise on S, = Tr[p?], see
Fig. 3. In the presence of noise, the state is not pure and the
second Rényi entropy of the full system is ~ In(2). This
value is significantly smaller than the maximally allowed
value of 4In(2), indicating that the output of the simulation
is not trivial. The slope of the entropy changes in the second
half of the chain, as in the ideal quantum computer. To
study the SPT properties of this noisy state, we compute
symmetry-resolved quantities, see Fig. 4. For the trivial
state, we find that both the probability and the symmetry-
resolved purity are larger for P = +1 than for P = —1.
In contrast, in the cluster state, the probabilities and
purities are identical for the two sectors for all L, < L.

(b) Purity Sy = Tr[p4]
Topological
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FIG.4. Symmetry-resolved entanglement measures: (a) S; and (b) S,, for the trivial state [y ;y;,) and for the topological state [y gyser)-
The P = +1, P = —1, and total contributions are shown in red, blue, and black, respectively.
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Remarkably, the total system (L, = L) is mostly in the
P = +1 state, confirming that the system is targeting the
correct pure state.

Using the same QISKIT package [68], we performed
the same calculations on the 15-qubit Melbourne IBM
quantum computer, using 150 runs with 8192 measure-
ments each [71]. This computer has 15 qubits organized in
a ladder structure, with physical 2-qubit gates between
nearest neighbors only. This structure is ideal for the circuit
under the present consideration: we realize the two copies
of the cluster states on the two parallel chains that form the
ladder and use the rungs to realize the SWAP operators. The
results obtained in the actual computer are similar to those
observed in the simulator: although the purity of the cluster
state is not ideal, our symmetry-resolved probes still
correctly identify its SPT nature. One interesting difference
between the quantum computer and the noisy simulator can
be observed in the symmetry-resolved probes of small
subsystems, L, = 1, 2. In the actual computer, the two
sectors show small, but statistically significant, differences.
We identify these errors as due to symmetry-breaking noise
sources, such as the aforementioned measurement bias,
which were absent in the simulation but present in the
physical system. This bias also explains why the Rényi
entropy of the L, = 1 subsystem [Fig. 3] is smaller than
1/2 (see Sec. C of the Supplemental Material [32]). Our
results demonstrate that topological arguments can be used
to characterize the main sources of errors and classify them
according to their symmetry.

Measurement-based wire protocol.—We now turn to the
experimental realization of the symmetry-protected wire
protocol [13]. In this protocol, a general quantum state is
encoded in one boundary of the spin chain. The state is
then shuttled to the other boundary in a teleportationlike
fashion, by local measurements of the spins along the
chain. We apply this protocol to a family of SPT states with
Z, x Z, symmetry, which contains the 1D cluster state as a
special case. All states in the family possess the same SPT
order and, hence, have the same capacity to transmit
1-qubit worth of quantum information. Our goal is to
verify the robustness of the protocol against variation
within the phase.

For our implementation on an IBM quantum com-
puter we use the L =4 cluster state |y uger) described
above. The corresponding Z, X Z, symmetry is generated
by Pogq = Hi:l,3 hi = X1 X3Z, and Py, = Hi:2.4 h; =
Z,X,X,, where h; are defined in Eq. (1). The family of
SPT states is created applying either symmetry-preserving
unitaries Ug(a, B) = eP?1%:%3¢19%5 or symmetry-breaking
unitaries Ugg(a, f) = eP21%%361%5 10 |y guger)- In the
former case, all resource states respect the Z, x Z,
symmetry and can be continuously connected in a sym-
metry-respecting fashion to the cluster state. In the latter
case, the symmetry is broken and computational uniformity
is not guaranteed.
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FIG. 5. Fidelity of the MBQC teleportation algorithm under the
influence of symmetry-(non)preserving perturbations. Each data
point represents the minimal fidelity with respect to six initial
states (see Sec. E of the Supplemental Material [32] for the
raw data).

Next, we introduce another qubit realizing the input state
lwi,) and teleport it into the wire by performing a
measurement in the 2-qubit cluster basis (a locally rotated
Bell basis, {| + 0) = | — 1)}) on |y;,) and the first qubit of
the spin chain, see Fig. 2(d). This particular measurement is
chosen to be compatible with the MBQC wire protocol,
consisting of local measurements in the X basis of the
remaining qubits and classically controlled Pauli correction
depending on the measurement outcomes. Figure 5 shows
the experimentally measured minimum fidelity [, =
min, (y! |pout|w!) for six different input states |y’ ) and
the Pauli-corrected output state poy; resulting from the wire
protocol, for the choices f = a in both the symmetric
and the symmetry-breaking case; see also Sec. E of the
Supplemental Material [32]. We find that the transmission
fidelity is constant as a function of « in the symmetry-
respecting case. In the symmetry-breaking case, the trans-
mission fidelity is nonconstant as the resource state is
varied.

Conclusion.—In this Letter, we devised and imple-
mented experimentally two methods to identify the SPT
nature of the cluster state on a quantum computer. The first
algorithm stems from the observation that in SPT states, the
reduced density matrix p, is formed by identical blocks that
correspond to different sectors of the underlying symmetry.
The flexibility of the quantum computer makes it possible
to directly probe the moments of density matrices by
projecting the quantum state into the different symmetry
sectors. The realization of this algorithm on both a quantum
simulator and on an IBM quantum computer allowed us to
study the impact of time-dependent noise on the SPT order
of the state. In particular, we found that, while most of
realistic noise sources are symmetry preserving, the sys-
tematic measurement bias of the physical machine breaks
this symmetry. Its effects are, however, small enough to
enable us to identify the SPT nature of the cluster state.
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The second way to characterize the SPT order of the
cluster states consists of using them as a buffer for MBQC
teleportation. The fidelity of this protocol is unaffected by
symmetry-preserving terms, and vice versa for symmetry-
breaking terms, allowing us to identify the SPT order of the
cluster states. The equivalence between these two methods
demonstrates a deep relation between two separate fields of
science—condensed matter physics and quantum informa-
tion theory.

Our work has important implications for the modeling
of noisy intermediate-scale quantum computers. We dem-
onstrated that topological arguments are an efficient tool to
identify and classify noise sources in quantum computers.
This information can be used to improve the performance
of quantum computers, for example, by gauging the
measurement apparatus to take into account systematic
errors. From a fundamental perspective, we identified suf-
ficient conditions under which a noisy quantum state can
retain its SPT properties. This aspect may have implications
for quantum computations: for pure states, it was shown
that the classification of SPT phases is in one-to-one
correspondence with the possibility to use it as a resource
for one-way quantum computers. Although this question
deserves further investigation, we conjecture that this link
extends to noisy systems as well.
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