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(1.1 The energy density of QCD matter divided by temperature raised

to the fourth power, calculated using lattice QCD. This quantity

1s proportional to the number of degrees of freedom of the system.

The three lines correspond to different types of simulations. The

red line assumes two massless quarks, the green line assumes two

massless quarks and a massive strange quark, and the blue line

assumes three massless quarks. A rapid increase is seen near the

temperature 1.. The arrows at the upper right show the expected

limit for an ideal gas of bosons. The figure is from Ref. [3[. | . . . .

(1.2 Schematic of the Phase Diagram of QCD Matter. The y-axis is tem-

perature and the x-axis is net baryon density. At low temperatures

and low (normal) densities, QCD matter is confined to hadrons.

At low baryon density and high temperatures, there is a crossover

(displayed as a dashed line) to the QGP phase. At low temperature

and high net baryon density, there is a first-order phase transition,

indicated by the solid black line. The point where the dashed line

and the solid line meet 1s the critical pomnt. | . . . . . . ... .. ..

[1.3  Heavy-ion collision events generated by a Glauber Model simula-

tion. The impact parameter is 4 tm in the left plot and 12 fm in the

right plot. The quantities A, Np,¢, and Neop, are the number of nu-

cleons 1n each nucleus, the number of nucleons participating in the

collision (shown in red), and the total number of binary collisions

that occured, respectively. |. . . . . .. ... ... ... L.
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Schematic of the evolution of a heavy-ion collsion. The figure on

the left displays a cartoon of the collision of two heavy i1ons and

the expansion of the resulting medium, with time increasing up the

page. The figure on the right is a space-time diagram displaying

the different stages of the collision evolution, with time increasing

up the page. The red, green, and blue lines denote specific times

in the evolution, with the corresponding temperature and energy

density displayed to the right. The red line marks the time of

thermalization, where the medium 1s in the QGP state. The green

| ks The Time of chorcal Troeze- Tere The nelastic oolls: l

cease. T'he blue line marks the time of thermal freeze-out where

elastic collisions cease. Image from Ref. [15] . . . . . .. ... ...
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Distributions of the number of participating nucleons (left), number

of collisions (middle) and the impact parameter (right) in a Glauber

model sstmulationl . . . . . oL

Centrality bins determined by a Glauber model fit to the E;" dis-

tribution in minimum bias Pb + Pb data at /syy = 5.02 TeV.
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Progression of the k and p parameters towards the minimum y*

in a Glauber model fit using a 3-point simplex. The upper-left

plot displays the progress of all three points. The upper-right plot

displays the progress of only the best fit at each step. The lower

plot displays the best (blue) and worst (red) x* for each step of the

fitting process. | . . . . . ...
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[llustration of the decay paths of the bottomonia family, with quan-

tum numbers along the x-axis and mass on the y-axis. Thick arrows

represent hadronic decays and thin arrows represent radiative de-

cays. Figure taken from Ref. [I6]] . . . . .. ... ... ... .. ..
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Plots of the invariant mass spectrum of T candidates in p + Pb [31]

(left) and Pb + Pb 7] (right). The yields that would be expected

assuming no suppression are overlaid with the dashed red line. |
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The real (left) and imaginary (right) parts of the in-medium ¢g po-

tential V' as a tfunction of distance at various temperatures. Figure

from Ref. 321 ] . . . . . . . ...
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A proton parton distribution function (left) where the distributions

of the various quarks and gluons are color-coded and labeled, taken
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'T'wo-particle correlations in high multiplicity events in p 4+ p at 7
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Fccentricity-scaled elliptic flow estimates from simulations using

relativistic hydrodynamics in comparison with experimental data

trom gold-gold collisions at RHIC. The different colored lines corre-

spond to different values of the specific shear viscosity (n/s). Figure
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Elliptic flow predictions for Y (15) (left) and Y (2S) (right) as a func-

tion of pr in Pb+Pb collisions at y/syy = 5.02 TeV. The red curve

described the vy of the total signal, while the blue and green curves

describe the vy of the regenerated and primordial components, re-

spectively. Figure from Ref. [34]. ] . . . . . . ... ... ... .. ..
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ABSTRACT OF THE DISSERTATION

Elliptic low of T mesons in PbPb collisions at /syy = 5.02 TeV with
the CMS detector

Quantum Chromodynamics (QCD) describes all the interactions of quarks and
gluons, including the various phases of QCD matter such as the quark-gluon plasma
(QGP) which is thought to exist at very high temperatures and baryon densities,
and dominated the very early universe.

Heavy-ion collisions are one way in which the QGP can be created and studied
in a laboratory environment. The Large Hadron Collider (LHC) is capable of
colliding lead nuclei with a center-of-mass energy per nucleon pair of \/syn =
5.02 TeV. The CMS detector accurately and efficiently measures the energy and
momenta of particles exiting these collisions, even in extremely high-occupancy
environments, and provides a rich set of data which can be analyzed to learn
more about the thermodynamic properties of the QGP, particularly through the
measurement of muons.

Recent studies indicate that the QGP generated in heavy-ion collisions exhibits
liquid-like collective behavior, expressed as an elliptic flow of the colliding medium
generated by internal pressure gradients. The QGP flows with the lowest viscosity
ever observed, making it a near perfect fluid. More studies are warranted to nail
down the properties of this unusual form of matter.

The second-order Fourier coefficients (vy) characterizing the elliptic flow of T's
in Pb + Pb collisions at /syy = 5.02 TeV at CMS, are reported. The Ts are
reconstructed through their dimuon decay channel in the rapidity range |y| < 2.4.
The suppression of quarkonia in the presence of a quark-gluon plasma is expected
to result in a very small vy signature. The vy is estimated using the event-plane

method, validated by a closure test, and is found to be consistent with zero.
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Chapter 1

Theoretical Background

1.1 The Standard Model

The Standard Model is a Lagrangian theory of particle physics based on a small set
of assumptions that provides a rich set of particles and interactions which, together
with General Relativity, are sufficient to explain nearly everything we observe in
the universe. The Standard Model assumes a universal gauge symmetry group
SU(3) x SU(2) x U(1) and a Lorentz-invariant space-time with 3 spatial dimensions
and time. All particles in the theory are treated as vectors or “states” embedded
in the space-time. The states transform via the action of operators which are
necessarily unitary in order to preserve probability. The unitarity of the operators
allows for them to be written as ¥ = ¢*® where S is a traceless Hermitian operator.
In general, the S is a time-integral of the Lagrangian of the theory, which can
also be written as an integral of the Lagrangian density over all of space-time.
The Lagrangian density of the Standard Model is a sum over all possible traceless,
Lorentz-invariant, Hermitian operators of weight 4 which can be built from the 17
fundamental particles that have been observed, keeping only “relevant” terms. See
e.g. [1] and [2].

The Lagrangian density can be sub-divided into 3 parts: The electroweak sec-
tor, the quantum chromodynamics (QCD) sector, and the Higgs sector. The elec-

troweak sector describes the leptons (neutrinos, electrons, muons, tauons) as well



as the photons and the W and Z bosons. The QCD sector describes the quarks and
gluons. The Higgs sector describes the Higgs boson and its coupling to the other
fundamental particles. This coupling provides the mechanism for electroweak sym-
metry breaking which generates the masses of the fundamental fermions, including

the quarks.

1.2 Quantum Chromodynamics

Quantum Chromodynamics describes all of the interactions of quarks and glu-
ons. The gauge-invariant Lagrangian density of QCD (after electroweak symmetry
breaking) can be written as

1
ZGZVGg”, (1.1)

Lacp = i(i(" Dy)ij — mdis)v; —
where 9;(z) is the quark field in the fundamental representation of SU(3), indexed
by i,j € {1,2,3}, and a function of the space-time z, m is the quark mass, and
G, 1s the gluon field strength tensor. The operators D, and 7" are the gauge
covariant derivative and the Dirac matrices, respectively. The indices p and v
run over the four dimensions of space-time. The index a corresponds to the eight

gluons of QCD. Einstein index notation is used in the equation. The object Gf,

is referred to as the “gluon field strength tensor” and is given by
G, = 0, AL — 0,A% + g f* ALAS, (1.2)

where Af(z) is the gluon field as a function of space-time =, g is the coupling con-
stant of QCD, and f%¢ are the structure constants of the gauge group SU(3). The
gluon field strength tensor is analagous to the field strength tensor F),, of electro-
magnetism in which A, is the photon field, the difference being that photons are
not self-interacting and thus the third term of Eq. is not present. Symme-
tries of the gauge group give rise to the three “color” charges of QCD, which are
analogous to the electric charge of SU(2). The eight linearly-independent genera-
tors of SU(3) correspond to the gluons which are the mediators of the color force,

similar to the photons of quantum electrodynamics (QED). The self-interaction of



the colored gluons gives rise to the third term of Eq. and is the reason why
the strong force is strong.

The quarks are fundamental fermions which carry color and electric charge.
They come in six flavors: up (u), down (d), charm (c¢), strange (s), top (¢), and
bottom (b). Three of these quarks (u, ¢, and t) carry a positive electric charge of
+2¢/3, and the other three (d, s, and b) carry a negative electric charge of —e/3,
where e is the electric charge. The masses of the quarks vary widely, from as low
as 1.7 MeV/c? for u to as high as 172 GeV/c? for ¢, extending over 5 orders of

magnitude.

1.2.1 Hadrons and Color Confinement.

One of the distinguishing features of QCD, and a direct consequence of the third
term of Eq. , is the fact that the coupling between colored objects increases
with distance, whereas in QED, the coupling between electric charges tends to
decrease with distance. The effect of this feature is that quarks, which carry a color
charge, tend to stay bound together. If a quark ¢ and an antiquark ¢ are pulled
apart from one another, the potential between them will continue to increase as the
distance increases, until eventually it becomes energetically favorable to generate
new ¢q pairs from the vacuum to bind with the original ¢ and ¢ rather than force
them back together. For this reason, free color charge is never observed.

The particles that are made up of quarks are referred to as “hadrons,” and
they necessarily carry zero net color charge. Hadrons come in two forms: mesons
and baryons. A meson consists of a quark and its antiquark bound together with
opposite color charge (e.g. blue and anti-blue). Some examples of mesons are the
pions, which are formed by combinations of v and d quarks and their antiquarks
and are the mediators of the nuclear force. The most well-known participants
of the nuclear force, protons and neutrons, are examples of baryons. A baryon
consists of three quarks with three different color charges (e.g. red, green, and
blue) which, together, are color neutral. The proton is wud, which results in an

electric charge of +1, and the neutron is udd, which results in an electric charge



of 0.
There are many other species of hadrons that can be built by other combina-
tions of the quarks. Two important mesons that will be mentioned repeatedly in

thesis are the J/1 (c¢) and the T (bb).

1.2.2 The Quark-Gluon Plasma

160 | _
14.0 et ‘ _ egalT ]
120 | ) DR ——
10.0 | r ' J
8.0 r 1
60 3 flavour ———

4.0 2 flavour —— 1
20

T,

0.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 1.1. The energy density of QCD matter divided by temperature raised
to the fourth power, calculated using lattice QCD. This quantity is proportional
to the number of degrees of freedom of the system. The three lines correspond
to different types of simulations. The red line assumes two massless quarks,
the green line assumes two massless quarks and a massive strange quark, and
the blue line assumes three massless quarks. A rapid increase is seen near the
temperature T.. The arrows at the upper right show the expected limit for an
ideal gas of bosons. The figure is from Ref. [3].

At high temperatures and densities, hadronic matter is believed to cross over to
a state of deconfined quarks and gluons called the quark-gluon plasma (QGP) [4.[5].
Calculations from lattice QCD [3] [6] [7] have predicted a jump in the degrees of
freedom of QCD matter in the temperature range of 150-170 MeV. An example
is shown in Fig. [3]. The y-axis shows energy density over temperature to
the fourth power, which is a number proportional to the degrees of freedom of
the system. The x-axis shows the temperature of the medium over a specific

temperature T,.. The three lines correspond to different types of simulations. The
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Figure 1.2. Schematic of the Phase Diagram of QCD Matter. The y-axis is
temperature and the x-axis is net baryon density. At low temperatures and low
(normal) densities, QCD matter is confined to hadrons. At low baryon density
and high temperatures, there is a crossover (displayed as a dashed line) to the
QGP phase. At low temperature and high net baryon density, there is a first-
order phase transition, indicated by the solid black line. The point where the
dashed line and the solid line meet is the critical point.

red line assumes two massless quarks, the green line assumes two massless quarks
and a massive strange quark, and the blue line assumes three massless quarks.
The arrows on the right, with the label egg/T*, represent where the value should
be if the QGP could be treated as an ideal Stefan-Boltzmann (SB) gas of quarks
and gluons. The fact that it is different from the actual value indicates that
the microscopic degrees of freedom are not simply free quarks and gluons. Some
explanations for this discrepancy include possible colored bound states of quarks,
or hadron states that are modified and become part of the gas [g].

The goal of our research is to narrow down the QCD equation of state and
study the properties of the QGP phase, which include the initial-state temperature,
viscosity, and density. A cartoon phase diagram of QCD matter is shown in Fig.[1.2
with temperature on the y-axis and net-baryon density on the x-axis. At low
temperatures and densities, QCD matter is confined, forming the familiar hadrons.
At high temperatures and densities, there is a phase transition to the QGP. There
are also other phases at high density and low temperature that are not studied

in this thesis. The lattice QCD calculation mentioned previously, where a rapid



crossover is found, requires zero net-baryon density [7]. The dashed line represents
the crossover, and the solid line represents a first-order phase transition [9]. Since
the line representing the first-order transistion cannot end at the temperature
axis by virtue of the lattice QCD calculations, it must end at a critical point
somewhere in the midst of the phase diagram [10]. The exact location is currently
being investigated at RHIC in the Beam-Energy Scan project [11].

The critical temperature estimated from lattice QCD with two massless quark
flavors is about 154 MeV [12,[13], which is equivalent to approximately 1.8 x 10! K.
This coincides with the temperature of the universe about 1 microsecond after
the big bang, during the quark epoch [I4]. For this reason, an understanding
of the thermodynamic properties of the quark-gluon plasma allows for a better

understanding of the very early universe.

1.3 Heavy-ion Collisions

The extreme conditions necessary to create a QGP make it relatively rare in nature.
Current cosmological theories suggest that the QGP existed shortly after the Big
Bang at high temperatures and low net baryon densities, corresponding to the
upper left region of the QCD phase diagram. The QGP may also be present in
the cores of neutron stars, at low temperature and very high net baryon density,
corresponding to the lower right region of the QCD phase diagram. It is possible
to create the QGP in a laboratory by colliding heavy ions at high energies in
accelerators like the Large Hadron Collider (LHC) at CERN.

Our heavy ion of choice at the LHC is Lead-208 (**®*Pb), because it is the
heaviest stable nuclide. The reason for its stability lies in the fact that it has 82
protons and 126 neutrons, both of which are “magic” numbers in the Shell Model of
nuclear physics. This also ensures that 2°Pb is a spherical nucleus, which greatly
simplifies the geometry of the collisions. An example of what a collision between
two Pb nuclei could look like is shown in Fig. [I.3] The image was generated from
a simulation based on the Glauber Model (described in section [1.3.1)). Notice that
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Figure 1.3. Heavy-ion collision events generated by a Glauber Model simulation.
The impact parameter is 4 fm in the left plot and 12 fm in the right plot. The
quantities A, Npart, and Neoji, are the number of nucleons in each nucleus, the
number of nucleons participating in the collision (shown in red), and the total
number of binary collisions that occured, respectively.

the amount of overlap between the two nuclei plays a major role in what happens
in the collision.

The evolution of a heavy-ion collision is described schematically in Fig. [1.4]
The two nuclei start colliding at time ¢ = 0. The colliding matter forms a medium,
possibly a QGP, which proceeds to expand under pressure, as shown in the figure
on the left. On the right, a space-time diagram depicts the different stages of
the expansion. A very short time after the collision, on the order of 1 fm/c (~
3 x 107%* 5), the system thermalizes. This is marked by the red hyperbola, labeled
with a temperature of 230 MeV (~ 3 x 10 K), which is about 10° times hotter
than estimated temperatures of the Sun’s core. That is well above the crossover
temperature, which means the system is in the deconfined QGP phase. The energy
density of this medium is about ~ 3 GeV/fm?, or about 20 times the density of
normal nuclear matter. After time ¢ ~ 10 fm/c, as the fireball continues to expand,
it cools down below the crossover temperature and all the quarks become confined
again. At about this same time, chemical freeze-out occurs, which means that all
inelastic collisions have ceased and the particle yields are fixed, except for decays.

After a few times 10 fm/c, thermal freeze-out occurs when all elastic collisions have
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Figure 1.4. Schematic of the evolution of a heavy-ion collsion. The figure on the
left displays a cartoon of the collision of two heavy ions and the expansion of
the resulting medium, with time increasing up the page. The figure on the right
is a space-time diagram displaying the different stages of the collision evolution,
with time increasing up the page. The red, green, and blue lines denote specific
times in the evolution, with the corresponding temperature and energy density
displayed to the right. The red line marks the time of thermalization, where the
medium is in the QGP state. The green marks the time of chemical freeze-out
where the inelastic collisions cease. The blue line marks the time of thermal
freeze-out where elastic collisions cease. Image from Ref. [15].

ceased and the particle momenta are now fixed until they reach the detectors. This
is estimated to happen around T ~ 110 MeV, which corresponds to the cyan line
in the figure. A more thorough study of the physics of heavy-ion collisions can be

found in Ref. [16].

1.3.1 The Glauber Model and Centrality

The Glauber model is used to study the initial geometry of nucleus-nucleus colli-
sions. In this model, the nucleus is treated as a collection of spherical nucleons.
The structure of the generated nucleus is inspired by the Woods-Saxon potential

Vo

Vi) = 1+ exp[(r — R)/al]’

(1.3)

where r represents the distance from the center of the nucleus and R is the nuclear
radius. The parameter a is called the “skin depth” or “surface thickness,” and is

related to the distance over which the density function decreases from its maximum



value to zero at the edge of the nucleus. The depth of the potential well is denoted
by the parameter V. This potential describes approximately the forces applied on
each nucleon in the nuclear shell model.

The Glauber model assumes that the nuclear density profile matches the Woods-

Saxon potential in Eq. (1.3), and can thus be described by the formula

_ Po
) = epl(r — R)ja] (14)

The two nuclei are generated by randomly positioning 208 nucleons according to
this density distribution.

In the case of two perfectly spherical nuclei, a collision will occur whenever
the distance of closest approach between the centers of the two spheres is less
than the sum of the two radii. The probability of a collision is the same for any
size of sphere as long as the sum of the radii remains the same. Therefore, the
probability of a collision between two spheres with equal radius R is equivalent
to the probability of a point-sized projectile colliding with a sphere of radius 2R.
The pair of nuclei are thus assigned a random impact parameter b according to
a linear probability distribution derived from the circular differential area 2mwbdb.
The probability function is allowed to extend beyond 2R to be able to capture
the most peripheral collisions which can occur when some nucleons are randomly
placed very far from the center of the nucleus, due to the non-zero skin depth in
the nuclear density distribution. In this simulation, a cutoff at 3R was sufficient
to capture the full distribution of collision events.

The cross-sectional area occupied by the simulated nucleons is set such that the
probability of a collision between two nucleons matches the true nucleon-nucleon
inelastic cross section (onxy = 67.6 mb [I7]) at the desired energy. Whenever a
nucleon from one nucleus and a nucleon from the other nucleus have overlapping
areas, it is counted as a collision, and the colliding nucleons are called participants.
In practice, since the nucleons are modeled as hard spheres, this simply involves
checking whether the nucleons are within 2 radii of each other, where the effective

radius of each nucleon is taken from the nucleon-nucleon cross section as ry =



\/m. In the particular event shown in Fig. on the left, there are 322
participants and 1442 binary nucleon-nucleon collisions.

The expected number of participants (Npayt ), and the number of binary nucleon-
nucleon collisions (N ), can be calculated by use of the thickness function T4(s)
which is defined as

Ta(s) :/p(s,z)dz, (1.5)
where p is again the nuclear density function defined in Eq. normalized to
the number of nucleons A in the nucleus, z is the longitudinal coordinate, and s
is the radial distance from the z-axis. At a given impact parameter b, the nuclear

overlap function of nuclei A and B is given by [16), 17]
Tap(b) = /TA(s)TB(\E—a)d%. (1.6)

Given these definitions, the expected values of Npay and Neopy are given by

Nows0) = [ [Ta(s) (1 = expl-orZa (15 - 5)

+Tu(b— 8 (1 —exp[—aNNTA(s)])}d% (1.7)
and
Neon(b) = onnTap(b). (1.8)
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Figure 1.5. Distributions of the number of participating nucleons (left), number
of collisions (middle) and the impact parameter (right) in a Glauber model
simulation.

The distributions of Npar, Neon, and b, after one million simulated events are

shown in Fig. The N,o distribution, after simulating particle production, can
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be used to fit the Glauber model to real data from the CMS detector in some
activity-related variable such as the transverse energy deposited in the forward
hadron calorimeters EXY, as shown in Fig. [1.6] Particle production is simulated

by convoluting N, with a specialized negative binomial distribution,

_ Pz + p)(k/p)"
N N e )

where x symbolizes the amount of transverse energy deposited in the HF by the

particles exiting a particular collision.

In this case, the fit was carried out by applying the Nelder-Mead algorithm [18]
with a 3-point simplex in k-p phase space. At each fitting step, the point of the
trio with the largest y? is moved to the opposite side and slightly closer to the
other two points. At each step, the normalization parameter was also optimized to
reduce the 2. Step by step, the 3 points converge to the point that minimizes y2.
The process ends when the distance in phase space between the 3 points is smaller
than a predefined threshold, which in this case was 0.00001. The progress of the
three points and the path of the best fit are shown in Fig. [I.7, The best and worst
x? at each step are also shown in the bottom panel. The blue line represents the
current best y? at each step, which doesn’t change until one of the other points
manages to go lower. The red line represents the current worst, and since the worst
point always changes, the red line changes every step.

The amount of activity in a collision event is usually quantified by a variable
called “centrality,” which is also related to the amount of nuclear overlap in the
collisions, as we have seen. A head-on collision corresponds to about 0% centrality,
and a grazing collision would be around 100% centrality. For example, the event
shown in Fig. on the left is in the 0-10% centrality range. The Glauber model
is one way in which we can get estimates of centrality. The centrality bins are
estimated by integrating EXY starting from the right side. The top 10% most
active events form the 0-10% centrality bin, the next 10% most active events form
the 10-20% centrality bin, and so on up to 100%. The average values of Ny,
Neon, and the impact parameter b are displayed in Table in bins of centrality,

11
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Figure 1.6. Centrality bins determined by a Glauber model fit to the E;IF
distribution in minimum bias Pb + Pb data at \/syny = 5.02 TeV.

as determined by this Glauber model. The documentation and results of a more
sophisticated Glauber model can be found in Ref. [17].

Centrality is therefore more rigorously defined as the percentile of the total
inelastic hadronic cross section. In CMS, it is found using the total energy in both
HF calorimeters, where larger centrality percentiles correspond to smaller energy
deposits in the calorimeters. Larger centrality percentiles are therefore associated
with fewer tracks and fewer nucleon-nucleon collisions, as seen in Fig. and Ta-
ble [I.T], which is indicative of less overlap of the two colliding nuclei corresponding

to larger impact parameters.

1.3.2 Experimental Observables

There are several thermodynamic properties of the QGP that can be measured
with heavy-ion collisions, including the temperature, the density, and the viscosity.
These quantities are measured indirectly via the study of particle distributions
exiting heavy-ion collisions. For example, one way to probe the temperature of
the QGP during the early stages of the collision is to measure the amount of

suppression in the production of quarkonia, described in the next section. If there
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Figure 1.7. Progression of the k and u parameters towards the minimum x? in
a Glauber model fit using a 3-point simplex. The upper-left plot displays the
progress of all three points. The upper-right plot displays the progress of only
the best fit at each step. The lower plot displays the best (blue) and worst (red)
x? for each step of the fitting process.
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Centrality | (Npart) | (Neonn) b
0-10% | 357.116 | 1585.99 | 3.34351
10 - 20% | 262.462 | 972.111 | 6.04368
20 - 30% | 187.956 | 585.72 | 7.81843
30 - 40% | 130.294 | 334.727 | 9.26266
40 - 50% | 86.4019 | 178.383 | 10.5074
50 - 60% | 53.6833 | 86.7814 | 11.6331
60 - 70% | 30.4673 | 38.1272 | 12.6763
70 - 80% | 15.4412 | 15.2242 | 13.6798
80 - 90% | 6.9513 | 5.55382 | 14.6417

90 - 100% | 3.02945 | 1.87529 | 15.432
0-20% | 309.783 | 1279.05 | 4.69362
20 - 40% | 159.124 | 460.22 | 8.54056
40 - 60% | 70.0393 | 132.573 | 11.0704
60 - 80% | 22.9719 | 26.7026 | 13.1769

80 - 100% | 4.99007 | 3.71427 | 15.0369
0-50% | 204.858 | 731.441 | 7.39484

50 - 100% | 21.8918 | 29.4844 | 13.6151
0-100% | 113.366 | 380.43 | 10.5053

Table 1.1. The average number of participating nucleons (Npa), average num-
ber of nucleon-nucleon collisions (No1), and the average impact parameter b
for each centrality class, as estimated from a Glauber model simulation.
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is a priori knowledge of the particular temperatures at which these quarkonia
dissociate, then their suppression serves as a kind of thermometer for the medium.

The density and viscosity can be probed via multi-particle correlations and
elliptic flow measurements, which can be extracted by measuring the azimuthal
distribution of particles exiting the collisions, and comparing the results to hy-
drodynamic flow predictions which take density and viscosity as inputs. Recent
comparisons between collision data and simulations of hydrodynamic flow have
determined that the QGP exhibits liquid-like collective properties, and have es-
timated the QGP shear viscosity (a quantitative measure of the internal fluid
friction) to be very near the theoretical lower limit [19] 20] 21], 22], indicating that
the QGP is nearly a perfect fluid (i.e. a fluid that flows with zero viscosity).

1.4 Quarkonia Suppression

The term quarkonium refers to a flavorless meson composed of a quark and its
antiquark. The term usually only refers to mesons composed of the heavy quarks ¢
and b, such as charmonia (i.e. the J/v¢) and bottomonia (i.e. the T family shown
in Fig. , and not the lighter mesons such as pions which are actually mixtures
of qq states. The top quark is too heavy and short-lived to form such bound states.

Quarkonia are good probes of the early state of a heavy-ion collision. The
high mass of the bottom and charm quarks ensures that they are unlikely to be
generated thermally in the expanding fireball, which means their production is
dominated by the initial hard scatterings [23]. This is especially true for the heavy
Ts, which have masses displayed in Table Quarkonia such as the J/¢ and the
Ts also have a significant dimuon decay channel. The dimuon branching ratios
are also listed in Table [I.2] Muons interact only weakly in matter and thus carry
the information from the quarkonium state to the muon detectors with minimal
modification.

Quarks bound in a meson state are not motionless in the rest frame of the

meson. The lighter quarks such as u and d tend to move at relativistic speeds
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Table 1.2. The masses of heavy quarkonia and their branching ratios to
dimuons [24].

Quarkonium state | Mass (MeV/c?) | Dimuon branching ratio
J/Y(18S) 3096.900 £ 0.006 5.961 £+ 0.033 %
T(1S) 9460.30 + 0.26 2.48 + 0.05 %
T(2S) 10023.26 £+ 0.31 1.93 £ 0.17 %
1(39) 10355.2+ 0.5 2.18 £ 0.21 %

inside their respective mesons. In a heavy quarkonium, however, the speeds of the
constituent quarks are relatively small, and the relativistic effects are significantly
reduced. This allows for heavy quarkonia to be approximately described by non-
relativistic QCD (NRQCD) [25].

Quarkonia are tightly bound. The size, estimated by the binding radius, is very
small and the binding energy is very large, so that the bound state cannot be broken
by interactions with normal hadrons. However, in the presence of a QGP, quarkonia
can interact with and be modified by color fields in the QGP medium, and can
thus be used as a testing ground for processes such as deconfinement. It has been
predicted that QCD color screening in a QGP will result in a suppression of the
production of quarkonia [26]. This suppression has been observed in experiments
as modification of quarkonia yields. For example, Ts are suppressed in Pb 4+ Pb
collisions compared to p+p collisions at the same center-of-mass energy per nucleon
pair [27].

The higher T states have successively smaller binding energies and larger size,
which causes them to dissociate or “melt” at lower temperatures than the T(1S).
This allows for the study of additional effects such as sequential suppression [27,
28, 29]. These excited T states, along with other bottomonia states such as the x;
states, can decay to the lower states and contribute to the total yield [4, [16]. The
decay modes of the bottomonia family are displayed in Fig. [[.8 This process is
called “feed down,” and it must be taken into account in theoretical predictions of

T yields. The T (4S) and higher bottomonia states that lie above the BB threshold
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decay strongly to BB and therefore do not contribute to feed down.
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Figure 1.8. Illustration of the decay paths of the bottomonia family, with quan-
tum numbers along the x-axis and mass on the y-axis. Thick arrows represent

hadronic decays and thin arrows represent radiative decays. Figure taken from
Ref. [16].

If the temperature of the medium is high enough, most of the members of the
bottomia family will melt before decaying. The YT(1S) is the most tightly bound
of all the quarkonium states, and thus requires a very high temperature to melt.
It follows that the Y(1S) yields observed in extremely hot heavy-ion collisions at
CMS are mostly from direct production (~67%) [30], because the melting of the
excited states prevents the feed down decays from occurring.

The modification of T yields in Pb + Pb compared to p + p can be seen in
the plot on the right in Fig. [1.9] which shows a fit to the dimuon invariant mass
spectrum from Pb + Pb collisions, and overlaid in red, what we would expect if
Pb + Pb collisions were simply a superposition of many p + p collisions. The ratio

of the yield in Pb + Pb to the yield we would expect in this simpler scenario is
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Figure 1.9. Plots of the invariant mass spectrum of Y candidates in p + Pb [31]
(left) and Pb+ Pb [27] (right). The yields that would be expected assuming no
suppression are overlaid with the dashed red line.

called the nuclear modification factor, R44. The definition of this quantity is
NXa(pf,y")
Taa)ol(pf,y")

RYa(pr.y) = < (1.10)

The quantity N¥, is the T yield in Pb + Pb and a;rp is the T production cross

section in p + p, given by
Y

(DT Y") = %, (1.11)

where a and ¢ are the acceptance and efficiency described in Ch. , Npr is the

T yield in p + p, and L;,; is the integrated luminosity. The quantity T4 is the

nuclear overlap function, defined in Eq. , from which it can be shown that

(Taa) = (Neon)/op (see Eq. ), where o017 is the total inelastic p + p cross

section. In the case of p + Pb, under the hypothesis of A-scaling, the nuclear

modification factor is oy

Roq = Zpi(pTij T) ’

Upp(pT7y )

where ag , is the T production cross section in p 4+ Pb.

(1.12)

There are a few effects due to the QGP that may cause this suppression. One
major possibility is color screening, which is analogous to Debye screening in elec-

tromagnetism. When a bb pair is traveling through a QGP, the presence of other
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color fields tends to screen the fields of the bb pair. The spatial scale at which the
screening occurs is called the screening length p, and it decreases with increasing
temperature. The Y(1S) is tightly bound with a very small radius, and thus
must be very small (i.e. the temperature must be very high) to have any effect. If
1 is small enough, then the screening quarks and antiquarks may be able to pass
between the b and b and bind with them, causing the T state to dissociate. This
would reduce the total yield of Ts in Pb + Pb collisions.

At temperature T' = 0, the real part of the ¢g potential can be written approx-
imately as [16]

0%

Re{V(r)} = or — ot (1.13)

where r is the distance between the ¢ and ¢, a. is the coupling of the Coulomb
term, and o describes the strength of the linear term. In a hot medium, both terms
of Eq. (1.13]) are modified. At finite temperatures, the real part of the in-medium

qq potential can be expressed as [32]

r
20

Iy o | o
TR I3

where I' is the gamma function, Dfé is a parabolic cylinder function, and p is the

-

Re(V(r)} = D_,(v2ur) +

(1.14)

0o

screening length, which depends on the temperature.

The graphs in Fig. [1.10]| are a depiction of how the in-medium ¢q potential V'
changes with temperature as a result of color screening [32]. The left side shows
the real part of V' as a function of distance, and the right side shows the imaginary
part. The different colored lines represent the different temperatures, with purple
being the coldest and red being the hottest, where 7. represents the crossover
temperature. At low temperatures, the linear part of the potential tends to be
dominant at large r and severely limits the distance that the bound ¢ and ¢ can
move away from each other. At high temperatures, the linear part is seen to be
depressed, and it becomes possible for the ¢ and ¢ to escape to large distances.
The imaginary part of the potential, shown on the right, affects the width of the

quarkonium state and thus its lifetime. It is related to the scattering (Landau
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damping) and absorption (singlet-octet transition) of gluons from the medium
which can lead to gluo-dissociation of the ¢g states (i.e. gluons break up the

quarkonium state), and it is also seen to be modified by the temperature [32] 133].
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Figure 1.10. The real (left) and imaginary (right) parts of the in-medium ¢g
potential V' as a function of distance at various temperatures. Figure from

Ref. [32].

Additional effects that modify the yields of quarkona include regeneration and
recombination, which occur when an unbound ¢g pair that are close together in
phase space bind together. They can be uncorrelated and moving freely in the
QGP or they can be constituents of a melted quarkonium which remain close
enough together in phase space that, at the time of hadronization, it is possible
for the ¢ and ¢ to pair up and create or recreate the quarkonium. This tends to
increase the quarkonium yields. This effect is fairly insignificant for Ts due to the
fact that there are very few bb pairs, but it is important for the .J/+ [4, 5, 23, 34].

But the QGP may not be the only thing responsible for what the observed
suppression. There are other effects due to the mere presence of a nucleus which
have nothing to do with the QGP. We refer to these as cold nuclear matter ef-
fects [4]. The first are called shadowing and anti-shadowing, which are the names
given to two modifications of the nuclear parton distribution function as shown
in the example in Fig. (.11} The parton distribution function (left) shows what
fraction of the total momentum of the nucleon each parton has, as obtained from

global analyses of data [35]. If a proton were comprised of only two up quarks and
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a down quark, then we would expect each quark to peak around a value of 1/3,
with the up peak twice as high as the down. In reality, the proton is filled with
gluons and sea quarks generated by gluon splitting. The gluons and sea quarks
tend to carry a small fraction of the total, and this tends to shift the x value of the
u and d quarks down and create large tails in the distribution. The other types of
sea quarks have only the large tails. The gluons follow the same pattern, but at a
much larger scale. The gluon curve is scaled down by a factor of ten to be visible

on the plot at a level similar to the quarks.
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Figure 1.11. A proton parton distribution function (left) where the distribu-
tions of the various quarks and gluons are color-coded and labeled, taken from
Ref. [35], and an example of the modification to the 2°*Pb nuclear parton dis-
tribution function (right) compared to a deuteron, taken from Ref. [36].

The parton distribution function is modified in a nucleus compared to a nucleon.
The modification is usually quantified as a ratio of the nuclear parton distribution
function to that of a deuteron. An example of the modification for 2®Pb is shown in
the figure on the right [36]. The parton distributions in the nucleus are lower than
those in the deuteron in the low z region. This effect is referred to as shadowing.
Around 0.1, there is an enhancement, which is referred to as anti-shadowing. At
higher z, there is a local minimum referred to as the EMC effect because it was

first discovered by the European Muon Collaboration (EMC) [37, 38, [39].
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Some other non-QGP effects are energy loss as a particle propagates through
the medium [40} 41], and the effects of comovers, which are particles in the same

phase space which can interact with the quarkonium and dissociate it [42].
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Figure 1.12. Comparison of the nuclear modification factors R,4 (red circles)
and R44 (blue squares) of T(nS) (n = 1,2,3) from p+Pb and Pb+ Pb collisions
at \/synv = 5.02 TeV. In the case of T(3S) in Pb+Pb, a 95% confidence interval
is displayed. Figure from Ref. [31].

Cold nuclear matter effects can be separated from QGP effects by comparing
p + Pb collisions with Pb + Pb and p + p collisions. A QGP is not expected to be
created in typical p+PDb collisions, so any suppression of heavy-quarkonia in p+Pb
is probably due to cold nuclear matter effects. The fit to the dimuon invariant mass
spectrum in p + Pb is shown on the left in Fig. [1.9] The T yields are seen to be
suppressed in p + Pb, even without the presence of a QGP [31].

The nuclear modification factors R,4 and Raa extracted from the fits are pre-
sented in the plot in Fig. [1.12] [31]. The level of suppression is much more sig-
nificant in Pb 4+ Pb than in p 4+ Pb, due to the additional QGP effects. It can
also be seen that the suppression is successively more significant for the higher T
states, i.e. the T(3S) is more suppressed than the Y(2S), which is more suppressed

than the Y(1S). This phenomenon is referred to as sequential suppression, and, as
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discussed earlier, it is because the higher mass states are less tightly bound. The
larger size and smaller binding energy make color screening more effective on the

higher mass states, and thus they tend to dissociate at lower temperatures than

the T(1S) [28, 29].
1.5 Elliptic Flow
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Figure 1.13. Two-particle correlations in high multiplicity events in p +p at 7
TeV [43] (a) and in Pb + Pb at 2.76 TeV [44], 45] (b).

Apart from quarkonia suppression, another way of probing the QGP is through
measurements of elliptic flow, which refers to a collective phenomenon seen in two-
particle correlations in Pb 4+ Pb that is not observed in p + p [44, 45]. Such an
effect can be seen in the plots in Fig.|1.13] Plot (a) shows a two-particle correlation
function in p+p [43]. Given any particle in the event, this distribution shows where
all the other particles are likely to be in pseudorapidity n and azimuthal angle ¢
relative to the selected particle. The two main features on the plot are the peak
at A¢p = 0 and Anp = 0 and the long ridge at A¢ = 7w which extends across
all values of n. The peak corresponds to jets, which consist of many particles
moving in approximately the same direction. The ridge on the other side describes
particles that go in exactly the opposite azimuthal angle at many different values
of pseudorapidity. This corresponds to the away-side jet. Both of these features

are present in Pb + Pb, but there is one major difference which is indicated by
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the black arrows in the figure. This ridge at A¢ = 0 describes particles moving in
the same azimuthal angle at all different rapidities. This is can only be explained
by some sort of collective flow phenomenon. It is also present at A¢ = m, but it
is less obvious because the signal is mixed with the away-side jets. This pattern,
which makes the shape of the function cos(2A¢), is referred to as elliptic flow.

In order to quantify the amount of elliptic flow present in a dataset, we parametrize
the azimuthal distribution of particles as a Fourier series. Due to the symmetry
of the collision region, as seen in Fig. [L.3] all the sine terms are zero and we get a
series of cosines. If the system is properly centered, then the v; coefficient, which
describes the horizontal offset, is also zero. Thus we obtain [46]

% x 1+ 2v; cos(A¢) + 2v9 cos(2(A¢)) + 2v3 cos(3(Ag)) + - - . (1.15)

The elliptic flow is described by the coefficient of the second term, the vy, which
is given by
vy = (cos(2(Ag))). (1.16)

9

In fact, the terms “elliptic flow” and “vy” are often used interchangeably.
Predictions of the magnitude of the elliptic flow are usually obtained via rela-
tivistic hydrodynamic simulations. The v, values measured from real data therefore
tell us something about the inputs to those simulations, including viscosity, the
equation of state, the speed of sound in the medium, and the level of thermal-
ization achieved in the collision. For example, some estimates of vy from hydro-
dynamics are shown in Fig. [1.14] [22]. The y-axis variable is vy over eccentricity
e= m where a and b are the semi-major and semi-minor axes of the el-
lipse describing the shape of the collision region. The x-axis is total charged hadron
multiplicity density per unit overlap area. The parameter being varied from line
to line in these graphs is the specific shear viscosity (n/s). The data shown are es-
timates of the universal vy in gold-gold collisions at 200 GeV from RHIC [22]. The

best match for the data seems to be with a specific shear viscosity of about 0.08.

This is very near the theoretical lower limit of (47)~' ~ 0.0796 [19, 20} 21} 22],
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which makes the QGP the closest to being a perfect fluid of any substance that

has been observed. This discovery could not have been possible without v, mea-

surements.
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Figure 1.14. Eccentricity-scaled elliptic flow estimates from simulations using
relativistic hydrodynamics in comparison with experimental data from gold-gold
collisions at RHIC. The different colored lines correspond to different values of
the specific shear viscosity (1/s). Figure from Ref. [22].
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Figure 1.15. Elliptic flow predictions for Y(1S) (left) and Y(2S) (right) as
a function of pr in Pb + Pb collisions at /syny = 5.02 TeV. The red curve
described the vy of the total signal, while the blue and green curves describe
the vy of the regenerated and primordial components, respectively. Figure from

Ref. [34].

Predictions have been made for the vy of Ts at /syy = 5.02 TeV [34]. Fig-
ure shows predictions of the pr dependence of the Y (1S) vy on the left, and
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Figure 1.16. Elliptic flow of prompt (left) and nonprompt (right) J/1 compared
with the elliptic flow of charged hadrons and open charm as a function of pr in
Pb + Pb collisions at /syy = 2.76 TeV. In both cases, the elliptic flow of J/1
in forward rapidity (1.6 < |y| < 2.4) is displayed as a blue cross. The elliptic
flow of J/4 in full rapidity is shown as red squares on the left and a yellow star
on the right. Figure from Ref. [47].

the T(2S) vy on the right. The vy of the regenerated and primordial components
of the signal are shown by the blue and green curves, respectively, while the vy of
the total signal is shown in red. For reference, the estimated vy of prompt and
nonprompt J/¢s is shown in Fig. [1.16 along with the vy of charged hadrons and
open charm [47]. The prefix “prompt” or “nonprompt” refers to whether the .J/v
was formed in the initial hard scattering or produced in the decay of b-hadrons [4§].
As stated earlier, one of the benefits of studying the Ys is that the signal comes
almost entirely from the inital hard scattering, which means the vy of the Ts can
provide a clearer picture of the early stages of the collision.

The most obvious feature in Fig. is that the vy of the Y(1S) is predicted
to be very small. This is due mainly to the high mass of the T(1S), which makes
it more resistant to changes in momentum compared with the lighter particles
(e.g. the charged hadrons), and results in comparatively little modification to the
azimuthal distribution. The J/1 also exhibits these characteristics, but to a lesser
extent because it is not as massive as the T(1S), and with the added complication

of the nonprompt contribution.
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Another interesting feature is that the vy of the Y(2S) is predicted to be about
twice as large as that of the Y(1S) [34, 49, 50]. The authors hypothesize that this is
due to the fact that the T(1S) melts at a higher temperature than the T(2S), due to
its smaller binding energy and larger width, and thus the suppression occurs earlier
in the fireball evolution before it cools to lower temperatures. The suppression of
the T(2S), on the other hand, is active to lower temperatures and thus to later
times. The Y(2S) therefore passes through more of the medium in a modified state
and the resulting signal becomes more sensitive to the path length differences in the
medium. Thus, the sequential suppression described in Sec. may lead directly
to the expected difference in elliptic flow signals of the T states.

The authors also claim that the total vy of the T(2S) is dominated by the pri-
mordial component, and that the regenerated component has very little effect [34].
However, Fig. indicates that the primordial Y (2S) yields are completely sup-
pressed in the range of Ny, that corresponds to centrality range (20-40%) in which
their prediction was made. It can be seen on the left-hand side of Fig. [L.5|that the
vast majority of events in that range have between 100 and 250 participants. The

R a4 of the primordial component in Fig. [L.17]is near zero in that region.
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Figure 1.17. Nuclear modification of primordial (green), regenerated (blue), and
total Y(2S) yields as a function of Npare from simulation of Pb + Pb collisions
at \/syn = 5.02 TeV. Figure from Ref. [34].

Another possible explanation for the factor of 2 difference is that the Y(2S)
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yield is much more influenced by regeneration than the Y(1S) [34]. This means
that the Y(2S) mesons that exit the fireball were formed by b quarks that were
unbound and interacting with the medium during the expansion, and therefore

maintain a greater sensitivity to the properties of said expansion.

28



Chapter 2

Experimental Facilities

2.1 CERN LHC

The Large Hadron Collider (LHC), managed by the European Center for Nu-
clear Research (CERN), sits on the border between France and Switzerland. It
is the largest particle accelerator in the world, with a circumference of 27 km.
A schematic of the LHC accelerator complex is shown in Fig. 2.1l Protons and
lead ions have different initial stages of acceleration. Protons are ionized from a
hydrogen gas and then accelerated through the linear accelerator LINAC2. They
then enter the Proton Synchrotron Booster (PSB) where they are accelerated up
to speeds of 0.87c (~ 1 GeV of kinetic energy). They are then injected into the
Proton Synchrotron (PS) where they are further accelerated. The lead ions also
enter the PS after being initially accelerated through the LINAC3 and the Low
Energy Ton Ring (LEIR). After reaching sufficiently high energies (~ 26 GeV for
protons), the particles are sent into the Super Proton Synchrotron (SPS), which
accelerates protons to ~ 450 GeV. The final step is injection into the LHC. The
two opposite-going beams cross one another at four points of intersection along
the LHC ring where the detectors (ALICE, ATLAS, LHCb, and CMS) are placed.

The LHC can accelerate two beams of protons in opposite directions up to
center-of-mass energies of 13 TeV per pair of colliding protons. The beams consist

of bunches of protons, with about 1 x 10! protons in each bunch. A pair of bunches
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Figure 2.1. A schematic drawing of the CERN accelerators [51].
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cross each other at an interaction point within a detector about every 25 ns. The
rate of accelerated protons crossing the collision point is described by a quantity
called luminosity [52]. The rate of collisions dR/dt is related to the luminosity

through the total inelastic p + p cross section ag; as follows:

dN/dt = Lo, (2.1)

where £ is the luminosity, and is seen to have units of ecm 2s7!. Integrating

Eq. (2.1) over time gives the total number of collision events N in terms of the

integrated luminosity L:

N = Lo (2.2)
where
ty
Lint = / Ldt (2.3)
t;

The integrated luminosity is often used to characterize the size of a collision
dataset. For any interaction of interest, the cross section of the interaction can be
multiplied by L, to give an estimate of the total number of events in which that
interaction occurred. The integrated luminosity has units of inverse area, usually
cm~2 or barns, b~!, where 1 b = 10724 cm?.

Collision datasets are also characterized by the center-of-mass energy per nu-

cleon pair /syy. With the same LHC configuration, the collision energy varies

depending on the type of particle accelerated. In general, the center of mass energy

| 217
SNN = +/Spp AiAZ (24)

where /5, is the equivalent proton-proton center-of-mass energy under the LHC

per nucleon pair is given by

settings, Z; and Z5 are the number of protons in each nucleus, and A; and A, are
the total number of nucleons in each nucleus.

The first heavy-ion beams were injected into the LHC in 2011, when the cor-
responding /s, was 7 TeV. These were Pb + Pb collisions, so the center-of-mass
energy per nucleon pair was (7 TeV) x 82/208 a 2.76 TeV. The next heavy-ion run
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was a p+Pb run in 2013, when the corresponding ,/s,, had increased to 8 TeV. The
center-of-mass energy per nucleon pair for this run was (8 TeV) x \/m ~ 5.02
TeV. The LHC energy capacity was greatly increased for Run 2, which began in
2015. The /s, was increased to 13 TeV. With these settings, the 2015 Pb + Pb
run was scheduled to be carried out with an energy of (13 TeV) x 82/208 ~ 5.125
TeV, but the energy was decreased to match the 2013 p + Pb run. The year 2016
saw another set of p+ Pb runs, one at the traditional 5.02 TeV, and another at the
maximum energy of (13 TeV) x 1/82/208 = 8.16 TeV. All of the p + p and heavy
ion runs that have been carried out at the LHC for which CMS has collected data
are summarized in Table 2.11

The data analyzed in this thesis is from the most recent collisions of lead nuclei,
collected in November and December 2018 with /syxy = 5.02 TeV to match the
previous Pb + Pb and p + Pb runs and the p 4 p reference data collected in 2015
and 2017. The beam was ramped up to much higher luminosities in 2018, so that
nearly 4 times as much Pb + Pb collision data was collected in 2018 compared to

2015.

2.2 The CMS Detector

The Compact Muon Solenoid (CMS) is one of the detectors at the Large Hadron
Collider. A photograph of a cross section of the CMS detector is shown in Fig. [2.2]
The detector weighs 14,000 metric tons and has a diameter of 15 meters and
a length of 28.7 meters. It has the most powerful solenoidal magnet ever made.
Though relatively large, the detector is compact compared to an alternative design
proposal. From its inception, CMS had four main design goals [54]: 1) a very good
muon system providing many possibilities for momentum measurement; 2) the
best possible electromagnetic calorimeter consistent with the compactness of the
detector; 3) high-quality central tracking to achieve both of the above requirements;
and 4) an affordable detector.

A detailed description of the CMS detector can be found in Ref. [56]. A
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Table 2.1. Summary of the datasets that have been collected by CMS at the
LHC, displayed in order by year, with the collision system (p + p, p + Pb, or
Pb+Pb), the corresponding center-of-mass energy per nucleon pair /sy, and
the minimum bias integrated luminosity Liys.

Run 1
Dates Collision system Sy L (Min. Bias)
Mar-Oct 2010 p+p 7 TeV 41.5 pb~!
Mar-Oct 2011 p+p 7 TeV 5.55 fb~!
Nov-Dec 2011 Pb + Pb 2.76 TeV 174 b=t
Apr-Dec 2012 p+p 8 TeV 21.8 th~!
Jan-Feb 2013 p+Pb 5.02 TeV 35.5 nb~!
Feb 2013 p+p 2.76 TeV 5.51 pb~1
Run 2
Dates Collision system svy  Ling (Min. Bias)
Jun-Nov 2015 p+p 13 TeV 3.86 b1
Nov 2015 p+p 502 TeV  28.0 pb!
Nov-Dec 2015 Pb + Pb 5.02 TeV 464 pb1
May-Oct 2016 p+p 13 TeV 38.3 fb~!
Nov-Dec 2016 p+ Pb 5.02 TeV 509 pub~t
Nov-Dec 2016 p+Pb 8.16 TeV 180 nb~!
Jun-Nov 2017 p+p 13 TeV 45.0 bt
Nov 2017 p+p 5.02 TeV 323 pb!
May-Oct 2018 p+p 13 TeV 63.7 bt
Nov-Dec 2018 Pb + Pb 5.02 TeV 1.79 nb~!
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Figure 2.2. A photograph of a cross section of the CMS detector [53].
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Figure 2.3. A schematic slice of the CMS detector [55].
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schematic slice of the CMS detector is shown in Fig. 2.3] The beamline is di-
rected into and out of the page in the center of the circle from which particles
are seen to be emanating. The first detectors with which the particles interact
are the silicon trackers, displayed as black circles near the collision point. The
next detector is the electromagnetic calorimeter, shown in green, which detects
and stops electrons and photons. Next, the hadron calorimeter, shown in yellow,
detects and stops hadrons. Just outside the hadron calorimeter is the supercon-
ducting solenoid which provides an internal magnetic field of 3.8 T. The magnetic
field bends the paths of the charged particles to allow for the determination of
momentum. Outside the solenoid, muon detectors are interspersed with an iron
yoke which serves to direct the magnetic field and to concentrate the field lines in
the region outside the magnet.

The design of CMS makes it very adept at detecting muons. The calorimeters
block all other particles so that only the muons escape and are easily identified
in the other detectors, while the tracker and the solenoid combined provide ex-
cellent momentum measurements. A more detailed description of each detector

component follows.

2.2.1 Coordinate System

The motion of particles in the detector requires knowledge of both position and
momentum. Due to the cylindrical symmetry of the detector, the position of a
particle can be conveniently described in cylindrical coordinates r, ¢, and z, where
r represents the radial distance from the beamline, ¢ represents the azimuthal
angle, and z is distance in the direction of the beamline from the center of the
detector.

The momentum can similarly be described with cylindrical coordinates, but
certain modifications are applied for experimental convenience. The radial compo-
nent of momentum in the transverse plane (perpendicular to the beam direction)
is referred to as the transverse momentum pz. It can be measured by analyzing

the curvature of charged particle tracks in the magnetic field projected into the
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transverse plane. In the longitudinal direction, a quantity called rapidity is often

used. Rapidity is a representation of velocity that is additive under boosts,

1l E+p.c

2.5
TR (2:5)

y:

where E is the energy of the particle and p, is the component of momentum
along the z-axis. A rapidity of ¥y = 0 corresponds to a velocity that is entirely
perpendicular to the z-axis, while other values form an acute angle with respect
to the z-axis.

One further related quantity depends on the angle # between the particle tra-
jectory and a line perpendicular to the z-axis. The pseudorapidity n is defined in
a similar manner to the rapidity, except the energy E is replaced by the scalar

momentum |p|, as follows:

1. |p|+p. 9
= -In——==1In|tan| = | |. 2.6
7 2 ‘p‘ — Pz 2 ( )

Since this quantity is directly related to the angle 0, regions of the CMS detector
can be described in terms of n rather than 6. Another important advantage of
pseudorapidity over rapidity is that it depends only on momentum and is indepen-
dent of the mass of the particle, and thus it does not require particle identification.

In the limit of |p| > mec, the rapidity and pseudorapidity become identical.

2.2.2 Silicon Trackers

Reliable measurements of momentum are crucial for reconstructing a collision
event. The detectors that measure momentum must be closer to the collision
point than all the other detectors because the particles may lose momentum while
passing through the many layers of material. The momentum is determined by
measuring the curvature of charged particle paths in the presence of the magnetic
field generated by the solenoid. The proper reconstruction of a curved track re-
quires knowledge of the location of the particle at three points along the particle
trajectory. When there are many particles, and particle decays that form sec-

ondary vertices, more detection points are needed in order to distinguish between
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Figure 2.4. A schematic representation of one quadrant of the CMS tracking
system, where the beamline extends left and right from the origin. The y-axis is
the radial distance from the collision point, and the x-axis is the distance along

the beamline. Pseudorapidity values are indicated at the top and right. Figure
from Ref. [57].

the many different trajectories. It follows that the tracker must consist of several
layers of detector material, and each layer must be thin enough to avoid causing
significant change to the particle momentum, while at the same time be sensi-
tive enough to accurately locate the particle. The tracker must also be able to
withstand larger intensities of radiation than any other detector in CMS.

The material of choice was silicon. The silicon detectors work via ionization
as the charged particles pass through. Electrons are excited and escape from the
silicon atoms, creating free electron-hole pairs. An applied electric field causes the
free electrons to move, generating a small electric current which is then amplified
by an electronic silicon chip and carried off as an electrical signal.

A schematic depiction of the lateral view of one quadrant of the tracker is shown
in Fig. The y-axis is the radial distance from the collision point, and the x-
axis is the distance along the beamline. The first 3 layers of the tracker consist of
very fine silicon pixel detectors. There are 65 million pixels each with dimensions
100 pm by 150 pm. The next 4 layers are silicon strip detectors arranged in shells

that form the Tracker Inner Barrel (TIB) and 2 sets of detectors in the inner end
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caps called the Tracker Inner Disc (TID) made of silicon discs. Six more layers of
silicon strip detectors in the outer barrel region make up the Tracker Outer Barrel
(TOB), and two more endcap detectors make up the Tracker endcap (TEC). The
tracking system is kept at —20°C by cooling tubes to minimize disorder and prevent

damage to the detectors.

2.2.3 Calorimeters

The purpose of a calorimeter is to measure energy. In CMS, two different types
of calorimeters, electromagnetic and hadronic, were developed to measure the en-
ergies of two different families of particles. In both cases, the calorimeters must
completely stop the incoming particles in order to obtain a precise measurement
of the total energy. Due to the compactness of CMS, the materials of choice had
to be capable of stopping particles over very short distances. This limited the
candidate materials to those with very short interaction lengths.

The electromagnetic calorimeter (ECAL) was designed to measure the energy of
electrons and photons by inducing Bremsstrahlung radiation and pair production
in a crystal scintillator. A scintillator is a type of material that absorbs energy
from incoming ionizing particles and re-emits the energy as light. The resulting
light signals could then travel to photodetectors at the end of the crystal and be
converted into electrical signals. A high Z material was needed in order to increase
the cross section for radiation and pair production. The crystals also needed to have
a very fast scintillation decay time of the same order of magnitude as the bunch
crossing time at the LHC. This would ensure that the signal from each event would
be collected before the next event occurred. The main candidate materials for the
electromagnetic calorimeter were cerium fluoride (CeF3), lead-tungstate crystals
(PbWO4), and hafnium-fluoride glasses. Lead-tungstate was determined to be the
optimal choice due its relatively low radiation length (0.9 cm), the availability of the
raw materials to make it, and the fact that significant production capacity already
existed [54]. Avalanche Photodiodes (APDs) detect the scintillating photons in

the barrel region, magnify the signal with a gain of ~ 50, and transport the signal
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away through fiber-optic cables. Vacuum phototriodes (VPTs), which have less
gain (~ 10) but greater resistance to radiation, are used in the endcaps because
the radiation in that region is too high for silicon photodiodes.

The hadronic calorimeter (HCAL) fills up the remaining space between the
ECAL and the solenoid. The HCAL relies on nuclear interactions to measure the
energy of hadrons. It consists of alternating layers of dense absorber and plastic
scintillator. The absorber had to be a dense, rigid, high-Z material with a large
nuclear interaction cross section that could last as long as 15 years in the CMS
detector environment. The material chosen was brass, which is an alloy of copper
and zinc. Most of the brass used in the HCAL was recycled from old Russian
artillery shells that were melted and reshaped. The rest was made from copper
from the United States. The interaction of hadrons with the nuclei in the brass
absorber creates a hadronic shower of particles which emit flashes of light in the
scintillator, where the light is detected and converted to an electrical signal similar

to the process in the ECAL.
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Figure 2.5. A schematic representation of one quadrant of the hadron calorime-
ter, where the beamline extends left and right from the origin. The y-axis is
the radial distance from the collision point, and the x-axis is the distance along
the beamline [5§].
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A schematic diagram of the HCAL is shown in Fig. [58]. The HCAL was
constructed as 36 large wedges, each weighing 26 metric tons, which were inserted
into the barrel region forming the Barrel HCAL (HB). A few additional layers of
HCAL were placed outside the solenoid, forming the Outer HCAL (HO) to ensure
no energy escaped the HB undetected. Another 36 wedges form the HCAL in the
endcap (HE). The HCAL forward calorimeters (HF) extend the pseudorapidity
range of the HCAL to 5.0.

2.2.4 The Solenoid

The solenoid, for which CMS is named, is the central feature of the detector. It
was designed to create the strongest magnetic field possible given the size and cost
restrictions. The solenoid was built offsite and transported to CMS in the city
of Cessy, France, by road, which limited the diameter of the solenoid to no more
than 7 m. The length of the solenoid is 12.5 m and the internal diameter is 6 m,
providing a snug fit for the tracker and calorimeters.

A strong magnetic field is necessary to obtain precise measurements of the
charged particle momentum. In the presence of the magnetic field within the
solenoid, the trajectory of a charged particle bends with a radius of curvature
given by

R= 5—; (2.7)
where pr is the transverse momentum of the particle, ¢ is the electric charge, and
B is the magnetic field strength. Thus, with prior knowledge of the magnetic field
strength, a good tracking system that accurately measures the curvature of the
path, and by properly identifying the particle to obtain the charge, the momentum
can then be determined. A larger magnetic field will result in a smaller radius of
curvature (i.e. more bending), allowing for more precise measurements of pr-.

The solenoid consists of many coils of Rutherford cables, which are constructed
from many flexible superconducting fibers wrapped together in a helix and flat-
tened into a rectangular shape. The advantage of these cables is that they pack

together very well, provide good control of dimensions, have good windability, and
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the superconducting fibers are transposed. The cables in the solenoid consist of
niobium titanium fibers co-extruded with aluminum and reinforced with aluminum
alloy. The coils are cooled to a temperature of -268.5 °C to become superconduct-
ing, allowing electricity (18,000 amps) to flow without resistance and generating
an interior magnetic field of 3.8 T. It is the largest superconducting magnet and
the most powerful solenoidal magnet ever built.

Several layers of iron yoke extend out to a diameter of 14 m. The iron yoke
serves to direct the magnetic field and to concentrate and contain the field lines in
the region outside the magnet. The iron yoke, together with the solenoid, accounts

for most of the mass (~ 14, 000 metric tons) and the structure of the CMS detector.

2.2.5 Muon Detectors

Outside the solenoid, interspersed between the layers of the iron yoke, are the
muon detectors. Muons are the only particles that reach these detectors because
all others are stopped in the calorimeters. Muons are very similar to electrons,
but 200 times heavier, their greater mass prevents them from interacting with the
ECAL. Electrons are detected in the ECAL via Bremsstrahlung radiation, where
the power radiated is proportional to m~*. This large dependence on mass is why
electrons are stopped in the ECAL but muons are not. Charged hadrons such
as protons also bypass the ECAL for the same reason, but they are stopped by
nuclear interactions in the HCAL which the muons do not experience.

There are four layers of muon detectors that allow a muon track to be rec-
tonstructed by fitting a curve to the four detection points, as seen in Fig. 2.3
The curve is bent by the magnetic field, which has a magnitude of about 2 T in
this region, and provides information on the muon momentum. The muon track
in the muon detectors is matched to a track in the inner tracker to complete the
reconstruction of its trajectory.

The muon detectors consist of 250 drift tubes (DTs) in the barrel region and
540 cathode strip chambers (CSCs) in the endcap region, with 610 resistive plate

chambers (RPCs) interspersed between each successive layer of DT or CSC.
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A DT consists of a tube of gas (Ar and CO,) with a stretched anode wire
running through it. The wire is positively charged to create a magnetic field
in the tube. When a muon passes through the tube, it ionizes the gas and the
freed electrons then drift toward the wire because of the electric field. Proper
timing allows this detector to determine how far away the electron was from the
wire originally, and exactly where it hit the wire, providing information on two
coordinates. Each DT chamber contains 12 layers of DTs, in three groups. The
middle group is oriented to measure the coordinate along the beam axis and the
other two groups are oriented to measure the perpendicular coordinates.

A CSC is made by crossing cathode strips with positively-charged anode wires
within a gas volume. Similar to the DT, muons ionize the gas while passing through
and the free electrons then move toward the anode wire. The ionized atoms, now
positively charged, move toward the copper cathode strip and produce a signal.
Since the cathode strips and the anode wires are perpendicular, the two signals
pinpoint a location in two dimensions. The CSC modules are arranged like discs
in the endcap region.

The RPCs are parallel-plate detectors, with a positive plate and a negative plate
placed side-by-side with a thin gas volume in between. The plates are made of a
very high-resistivity material called phenolic resin (bakelite) coated in conductive
graphite. Passing muons ionize the gas particles in the same manner as in the
DTs and CSCs. The electrons then move toward the positive plate while the
positively-charged ions move toward the negative plate, inducing a signal in an
array of external metallic strips. The RPCs are designed to give a very fast (~3 ns)

measurement, of muon momentum to serve as a basis for the muon triggers.

2.3 Triggering and Data Collection

With bunches crossing through the interaction point in CMS every 25 ns, the
collision rate can be upwards of 40 MHz. It is not possible for CMS (or the

world) to record and store every collision that occurs within CMS. Physicists are
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insterested in studying particular events that meet certain pre-defined conditions,
so even if it were possible to record every event, it would not be practical. The
CMS detector has built-in trigger systems that fire whenever an event of interest
occurs. These triggers decide which events will stored for analysis and which will
be rejected.

Events of interest are selected using a two-tiered trigger system [59]. Custom
hardware processors compose the first level (L.1). These L1 processors use informa-
tion from the calorimeters and muon detectors to select events at a rate of around
100 kHz for p 4+ p and p 4 Pb collisions and around 30 kHz for Pb + Pb collisions
within a fixed time interval of about 4 us. The second level, known as the high-
level trigger (HLT), consists of a farm of processors running a version of the full
event reconstruction software optimized for fast processing. The HLT reduces the
event rate to around 1 kHz for p 4+ p, 20 kHz for p + Pb, and 7 kHz for Pb + Pb
collisions before data storage.

The online muon reconstruction algorithms are identical for the various collision
systems. However, heavy ion runs typically have a much lower luminosity than
p + p, and hence the dataset occupies a much smaller space on tape. These runs
usually happen at the end of the year, before the annual LHC shutdown, so offline
processing constraints are relaxed. For these reasons, heavy ion runs use looser
triggers than those used for p + p runs.

An example of a heavy-ion event in CMS is shown in Fig. [2.6] Particle tracks
reconstructed in the tracker are displayed as yellow lines. Energy deposits in the
calorimeters are shown as blue and green towers. The muon tracks reconstructed
in the muon chambers are shown as red curves. There tend to be many more
tracks in Pb 4+ Pb collisions than in p + p collisions, so the detectors experience
very high occupancies that require excellent spatial resolution and track separa-
tion. However, while there is a large amount of hadronic activity in the inner
detector, there are very few muons produced in a given event and their signal in

the muon chambers is very clear even in this 2D projection of the event. The two
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CMS Experiment at the LHC, CERN
Data recorded: 2015-Nov-26 00:37:43.058368 GMT
Run / Event / LS: 262620 / 19625751 / 367,

Inner tracker and
Calorimeters

Figure 2.6. A dimuon event from a Pb + Pb collision in the CMS detector [60].

muons shown here are actually a candidate Upsilon. Their paths curve in opposite
directions, which means they have opposite charge, and their combined invariant
mass matches that of the T(1S). The superb muon-detection capabilities of CMS
make it an excellent apparatus to study dimuon states, such as the Upsilon family,

via T — ptp.
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Chapter 3

Detector Performance

3.1 Efficiency

To obtain an accurate yield of e.g. particle multiplicities in a given event, a deter-
mination of how well the detector can identify and reconstruct particle information
is essential for understanding the reliability of the data and the measurement pre-
cision. The performance of the detector is estimated by the efficiency, defined as
the ratio of the number of objects that were reconstructed or identified by the
detector over the true number of objects that were present in the event. These
estimates are typically made using Monte Carlo (MC) simulations in which the ob-
jects present in the event can be known a priori. However, estimates of efficiencies
from MC assume a perfect description of a physical detector, which is typically
not possible, and thus this method introduces large systematic uncertainties. To
avoid this problem, data-driven approaches to estimating efficiencies have been
developed [61, 62].

Performance studies of the CMS detector at the LHC at CERN have been
carried out using the tag-and-probe method in the p + p environment [61] and
the heavy-ion environment since 2010 [62]. The tag-and-probe method involves
selecting two of the objects of interest from real data and matching them to a
resonance that decays to the objects of interest. One of the objects is labeled the

“tag,” and the other is the “probe.” The tag is an object that passes a very strict
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set of selection criteria. In this case, it is identified as a muon with a very high
level of confidence. The probes have much looser selection criteria and represent
the base sample from which the efficiencies of various selection criteria can be
estimated. The tag-and-probe muon pairs are used to reconstruct the dimuon
resonance from which they decayed. The resonance is then fit to extract the yield
with and without certain selection criteria applied to the probes. The resonance
yield reconstructed from “passing” probes divided by the total yield gives the
efficiency of the selection criteria applied to the probe muons. Because the tag-
and-probe method uses real data, and the true muons are not known, it cannot be
used to measure absolute efficiencies where the denominator is “all true muons.”
Instead, it is used to estimate “relative” efficiencies where the denominator is “all
objects passing certain criteria” and the numerator is “all of those objects passing
tighter criteria.”

The standard “candles” of the tag-and-probe analyses are the J/¢ and the Z.
These two resonances lie at opposite extremes of the dimuon mass distribution
(see Fig. [4.1), with world-average masses of 3.0969 GeV/c? and 91.1876 GeV/c?,
respectively [24]. The daughter muons born from the decays of the J/v and the
Z cover the full pr range of muons in the CMS detector, from ~0.8 GeV/c up to
~200 GeV/c. The efficiencies presented in Sec. are estimated from these two

resonarces.

3.2 Muon Detection in the Heavy-ion Environ-
ment

The various collision systems of the LHC provide a wide range of environments
for which the CMS detector has been prepared. The different collision systems all
occur in the same detector and all muons are reconstructed using essentially the
same algorithm. The main difference that is expected to affect the performance of
the detector is the number of particles produced in the different systems, which is

quantified employing the charged-particle multiplicity of a given event. The vari-
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able used to characterize the total charged-particle multiplicity, which is measured
in the pseudorapidity range |n| < 2.4, is labeled Niacks-

The particle multiplicities in the Pb + Pb environment vary greatly due to the
large number of particles involved and the different types of collisions that can oc-
cur (e.g. central versus peripheral collisions). In the most central Pb 4+ Pb events,
the multiplicities are typically thousands of times larger than the multiplicities
observed in p + p collisions. According to Table , the Pb + Pb events in 0-10%
centrality have an average of ~1600 binary collisions among ~360 participating
nucleons. This results in extremely high detector occupancies (the number of par-
ticles entering the detector) which may have an effect on the muon reconstruction
and identification efficiencies. For this reason, the performance of the CMS detec-

tor was studied separately in Pb + Pb collisions at /syy = 5.02 TeV, p + Pb at
VSny = 8.16 TeV, and p + p at /s = 5.02 TeV (see Table [60].
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Figure 3.1. The distribution of Niracks in Pb + Pb at /sy = 5.02 TeV (red),
p+ Pb at /sy = 8.16 TeV (blue), p 4+ Pb at /syy = 5.02 TeV (green), and
p+pat /s =5.02 TeV (black). The distribution of Niaes in the most central
collisions (0-20% centrality) is shown in magenta. The normalization of the
curves is such that they align in the lowest Niracks bin, hence the y-axis is in
“arbitrary units” (A.U.) [60].

The distribution of Ny in p+p, p+ Pb, and Pb+ Pb events at /syn = 5.02
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TeV is shown in Fig. [3.1) where p + Pb at \/syny = 8.16 TeV is also included for
comparison [60]. In the case of Pb + Pb, events with a large number of tracks
correspond to the most central collisions (large nucleus-nucleus overlap and small
impact parameter), while a small number of tracks indicates a peripheral collision.
To illustrate the highest multiplicities achievable in Pb 4 Pb, the distribution of
Niracks in the most central Pb 4+ Pb collisions (0-20% centrality) is displayed in
magenta. The mean of the 0-20% centrality distribution is (Niracks)o—20% = 2032.
Most Pb+Pb collisions are peripheral, which is why the distribution is heavily pop-
ulated at lower values of N, and less populated at the higher end values. The
distribution quickly drops off when the number of participating nucleons reaches
its limit.

The same effects are visible in the p + Pb system, but to a lesser extent. In
p~+ Pb, the number of participating nucleons does not change as much with impact
parameter as it does in Pb + Pb, so the Ni.us distribution decreases relatively
slowly before dropping off. The total energy present in a p + Pb event is only
about 1/3 of the total energy present in a Pb + Pb event at the same /syy.
This is why the maximum Nias in p + Pb is only about 1/3 of the maximum
value in Pb + Pb. The N, distributions in two p + Pb systems with different
energies demonstrate that a higher center-of-mass energy per nucleon results in
more particle creation. In this case, an increase of 63% in the center-of-mass
energy per nucleon pair resulted in an increase of 24% in the average value of
Ntracks-

The p + p collisions involve only two participating nucleons. However, at the
luminosities achievable at the LHC, there can be more than one p + p collision per
bunch crossing. This is referred to as pileup, and it affects the shape and extent
of the Nipas distribution. Even with pileup, however, the p 4 p collisions generate
far fewer tracks than Pb + Pb collisions and even p 4+ Pb collisions. The average
number of tracks reconstructed in Pb+Pb collisions at /syy = 5.02 TeV is shown

in bins of centrality in Table 3.1l The average numbers of Ni.qs present in p+ Pb
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Table 3.1. The average number of reconstructed tracks in Pb 4 Pb collisions at
v/SNN = 5.02 TeV in bins of centrality. The corresponding averages in p + Pb
and p + p collisions are also given. The tabulated data are from Ref. [60].

PbPb Centrality range | Average Niracks
0-10% 2345
10-20% 1721
20-30% 1224
30-40% 819
40-50% 203
50-60% 279
60-100% 33
pPb, /syn = 5.02 TeV 39
pPb, /syn = 8.16 TeV 48
pp, /s = 5.02 TeV 6
pp with pileup 14

collisions at two different energies and in p + p collisions with and without pileup
are also shown.

As seen in the table, the most central Pb+Pb collisions (0-10% centrality) have
(Ntracks)o—10% = 2345, which makes each event roughly equivalent to about 2345/6
~ 400 p + p collisions occurring simultaneously. This is much less than the value
of (Neon) = 1586 estimated in Table because the nucleon-nucleon collisions in
a Pb + Pb event re-use the same nucleons again and again. Energy is lost in each
successive nucleon-nucleon collision so that the average center-of-mass energy per
nucleon pair is much less than 5.02 TeV and generates fewer tracks. However, the
difference in Ni.q6 between a central Pb + Pb event and a typical p + p event at
the same /sy is still very large. This substantial increase in particle multiplicity
warrants an investigation into the subsequent effects on the detector performance.

To convey an idea of these high-occupancy events, a typical dimuon event in

the heavy-ion environment is displayed in Fig. 2.6f The high occupancy in the
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inner detector is expected to impact the performance of the pixel detector and
silicon strip tracker and reduce the muon tracking efficiency. The muon detectors,
on the other hand, are expected to perform well even in the heavy-ion environment
because muons are relatively rare and only the muons manage to traverse the en-
tire inner detector and enter the muon chambers outside of the solenoidal magnet.
Therefore, we do not expect a large change in muon identification efficiency, nor
do we expect a large change in any low-level triggers which rely solely on infor-
mation from the muon chambers. The efficiency of the high-level triggers (HLT),
however, is expected to decrease since these triggers use tracking information from
the inner detector. Many of the physics triggers (e.g. quarkonia, Z, etc.) use the
HLT tracking information, and therefore are expected to be affected by the high

occupancies in heavy-ion collisions.

3.3 Converting Centrality to Number of Tracks
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Figure 3.2. Distributions of Ny acks in the Pb 4+ Pb dataset in bins of centrality

in a minimum bias dataset (left) and a triggered dataset (right) [60].

It is common in analyses of Pb + Pb collisions to study the effects of event
activity by binning in centrality, hence efficiencies in Pb + Pb were estimated in
bins of centrality. Unfortunately, centrality is not well defined in p + p and p + Pb

systems and this limits our ability to make comparisons among the three systems.
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Other variables such as the number of tracks (Niacs) and the transverse energy
deposited in the forward hadron calorimeters (EXF) are available to describe the
event activity in all three systems. In order to improve the quality and readability
of the comparison between efficiencies in Pb+ Pb and p+ Pb as a function of event
activity, it was necessary to convert the centrality bins of the Pb + Pb efficiencies
t0 Niracks-

The conversion was done by plotting the distribution of Ni.q in the Pb 4+ Pb
dataset in the various centrality bins and taking the mean of each distribution as
the value of Ni.q for that data point of efficiency. Examples of this are shown in
Fig. 3.2/ [60]. The figure on the left was generated from a ‘minimum bias’ dataset,
which means no selections were applied to the collision events other than what
is necessary to ensure that a hadronic collision actually occurred. The minimum
bias trigger requires at least two energy deposits in the calorimeters in the range
In| < 4.7 and a signal above noise level in the very forward pseudorapidity region
3.2 < |n| < 4.7 [63, [64]. The figure on the right is from a ‘triggered’ dataset
which required events to have at least two muons passing various selection criteria
common to dimuon analyses. The extra requirements tend to bias the average
Niracks toward higher values. This is because the high-mass dimuons are more
likely to occur in central events with large N o, and hence large Niacks-

The figures showing efficiency as a function of centrality were translated to
Niracks by plotting the efficiency in each centrality bin at the mean value of N acks
in that bin. The resulting efficiency as a function of Ni.qs in Pb 4+ Pb extracted
from the Z resonance were merged with the corresponding results from p+ Pb and
p+ p and are shown in Figures [3.3] and [60].

Comparisons of efficiencies across the various collision systems at the J/1 res-
onance was complicated by the different approaches used in the tag-and-probe
analyses. At the level of reconstruction, the Pb + Pb analysis probed the inner
tracking efficiency of “stand-alone muons” (muons with tracks in the muon detec-

tors), while the p + Pb analysis probed the efficiency of “tracker muons” (muons
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Figure 3.3. Muon reconstruction efficiency as a function of Niacks estimated
from p+ p at /s = 5.02 TeV (black diamond), p +Pb at \/syy = 8.16 TeV
(blue squares), and Pb+Pb at \/syy = 5.02 TeV (red circles) collision data at
the Z resonance [60].
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Figure 3.4. Muon identification efficiency as a function of Niacks estimated from
p+p at /s = 5.02 TeV (black diamond), p + Pb at \/syy = 8.16 TeV (blue
squares), and Pb + Pb at /syn = 5.02 TeV (red circles) collision data at the
Z resonance [60].

with tracks in the inner tracker matched with tracks in the muon chambers), and
the p + p analysis probed the efficiency of “global muons” (muon tracks in the
muon chambers matched to tracks in the inner tracker). The different methods
made it difficult to draw meaningful comparisons between systems. Therefore only

the Pb + Pb tracking efficiency at the .J/1 resonance is shown in Fig. [3.6]
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Figure 3.6. Muon tracking efficiency as a function of Niracks estimated from
Pb+Pb at \/syny = 5.02 TeV (red circles) collision data at the .J/v resonance.
Other collision systems are not included due to a lack of commensurability of
the probed efficiencies among the different analyses.

3.4 Mass Scale and Resolution

In addition to the muon reconstruction efficiency, it is possible that the high occu-
pancy environment in central Pb + Pb collisions affects the precision and accuracy
of the reconstructed muon momentum. Since the mass of the J/i and Z are
well known, and the reconstructed mass is derived from the muon momentum,
the dimuon mass resolution provides a suitable window into the precision of the

momentum measurement.
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The mass resolution is obtained from the Gaussian width of the dimuon reso-
nance after all selections are applied, taking into account the natural width of the
resonance, divided by the world-average mass mppg, as reported by the Particle

Data Group (PDG) [24]. The quantity shown therefore represents the unitless
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relative deviation in the reconstructed mass compared to mppg.

In the case of the Z, the signal peak is described by a Breit-Wigner (BW)
function convoluted with a Crystal Ball (CB) function. The width of the BW
is fixed to the natural width of the Z (~2.5 GeV/c?), so the width of the CB
function, ocg, which is a free parameter in the fit, contains all the information
on the resolution of the detector. In the case of the J/¢, the natural width is
negligible, and the signal is described by a CB plus a Gaussian with different
widths to account for varying resolution in different pseudorapidity regions of the
detector. In this case, the width used to estimate the mass resolution is a weighted
average of the CB and Gaussian widths, weighted by the amount of signal contained
in each function. The estimated mass resolution of the .J/i¢ and the Z are shown
as a function of Ny.qas in Fig. [3.71 The resolution is consistent with a constant
value, which indicates that it is not affected by the level of tracker occupancy.

The mass scaling measures how accurately the detector reconstructs the known
mass of the resonance. It is obtained by dividing the reconstructed mass mg; by
the PDG mass mppg. It is worth noting that mass measurements are rare using
heavy-ion collisions because more more data and cleaner signals are available in
e.g. p+ p collisions. It is also not expected that a small bias on the momentum
scale will have a significant impact on the mass measurement because the natural
widths of the J/¢, T, and Z are very small compared to the detector resolution. A
bias in the mass scaling is therefore not a major issue for most heavy-ion analyses.
However, a degraded resolution could have more visible effects, such as altering
the signal to background ratio for resonances, for instance.

The estimated mass scaling is shown as a function of Ni.qe in Fig. 3.8 The
reconstructed mass is lower than the true mass, but this scaling is consistent across
the different collision systems and for all values of Ni.us, indicating that the
momentum scale is unaffected by the level of occupancy in the tracker or the data
taking year, and is accurate to approximately ~0.3% in the Z region and about

~0.1% in the J/1 region.

95



0.045

0.045

0.04

0.035

o
o
@

0.025

o
o
)

o
o
=
a

Mass Resolution (05/Mpypc)

©
o
=

0.005

1.2

Data/MC

0.8

SOOCemeO

L L L B R B

PbPb Data 5.02 TeV
pPb Data 8.16 TeV
pp Data 5.02 TeV
PbPb MC 5.02 TeV
pPb MC 8.16 TeV
pp MC 5.02 TeV

v

L L L L B

CM

Z Peak
15 <p! < 200 GeVic

N

o

02 04 06 08

1

12 14 16 18

2 22 HE'A

Iyl

Figure 3.9. Mass resolution as a function of dimuon rapidity |y**| estimated
from p + p (black diamond), p + Pb (blue squares), and Pb + Pb (red circles)
in real data (filled markers) and MC (open markers) at the J/¢ (left) and Z

A e
0.04f @ PbPbData5.02 Tev CMS 3
F ®M pPbData8.16 TeV 4
730'035} 4 pp Data5.02 TeV -
& E O PbPbMC5.02 Tev E
= 0.03 (1 pPbMC8.16 TeV -
) E 0 pPpPMC5.02TeV E
c 0.025— —
8 r L4 3
3 0.02F o) +{
3 C L] o % .
T 0.015F Q 0 3
7] = ' -
g C g ]
0-01§§ g J/Y Peak E
0,005 35<pl<30Gevic
| T B B WU B N NN RN RN PN N
g 1.2? ' [ E
I e -
O o8k ¢ ¢ =
0 02 04 06 08 1 12 14 16 18 2 22,24
Iyl

(right) resonances [60].
RN R e e
1.004— R
E CMS 7
1.002F 3
» MUYy e e E
8 F E
£ 0.998]- L] (] =
E 0.996 =
Q@ C |
S 0.994— —
n F e PbPb Data 5.02 TeV B
§ 0.992~ m pPb Data 8.16 TeV =
= oggi 4 pp Data5.02 TeV E
“*E O PbPb MC 5.02 TeV JIp Peak E
0.988— [ pPbMC 8.16 TeV W —
F 0 ppMC5.02Tev 3.5<pT<SOGeVIc .
0.986(— -
R N BTN S N BT N NN R PR R
£1.002F =
NS o Rty B B S E
80.998E- L] ig
0 02 04 06 08 1 12 14 16 18 2 22,24
Nl

e AT o e B mmanE
1.004— —
F CMS 1
1.002F E
_ e R -
g E 4 O B
g
£ 0.998— P -
£ 0.996F $ 3
Q@ C |
S 0.994 =
(%) L @ PbPbData5.02 TeV J
§ 0.992 m pPb Data 8.16 TeV -
= oggi 4 pp Data 5.02 TeV E
““E O PbPbMC 5.02 TeV Z Peak E
0.988— [ pPbMC 8.16 TeV W 3
E o ppMC5.02 Tev 15<pT<200 GeV/c ]
0.986— -
P I N N N RS NN BTN N N R e
21.002E . %
T ol g - — 5
© E E|
80998 o N H ¢ N =3
0 02 04 06 08 1 12 14 16 18 2 22,24
Iyl

Figure 3.10. Mass scaling as a function of dimuon rapidity |y**| estimated from
p+ p (black diamond), p+ Pb (blue squares), and Pb + Pb (red circles) in real
data (filled markers) and MC (open markers) at the J/1¢ (left) and Z (right)
resonances [60].

The dependence of the mass resolution and the mass scaling on dimuon rapidity

Yy was also studied. The mass resolution as a function of |y*#| is shown in Fig.

at the J/1 (left) and Z (right) resonances. The mass scaling is similarly shown

in Fig. [60]. The resolution varies significantly with rapidity, due mainly to
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the non-uniformites in the magnetic field in the forward and backward rapidity
regions of the detector which tend to smear the resolution. The different detector
technologies in the barrel and endcap also complicate the comparison between the
regions.

The mass scaling decreases slightly with rapidity at the J/v peak in data but
not in MC, presumably due to the said non-uniformities. At the Z peak, the trend
is more prominent and is present in both data and MC. In almost all the rapidity
bins, the mass scale tends to be lower in data compared to MC. The reason for the
differences between data and MC indicates some imperfection in the simulation

that warrants further study.
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Figure 3.11. Mass resolution as a function of py estimated from p + p (black
diamond), p + Pb (blue squares), and Pb 4+ Pb (red circles) in real data (filled
markers) and MC (open markers) at the J/¢ (left) and Z (right) resonances.
The data in the J/v region are restricted to 2.1 < |n#| < 2.4.

The mass resolution and scaling are also presented as functions of py in Fig.
and Fig. at the Z (right) and J/4 (left) peaks, respectively. In the case of the
J/1, the pseudorapidity range is restricted to the forward region 2.1 < || < 2.4,
because that region allows the largest range of pr. These figures demonstrate that
the detector maintains satisfactory performance for reconstructing muons for a
large range of momenta, as high as 200 GeV/c and as low as 2 GeV /¢, in all three

collision systems covering a wide range of Ni acks-
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Figure 3.12. Mass scaling as a function of pp estimated from p + p (black
diamond), p + Pb (blue squares), and Pb 4+ Pb (red circles) in real data (filled
markers) and MC (open markers) at the J/v¢ (left) and Z (right) resonances.
The data in the J/1 region are restricted to 2.1 < |n#| < 2.4.

A significant difference in performance between collision systems is not observed
as a function of |y**| or pr. However, future studies may restrict Pb + Pb to the
lower-efficiency region at high Ni,qs to investigate how the degradation varies
with rapidity and pr.

Estimates of mass resolution and mass scaling were carried out previously on a
p—+p dataset at a center-of-mass energy /s = 7 TeV in 2010 [65]. A comparison of
our results versus probe muon pseudorapidity n* to the previous results is shown
in Fig. [3.13] where the division by the PDG mass mppg has been omitted for ease
of comparison. The results of the previous analysis were averaged over the forward
and backward pseudorapidity bins in order to show them as a function of |n#|.
Despite differences in the collision energy, the data-taking year, the reconstruction
algorithms, and the analysis strategies, there is good agreement between the results

of the two analyses.

3.5 Performance Summary

Performance studies were carried out using Pb + Pb data at /syny = 5.02 TeV

and p + Pb data at \/syny = 8.16 TeV. The efficiencies were also measured in
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Figure 3.13. Comparison of mass resolution (left) and mass scaling (right) as a
function of muon pseudorapidity at the J/v peak in p + p collisions from 2017
(black diamonds), without division by the PDG mass mppg, with estimates
from a previous analysis (four-pointed stars). Filled markers represent real
data and open markers represent MC [60].

p + p data at /s = 5.02 TeV for comparison across all systems as a function of
charged-particle multiplicity. Efficiencies of muon reconstruction, identification,
and triggering, as well as dimuon mass scales and resolutions were estimated using
the data-driven tag-and-probe technique. Previous studies in p + p have now been
extended to the heavy-ion environment [60].

We observe a reduction in the high-level trigger efficiency in Pb 4+ Pb at high
values of Ni.as that are not attainable in the p + Pb or p 4+ p environments.
The relative drop in efficiency in Pb + Pb between the lowest and highest N acs
bins is about ~8%. This reduction reflects the extremely high multiplicities and
high occupancies in the inner detector in the most central Pb + Pb collisions.
A similar trend is seen in the estimated muon identification efficiencies but to a
much lesser extent. The drop in efficiency is on the order of ~1%. In both cases,
a decrease in efficiency with activity was expected due to the fact that both the
muon identification and high-level trigger algorithms rely on information from the
inner tracker, which is heavily occupied in the most central Pb 4+ Pb collisions.

In all cases, the efficiencies are high (typically above 90%), even with extremely
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high occupancies, and the dimuon mass scale and resolution are observed to be
unaffected by the high-occupancy environment. This excellent performance of the
CMS detector has made possible a robust muon and dimuon program in the Pb+Pb
environment, leading to many muon-based measurements, such as the J/i the T,

the Z, the top quark, and Z + jets.
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Chapter 4

Data Selection and Simulation

4.1 Dataset

The data analyzed in this thesis are from the most recent Pb+Pb run at the LHC,
collected in November and December 2018 with /syx = 5.02 TeV using a dimuon
trigger in CMS, and correspond to an integrated luminosity of 1.6 nb~!. The data
are stored in a format called analysis object data (AOD), which contains all of the
information about the event. The prompt AOD datasets are listed in Table
The data were reduced to an Onia (from quark-“onia”) tree which contains
information on all the dimuons in the dataset along with general event information
such as centrality, Niracks, E'%F, etc. The Onia tree used in this thesis is stored in

CERN’s open source storage (EOS) at the following location:
/eos/cms/store/group/phys_heavyions/dileptons/Data2018/PbPb502TeV/

TTrees/ReReco/AOD/DoubleMuon/ReReco_Oniatree addvn_parts*.root.

The Onia tree includes information on all the triggers satisfied by each dimuon.
These are stored in a binary format where each trigger is represented by one bit.
In each bit, a 1 means that the trigger was satisfied and a 0 means that it was
not. The high-level triggers corresponding to each bit are listed in Table 4.1 The
information in the table is called the “HLT menu” for the 2018 Pb + Pb run.

Each trigger has a descriptive name beginning with HLT which stands for “high-

level trigger,” followed by HI which stands for “heavy ion” because these triggers
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are designed for heavy-ion events. The level of the trigger is denoted by L1, L2, or
L3, and is related to how loose or tight the trigger criteria are. Some triggers look
for single muons with pr above a certain threshold, such as Mul2 which triggers
on a single muon with pyr > 12 GeV /c. Other triggers look for dimuons, hence the
DoubleMu in the name. Cuts can be applied to centrality (Centrality), mass (M),
number of quality hits in the tracker (NHitQ), and other variables. Triggers can be
updated from time to time, and the version number is displayed at the end of the

name, usually as v1.

PbPb 1.6 nb IS,y = 5-02 TeV
E TTTT | T T T T T TTT | T T T TTT |
[ Trigger selections CMS
10— Double muon inclusive E
F mmm J/y region 3
105 Y + high masses -
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Figure 4.1. The full dimuon invariant mass distribution for dimuons in the
2018 Pb + Pb dataset satsifying HLT_HIL1DoubleMuOpen_v1 (Double muon in-
clusive) in blue, HLT_HIL3MuONHitQ10_L2MuO_MAXdR3p5 Mito5_v1 (.J /1 region)
in red, and HLT_HIL3Mu2p5NHitQ10_L2Mu2 M7toinf vl (YT + high masses) in
yellow [66].

Figure demonstrates how the HLTs are used to select events of interest.
The figure shows the dimuon invariant mass distribution for dimuons passing three

distinct triggers:
e HLT HIL1DoubleMuOpen v1 (Double muon inclusive),

e HLT HIL3MuONHitQ10_L2MuO_MAXdR3p5 M1to5 vl (J/v region),
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Table 4.1. HLT menu for 2018 Pb+Pb data. The prescales and rates are typical
values and are collected from LHC run 327524 on December 1st, 2018.

Bit Trigger Name Prescale | Unprescaled Rate (Hz)
1 HLT_HIL1DoubleMuOpen_v1 1223 2225.86
2 | HLT_HIL1DoubleMuOpen_0S_Centrality.40_100_v1 1 105.75
3 HLT_HIL1DoubleMuOpen_Centrality_50_100_v1 1 129.35
4 HLT_HIL1DoubleMu10_v1 1 2.30
5 HLT_HIL2_L1DoubleMu10_v1 1 0.75
6 HLT_HIL3_L1DoubleMu10_v1 1 0.46
7 HLT_HIL2DoubleMuOpen_vi 953 1143.60
8 HLT_HIL3DoubleMuOpen_vi 1 53.22
9 HLT_HIL3DoubleMuOpen_M60120_v1 1 0.40
10 HLT_HIL3DoubleMuOpen_JpsiPsi_vi 1 8.02
11 HLT_HIL3DoubleMuOpen Upsi_vi 1 5.75
12 HLT_HIL3MuO_L2MuO_v1 269 333.56
13 | HLT_HIL3MuONHitQ10_L2MuO_MAXdR3p5_Mito5_v1 1 65.49
14 HLT_HIL3Mu2p5NHitQ10_L2Mu2 M7toinf_vi 1 59.53
15 HLT_HIL3Mu3_L1TripleMuOpen_vi 0 0.00
16 HLT_HIL1MuOpen_Centrality_70_100_v1 0 0.00
17 HLT_HIL1MuOpen Centrality_80_100_v1 1 37.58
18 HLT_HIL2Mu3_NHitQ15_v1 0 0.00
19 HLT_HIL2MuS_NHitQ15_v1 0 0.00

20 HLT_HIL2Mu7_NHitQ15_v1 0 0.00

21 HLT_HIL3Mu3_NHitQ10_v1 1 148.45

22 HLT_HIL3Mu5_NHitQ10_v1 1 43.12

23 HLT_HIL3Mu7_NHitQ10_v1 1 12.64

24 HLT_HIL3Mul2_v1 1 12.39

25 HLT_HIL3Mul5_v1 1 6.78

26 HLT_HIL3Mu20_v1 1 3.69
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e and HLT_HIL3Mu2p5NHitQ10.L2Mu2 M7toinf v1 (T + high masses),

corresponding to bits 1, 13, and 14, respectively. The J/1 trigger focuses on the
J/1 region and cuts out much of the higher mass dimuons that would not be
needed in a J/v¢ analysis. The T trigger does the same for the T, cutting out
much of the lower mass dimuons and focusing on the T peak. The double muon
inclusive trigger selects all dimuons, but does not necessarily contain the other two
datasets. Similar plots have been made for every LHC run, in which the dimuon
mass distribution has always been drawn in yellow, and hence this type of plot has
received the nickname ” Yellow Plot.”

A large prescale (~1000) was applied to the double muon inclusive trigger
during the run, so that only about 1 out of every 1000 events that could satisfy
this trigger were actually recorded. Hence the prescale effectively reduces the
sampled luminosity of the triggered events by the prescale factor. The prescale
was put in place because of the high rate of events that could satisfy the trigger.
The rate, which can reach above 3 kHz, had to be slowed down to allow the proper
amount of time for the trigger to analyze and store each event. This large prescale
can be contrasted with the T trigger, which had a prescale of 1. If it were possible
to give the double muon inclusive trigger a prescale of 1, then the normalization
would effectively be increased by a factor of 1000, and the histogram would contain
far more events than the other triggers.

Upsilon candidate events for this thesis were selected using the specialized
trigger

HLT_HIL3Mu2p5NHitQ10_L2Mu2 M7toinf v1,

corresponding to bit 14, which requires a pair of muons with dimuon invariant
mass at least 7 GeV/c?>. One of the muons is required to pass an L2 trigger,
reconstructed with track fits in the outer muon spectrometer, with pr > 2 GeV/ec.
The other muon is required to pass an L3 trigger, reconstructed from an L2 muon
combined with inner tracker information, with pr > 2.5 GeV/c. The L3 muon is

also required to have at least 10 high-quality hits (NHitQ10). The efficiency of this
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trigger will be discussed and efficiency corrections will be calculated in Sec. [5.3]

4.2 Monte Carlo Simulation

Table 4.2. Monte Carlo samples for 2018 5.02 TeV Pb + Pb collision

Type Dataset Events

Double Muon | /HIDoubleMuon/HIRun2018A—04Apr2019—v1/A0D 69507589

triggered data

Minbias MC for | /MinBias Hydjet Drum5F_2018_5p02TeV/ 999111
embedding HINPbPbAutumn18GS—103X_upgrade2018

_realistic HI_v11—v1/GEN—SIM

Embedded MC | /Upsilon1S_pThat—2_TuneCP5_HydjetDrumMB 4987183
_5p02TeV_Pythia8/HINPbPbAutumn18DR—mvads

_103X_upgrade2018_realistic HI_v11l ext1—v1/AODSIM

Embedded MC | /UpsilonlS_pThat—2_TuneCP5_HydjetDrumMB 4749176

_5p02TeV_Pythia8/HINPbPbAutumnl18DR—mvad8

_103X_upgrade2018_realistic HI v11—v1/AODSIM

Monte Carlo simulations of the collisions and detector response are useful for
testing whether or not current physics models accurately reproduce the real data
that has been collected, and also serve as a testing ground for determining how
well the detectors reconstruct the data and how accurately the analysis methods
extract quantities of interest.

The MC used in the v, analysis contains Ts embedded in Pb 4+ Pb collision
events reconstructed by a virtual CMS detector. This MC is used in calculations of
acceptance and efficiency, and in a closure test described in Sec. [6.6] Signal events
are generated using the high-energy physics event generator PYTHIA8.212 [67]
with a set of parameters (“tunes”) called Tune CP5 [6§]. These tunes are based on
the NNPDF3.1 set of parton distribution functions [69] at leading (LO), next-to-

leading (NLO), or next-to-next-to-leading order (NNLO) calculations in perturba-

65



tive quantum chromodynamics and the strong coupling evolution at LO or NLO at
5.02 TeV. The cross sections of T mesons were calculated from 25,2 P;.3 D; bot-
tomonium states (see Fig. via the colour-singlet [70, [71] and colour-octet [72]
mechanisms. Events are required to include at least one Y(1S) with p¥ > 2.5 GeV /c
that decays to two daughter muons satisfying p4. > 0 and |n*| < 2.5. All the gen-
erated T events are embedded into a Pb + Pb background event simulated by a
heavy-ion event generator called HYDJET (“HYDrodynamics plus JETS”) version
1.8, tune Drum5F [73]. The MC events are stored in AOD format to match the
real data. The MC datasets are shown in Table [4.2]

4.3 Acceptance Cuts

The CMS detector covers a wide kinematic range, but it does not cover the entire
available phase space. For example, many muons never reach the muon chambers
becase their transverse momentum pp is too low. In order for a muon to reach
the muon detectors in the barrel region (|n| < 1) outside the solenoid (about 4 m
from the interaction point), the radius of curvature must satisfy R > 2 m. This

means the minimum p7 required for a muon to be detected in that region is, using
Eq. (2.7),

kg - m

Prmin ~ (1.609 x 107" C)(3.8 T)(2 m) ~ 1.2 x 107 ~ 2.3 GeV/e.

S

The muon detectors in the endcap extend the pseudorapidity coverage to |n| <
2.4. The pr threshold for muon detection varies with pseudorapidity, since the
endcap detectors are closer to the beamline. A plot of the distribution of muons
produced from YT decays in the MC dataset is shown in Fig. as a function
of pr and |n|. An “acceptance cut” is applied to the data, indicated by the red
curve. Specifically, we accept only muons into the dataset with pr > 3.5 GeV/c

and within the pseudorapidity range |n| < 2.4.
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Figure 4.2. The distribution of muons produced from YT decays in MC that pass
reconstruction and hybrid-soft muon identification criteria versus pr and |n)|.
The red line shows the acceptance cut.

4.4 Additional Cuts

Additional cuts are applied to the dimuon dataset in order to reduce background
and focus on the T signal. Only pairs of muons with opposite sign are accepted,
because the two daughter muons resulting from the decay of the T always have
opposite sign. Each candidate muon is required to pass an idenfication requirement

called HybridSoftId, which imposes the following requirements on the muon:
e at least 6 hits in the silicon strip layers,
e at least one hit in the pixel detectors,

e a distance of closest approach between the track and the event vertex less
than 0.3 cm in the transverse plane and less than 20 cm in the longitudinal

direction,

e the track should be matched to a track in the muon detectors.

Additionally, the reconstructed dimuon vertex probability is required to be greater

than 1%.
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Finally, the dimuon invariant mass is restricted to the region
8 GeV/c® <mys,- < 14 GeV/c.

This mass window is typically used in T analyses, as it provides a wide range for
extraction of the Y(1S), T(2S), and T(3S) signals. Since there is no interference
from other known dimuon resonances, this mass region provides a good anchor for

the background description.
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Chapter 5

Analysis

5.1 Signal Extraction

The raw yields of the T states are obtained via unbinned maximum-likelihood
fits to the invariant mass spectra. Quarkonia signals are often fit with a Crystal
Ball (CB) function, first implemented in Ref. [74]. The CB function consists of a
Gaussian peak with a power-law tail grafted onto the lower-valued side such that

the function and its derivative are continuous. It is given by,

exp(— for =% > —q«
CB(z;%,n,a,0) = N P—"z) 3 (5.1)
A-(B—-=5)™ for =F < —a,
where
A ( n )” exp o)
_ ) exp [ 51
|| 2
n
B = — —|qaf. (5.2)
o]

The advantage of the CB over a simple Gaussian is that its power-law tail can
account for quarkonia which are reconstructed at lower masses due to energy loss
of the decay products, usually via bremsstrahlung radiation of the muons in the
detector material.

Due to the varying resolution in the detector in the forward and midrapidity
regions (see Fig. , the T signals at CMS are fit with a sum of two functions with

different widths. Two possible combinations were tried, a CB plus a Gaussian, and
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a sum of two CBs called a “Double Crystal Ball” (DCB). After some goodness-of-
fit tests using Monte Carlo data, it was decided that the DCB performed better
and it was chosen as the nominal fit function for the Y resonances [27, 3I]. The

double Crystal Ball signal function is defined by

L1 (mypp; mig, n, No,0n, o, 01, f, )
= f-CB; (mummlSanl;alaUl)

+ (1= f) - CBa (my; mus, na, o, - 01) (5.3)

and normalized by the T(1S) yield Mjs. The parameters a and n are the tail pa-
rameters, where « is related to the location where the power law tail is grafted onto
the Gaussian and n is the exponent. The parameter f is the ratio of the amount of
signal contained in the first CB over the amount of signal in the second CB. The
parameter o represents the Gaussian width of the first CB, and x represents the
width of the second CB over 0. The CB plus Gaussian is defined similarly and was
kept as a reasonable alternative fit function to be used for estimating systematic
uncertainties.

The background function is an error function multiplied by a decaying expo-

nential, defined by

My — Herr
muu) ‘ 1+ Erf( \“/‘%Ue” >

. 5 (5.4)

B (muu; Herry Oerr, )\) = exXp (—

The decaying exponential models the dominant combinatorial background. The
error function is there to model the turn-on shape in the dimuon invariant mass
spectrum around ~ 8 GeV /¢? which arises from the single-muon requirement pf. >
4 GeV/c. In the high-pt bins (pf > 6 GeV/c), the turn-on becomes negligible and
the background can be modeled simply by an exponential.

Due to the large number of parameters in the three DCB functions (nine for
each DCB), several physics-motivated constraints were applied. First, the T(2S)
and Y(3S) masses and widths were constrained such that their ratio to the mass

and width of the Y (1S) should be the same as the ratio of the world-average masses
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mid o as defined by the PDG [24] as follows,

nS
_ Mppg 5.5
Mps = Mi1s* —35 ()
PDG
S
mn
PDG
Ops = 018 * S (56)
PDG

while the mass and width of the Y(1S) were left as free parameters. The world-
average masses m&ip 4 are tabulated in Table .

Within each DCB, the radiative tail parameters of the two CB functions were
constrained to be the same (i.e. a3 = a3 and n; = ny). The three T states were
also constrained to have the same tail parameters and the same fraction of yield
in one CB over the other, since the physics of the radiative tail is the same for
all three, and the effects of the kinematic differences will be much smaller than
the uncertainties on the tail parameters. With these constraints, the DCB is now

more simply defined as

ElS(muu; mis, N, @, 0, f7 :E)

= f ' CBl (muu;m187n> «, U) + (]- - f) ' CBQ (muu; mis,n, o, T - U) )

(5.7)
and the functions for the higher states are given by
mEd mida
ETLS (muu) = ZIS (muu; mis - —1s n,«,o - 1S f7 fL’) . (58)
Mpba PDG

The total signal is the sum of the three DCBs scaled by the yields N,g,

S(muu;Msa NQSw/\/?)Sy mis, n, &, 0, fv :B)

= le . ZIS (mw) +NQS . ZQS (mw) —|—N33 . 235 (mw) . (59)

After these constraints, and putting all the functions together, there are 9
total signal parameters («, f, mis, n, o, x, and the 3 yields) and 4 background

parameters (A, flerr, Oerr, and the background yield) which are allowed to vary in
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the fits. The final fit function can be summarized as

f<muy; N187N2SJN357NBkg> mis,n,a, g, f7 Xy Merry Oerr, /\)

= S(muu;N187N287NSSa mis, N, o, 0, f7 x) + NBkg . B(m,u,u; Merr; Oerr, )\)
(5.10)

In order to narrow down the relevant phase space for the signal parameters, an
iterative fitting approach was taken. In the first round of fitting, the five signal
shape parameters (a, f, n, o, and x) were all free. The fits were required to pass a
set of quality checks: First, the chi-squared per degree of freedom (x?/dof) must be
less than 4.0 and greater than 0.5, and second, the fit parameters a and n must not
hit their limits. Specifically, the distance of the fitted value from each limit must
be greater than 3% of the total available range of the parameter. The parameter
limits were the same as those used in other recent T analyses by CMS [27, [31].

In each of the subsequent rounds of fitting, certain signal parameters were fixed
in order to decrease the available phase space and determine what values could be
considered physically reasonable for the other free parameters. The information
obtained from these iterative fits was used to construct Gaussian constaints on the
signal parameters for the nominal fits. In this way, the parameters were still mostly
free, but constrained to physically reasonable regions of the parameter space. The

process is outlined below:

e Round RO: All parameters free.

e Round R1: « fixed to the average value from R0O. The average value of n
and its RMS from this round are used to construct the Gaussian constraint

on n.

e Round R2: n fixed to the average value from R1. The average value of «
and its RMS from this round are used to construct the Gaussian constraint

on .
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e Round R3: n fixed to the average value from R1 and « fixed to the average
value from R2. The average value of x and its RMS from this round are used

to construct the Gaussian constraint on z.

e Round R4: (Nominal fits) Gaussian constraints are applied to n, o, and z as
determined from their average values from the previous fits. The parameter
f is also constrained bin by bin using the fitted value and error from each fit

in round R3.

e Alternative constraints for estimating systematic uncertainty are obtained

by first fixing n in round R1 instead of a.
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Figure 5.1. An unbinned maximum-likelihood fit to the invariant mass spectra
in Pb+Pb at \/syn = 5.02 TeV in the integrated bin. The data are plotted as
black circles, and are fit with the blue line. The signal and background compo-
nents of the fit function are plotted as red and blue dashed lines, respectively.
The pull distribution in the bottom panel shows the difference between each
data point and the fit function.

An example fit is shown in Fig. [5.1] where the data are shown as black circles
and the fit function is the blue curve. The separate signal and background functions
are displayed as red and blue dashed curves, respectively. The pull distribution

in the bottom panel plots the difference between the data and the fitted curve,
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divided by the uncertainty in the data. The total signal extracted from this fit to
uncorrected data in the integrated bin is displayed in Table [5.1]

Table 5.1. The total yields of Y(nS) in the uncorrected 2018 Pb + Pb dataset,
obtained from an unbinned maximum-likelihood fit in the integrated bin.

Quarkonium state Total yield
T(1S) 29381.5 £ 588.139
T(2S) 3438.51 £ 289.264
T(3S) 817.114 + 274.433

The final nominal fits for the vy analysis are carried out simultaneously in four
bins of A¢, the azimuthal angle made by the T relative to the event plane, as
described in Sec. [5.6] These fits can be seen in Figs. [5.8] through

5.2 Acceptance Corrections

While the acceptance cut on the muon kinematics described in Sec. ensures
that we have good data, it results in an underestimate of the number of Ts in the
events. Not all of the Ts in the kinematic region of interest (|n| < 2.4) will be
reconstructed from the accepted muons. Some of these Ts decay into two muons of
which one may fall outside the acceptance. Because of the cut, this perfectly good
T will be left out of the analysis. To account for these missing T's, we rescale the
extracted T yields by factors called “acceptance corrections” which we estimate
from Monte Carlo simulations.

We estimate acceptance corrections using GEN-level Monte Carlo (before the
simulation of the detector response and reconstruction), so that we have a priori
knowledge of all the Ts decaying to two muons. We check how many of the Ts
have both muons passing the acceptance cut. The ratio of passing Ts over total
Ts is the acceptance correction factor. The correction factors are estimated as a
function of pi and then applied to the data by weighting each T by the inverse of
the correction factor.

It can be seen in Fig. that the acceptance corrections show a strong depen-
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Figure 5.2. Acceptance corrections for T(1S) as a function of pl with (closed

circles) and without (open circles) pf. weighting. The effect of the weighting is

negligible.
dence on pf.. A large number of Ts are missed at low pJ. with a minimum around
~ 5 GeV /¢, but a progressively larger portion of the Ys are properly captured with
increasing p%.. The dependence can be understood from the decay kinematics. The
Ts with high p are more likely to have their momentum oriented toward the bar-
rel region of the detector, so the decaying muons are more likely to be detected
in that region as well. The angle between the two daughter muons decreases with
increasing py., resulting in an even greater likelihood of each muon being detected
in the barrel region. The low-p} Ts, on the other hand, decay with a very wide
angle, making it more likely that one of the muons will lie outside the barrel region
and miss the acceptance cut. However, at very low pf (< 5 GeV/c), the Ts are
likely headed toward the endcaps, and a significant number of these will decay to
two muons with a large enough opening angle that they will both be detected in
the barrel region.

To improve the accuracy of the MC simulation, the pf. distribuion of single

muons is weighted to match the corresponding p4. distribution in data. The accep-
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tance corrections as a function of py. are shown in Fig. [5.2| with and without the

P weights. The effect of the weighting is negligible.

5.3 Efficiency Corrections

Similar to the acceptance cut, the steps taken to reconstruct, identify, and trigger
on Ts are not 100% efficient and therefore underestimate the true T yield. Hence,
the yields must be scaled up by “efficiency corrections” in the same way that the
acceptance corrections were applied. We estimate the efficiencies of the selection
criteria using generated (GEN) and reconstructed (RECO) MC. The GEN MC
allows us to know exactly how many Ys were generated in each simulated event.
The RECO MC has passed through a simulated detector response, and thus allows
us to estimate the fraction of Ts that passed all the selection criteria. All dimuons
in RECO and GEN MC must have already passed the acceptance cut.

As noted in Sec. the MC is not a perfect description of the real data, and
these differences can affect the efficiencies that are estimated from MC. It is there-
fore necessary to rescale the efficiencies by scale factors derived from comparisons
of data to MC. These scale factors are calculated from single-muon efficiencies us-
ing the tag-and-probe method, as discussed in Sec. 3.1 where the scale factor is
the ratio of the single-muon efficiency estimated from data over the single-muon
efficiency from MC, as follows,

o i
SF(ph, ") = %. (5.11)
The T efficiency is then calculated as

NEE acc., muid., trig. o
-7 — Mhwcolec Bl o SR ) x SE@ET ), (5.12)
Nigxlace.]

where the ® indicates that, for each dimuon, the appropriate scale factor on the
right is applied independently to each of the two muons. In the case of the T trigger,
the scale factor applied to each muon depends on whether the muon passed the L2
or L3 single-muon trigger (see the T trigger description in Sec. . In the cases

where both muons pass the L3 trigger, one of them is randomly chosen to act as the
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L2 muon. The numerator N{{Eég lacc., muid., trig.] is the number of reconstructed
opposite-sign dimuons that pass the acceptance cut, muon identification, and the
T trigger. The denominator Nlgy[acc.] is the number of generated Ys that pass
the acceptance cut.

The final estimated efficiency corrections are shown in Fig. as a function
of pr in bins of centrality. The efficiencies obtained without the p7 weighting are
also displayed. The effect of the weighting is observed to cause an increase in the
efficiency at low pr and a reduction at high pr. The inverse of the efficiencies
obtained with the p4. weighting were applied as weights to each T candidate in the
data before fitting.
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Figure 5.3. Dimuon efficiency corrections for T(1S) as a function of p/* in
centrality ranges 0-30% (upper left), 30-50% (upper right), and 50-100% (lower
middle), with (closed circles) and without (open circles) p. weighting.
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5.4 Event Plane Estimate

In this analysis, the elliptic flow coefficient v, is estimated using the event plane
method. This method has been used previously to estimate the elliptic flow of
charmonium [47]. The event plane is defined by the beam direction and the line
connecting the centers of the two nuclei. It is customary to use the term “reaction
plane” when referring to the true plane which cannot be known in real data, and
to use the term “event plane” when referring to our estimate of where the plane is,
although they are often used interchangeably. The angle 1 is the angle between the
event plane (or reaction plane) and the x-axis, as seen in Fig. |5.4] The azimuthal
angles in a vy analysis must all be measured with respect to this plane, which is
why the azimuthal plots and equations in this thesis are in terms of A¢ = ¢ — ¢
rather than ¢.

Figure 5.4. Depiction of a heavy-ion collision event, generated by the Glauber
model simulation described in Sec. [[.3.1] The beamline extends into and out
of the page. Nucleons are represented by the blue, green, and red circles. The
participating nucleons are marked in red. The reaction plane angle is indicated
by the angle .

The event plane is estimated using energy deposited in a region of the HF
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spanning 3 < |n| < 5. The decision to use this region of the detector avoids
autocorrelations by avoiding overlap between the data used to find the event plane

and the data used to calculate the v,, given the event plane. We define a vector

pointing along the event plane angle where
Qnz = Z w;cos(ng;) (5.14)

and
Quy = Y _ wisin(ng;), (5.15)

where the sums are over all the particles, and the weights, w;, are the energies of the
particles. The subscript n represents the order of the event plane. Measurements
of elliptic flow make use of the second-order event plane, n = 2. The event plane

angle is then given by

Yy = Lo (%) (5.16)

n nT

Given the randomness of the event plane angle, we expect the average values
of Qny and @y, over many events to be zero. If they are not, then it is likely that
the beam line does not pass through the exact center of the CMS detector and it

is necessary to recenter the distributions as follows:
Qne = Qna — (@na), (5.17)
Q’//'Ly = Qny - <Qny> (518)

Then the recentered reaction plane angle is given by

1 /
P = Etan_l( :zy> (5.19)

nx

The components of the @), vector before and after recentering are plotted in
Fig. There is a slight shift between the raw and recentered distributions, but
it is very small compared to the width of the distributions. The effect on the event

plane distribution is therefore small.
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Figure 5.5. Recentering of the Q2 vector components. The raw distribution is
shown in blue and the recentered distribution is shown in red.

Because of its randomness, we expect the recentered event plane angle to have
an isotropic distribution. However, asymmetries in the detector acceptance and
other laboratory effects could affect the distribution and the subsequent analysis.
It is therefore necessary to flatten the event plane distribution via some transfor-
mation.

We let ¢/ represent the raw event plane angle and p(¢)') represent the distribu-
tion of the event plane angle over all T events. In order to flatten the distribution,
we apply a transformation ¢ — 1 such that p(y)) = constant. If the range of
the event plane angle is restricted to [—7/2,7/2], then we find specifically that
p(¥) = N/m, where N is the total number of T events. Assuming a continuous

transformation, we observe that

p(Y)dip = p(¢')dy'. (5.20)
We then integrate both sides of the equation to find
T w/2 ) )
o=2 [ s (5.21)
N —7/2

We then expand p(¢') as a Fourier series,

Jmax

p(¥') = [A;cos(2j1)) + Bjsin(2j4)], (5.22)

J=0
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where only even frequencies have been kept because the period is 7w rather than

2m. The following formulae can be derived from the Fourier series:

N
Ag=— 2
0 7T’ (5 3)
By =0, (5.24)
2N
A= 7(005(2]’1//)} for 7 >0, (5.25)
B; = &<sin(2jw’)> for j > 0. (5.26)
7T

The () represents the averages, which are taken over all events of interest. Inserting
the above formulae into Eq. and carrying out the integral, setting arbitrary
constants to zero, we find

]max

v=v-3 (o) eost2juf) = (costzgu)sin@ie’) ) (520

where 1)’ is the event plane angle before flattening and v is the event plane angle
after flattening. The quantity jnax is the order of the flattening correction. In
theory it can be infinite, but in practice a value of 21 was more than sufficient.
In this analysis, the flattening procedure was carried out in three centrality bins:
10-30%, 30-50%, and 50-90%. The flattened nominal event plane distribution
as a function of v is shown in Fig. (upper left) with the raw and recentered

distributions shown for comparison.

5.5 Event Plane Resolution Correction

As discussed in the previous section, the event plane angle is estimated from an
analysis of the momenta of particles emanating from the collision. But because
the number of particles in the detector is finite and the momentum resolution of
the CMS detector is imperfect (see Sec. , the resolution of the event plane
angle estimate is limited. This lack of resolution in the event plane angle tends
to smear the distribution of Y yields as a function of A¢, decreasing the size of
the oscillations (see Figs. through , and leading to an underestimate

of the vy. To correct for this lack of resolution, the raw extracted v, must be
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Figure 5.6. Recentering and flattening of the event plane (¢) distributions as
estimated from the forward and backward HF (upper left), the backward HF
(upper right), the forward HF (lower left), and the tracker at midrapidity (lower
right). The raw distribution is shown as a blue dotted curve, the recentered
distribution is shown as a red dashed curve, and the flattened distribution is
The flattened distribution is observed to be

shown as a green solid curve.

uniform in all cases. The event planes plotted are from candidate YT events in
the centrality range 10-90%.
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Figure 5.7. The resolution correction factor as a function of pr (upper left),
rapidity (upper right), and centrality (lower middle).

divided by an event plane resolution correction factor. This is implemented using
the three-sub-event technique [75] which was also used in the vy analysis of the
J /v [T,

The three-sub-event technique relies on three independent pseudorapidity re-
gions to construct three independent event plane estimates which are then used
to estimate the event plane resolution. The three regions used are —5 < n < —3,
corresponding to the HF at negative pseudorapidity, 3 < n < 5, corresponding
to the HF at positive pseudorapidity, and —0.8 < 1 < 0.8, corresponding to the
tracker in the barrel region. The three regions are kept at least 2 units of rapidity

apart from one another to minimize correlations. Each of the event planes is also
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recentered and flattened through the process described in Sec. [5.4] Plots of each
of the event plane distributions estimated from the different regions are shown
in Fig. 5.6, The raw distributions are observed to be nonisotropic, especially the
distribution of event planes estimated from the tracker, indicating asymmetries
in the detector. However, all the distributions look uniform after the recentering
and flattening procedure. The event-by-event values are then used to obtain the
resolution correction.

For each dimuon, whichever event plane angle was estimated from the region of
the detector farthest away from the dimuon in pseudorapidity is given the label ¢4,
the event plane angle estimated from the tracker in the barrel region is given the
label ¥¢, and the the other event plane angle is given the label ¢/Z. The resolution
correction R, is then given by:

. \/ (cos(2(44 — wP))) {cos(2(44 — ¥©)))
(cos(2(y? = ¢))) ’

where the () indicates an average taken over all events used in the analysis.

(5.28)

The resolution correction factor estimated in each analysis bin is plotted in
Fig. 5.7 The raw vy values extracted from the fits to the A¢ distribution are
divided by these resolution correction factors, bin by bin, to obtain the corrected

vy Tesults.

5.6 Fitting the v

With our estimate of the event plane, we proceed to estimate the value of the
azimuthal angle of the T relative to the event plane, A¢p = ¢ — 9, for each T
candidate in the data. We first fit the dimuon invariant mass spectrum in bins
of pr, n, and centrality. Each of these bins is then split into four bins of |Ag|
which are fit simultaneously to extract the azimuthal distribution of yields in each
kinematic region. Because of the azimuthal symmetry of the CMS detector, all of
the parameters of the fit except for the T yields and the number of background

events are constrained to be the same across the four bins. These fits can be seen

in Figs. through [5.17
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Figure 5.8. Nominal fits to data with 0 < p4"" < 3 GeV/c and centrality 10-90%
in the four |A¢| bins: [0,7/8) (upper left), [r/8,7/4) (upper right), [r/4,37/8)
(lower left), and [37/8,7/2) (lower right). The data are plotted as black circles,
and are fit with the blue line. The signal and background components of the
fit function are plotted as red and blue dashed lines, respectively. The pull
distribution in the bottom panel shows the difference between each data point
and the fit function.
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Figure 5.9. Nominal fits to data with 3 < p4"" < 6 GeV/c and centrality 10-90%
in the four |A¢| bins: [0,7/8) (upper left), [r/8,7/4) (upper right), [r/4,37/8)
(lower left), and [37/8,7/2) (lower right). The data are plotted as black circles,
and are fit with the blue line. The signal and background components of the

fit function are plotted as red and blue dashed lines, respectively.

The pull

distribution in the bottom panel shows the difference between each data point
and the fit function.
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Figure 5.10. Nominal fits to data with 6 < pi¥' < 10 GeV/c and centrality
10-90% in the four |A¢| bins: [0,7/8) (upper left), [7/8,7/4) (upper right),
[7/4,3m/8) (lower left), and [37/8,7/2) (lower right). The data are plotted as
black circles, and are fit with the blue line. The signal and background compo-
nents of the fit function are plotted as red and blue dashed lines, respectively.
The pull distribution in the bottom panel shows the difference between each
data point and the fit function.
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Figure 5.11. Nominal fits to data with 10 < p4* < 50 GeV/c and centrality
10-90% in the four |A¢| bins: [0,7/8) (upper left), [7/8,7/4) (upper right),
[7/4,3m/8) (lower left), and [37/8,7/2) (lower right). The data are plotted as
black circles, and are fit with the blue line. The signal and background compo-
nents of the fit function are plotted as red and blue dashed lines, respectively.
The pull distribution in the bottom panel shows the difference between each
data point and the fit function.
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Figure 5.12. Nominal fits to data with 0.0 < y** < 0.8 and centrality 10-90%
in the four |A¢| bins: [0,7/8) (upper left), [r/8,7/4) (upper right), [r/4,37/8)
(lower left), and [37/8,7/2) (lower right). The data are plotted as black circles,
and are fit with the blue line. The signal and background components of the
fit function are plotted as red and blue dashed lines, respectively. The pull
distribution in the bottom panel shows the difference between each data point
and the fit function.
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Figure 5.13. Nominal fits to data with 0.8 < y** < 1.6 and centrality 10-90%
in the four |A¢| bins: [0,7/8) (upper left), [r/8,7/4) (upper right), [r/4,37/8)
(lower left), and [37/8,7/2) (lower right). The data are plotted as black circles,
and are fit with the blue line. The signal and background components of the
fit function are plotted as red and blue dashed lines, respectively. The pull
distribution in the bottom panel shows the difference between each data point
and the fit function.
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Figure 5.14. Nominal fits to data with 1.6 < y** < 2.4 and centrality 10-90%

in the four |A¢| bins: [0,7/8) (upper left)

), [7/8,7/4) (upper right), [r/4,37/8)

(lower left), and [37/8,7/2) (lower right). The data are plotted as black circles,
and are fit with the blue line. The signal and background components of the

fit function are plotted as red and blue dashed lines, respectively.

The pull

distribution in the bottom panel shows the difference between each data point

and the fit function.
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Figure 5.15. Nominal fits to data with centrality 10-30% in the four |A¢|
bins: [0,7/8) (upper left), [7/8,7/4) (upper right), [7/4,37/8) (lower left), and
[37/8,7/2) (lower right). The data are plotted as black circles, and are fit with
the blue line. The signal and background components of the fit function are
plotted as red and blue dashed lines, respectively. The pull distribution in the
bottom panel shows the difference between each data point and the fit function.
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Figure 5.16. Nominal fits to data with centrality 30-50% in the four |A¢|
bins: [0,7/8) (upper left), [7/8,7/4) (upper right), [7/4,37/8) (lower left), and
[37/8,7/2) (lower right). The data are plotted as black circles, and are fit with
the blue line. The signal and background components of the fit function are
plotted as red and blue dashed lines, respectively. The pull distribution in the
bottom panel shows the difference between each data point and the fit function.
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Figure 5.17. Nominal fits to data with centrality 50-90% in the four |A¢|
bins: [0,7/8) (upper left), [7/8,7/4) (upper right), [7/4,37/8) (lower left), and
[37/8,7/2) (lower right). The data are plotted as black circles, and are fit with
the blue line. The signal and background components of the fit function are
plotted as red and blue dashed lines, respectively. The pull distribution in the
bottom panel shows the difference between each data point and the fit function.
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The T yields are then extracted from the four fits in each kinematic bin or cen-
trality bin and plotted together as a function of A¢. The total T yields extracted
in each kinematic bin in the full A¢ range are tabulated in Table

Table 5.2. The yields of Y(nS) in the 2018 Pb+ Pb dataset in all of the analysis
bins in the full A¢ range. The yields were obtained from fits to data after the

application of acceptance and efficiency corrections.

Bin

T(1S) yield

T(2S) yield

T(3S) yield

0 <pr<3GeV
3<pr<6 GeV
6 < pr <10 GeV
10 < pr < 50 GeV

32758.2 £+ 601.2

40974.1 + 1283.0

28637.2 £ 557.8
12672 £+ 292

2863.54 + 298.12

5741.13 £ 540.91

3466.18 £+ 291.08
2117 £ 130

1336.28 £ 286.75
1332.92 + 417.94
2346.88 £ 287.79
763.98 £ 117.24

0<y<0.8
0.8<y<1.6
1.6<y<24

39626 £ 1447
43163.3 £ 665.1
29064 + 468

5061.92 £ 445.55
4341.29 + 359.60
3022.54 £ 274.86

1750.35 £ 335.31
229.69 £ 104.86
1823.49 £ 209.21

Centrality 10-30%
Centrality 30-50%
Centrality 50-90%

65765.7 & 1240.2
36722 £ 614
11224.1 £ 279.1

6509.02 £ 500.99
4426.82 + 274.29
2387.93 + 139.27

2007.29 £ 460.44
2009.46 £ 24291
776.40 £ 109.92

Centrality 10-90%

106135 = 1216

12147.7 £ 538.1

3480.36 £+ 491.23

The distribution of yields as a function of A¢ is then normalized and fit using

the function

(5.29)

N (1 4+ 204 cos(2|Ag))),

where Ny, is the number of bins of |A¢|, which was 4 in this analysis. The fitted
vy parameter is the raw vy value for the particular analysis bin. The fits to the
nominally extracted Y(1S) normalized yields as a function of |A¢| are shown in

Figs. through The corresponding fits to the Y(2S) normalized yields are
shown in Figs. through [5.23]
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Figure 5.18. The nominally extracted Y(1S) yields as a function of A¢ in the
transverse momentum bins 0 < pr < 3 GeV/c (upper left), 3 < pr < 6 GeV/c
(upper right), 6 < pr < 10 GeV/c (lower left), and 10 < pr < 50 GeV/c (lower
right), fit with the function in Eq. to extract va.
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Figure 5.19. The nominally extracted Y(1S) yields as a function of A¢ in the
rapidity bins 0.0 < y < 0.8 (upper left), 0.8 < y < 1.6 (upper right), and
1.6 < y < 2.4 (lower middle), fit with the function in Eq. to extract vo.
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Figure 5.20. The nominally extracted Y(1S) yields as a function of A¢ in
the centrality regions 10-30% (upper left), 30-50% (upper right), and 50-90%
(lower middle), fit with the function in Eq. to extract va.
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Figure 5.21. The nominally extracted Y(2S) yields as a function of A¢ in the
transverse momentum bins 0 < pr < 3 GeV/c (upper left), 3 < pr < 6 GeV/c
(upper right), 6 < pr < 10 GeV/c (lower left), and 10 < pr < 50 GeV/c (lower
right), fit with the function in Eq. to extract va.
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Figure 5.22. The nominally extracted Y(2S) yields as a function of A¢ in the
rapidity bins 0.0 < y < 0.8 (upper left), 0.8 < y < 1.6 (upper right), and
1.6 < y < 2.4 (lower middle), fit with the function in Eq. to extract vo.
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Figure 5.23. The nominally extracted Y(2S) yields as a function of A¢ in
the centrality regions 10-30% (upper left), 30-50% (upper right), and 50-90%

(lower middle), fit with the function in Eq. to extract va.
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5.7 Feasibility Test

To test the feasibility of a vy analysis of Y’s before the 2018 dataset became
available, a simplified version of the analysis was carried out using the Pb + Pb
data from 2015 (see Table. This feasibility test was done to estimate how large
the uncertainties on the Y (1S) vq signal would be. It was therefore not necessary
to precisely estimate the reaction plane angle since only the statistical uncertainty
was needed. Systematic uncertainty calculations were also omitted, and instead the
average systematic uncerainties from a previous analysis of the vy of the J/v [47]
was used. The results are shown in Fig. [5.24 The only quantities of interest in
these figures are the statistical uncertainties. We expected about a factor of 4
increase in data with the new dataset collected in November 2018, which means
these uncertainties will be reduced by 50% once the larger dataset is used. Also,
if necessary, we could use larger bins to further reduce the uncertainties. The two
most important results we are looking for are the presence of a nonzero v,, and a
larger vy for the Y(2S) compared to the T(1S). The desired results do not require

fine binning, and thus the analysis seemed to be feasible.
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Figure 5.24. Results of a simplified vo analysis using 2015 Pb + Pb data as a
feasibility test. The only quantities of interest in the plots are the statistical
uncertainties.

Another feasibility test was a simple comparison with the J/1 analysis which

had already been done. The analysis extracted a total prompt J/v¢ yield of ap-
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proximately ~10,000. In a certain bin, they extracted a yield of 2086 prompt
J/1s, and determined a vy of 0.034 £ 0.021 (stat) = 0.007 (syst) [47]. The 2015
Pb + Pb data yielded 5,868 Y(1S) [27] without applying acceptance and efficiency
correction factors. With a factor of 4 increase, our statistics would be comparable

to those of the J/1 analysis.

5.8 The Scalar-Product Method

In parallel with this analysis, another group of researchers investigated the T vy
using the scalar-product (SP) method [76]. This method makes use of the @) vectors
described in Sec. [77, [78]. The @ vectors are converted to complex numbers,

q, as follows:
Gn = Zlﬂil wiem{bi . an + ZQny
! Zi\il Wi w ’

where the weights, w;, are the energies of the particles, as in Sec. [5.4) and W is

(5.30)

the sum of the weights in a given event. The scalar-product coefficients are then

given by

_ (0:90)
vy {SP} = : 5.31
t5P) \/ (0,49 5) (40 ic) (5:31)

(0,9¢)

where A and B refer to event planes derived from the forward and backward
calorimeter regions, and C refers to event planes derived from the tracker in midra-
pidity. The averages (g,q.: ,) in Eq. are weighted averages taken in this man-

ner:

(¢ndna) = Re (5.32)

S WAiWBiQnAiQZBi]

Zf&ff WaiWpi '
The Wyu; and Wpg, are the sums of of weights used for event planes A and B,
respectively, for each event i. The averages (¢,449:5), (¢4,a%ic) and (q,p595-) are
taken over all events, while the average (¢,q’,) is over all T(1S) candidates in all
events. For a measurement of elliptic flow, vy, we use n = 2.

The event plane method is known to give a v, somewhere between the mean,
(vg), and RMS, \/@ , of the true vy, while the scalar-product method removes
the ambiguity and gives the RMS [7§]. Thus the two methods are not guaranteed
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to give the same result, but if there is good agreement on the measured vy between
the two analyses, then we will have greater confidence in the accuracy of the

measurement.
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Chapter 6

Systematic Uncertainties

6.1 Choice of Signal Function

In order to estimate the systematic uncertainty due to the choice of signal function,
we tested how much the resulting v, values changed if we used a reasonable alterna-
tive function, which in this case was a CB plus a Gaussian. In order to isolate the
systematic uncertainty from any statistical uncertainties, we performed 100 “pseu-
doexperiments” in each analysis bin and compared the results obtained using the
two functions. Each pseudoexperiment is a repetition of the analysis described in
Ch. [5| using a set of generated data dubbed “pseudodata.” The procedure is as
follows:

1. We generate pseudodata using the nominal fit to the data. The generated YT
yields, and thus the vy, are fixed to the nominally extracted values from real data.

2. We fit the pseudodata with both the nominal fit function and the alternative
function in each |A¢| bin.

3. We fit the extracted yields as a function of |A¢| to extract the nominal and
alternative v, values. The difference between the alternative and nominal values
is recorded.

4. We repeat steps 1 through 3 one hundred times to get a distribution of
differences.

5. We take the larger value of the mean or the standard deviation of the
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distribution of the differences and divide it by the value of v, nominally extracted
from real data to get the relative systematic uncertainty in that bin. In almost
all cases, the standard deviation was the larger of the two values, while the mean,

which represents a systematic bias, was usually negligible.
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Figure 6.1. Results of pseudoexperiments in the kinematic bin 0 < pr <
3 GeV/c. The nominal signal function is a DCB (see Sec. and the alterna-
tive signal function is a CB plus a Gaussian. The distribution of vy extracted
from 100 generated sets of pseudodata using the nominal fit function is shown
on the left in blue. The distribution of vy extracted from the same 100 sets of
pseudodata using the alternative fit function is also shown on the left in red.
The generated vo is noted in the top left corner. The plot on the right shows
the distribution of the differences in the extracted vy between the two fitting
methods. The mean ((z)) and standard deviation (o,) are noted in the figure.

The plots in Fig. show an example of this in one bin. On the left are
the nominal vy values (blue) and the alternative vy values (red) from 100 pseu-

doexperiments. On the right is the distribution of differences in the estimated

vy. The results of the pseudoexperiments in all the analysis bins can be found in

Appendix

6.2 Constraining Parameters

The systematic uncertainty due to the choice of parameter constraints was es-
timated by carrying out the analysis with a different set of constraints. These
alternative constraints were obtained following the same procedure outlined in sec-

tion except the first parameter fixed was n rather than a. In order to isolate
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the systematic uncertainty from the statistical uncertainty, 100 pseudoexperiments
were performed in the same manner as was done for the signal systematics, as de-
scribed in section [6.1} For each pseudoexperiment, the nominal fit function was
used to generate the pseudodata, which was then fit by both the nominal fit func-
tion and the alternative fit function. In this case, the alternative signal function
had the same functional form as the nominal signal function (DCB), the only dif-
ference being the set of constraints applied to the signal parameters. The results

of the pseudoexperiments in all the analysis bins can be found in Appendix

6.3 Choice of Background Function

The systematic uncertainty due to the choice of background function was esti-
mated by fitting the data with an alternative background function. In the high pr
bins (pr > 6 GeV/c), the alternative background function was a power law rather
than the nominal exponential function. In the low pr and integrated pr bins, the
alternative background function was a fourth-order Chebychev polynomial instead
of the nominal error function times an exponential. In order to isolate the sys-
tematic uncertainty from the statistical uncertainty, 100 pseudoexperiments were
performed in the same manner as was done for the signal systematics, as described
in section [6.1] The results of the pseudoexperiments in all the analysis bins can
be found in Appendix [A.3]

6.4 Application of Correction Factors
6.4.1 Acceptance Corrections

The process of obtaining the acceptance corrections is described in Sec. [5.2] The
systematic uncertainty due to the pr-weighting of the acceptance corrections was
obtained by repeating the analysis with a set of unweighted acceptance corrections.
The relative difference in the resulting v, value from the nominal value in each bin

was taken as the systematic uncertainty.
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6.4.2 Efficiency Corrections

The process of obtaining the efficiency corrections is described in Sec. [5.3] The
systematic uncertainty due to the ppr-weighting of the efficiency corrections was
obtained by repeating the analysis with a set of unweighted efficiency corrections.
The relative difference in the resulting vs value from the nominal value in each bin

was taken as the systematic uncertainty.

6.5 Summary of Systematic Uncertainties

The total systematic uncertainty is obtained by summing in quadrature each of
the systematic uncertainties from the choice of signal function, the choice of back-
ground function, the parameter constraints, the acceptance corrections, and the
efficiency corrections. The total systematic uncertainty in each bin, along with the

relative contributions from each of the sources of systematic uncertainty, can be

seen in Fig. [6.2]
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Figure 6.2. Systematic uncertainties as a function of p}f (upper left), y ¥ (up-
per right), and centrality (bottom middle). The total systematic uncertainty,
shown in black, is the sum in quadrature of the uncertainty due to the choice
of signal function (red), the choice of background function (green), the accep-
tance weighting (blue), the efficiency weighting (violet), and the choice of signal
parameter constraints (cyan).
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6.6 Monte Carlo Closure Test

In order to further solidify our confidence in the accuracy of our results and the
robustness of the event-plane method in general, the analysis was carried out on
a simulated dataset with a value of elliptic flow that was input by hand. If the
method can extract a value of vy that matches the input value, then it is proven
to be a robust and accurate method.

The analysis was carried out on the GEN-level MC in the same way that it was
carried out on the data, with a few adjustments. Since the T yields are already
known a priori, there is no need for acceptance and efficiency corrections. Also,
without the simulated detector response, the resolution correction is unnecessary.
Without a simulated background, the fitting of the T signal is also simplified,
because the yields are known perfectly in each bin and can be counted directly.
After counting, in order to provide comparable statistics for the vy extraction
between MC and real data, the uncertainties on the Y(1S) yields were scaled to
mimic the average uncertainties seen in fits to real data (~ 5%).

The MC closure test was carried out using various different input v, values. The
vy weight was applied to the A¢ distribution of the MC Ts as shown in Fig. [6.3]
The plot on the left is the invariant mass distribution of the dimuons that are
to be weighted, demonstrating that they are indeed Ts, and it shows the various
selections that were applied to this particular bin. The plot on the right displays
the A¢ distribution for these MC T's before and after the vy weight is applied. The
vo-weighted dataset was then analyzed via the event-plane method, as described
in Ch. and the extracted vy for inputs 0.5, 0.2, 0.1, and 0.05 are shown in
Figures [6.4], [6.5] [6.6 and respectively. The event-plane method successfully
extracts the vy in every case to within ~ 3%. This is well within the statistical
uncertainty for most values of vy, especially for v, = 0.05 (see Fig. |6.7]), which is

most comparable to the true vy of the YT(1S).
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Figure 6.3. Weighting of the A¢ distribution in one of the analysis bins. The
left plot shows the invariant mass distribution of the dimuons to be weighted,
demonstrating that they are YTs. The right plot shows the A¢ distribution of
the Ys before and after applying a vy weight of 0.05.
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Figure 6.4. Estimated vo as a function of py and centrality from MC simulations
using an input v = 0.5.
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Figure 6.5. Estimated vy as a function of pr and centrality from MC simulations
using an input vy = 0.2.
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Figure 6.6. Estimated vy as a function of pr and centrality from MC simulations
using an input v = 0.1.
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Figure 6.7. Estimated vy as a function of pr and centrality from MC simulations
using an input ve = 0.05.
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Chapter 7

Results

The second-order Fourier coefficient, v,, of the azimuthal distribution relative to
the event plane, known as the elliptic flow, of the T(1S) is presented. The signal
was extracted from Pb + Pb collisions at CMS with /syy = 5.02 TeV. The v, is
shown as a function of transverse momentum, pr, in Fig. [7.1} rapidity in Fig. [7.2}
and collision centrality in Fig. [7.3] Due to symmetry, the forward and backward
rapidity regions were combined. In all cases, the measured v, fluctuates around
zero with no systematic behavior.

In parallel with this analysis, another group of researchers carried out a mea-
surement of the T v, using the scalar-product method [76], described in Sec. .8
A comparison of the results of the two analyses is shown in Fig. [7.4 The two
methods are not expected to yield identical results [78], as discussed in Sec. [p.§|
However, they should be similar. Given the statistical uncertainties in the mea-
surements, we cannot conclude with confidence that the measured vy values are
different.

A comparison of the YT(1S) vy measurements with current theoretical predic-
tions is shown in Fig. [7.5] The blue dashed line (Yao et al. [79, 80, 81]) is computed
via simulations of heavy quarks in a QCD medium described by 2+1D viscous hy-
drodynamics, where the transport of the quarks is described by coupled Boltzmann
transport equations. The purple dot-dashed line (Hong, Lee [82] 83]) is a kinetic

model in which heavy quarks scatter with partons in the medium using matrix ele-

114



PbPb 1.6 nb™ (5.02 TeV)

0.2 e

E p$>3.5GeV/C CMS 1

0.15F Mi<2a0 ~ ®YUS) .

L vl <2.40 ]

L Centrality 10-90% ]

0.1 ]

=" 0.05F -

-0.05

Ty

— \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
O']O 5 10 15 20 25 30 35 40 45 50
p\Tf(GeV/c)
Figure 7.1. The measured ve of Y(1S) (blue squares) as a function of pr.

The vertical bars represent the statistical uncertainty, and the shaded boxes
represent the systematic uncertainty.
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and the shaded boxes represent the systematic uncertainty.
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Figure 7.3. The measured v of Y(1S) (blue squares) as a function of centrality.

The vertical bars represent the statistical uncertainty, and the shaded boxes
represent the systematic uncertainty.
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Figure 7.4. Comparison of the vy of T(1S) measured via the event-plane method
(blue squares) and the scalar-product method (red circles) as a function of pr
(left) and centrality (right). The vertical bars represent the statistical uncer-
tainty, and the shaded boxes represent the systematic uncertainty. The red
circles are shifted slightly to the right to aid in distinguishing the statistical
uncertainties.
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ments calculated in perturbative QCD, while the non-perturbative soft part of the
interaction between these discrete hard scatterings is modeled using a Langevin
equation with transport coefficients chosen empirically. The QCD medium is again
modeled by 2+1D viscous hydrodynamics. The green shaded area (Du, Rapp [34])
is the prediction referenced in Sec. [I.5] of this thesis, which models the time evo-
lution of bottom quarks using a kinetic-rate equation in a medium modeled by a
lattice-QCD based equation of state. It includes medium effects such as regenera-
tion with temperature dependent binding energies and reaction rates, and B-meson
resonance states. The red dashed line (Bhaduri et al. [84]) is computed from sim-
ulations of various bottomonium states with temperature-dependent decay widths
in the 34+1D quasiparticle anisotropic hydrodynamic model. The details of the

models can be found in the references.
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Figure 7.5. The v of T(1S) measured via the event-plane method (blue squares)

as a function of py compared model calculations from Du and Rapp [34], Yao [79,
80, 81, Hong and Lee [82, B3], and Bhaduri et al. [84].

All these models, despite their differences, predict a very small vy for the T(1S).
The measured vy presented here and in Ref. [76] represent the first measurements

of T(1S) vy using CMS data. The ALICE Collaboration has also measured the
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vy for T(1S) mesons at forward rapidity (2.5 < y¥ < 4) in Pb + Pb collisions at
VSnn = 5.02 TeV [85]. All these measurements are consistent with zero and are
thus in agreement with the model predictions, given the statistics. The small vy is
indicative of the high mass of the bottom quark and its consequent resistance to
modifications in its momentum from medium effects. All the models predict a rise
in the vy above a pr of about 10 GeV /¢, but the change is much greater for two of
the models (Yao and Hong, Lee) compared to the other two, so that discrimination
between these models may be possible with more data at high prp.

The vy of the T(2S) was also extracted in this analysis in the same manner as
the T(1S), and the results are shown as a function of transverse momentum pr in
Fig. [7.6} rapidity in Fig. [7.7} and collision centrality in Fig. [7.8] There are fewer
T(2S) than Y(1S), which results in larger uncertainties compared to the Y(1S).

The measured vy of the T(2S) is also consistent with zero.
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Figure 7.6. The measured ve of Y(2S) (green diamonds) as a function of pr.
The vertical bars represent the statistical uncertainty, and the shaded boxes
represent the systematic uncertainty.

An interesting prediction from Refs. [34, 49 50] was that the vy of the Y(2S)

was expected to be approximately twice as large as the vy of the T(1S) as a function
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Figure 7.7. The measured vy of Y(2S) (green diamonds) as a function of the

absolute value of rapidity. The vertical bars represent the statistical uncertainty,
and the shaded boxes represent the systematic uncertainty.
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Figure 7.8. The measured vy of Y(2S) (green diamonds) as a function of cen-
trality. The vertical bars represent the statistical uncertainty, and the shaded
boxes represent the systematic uncertainty.
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of pr. To test this prediction, the ratio of the vy of the Y(2S) and the vy of the
T(1S) was calculated and the result is shown in Fig. in three py bins. The
lowest pr bin is omitted because the denominator of the ratio is very close to
zero and results in extremely large uncertainties in that bin. The ratio is centered
around a value of 2, but given the size of the vertical bars, we cannot conclude
with confidence that the measured vy of the Y(2S) is larger than that of the T(1S).
A future repetition of this study with more data can yield more robust results for

the vy ratio.

PbPb 1.6 nb™ (5.02 TeV)

10—

8i p' > 3.5 GeVic CMS 1

C In"| < 2.40 ]

6; ly"] < 2.40 7

[ Centrality 10-90% i

S 4F =
=N - + .
=2 2r -
Q C ]
I
-2 % +VY(2S)/VY(1S) i

L 2 2 i

-4r .
_6:\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\:

0O 5 10 15 20 25 30 35 40 45 50

p\Tf (GeV/c)

Figure 7.9. The ratio of the va of T(2S) over the vy of Y(1S) (purple crosses)
as a function of pr. The vertical bars represent the statistical uncertainty, and
the shaded boxes represent the systematic uncertainty.
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Chapter 8

Conclusion

The high-energy heavy-ion collisions at the LHC make possible the study of the
QGP in a laboratory environment. Heavy quarkonia, including Ys, are useful
probes of the QGP medium that is believed to form in these collisions. The
thoughtfully designed and highly effective CMS detector is our microscope which
allows us to see the intricate details of these tiny energy-dense collisions. The
clearly reconstructed muon tracks provide the window into the quarkonia signals.
The reconstruction, muon identification, and trigger efficiencies of CMS are very
high (typically above ~90%), even with the extremely high multiplicities observed
in the most central Pb + Pb events.

The elliptic flow coefficient vy of the YT(1S) and Y(2S) was measured using
the event-plane method with Pb + Pb data collected by the CMS Collaboration
in 2018. The measurement of elliptic flow using the event-plane method is in
good agreement with a parallel measurement carried out using the scalar-product
method. The validity of the analysis was tested using a closure test, in which a
simulated v, was accurately extracted using the event-plane method. Systematic
uncertainties were estimated and reported with the measurements.

The vy of the T(1S) and T(2S) are observed to fluctuate around zero with no
systematic behavior, given the current statistics. All T(1S) results lie within 20
of zero, which means a 50 nonzero measurement will require a reduction in the

uncertainties of at least a factor of ~3, or in other words a nine-fold increase in
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data. Measurements with similar statistics for the Y (2S) will require much more
data.

The measurements are in agreement with several theoretical models which pre-
dict a very small v, due to the relatively high mass of the bottom quarks compared
to other particles composed of lighter quarks. Discrimination among the various
models is not possible with the current data. The deviation in the models is great-
est at high pr, but much more data is need to facilitate more robust estimates of

the vy at high pr and the ratio of the vy of the T(2S) and Y(1S).
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Appendix A

Results of Pseudoexperiments

A.1 Alternative Signal Function
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Results of pseudoexperiments in the kinematic bin 0 < pp <

3 GeV/c. The nominal signal function is a DCB (see Sec. and the alternative
signal function is a CB plus a Gaussian as described in Sec. The distribution
of vy extracted from 100 generated sets of pseudodata using the nominal fit
function is shown on the left in blue. The distribution of v9 extracted from the
same 100 sets of pseudodata using the alternative fit function is also shown on
the left in red. The generated vs is noted in the top left corner. The plot on the
right shows the distribution of the differences in the extracted vo between the
two fitting methods. The mean ((z)) and standard deviation (¢,) are noted in

the figure.
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Figure A.2. Results of pseudoexperiments in the kinematic bin 3 < pr <
6 GeV/c. The nominal signal function is a DCB (see Sec. and the alternative
signal function is a CB plus a Gaussian as described in Sec.
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Figure A.3. Results of pseudoexperiments in the kinematic bin 6 < ppr <
10 GeV/c. The nominal signal function is a DCB (see Sec. and the alter-
native signal function is a CB plus a Gaussian as described in Sec. [6.1
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Figure A.4. Results of pseudoexperiments in the kinematic bin 10 < pr <
50 GeV/c. The nominal signal function is a DCB (see Sec. and the alter-
native signal function is a CB plus a Gaussian as described in Sec.
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Figure A.5. Results of pseudoexperiments in the kinematic bin 0 < y < 0.8.
The nominal signal function is a DCB (see Sec. and the alternative signal
function is a CB plus a Gaussian as described in Sec. [6.1
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Figure A.6. Results of pseudoexperiments in the kinematic bin 0.8 < y < 1.6.
The nominal signal function is a DCB (see Sec. and the alternative signal
function is a CB plus a Gaussian as described in Sec.
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Figure A.7. Results of pseudoexperiments in the kinematic bin 1.6 < y < 2.4.
The nominal signal function is a DCB (see Sec. and the alternative signal
function is a CB plus a Gaussian as described in Sec. [6.1
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Figure A.8. Results of pseudoexperiments in the 10-30% centrality bin. The
nominal signal function is a DCB (see Sec. and the alternative signal func-
tion is a CB plus a Gaussian as described in Sec.
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Figure A.9. Results of pseudoexperiments in the 30-50% centrality bin. The
nominal signal function is a DCB (see Sec. and the alternative signal func-
tion is a CB plus a Gaussian as described in Sec.
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Figure A.10. Results of pseudoexperiments in the 50-90% centrality bin. The
nominal signal function is a DCB (see Sec. and the alternative signal func-
tion is a CB plus a Gaussian as described in Sec. 6.1
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Figure A.11. Results of pseudoexperiments in the kinematic bin 0 < pr <
3 GeV/c. The nominal constraints on the signal parameters are described in
Sec. 5.1l The alternative constraints are described in Sec.[6.2l The distribution
of vy extracted from 100 generated sets of pseudodata using the nominal fit
function is shown on the left in blue. The distribution of vy extracted from the
same 100 sets of pseudodata using the alternative fit function is also shown on
the left in red. The generated vs is noted in the top left corner. The plot on the
right shows the distribution of the differences in the extracted vy between the
two fitting methods. The mean ({z)) and standard deviation (o) are noted in
the figure.
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Figure A.12. Results of pseudoexperiments in the kinematic bin 3 < pp <
6 GeV/c. The nominal constraints on the signal parameters are described in
Sec. 5.1l The alternative constraints are described in Sec. 6.2l
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Figure A.13. Results of pseudoexperiments in the kinematic bin 6 < pr <
10 GeV/c. The nominal constraints on the signal parameters are described in
Sec. Bl The alternative constraints are described in Sec. [6.21
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Figure A.14. Results of pseudoexperiments in the kinematic bin 10 < ppr <
50 GeV/c. The nominal constraints on the signal parameters are described in
Sec. 5.1l The alternative constraints are described in Sec. 6.2l
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Figure A.15. Results of pseudoexperiments in the kinematic bin 0 < y < 0.8.
The nominal constraints on the signal parameters are described in Sec. The
alternative constraints are described in Sec. [6.21
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Figure A.16. Results of pseudoexperiments in the kinematic bin 0.8 < y < 1.6.
The nominal constraints on the signal parameters are described in Sec. The
alternative constraints are described in Sec. [6.21
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Figure A.17. Results of pseudoexperiments in the kinematic bin 1.6 < y < 2.4.
The nominal constraints on the signal parameters are described in Sec. The
alternative constraints are described in Sec. [6.21
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Figure A.18. Results of pseudoexperiments in the 10-30% centrality bin. The
nominal constraints on the signal parameters are described in Sec. The
alternative constraints are described in Sec. [6.21
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Figure A.19. Results of pseudoexperiments in the 30-50% centrality bin. The
nominal constraints on the signal parameters are described in Sec. The
alternative constraints are described in Sec. 6.2l
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Figure A.20. Results of pseudoexperiments in the 50-90% centrality bin. The
nominal constraints on the signal parameters are described in Sec. The
alternative constraints are described in Sec.
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A.3 Alternative Background Function
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Figure A.21. Results of pseudoexperiments in the kinematic bin 0 < pr <
3 GeV/c. The nominal background function is an error function times an ex-
ponential and the alternative background function is a fourth-order Chebychev
polynomial as described in Sec. The distribution of vy extracted from 100
generated sets of pseudodata using the nominal fit function is shown on the left
in blue. The distribution of vy extracted from the same 100 sets of pseudodata
using the alternative fit function is also shown on the left in red. The generated
v9 is noted in the top left corner. The plot on the right shows the distribution of
the differences in the extracted vy between the two fitting methods. The mean
((z)) and standard deviation (o) are noted in the figure.
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Figure A.22. Results of pseudoexperiments in the kinematic bin 3 < pr <
6 GeV/c. The nominal background function is an error function times an ex-
ponential and the alternative background function is a fourth-order Chebychev
polynomial as described in Sec.
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Figure A.23. Results of pseudoexperiments in the kinematic bin 6 < pr <
10 GeV/ec. The nominal background function is an exponential and the alter-
native background function is a power law as described in Sec. [6.3
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Figure A.24. Results of pseudoexperiments in the kinematic bin 10 < pr <
50 GeV/c. The nominal background function is an exponential and the alter-
native background function is a power law as described in Sec.
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Figure A.25. Results of pseudoexperiments in the kinematic bin 0 < y < 0.8.
The nominal background function is an error function times an exponential and
the alternative background function is a fourth-order Chebychev polynomial as

described in Sec. [6.3]

137



counts

counts

r " @ ,
Fgen.v =-0021 (E:rrf E"ph S | txo=00006  — Difference

1000 — hebychev 8 100- o, =0.0019

8ok 80~

60 60

40+ 40

200 20-
0’\”‘1&“”\”‘\‘”\‘”\ obelo b edmal L1
=0.04 -0.02 0 0.02 0.04 0.06 -0.02 -001 O 0.01 0.02

v, X=Vaoait ™ V2nom

Figure A.26. Results of pseudoexperiments in the kinematic bin 0.8 < y < 1.6.
The nominal background function is an error function times an exponential and
the alternative background function is a fourth-order Chebychev polynomial as
described in Sec. 6.3
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Figure A.27. Results of pseudoexperiments in the kinematic bin 1.6 < y < 2.4.
The nominal background function is an error function times an exponential and

the alternative background function is a fourth-order Chebychev polynomial as
described in Sec. [6.3l
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Figure A.28. Results of pseudoexperiments in the 10-30% centrality bin. The
nominal background function is an error function times an exponential and

the alternative background function is a fourth-order Chebychev polynomial as
described in Sec. [6.3l
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Figure A.29. Results of pseudoexperiments in the 30-50% centrality bin. The
nominal background function is an error function times an exponential and

the alternative background function is a fourth-order Chebychev polynomial as
described in Sec. [6.3
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Figure A.30. Results of pseudoexperiments in the 50-90% centrality bin. The
nominal background function is an error function times an exponential and
the alternative background function is a fourth-order Chebychev polynomial as
described in Sec. [6.3l
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