Journal of Physics: Conference Series

PAPER « OPEN ACCESS Related content

Efficient Access to Massive Amounts of Tape- *David Yo and Jérome Lauret
ReS|dent Data - TReqgS: The Tape REQuest Scheduler

Jonathan Schaeffer and Andrés Gémez
Casanova
To cite this article: David Yu and Jérdme Lauret 2017 J. Phys.: Conf. Ser. 898 082024 - China reveals plans for national lab
system
Ling Xin

View the article online for updates and enhancements.

This content was downloaded from IP address 131.169.5.251 on 19/03/2018 at 10:52

https://doi.org/10.1088/1742-6596/898/8/082024
http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042045
http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042040
http://iopscience.iop.org/article/10.1088/2058-7058/29/3/15
http://iopscience.iop.org/article/10.1088/2058-7058/29/3/15

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

Efficient Access to Massive Amounts of Tape-Resident Data

David Yu' and Jérome Lauret’

'Technology Architect, Brookhaven National Laboratory
?Software and Computing project Leader, Brookhaven National Laboratory

Email: dyu@bnl.gov and jlauret@bnl.gov

Abstract. Randomly restoring files from tapes degrades the read performance primarily due to
frequent tape mounts. The high latency and time-consuming tape mount and dismount is a
major issue when accessing massive amounts of data from tape storage. BNL's mass storage
system currently holds more than 80 PB of data on tapes, managed by HPSS. To restore files
from HPSS, we make use of a scheduler software, called ERADAT. This scheduler system was
originally based on code from Oak Ridge National Lab, developed in the early 2000s. After
some major modifications and enhancements, ERADAT now provides advanced HPSS
resource management, priority queuing, resource sharing, web-browser visibility of real-time
staging activities and advanced real-time statistics and graphs. ERADAT is also integrated with
ACSLS and HPSS for near real-time mount statistics and resource control in HPSS. ERADAT
is also the interface between HPSS and other applications such as the locally developed Data
Carousel, providing fair resource-sharing policies and related capabilities. ERADAT has
demonstrated great performance at BNL.

1. The Role of Cold Storage in Managing the Exponential Growth of Scientific Data

As the amount of our scientific experiments data has increased rapidly, there will be a serious need to
provide a long term and efficient data storage. Cold storage, such as “Tape Storage”, has been an
ideal solution for long term data preservation, due to various reasons like cost effective, environmental
friendly and long lifespan. The tape technology has been improved in both capacity and performance,
over the recent decades. Therefore the tape technology has been playing a very important role in
managing the exponential growth of Scientific Data. Tape systems are great for archiving, due to the
scalability and high sequential writing speed. However, randomly restoring files from massive amount
of tapes usually do not get good performance because of the long latency for random accesses.

2. Effectively Using Tape Technology

The Tape Storage System at BNL[1] Scientific Data and Computing Center (SDCC)[2] has been
providing mass storage services to the scientific experiments of RHIC[3] and LHC[4] (CERN,
Geneva). The amount of our science experiments’ data has increased rapidly, and we currently have
about 100 PB of data in our tape system. We have put a great deal of thoughts into how data is saved
onto tapes and how to optimize data mining and data production workflows, from a production
account perspective, taking into account the time sequence and ordering of files on tape.

In the early 2000, the experimental and facility teams were pushed to consider ingenuous approaches
to retrieve files from mass storage during the data production workflows. A tape access “batch”

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

http://creativecommons.org/licenses/by/3.0

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

system integrated to the production system was first developed based on the initial OakRidge National
Lab (ORNL) Batch code. As the increasing demand of staging files from tapes as well as the new tape
drive technologies were added to the system, the initial version of Batch could no longer handle the
diversity of hardware as well as new requirements suggested from users not easily handled by the
DataCarousel, a tool already introduce to palliate some of the batch short-comings. Such features
included treating loading the tape with most files requests first. In 2005, the DataCarousel was also
used as a back-end to Scalla/Xrootd by the STAR experiment [5] and the system drove even more
requirements such as request expiration and fine grain control at class of service level. By the end of
2005, the BNL RACF HPSS team worked on enhancing the “HPSS Batch” system, in order to provide
better performance and resource management. In 2010, reaching full and demonstrated maturity and
stability over years of production mode operation, the new Batch code was renamed to ERADAT,
standing for Efficient Retrieval and Access to Data Archived on Tape. The overall relation between
the DataCarousel and ERADAT is illustrated in Figure 1.

To effectively utilizing the tape storage system, we have to manage the resource from many aspects:
balance the tape drive resources for read, minimize the tape mounts, optimize the tape read, optimize
the hardware resource usage and fair-share and resource handling policies.

BeEEom— .

Figure 1. ERADAT and DataCarousel relative interdependence. ERADAT sits at the lowest level,
interfacing directly with the HPSS API and acts as queuing system. The facility production jobs
may directly interact with it. Users or high level services typically interact with the DataCarousel.

3. ERADAT

The Efficient Retrieval and Access to Data Archived on Tape or ERADAT, is a file retrieval scheduler
for IBM HPSS. ERADAT evolved from the Oak Ridge batch code as a prototype, and then modified
to fit BNL’s requirements. ERADAT has evolved to include many additional features such as dynamic
drive usage allocation, support for multiple projects and groups, support for multiple drive
technologies (9940, T10KD and LTO drive series), and multiple staging algorithm including ‘by-
demand’, LIFO and FIFO. ERADAT also keeps all transaction history in database, for performance
reporting purposes. ERADAT collects additional data from other sources such as library controller, for
cross-reference checking.

3.1. Balance the tape drive resource for read
Managing the tape drive usage for read and write is the fundamental feature for operating tape storage.
ERADAT has built-in tape drive management functions.
* Allocating just enough resource for read (the rest are reserved for write). Tape drives can be
allocated as dedicated resource or shared pool. Each user has a limit on resource usage.
* Allocating resources based on priority. Some users have higher priority than others, so we
should reserve more tape drives for high priority users.
* Able to adjust the resources at any time, without service interruptions.

3.2. Minimize the tape mounts

Tape has long latency for random accesses since the deck must wind an average of one-third the tape
length to move from one arbitrary data block to another. Modern tape technologies can have very high
native data transfer throughput rate; for example the transfer speed of LTO-7 media can go up to 300
MB/s, but the other latencies are making performance drop. The tape mount is the real performance
bottleneck; therefore it is necessary to minimize the redundant tape mounts.

To reduce the tape re-mount rate, file requests must be aggregated by tape cartridge, so that all the
requests on same tape can be read at once reduce redundant tape mounts.

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

3.2.1. Tape Latency Control Optimization

To provide the next level of optimization, not only all requests are sorted by tape cartridge ID but they
are also sorted by file position on the tape, so that the requests can be read sequentially in order to
minimize rewind and forward. Tape has quite a long latency for random accessing since the drive must
rewind an average of one-third of the tape length to move from one arbitrary data block to another.

MNT Seek [Read [RWD | DSM F
MNT Seek |'Read | Seek ['Read [Read | Seek ['Read | RWD [DsM [P

Figure 2. Tape Read Latency (top) and optimizing the read requests from the same tape (bottom).

According to the manufacturer’s parameters [6], using LTO-7 as an example, we have:
* A tape delivery (cell-to-drive) time of 11 sec (P)[7]

* Mounting/Loading: 13 sec (MNT)

* Positioning on file location (first file): 59 (Average file access time)

¢ Data transfer (claimed): 300 MB/sec (Read), a 2 GB file should take about 7 sec.

* Average Rewinding the tape: 62 sec (RWD)

¢ Dismount/Unload: 22 sec (DSM)

* Place the tape back into the library slot: 11 sec (P)

In this example, the latency is 178 sec (3 minutes), but actual read-time only take 7 sec.

Aggregating files on the same tape and then read once to reduce the long latency. See Figure 2.

3.3. Optimize the tape read

The ultimate solution of optimizing tape read is to use Recommended Access Order (RAO), this is a
new feature available to some new enterprise level tape drive. The RAO provides an optimized order
indication to minimize the required total time period. However, the RAO feature is not available in
LTO technology yet, the best way to optimize the tape read is to follow the sequence of logical
position of each file on tape. ERADAT queries HPSS for detail attributes of each requested file via
HPSS API call, sort the requests by Tape ID, logical position and offset.

File A001 File B001 File C001 File D001 File E001 File FOO1

Position 10 Position 20 Position 35 Position 46 Position 57 Position 68
Read in sequence =9

Figure 3. When a tape is mounted, read all requested files on the same tape, sequentially.

Since large file 10 is best for tape storage, small files are often aggregated via HPSS’s small file
aggregation feature. When reading small files from the aggregated block, offset is used for sorting the
sequence within the block.

Large File A001 Small File B001 | Small File C001 | Small File C002 | Small File C003 File FOO1

i i]
Position 1 Position 20, offset 1 Offset 23 Offset 46 Offset 57 Position 68
Small files aggregation block >

Figure 4. Reading Small files from an aggregated block.

In Figure 4, when reading small file C001, the tape is first fast-forwarded to Position 20, and then
moved to offset 23, read file CO01.

3.3.1. Minimize the tape positioning (rewind and forward)

Excessive Rewind and forward is a problem for tape storage as it causes extreme wear and tear on
both the tape and tape drive and shortens the lifespan of both tape and drive, increases the risk of data
lost. New requests may be inserted into the queue, while the queue is already in staging mode. In order
to minimize the number of rewinds, the stager will continue to read the next file in the queue until the

end of the queue, and then it will rewind the tape to the beginning of the first new file in the queue.
File E (Reading) File F File G

Position 2323 Position 3243 Position 36

Figure 5. Minimizing the tape rewinds.

CHEP IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

Files M, N, O are the new inserted requests, while File E is being read. The stager will continue to
read O,F, G. When the last file in the queue (G) is finished, rewind to position 23, read files M and N.

3.3.2. Buffer — Optimized read performance, minimized resource consumption

There is latency between job submissions and return, a buffer may improve the performance. A buffer
is a pool of threads responsible for submitting jobs, the 1* thread is the active stager, and the rest are
standby. Typically, 2 threads should be enough. Figure 6 illustrated a 2 threads buffer, while File A is
being staging; File B is waiting in queued. As soon as File A is finished, File B will be the next one in
the line.

BUFFER
Thread 1 -> File A

Thread 2 -> File C "p————— File C (Queued) ..

Figure 6. Buffer queue.

In Figure 7, while File A is retuned, File B should be already being staging, thread 1 should be
updating the status for File A, and then submit File C. With LTO-7, 300 MB/s, we may consider to use
a 3 threads model, to reduce latency. A recommendation is to not over allocate the buffer as it will not
be helpful but wasting thread’s resources.

BUFFER 1 T

[*Thread 2-> File
| THreadst «» FileH» -

Figure 7. Buffer Queue (Return).

3.4. Optimize the resource usage
When accessing massive amount of data from wide range of tapes, increasing the bandwidth may be
helpful. Tape drive sharing could be a good solution, with a good resource management.

Resource borrowing: Users sharing the same tape drives pool may borrow drive from each other.
10LTO-5
500233 500210 500204 50083 500176 500218 500265 500041

10LTO-6
600261 600222 600004 600234 600053 600245

LTO-5: 3 drives LTO-5: 5 drives

500041 Mounted 500210 Mounted
500083 Mounted 500204 Mounted
500176 Mounted 500265 Mounted
500005 Waiting 500233 Mounted
500017 Waiting 500218 Mounted

500015 Waiting

ERADAT S ERADAT

User A LTO-6: 2 drives User B LTO-6: 4 drives
600053 Mounted 600234 Mounted
600004 Mounted 600245 Mounted
600106 Waiting 600261 Mounted

| 600012 Waiting 600222 Mounted

600018 Waiting 600218 Waiting
600098 Waiting 600289 Waiting
600004 Waiting

Figure 8. Resource sharing.

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

In the example of Figure 8, when user A needs more LTO-6 drives, user A may borrow LTO-6 drives
from user B. To do this, User B needs to reduce the LTO-6 drive allocation while user A may increase
the LTO-6 drive allocation. When drive allocation is changed, it will take effect immediately if there
are free drives available. If all drives are busying, then it will have to wait until a drive becomes free.

Resource over-subscribing: When reading files from older generation tapes, we may use newer
generation drives to increase the bandwidth. For example, we may use LTO-5 to read LTO-4 media.
With this over-subscription method, we may increase the LTO-4 bandwidth immediately.

' [LTo4 [LTo4 [1704 [(T0-4 [LT04 [(T04 | [LTO®5 [LT06 [LTO6 |L70-5 [LT0-5 [1705] |
' Virtual LTO-4 Drive Pool '

Figure 9. Drive over-subscribing.

Since LTO technology can read at least 1 generation back, HPSS will automatically try to use LTO-5
drive when no LTO-4 drive available.

4. Flexible Staging Algorithm

4.1. ERADAT staging policies

As discussed in section 3. , ERADAT implements FIFO, LIFO and “by demand” policies and those
may be enabled on the administrator preference and act at a global level. However, in a multi-user
environment, those basic blocks and construct policies may not be adequate to satisfy fairness. For
example, consider the following scenario: user A has submitted massive requests for 100k files while
user B has requested an isolated file placed on a single tape. For the sake of ultimate optimizations, a
strict sorting of all files requested may be the best approach — however, user B’s perception of fairness
(waiting forever for his single file request to be satisfied) may not be as focused on global
optimization. This is why queuing systems also introduces “shares” and fairness, allowing a balanced
between optimization and expectations.

4.2. The DataCarousel

The DataCarousel (DC) is an extendable and fault tolerant policy driven framework that satisfies
requests in a multi-user environment. To create the balance aforementioned above, the DC was created
as a simple wrapper front end to ERADAT. Its purpose is to intercept requests from many users and
act as a fairness based queuing system.

4.2.1. Relation to ERADAT and basic designs

The DC first is aware of all features of ERADTA. For example, it queries ERADAT for file placement
on tape or may requests ERADAT to change policy. A usage example of the later is that in case
requests comes from a single user, “by demand” policy (or strict tape ordering by biggest demand
first) fulfill that single user’s expectation while in a multi-user request scenario, an alteration of the
FIFO policy would likely be in use. The DC can also calculate how long a request from a given user
has been pending and, detecting if it is a case of “a single file requested from an isolated tape”, switch
the policy to LIFO (getting that requests out of the way).

The DC is essentially a collection of wrapper scripts written in perl with a MySQL back-end for
keeping handling the requests. As its basic design, it respects the separation of privileges principle that
is, a “thin” client inserts requests in the system and the server (a separate machine close to ERADAT
and HPSS services with elevated access) is responsible for manipulating and updating the states and
tracking the record progress. The server submits N records to ERADAT every few minutes up to a
controllable maximum number of concurrent “batch’ restore job. A note that after ERADAT restores a
file on HPSS cache, a call back restores (on his behalf) the file under the user’s specified location. All

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

failures are tracked and possibility retried. Failure varies from HPSS downtimes, drive failures but
also user mistakes such as a quota exceeded. Retries can be set by the type of failure (retry count).
Another feature providing resilience is that the DC also monitors the HPSS and system responses —
detecting a problem, it has the ability to restart services automatically or on the contrary, throttle
restores made toward specific file system. This latest feature is useful for centralized file systems (with
non-scalable 10) — as many restore threads may occur simultaneously, the DC in other words handles
making sure the files system where the files are restored to is not overloaded.

4.2.2. Sorting and sharing Policies

In its basic function, the DC looks at records in the order submitted and resort them according to
policies. Each users may have up to a customizable maximum amount of requests in the system at a
given time - when this limit is reached, other user’s requests are considered first and this is done to
avoid a single user starvation (no matter if a user submits 100k records, only a portion would be
submitted at a time allowing a later request to “get in”’). However, custom parameters may also allow
super-users to have a different limit. On top of this, the DC implements sorting and sharing policies as
follows.

The existing sorting policies could be NONE or TAPEID. NONE policy will sort only by the record
entry time (the default). TAPEID sorting has sub-categories including a strict tape ID sorting (neither
useful nor fair to users but helpful for testing) or by Time and ID (or a time slider mode). In this later
“production” mode, the server sorts the records by Entry time first and tape ID second: this allows the
oldest entries to be considered first while all records from the same tape those records belong to are
also added to the stack of files to be restore. This may reshuffle the order by which files are restored
but represents a good compromise between time expectation, fairness and optimization.

There are four sharing policies. EQUAL considers every user with request in the system to be of equal
importance. They get the same share of the restores. GROUP allows putting users into virtual groups,
each group having equal weights. GRPW is a composite policy allowing weighing groups: for
example, group A (a production team) may have twice the amount of files restored than users in group
B. A final point that the flexibility of the framework comes through allowing an administrator to write
his/her own policy in a separate module (not touching the core code), loaded upon execution. This can
be enabled as simply as setting the policy name in the system’s control table (and having the related
standalone code of the same name reside in the same directory as the core-server code).

All of those features offer a versatile set of controls allowing controlling the behavior of the system at
the front-end and ensures user’s expectations, fairness while preserving optimization.

5. Result
As the system is in constant production use at BNL, a massive test would be quite disruptive and slow
down mission-critical operations. We therefore established an initial test to compare 704 files, 10 GB
per file, out of 21 tapes, using 15 drives, a test of minimal impact on other operations.

= Direct submission: Took 270 minutes to complete. Average ~444 MB/s. Used 34 mounts.

= Using ERADAT: Took only 70 minutes to complete. Average ~1.7 GB/s. Used 21 mounts.

6:00

SO LN ERSVELERSIBBERIIELIEETREBER

Figure 10. Direct restore VS Optimized restore.

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

The sub-sequent performance described in this section arises from a network congestion event and a
self-inflicted non-optimal condition originating from a configuration change. It is important to
understand that while a massive test would disrupt operation, in this case, we leveraged an already
ongoing restore to measure a near optimal performance enhancement of our system from a recovery of
a worst case scenario. In our case, a massive amount of files were requested via the DC but the limit of
simultaneous requests allowed per user was increased to be in excess of 50,000 files at any time (a
factor of x10 more than the maximum allowed in normal circumstances for that account and x20 more
than any other users). A reasonable amount of files was showed to allow the DC to be “reactive” that
is submission at pass N+ 1 would be based on the behavior of the submission pass N and possibly
throttle depending on ERADAT response. This very mechanism avoids congestion as the system self-
adjust to external events. In this case however, the increased limit per user for the production accounts
(handling those requests) did not allow this recovery to happen and created a snowballing effect.

The results of those restores are partially seen on Figure 11 — the workflow begins with the default
settings and the restore rate appeared to be around 400 files / hours. By increasing the number of tape
drives from 4 to 6, we moved 1,600 files per hour for only a 50% tape before the 28". All went well,
and we decided to move the drive allocation to 8 (and boldly increase the file limit per user to 50,000
simultaneous restores for this emergency restore) and the performance peaked at 150 TB / day by
September 30", an encouraging number. Our “luck” did turn to a worst case situation as a network
event aborted many transfers and this, for or a large period of time. The DC did detect and retry the
failed restores as designed. But the issue was that as the network outage lasted hours, HPSS “purged”
its cache and, while one of our recovery mechanism (retrying the pftp immediately and N times upon
detection of failures) was foreseen as a benefit for taking care of transient issues, this had a disastrous
effect in this non-transient situation. The large amount of retried failures combined with a large
number of ongoing restore requests (up to 50,000 in our expanded limit) leaded to a situation where
the files, previously on HPSS’s disk cache, were no longer available on cache. As a result, all purged
files requested at the last “pftp” stage were directly accessed from tape again without optimization
(FIFO style and in no specific order). With 100ds of requests in the “retrying pftp” stage, the
slowdown of mounting tapes all over again in a non-optimized manner while 50,000 requests needed
to be flushed created more backlog and hence, more HPSS cache expiration. By October 3", and while
the DC stopped further submission and sent Email notices of the condition, the ongoing performance
was abysmal. We tried to allocate all available drives (16) to take care of this condition in an attempt
to palliate for this incident to no avail: the performance fell to 2 TB / day and remained low for 3 days
(we deliberately left this going for performance assessment and illustration purposes, making the best
of a bad situation).

Daily Data Transfer Volume (TB) into HPSS in last 8 days
Date

|
I EE og-28 |
. UsedERADAT MO o929 | 92
e _up to 150 TB/day _____ BEUKIECE TR
| B R 10-01 | 140
|
I
1
1

Mounts
67

a
g
0

I 05 ¢ | ost cache copies 10-02 507
2.0 10-03 393
= 26 Unmanaged restore from tapes ...

10-04 518
2016-10-05 B 14 g U= EEY7 10-05 709

Figure 11. Restore rates with and without optimization. A catastrophic network failure
caused a abrupt de-optimization starting on October 1% and causing performances to drop at
arate of 75 less as when it was optimized, demonstrating the advantage of our approach.

1
2
3
4
g

On October 6", we took the step to reset all requests in a state other than “done” in the DC, re-issued a
less aggressive amount of simultaneous requests (restoring to 5,000 per user) and did reset ERADAT
as well (and forced an HPSS cache flush). In short, we issued the equivalent of a full system reset
leaving both DC and ERADAT to act in its normal settings conditions. We saw an immediate
performance increase.

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 082024 doi:10.1088/1742-6596/898/8/082024

STAR-starrdat Daily Data Transfer Volume (TB) out of HPSS
Average 14 31 TB/day
2016-10-05 [N 14
2016-10-06 | EG_— : 0
R S S—————
B e —— e I
B | S I

Figure 12. Restore Rate improved immediately after we restarted the system

Due to a strong state tracking in the DC system, not a single request was lost in the process. However,
as our system illustrated a tangible issue, a lesson learn was also that allowing massive simultaneous
restores without boundaries combined with allowing immediate retries of failed requests is not the best
approach — a better approach is to not allow near-immediate retries but re-schedule the failed requests
on a time cycle basis (once every N hours, all failed restores believed to be recoverable would be tried
again). This option was available in the DC but was not used in this massive restore either.

6. Conclusions

In this paper, we introduced and comprehensively described two systems developed and used at BNL,
providing advanced HPSS resource management, priority queuing, resource sharing, web-browser
visibility of real-time staging activities and advanced real-time statistics. Those are ERADAT and the
DataCarousel. Both implement policies allowing the optimization of restores by sorting or regrouping
the requests. In our testing, the speed up of massive restores using both tools working together have
showed restore speed 75 times faster than a non-optimized user access (using direct pftp or hsi access)
as well as a nonlinear performance increase with the number of drive (+50% drive allocated to a task
leads to 400% increase in file restore rate).

References

[1] Brookhaven National Laboratory (BNL) — http://www.bnl.gov/

[2] BNL Scientific Data and Computing Center (SDCC) - https://www .bnl.gov/compsci/SDCC/index.php
[3] The Relativistic Heavy Ion Collider (RHIC) - https://www.bnl.gov/RHIC/
[
[

4] BNL is one of the Tier-1 facilities for the LHC/Atlas project
5] Jakl,J lauret et al., 2008 Grid data access on widely distributed worker nodes using Scalla and SRM,
Journal of Physics: Conference Series 119 072019
[6] Oracle StorageTek LTO Tape Drives 2016 http://www.oracle.com/us/products/servers-
storage/storage/tape-storage/033631 .pdf 2
[7] Average cell-to-drive time 2015 http://www.oracle.com/us/products/servers-storage/storage/tape-
storage/034341 .pdf 4

