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• Highest data rates in HEP!
Current detectors only read out triggered events

• And getting higher…
Next generation detectors promise better resolution 
(position & angle), precision timing

More information, but also more data

Pixel detectors at the LHC
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2207.07958
What would we gain if we could analyze it all? Some aspirational targets: 
• Higgs self-coupling : 5x increase in the low-mhh spectrum from b-jet triggers.

• WIMP dark matter : 50x rate for low-pT / disappearing tracks / long-lived particles.
• New capabilities for high-rate, soft objects : e.g. dark sector BSM, B-physics, and more!

https://arxiv.org/abs/2207.07958


• Detector is an array of N pixels
100 x 25 µm pitch

100 µm thick sensor

• Pixel data sits in buffer until L1 
decision is made

• Passed to HLT at 1 MHz

Pixel readout chain: CMS at HL-LHC
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• Detector is an array of 4N pixels
50 x 12.5 µm pitch

100 µm thick sensor

• Pixel data is passed to L1 
trigger at 40 MHz

• Passed to HLT at 1 MHz

Pixel readout chain: our futuristic detector
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4

40 MHz

We have to transfer 
4-160x more data



• Detector is an array of 4N pixels
50 x 12.5 µm pitch

100 µm thick sensor

• Pixel data is passed to L1 
trigger at 40 MHz

• Passed to HLT at 1 MHz

Pixel readout chain: our futuristic detector
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We have to transfer 
4-160x more data

40 MHz

Use AI to perform physics-motivated data reduction on-ASIC



• State-of-the-art dataset for developing algorithms for 
implementation on-ASIC (link)
Initial conditions = fitted track params from CMS Run 2 data, 
down to pT ~ 100 MeV

Simulation with time-sliced PixelAV, including E field and 
weighting field

• Simulated MIP interactions in a 21x13 array of pixels
50x12.5 µm pitch, 100 µm thickness

Located at radius of 30 mm

3.8 T magnetic field

Time steps of 200 picoseconds

Charged particle signatures in our futuristic detector
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https://zenodo.org/record/7331128
http://cds.cern.ch/record/687440/files/note02_027.pdf?version=1


• Particle pT ~ radius of 
curvature, correlated with 
Incident angle in the bending 
plane of the magnetic field (β)

Position of the hit in the 
bending direction (y0)

Sign of the charge

Applications for AI on-ASIC: data filtering
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• Select and read out only those clusters created by particles with high transverse 
momentum (pT)



• pT ~ radius of curvature, correlated with 
Magnetic field strength (B)

Position of the hit in the bending direction (y0)

Angle in the bending plane of B (β)

Sign of the charge

Classification based on particle pT
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β

y0

• Train a classifier to select clusters with                
pT > 200 MeV 
Input data: cluster image projected onto y-axis

• Three classes: 
Low pT negative charge, low pT positive charge, high pT



• Full precision network: 
1. Projected cluster size only

2. Projected cluster shape (selected for implementation)

3. Timing information promises 5-10% efficiency gain 

Performance of the DNN pT filter
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How much do 
we discard 
overall?

How much of 
what we keep 
is pT > 2 GeV?

How much of 
what we discard 
is pT < 2 GeV?

Model 4: Spiking neural network is a work in progress



• Following quantization aware training with qKeras and further optimization with 
hls4ml, the algorithm has 1,163 parameters
Operates at < 300 µW, area of less than 0.2 mm2

• Each 2x2 array of readout pixels maps to a 1x4 array of sensor pixels

Implementation on-ASIC
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Red: 
classifier algorithm

White: 
network weights



Applications for AI on-ASIC: featurization
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• Train an algorithm to extract properties of the incident particle. Read this out 
instead of raw data
Technically lossy, but preserves information useful for physics

x, y, …



• Hit position (x, y) and incident angle (cot ɑ, cot β)
• Mixture density network can give us a prediction for each 

feature, plus a meaningful uncertainty 
• For each cluster, assume the likelihood is described by a 

multivariate Gaussian in (x, y, cot ɑ, cot β)
Training minimizes loss = negative log likelihood

• Build a model that predicts all parameters of the 
likelihood
Mean of x, y, cot ɑ, cot β and full covariance matrix!

14 features in total

Features to predict
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https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf


Angles & their uncertainties
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• More complex final states ⟶ more hits ⟶ more hit combinations for track seeding
Computationally very expensive and slow 😕

• Predicted angle + uncertainty gives a 
cone where you can expect a hit in the 
next layer, reducing combinatorics
Small uncertainty ⟶ small cone

• Fast tracking and vertexing
Very valuable for hh, e+e- and µµ !

At HL-LHC: makes L1 pixel trigger feasible?



Featurization network
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• Deep 2D convolutional neural network
Treat charge deposited in pixel array as 2D image

Treat each 200 ps time slice as a channel

• 5 branches with pooling layers
Corresponding to x, y, cotɑ, cotβ, and covariance

• 2,181 trainable parameters in total

…



Featurization network
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• Deep 2D convolutional neural network
Treat charge deposited in pixel array as 2D image

Treat each 200 ps time slice as a channel

• 5 branches with pooling layers
Corresponding to x, y, cotɑ, cotβ, and covariance

• 2,181 trainable parameters in total

…

Do we have (low power) detectors that 
can sample every 200 ps? 

Opportunity to incorporate fast timing detectors or 
spiking neural networks



• Residuals vs. truth, with band showing mean predicted uncertainty 

Performance of the featurization network
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Hit position x, y
Pattern of bias repeats across each pixel
Mean resolution of 10 µm and 1µm in x, y



• Residuals vs. truth, with band showing mean predicted uncertainty 

Performance of the featurization network
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90°

180°0°

Hit position x, y
Pattern of bias repeats across each pixel
Mean resolution of 10 µm and 1µm in x, y

Angles ɑ, β
Largest uncertainty near ɑ=90° due to single pixel hits
Dataset covering limited range in β

Mean resolution corresponding to cone of σ < 5°    
(~0.2% of the full solid angle)



• Pulls = residual / predicted uncertainty good out to ~ 3σ
• Small correlations between features

Performance of the featurization network
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Featurization: future plans
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• How much can we compress the 
network?
Reduce ops, quantization aware training, hls4ml

Try training on shape of deposited charge sampled at 
a lower frequency

• What should we output?
So far: 14 physics parameters 

Outputting latent space would give lots of flexibility 

• Applications for future colliders
What might we do differently at an e+e- or muon 
collider?

…



• AI on-chip has great potential to reduce data rates to manageable levels at the 
HL-LHC and beyond 
Co-design with focus on preserving information that is useful for physics

• First implementation of the pT filtering looks very promising!
• Feature extraction for x, y, ɑ, β and full covariance is possible!
• Leverage emerging technologies to improve energy efficiency and accuracy:

Analog multiplication

Neuromorphic / spiking networks

3D stacking

Summary & next steps
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Backup
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Implementation in 28nm CMOS
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• Floorplan with analog pixels with power 
and bias grid

• Red: classifier algorithm

• White: registers for programming the 
neural network weights
Triple redundancy to protect against single 
event upset
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