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ABSTRACT

In this PhD thesis, I study cosmologies within the simplest scalar-tensor theories
of gravity consisting in a scalar field ¢ non-minimally coupled to the Ricci scalar
through a function F'(o) that induces a time-variation in the Newton constant and
a potential V(o). I explore the new physics in these cosmologies and use publicly
available data to constrain them.

Depending on the functional form of the non-minimal coupling and the potential,
the cosmological dynamics changes significantly. For some of the models, the specific
dynamics helps recover the consistency with very stringent tests of General Relativity
from Solar System and laboratory experiments without the need of any screening
mechanisms.

When compared to publicly available data, all these models feature a value of the
Hubble constant Hy larger than the standard ACDM cosmology. This makes scalar-
tensor theories one of the most interesting candidates to solve the Hy tension which
is becoming one of the most pressing questions in the post-Planck cosmology.

In order to better characterize the phenomenology of scalar-tensor theories, I also
investigate their degeneracy with parameters describing the physics of neutrinos. I
show that bounds on the effective number of active neutrinos and their masses are
slightly relaxed in this context, although they are only a very weakly degenerate with
the modification to gravity studied in this thesis and the full inclusion of CMB and
LSS data used here.

Finally, I address the issue of initial conditions within these theories and present a
new regular isocurvature mode connected with the variation of the Newton constant
which is absent in Einstein gravity. Although the observational imprints are different,
the allowed fraction of this mode, relative to the adiabatic one, is constrained by
Cosmic Microwave Background data at a similar level to other known isocurvature

modes.
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SINTESI

In questa tesi di Dottorato studio la cosmologia delle pit semplici teorie scalari-
tensoriali della gravita che consistono in un campo scalare o accoppiato non-minimalmente
al tensore di Ricci per mezzo di una funzione F'(o) che induce una variazione nel tempo
della costante di Newton e un potenziale V(o). Esploro la nuova fisica in queste cos-
mologie e uso dati pubblici per vincolarle.

A seconda della forma funzionale dell’accoppiamento non-minimale e del poten-
ziale di o, la dinamica della cosmologia cambia significativamente. Per alcuni modelli,
la particolare dinamica aiuta a ritrovare la consistenza con gli stringenti test sulla Rel-
ativita Generale da esperimenti nel Sistema Solare e in laboratorio, senza il bisogno
di nessun meccanismo di screening.

Inoltre, quando testati con dati pubblici, tutti questi modelli sono caratterizzati
da un valore della costante di Hubble H piu alto che nel modello standard ACDM.
Questo rende le teorie scalar-tensoriali uno dei migliori candidati a risolvere la tensione
su Hy, la quale sta diventando una delle questioni pitt pressanti della cosmologia post-
Planck.

Per caratterizzare ancora meglio la fenomenologia di queste teorie, investigo anche
la loro degenerazione con i parametri che descrivono la fisica dei neutrini. Mostro
come i vincoli sul numero effettivo di neutrini e sulla loro massa vengano rilassati
in questo contesto, nonostante siano solo debolmente degeneri con la modifica della
gravita.

Per concludere, esploro anche la possibilita di usare perturbazioni di isocurvatura
come condizioni iniziali per I’evoluzione delle perturbazioni lineari in queste teorie e
presento un nuovo modo regolare che ¢ assente in Relativita Generale. Nonostante
i diversi effetti sulle osservabili cosmologiche, la frazione di questo modo, relativa al
modo adiabatico, permessa dai dati sulla Radiazione Cosmica di Fondo e simile a

quella di altri modi di isocurvature gia conosciuti.
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Introduction

Chapter 1 I review the cosmology of the ACDM standard concordance model
and the equations governing both the background (homogeneous and isotropic)
and perturbed dynamics of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
cosmology. This chapter does not original work and the main purpose is to
present equations and mathematical concepts that the following chapters rely

on.

Chapter 2 I present a short review on Scalar-Tensor theories of gravity and
show how the non-minimally coupled theories that are considered in this thesis
fits into the broader context of (beyond) Horndeski theories. I derive all the
equations relevant for non-minimally coupled theories, that I will use in the
subsequent Chapters, and discuss the main constraints on these theories from a

variety of tests of gravity.

Chapter 3 I review the the state of the art of the Hy tension. I contextualize
the problem and provide the reader with an updated list of indirect (model de-

pendent) and local (model independent) measurements of the Hubble constant.

The standpoint that I adopt in this thesis is that such a discrepancy between
early and local measurements of H calls for some new physics. In this spirit,
I discuss how the Hj tension can be recast in a tension on the comoving sound
horizon at baryon drag r, and explain why solutions that modify the ACDM
model prior to recombination seem to be favored over the ones that modify it
at small redshifts. To corroborate this conclusion, I discuss three popular early
time solutions to the Hy tension: dark radiation, Early Dark Energy (EDE) and
Modified Gravity (MG).

This Chapter is mainly a review the Hj tension to set the stage for the following

Chapters, but it also contains results from my original work in Ref. [1].

Chapter 4 I present cosmological constraints on ST theories in which the scalar
degree of freedom (o) is nearly massless and coupled to the Ricci scalar through
a function of the form F(0) = N} + &0 and discuss the complementarity of
cosmological observations to laboratory and solar system ones in constraining

deviations from General Relativity.



Furthermore, I analyze in depth the implications of these theories for the H
tension. I show that, although the tension cannot be completely solved, it is
naturally eased within ST theories, featuring a considerably reduced fine tuning

with respect to other solutions to the Hj tension such as EDE.

This Chapter contains original work from Refs. [2-4].

Chapter 5 I build on the results on the previous Chapter and extend the
model by endowing it with a quartic potential V(o) = Ao?/4 that induces a
small effective mass. I show that the potential modifies the motion of the scalar
field which at late times settles in its minimum at ¢ = 0, thus evading any

constraint on the deviation from GR.

I present cosmological constraints on the model using several combinations of
Cosmic Microwave Background (CMB) and Large Scale Structure datasets and
show that the extended parameter space relaxes the constraints on the coupling
¢ and allows for a larger Hy than the massless case. In particular, the & > 0
branch of the coupling, which is ruled out by data in the massless case, is now

perfectly allowed.

This Chapter contains original work from Ref. [3].

Chapter 6 I discuss joint constraints on the physics of neutrinos and ST models.
The results of this Chapter are constraints on the parameters describing the
effective number of relativistic species in the form of neutrinos, i.e. Ngg and

their total masses ) m,, in the ST context.

Contrary to the expectations (neutrino physics is degenerate with many models
of MG, e.g. f(R) theories), I find that there is only a small degeneracy between
ST theories so that N.g and m, do not vary sensibly with respect to their ACDM

value, although, as expected, the constraints are a bit relaxed.

This Chapter contains original work from Ref. [4].

Chapter 7 I present a new set of isocurvature initial conditions for the cosmo-
logical perturbations in ST models. I analytically derive the most general set
of initial conditions as solutions to the full set differential equations in a power
series of k7, where k is the wavevector of the mode and 7 the conformal time and
explore its imprint on cosmological observables. I focus on the new isocurvature
mode due to the presence of the scalar field ¢ and present the theoretical CMB

spectra.



I close the Chapter by presenting bounds on the allowed fraction of such an

isocurvature initial conditions obtained with Planck 2015 and 2018 data.

This Chapter contains original work from Ref. [5] and preliminary results from
Ref. |6].

Chapter 8 Finally, I critically discuss and summarize the results of the previous
Chapter and discuss open directions and the future perspectives for new research

that may follow this Thesis work.






Chapter 1

Basics of Cosmology and the ACDM

model

With the beginning of the 21st century, Cosmology has undergone significant pro-
gresses on both the theoretical and observational sides. Ever since the discovery of the
accelerated expansion of the Universe [7], several astrophysical and cosmological data,
which span a large range of scales and describe processes occurred during different
cosmological epochs, have confirmed evidence of a dark nature of our Universe. The
latter is indeed now known to be composed of about 68% of Dark Energy and 27%
of Dark Matter, with the ordinary baryonic matter only accounting for the remain-
ing 5%. Although the nature of Dark Energy (DE) and Dark Matter (DM) is still
unknown, this has not stopped cosmologist from settling to a standard cosmological
model, in which DE is in the simplest form of a cosmological constant A and the
majority of DM is non-relativistic (cold). At the current time, despite facing its own
theoretical problems, some of which I will describe later in this Chapter, the stan-
dard ACDM model is the most economic model, which is in remarkable agreement
with the largest number of observations. Besides the former assumptions on the dark

components, the other pillars of the ACDM model are:
e the validity of the laws of General Relativity (GR);

e the isotropy and homogeneity of the Universe, also known as the cosmological

principle;

e the Hot Big Bang model history agreeing perfectly with the observed abun-
dance of light elements and the thermal nature of the relic blackbody radiation

permeating the Universe;

e an accelerated period of inflation to explain the non-observation of magnetic
monopoles, the flatness of the Universe, the correlation of apparently causally
disconnected patches in the CMB sky and to provide the adiabatic and Gaussian

spectrum of initial conditions needed to seed structure formation;

5



e the current stage of accelerated expansion consistent with a cosmological con-

stant A.

The power of the ACDM model is that all these assumptions can be described by
a minimal number of 6 parameters (see Section, which are exquisitely constrained
by the outstanding measurement of the Cosmic Microwave Background (CMB) anisotropies
by WMAP [8] and Planck [9] and by large scale structure measurements.

In this Chapter, I will briefly describe the formalism, based on GR, needed to head
out on the rest of the thesis. I then go on to describe the ACDM, its predictions and
the main observables that are used to test them. As understood, this Chapter only
gives an incomplete overview of these subjects and I refer to popular textbooks [10-20]

for more detailed information.

1.1 General Relativity and the Friedmann-Lemaitre-

Robertson-Waker

The formalism used to describe the expansion of the Universe and relate it to the
its energetic budget is the one of GR. In this framework, an event is a point of the
4-dimensional spacetime manifold and, once chosen a coordinate system, it can be
described by its coordinates z# = (2°, 2'2% 2®) = (¢t,z,y,2). All the information
of interest is encoded in the 2-rank symmetric metric tensor g,,(x), used to define
distances and lengths of vectors on the manifold. Considering two events z* and

" 4+ dz* separated by an infinitesimal increment dz*, the spacetime interval
ds® = g, (v)dz"dz” (1.1.1)

gives the squared distance between the two events.
Given a metric, test particles move along the trajectories that extremize their
actions. Such trajectories x#(\), where A is an affine parameter, are called geodesics

and satisfy the following equation

2 b o
d°zt w dz? dx

F R

0, (1.1.2)

where the Christoffel symbols are given in terms of the metric g, as

o 1 ., (9q dg 09,
7, =g P( Py ke 2w | (1.1.3)

2 Oxt — Oxzv  OxP
In order to derive the field equations for the metric g, it is useful to introduce

6



the Einstein-Hilbert action:

R

S=[day/—g | —=+Ln|. 1.1.4

/ v |:167TG * } (1.1.4)

where ¢ is the determinant of the metric and R is the so-called Ricci scalar, obtained
by contracting the first and third indices of the tensor defined as

R, =R, =T, —T% , +T5I0, —T5I0.. (1.1.5)

Starting from Eq. (1.1.4) and computing the Euler-Lagrange equations for the metric,

one can derive the Einstein field equations
1
Guw =R — Eg,wR = 87GT ) (1.1.6)

which relate the total energy-momentum tensor describing the constituents of the
Universe, on the right hand side, to the geometry of the Universe on the left hand side.
An important consequence, crucial for cosmology, of the form of R,, in Eq.
is that the Einstein tensor G, satisfies a set of equations called Bianchi identities

V,G* = 0 that lead to the conservation of the total energy-momentum tensor
Vv, T" = 0. (1.1.7)

Note that V, is the covariant derivative associated to the metric g,, that acts on a
tensor A7 as V, A7 = 9,A7 — ') A7 + 17, A,

In principle, in order to determine the metric of the Universe, one should solve
the Einstein equations ([1.1.6). In cosmology, the isotropy and homogeneity of the
Universe imply that the 4-dimensional spacetime has a maximally symmetric 3-

dimensional subspace, so that its metric assumes the general form:
ds? = —dt* + a®(t)vy;;dx' dx? (1.1.8)

where the t is the physical time coordinate and the metric on hypersurfaces of equal

time ~;; is given by
il

S Y S -
Tig * 1 — k(zpzk)

(1.1.9)

where k = —1,0,+1 for a spatially hyperbolic, flat or spherical Universe respectively.
Hereafter, I will restrict to k& = 0 since CMB and other cosmological observations
agree very well with a flat geometry [21-23] (see however Refs. [24-26] for recent

papers claiming that the Universe can instead be closed).
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The metric (1.1.8)) is called Friedmann-Lemaitre-Robertson-Walker (FLRW) met-

ric and can also be written in spherical coordinates as:
ds® = —dt* + a*(t)(dr® + r?dQ?). (1.1.10)

The quantity a(t) is the scale factor and together with its time derivative H(t) =
dloga(t)/dt describes the expansion of the Universe. Sometimes, another time vari-
able called conformal time 7, which is related to the physical time by dr = dt/a(t),

is useful.

With the symmetries of the FLRW metric, the form of the energy-momentum
tensor T}, is greatly simplified. Indeed, symmetries connected with space translations
and rotations require its components to transform in a particular way. Specifically,
T% has to transform as a scalar, 7% as a vector and 7% as a tensor with respect
to these transformations. Isotropy and homogeneity imply that 7% has to vanish
and T has to be proportional to the 3-metric ¢;;. These requirements restrict the

energy-momentum tensor to take the perfect fluid form as follows:
T = Pg" + (p+ P)U*UY, (1.1.11)

where U* = dz*/v/—ds? is the 4-velocity vector, P is the total pressure and p the
total density of the fluid.

1.1.1 Redshift, distances and horizons in a FLRW Universe

Starting from the FLRW metric in Eq. useful concepts can be introduced.
Perhaps the most important one is redshift. The wavelength of light emitted from an
object receding from us is stretched out by the expansion of the Universe. Therefore,
we observe a wavelength which is longer than the one emitted. The redshift z, defined

as
)\obs - a(tO)

/\emit B a (t)

quantifies this effect. For nearby sources, it is convenient to expand a(t) in a power

1+2=

(1.1.12)

series around ty to get

a(t) = alto)[1 + (t —to)Ho + ...], (1.1.13)
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where I have introduced the Hubble constant

Hy = att) = 100~ km s~ *Mpc ™. (1.1.14)
a(t) i

For close objects tg — t is just the physical distance d and the redshift increases
linearly with distance z ~ Hyd. Historically, the Hubble constant was first introduced
by Hubble [27] to explain the redshift of the spectrum of galaxies with the famous
Hubble law

Vgal = Hd (1.1.15)

that was the first observational proof that the Universe is expanding. Contrary to
far galaxies, nearby ones show a blueshift instead of a redshift, because their motion
is dominated by their peculiar velocity with respect to the comoving grid which is

determined by local gravity.

The parameter h is established to be around h ~ 0.7, but its exact value is
currently under debate. In fact, some direct measurements of Hy are in tension with
its inference from CMB, Baryonic Oscillations measurements from galaxy surveys and
other early time experiments. This so-called Hy tension, will be explained in details

in Chapter |3| and will be discussed extensively in the rest of this thesis.

Another important concept is that of distances. Indeed, in a FLRW Universe
this can assume different meanings and one has to be careful in defining distances.
First of all, it is very useful to redefine the radial coordinate dy = dr/+/1 — kr2. In
order to investigate the propagation of light we note that photons follow null geodesics,
i.e. ds?> = 0. For aradial trajectory , ¢ = 0 are geodesics and, using the metric ,
null geodesics become simply dr? — dr? = 0 and are therefore described by straight
lines in the 7 — y plane, that is x(7) = 7 4 const. The comoving distance x(7),
however, is not observable and to get the physical distance, it has to be multiplied by
the scale factor dpnys(t) = a(t)x(t).

The luminosity distance d;, and the angular diameter distance d4 are also exten-
sively used in cosmology. The former relates the observed flux F' of a source with

intrinsic luminosity L at comoving distance y and redshift z as

L L
F = = 1.1.16
Arx3(1+2)  4nd3’ ( )
where we have identified
dp = x(1+ 2). (1.1.17)

The latter instead measures the distance between the observer and the object when

9



light was emitted. To measure it one has to know the object physical and angular
sizes D and 0 respectively as d4 = D/d0, so that ds = I_’ﬁ—z and the following relation
between angular diameter and luminosity distances holds

dr

dy = ———.
AT (1 +2)2

(1.1.18)

The last concept that I wish to introduce is that of cosmological horizon. If the
Universe has a finite age, as for instance in the FLRW metric (see following Section),
light can only travel a finite distance from its beginning and, at any given moment,
an observer can receive information coming only from a finite volume of the Universe.

The boundary of this volume is the so-called particle horizon and its comoving size is
given byl

T Ina

Xph(T) =T —7; = /dT = /(aH)ld In a. (1.1.19)

i Ina;

Note that, sometimes the same name is used for both the particle horizon and the
so-called Hubble radius defined as H~!. When the dominating component of the
Universe satisfies the strong energy condition p+ 3P > 0, however they are indeed of
the same magnitude. Nevertheless there are situations, as for the case of inflation, in
which the two are different, so it is important to keep in mind their different meaning:
the particle horizon is the maximum distance a photon can travel from the time of
the Big-Bang, whereas the Hubble radius is the distance over which photon can travel

with a Hubble time H~!. In fact, the comoving Hubble radius, i.e. (aH)™!, is related
to the particle horizon by Eq. (1.1.19).

For completeness, there exists also another kind of horizon, called event horizon

which is complementary to the particle horizon and defined as

Tf

Xe(T) = /dr =T/ —T (1.1.20)

T

in which 74 is the final moment of life of the Universe, equal to 7y = 400 if it expands
forever. The meaning of y. is that an observer will never receive signals sent at a

given moment 7 from points with x > xe.

Here 7; is taken to be the initial Big-Bang singularity (see again next Section).
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1.1.2 The Friedmann Equations

With the FLRW metric and the perfect fluid form of 7}, in hand, one can simply plug
them into the Einstein equations (|1.1.6)) to derive the so-called Friedmann equations,
that, once solved, allow us to determine the time evolution of the scale factor a(t).

They are given by:

887G k
H*=—"—— ;— — 1.1.21

. k
H= —47TGZ(pi+Pi)+¥, (1.1.22)

where the index ¢ runs over the energetic components of the Universe, which in the
ACDM model are simply the matter and radiation contribution and the cosmological
constant one. Combining these equations together, it is possible to derive an equation

for the second derivative of the scale factor as

a= —#a(p—irBP). (1.1.23)

From Eq. , it is understood that the Universe decelerates, i.e. ¢ < 0, when a
fluid satisfies the so-called strong energy condition w > —%, where [ have defined the
equation of state w as w = P/p. Since ordinary matter pressure is always positive,
the current acceleration of the Universe has to be explained by an exotic component
that violates the strong energy condition. In the ACDM model, this is achieved by
the cosmological constant which, as the name says, has a constant equation of state

w = —1 over all the cosmological evolution.

Note that H > 0 for an expanding Universe, so the scale factor is a growing
function of time. This means that there exists a time, say ¢t = 0, at which a(t = 0) = 0.
This is the known Big-Bang singularity [28]. At that time the particle horizon defined
in the previous Section vanishes and pressure and density are predicted to be infinite
by classical physics.

In order to compare theoretical predictions of a model to observations, it is useful

to define the density parameter €2; for each component as

Pi TG

Perit H2 P

(1.1.24)

where p. is the density value corresponding to a flat Universe, as can be seen sub-
stituting p = peie in the first of Eqgs.(1.1.21). If the sum of the density parameters

of each component Qo = >, €2 is >, < or = 1 the Universe is closed, open or flat
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Figure 1.1: Evolution of the density contrasts §2; for matter, radiation and cosmo-
logical constant.

respectively.

To close the system of equations describing the Universe and its content, the
conservation equations for the energy-momentum tensor are used. Indeed, the 0 com-
ponent of V#T,,, = 0, together with the perfect fluid form of the energy-momentum

tensor leads to the continuity equation:
p=—-3H(p+ P). (1.1.25)

If the different components of the Universe follow an hydrodynamic equation of state
Eq. (1.1.25)) can be integrated to obtain the evolution of density with respect to the

scale factor
(t) —3(14w;)
a
pi(t) = poi (—) : (1.1.26)

Qo

Note that w; = 0, 1/3, —1, for non-relativistic matter, radiation and a cosmological
constant respectively. Therefore for these components Eq. (|1.1.25]) leads to the simple

4 and py = const. Since the scale factor

scaling laws p,, o a~® whereas p, < a~
increases with time, radiation first dominates the Universe. However, since it is diluted
along the expansion faster than the matter component, the latter overtakes radiation
at the so-called equivalence redshift defined by p,(zeq) = pm(2eq). Eventually, also
the matter contribution redshits away and the Universe starts to accelerate because of
the cosmological constant domination at the redshift of matter-cosmological constant

equivalence z,. This is depicted in Fig. (1.1
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1.2 The Hot Big-Bang model

Of the three cosmological eras shown in Fig. [I.T] the last moments of the radiation
era are very well understood because they rely on our good understanding of quantum
field theory and nuclear physics at the energy scales that can be reached in laboratories

and accelerators. The radiation era can be divided into the following stages:

o Quark era T > Tqyi ~ 200 — 300 MeV: at very high temperatures matter exists
in the form of the quark-gluon plasma. At 7' = Ty the Universe undergoes
a phase transitions and pairs of quarks and antiquarks join together to form

hadrons, including pions and nucleons.

o Hadron era Tqu > T > T, ~ 130 MeV: pion-pion interactions are very im-
portant and the perfect fluid approximation cannot be applied until pions and

antipions annihilate at T' = T.

o Lepton era T, > T > T, ~ 0.5 MeV: leptons dominate the Universe until
positrons and electrons annihilate at 7" = T,. It is during this era that the

primordial nucleosynthesis occurs.

e Plasma era T, > T > T,, ~ 1 eV: the Universe is filled with photons, matter
(protons, electrons and helium nuclei) and neutrinos, which have already de-
coupled from the background fluid of tightly coupled photons and baryons since
the Lepton era.

After zq, the matter-radiation equivalence, the baryons-photons fluid is still tightly
coupled because of Thompson scattering between photons and electrons and can be
considered as a single fluid in statistical equilibrium. As the temperature T decreases
in the so-called recombination era electrons start to recombine in nuclei. Then, as the
Universe expands, Thompson scattering becomes more inefficient photons decouple
from the cosmological fluid. However, note that both decoupling and recombination
are not exactly instantaneous processes. Rather, they are characterized by a small,
but finite duration.

The Hot Big Bang model therefore leads to the following predictions:
e it predicts light-element abundances in perfect agreement with observations [29);
e it naturally accounts naturally for the expansion of the Universe;

e it explains the presence of the CMB (see below) as a relic of the hot thermal
phase [30].
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1.3 Problems of the Standard Big-Bang Model and

Inflation

Despite its many successes, the standard Big-Bang model faces some serious problems,

which are ultimately related to each other:

e The magnetic monopole problem. Great Unified Theories (GUT) that
aim at explaining the fundamental physics at very high energies predict the
production of topological defects like magnetic monopoles, cosmic strings or
domain walls. The predicted density of these defects at present days is much
higher than that of the matter |[16], but no such objects have ever been observed

in the Universe.

e The flatness problem. An intuitive way to formulate this problem is as
follows. The Friedmann equations (|1.1.21]) in the presence of a non-zero spatial

curvature become:

k N
(aH)? ~

From this equation it is clear that, in order to explain cosmological observations

Q) —1= —Q. (1.3.1)

that are compatible with a flat Universe, the initial density parameter has to be

very close to 1 [16]:

(Hoa)?

91_12(90_1>W

= (Q—1) (@)2 <107 (1.3.2)

a;
therefore the Universe has to be very close to flat near the Big-Bang singularity.

e The horizon problem. The finiteness of the conformal time elapsed between
the initial Big-Bang singularity implies that regions we observe in the sky were
never in causal contact. As can be seen from Fig. if two CMB photons,
emitted close to the Big-Bang singularity at t;, were separated by a sufficient
comoving distance, their past light cones will never overlap. In particular, being
the angle subtended by the comoving horizon at recombination 6y, = 1.16°,
regions separated by an angle 6 > 26y, would never come in causal contact in
the standard Hot Big-Bang scenario. This is in stark contrast with the observed
spectrum of the CMB which is essentially homogeneous and isotropic over the

whole sky, if one does not consider its tiny anisotropies of the order of 107>,

It can be shown that all these problems are related to each other [31] so I will focus

on the horizon one in the following. In order to find a solution to this problem, it is
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Figure 1.2: Representation of the horizon problem [top]| and of its solution [bottom)].
Figure taken from [31].

useful to realize where the problem comes from. The Hubble radius for a Universe

dominated by a fluid with P = wp is given by
(aH) ™' = Hy 'q2(+3v) (1.3.3)

so that it grows with the expansion of the Universe for ordinary matter satisfying
the strong energy condition. Therefore, in this case, the integral in Eq. (1.1.19) is

dominated by the its upper limit of integration.

The solution is then at hand. Postulating a non-growing comoving Hubble radius
in the early Universe, the integral in Eq. becomes instead dominated by its
lower integration limit and the particle horizon becomes much larger than the Hubble
one. This is the paradigm of inflation. Thanks to a shrinking Hubble radius, large
scales A become smaller than the comoving particle horizon and they could have been
in causal contact in the past, as can be seen from Fig. from which it is also seen

that the initial singularity is now pushed to negative conformal times 7; — —o0.

Eq. (1.3.3)) suggests that a shrinking Hubble radius can be obtained by considering
a fluid with negative pressure. The simplest physical model of inflation where this
can be obtained is the one of single field inflation in which an homogeneous scalar

field ¢(t), as required by the symmetries of the FLRW spacetime, slowly roll down its
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potential.

The action of such a scalar field in a curved spacetime is

S = / d*z /=g [—%gﬂ”aud)a,,d) —V(¢) (1.3.4)

and its energy-momentum tensor can be recast in the form of a perfect fluid defining

the scalar field density and pressure as

po= 58+ V(6) (1.3.5)
P, = %géﬁ — V(o). (1.3.6)

Substituting ps and Py in Eqgs. ([1.1.21)) gives the Friedmann equations

2 _ 1 1 12
=5 [2¢ +v(¢)] (1.3.7)
.1 #*

while the Euler-Lagrange equations of motion lead to the Klein-Gordon equation

. AV
3H — =0. 1.3.9
P+ 3HO+ 5 (1.3.9)
Using these equations, the violation of the strong energy condition is violated if the

potential energy dominates over the kinetic one. This condition can also be satisfied

if the so-called Hubble slow-roll parameters

€= —% (1.3.10)
€
1= (1.3.11)
__9
5= 3 (1.3.12)

are small, that is €, |§] < 1, that implies |n| < 1. When these conditions are satisfied,
inflation is said to be in the slow-roll regime and the Friedmann and Klein-Gordon

simplify to

"
H>~ — (1.3.13)

and
3H) ~ —V,,. (1.3.14)

16



The Hubble slow-roll parameters € and 1 become

2
M? (Vv
€~ ey = Tpl (7’¢> (1.3.15)

v
[0l = liv| = My ==, (1.3.16)

where e, and ny are called potential slow-roll parameter and slow-roll inflation occurs
for ey, my < 1. These parameters are useful to determine if inflation can occur just
considering the shape of the potential.

The existence of Universe as observed today implies that inflation needs to end.
The important question is therefore how long inflation has to be in order to solve the

horizon problem and how it can end. Defining the number of e-folds as

te

aE
NE/dlna:/dtH, (1.3.17)

I tr

where t; and tg are the initial and ending time of inflation, defined as €(tg) = 1. The
high degree of homogeneity in the CMB can be explained, in the simplest slow roll
models, if inflation last more than 50 — 60 e-folds.

In a completely homogeneous and isotropic Universe, however, structures cannot
form. Indeed inflation, besides solving the aforementioned problems of the Hot Big-
Bang cosmology, also predicts an adiabatic spectrum of tiny fluctuations on top of
the homogeneous background. These are the quantum vacuum fluctuations of the
inflaton field that get stretched during inflation, cross the Hubble radius and get
frozen. Once the fluctuations cross the Hubble radius, they classicalize and behave
as a Gaussian stochastic field. Eventually, they re-enter the Hubble radius after
inflation and they seed for the large-scale structure observed today in galaxies and
clusters. Most importantly, the primordial fluctuation are imprinted in the CMB
anisotropies, that is small temperature (and polarization) fluctuations of the order
6T /T ~ 107° around its Ty = 2.72548 £ 0.00057 K [32]. In the standard picture,
inflation is followed by a period of reheating during which the inflaton decays into

Standard Model particles.

1.4 Cosmological Perturbations Theory

In this Chapter, I briefly review the theory of cosmological perturbations on top of the

homogeneous and isotropic Universe. It is because of such tiny inhomogeneities and
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anisotropies that we observe the CMB anisotropies and structure formation ultimately

started out. For reviews see Refs. [33}|34].

A quantity that can be used to roughly estimate whether a perturbation of a given
wavelength A can collapse to start structure formation is the Jeans length \;. This
is computed, by simply comparing the attractive and repulsive forces of pressure and
gravity respectively. Given a spherical inhomogeneity of radius A and mass M, in
a background fluid of density p, it will grow if the self-gravitational force per unit
mass, F, ~ GM/)\? exceeds the opposing force per unit mass arising from pressure
Fp = P/(pN, leading to the condition

A >\ =E(Gp) 2, (1.4.1)

where ¢ is the speed of sound of the fluid, given in Eq. below. If this condition
is not satisfied, the perturbation freely propagates as an oscillating wave. The Jeans
length, however, is a concept that makes only sense within Newtonian gravity, which
is an adequate description only for perturbations with scales smaller than the Hubble
radius. For larger scales, a General Relativistic approach, that I introduce in the next

Section, is needed.

I will follow the notation of Ref. [35]. In particular, since I will have to deal
with perturbations at linear order, it is useful to work in their Fourier space rather
than in real space. Indeed, since inflation predicts an initial distribution of density
perturbations which is Gaussian at leading order, Fourier modes are decoupled, gratly
simplifying their treatment. My notation for the Fourier transform of a Gaussian field
A(x) is:

Ax,T) = / %A(kﬂ') ek, (1.4.2)

With these conventions, the power spectrum of the function A is then defined as
(A(K)A(K")) = (2m)*P (k)6 (k — k), (1.4.3)

where §®)(k — k') is the Dirac delta distribution function. Also, I will rise and lower

spatial indices, denoted with latin letters ¢, j, k,... with the Kronecker delta d;;.
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1.5 Perturbations to the Metric

The idea is to consider small perturbations dg,, around the background FLRW metric

Guv, so that the full metric can be written as
ds* = a®(7)[— (1 + 2A)d7* + 2Bdx'dr + (6;5 + hyj)dz'da’). (1.5.1)

The metric perturbations can be divided into scalar, vector and tensor according to
their transformation properties under the group of 3-rotations and 3-translations. In

particular, dggo is a scalar perturbation, dgg; can be composed as
B; = 0;B + B;, (1.5.2)

where BZ is the vector traceless (&El = 0) part of B; and B its scalar one. dg;; can

be instead decomposed as follows
hij = 208;; + 20,0, E + 20,Ej) + 2By, (1.5.3)

where I denote divergenceless quantities with an overhat and I have defined

1
A 1 A A

The first two terms on the right hand side of Eq. are the scalar part of hy;
and the third is the vector one. The fourth term, i.e. Ez-j encodes the transverse and
traceless tensorial degrees of freedom of the FLRW metric and physically represents
Gravitational Waves propagating on the background FLRW metric. Therefore, 10
degrees of freedom are encoded in the FLRW metric, but only 4 of them are scalar
perturbations. Note that scalar, vector and tensor perturbations evolve independently
on each other because of the so-called decomposition theorem [14]. Physically, scalar
perturbations are the ones induced by inhomogeneities in the energy density of matter
and radiation and are the ones that exhibit gravitational instability and eventually
lead to the formation of the large scale structure in the Universe, therefore these
will be the focus of the next Sections. Vector perturbations are instead related to
the rotational motion of the fluid and very quickly decay with the expansion of the
Universe. Tensor perturbations, as mentioned above, describe Gravitational Waves

propagating in the FLRW metric.
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1.5.1 Gauge Transformations

In order to simplify the equations above, it is often convenient to exploit the so-called
gauge invariance of GR and choose a particular coordinate system, or gauge. An

infinitesimal coordinate transformation is

ot — M=ot + d(2") (1.5.6)

where
d’ =a(z"), (1.5.7)
d" =0"8(z") + €' (2"); (1.5.8)

d'8 is longitudinal, i.e. irrotational (£;;%070F3 = 0), and ¢; is transverse, i.e. diver-
genceless.
Under the transformation (1.5.6) the metric transforms as

- Ox” 0z°
Jap(T") = %Wgw(ﬁp)- (1.5.9)

Assuming that d* is of the same order of the perturbations, the equation above can

be easily linearized and the metric g, rewritten as
Gap(T”) = Gap(T”) + 0Gap. (1.5.10)
The relation between the old and new metric is readily found to be
6Gap — 600p = 69ap — Japrd’ — Gpsd° 0 —Gasd’ 15 , (1.5.11)

where both the right and left hand side are computed at the point z”.
From Eq. (1.5.11)), it is easy to find the transformation laws of scalar perturbations,
that is:

A— A-d —Ha (1.5.12)
B—  B+a-p (1.5.13)
C— C—HT—-3iV?3 (1.5.14)
E— E - B. (1.5.15)

Therefore metric perturbations are not uniquely defined and depend on the specific

time slicing of the space time and on the specific choice of spatial coordinates on these
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time slices.

A possible way to avoid this ambiguity is to define so-called gauge invariant vari-
ables that do not change under the gauge transformation ([1.5.6)), as for example the

so-called Bardeen variables [36]:

Up= A+HB-E)+(B-FE, (1.5.16)
dp= —C—-H(B-E)+;VE. (1.5.17)

Note that an infinite number of gauge invariant variables can be constructed as a

linear combination of ¥z and ®p.

1.5.2 Gauge Fixing

Another possibility is instead to use the gauge freedom to impose conditions on the
scalar and vector perturbations. This procedure is known as gauge fixing and can be
very useful as, depending on the problem considered, there could be gauges where the
physical interpretation and/or computations is easier. Furthermore, the choice of the
gauge is sometimes crucial when it comes to numerically integrating the equations

governing the evolution of the cosmological perturbations.

Among the several possible choices of gauge, two of them are particularly relevant.

e Newtonian (or longitudinal) gauge. It is defined by the conditions
B =FE =0. (1.5.18)
Defining A = ¥ and C' = ®. The metric then becomes
ds® = a*(1)[— (1 + 20)dr? + (1 — 2®)6;;dz"da?]. (1.5.19)

This gauge is fixed uniquely as any transformation with 8 # 0 (a # 0) spoils
the condition E; (B; = 0). The function ¥ plays the role of the gravitational po-
tential in the weak field limit of the Einstein equations and thus the Newtonian

gauge has a clear physical interpretation.

e Synchronous gauge. It is defined by

A, =B, =0, (1.5.20)



so that the metric becomes
ds® = a*(1)[—dr* + (0;; + hy;)da'da?]. (1.5.21)

In order to be consistent with the notation of Ref. [35], I define 2C' = h/3 and

2E = p. It is useful to write h;; as a Fourier integral

dk . A . 1 .
hij (X, 7_) _ / ezk'X [klk]h(k, 7—) + (k’lk] — 551]) 67’](1{, 7'):| , k = kk.

(2m)3
(1.5.22)
It then becomes clear that the gauge is specified by the two functions h and p in

real space and by h and 7 in Fourier space. Unlike the Newtonian one, the syn-
chronous gauge is not uniquely fixed, since the choice of the initial time-slicing
is arbitrary [18]. This can result in fictitious gauge modes in the solutions to the
Einstein equations, so usually the gauge freedom is used to fix the CDM velocity
to zero . = 0. The synchronous gauge is particularly useful for the integra-
tion of the perturbed Einstein equations (see below) because of its numerical

stability.

Other possible choices of gauge include the so-called spatially flat and comoving gauge,

that are useful to perform calculations in the inflationary context.

1.6 Perturbed Einstein Equations

Splitting the Einstein tensor into a background part and a perturbed one as Gur =
Gf?l,) +0G ,,, and analogously for the energy-momentum tensor, the perturbed Einstein

equations are simply given by:
0GY = 81GITY, (1.6.1)

where all the quantities are intended to be computed in a specific gauge.
In order to explicitly write down each of the components of the equation above,

the energy-momentum tensor can be written as

T = —(p+6p), (1.6.2)
) = (p+ P =—Tg, (1.6.3)
Ti = (P+6P)5 + Y, (1.6.4)

where dp and 6P are the perturbations to the denisty and pressure of the perfect
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fluid, v* = da'/dr its coordinate velocity and where Z;'» = T]’ — 5;-T,f /3 is the traceless
anisotropic shear perturbation to T}. Following Ref. [35], it is also useful to define

the variables 6§ and o as

0 = ik, (1.6.5)
_ = T 7 1 I
b = op/p. (1.6.7)

Also, the relations between the quantities in the synchronous and in the Newtonian
gauge under the gauge transformation ((1.5.6]) are given by [35]:

5 = s oL (1.6.8)
p

) = oM _ k2, (1.6.9)

oPS) = §PW) _ P (1.6.10)

o¥) = oW (1.6.11)

and
U= 53 [h" + 60" + H(W +61)], (1.6.12)
1

where again all the quantities are evaluated at the same space-time coordinate.

Then, the Einstein equations take the following form [35]37]

1 5,0@)
an—é’Hh’ = —SWGaZZTZ, (1.6.14)
2 2 D H(S)
/= 0; + D)~ 1.6.1
k21 87Ga zi:(pz—i— ) (1.6.15)
'+ 2HE — 2k = —24nGa®Y 0P, (1.6.16)
(h+6n)" +2H(h +6n) —2k*n = —24nGa®> (p; + P)ol”,  (1.6.17)
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in synchronous gauge and the following one

pi)
K*® + 3H(P' + HY) = —81Ga® Y %, (1.6.18)

H(N)

J 1.6.19
2 ? ( )

E*(® + HV) = 87Ga® z:(pfZ + P)

" k2
" + H(T + 20) + (2% - H2> + 5 (@~ W) = dnGa® > op™. (1.6.20)

K(® — W) = 12nGa® Y (5 + P)ol™,  (1.6.21)

)

in the Newtonian gauge, where the index ¢ runs over all species contributing to the

content of the Universe.

1.7 Boltzmann Equations for Matter and Radia-
tion

In the previous Section, I derived the perturbed Einstein equations describing the evo-
lution of metric perturbations. In order to close the system of differential equations,
they have to be supplemented by those governing the time evolution of the density and
velocity perturbations. The latter equations should include the interactions between
the different matter components and therefore are more complicated than the ones
obtained by simply perturbing the conservation equations of the energy-momentum
tensor, which describe uncoupled fluids. The systematic way to deal with such inter-
actions is to write down and solve the Boltzmann equations for each species [14].

In the following, I will derive the Boltzmann equations only in the synchronous
gauge and refer to Ref. [35] for those in the Newtonian gauge. I work in the phase
space described by spatial coordinates z° and their conjugate momenta P;. The latter

is just the spatial part of the energy-momentum 4-vector P;, given by
1 .

where p/ = §7'p; is the proper momentum measured by an observer at fixed spatial
coordinates. The phase space infinitesimal volume is dV = dx'dz?dz3dP,dPd Py and

3. At the zeroth-order p; scales as a™*

its zeroth-order is proportional to a , SO it is
useful to define the quantity ¢; = ap; and its modulus ¢ and direction n; as g; = gn;,
with n'n; = 1 [38]. Another useful quantity is € = (¢ + a®>m?)'/2 = a(p® + m?)'/?,

where (p? +m?)'/? is the proper energy measured by a comoving observer which can
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be related to the 0 component of the energy-momentum 4-vector as Fy = —e.

All this conventions set up, the Boltzmann equations can now be derived starting

from the equations for the phase space distribution f; for the j-th species

df;
— =Cf; 1.7.2
% —clp) (172)
that gives the number of particles in dV/
f(z*, P;,7)dV = dN. (1.7.3)

The term C[f;] is the collision term describing the interaction between different parti-
cle species. The zeroth-order phase space distribution is simply the Fermi-Dirac (for
fermions, — sign) or the Bose-Einstein (for bosons, + sign) distribution function and

depends only on € (or q)
fo=fole) = g; [¢"T £1] (1.7.4)

where the factor g, is the number of spin degrees of freedom.

The perturbed phase-space distribution can be expanded around its zeroth-order

as
f(‘riu-Pj?T) :fO(Q)<1+T(Z‘i7Q7”j7T>)7 (175)

and using that b p
TW:/\/—gdPlszdPg, ;Doyf(xi,ljj,T), (1.7.6)

the components of the energy-momentum tensor can be written in terms of T as

2 242
w:—/f@mliiﬁiﬁu+n, (1.7.7)

CL4
SoT
ﬁ:—/f@m"ﬁ, (1.7.8)
7= — [ gtdgao — " fol+7) (1.7.9)
J at /q2+m2a2 0 ’ o

where df is the solid angle associated with n’.

Turning the total derivative with respect to 7 in Eq. (1.7.2)) into partial derivatives

df _of dz' Of dq0f  dn; Of
dr  Or dr 0x' drdq  dr On,

(1.7.10)

and use the geodesic equations to find the appropriate expression for dg/dr, the

unintegrated Boltzmann equation in Fourier space in the synchronous gauge becomes
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oY q . dIn fy h + 67/ 1
— +i-(k-n)T ' — | =-C 1.7.11

or +Ze< )T + dlng g g M fo £ ( )
where u = k. Bq. ([1.7.11) is valid for any species, regardless of its nature. I now

consider separately each species to give an appropriate expression for the collision
factor and integrate the Boltzmann equation ((1.7.11]).

1.7.1 Neutrinos

For simplicity, I focus here on massless neutrinos for which ¢ = ¢g. Their energy
density, pressure and anisotropic stress are given by Eq. (1.7.7). The procedure is
then to integrate out the ¢-dependence from Eq. (1.7.11)) by taking its moments, and

to expand the angular dependence of the perturbation YT in Legendre polynomials
B(p) as:

F(k 7, 7) = fquf% — g(_i)l(m +1)Fu(k, 7)P(p). (1.7.12)

The density, velocity and stress perturbations of neutrino are given by

o= & [dQP(n)F, = F,, (1.7.13)
b, = 1o [AQPU(WF, = $kEF, (1.7.14)
o, = —% fdQ Po(ILL)FV = %Fll27 -+ (1715)

so that, in order to find the equations respectively for the neutrino density, velocity
and stress, the unintegrated collisionless (neutrinos are weakly interacting with other
particles) Boltzmann equation has to be multiplied by the Legendre poly-
nomials and integrated over dq. Therefore, one is left with an infinite hierarchy of
equations for the multipole moments of the distribution function. The usual way to
deal with such an hierarchy is to truncate it at some [,,,. In the case of neutrinos the

multipole F},; becomes negligible for [ > 3 and it is safe to truncate neglect multipoles
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with to [ > 3. One is thus left with the following set of equations

4 2
/ 2 1
01/ = k <ZL(5V - O'V> s (1717)
, 8 3 4.,
= —0,— -kFs+ — 1.7.1
2UV 1591/ 5k' v3 T 15(h +67]>7 ( 7 8)
k
E, = m[lﬂ(z—n —(I+1)F,q41)), 1>3. (1.7.19)

1.7.2 Photons

The evolution of the photon distribution can be treated similarly to the one for mass-
less neutrinos, but now the collision term is not negligible. Indeed, before the time of
recombination, photons are tightly coupled to baryons because of Thomson scatter-
ing and some energy transfer between baryons and photons is also present afterwards
during freestreaming. In both cases, the contribution of the Thomson scattering to

the collision term has to be considered.

Due to scattering of electron density perturbation with wavevector k, photons are
polarized in a plane orthogonal to their propagation n. It is useful to introduce the
Stokes parameters F,(k, 1, 7) and G, (k, 01, 7), as the sum of the phase space densities
in the two polarization states for k and n, and their difference respectively. Their

explicit expressions can be found in Ref. [35]39].

The Boltzmann equations take the form [35]:

4 2
1
0, = k’ (157 - 07> + ancor (6, — 6,), (1.7.21)
4 3k 2 an,
O',Iy = 1—59,\/ — EF'YB + 1—5(h/ + 677/) — %O'T(18O',Y — G'yO — nyg), (1722)
k
F’;l = %—H[ZF,Y(I_U — (l -+ 1)ny(l+1)] — aneaTle, { Z 3, (1723)

where n, is the proper mean density of the electrons and o7 = 0.6652 x 10~2*cm =2 the
Thomson cross section. Here the hierarchy is truncated at [ = 2 as higher multipoles

are suppressed [35].
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1.7.3 Cold Dark Matter

The simplest case, however, is that of cold dark matter, since it can be treated as
a pressureless perfect fluid interacting with other particles only through gravity. As
mentioned above, CDM can be used to define the synchronous coordinates setting by

setting 6. = 0. Therefore the only equation for CDM is:
!/ 1 !/

that could have also been derived from perturbing the continuity equation (|1.1.25))
with P = 0, since the collision term for CDM is negligible.

1.7.4 Baryons

As discussed above, baryons are tightly coupled to photons, causing an energy-
momentum transfer represented by the term an.or(6, — 6,) in Eq. (1.7.21). The

Boltzmann equations for baryons then become [35]:

1
o, = —0p— §h’, (1.7.25)
/ 272 4pr0
0, = —HOp+ c k6 — ganeJT(ﬁb —0,). (1.7.26)
b0

Tight-Coupling Approximation

At early times the Hubble time ¢y ~ a7 is larger than the characteristic baryon-
photons interaction time scale ¢, ~ 1/(n.or). Combining Eqs. (1.7.21) and (1.7.26))
with H6, + %14;257 as a forcing term, it is easy to see that 0, = 0 in the op — o0
limit. Therefore it is safe to set 6, = 6, at very early times deep in the radiation era.
The equation governing the evolution of 6, is obtained by combining Eqgs. ([1.7.21])
and ([1.7.26)) so to cancel the scattering terms as [40]:

4 ! 1 2

ng + 8 |0, = —WHO, + ngk 0. (1.7.27)

The scattering terms can also be neglected in the equations for the density contrast

of photons and baryons leading to:

1
0, = —0, =3l (1.7.28)
4 2
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1.8 Initial Conditions for Cosmological Perturba-

tions

The coupled set of the Einstein-Boltzmann equations is usually solved numerically
using Einstein-Boltzmann codes such as CLASS[| [41,142] or CAMB? In order to solve
them, however, a set of initial conditions for the metric and density perturbations
has to be chosen. To this purpose, it is customary to define the initial conditions for
cosmological perturbations deep in the radiation era after neutrino decoupling, when

all the modes of observational interest are well outside the Hubble radius.

As mentioned in Section [I.3] these initial conditions are connected to the spectra
of primordial perturbations produced during inflation. In the simplest single field
inflationary models, initial conditions are adiabatic, in contrast to isocurvature per-
turbations spectrum that can be produced only if more than a single scalar field is
active during inflation. In the following, I explain what is meant by adiabatic and

isocurvature perturbations.

1.8.1 Adiabatic and Isocurvature Perturbations

Consider, for example, the matter-radiation plasma in the early Universe. From the
entropy per matter particle is given by I' = T3 /n,,, where n,, is the number density

of matter particles, it is possible to define the entropy perturbation as:

6T 6T 3
§=5 =37 —0u= "6 —bu, (1.8.1)

where I have used the fact that p, oc T In order for the entropy perturbation to

vanish, the following condition must hold:

0y 2 0, gée ~ —0p. (1.8.2)

S=H <—_ - —_) . (1.8.3)

Thttps://github.com /lesgourg/class_public
Zhttps://camb.info/
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Furthermore, Eq. (1.8.1)) can be generalized to two barotropic fluids, each with a

constant equation of state w; = P;/p;, as follows [43]:

5 5;

Sy = ~ .

(1.8.4)

Perturbations that satisfy the condition Eq. (1.8.2)) are referred to as adiabatic pertur-
bations. In fact, in the literature, they are also-called curvature perturbations, since
they are associated to perturbations to the local geometry of the Universe (see also

next subsection), or isentropic perturbations, since the relative entropy perturbation

in Eq. (1.8.4]) vanishes when Eq. (1.8.2) holds.

If instead the matter components are perturbed without a correspondent pertur-
bation to the local geometry of the Universe, i.e. without a curvature perturbation,
the perturbations are said to be entropy or isocurvature ones. Initial conditions that
belong to one category or to the other lead to very distinct predictions and I can an-
ticipate that isocurvature perturbations are very constrained by current cosmological

data, see next Section.

For the reasons above, it is customary to set adiabatic initial conditions on the

cosmological perturbations that read as follows (in the synchronous gauge) [35]:

h = Ck*7, (1.8.5)
54+ 4R
= 20-C———Y k*7? 1.8.
" O s am) (186)
3 3 C

50 = 5521(57216V:—5k27'2, (187)
6. = 0, (1.8.8)
0, = e,yzeyb——%k%?’, (1.8.9)

C 23+4R
9, = ———— Y43 1.8.1
1815+ 4R, (1.8.10)

4C

= 272 1.8.11
? 3(12+R,) (1.8.11)
(1.8.12)

where C' is an overall normalization constant that has to be matched to the so-
called COBE normalization of the CMB power spectrum and R, is the neutrinos
fraction p,o/(pvo + p10). However, in addition to the adiabatic mode, also four non-
singular isocurvature modes exist [40]. They are called baryon isocurvature mode,
CDM isocurvature mode, neutrino density isocurvature mode and neutrino velocity
isocurvature mode and are not excited in single-field inflationary models, but rather

require more sophisticated mechanisms involving additional fields for their generation
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[43].

1.8.2 The Curvature Perturbation

As mentioned above, the names adiabatic and curvature perturbations are used inter-
changeably in the literature. It is the purpose of this Subsection to explicitly show
why.

First of all, it is useful to relate the pressure perturbation to the density fluctua-
tions as follows:
6P = c20p + 6 Ppag, (1.8.13)

2= (6—P) (1.8.14)
op )¢

where

is the adiabatic speed of sound and

5P
6 Prad = <—) 6T (1.8.15)
or ),

is the so-called non-adiabatic contribution to the total pressure, which, as the name
says, vanishes for adiabatic perturbations. Note that when multiple fluids coexist
at the same time, which is the situation needed to have non-vanishing isocurvature
perturbations, the relation ¢? = w; no longer holds. The reason the non-adiabatic

pressure is so important will become clear in a bit.

A key quantity is the so-called gauge invariant comoving curvature perturbation,
defined as [44]:

0
R=0+H; (1.8.16)

in the Newtonian gauge and I have defined ‘H = a'/a. Upon using the background
and the perturbed Einstein equation given in the previous Sections, R can be also

expressed as:

H M
R=0+-— (O +HI) =P —
i (& +HY) T 201 P

ol v). 1.8.17
7_[2_7_[/ ( _'_H ) ( )

H
R=P+-— (O +HI) =D+ —
R T+ w)

Finally, combining the perturbed Einstein equations (|1.6.18]), an useful equation for

(@ + HD). (1.8.18)
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the Newtonian potential ® can be derived:

1
O + H[V + (24 3cH) '] + [H*(1 + 2¢2) + 2H'| U + k22T — g(qf — @) = 47Ga*6 Pyaq.

(1.8.19)
and used to write the following equation governing the evolution of R
H H 1 1
R'= ———0Ppq + k* P )T+ -0, 1.8.20
P T G2+ P) KC 3) T3 ] ( )

This equation clearly shows that, for adiabatic perturbations with 0 P,.q, the comoving
curvature perturbation R is conserved and its time derivative vanishes for scales
outside the Hubble radius k¥ < aH.

The latter is the reason why adiabatic perturbations are also-called curvature per-
turbations. Indeed they can be characterized by the comoving curvature perturbation
R, whose spectrum deep in the horizon era has to be matched to the one produced
during inflation, since it is constant on super-Hubble scales.

On the other hand, since the entropy perturbation is related to the non-adiabatic
pressure by § = HOPaq/ P, if any mechanism in the primordial Universe also lays
down an initial isocurvature perturbation, the situation is more complicated as it

sources a time evolution for R, even in the super-Hubble limit, as can be seen by

Eq. (T.8.20).

1.9 Cosmic Microwave Background Anisotropies

During its expansion the Universe cooled down. Around z.. ~ 1100, the tempera-
ture became sufficiently low that the scattering between protons and photons in the
primordial plasma stopped being efficient and the atoms started to recombine eventu-
ally leading to the decoupling of matter and radiation. The CMB that is observed in
the Universe today consists in the relic photons that decoupled from the primordial
plasma at that time.

As expected by the prediction of the Hot Big Bang model [30], CMB has an
almost perfect blackbody thermal spectrum, with a temperature Teyp = 2.7255 +
0.0006 K isotropic in all directions in the sky [45,46]. As mentioned above, though,
the propagation of primordial the CMB photons through the small inhomogeneities
of the Universe manifest itself in temperature anisotropies over the sky, of the order
OT/T = © ~ 107° [47]. These anisotropies are the fingerprint of the primordial
fluctuation produced in the early Universe. The CMB anisotropies were mapped

with a very high precision with the WMAP experiment [48], but their most accurate
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Figure 1.3: Planck 2018 SMICA temperature map. Figure taken from Ref. [@]

mapping to date is the one shown in Fig. from the third data release (DR3) of the
Planck mission in 2018 ﬂgﬂ

In addition to temperature fluctuations, CMB anisotropies are also polarized ,
due mainly to the Thomson scattering between baryons and photons before decou-
pling. However, the polarization signal is much weaker than the temperature one.
This can be seen from Fig. which shows the polarization signal is about 10% of
the total temperature fluctuations for small angular scales and only 1% for large an-
gular scales. Contrary to the usual treatment in terms of the Stoke parameters () and
U (V =0 at a very good accuracy for the CMB), when it comes to CMB analysis it is
more useful to consider combinations of them that are invariant under the rotation of
the observation frame. These are the so-called E and B modes [39,/49}/50]. The former
modes are scalar functions describing the part of the polarization signal which is even
under parity transformations and has a non-zero correlation with temperature fluc-
tuations, also even under parity transformations. The B-modes instead are instead
odd and have a zero correlation with temperature and £ modes in absence of parity
violating interactions, see however [51]. The E mode polarization has been success-
fully measured by Planck and other CMB experiments (see below). Only upper limits
exist for primordial B mode polarization, which is a unique signature of primordial
gravitational waves generated during inflation or exotic models with vector modes,

only foreground contributions have been measured so far.
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Figure 1.4: Planck 2018 polarization map. Figure taken from Ref. @I]

The information contained in maps of CMB anisotropies can be compressed in the
angular power spectrum. For example, the temperature anisotropy field ©(6, ¢) =

m of the CMB can be expanded in terms of its multipole moments :

@<9>¢) = Z Z aleZm(e(ﬁ% (1'9'1)

=1 m=—

where Y}, are the spherical harmonic functions and the index [ is related to the

angular scale 6 ~ 27” If the distribution of 67" is Gaussian, the multipole moments

ay, are fully characterized by their angular power spectrum:

(a}",m,alm> = (5”/5mm/ClTT, (192)

where the average is performed over an ensemble of different angular power realiza-
tions. In practice, a real observer is limited to one Universe and the spectra are

computed averaging over the different 2/ + 1 independent modes:

m=l
1
C)=— § ml?. 1.9.3
! 2l+1m:_l|al | (19:3)

The fundamental limitation to the accuracy with which the CMB angular power

spectra are measured is the cosmic variance, i.e. the fact that there are only 2 + 1
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independent modes for each [, that leads to an intrinsic error on each C; given by:

2
20+1

AC) = c. (1.9.4)

Similarly, also the E and B modes can be expanded in spherical harmonics and their

spectra computed as:

CPP = (B}, Eun), (1.9.5)
Crt = {a;, Ep), (1.9.6)
CPP = (B}, Bin). (1.9.7)

Finally, CMB photons are deflected by the large scale structure in the Universe,
described by a spectrum CJ?, see Ref. [53].

The temperature and E-mode polarization spectra from the Planck DR3 are shown
in Fig. and a summary of the current measurements of all the CMB spectra by

several CMB experiments is shown in Fig. [1.6]

As can be seen from Fig. the shape of the spectrum strongly depends on the
initial conditions on the cosmological perturbations discussed in Section[1.§ Compar-
ing to the left panel of Fig. [I.5] it is possible to see by eye that the initial conditions
that agree with observations are the adiabatic ones, as predicted by the simplest infla-
tionary models. In fact, a very small fraction isocurvature perturbations, eventually
correlated with adiabatic ones, is still allowed by Planck DR3 [54]. I will come back
to this point in Chapter [7}

In order to qualitatively discuss the physics that lead to the shape of the angular
power spectrum in Fig. [L.5| (I will focus on the temperature spectrum for simplicity),
it is useful to divide the anisotropies in the CMB in primary, that were originated
at the time of decoupling, and secondary ones [55], generated by the interactions of
the CMB photons with the LSS in the Universe during their journey from the last

scattering surface to today.

Depending on the angular scale of interest in the power spectrum, different physical
effects dominate the primary anisotropies. At large angular scales the dominant effect
is the Sachs-Wolfe term [56], that consists in a variation in the CMB temperature
caused by photons climbing out of the gravitational potential wells and rolling down
potential hills due to dark matter perturbations. In this way, hot spots in the CMB

sky correspond to underdense regions and cold spots to overdense ones.

At intermediate scales, it is possible to observe the fingerprint of the acoustic

oscillations of the density and velocity fluctuations of the photon-baryons coupled
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fluid when they are inside the Hubble radius. For adiabatic perturbations, the co-
sine mode of the oscillations is excited [57] and, being the angular power spectrum
proportional to the the perturbations squared, its peaks correspond to the scales
that were in the extrema of their oscillations at the time of recombination. These
are the so-called baryon acoustic oscillations (BAO) and their imprint in the matter
power spectrum [5§] is an important cosmological probe, complementary to the CMB
anisotropy pattern. Note that the first CMB peak, located at | ~ 220, corresponds
to the angular scale of the Hubble radius at recombination (6 ~ 1°) and can be used
to estimate the total density parameter.

At small scales (¢ > 1000) the amplitude of the spectrum drops because of the
so-called Silk damping [59]. Indeed, the tight coupling between baryons and photons
is only an approximation valid if the scattering rate of photons off electrons is infinite.
This condition is not always met, because in reality photons travel a finite distance
in between scatters. After a Hubble time, a photon, with a mean free path A, has
moved a distance of order A\p. Any perturbation on scales smaller than A\p is expected
to be washed out resulting in the damping of small angular scales in Figs. and [L.6]

The effects of secondary anisotropies, that may also provide information on struc-

ture formation, instead manifest as follows:

e Gravitational lensing: photons are observed as coming from a slightly different
direction than the original one since they are deflected by the gravitational

potentials due to the large-scale distribution of matter [53].

e Sunayev-Zel’dovich effect: in passing through the cluster of galaxies, photons
may interact with free electrons of the hot inter-cluster medium by Inverse

Compton scattering generating a spectral distortion [60,61].

e Integrated Sachs-Wolfe effect (ISW): the gravitational potentials vary with time,
shifting the energy of the photons travelling through them [62-64]. This ef-
fect can be divided into Early ISW, often considered as part of the primary
anisotropies, that happens right after decoupling when radiation density still
has non-negligible effect, and Late ISW due to the late time effect of dark en-
ergy on gravitational potentials. The latter is crucial in order to investigate the

nature of dark energy with large scale structure (LSS) data .

In the following Chapters, I will use data from the Planck DR3 to constrain pa-
rameters for different cosmologies. Unless stated otherwise, I will always use the
combination of temperature, polarization, and weak lensing CMB anisotropies angu-
lar power spectra [66,/67]. The high-multipoles likelihood ¢ > 30 is based on Plik
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Figure 1.5: [Left] Temperature and [right] E-mode polarization normalized angular
power spectrum, as measured by Planck 2018. The theoretical spectrum for the
ACDM bestfit is plotted using a blue solid line in the bottom panels and the residuals
with respect to this model are shown in the lower panels. Figure taken from Ref. [21].

likelihood. I will use the low-¢ likelihood combination at 2 < ¢ < 30: temperature-
only Commander likelihood plus the SimA11l EE-only likelihood. For the Planck CMB
lensing likelihood, and consider the conservative multipoles range, i.e. 8 < ¢ < 400.

Throughout this thesis, I will refer to this dataset as P18.

1.10 The Matter Power Spectrum

As described in Section [I.4], the same linear perturbations that generate the CMB
anisotropies pattern undergo gravitational instability leading to the distribution of
galaxies and large scale structure in the Universe. The latter is best studied by
mapping the distribution of the inhomogeneities in the Universe
In this context, one of the main observables is the matter power spectrum P(k, z)
defined as
(6a1(2, K) 85 (2, KNP (k — K)P(z, k), (1.10.1)

where T have defined the total matter density contrast as oy = (dpe + 0pp)/(pe + pb)-
Assuming an initial spectrum of adiabatic and Gaussian perturbations, as sug-
gested in the previous Section, the power spectrum can be factorized into a power-law
primordial contribution, describing the quantum the quantum fluctuations produced
during inflation, and a transfer function describing its evolution in redshift, as

212 E\"!
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Figure 1.6:

The upper panel

Compilation of recent CMB angular power spectrum measurements
from which most cosmological inferences are drawn.

shows the

power spectra of the temperature and E-mode and B-mode polarization signals, the
next panel the cross-correlation spectrum between T and E, while the lower panel
shows the lensing deflection power spectrum. Different colours correspond to different
experiments, each retaining its original binning. For Planck, ACTPol, and SPTpol,
the EE points with large error bars are not plotted (to avoid clutter). The dashed line
shows the best-fit ACDM model to the Planck temperature, polarization and lensing
data. Figure taken from Ref. ﬂgﬂ
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Figure 1.7: Temperature anisotropy shapes for the three isocurvature modes. [Left]
The shapes of the CDM isocurvature modes, neutrino density isocurvature mode, and
neutrino velocity isocurvature mode are shown together with the adiabatic mode. The
modes have the same amplitude parameters (Prgr for the adiabatic mode and Prz for
each isocurvature mode). [Right] The narrower multipole range illustrates the relative
phases of the acoustic oscillations for these modes. Figure taken from Ref. [65].
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Figure 1.8: Linear-theory matter power spectrum P(k) at z = 0 inferred from
different cosmological probes (the dotted line shows the impact of non-linear clustering
at z = 0) and ACDM model prediction (solid lines). Figure taken from Ref. [9].
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where the pivot scale is typically & = 0.05Mpc™'. The equation before shows how
the power spectrum is sensitive to the parameters describing inflation that govern its

amplitude and tilt.

In Fig. [1.§ I show the power spectrum inferred from different cosmological probes
and the prediction of the ACDM model, which, as can be seen, fits all the data
extraordinarily well. Note that the main feature of the matter power spectrum is a
turnover in the growth of structure at k ~ 2 x 10~2hAMpc !, for scales that re-enter the
horizon around the transition from radiation dominance to that of matter dominance,
which makes the power spectrum sensitive to both w,, and . Another interesting
feature is the small oscillatory pattern of the Baryonic Acoustic Oscillations to be

discussed in the next section.

In the following Chapters, I will use the full shape of the BOSS DR12 pre-
reconstructed power spectrum measurements [68]. In particular, T will consider the
combination of the monopole and quadrupole of the power spectra of the three dif-
ferent sky-cuts CMASS NGC and CMASS SGC at effective redshift z.g = 0.57 and
LOWZ NGC at zeg = 0.32 and follow the conventions of Refs. [69-71], where the data
were analyzed with the Effective Field Theory of Large Scale Structure (EFTofLLSS),
for the maximum wavenumber considered (kpax = 0.23 h/Mpc for CMASS and ko =
0.20 h/Mpc for NGC). Throughout this thesis, I will refer to this dataset as F'S.

1.11 Baryon acoustic oscillations

Another observable commonly exploited to constrain cosmological parameter consists
in the pattern of Baryon Acoustic Oscillations (BAO) which arises from the acoustic
oscillations in the baryon-photon fluid driven by the gravitational potentials prior to
recombination [72-74], see Refs. [75[76] for reviews. These oscillations are at the
origin of the acoustic peaks and troughs observed in the CMB spectra in Fig. but
the name BAO usually refers to their measurements in galaxy surveys. Their pattern
in the galaxy surveys was first detected by Refs. [58,[77] is visible in Fig. around
k ~ 0.1 h/Mpc and has also been found in galaxy clusters surveys.

BAO are the archetypal example of statistical standard rule and exploit the idea
that the clustering of structures may have a preferred scale that can be used to
constrain the expansion history of the Universe. In practice, BAO constrain the
acoustic scale ratio Dy (z)/rq. In this expression r4 is the comoving size of the sound
horizon at the time of baryon drag. Since its scale is around 147 Mpc, much larger

than the one of virialized structures, BAO measurements are unaffected by nonlinear
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Figure 1.9: [Left] Acoustic-scale distance measurements divided by the correspond-
ing mean distance ratio from Planck TT, TE, EE + lowE + lowT + lensing in the
base-ACDM model. The grey bands show the 68 % and 95 % confidence ranges al-
lowed for the ratio Dy (z)/ry by Planck TT, TE, EE + lowE + lowT + lensing (bands
for D,,/rq are very similar). [Right] Comoving Hubble parameter as a function of red-
shift. The grey bands show the 68 % and 95 % confidence ranges allowed by Planck
TT, TE, EE 4 lowE + lowT + lensing in the base-ACDM model, clearly showing the
onset of acceleration around z = 0.6. Figure taken from Ref. [21].

physics. The quantity Dy (z) is instead given by

1

Dy(z) = |D%(2) -2 | (L11.1)
H(z)

and is a combination of the Hubble parameter and the comoving angular distance. I

summarize the latest BAO results in the left panel of Fig. [1.9) taken from Ref. [9].

In the same way, BAO measurements along the line of sight constrain the combi-
nation H(z)r, as well. Since Planck constrains r; to a great precision for the ACDM

model, this can be converted to a measurement of H(z), as can be seen from the right
panel of Fig. [1.9]

In the following Chapters I will use BAO of the Baryon Spectroscopic Survey
(BOSS) DR12 |78] post-reconstructed power spectrum measurements in three redshift
slices with effective redshifts z.g = 0.38, 0.51, 0.61 [79-81], in combination with the
’small-z” measurements from 6dF [82] at z.g = 0.106 and the one from SDSS DR7 [83]
at zeg = 0.15. Throughout this thesis, I will refer to this combination of BAO data
as BAO. When combining these post-reconstructed this dataset with the FS data
mentioned in the previous paragraph, I will only consider ’small-z” BAO and refer to
the dataset as FS-BAO.
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Figure 1.10: Luminosity distance of the Supernovae in the Pantheon sample of

Ref. .

1.12 Supernovae

Although type Ia supernovae as standard candles played a central role and led to
the discovery of the accelerated expansion of the Universe, they only have a little
constraining power on (some of) the ACDM parameters compared to current CMB
data. The use of Supernovae data is still important to fix the low-redshift back-
ground cosmology in theories beyond ACDM where dark energy is not in the form
of a cosmological constant. However, the theories considered in the next Chapter
show an evolution very similar to ACDM at late times and therefore are only slightly
constrained by SN data.

In the following Chapters, I will use Pantheon supernovae dataset , which
includes measurements of the luminosity distances of 1048 SNe Ia in the redshift
range 0.01 < z < 2.3, shown in Fig. [1.10l Throughout this thesis, I will refer to this
dataset simply SN.

1.13 Summary of the ACDM Model

To summarize, the ACDM explains successfully many cosmological observations. Be-

cause of that, and because of its simplicity, it has now become the standard model of
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cosmology. Within this model, the Dark Matter permeating the Universe is assumed
to be Cold and pressureless, and only a very small amount of Hot (or Warm) Dark
Matter is allowed, and the current accelerated phase of the Universe is driven by the
negative pressure of a cosmological constant A.

Under the assumptions of a primordial power spectrum described by a power-law, a
CMB temperature of T), = 2.7225, an effective number of neutrinos of Neg = 3.046 and
a He primordial abundance consistent with the BBN current measurement constrain
the relative abundances of the ACDM components to be [21]

Oy = 0.31110 £ 0.00561,
2, = 0.2607 £ 0.0035,
2, = 0.04897 £ 0.00064,

Q, < 0.016,
(1.13.1)
at 68% CL and the curvature of the Universe is constrained to be
Q. < 0.0026 (1.13.2)

showing consistence with a flat Universe [21], that needs to be explained with an
initial period of inflation before the onset of the standard Hot Big Bang history.

The quantum fluctuations produced during inflation act as seeds for CMB anisotropies
and structure formation. While these quantum fluctuations can show non-Gaussian
features or contain isocurvature components, in the ACDM model an adiabatic and
Gaussian distribution of primordial fluctuations is assumed, which is easily produced
by the simplest single field inflationary models. In this framework, the primordial
power spectrum of the metric perturbations is described by a power-law, that can be
parameterized by an amplitude A, and a spectral index ng, computed at a reference
scale, usually taken to be k = 0.05 Mpc~! or k = 0.002 Mpc~!.

The power of the ACDM model is thus that it can fit cosmological data with only
an handful of parameters. These parameters are the energy densities of the baryons
and CDM w, = Q,h% and w, = Q.h?, the angular scale of the comoving sound horizon
at the last scattering surface 6,, the optical depth at reionization 7 and the parameters

describing the primordial power spectrum A, and n.
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Chapter 2

Modified Gravity and Scalar-Tensor

theories

2.1 Modified gravity

The theory of General Relativity (GR), on which the ACDM model is based, is not
only the most elegant scientific theory of gravity ever proposed, but also one of the
most tested ones. More than a hundred years after Einstein first proposed his famous
field equations, it is probably still the best description of cosmological and astrophys-
ical phenomena to date. Besides governing the laws of the expanding Universe and
several astrophysical observations, the recent detection of gravitational waves from
coalescing confirms GR at a very precise level.

Despite its incredible success, however, there are various motivations to look at
extensions or modifications to GR. For example, the nature of the dark components
that are blind to electromagnetic interactions and constitute almost the totality of the
energy budget of the Universe in the ACDM model is still unknown, and it is a natural
question to ask ourselves whether it could be or not explained by a modification to
the laws of GR on galactic or cosmological scales. Also, corrections to GR in the
regime of strong gravity and the development of a quantum theory of gravity could
resolve the Big Bang singularity or the ones associated with black holes. On one
hand, all these problems have stimulated the research community to propose a wealth
of theories to extend or modify GR, on the other they have triggered the search for
optimal parameterizations to test such deviations from the laws of GR [85,86].

From the historical point of view, one of the first steps in this direction was the idea
of Dirac that fundamental constants might vary with time, which was later formalized
by Jordan [87] and Brans and Dicke [88] in the Jordan-Brans-Dicke theory in which
the Newton constant is promoted to a dynamical variable that depends on a new
time-dependent scalar degree of freedom. The JBD is the prototypical version of the

modern scalar-tensor (ST) theories of gravity [89], that are the focus of this thesis.
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Note, however, that the addition of a new scalar degree of freedom is only one way to
modify gravity, and many other possibilities like adding new vector or tensor degrees
of freedom instead or breaking some of the GR assumptions as for example allowing

for Lorentz-violating or Non-Local interactions, see e.g. Ref. [90] for a review.

2.2 Scalar-tensor theories

Since the JBD proposal, there has been a significant development in the scalar tensor
theory of gravitation (see Ref. [91] for a recent review). In particular, it has been
understood that the JBD is only the archetypal model of a much broader class of

theories that involve a new scalar degree of freedom.

Indeed, from a theoretical point of view, the requirement for a theory to be classi-
cally viable is that the new scalar field, say o, does not induce a so called Ostrogradsky
instability [92]. A very simple way to avoid such instability is too require time deriva-
tives in the Euler-Lagrange, or Klein-Gordon (KG), equation for the scalar field to be
only up to second order so that only a single scalar degree of freedom is propagated. To
this purpose, the Horndeski theory was constructed out [93] (see Ref. [94] for a recent
review). The Horndeski Lagrangian easily satisfies the criterium above as it contains
only second-order derivatives of 0. The importance of this class of ST theories for
cosmology, however, has been understood only relatively recently in connection with

the generalization of the Galileon symmetry [95] in curved space [96-98].

A further step towards the classification of healthy theories containing an ad-
ditional scalar field was to understand that, having only up to second order time
derivatives in the KG equation in not a necessary condition, albeit a sufficient one.
By performing invertible disformal transformations starting from the Einstein-Hilbert
action [99] (and therefore conserving the number of degrees of freedom [100]) or adding
specific combinations of functions in the Lagrangian [101,{102], it is possible to prop-
agate a single scalar degree of freedom even if the KG equation contains third order
time derivatives. Theories belonging to this class, sometimes referred to as beyond
Horndeski or GLPV theories [101], then paved the way to the so called Degenerate
Higher Order Scalar Tensor (DHOST) theories [103H107]. Such theories are based on
the idea that the absence of an extra scalar degree of freedom can also be ensured
by the degeneracy of the mass matrix of the field ¢, which leads to less restricting

criterium than the ones mentioned above.
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The corresponding Lagrangians can be written in the form

5
Fo)(X,0) R+ P(X,0) + Q(X,0)00 + Y Ar(X,0)L{

I=1

o) - [aevs

10
+F)(X,0) Guo™ + Y " Bi(X,0)LY + Lm] . (220)
I=1

where X = V#oV 0 and the functions Ll@) and ng) are quadratic and cubic in o,
respectively and represent all the possible contractions of the second-order derivatives
o, with the metric g, and the scalar field gradient o,. Note that these functions
are not arbitrary functions of ¢ and X and, in order to represent a viable theory,
they have to satisfy specific degeneracy conditions . The landscape of viable ST

theories is summarized in Fig. [2.1

2.2.1 Traditional Scalar-Tensor theories

The class of traditional ST theories, to which the models studied in this thesis belong,
is the smallest subset of DHOST theories and their Lagrangian can be obtained by
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setting all the functions in Eq. (2.2.1]) to zero except for:

Foy(X, o) = @ and P(X,0)=X-V(o) (2.2.2)

leading to the following action

nv
.Q?R—QQ@dMVJK®+£m. (2.2.3)

sz/d4m¢_—g{

The metric g, is the physical metric to which the matter fields in £,, are mini-
mally coupled and the conformal frame in which the action takes the form above, is
the so called Jordan frame. By performing a conformal transformation of the form
Juw o< Fg,, it is possible to switch to the corresponding Einstein frame in which
the canonically rescaled scalar field is universally coupled to the trace of the matter

energy-momentum tensor.

In principle, also the possibility of a non-canonical kinetic term is allowed, but
usually that can be remapped into a canonical one by performing a field redefinition
[109]. It is therefore seen that a model is completely specified by choosing a functional
form for the non-minimal coupling F'(¢) and the potential V(o). The form of F(0),
however, is not arbitrary since it induces some conditions that the theory needs to
satisfy in order to have a stable FLRW evolution. For the action , indeed, there
are in total three physical degrees of freedom associated with the gravity sector (that
is, the metric and the o field) [110]. In order to avoid negative kinetic energy states

in the tensor sector the following equation has to be satisfied
F>0, (2.2.4)

and the positivity of the kinetic term in the reduced quadratic action of the scalar

field perturbations leads to the second condition
F(2F+3F%) >0. (2.2.5)

For the matter sector, any fluid that satisfies the null energy condition and has real
sound speed will be stable. Note that the conditions (2.2.4)) and (2.2.5)) also ensure

the positivity of the effective gravitational and cosmological Newton constants (see

Eq. (2.2.19) below).

The field equations are obtained by varying the action with respect to the metric:
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1 1
G/u/ = — Tuu + aMO'ayo- - §guuﬁpgapo- - glu/v(o-) + (VMVV - gMVD)F(O)] :

F(o)
(2.2.6)

The Einstein trace equation results:

1
R= = [-T +8,00"0 +4V + 307, (2.2.7)

where T is the trace of the energy-momentum tensor. The Klein-Gordon (KG) equa-

tion can be obtained varying the action with respect to the scalar field:
1
—Uo — éF,UR +V,=0, (2.2.8)

and substituting the Einstein trace equation one obtains:

3 F? VF, F
_ 14+ -2 _ ALY (g A Fo(1+3F, )] =0. 2.
Da< +2F>+V"’ 2 7 +2F[ 0,00"0 (14+3F )] =0 (2.2.9)

If T specify instead to a flat FLRW metric, as in Eq. ((1.1.8)), the Friedmann and
the KG equations reduce to:

=2

3H?F Ip—i—%—i-V(U)—?)HF (2.2.10)
=P+ Po, (2.2.11)

—2HF =p+p+*+F—HF ( )
( )

= (p+p) + po + 0o

FV,
Fy

F,
(3+3Hd:—[p—3p+4V—2

1 + 3F,, '2}. 2.2.14
OF + 3F2 (1 + 3F)0 (2.2.14)

The above equations lead to the straightforward associations:

-2 .
po = % V(o) — 3HF (2.2.15)

and
-9

Do = % V(o) + F+2HF (2.2.16)
where in the equation for p, I have explicitly substituted the KG equation. It is
possible to recover an expression for the dark energy (DE) density parameter dividing

po for the quantity 3H2F which represents the critical density.
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Alternatively, it is also convenient to define new density parameters in a framework
which mimics FEinstein gravity at present and satisfy the conservation law ppg +
3H (ppE + por) = 0 [110,111]:

F, Fy
= — — —1 2.2.1
pDE F pa + (pm + pr) ( F > ) ( 7)
Fy E
= — ——=1). 2.2.1
PDE Fpa _l'pr (F ) ( 8)

The effective parameter of state for DE can be defined as wpg = ppr/ppE-

Because of the non-minimal coupling, the Newton constant in the Friedmann
equations is replaced by Gy = (87F)~! that now varies with time. This has not
to be confused with the effective gravitational constant that regulates the attraction

between two test masses and is measured in laboratory experiments, which is instead

G L (AR, 2.2.19
T SrF \2F +3F2 ) (2:2.19)

given by [111]:

The deviations from general relativity (GR) can also be parameterized by means
of the so-called Post-Newtonian (PN) parameters [85] where the metric is expanded
in powers of the gravitational potential ®. For the theories described by Eq. ,
only the parameters ypy and fpy differ from GR predictions, for which they both

equal unity. In terms of these parameters the line element can be expressed as:
ds? = — (14 2® — 2Bpn®?)dt* + (1 — 29pn®)dada’, (2.2.20)

where the only non-zero PN parameters are given by the following expressions [111]:

F2

TYPN = 1— ﬁgﬂ, (2221)
Fr, d

5PN =1 ) PN (2222)

T SF+12F2 do

Linear perturbations

ST theories also modify the equations governing the evolution of cosmological pertur-
bations. As in Chapter [1] I study linear fluctuations around the FLRW metric in the

synchronous gauge and follow the conventions of Ref. [35]. Here, however, I also have
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to consider the scalar field perturbation do:

- (k;] - %5@) n(k,T)] : (2.2.23)

do = /dgk:e“;'f&d(lg, 7). (2.2.24)

The modified Einstein equations at first order for scalar perturbations are:

k? 1 1 F, o2 k2 1. .
— ~Hh=-—0 J do — —= — HF ) §0 — —0F + —hF
po 2F[p+aa+v o F<p+2+V 3 )0 3 +6 ],

k? 1 .
27'7 = 5F Z(/Oz +pi)b; + k2 (déa +O0F — H5F)

2

. . k 3 F -2
h+3Hh—2—n=—= |p+ 666 — V60 — v+ Vi Fy2HF) b0
a? F F 2

2 k? 1.
+226F +0F +2HSF + ~hF
3 a? 3

2 k2 F
D (ot pi)oi + G5 0F + o (h+ 6) |

. . k2 3
h+6i + 3H(h + 61)) — 2—n = ——
+6if + 3H (h + 61) — 231 P

F

%

(2.2.25)

where all perturbations are considered in the Fourier configuration. The quantities
0; and o; represent the velocity potential and the anisotropic stress, respectivelyﬂ It
can be seen from the last of these equations that the coupling function acts also as a

source for the anisotropic stress.

The perturbed Klein-Gordon equation is:
3 ) 2(1+6&)Eoo k? FV,o 260V, F(1+6¢)
06 = —60 |3H + ——5——| —do — ’ 1
o =00 { T T F F e @ P16 F168202| | F 468202
3 {1 _2(1 +68)E0” (3dp —dp)éo 1,

F +6&%0° F + 6820 1 [(1 +66)57 AV + (3p - pﬂ } T Fieee 27
(2.2.26)

+

'Note that here o; has nothing to do with the initial condition on the scalar field ¢ that I will
use in the next Chapters
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2.3 Observational constraints on Scalar-Tensor the-

ories

A snapshot of the current observational is given in Fig. which is reproduced from
Ref. [112]. In the plots, the gravitational forces are parameterized by the gravitational
potential e = ® = GM/r and the space curvature ¢ = GM/r3, where M and r are the
mass and the radius of a spherical object respectively. The plots show that gravity
has been currently tested mostly in the large curvature regime with solar system
and binary pulsar experiments operate, but that there is still a lot to explore on
lower curvature scalesE]. At those scales, the plot shows that the relevant observations
are cosmological ones. The constraints on ST theories that can be derived using
cosmological data will be discussed in the following chapter and, in the following, I
discuss the very tight constraints on ST theories by a series of other observations.
Specifically I consider constraints from the observation of a neutron star merger and
its optical counterpart, from Solar System and laboratory experiments and from Big
Bang Nucleosynthesis.

Before going ahead, note also that Fig. clearly shows the importance of study-
ing gravity in different regimes. Indeed, many MG theories develop so called screen-
ing mechanisms that hide the modification to gravity in dense environments or small
scales [113H116], but are not active on large cosmological scales (see Ref. [117] for a
review). Only testing gravity on as much scales as possible we can hope to constrain

possible deviations from GR in the optimal way.

2.3.1 Constraints from the speed of gravitational waves

A major step forward in constraining ST theories of gravity has been made thanks
to the observation of a neutron star merger GW170817 and of its optical counterpart
GRB170817A, on August 17, 2017 [118-121]. Indeed, the follow up of the gravitational
event, i.e. a short gamma ray burst, was seen only 1.74£0.05 s later by Fermi and the
International Gamma-Ray Astrophysics Laboratory, allowing to constrain the speed
of gravitational waves ¢, to be essentially the same as the speed of light, with a
precision of |118§]:

—3-107" < ¢ fe—1<T7-1071. (2.3.1)

The crucial point here is that ST theories described by Eq. (2.2.1]) can modify the

speed of the propagation of gravitational waves. The evolution of linear, transverse-

!'Note that the definition of € and ¢ has to be changed on such scales for which speaking of
spherical objects is meaningless [112].
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Figure 2.2: Left: A parameter space for gravitational fields. Right: The experi-
mental version of the parameter space. See Ref. [112] for details. The horizontal lines
in the left figure indicate the background curvature of the Universe at Big Bang Nu-
cleosynthesis (BBN) and Last scattering, and the curvature associated with A. Some
of the label abbreviations are: SS=planets of the Solar System MS=Main Sequence
stars, WD=white dwarfs, PRSs=binary pulsars, NS=Neutron stars, BH= stellar mass
black holes, MW=the Milky Way, SMBH=supermassive black holes. PPN= Parame-
terized Post-Newtonian regime, Inv.Sq.=laboratory tests of the inverse square law of
the gravitational force, Atom=atom interferometry experiments, EHT=Event Hori-
zon Telescope, ELT=the Extremely Large Telescope, DEFT4=a hypothetical stage
4 experiment of dark energy, Facility=a futuristic large radio telescope such as the
Square Kilometer Array. Figure taken from Ref. [112].
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disformally tuned, remain viable. Figure adapted from Ref. .

traceless tensor perturbations over a cosmological background is governed by the

following equation [123]:

hix+ B+ an)Hhy  + (1 +ar)k?hy =0, (2.3.2)

where both a (o) and ar (o) depend on the scalar field o and their explicit expressions
in terms of the Horndeski functions is given in the Appendix of Ref. . Although
the former term contributes to the damping of gravitational waves, the latter is a
genuine modification to their speed of propagation which becomes cg =1+ ar and
can therefore differ from the speed of light, which is equal to unity in our conventions.

As shown in Fig. using Eq. it is therefore possible to rule out a number
of models that would otherwise be perfectly viable for other cosmological observations
[122,[124H126] (see however Ref. for a more critical take on this point). The
importance of GW170817 is astounding, as it was the first case ever when it has been
possible to rule out so many MG theories with a single event. Importantly, traditional
ST theories, for which ar = 0 and oy, = F /HF, survive this constraint and are still
viable after GW170817.

2.3.2 Constraints from Big Bang Nucleosynthesis

Theories where the Newton constant varies with time also modify the light elements
production in BBN. The efficiency of the latter, which is the result of nuclear and
weak reaction, is affected by the modification to the expansion rate of the Universe

induced by a time-varying Gy (t) (or equivalently Geg(?)).
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Therefore, if at early times Gy(tgpn) # Gn(to), there would be a variation of
the light element abundances with respect to the standard BBN predictions. Using
a parameterized form of AGy, for which it depends on time through a monotonic
power law o t~* BBN data where used in Refs. [128,|129], to derive a constraint
of AGy/Gy = (Gy(tsen) — Gn(to))/Gn(to) = 1.01%20, at a 68% CL level. A
tighter constraint was also derived more recently in Ref. [130], which found AGy =
0.02 + 0.06.

2.3.3 Constraints from Solar System experiments

Among the most stringent constraints on the deviations from GR, belong the ones
from Solar System tests [85]. Constraints on ypyx can be derived from bounds on the
deflection angle and on the time delay of light. Indeed, a light ray that grazes the

surface of the sun is deflected by an angle

1
50 ~ %1.7505”, (2.3.3)

that makes it possible to constrain the quantity vypnx. The tightest constraint on the
deflection of light comes from the very long baseline interferometry (VLBI) observa-
tion of quasars and radio galaxies that are primary used to monitor the rotation of
the Earth. Since they are sensitive to the deflection of light over almost the entire
celestial sphere they lead to the optimal constraint ypy —1 = (—24£3) x 1074 [131}/132]
as of 2010 (see also Ref. [133] for a slightly older constraint).

However, the tightest constrain on ypy comes from measurements of the time delay
of light. A photon sent across the solar system past some object and returned to the
Earth experiences a non-Newtonian time delay that depends again on the combination
(vpx + 1)/2 as (say it passes past the Sun, which is distant from us 7, at the closest
distance of d) [85]:

1 &
5t ~ % [240 —201n <—)} 1s. (2.3.4)
T

Using the Doppler tracking of the Cassini spacecraft that was on its way to Saturn,
the bound ypy—1 = (2.142.3) x 107° was derived [134], almost an order of magnitude
tighter than the ones from light deflection.

Constraints on fpy are instead derived using the observation of the anomalous 43
arcseconds perihelion shit of Mercury’s orbit. The advanced per orbit Aw is given
by [85]:

2+ 2vpn — Ben 7 JoR?

Awm - (20&1 — Qo + Q3+ 2C2) -+
2mp

s : ] ) (2.3.5)
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Figure 2.4: Constraints on the PN parameters vpy and fpy. Figure taken from

Ref. .

but now it includes, in addition to relativistic PN contributions, also the ones from a
possible Sun quadrupolar moment. In Eq. , m is the sum of the masses of the
two bodies m; and my and 7 is their reduced mass, p is the semi-latus rectum of the
orbit, R is the mean radius of the oblate body and .J, measures its quadrupole moment,
whereas the as and (, are additional PN parameters that are equal to zero in the ST
theories under consideration. Therefore, unlike the deflection of light or its time-delay,
here the measurement depends on the combination of ypy and fpy so a bound on ypy
has to be assumed. Adopting the one above from the Cassini spacecraft and using the
latest inversions of helioseismology data that give J, = (2.2 4 0.1) x 1077 ,,
it is possible to constrain Bpy — 1 = (4.1 £7.8) x 107° [85].

The limits in the plane ypx — fpx are shown in Fig. 2.4l As I will show in the next
Chapters, and can be understood from Egs. (2.2.21]) and , these very tight
bounds on the deviations from GR translate into bounds on the allowed parameters

that describe the non-minimal coupling F(o).

2.3.4 Constraints from Laboratory experiments

Finally, another stringent constrain on ST theories comes from the very precise mea-

surement of the Newton constant in laboratory constraints. Although it is not the
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main purpose of this thesis, note that laboratory constraints are also a powerful probe
of screening mechanisms. |13§]

The modern techniques used to measure are atom interferometry and very precise
torsion balances. A timeline of measurements of G is shown in Fig. 2.5 where also
the standard uncertainty is shown. The current value recommended by CODATA
is G = 6.67430(15) x 107" m?® kg=! s, with a standard uncertainty of 22 ppm.
However, note that different experiments are in tension on the 4th figure after the
comma, so there is currently an uncertainty (in units where G' = 1) of 10, This is the
uncertainty that I would quote throughout this thesis. It is important to stress that,
in the context of ST theories, the quantity that has to be confronted with laboratory

tests is Geg and not Gy, as it is the former that governs the interaction between test

masses [110,[111].
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Chapter 3

Cosmological tensions and new physics

3.1 The H, tension

As anticipated in the previous Chapter, one of the most challenging problems that
Cosmology faces nowadays is to explain the so called H tension.

The accurate measurement of the CMB anistropies has permitted the determina-
tion of the six ACDM parameters at a very precise level. In particular, the Hubble
constant, or Hy, which is the normalization of the Hubble parameter measuring the
rate of expansion of the Universe, is tightly constrained by the latest Planck CMB
temperature, polarization and lensing data to Hy = 67.36 & 0.54 km s™'Mpc™! [21].
However, this determination is not strictly speaking a measurement of the aforemen-
tioned quantity. Indeed, it is inferred from the CMB data assuming the underlying
cosmological model to be the ACDM one.

Since the CMB photons started to travel freely in the Universe after recombination
at redshift of the order z, ~ 1100, CMB measurements are usually referred to as
FEarly time measurements, as opposed to local measurements at very recent redshifts
that are referred to as Late time ones. Contrary to early time measurements of Hy,
late time ones are model independent. The most important example of the latter is
the measurement obtained by calibrating the distance ladder using the luminosity of
Cepheid variable stars performed by the SHOES team [161].

With the first release by Planck, where a value for the Hubble constant of Hy =
67.3 & 1.2 km s™'Mpc~! [162] was inferred, it was understood that it was in tension
with the SHOES measurement of Hy = 73.8 + 2.4 km s~ 'Mpc™! [161]. At the time,
however, the SHOES measurement was not the only one in tension with Planck results,
as another late time determination of Hy by Carnegie Hubble Program based on the
mid-infrared calibration of the Cepheid distance scale based on observations with the
Spitzer Space Telescope, that is Hy = 74.3 + 2.5 km s~ 'Mpc~! [154].

Ever since then, any CMB data used to calibrate the sound horizon and subse-

quently the BAO, like the new Planck releases or the ones from the Atacama Space
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Figure 3.1: Values of Hj together with their 68% CL errors from CMB and Late
time measurements in Refs. [139-160].

Telescope or the South Space Telescope have lead to values of Hj consistent that
were consistent among each other, but in tension with SHOES measurements. It is
important to stress that, CMB measurements were not the only ones leading to such
a discrepancy. Indeed, also results from the DES collaboration using also BAO and
BBN data lead to Hy = 67.2%]:2 km s™'Mpc~! [140] and at the same time other local
measurements point to a value of Hy closer to the one measured by the SHOES team.
As of the time I am writing this thesis, the situation is the one shown in Fig. [3.1]
where I show a series of early and late time measurements of Hy performed by different

experiments using several and more refined techniques.

It is clear that, as the time passes, more measurements, many of which are inde-
pendent on the others, accumulate casting doubts on the possibility that systematics
is the cause of the tension. Indeed, although revisions of the determination of the
Hubble rate based on the Cepheid calibration |163-H165], from SNe Ia calibrated using
the tip of the red giant branch method [153] point to values which are slightly smaller,
i.e. 70 km s~!Mpc~!, it is unclear whether systematic errors alone can explain the
tension [152,/166].

60



o HOLICOW+SNe+BAO (ACDM)
o Cepheids+SNe+BAO (ACDM)
o Cepheids+SNe+BAO (Spline, Q,=0)
2.6 Planck
2.6 TT+lowE
2.7 TE+IowE
2.3 EE+lowE
ACDM 2.8 TT (£<800)
2.1 TT (£>800)
3.0 WMAP9+SPT+ACT
3.0 SPT-SZ
3.0 SPTpol+r
2.7 ACTpol+r
2.8 [ o { | BAO+BBN
1§5 1210 1215 1%0 155
75 [Mpc]

Figure 3.2: ACDM determination of the sound horizon from existing data (solid
symbols) and forecasts (open symbols) from Ref. [177]. The plot is reproduced from
the code in Ref. [177].

3.2 How to solve the H, tension

If the H tension is taken at face value and under the assumption that there are no
unaccounted systematic errors that can explain it, then it points to the need of new
physics beyond the ACDM model. When it comes to build physical models that aim
at a large Hy there are mainly two possibilities. The first one is to introduce a late
time modification to the expansion history of the Universe. Examples of such late
time solutions are Refs. [167H176]. However, these models are tightly constrained by
late-time observational data, especially those from BAO. Besides, some of the late
time solutions lead to fast wiggles in the evolution of the Hubble parameter H(z)
in the region of the three BOSS BAO redshits, which might invalidate the reduction
of BOSS data from a near-continuum range of redshifts to the constraints that are

publicly available at three discrete redshifts.

A second solution is instead to introduce new physics around the redshift of re-
combination. This is probably the most followed route and the one I am going to

discuss here in more details.

A quantity that is of crucial important is the comoving sound horizon, which is
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defined as:

o , CS
rs—/Zd dz H(2) (3.2.1)

where z, is the end of the baryon drag epoch and ¢4(2) is the sound speed of baryons
(1.8.14]). This quantity represents the distance that the sound waves in the primordial
plasma traveled from the Big-Bang at z = oo to z4. Note that r, is closely related to

the same quantity evaluated at the time of the last scattering z,, at which the optical

*
S

depth becomes equal to one. The latter, which I denote as r*, is about 2% smaller
than r4 and is the one relevant for CMB power spectra, whereas rg is relevant for
BAO. However, their difference is nearly model independent and so both quantities
can be used for the following arguments.

The reason r, is so important is that the H, tension can be recast into a tension
on rg [177,178|. In fact, low redshift probes as BAO constrain the product r,Hy to be
constant relating r, and Hy which are absolute scales for distance measurements at
early and late times respectively. Although r, is inferred from the CMB data, it can
also be directly measured by only relying on the BAO giving a standard ruler and
SNe being standard candles [179]. The result can be seen in Fig. [.2] which shows the
duality of the Hy and r, tension.

It is then clear that a lower r, will reduce the Hj tension, so, when introducing
new early time physics, this is the direction that model builders should look at. In
order to better understand why lowering the sound horizon results in a larger Hubble
constant inferred from the CMB, it is useful to understand how H, is extracted by
these data. This can be understood qualitatively as followd!| [180].

The first step is to determine the two quantities w;, and w,,. w, can be determined
from the effects that has on the damping scale of the CMB and, especially, from
the effects on the boost and suppression of odd and even peaks of the CMB spectra.
Indeed increasing wy, and thus the baryon to photon ratio 7, alters the zero point
of the acoustic oscillations in the primordial plasma. w,,, on the other hand, can be
precisely determined from the so called potential envelope effect [52]. Once wy, and w,,
are known, since the radiation density can be determined from the temperature of the
CMB which is precisely measured [46}/181], it is possible to compute c¢s(z) and H(z)
in Eq. for a given cosmological model and determine r; (and consequently also
).

The second step is then to measure 67, which is the angular size of r}. This

quantity can be directly read off the spacing of the peaks of the temperature angular

'The only quantitative way to parameter estimation is by performing a full MCMC analysis, but
the following argument helps get a taste of how a larger Hy is obtained by lowering r, with new
physics.
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Figure 3.3: Orange and green bands show 68% and 95% CL contours from R19 and
BOSS galaxy BAO + SN data respectively and are model independent. For P18, full
results together with results for TT (limited to either ¢ > 800 or ¢ < 800) + lowE are

shown. P18 results are obtained assuming the ACDM model. The plot is taken from
Ref. [180].

power spectrum of the CMB as it is related to them by the relation 6% = w/Af. Since
A/, and hence 6%, is measured at the very precise level, any model that aims at solving
the Hy tension must preserve it. Note that the angular size of the comoving sound
horizon is given by 0% = r¥/D%, where the angular diameter distance is given by:

= dy

DY = =t (3.2.2)

It is clear that, knowing r}, the last step is to adjust D%, and hence Hy, to keep 07
fixed. In particular if 77 decreases, then a larger Hj is needed for this. To make this
more clear, in Fig. , I show the constraints in the ry — Hy plane from Ref. [180] for
the ACDM model. As can be seen the value of r, is too large and, although it can be
lowered by enhancing the baryon density wy, this goes in the direction orthogonal to
BAO and SN data so it spoils the fit to data sets other than CMB.

In the following, I introduce perhaps the three most important frameworks within
which a lower r; can be accommodated and explain how they ultimately leads to a
larger Hy by the introduction of extra relativistic degrees of freedom, an Early Dark

Energy component or a modification to gravity.
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Figure 3.4: Evolution of the energy density fraction of extra relativistic species
(left) and samples in the Hy-r4 plane for the analysis with the data set P18 + BAO +
SN + R19. The plot is produced using the MCMC chains produced for the analysis
in Ref. [3] and the code from Ref. [180].

3.3 Extra-Dark Radiation

Modifications to the expansion history of the early Universe are often enclosed in the

74
14— —
+8<11)

which parameterizes the effective number of relativistic species. For the Standard

parameter N.g, defined as

ol

Pr =

Neﬂ] pr, (3.3.1)

Model of particle physics, there are three species of active neutrinos corresponding to
Neg = 3.046, where the small correction Neg — 3 = 0.046 accounts for the fact that
neutrino decoupling is immediately followed by e* e~ annihilation, see e.g. Ref. [182].

I refer to this as ANeg model in the following.

From the theoretical point of view, many Beyond Standard Model theories predict
thermalized extra relativistic species making the parameterization above very useful
to quickly test the model predictions in a very simple way, see e.g. Ref. [183] for a

concrete example.

Concerning the Hj tension, it is clear by looking at the definition in Eq.
that a positive ANeg = Neg — 3.046 increases the energy budget of the Universe and
therefore its expansion history around recombination. This form of dark radiation
only interacts gravitationally with the rest of the matter content of the Universe,
being decoupled at the level of the Boltzmann equations, and, after recombination,

it redshifts away with the radiation like behavior as oc a=*. This makes the AN.g a
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Figure 3.5: CMB TT (top left), EE (top right) and TE (bottom) residuals for the
bestfit AN model. The plot is produced using the bestfit computed from the chains
produced for the analysis in Ref. [3] and the code from Ref. [180].

perfect candidate to relieve the Hy tension and indeed it is perhaps the one that was

first considered in this context [161][178][184].

The evolution of the fraction of dark radiation corresponding to ANz = 0.254 is
shown in the left panel of Fig.[3.4, Such value of AN is the mean value for obtained
by performing an MCMC analysis with P18 + BAO + SN + R19 data, the results of
which are presented in the right panel of Fig. 3.4l The positive (negative) correlation
between AN.g and Hy (rs) can be appreciated by looking at the color bar. As can be
seen the model successfully lowers r, and therefore, as argued in the previous Section,
leads to a larger Hy = 70.01 4= 0.89 km s~ 'Mpc~! reducing the tension with R19 at
the 2.40 level. The

It is interesting to note that the energy injected into the cosmic fluid from a
variation of ANeg = 0.254 is very small (of the order of Qy_, ~ 0.032, confirming
that deviations from the ACDM model are tightly constrained by CMB data from P18.
In fact, although it is clear from the color bar in Fig. that a larger AN.g would
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completely solve the tension [169], the modification to the early Universe physics
induced by this model already degrades the fit to CMB data.

Indeed, although there is an improvement in fitting the R19 data, I observe a
degradationﬂ of the total Ay? = +3.9. , overall fit to the total data set with respect
to ACDM model, with a Ay?, this improvement mostly comes from the reduction of
the Hy tension and to the better fit to R19, whereas the fit BAO and especially high-¢
CMB data is worsened. I explicitly show this for the residuals AC} in Fig. [3.5] using
The best-fit values for ACDM and the AN, model for the data set P18 + BAO +
SN + R19 are respectively:

0, = 1.0418, 100w, = 2.251, w, = 0.1189, 7o = 0.057, In10'A, = 3.047,
ns = 0.9687, (3.3.2)

with a derived bestfit value of Hy = 68.42 km s~ 'Mpc™!, and

0, = 1.0410, 100w, =2.274, w,=0.1246, Teio = 0.058, In10'°A, = 3.063,
ns = 0.9786, N = 3.41, (3.3.3)

leading to Hy = 70.53 km s~'Mpc~!. As can be seen from Fig. [3.5] where the CMB
TT, EE and TE residuals are plotted, the degradation is mainly due to the bad fit
to Planck TTTEEE high-¢ data of the AN.g model, with a partial Ay? of 9.07. The
fit to other CMB BAO and SN data is not significantly different. For completeness, I
also quote the best-fit parameters for the A Nog model obtained using only P18 dataE|:

0, = 1.041296, 100w, = 2.2195, w, = 0.11671, T = 0.0533, In10YA, = 3.0339,
ns = 0.9577, Nug — 2.815, (3.3.4)

leading to Hy = 65.79 km s~ !Mpc~!, which is even smaller than the ACDM best-fit.
In this case the fit to P18 worsens compared to the ACDM model one for the same
dataset, with Ax? = +0.17.

Note, however, that the AN, model is the simplest 1 parameter extension to
ACDM to include extra relativistic species, but it does not take into account even-
tual interaction among such species or interactions between such species and other
component of the Universe. In fact, the results presented here can be significantly

improved if strong interactions between neutrinos, between neutrinos and additional

INote the difference with the result of Ref. [3], where the bestfit values quoted are taken directly
from the MCMC chains, whereas here I have extracted them using the PyMinuit minimizer, which
a more accurate bestfit finder.

2See |https://wiki.cosmos.esa.int /planck-legacy-archive/.
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light relics or between dark matter and hidden gauge fields are introduced [185-188].

3.4 Early Dark Energy

Another popular model that has been proved to substantially ease, or even solve,
the Hy tension is the Early Dark Energy (EDE) model [189]. These models act to
lower the comoving sound horizon introducing a new energetic component that is
active only during a very narrow redshift window. From the phenomenological point
of view, EDE is very economical solution to the Hj tension, as it only modifies the
prediction of the ACDM model for a very limited period of time.

In the original models, inspired by the string-axiverse scenario [190-192] the exotic
energy density of a minimally coupled (e.g. with F(o) = 1 in Eq. (2.2.3)) behaves
like a cosmological constant at early times and eventually decays faster than radiation
injecting energy into the cosmic fluid in a narrow redshift range. Since the scalar
field is subdominant both during the early Universe and after its energy density has
redshifted away as fast as, or even faster than, radiation.

Cosmological applications of very light axion-like particles were first studied in
Ref. [193]. The action of these models is described by the Lagrangian in Eq.
with F'(0) = 0, where the shape of potential is not arbitrary as the latter is generated
by non-perturbative effects, called instantons, that break the global U(1) symmetry

to a discrete one, leading to [194]:

V(o) =" cae™m cos (?) . (3.4.1)

n

Assuming the validity of the which is justified as long as f > M, [195,/196], since the
instantons contributions scale as S,, ~ nMy/f [194,/196], the leading order contribu-

tion scales as cos(o/f). The potentials used in Ref. [189] take the form:

V(o) =Vp {1 — cos (%)r (3.4.2)

where Vy = m?f?, which corresponds to a fine-tuning of the instantons hierarchy in
Eq. (3.4.2). S the averaged equation of state of the field o during the oscillations

around its minimum is given by [197]

(3.4.3)

the scalar field contributes to the total dark matter of the Universe [193] for n = 1.
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Figure 3.6: Evolution of the normalized scalar field © (top left), equation of state
parameter wgpg (top right) and the energy injection fgpg (bottom left) for the three
models with (p, n) = {(2, 0), (2, 4), (4, 2)}. For definiteness, I have chosen fgpr =
0.1, log,y 2. = 3.5 and ©; = 0.4. I also plot the samples in the Hy-r, plane for the
analysis with the data set P18 + BAO + SN + R19 (bottom right). The first three
plots are taken from Ref. , and the fourth one is produced using the MCMC chains
produced for the analysis in Ref. and the code from Ref. .

Therefore, if a dilution of the field energy density as fast, or faster than radiation,

is needed, n > 2 has to be considered. The best-fit integer value for n reported in
Ref. |198] is n = 3.
An alternative can be to consider instead a potential which captures the feature of

Eq. (3.4.2)) around its minimum as proposed by Ref. [199], were a power law potential

of the form
o

2n
Vie) =W | — 3.4.4
@ =% (57 3.44)
was studied. However, it has been shown in Ref. [198], that CMB polarization data
are sensible enough to distinguish between the two model and prefer a large initial

field displacement which can be supported by the potential in Eq. (3.4.2]), but not by
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the one in Eq. .

Since the pioneering works in Refs. [189][199,200], a substantial effort has been
made in building new models of EDE [198,201H211]. In this Section, I consider the
EDE model introduced in Ref. [1] in the context of the a-attractor framework. From
the model building point of view, the only requirement to be consistent with the a-
attractor construction is that the potential be of the form V(o) = f? [tanh ©] where
I define © = ¢/(v/6aM,) and « is a positive constant. Therefore, the a-attractor
formulation makes the model free from some of theoretical inconsistencies that affect

models inspired axion fields, as discussed above.
I therefore adopt a potential of the form |1,212,213]:
22" tanh (©)*

) = M @) (345)

where V), p and n are constants. The dynamics of the scalar field, that I show in
Fig. [3.6] is similar to other models of EDE studied in the literature and is essentially
that of an ultralight axion field [214]. The scalar field starts from its initial value
0O, deep in the radiation era and remains frozen because of the Hubble friction. As
mentioned above, the energy density of the scalar field is subdominant in this regime
and its equation of state wgpg = Prpr/pepE 1S equal to —1, hence the name “Early
Dark Energy”. Eventually, the effective mass of the scalar field becomes comparable
to the Hubble rate H and ¢ starts to thaw. The redshift z. at which this occurs
can be implicitly defined from the relation % ~ 9H?(z.) [214]. After z., the
Hubble friction is too weak to keep the scalar field up its potential and it rolls down
in a very short time. When this happens, the potential energy of the scalar field
is converted into a kinetic one and a certain amount of energy, parameterized by
feDE = pEDE(ZC)/SMngz(ZC) is injected into the cosmic fluid. Depending on the slope
of the potential and its structure around the minimum, the scalar field then starts to
oscillate or simply freezes again once it has exhausted its inertia. The critical redshift
z. and the value of the energy injection fgpg are the key parameters describing all
EDE models [200]. As I am going to discuss, the shape of the energy injection and
wgpg crucially depend on the different possible dynamics of the scalar field after z..
The scalar field energy density quickly redshifts away after z. and its contribution
becomes subdominant with respect to the other components of the Universe. The
power of a-attractor EDE is exactly that it can consistently accommodate several

distinct redshift shapes for the energy injection. This can be clearly seen from the

three examples plotted in Fig. (I refer to the caption for the parameters used).
In the cases A and B , the scalar field oscillates at the bottom of its poten-
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Figure 3.7: CMB TT (top left), EE (top right) and TE (bottom) residuals for
the bestfit EDE B model. The plot is produced using the bestfit computed from the
chains produced for the analysis in Ref. [I] and the code from Ref. [180].

tial leading to a highly oscillatory equation of state. In the A case, the potential
is tanh?©® ~ ©* around © ~ 0 and therefore the shape for the energy injection
closely resembles the one obtained in the so-called rock’n’roll model of Ref.
where V(¢) o< ¢*. On the other hand, the B case looks more similar to the origi-
nal EDE proposal of Ref. (see e.g. Fig. 2 of Ref. [198]). However, given the
asymmetry of our potential for the B case, the oscillatory pattern in the energy in-
jection shows an asymmetric amplitude of odd and even peaks in the oscillations.
Although this is barely visible in Fig. [3.6] this effect is more pronounced for larger
O, and might in principle lead to distinct results, as the CMB power spectrum is
very sensitive to the shape of fgpg(2) . Indeed, because of such a sensitivity, the
oscillatory patterns of the scalar field in models A and B leave different imprints on
the CMB angular spectra as shown in Refs. and [198]. Therefore, although at a
first glance their background evolution might look similar, it is important to explore

the phenomenology of both of them separately.
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The case C is instead different. Unlike the first two oscillatory models, for this
choice of p and n, the bottom of the potential is very close to flat and the scalar
field shows no oscillations. This model looks similar to the canonical Acoustic Dark
Energy (cADE) model proposed in Ref. [202]. As in cADE (see also Ref. [201]), the
potential energy is suddenly converted to a kinetic one and the scalar field remains in
a kination regime in which wgpg = 1, and its energy is kinetically dominant until it
redshifts away. However, differently from cADE, where the potential was introduced
by patching a quartic potential for positive values of ¢ to V(¢) = 0 for negative ones,
the potential C is consistently embedded in the a-attractor’s construction. Some
other possibilities can be obtained for other combinations of the potential parameters
(p; n).

The capability of these models to ease the H tension is clear from the last panel
in Fig. |3.6] where, for simplicity, I show the results for the model B obtained in
Ref. [1] using the data set P18 + BAO + SN + R19. In fact, model B is the one that
leads to the largest Hy among the ones considered here, as expected from the fact that
it resembles the one in Ref. [198] The positive (negative) correlation between fgpg
and Hy (rs) can be appreciated by looking at the color bar. Indeed, a mean value of
fepr = 0.082 £ 0.029 leads to large Hy = HO = 70.9 = 1.1 km s~ *Mpc~! reducing
the tension with R19 at the level of 1.740, better than the AN.g model. Differently
from the latter model, however, not only does the model improve the overall fit by a
factor of Ax? = —5.8, but also it improves the fit to each separate data set, besides
the obvious improvement in the fit to R19. The improvement in the fit to high-¢
P18 data of Ax? = —2 can be appreciated by looking at Fig. [3.7, where the CMB
residuals are plotted against P18 binned data. An exception is made for low-¢ EE
data for which the fit is worsen by the same factor. The best-fit values used in the
plot for ACDM and the EDE model B for the data set P18 + BAO + SN + R19 are
respectively['}

0, = 1.0419, 100wy, = 2.252, w. = 0.1188, Teio = 0.057, In10'°A, = 3.049,
ns = 0.9690, (3.4.6)

with a derived bestfit value of Hy = 68.09 km s~!Mpc~*, and

0, = 1.0416, 100w, =2.261, w,=0.1259, Teeio = 0.063,  In10'°A, = 3.071,
ns = 0.9765, fgper = 0.061, logyy, 2. = 3.49, 0; = 0.104, (3.4.7)

Here, I refer to the results of Ref. [1], where the choice of running with the Planck convention [67]
of one massive neutrino with m, = 0.06 eV. As can be seen by comparing the ACDM bestfit with
the ones in Eq. (3.3.2)), there is almost no difference.
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leading to Hy = 70.17 km s~ 'Mpc~!. The bestfit for P18 data was not calculated in
Ref. [1]. In fact, this was not calculated even for other EDE models in other works
in the literature, with the exception of Ref. [215], where the bestfit was computed
without including CMB lensing in P18, but for a 1-parameter EDE model where ©;
and log;, 2. were kept fixed. I will come back to this point in Section [5.5

The results presented in this Section are for the a-attractor EDE model B. How-
ever, CMB data are very sensitive to the specific shape in redshift of the energy injec-
tion and therefore although all EDE models generically lead to a large Hj, quantita-
tive arguments concerning the estimation of cosmological parameters, the H, tension
and the fit to data set, may differ depending on the specific model under consider-
ation [198,202]. At the time I am writing this thesis, the EDE model which more
efficiently reduces the is the axion-like original proposal of Refs. [189}/192,/198].

All in all, the capability to significantly reduce the H, tension has made EDE
models very popular and they are now regarded as one of the most promising solution.
However, they are not free from phenomenological and theoretical issues. Regarding
the former, EDE has been recently claimed not to solve Hj tension anymore when
LSS data from weak lensing measurements and the full shape of the matter power
spectrum are included [216-218]. Also, there is growing concern that EDE models
may fail to alleviate the Hy tension when no prior information on Hj is included
in the data set [216]. I will come back to these points in Chapter f] Regarding
the theoretical concerns, EDE models present a very high degree of fine tuning, as
the parameters of the scalar field potential, which is not always theoretically sound
itself, has to be tuned in such a way that the scalar field starts to roll precisely at
the required redshift. The same holds for the initial conditions on the scalar field
that regulates the amount of energy injection. The need to include EDE in a more
theoretically sound framework has been addressed by a-attractor models presented
here, models in which energy injection is produced by a phase transition [203,208],
or models in which the EDE field is coupled to gauge bosons [204,207], whereas a
concrete example of model in which the fine tuning is reduced by coupling the EDE

field to massive neutrinos is the work of Ref. [205].

For the reasons explained above, it is clear the importance of testing the consis-
tency of EDE with different data [219] and proposing new observations to further
constrain these models [203}207],208,220].
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Figure 3.8: Evolution of the effective energy Dark Energy density fraction (left)
and samples in the Hy-rs plane for the analysis with the data set P18 + BAO + SN
+ R19. The plot is produced using the MCMC chains produced for the analysis in
Ref. [4] and the code from Ref. [180].

3.5 Scalar-tensor theories

If the Hy tension is taken at face value, it is also natural to ask ourselves if this can
point towards theories of Modified Gravity that go beyond General Relativity. In fact,
several modified gravity models have been proposed to solve the Hj tension. Among
them, some are strictly late time modifications to the dynamics of our Universe and
some also change it at early time [2-4]221-231]. In the spirit of this Chapter, the

latter are the ones I am interested in.

As discussed in Chapter , Scalar-tensor (ST) theories are perhaps the simplest
framework to test modifications to gravity that can also work as an alternative to the
cosmological constant in explaining the observed acceleration of the Universe. The
study of such theories is the subject of this Thesis and will be discussed in details in
the next Chapters. Here, I only intend to give a general idea of why these theories
are able to alleviate the Hj tension. To do so, I consider the simplest example of ST
theory, that is the extended Jordan-Brans-Dicke (JBD) theory [87,88], that I recast
in its Induced Gravity (IG) formulation [232]. The theory is described by Eq.
with F(0) = ~o?, where v is a positive constant, and I consider for simplicity a
potential of the form V(o) = A F(0)?/4, for which the theory is effectively massless

and discuss in details the choice of the potential in the following Chapters.

The degeneracy of the coupling ~, which regulates the strength of the modification
to gravity, and Hy was first noticed in Refs. [221] and [222] (see their Figures 7 and

8 respectively). The reason the modification to gravity helps ease the Hj tension is
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easily understood. Indeed, in the IG theory, the effective contribution of the scalar
field to the cosmic expansion is similar to the one from extra relativistic degrees of
freedom, as can be seen from the left panel in Fig. [3.8] The scalar field, that has an
effective equation of state, as computed from Eqs. , wpg ~ 1/3, continuously
injects energy during the early Universe before recombination reducing the comoving
sound horizon rg. Unlike in the AN model, however, its energy density redshifts

4 and the scalar field contribution, although very small, is not

away slower than a~
completely negligible during the matter radiation era, as can be seen from Fig. [3.8
in which Qpg ~ 0.07 at z ~ 100, which can compared to Fig. for the ANgg
model. The compatibility of such models with laboratory experiments and Solar

System observations will be discussed in details in the next Chapters.

To confirm the above argument, I plot samples from the chains used in Ref. [4]
in Fig. 3.8l Note that the data set used is P18 + BAO + R19, whereas SN are not
included because the modification to gravity changes the peak luminosity of SNe and

this needs to be properly accounted in the analysisﬂ [235/238].

As can be seen from Fig. [3.8] larger values for Hy are indeed obtained for a larger

value of 7. Indeed, a coupling as large as v = 0.000511) 05058 (95% CL) leads to

Hy = 70.06 & 0.81 km s~ *Mpc~! reducing the tension with R19 at the 2.40 level,
with a result which is similar to the one for the AN.g model. The best-fit values

used in the plot for ACDM and the IG model for the data set P18 + BAO + R19 are
respectivelyP}

0, = 1.0418, 100w, = 2.251, w. = 0.1186, Treo = 0.064, In10'°A, = 3.062,
ns = 0.9704, (3.5.1)

with a derived bestfit value of Hy = 68.50 km s~ *Mpc~!, and

Hy =70.18, 100w, =2.253, w, = 0.1197, Tueo = 0.053, In10'°A, = 3.044,
ne =09707, yic =5x10"% (3.5.2)

The IG model leads to an improvement in the fit to data of Ax? = —1.5, which is
better than the AN, model. However, as can be seen from the plots in Fig. the
improvement comes mainly from the better fit to R19 and the fit to high-¢ CMB data

is worsened, although there is a gain in fitting low-¢ EE polarization data. A similar

!Note also that the modification of the gravitational constant can also change the low-redshift
distance ladder measurements of the Hubble constant [233]234].

2Here, I refer to the results of Ref. [4], where the choice of running with the Planck convention [67]
of one massive neutrino with m, = 0.06 eV.
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Figure 3.9: CMB TT (top left), EE (top right) and TE (bottom) residuals for the
bestfit IG B model. The plot is produced using the bestfit computed from the chains
produced for the analysis in Ref. [4] and the code from Ref. [180].
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worsening of the fit is found for BAO data. For completeness, I also quote the best-fit
parameters for the IG model obtained using only P18 data [4]:

Hy=67.73, 100w, =2.2398, w, = 0.12012, Teio = 0.053, In10'°A4, = 3.0432,
ns =0.9673, e = 1.005 x 107 (3.5.3)

Similarly to the AN, model, the bestfit to P18 worsens compared to the ACDM
model one for the same dataset, with Ax? = +0.2 (see Table4.7|in the next Chapter).

Before concluding, it is worth to stress that the model presented here is perhaps
the simplest and most studied model of modified gravity, and its relevance is also
due to the fact that many Horndeski models can be very well approximated by the
JBD one [239]. Furthermore, the most important feature of this model is that the
scalar field naturally starts to move around the recombination driven by pressureless
matter to which it is coupled at the level of the equations of motion. In this sense, the
degree of fine tuning is much lower than models like EDE, that require the potential to
acquire a specific value in order for the energy to be injected at a particular redshift,

as discussed in the previous Section.

3.6 Summary

In this Chapter I have presented the status of the art of the so called Hy tension
and discussed the possibility to solve it using pre-recombination physics. As argued
in Section [3.2] the most promising solution is to reduce the comoving sound horizon
rs, so that Hy has to increase in order to keep the parameter 6, which is precisely
measured from the spacing of the CMB peaked, fixed [177,/178,180].

The three most popular frameworks, within which this goal is achieved are modifi-
cations to the radiation content of the Universe (which is active before recombination
by definition), Early Dark Energy and models of Modified Gravity. For each class, I
have therefore discussed a representative model, in order to capture the main features
that lead to a larger Hy inference. In particular, I have described how the H, tension
is reduced within the AN.g, the a-attractor EDE, and the extended JBD model. The
results of the analysis are summarized in Fig. [3.10

The tension with R19 is reduced at 2.40 or AN and JBD models, and 1.740
for EDE. This is not only due to a larger mean value for Hy, but also to a larger
error, as can be seen from the normalized 1-dimensional posteriors in the right panel
of Fig. [3.10 However, although very useful, Fig. gives only rough information
that has to be complemented by a detailed analysis of the fit of the models to the
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Figure 3.10: Two-dimensional plots in the ry — Hy plane (left) and marginalized
posteriors for Hy for the ACDM, ANgg, a-attractor EDE and JBD model. The data
set used is P18 + BAO + SN + R19, except for the JBD model for which SN data are
not used. The plots are produced using the MCMC chains produced for the analysis

in Ref. , and the code from Ref. .

data on one hand and by physical considerations on the other. Indeed, what cannot
be appreciated by looking at Fig. [3.10] is that the three models fit the data in a
different way and arrive at the posteriors in the right panel using different physics. In
particular, the AN model does not lead to an improvement in the fit compared to
ACDM, and is only a parameterized model, whereas the EDE model, despite almost
solving the Hj tension, suffers from fine tuning issues and has been claimed to ruin
the fit to LSS data.

The JBD model, on the other hand, is a model with solid physical foundations
that addresses the tension without the need of fine tuning and improves the fit to data
at the same time. This triggers the need of exploring in details the phenomenology of

ST theories in relation to the Hy tension, which is the subject of the next Chapters.
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Chapter 4

Cosmological constraints on nearly
massless Non-Minimally Coupled theories

and consequences on the H; tension

4.1 Non-Minimally coupled theories

In this Chapter, I study the cosmological dynamics of Non-Minimally Coupled (NMC)
theories described by the action (2.2.3)) with F(o) = Ngl + &o?, where Ny and € are
two constant that are arbitrary as long as they satisfy the stability conditions in
Eqgs. and . Note that other theories, known as extended quintessence
models [240-245], can be described by the same Lagrangian and a different choice
of potential. I then use cosmological data to constrain this class of theories and
discuss implications for the H tension. Note that the NMC model reduces to General
Relativity for £ = 0 and to the eJBD model introduced in Section for Ny = 0.

As discussed in Chapter [2 Solar System tests and laboratory experiments puts
stringent constraints on ST theories. In order to satisfy these constraints one could
follow several approaches when analyzing the theory on cosmological scales. The first
one is to simply not care about those constraints at all. Indeed, as discussed in the
previous Chapter, one is not guaranteed that the behavior of the theory is the same at
cosmological and galactic or Solar System scales, so one could simply evoke a screening
mechanism to hide gravitational effects at small scales |[117]. This is in line with the
philosophy of testing a gravitational theory on different scales to characterize it with
complementary information. However, in its simplest formulation, the NMC theory
described in the following Sections does not support any screening mechanism, since
the scalar field o is canonically coupled and the potential is not of the runaway form.
Therefore if one wanted to implement a screening mechanism in the simplest model
studied here, some additional assumptions would have to be adopted.

Another approach is instead to ensure by hand that the cosmological evolution of

the scalar field is consistent with the value of the gravitational constant measured in
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laboratory. This can be done by setting suitable boundary conditions on the evolution
of o today, i.e. 0y, so that the value of Geg(0p) is ezactly equal to its value measured
in laboratory experiments and then see how the PN parameters deviate from GR
(or viceversa one could fix the PN parameters and look at the deviation of Geg (o)
from G). I will adopt the former approach in Section . Note that this additional
condition on oy reduces the number of free parameters in the theory.

However, as I will show in Section [4.3 this is not necessarily needed for the
specific case of the NMC model. Indeed, for the negative branch of coupling £ < 0, o
decreases and the modification of gravity at late times becomes smaller and smaller
with redshift. As it turns out, cosmological data seem indeed to favour that branch
and the resulting cosmological bounds on G and the PN parameters are consistent
with laboratory and Solar System ones. It is therefore important to explore the
possibility of constraining o; itself with cosmological data.

An interesting feature of the NMC model is that it behaves very similarly to the
A Nyg model introduced in Sec. of the previous Chapter at the background level.
In this Chapter, I also discuss the consequences that this similarity has on the H
tension and show how it is naturally alleviated in this context.

Finally, for completeness, I also present the cosmological constraints on the IG (or
eJBD) model introduced in Section . In this model, however, the scalar field grows
and if the boundary conditions are not set on the scalar field, cosmological constraints
are inevitably in tension with both laboratory and Solar System experiments.

This Chapter is based on the research work in Refs. [2-4] and the plots are pro-
duced using either CLASSig [2,[221], a modified version of the CLASS| [41,[42] for
scalar-tensor theory of gravity, or with a modified version of hiCLASS [246,247] which
allows to study consistently oscillating scalar fields. The agreement of CLASSig and
hiCLASS for the precision of current and future experiments has been demonstrated
in [248].

4.2 Consistency condition on Gg(t))

I start by considering the NMC theory described above in which [2]. For later con-
venience I denote by a tilde the quantities normalized to M, = 1/ V881G, where
G =6.67 x 1078 cm? g=! s72 is the gravitational constant measured in a Cavendish-
like experiment and I introduce the notation Npl =1F ANpl for ¢ 2 0. Throughout
this Section, I will restrict myself to a potential of the form V' oc F'? in which the scalar
field, as can be seen from Eq. is effectively massless. This case generalizes the

Thttps://github.com/lesgourg/class_public
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Figure 4.1: [Left] Top panel: relative evolution of o for different values of £. Bottom
panel: evolution of o for different values of N,; for the CC case, i.e. £ = —1/6. [Right]
Evolution of wpg for different values of N,; and &. I plot the effective parameter of
state for DE for £ > 0 in the upper panel, £ < 0 in the central panel, and the CC case
¢ = —1/6 in the bottom panel. Figure taken from Ref. [2].

broken scale invariant case [232249}250] to NMC and is a particular case of the class
of models with V oc F™ admitting scaling solutions [241]. Note that though for the
form of F(0) used in the paper and for large values of o, this potential looks similar
to that in the Higgs inflationary model [251], in fact it is crucially different, since it is
exactly flat in the Einstein frameﬂ in the absence of other matter and cannot support
a metastable inflationary stage in the early Universe. Contrary, this model may be
used for description of dark energy in the present Universe.

The evolution of relevant background quantities is shown in Figs. and [£.2]
Depending on the sign of the non-minimal coupling, the scalar field o grows or de-
creases for & > 0 or £ < 0 respectively. In particular, as the magnitude of £ increases,
the field-excursion of ¢ and the growth or decay of ¢ is more pronounced. This can
be best appreciated by looking at the plots for the Conformally Coupled case with
¢ = —1/6, for which the scalar field decays very efficiently. This leads to an equation
of state wpg which is essentially equal to 1/3, as for a relativistic fluid, till recent
redshifts at which it becomes wpg = —1 so that the recent accelerated phase of the

Universe is driven. This should be contrasted with smaller values of |¢| for which

L Although I always work in the physical Jordan frame, it is also useful to think about this class
of theories in the dual Einstein frame where §,, o< Fig,, ,V = V/F2.
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Figure 4.2: Evolution of the density parameters €);: radiation in yellow, matter in
blue, and effective DE in red. [Left] I plot N, = 0.99 (N,; = 0.9) for € = 1072 (107%) in
the top (bottom) panel. [Center] I plot N = 1.01 (N, = 1.1) for £ = =102 (=1073)
in the top (bottom) panel. [Right] Evolution of the density parameters €2;: radiation
in yellow, matter in blue, and effective DE in red. [Right] I plot the CC case { = —1/6
for AN,; =103, 107%, 1075, Figure taken from Ref. [2].

the equation of state follows the one of the dominating component of the Universe,
i.e. wgpg ~ 1/3 during radiation dominated era and wgpg ~ 0 during the matter
dominated one. Note that the CC case is one of a particular theoretical relevance as
the equations of motion for ¢ in a FLRW spacetime are conformally invariant in the
absence of matter fields.

As mentioned above, the evolution displayed in Figs. and is obtained by
imposing that the effective Newton’s constant at present time, as given by Eq. ,
is compatible with Cavendish-like experiments. It is possible to distinguish three

different cases beyond GR:

e N, — 0 which is the IG case introduced in Section [3.5{and will be useful in the

following. This leads to:
11+8¢

£1+6¢

which is the same result as obtained in Ref. [221];

5o = (4.2.1)

e { — —1/6 which is the CC. In this particular case the polynomial equation
(2.2.19) in 0y in quadratic and the solution is:

5o —; 4.2.2
70 11382 (42.2)
p
e a general NMC case for £ # —1/6:
_, 1—2NZ+2¢(4—3N2)
Gy =
2£(1 +6¢)
= S (4.2.3)
V1~ 4€(BNE — 4) + 4€2(3N3 — 4)?
+
2£(1 +6¢)
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By requiring 62 > 0 and F' > 0, I obtain conditions on the two parameters Npl and &

for the physical solution:

Ny < 1 for £€>0, (4.2.4)
Ny > 1 for £ <0. (4.2.5)

In Fig. I show the evolution of the relative effective gravitational constant
. It is interesting to see that the effective gravitational constant decreases in
time for all the choices of both N,; and ¢, regardless on the sign and the magnitude
of the latter, which, however, affects the relative decrease of Geg from early times
to today. The PN parameters in Fig. shows how the sign of £ determines the

departure of fpy from 1.

4.2.1 CMB anisotropies and matter power spectra

The footprints of these scalar-tensor theories into the CMB anisotropies angular power
spectra can be understood as follows. The redshift of matter-radiation equality is
modified in ST theories by the motion of the scalar field driven by pressureless matter
and this results in a shift of the CMB acoustic peaks for values £ # 0, as for the IG
case, see e.g. Figs. . In addition, a departure from Npl = 1 induces a further change
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Figure 4.4: Evolution of the post-Newtonian parameters vpy and fpy for different
values of NV, and . I plot the cases with £ > 0, £ <0 and £ = —% in the left, center
and right panels respectively. Figure taken from Ref. [2].

both in the amplitude of the peaks and their positions. Note that by decreasing the
value of ANPZ it is possible to suppress the deviations with respect to the ACDM

model allowing for larger values of the coupling £ compared to the IG case.

To explicitly see this effect, I show the relative differences with respect to the
ACDM model for the lensed CMB angular power spectra anisotropies in temperature
and E-mode polarization and the CMB lensing angular power spectra for different
values of Ny for £ > 0 and £ < 0 in Fig. [£.5] In addition, in the same plots I also
the absolute difference of the TE cross-correlation weighted by the square root of the
product of the two auto-correlators. Note that in the CC case, where £ = —1/6 is
larger than the values of the coupling shown in Fig. a smaller ANpl is needed to

generate effects of the same order of magnitude.

Another important signature of the NMC model is in the matter power spectra,
that I plot in Fig. where I show the relative differences for the matter power
spectrum at z = 0 with respect to the ACDM model for different values of the
parameters. In all the cases the P(k) is enhanced at small scales, i.e. k£ 2 0.01 h
Mpc™!, compared to the ACDM model. This is a generic feature of these theories
and can be traced back Geg decreasing with time. A larger gravitational strength at
early time indeed enhances structure formation. An explicit example of ST theories in
which a weaker gravitational strength at early time helps suppress structure formation

is given in the next Chapter.
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Figure 4.5: From top to bottom: relative differences of the TT-EE-TE-¢¢ power

spectra with respect to the ACDM model for N; = 1, 0.9 (N, = 1.01, 1.1) and
different values of € = 1072, 5 x 1073 (£ = —1072, =5 x 1073) in the left and right
panel respectively. Figure taken from Ref. .

4.2.2 Cosmological constraints from Planck DR2

I now present the results of the of Ref. [2]. Note that the CMB and BAO data are not
the most recent one. All the data sets are described in Chapter [1l Separate MCMCs
for each of the two branches of negative and positive & were performed in Ref. .
Although this is not strictly necessary, it greatly simplifies the given that different

boundary conditions have to be imposed in each branch.

The results from the MCMC exploration are summarized in Table L.} A lower
bound is found for the positive branch of the coupling at 95% CL:

Npl > (0.81 [Mpl], (426)
£ < 0.064. (4.2.7)

I show in the left panel o Fig. a zoom of the 2D parameter space (Hyp, &) and
compare the result of NMC to the ones for IG for the same data set obtained in
Ref. , ie. N, = 0. The constraint on & is degraded by almost two order of
magnitude (£ < 0.0075 at 95% CL for IG [222]) due to a degeneracy between N,; and
&, see right panel.
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Figure 4.6: From top to bottom: relative differences of the matter power spectra at
z = 0 with respect to the ACDM model for £ > 0, £ < 0 and £ = —1/6. Figure taken
from Ref. .
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Figure 4.7: [Left] 2D marginalized confidence levels at 68% and 95% for (Hy, &)
for NMC ¢ > 0 (red) and IG (blue) with P15 + BAO11. [Right] 2D marginalized
confidence levels at 68% and 95% for (N, €) for NMC £ > 0 with the same data set.
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The constraints for the negative branch are (see Fig. 4.8)):

Npl < 1.39 [Mpl]a (428)
€ > —0.11. (4.2.9)

at the 95% CL for P15 + BAO11.
I also quote the derived constraints on the change of the effective Newton’s con-
stant (2.2.19)) evaluated between the radiation era and the present time, and also its

derivative at present time at 95% CL:

5Geff

o > 0027, (4.2.10)
Geff —-13_ -1
o (z=0)>—-14[x10""%yr7] , (4.2.11)
for € > 0, and:
5GG‘*H > —0.027, (4.2.12)
Geff —-13_ -1
o (z=0) > —0.97 [x10" P yr '] , (4.2.13)
for £ < 0.

For the CC case, i.e. fixing £ = —1/6, results are listed in Tab. . This model is
severely constrained by data leading to tight upper bound on N, at 95% CL:

1 < N, < 1.000038 [M,], (4.2.14)
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P15 + BAOIL P15 + BAOIL P15 + BAOIL P15 + BAOIL
ACDM 1G (£>0) (£ <0)

wp 0.02225 = 0.00020 0.0222470-00020 0.02226 = 0.00019 0.02226 £ 0.00021
we 0.1186 % 0.0012 0.1191 + —0.0014 0.1190 + 0.0015 0.1189 + 0.0015
Hg [km s~ Mpe™1] 67.78 £ 0.57 69.410-7 69.2+98 69.2+9-7
Tre 0.066 =+ 0.012 0.06319-012 0.068 £ 0.014 0.069 + 0.013
n (10104,) 3.062 + 0.024 3.05019-922 3.06019-923 3.071 +0.024
ng 0.9675 = 0.0045 0.966910-9072 0.9674 + 0.0046 0.9728 + 0.0043
¢ < 0.00075 (95% CL) < 0.064 (95% CL) > —0.011 (95% CL)
Npi M) 0 > 0.81 (95% CL) < 1.39 (95% CL)
7PN 1 > 0.9970 (95% CL) > 0.995 (95% CL) > 0.997 (95% CL)
Bpn 1 1 > 0.99987 (95% CL) < 1.000011 (95% CL)
5GN/GN —0.009+9-903 > —0.027 (95% CL) > —0.027 (95% CL)
103 Gn (2 = 0) /Gy [yr Y] —0.37733 > —1.4 (95% CL) > —0.97 (95% CL)

Table 4.1: Constraints on main and derived parameters for P15 + BAO11 (at 68%
CL if not otherwise stated). In the first column I report the results obtained for the
branch with £ > 0 and in the second the branch for £ < 0. In the first column I
report the results obtained for the ACDM model with the same dataset [252] and in
the second column IG case, i.e. Ny =0, for comparison [222.

P15 + BAO11 P15 + BAO11l + RI8
Wh 0.02223 £ 0.00021 0.02228 £ 0.00021
We 0.118815-0013 0.1187 4 0.0015
Hy [km s~ Mpc™!] 69.1975-77 70.20 + 0.83
Tre 0.06810012 0.07070912
In (100 Aq) 3.070 £ 0.024 3.074 £0.024
ns 0.9699 =+ 0.0045 0.9728 + 0.0043
Ny [My] < 1.000038 (95% CL)  1.0000280 050013
VPN > 0.99996 (95% CL)  1.00003 & 0.00001
BpN < 1.000003 (95% CL)  0.999998 + 0.000001

Table 4.2: Constraints on main and derived parameters for Planck TT + lowP +
lensing + BAO in the case of the CC model (at 68% CL if not otherwise stated).

where Npl can take only values larger than one in this case.

All these models provide a fit to Planck 2015 and BAO data very similar to ACDM
with an improvement of Ay? ~ —2.6 for all the models considered above. Due to the
limited improvement in Ax? at the expense of additional parameters, none of these

models is preferred at a statistically significant level with respect to ACDM.

H, tension. As explained above, the model mimics a dark radiation con-
tribution at early times so it may help alleviate the Hj tension. Indeed, although
constraints compatible with the ACDM values for the standard cosmological parame-
ters are found, the shifts in Hy deserve a particular mention and the mean values for
Hy are larger for all the models studied here. Fig. shows how the 2D marginalized
contours for (Hy, Ny,;) have a degeneracy. I find:

Hy = 69.1970-8% [km/s/Mpc], (4.2.15)
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This value is larger, but compatible at 20 level with the ACDM value (Hy = 67.78 +
0.57 [km/s/Mpc]). However, it is still lower than the local measurement of the Hub-
ble constant (Hp = 73.52 £ 1.62 [km/s/Mpc]) obtained by including the MW
parallaxes from R18 and Gaia to the rest of the data from . Therefore the
tension between the model dependent estimate of the Hubble parameter from P15
plus BAO11 data and the local measurement from decreases to 2.30 from the
3.30 of the ACDM model. For comparison, by varying the number degree of rela-
tivistic species Nyg in Einstein gravity, a lower value for the Hubble parameter, i.e.
Hy = 68.00+1.5 [km/s/Mpc] (with Neg = 3.087037) for Planck TT + lowP + lensing
+ BAO at 68% CL, is obtained compared to the CC case reported in Eq. .
When the local measurement of the Hubble constant is included in the fit the

constraint is instead:

Hy = 70.20 £ 0.83 [km/s/Mpc], (4.2.16)
N, = 1.00002870000012 [M,] . (4.2.17)

B Planck TT+lowP+lensing+BAO

B Pianck TT+lowP-+lensing+BAO - NMC
B Planck TT-+lowP+lensing+BAO+HST anck TT-+lowP-lensing+
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Figure 4.9: [Left] 2D marginalized confidence levels at 68% and 95% for (Ho, Ny)
for conformal coupling with P15 + BAO11 + R18. [Right] 2D marginalized confidence
levels at 68% and 95% for (Hy, ypx) for NMC £ > 0 (red) and IG (blue) with P15 +
BAO11. Figure taken from Ref. .

Constraints on the post-Newtonian parameters. Finally, I quote the derived

constraints on the post-Newtonian parameters. In this class of models ypy, Opn # 1
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according to Eqgs. (2.2.21])-(2.2.22)) at 95% CL:

0.995 < vpx < 1, (€ > 0) (4.2.18)
0.99987 < fpn < 1, (4.2.19)
0.997 < vpy < 1, (£ < 0) (4.2.20)
1 < Bpx < 1.00001. (4.2.21)

See Fig. 23 for the 2D marginalized constraints in the (ypy, Spn) plane. See Fig. 24
for the 2D marginalized constraints in the (Hy,vpn) plane for £ > 0 compared to the
IG case studied in [222].
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Figure 4.10: 2D marginalized confidence levels at 68% and 95% for (vpN, Bpn) for
NMC € > 0 [left] and € < 0 [right] with P15 + BAO11. Figure taken from Ref. [2].

The tight constraint on N, for the CC case correspond at 95% CL to:

0<1—pn<4x107° (4.2.22)
0<fBpn—1<3x107°, (4.2.23)

for Planck TT + lowP + lensing + BAO, where the latter is tighter than the con-
straint from the perihelion shift Spxy—1 = (4.1£7.8) x 107" [85] and the former is twice
the uncertainty of the Shapiro time delay constraint ypy —1 = (2.1£2.3) x 107° [134].

4.2.3 Updated cosmological constraints from Planck DR3

[ now update the constraints to the most recent Planck DR3 and complementary data

sets. The constraints are summarized in Table .31
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P18 P18 + BAO P18 + BAO + R19
wh 0.02244 + 0.00015 0.02241 + 0.00013 0.0250 & 0.0013

We 0.1197 4 0.0012 0.11990 + 0.00094 0.1195 4 0.0010
Hy [km s~ *Mpc™!] 69.0797 (3.20) 68.6215°5% (3.60) 69.6415°5% (2.80)

T 0.05547+0-5004 0.055170-50°8 0.056210-50%5

In (1010 4y) 3.04870018 3.047H061 3.05070 013

ng 0.9684 + 0.0047 0.9668 + 0.0039 0.9707 4 0.0040
Ny [My] < 1.000028 (95% CL) < 1.000018 (95% CL) < 1.000031 (95% CL)
PN > 0.999972 (95% CL) > 0.999982 (95% CL) > 0.999969 (95% CL)
BpN < 1.0000023 (95% CL) < 1.0000015 (95% CL) < 1.0000025 (95% CL)
6GN/Gx > —0.026 (95% CL) > —0.017 (95% CL) > —0.029 (95% CL)
108GN/Gn [yr™ 1] | > =38 x 1072 (95% CL) > —2.5x107° (95% CL) > —4.2 x 1079 (95% CL)
Gx/G > 0.999986 (95% CL) > 0.999991 (95% CL) > 0.999985 (95% CL)
O 0.29970009 0.3023 + 0.0061 0.2928 + 0.0064

o3 0.83215-011 0.8299 105069 0.83647059%°

rs [Mpc] 146.71+0-36 146.8270-57 146.5370-53

Ax? 2.2 0.8 —1.7

Table 4.3: Updated constraints on main and derived parameters (at 68% CL if not
otherwise stated) considering P18 in combination with BAO and BAO + R19 for the

CC model. Figure taken from Ref. [4].
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Figure 4.11: [Left] Marginalized joint 68% and 95% CL regions 2D parameter space
using P18 (P15) data in combination BAO in blue (red). [Right] Marginalized joint
68% and 95% CL regions 2D parameter space using P18 (gray) in combination with
BAO (blue) and BAO + R19 (red) for the CC model. Figure taken from Ref. .
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The coupling to gravity is constrained to N, < 1.000028 M,; at 95% CL for
P18 and N, < 1.000018 M,; at 95% CL in combination with BAO data. These
constraints update the ones obtained with P15 in combination with D10-DR11 BAO
Ny < 1.000038 M,; at 95% CL in Ref. 2], presented in the previous Section. Again,
there is a clear degeneracy between H, and the coupling to gravity IV as visible from
Fig. The results do not vary much for NMC, for which the same cosmological
parameters and uncertainties are obtained if £ is allowed to vary, with prior range
[0,0.1] and [—0.1, 0], together with N,;. In particular, for the positive branch (N, <
M,;, € > 0) of the coupling I obtain:

Ny > 0.64 My, (> 0.60 M), £ < 0.046 (< 0.055) (4.2.24)

both at 95% CL and Hy, = (68.787(:3}) km s™'Mpc™" (70.14%0%5 km s~'Mpc!)
with P18+BAO (P18+BAO+R19). The constraints for the negative branch (N, >
M, £ <0) are:

Ny < 1.05 My (< 1.04 M,y), &> —0.042 (> —0.051) (4.2.25)

both at 95% CL and Hy = (68.76%07) km s™'Mpc~' (69.74 + 0.75 km s~'Mpc~?)
with P18+BAO (P18+BAO+R19).

Consistently with the constraints on the coupling parameters § and Ny, I find also
tighter limits on the variation of the Newton’s gravitational constant and its derivative
at present time. The following 95% CL bounds for P18 + BAO are obtained:

(SGN GN
— (=0 —0.017 —

(z=0)>—-0.25x 1072 yr~'. (4.2.26)
Note that whereas the constraints on dGx/Gn(z = 0) hardly change for different
coupling F (o), the limits on Gx/Gn(z = 0) strongly depend on the details of the
model, but are anyway much tighter than those obtained by the Lunar Laser Ranging
experiment, see Chapter [2l It is interesting to note from Table that the bounds
on Ypn , Opn are now tighter than those in the Solar System. Furthermore, note that
although the results of this Section are obtained using V (¢) oc F?(0), they are stable
with respect to considering V(o) = A, since the potential is very flat around the
origin. This is shown in Fig. [£.12]

H, tension. Concerning consequences on the H tension, the inferred value of
the Hubble constant is Hy = (69.0707) km s~'Mpc~!, compared to the ACDM case,
i.e. Hy=(67.36+ 0.54) km s~ 'Mpc™!, for P18.

The addition of BAO drives the value for Hy to lower values, for CC to Hy =
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Figure 4.12: Marginalized joint 68% and 95% CL regions 2D parameter space Hy —
N, using P18 + BAO data for CC [left] and IG [right] (see Sections nd with
V(o) = AF(0)?/4 (red) and V(o) = A (blue). Figure taken from Ref. [4].
(68.624_“8:?‘5%) km s~'Mpc~!. Note however that these values are larger than the cor-
responding ACDM value, i.e. Hy = (67.66 4= 0.42) km s~ 'Mpc~—!. Again, this is very
important as it shows that the Hj is generically higher in these models, even if R19
is not included.

Once R19 is included, the constraint change to Hy = (69.641“8:%) km s~ 'Mpc! at
68% CL, N, < 1.000031 M,; at 95% CL for CC. Fig. m shows how the degeneracy
between Hy and & can easily accommodate for larger Hy value with respect to the
ACDM concordance model reducing the Hy tension from 4.40 to 3.20 for P18 and
3.60 including BAO for CC. The reduction of the tension is due to the combination of
having an higher mean and larger uncertainties on Hy compared to the ACDM model.

Note that, although the tension with R19 is not solved, the CC model considered here

can produce values of Hy in complete agreement with the local value of Hy measured

using red giants [255].

4.3 Initial conditions on the scalar field o;

As mentioned in Section [4.1] fixing the boundary conditions on the scalar field so to
recover consistency with laboratory experiments is not the only possibility. Indeed,
as shown in Section [£.2], when the coupling is negative the scalar field decreases
and the non-minimal coupling tends to F(o) — F(0) ~ NJ. In the simplest case
N,

ol = My, this suggests that consistency with laboratory and Solar System tests

might be recovered even without imposing any boundary condition on ¢ in some

regions of the parameter space. This approach was explored in Ref. , where the
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Figure 4.13: Evolution of the scalar field o for the models with n = 2, £ < 0 (purple
lines), n = 4, £ < 0 (magenta lines), n = 2, £ > 0 (red lines) and n = 4,¢ > 0
(brown lines), together with the EDE model of Ref. |[199] (orange lines) and the
ACDM+ Nt model (cyan lines). In order to compare the evolution of our model to
the aforementioned ones, I set the cosmological parameters to the bestfit values in
Table 3 of Ref. [199] and set £ = —1/6. In the cases with £ > 0, I change the values
of the initial conditions on the scalar field and the coupling £ as in the plot legends.
Figure taken from Ref. [3].

analysis was carried out for F(0) = M2 + £6™ and V(o) = A, for both n = 2 and
n =4.

I plot the evolution of the scalar field o is shown in Fig. and other relevant
background quantities is shown in Fig. for the case of n = 2 and n = 4 (see
caption for the parameters used in the plots). As can be seen from the central panel
in Fig. [4.14] the scalar field is nearly frozen deep in the radiation era, and is driven
by the coupling to non-relativistic matter around the radiation-matter equality era
z ~ O(10% — 10%), as evident from the Klein-Gordon equation , decreasing
(growing) for £ < 0 (£ > 0).

In order to confront with other attempts at solving the H, tension, I also plot the
relevant quantities for two other reference models, i.e. the AN.s model and the EDE
Rock’n Roll model introduced Ref. [199]. Let me stress again the important differences
between the model studied here, and the two other reference cases. By considering
our model as Einstein gravity analogues [110,/111], the resulting effective DE has an
equation of state wpg = ppr/ppE ~ 1/3 during radiation era (see e.g. Fig. and
the contribution of the scalar field to the total expansion rate H(z) thus resembles
the one from an extra dark radiation component. This is confirmed by the top panel
in Fig. where I plot the energy fraction of the scalar field, parameterized by
Q, = ppe/3H*F, - where the subscript 0 denotes quantities evaluated at z = 0 - and
compare it to the ACDM+ N.g model. As can be seen, when £ < 0, the scalar field
contributes to the total energy density in a way that is very similar to the ACDM
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Figure 4.14: [Left] Evolution of the energy injection ; = p;/p. and [right] the
deviation from 1 of the effective (solid lines) and cosmological (dot-dashed lines)
Newton constant. See Fig. for the parameters used. Figure taken from Ref. |3].

+ N model. Having started with the same £ < 0 and initial condition ¢; /M < 1 in
both the n = 2 and n = 4 case, the term multiplying the square bracket in Eq.
is smaller in the latter case and the rolling of the scalar field towards smaller values
is less efficient. The equation of state wpg is not 1/3 anymore in general when the
scalar field is subsequently driven by matter.

The model, as already mentioned in Chapter [3] is therefore different from EDE
models recently proposed in the literature (see e.g. Refs. [189}/198199.1201}202]) for
which the equation of state is close to —1 at early times. Again, it is important to
stress that the scalar field moves in a natural way without the need of any fine tuning
after radiation-matter equality, being driven by non-relativistic matter, and is not
important just around recombination.

It is also instructive to see the effects of removing the boundary conditions on the
scalar field. For ¢ < 0, being the scalar field contribution negligible at late times, both
Gy and Gg are very close to G today and the model is consistent with laboratory
and Solar System experiments for a large volume of the parameter space. However,
for a positive coupling £, o grows and Geg, which is very close to G at high redshifts,

deviates substantially from it at late times, as can be seen from the right panel in

Fig. 4.14]

4.3.1 Constraints from cosmological observations

Since the boundary condition on the scalar field is now removed, a prior on its initial
value deep in the radiation era has to be chosen. In Ref. [3] flat priors consistent
with the stability conditions in Sec. on the extra parameters were considered, i.e.
¢ €[-0.9, 0.9] and o;/M,; € [0, 0.9], for n = 2 case with free ¢ and o;/M, € [0, 0.9]
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in the CC case. The analysis has been also carried out for the case with n = 4, in
which the prior on & had to be restricted to £ € [—0.9, 0.2] as larger positive values
for the coupling ¢ lead to a deviation of order 107! from GR as can be seen from
Fig. 4.14]

Note that the analysis differs from the one of Refs. [2] presented in Section [.2.2)
not only in the updated data, but also in theoretical priors: now flat priors are set
on (§,0;), whereas in [2| flat priors were assumed on (€, ANpl), with § >0 and £ <0
considered separately, and ANpl was also allowed to vary, with a boundary condition
on oy (the value of the scalar field today) to fix consistency between G.¢ and G.

The results of our cosmological analysis for the CC (n = 2 with free ) model are
summarized in Fig. [4.15| (Fig. 4.16)), where I show the reconstructed two-dimensional
posterior distributions of main and derived parameters, and in Table (Table ,
where I report the reconstructed mean values and the 68% and 95% CL. I also report
the results for the n = 4 case in Table [1.6

H, tension. The plots show that all the models, regardless of the dataset con-
sidered, lead to a larger Hy than in ACDM. I find Hy = 68.477038 (Hy = 68.40703)
km s™'Mpc~! at 68% CL for CC (for free £) with P18 data only. As in other sim-
ilar models, as also mentioned in Chapter [, there is a shift in ng,w.,os toward
larger values and smaller values for w, compared to the baseline ACDM model. When
BAO and SHOES data are combined, i.e. P18+BAO+R19, I obtain Hy = 69.2915-)
(Hy = 69.107053) km s™'Mpc~! for CC (for free ¢). Higher values for Hy can be
obtained by substituting the combination of measurements Vlﬁﬂ to R19, as can be
seen from Tables [4.4] and [£.5l Note that similar results are also obtained in the n = 4
case, for which the value of Hy = 68.05 + 0.56 (Hy = 69.097052) km s~*Mpc~! with
P18 (P18+BAO+R19) data slightly smaller than th n = 2 case. For this reason, I
focus the discussion on the n = 2 case in the following, commenting only when results
for n = 4 substantially differ.

In Tables 4.4 and I also report the difference in the best-fit of the model
with respect to ACDM, i.e. Ax? = x? — x*(ACDM), where negative values indicate
an improvement in the fit of the given model with respect to the ACDM for the same

dataset E| Although the models studied here provide a similar or slightly worst fit

I'With V19, T denote a tight Gaussian likelihood, i.e. Hy = 73.3 £ 0.8 km s~ Mpc~! [146],
obtained from a combination of Hy measurements from R19 [145], MIRAS [150], CCHP [255],
HOLICOW [159], MCP [256] and SBF. The reader should be warned that the V19 value is ob-
tained by neglecting covariances between the aforementioned observations, as stressed in Ref. |146].
Nevertheless, V19 can give an idea of how the model can respond to a possible future worsening of
the Hy tension.

2Note that the ACDM reference cosmology in our case has massless neutrinos, differently from
the assumption adopted by the Planck collaboration of one massive neutrino with m, = 0.06 eV
consistent with a normal hierarchy with minimum mass allowed by particle physics. The differences
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to P18 data compared to ACDM, the fit gets better Ax* ~ —5 (—6.8) for CC (free
&) when BAO+R19 are combined. Higher values of Ayx? are obviously obtained by
substituting V19 to R19. In order to give an idea of whether the improvement in the
fit actually leads to a statistical preference for the model, I compute values of the
Aikike (Bayes) information criteria AAIC (ABIC) defined as AAIC = Ax? + 2Ap
(ABIC = Ax?+Apln N), where Ap is the number of extra parameters with respect to
ACDM model and N is the number of data points considered in the MCMC analysis
E] [257]. According to both criteria, all the models are penalized compared to ACDM
for P18 data only due to the addition of parameters. Only for AIC the model with
n = 2 is favoured for (CC) free ¢ compared to ACDM when BAO and R19 are
combined. Substituting V19 to R19 makes the statistical preference of the model

stronger in general.

Constraints on modified gravity parameters: The constraints on the modi-
fied gravity parameter are very different in the CC and n = 2 case, which are a one-
and two-parameter extension of the ACDM model. Although the mean values are very
similar, constraints are very much looser in the latter case. This is because, when &
is large and negative, the decreasing of the scalar field is very efficient and thus its
effect redshifts away even before matter-radiation equality, leaving smaller imprints
on the CMB. Note that positive values of &, for which the scalar field increases after
matter-radiation equality contributing to the late-time background evolution, seem
disfavoured by the data for our priors. In particular for P18, I find an upper bound
€ < 0.052 (¢ < 0.02) at the 20 level for n = 2 (n = 4). The upper bound is even
more stringent when BAO + R19 data are added to the analysis, for which £ < 0.047
(€ < —0.026) at the 20 level for n =2 (n = 4).

Comparison with BBN constraints: With the choice of the priors as above,
the departure of vF from My can also be constrained by BBN, as explained in
Chapter [2| Section [128-130}258|. Since the scalar field is frozen at very early times,
the BBN constraints reported in [128,129] would imply {07 = 0.0170% at 68% CL,
which are consistent, but less stringent, than the constraints reported in Tables [4.4]
and as already mentioned in previous works on scalar-tensor [222]. The
constraints from the MCMC analysis are —0.01470025 (> —0.0150) for the n = 2
(CCP) and —0.001070:007¢ for the n = 4 case at 95% CL using P18 data only. When
adding BAO+R19 a higher £07 is obtained and the constraints change to —0.0257) 037

with respect to the baseline Planck results in the estimate of the cosmological parameters due
the choice Neg = 3.046 and m, = 0 is small, except for a shift towards higher values for Hy, as
Hy = 67.98 +0.54 (Hy = 68.60 + 0.43) km s~ 'Mpc~! for P18 (P18+BAO+R19).

T consider 2352 points for P18, 8 for BAO and 1 (6) for R19 (V19).

ZNote that, in the CC case, £ < 0 by construction.

96



N CCP18 s CCP18+BAO+R19 BN CCP18+BAO+V19 s NCDMP18

TN

>
®
/

4
/

LMK )
N
\

Suu
“® oy o4
e | 0» oﬁ oﬁ
(R o# o#

<’
o & &
y

T = — — i~ > _4
oy o o =
/ > i - i ‘. ;,,,«//
220 225 0118 0122 10415 1.0425 3.01 3.05 3.09 096 098 004 0.06 0.08 02 04
102w, Wedm 1006, In101°A, ns Treio o

Figure 4.15: Constraints on main and derived parameters of the CC model with
n =2 and { = —1/6 from Planck 2018 data (P18), P18 in combination with BAO and
SHOES measurements and P18 in combination with BAO and a combined prior which
takes into account all the late time measurements. Parameters on the bottom axis
are sampled MCMC parameters with flat priors, and parameters on the left axis are
derived parameters (with Hy in [km s™'Mpc™']). Constraints for the ACDM model
obtained with P18 data are also shown for a comparison. Contours contain 68% and
95% of the probability. Figure taken from Ref. [3].

(> —0.0234) for the n = 2 (CC) and —0.0137) 054 for the n = 4 case at 95% CL. Note
that o' is more constrained in the CC case compared to n = 2 and n = 4, as the

coupling is fixed to £ = —1/6.

Comparison with PN: The derived cosmological PN parameters are well consis-
tent with GR and their uncertainties are comparable with bounds from Solar System
experiments ,. Again, because of the large errors on £, the bounds in the
n = 2 model are somewhat looser than in the CC model. Therefore, the CC (n = 2)
model potentially offers a simple one (two) modified gravity parameter extension to
the baseline ACDM that naturally eases the Hj tension and can be consistent at 20
with Solar System constraints on the deviation from GR. I have checked that the
inclusion of Solar System constraints in the analysis by means of a Gaussian prior
based on the Cassini constraint ypy — 1 = 2.1 + 2.3 x 107° has a very small
impact in our constraints on the six standard cosmological parameters.

For the representative example of n = 2 with free £ the constraint on Hy ob-
tained from P184+BAO+R19 changes to Hy = 69.007027 km s~'Mpc~!. The con-
straints on the modified gravity parameters instead change substantially. Thanks

to the constraining power of the prior I find o; = 0.197003 M, at 68% CL and
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vpn — 1 > —2.2-107% and a bound on £ < —0.15 at 95% CL. Although ¢ remains
unconstrained, note that the upper limit is tighter than the the one obtained without
the prior information on vpy. Negative values of £ are more favored as they lead to a
more efficient rolling of the scalar field toward smaller values, and therefore a smaller
ypn — 1.

Robustness and caveats of the inclusion of SNe data: So far I did not use
the SNe Ta luminosity distance because the time evolution of gravitational constant
changes the peak luminosity of SNe and this needs to be properly accounted in the
analysis [235-238]. However, for the bestfit value obtained from P18 + BAO + R19
with the priors on ypy, the relative change of Geg from G today is at most 107° in
the relevant range of redshifts for SNe Ia. Under the assumption that the effect of
time evolution of Geg on the magnitude-redshift relation of SNe Ia can be ignored,
the Pantheon Sample of SNe can be used to check the robustness of our constraint
on Hy [84]. T obtain Hy = 69.28102% (Hy = 68.98753%) km s~ 'Mpc~! for CC (for
free &) using P18+BAO+R19+Pantheon with the prior on ~py. This shows that the
inclusion of SNe la data does not change the constraint on Hy. Note also that the
modification of the gravitational constant can also change the low-redshift distance
ladder measurements of the Hubble constant [233,234]. However, again due to the
smallness of the relative change of G.g from G today, this effect can be ignored safely
in our models.

Comparison with other EDE models: Models based on a sharp energy in-
jection around the time of matter-radiation equality lead to a value of Hy which
can be higher than the ones found within our model for any choice of n and £ al-
though this is model dependent (see e.g. Refs. [189}|198}/199,201,202]). However, the
radiation-like behavior of the scalar field in theories described by the action , is
completely generic and, provided that the coupling £ is negative, the scalar field con-
tribution quickly becomes negligible thanks to the coupling to non-relativistic matter
and modifies essentially only the early time dynamics. For this reason, a higher H
than in ACDM is a natural outcome of the NMC for a large portion of the parameter

space compared to EDE models, which have more extra parameters to tune.

4.4 Cosmological constraints on the Induced Grav-

ity model

Before ending this Chapter, I present the constraints on the IG model, introduced in
Section [3.5] Like Section, I consider here a very flat potential of the form V(o) =
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Figure 4.16: Constraints on main and derived parameters of the model with n = 2
and ¢ as a main parameter from Planck 2018 data (P18), P18 in combination with
BAO and SHOES measurements and P18 in combination with BAO and a combined
prior which takes into account all the late time measurements. Parameters on the
bottom axis are our sampled MCMC parameters with flat priors, and parameters on
the left axis are derived parameters (with Hy in [km s~™'Mpc~!]). Constraints for the
ACDM model obtained with P18 data are also shown for a comparison. Contours
contain 68% and 95% of the probability. Figure taken from Ref. .

cC P18 P18 + BAO + R19 P18 + BAO + V19
10%wy, 2.242 £0.015 2.248 £0.014 2.252 £0.013
We 0.1197 +£0.0012  0.11910 £ 0.00099  0.1188 + 0.0010
100 * 05 1.04194 £0.00030  1.04205 £ 0.00028  1.042 % 0.00028
Treio 0.0547 £ 0.0077 0.0570 + 0.0071 0.05803 + 0.0075
In (1010 Ay) 3.046 +0.015 3.049 +0.014 3.0563 +0.015
ns 0.9675 + 0.0046 0.9695 + 0.0038 0.9734 £ 0.0037
i [Mp] 0.1312709%9 0.224755%, 0.3585 70005
Hy [km s~ 'Mpc~1] 68.4770 2% 69.29702 70.56 + 0.6

o8 0.827270-0068 0.831370007° 0.841 +0.010
75 [Mpc] 146.9710-33 146.8310-3 146.4 +0.45
o7 [M])] > —0.0150 > —0.0234 —0.0227) ;8
oo [Mp] 0.00401713-5012 0.00684173-50°. 0.0110270-9522
PN — 1 > —0.95-107° > —15-107° (—1.4%59)-107°
Ben — 1 (0.231951)-10°¢  (0.53%5:8) -107% (11679 7%) - 10°°
Ax? +0.42 —5.0 —13.64

Table 4.4: Constraints on main and derived parameters considering P18, P18 in
combination with BAO and SHOES measurements and P18 in combination with BAO
and a combined prior which takes into account all the late time measurements for the
CC model n =2 and £ = —1/6. I report mean values and the 68% CL, except for the
modified gravity derived parameters in the third block, for which I report the 95%
CL.
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n= P18 P18 + BAO + R19 P18 + BAO + V19
10%wy, 2.241 +£0.015 2.249 +0.014 2.253 £0.014

We 0.1198 £ 0.0012 0.119031 00097 0.1190 £ 0.0012
100 * 0 1.04193 £0.00030  1.04205 + 0.00031  1.04210 = 0.00029
Treio 0.0544 £ 0.0076 0.0564 % 0.0076 0.0578 & 0.0072
In (100 Aq) 3.045 £ 0.0014 3.048 £0.015 3.052 £0.014

N 0.9673 & 0.0046 0.9699 £ 0.0046 0.9724 & 0.0041
oi [Mpl] < 0.224 0.26010958 > 0.46

3 < 0.052 (95% CL) < 0.047 (95% CL) < —0.0283(95% CL)
Hy [km s~ !Mpc™1] 68.4070-30 69.100 0 70.64 £ 0.71

0.8456 70013

0.837010 o0

0845010 095°

rs [Mpc] 147.01 + 0.36 146.9575-35 146.0810- 5
Eo7 [My] —0.01470:655 —0.02555:070 —0.030501074
oo [My] 0.104670:19 0.0979 0.2019-33
vpN — 1 > —1.73-1073 > —1.56-1073 > —1.26-1073
Ben — 1 —(3.0018)-10°  —(3.0f17)-10° —(15%37)-107°
Ax? +0.52 —6.8 —18.44
Table 4.5: Constraints on main and derived parameters considering P18, P18 in

combination with BAO and SHOES measurements and P18 in combination with BAO
and a combined prior which takes into account all the late time measurements for
n = 2. I report mean values and the 68% CL, except for the modified gravity derived

parameters in the third block, for which I report the 95% CL.

n=4 P18 P18 + BAO + R19 P18 + BAO + V19

10%wy, 2.240 +0.015 2.250 + 0.013 2.258 +0.013

We 0.1198 £0.0012  0.11892+0.00093  0.11830 + 0.00097

100 * 6 1.04190 £ 0.00028  1.04205 +0.00028  1.04217 #+ 0.00028

Treio 0.0545 4 0.0074 0.0564 + 0.0076 0.05961 05078

In (100 Aq) 3.045 £ 0.014 3.049 £0.015 3.055 £ 0.015

ng 0.9662 + 0.0043 0.970615-0037 0.975710-00%9

i [Mpl] < 0.257 0.3715-20 0.557017

3 <0.02 (95% CL) < —0.026 (95% CL) < —0.031(95% CL)

Hy [km s~ '"Mpc1] 68.05 + 0.56 69.097522 70.23 + 0.54

0% 0.8247 + 0.0061 0.837075-5072 0.84570 018

rs [Mpc] 147.06 £ 0.28 146.96 1539 146.6915%

sof [My] —0.001075 porg 001370055 —~0.03510 1557

o0 [My) 0.18%03) 0.18%22 0.20%31

vpN — 1 > —1.72-1074 > —1.65-1074 > —2.34-1074

Ben — 1 (—0.8710)-1076  (0.4%53) 1076 (2.57%5) 1076

Ax? —0.58 —1.14 —9.42
Table 4.6: Constraints on main and derived parameters considering P18, P18 in

combination with BAO and SHOES measurements and P18 in combination with BAO
and a combined prior which takes into account all the late time measurements for
n = 4. I report mean values and the 68% CL, except for the modified gravity derived

parameters in the third block, for which I report the 95% CL.
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Figure 4.17: [Left] Marginalized joint 68% and 95% CL regions 2D parameter space
using current versus previous releases of P18 data and BOSS BAO data from [221]222].
[Right] Marginalized joint 68% and 95% CL regions 2D parameter space using P18
(gray) in combination with BAO (blue) and BAO + R19 (red) for the IG model.
Figure taken from Ref. .

A F(0)?/4 so that the theory is effectively massless and the motion of the scalar field
is entirely driven by the coupling to pressureless matter. Again, the results are stable
when switching to an exactly flat potential V(o) = A, see Fig. [4.12

Unlike the NMC model, here the scalar field undergoes a super-Planckian motion
so that it is never convenient to set initial conditions on o; like in Section 4.3 and one
is forced to use the procedure described in Section 4.2 and set the boundary condition
in Eq. on the value of the scalar field today oy. I now discuss the cosmological

constraints on the IG model obtained in Ref. |[4] using such a procedure.

The constraint on the coupling parameter £ obtained from the CMB alone is almost
half of the bound obtained with P15 which was £ < 0.0017 at 95% CL. With the full
high-¢ polarization information and the new determination of 7 I obtain £ < 0.00098
at 95% CL. Adding the BAO data, I obtain & < 0.00055 at 95% CL, which is 25%
tighter compared to the limit obtained with P15 in combination with BAO DR10-11,
ie. £ < 0.00075 and half of the one obtained with P13 in combination with BAO
DR10-11, i.e. £ < 0.0012, see the left panel of Fig.[4.17} As can be seen from Tab. [4.7]
BAO data strongly constrain the model and are useful to break the degeneracy in the
Hy — & parameter space.

Concerning the Hy tension, I find a higher value for the Hubble parameter, i.e.
Hy = (69.677%) km s™'Mpc~! compared to the ACDM case, i.e. Hy = (67.36 % 0.54)
km s~!Mpc~!, for P18. The addition of BAO drives the value for Hy to a lower
Hy = (68.78f8:?§) km s~ 'Mpc™!, but again larger than the corresponding ACDM
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P18

P18 + BAO

P18 + BAO + R19

wh 0.0224470-0001¢ 0.02239 £ 0.00013 0.02246 £ 0.00013

We 0.1198 + 0.0012 0.1201 + 0.0011 0.1200 + 0.0011

Hy [km s~ Mpc™!] 69.610% (2.70) 68.7815:23 (3.50) 70.06 + 0.81 (2.40)

T 0.055179 5055 0.054570 5053 0.0554 106052

In (1010 4y) 3.04715:012 3.046 +0.013 3.049 +0.013

ng 0.968070 0055 0.9662 + 0.0038 0.9688 + 0.0037

Gia < 0.0039 (95% CL) < 0.0022 (95% CL) 0.0020270 9090

3 < 0.00098 (95% CL) < 0.00055 (95% CL) 0.0005175 00032 (95% CL)
PN > 0.9961 (95% CL) > 0.9978 (95% CL) 0.998070 9509

5GN/.GN (ZZO)
1013GN/GN (Z:O) [yrfl]

> —0.029 (95% CL)
> —1.16 (95% CL)

> —0.016 (95% CL)
> —0.66 (95% CL)

—0.0149 £ 0.0068
—0.61 £0.28

Gx/G (z=0) > 0.9981 (95% CL) > 0.9989 (95% CL) 0.9989910:00092
O 0.294070:0050 0.301370:007> 0.2903 + 0.0068
o8 0.834715-00%3 0.83081 00006 0.840 + 0.010
rs [Mpc] 146.3715°19 146.6375:53 146.0315-57
Ax? 0.2 0.2 —3.1

Table 4.7: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the IG model.

value, i.e. Hy= (67.66 £ 0.42) km s™'Mpc~'.

Once R19 is included, T obtain Hy = (70.1 £ 0.8) km s *Mpc~! at 68% CL and a
constraint on the coupling of & = 0.000517390043 at 95% CL for IG. Fig. shows
how the degeneracy between Hj and £ can easily accommodate for larger Hy value with
respect to the ACDM concordance model reducing the Hy tension from 4.40 to 2.70
for P18 and 3.5¢0 including BAO. Again, as for the NMC model, the reduction of the
tension is due to the combination of having an higher mean and larger uncertainties
on Hy compared to the ACDM model. Note that Hy is about ~ 0.5 km s~ 'Mpc™!

higher in the IG compared to the CC case for every choice of datasets combination,

see Section [4.2

4.5 Summary of the results

In this Chapter, I have studied the evolution of NMC models described by the La-
grangian Eq. with F(o) = N} + &o? and a potential of the form V(o) =
AF(c)?/4 or V(o) = A and constrained them with cosmological data. I explored two
possibilities to set the boundary conditions on the free parameters of the theory. The
first one, adopted in Refs. [2/4], is to set the Newton constant G' to be consistent
with laboratory measurements and the second one, adopted in Ref. [3], is instead to
leave the initial condition on o deep in the radiation as a free input parameter with
Ny = M. A particularly interesting case is the CC one, i.e. £ = —1/6, justified by

theoretical arguments, therefore reducing to 1 the number of extra parameters with
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respect to the baseline ACDM model.

The results of this Chapter show that NMC models generically lead to a larger
Hy, with interesting consequences on the Hy tension which is always alleviated within
these models, no matter what combination of data sets is considered. Although the
reduction in the tension is not as effective as in EDE models (see Chapter [4), the
bright side is the degree of fine tuning, which is considerably reduced within NMC
since the requirement of ¢ moving around recombination is naturally embedded in
this framework as triggered by its coupling to pressureless matter fields, unlike EDE
models, where the potential has to be finely tuned.

In the particular case of a negative coupling, for which o decreases, the consistency
with both laboratory and Solar System experiments is recovered without the need of
any screening mechanism. It is very interesting to see that in this case, there is
no need to impose specific boundary conditions on the scalar field and cosmological
data alone seem to favour the negative branch of the coupling. Note that the results
obtained here for the CC case have recently been confirmed in Ref. [259], where also
weak lensing data and the full shape of the power spectrum have been used.

A relevant limit of the NMC model, i.e. the IG or eJBD model, which is the
archetypal example of ST theory, has also been discussed in Chapters[2]and [3] In this
model I consider only a positive coupling and therefore the analysis is limited to the
case in which the consistency of the Newton constant with laboratory experiments is
set. However, even imposing such a condition, Solar System constraints are tighter
than those from cosmology. Concerning the H tension, the value of Hj is always
~ 0.5 km s7! Mpc~! larger than in NMC models. I end on noting that future galaxy
surveys in combination with CMB will further constrain the IG model [260,261], with

a precision comparable to Solar System tests.
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Chapter 5

Cosmological constraints on
Non-Minimally Coupled theories with a
small effective mass and consequences on

the H; tension

5.1 Introducing a small effective mass

All the models studied in the previous Chapter had in common the feature of being
nearly massless, since the scalar field o had a either a flat potential or V(o) oc F(0)?,
also very close to flat. In this Chapter, I explore the possibility that the scalar field
is endowed with a small effective mass, that I constrain with cosmological data.

A minimal realization of this model can be obtained by extending the model of
Section by providing it with a small effective mass, which for the sake of simplicity
I consider as induced by a quartic potential. In this model, the scalar field starts
to move around the redshift of matter-radiation equality driven by the coupling to
non-relativistic matter, and then rolls faster when the effective mass become larger
than the Hubble parameter and ends in a regime of coherent oscillations around the
minimum of the potential. The choice of a quartic potential is dictated by the fact
that coherent oscillations of ¢ are in conformal time and therefore tractable by an
Einstein-Boltzmann code, without ad-hoc modifications, see e.g. Ref. [262]. Note also
that with this choice the model is described only by dimensionless couplings, i.e. &
and .

A peculiarity of the model is that, thanks to the fast rolling of ¢ towards the
bottom of the potential, the tight constraints on G.g from laboratory experiments
and Solar System measurements on post-Newtonian parameters are automatically
satisfied by the small cosmological values of o within the EMG model, as it happens
in the range of £ < 0 in the massless case where o is decreased just by coupling

to non-relativistic matter (see previous Chapter). The small effective mass and the
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consequent naturally achieved consistency of cosmology with laboratory and Solar
System constraints are particularly important for positive values of the coupling,
since o would grow for £ > 0 for A = 0, and therefore I mainly focus on this range.

Because of its similarity to EDE models (see Section [3.4)), I denote this model as
Early Modified Gravity (EMG). Note, however, that the model differs from previously
introduced ones also named Early Modified Gravity [263-265].

Another interesting feature of this EMG is that the effective Newtonian constant
Gesr grows with time, as opposed to nearly massless models (see e.g. Fig. , im-
plying a weaker gravity at early times. This effect, as shown below, implies different
predictions on Large Scale Structure (LSS) observables that can help disentangle EMG
and EDE. This is crucial, since, as mentioned in Section [3.4, EDE models have been
recently claimed not to be able to solve the Hy tension when LSS data are included
in the analysis [216-218].

This Chapter is based on the research work in Ref. [266] and the plots are produced
using a modified version of hiCLASS [246,247] which allows to study consistently

oscillating scalar fields.

5.2 Background evolution

As mentioned above, the model is described by Eq. with F(o) = M} + &0
and V(o) = A + Ao?/4, where A is a cosmological constant. Note that, with this
choice, the model reduces to the one studied in Section for A = 0 and to the
Rock’n’Roll EDE model of Ref. [199] for £ = 0. For later convenience, it is useful to
define A = 102"0/(3.516 x 10'9)[f

The evolution of relevant background quantities is shown in Fig. 5.1} For a com-
parison, I consider the bestfit cosmological parameters given in Table 3 of Ref. [199],
that is

0, =1.0417, 100w, = 2.264, w. = 0.1267,  Tyeio = 0.081, In10'°A, = 3.105,
ny = 0.981, o;[My]=0.54, Vo=2 (5.2.1)

for EMG, for which I vary the non-minimal coupling £ according to the legend in the

figures, and

0, = 1.0422, 100wy, = 2.236, w. = 0.1177, Treio = 0.077, In10'°A, = 3.080,
ns = 0.969 (5.2.2)

13516 x 10199 is the numerical value of Mél in eV*

106



0.4

0.31
0.2

o 0.1

g [Mpl]

0.0 pass

—-0.1 A

-0.2 1

“100 10! 102 103 104 102 103 104

0 ‘ny| T
-10°° M 1
108 j”.(\‘

(G = G)/G

Figure 5.1: [Top] Evolution of the scalar field (left) and the energy injection €2,
defined in the main text. [Bottom| Evolution of the variation of the effective Newton
constant (Geg — G)/G (left) and of the post-Newtonian parameter ypy — 1 (right).
The model parameters used in the plot are o; = 0.54 M}, and 1V, = 2 and the value
of the non-minimal coupling ¢ is varied according to the legend in the top-left panel.
Figure taken from Ref. .
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for the ACDM model to which I compare the results. These values are only used
to build intuition and will be superseded the cosmological parameter estimation pre-
sented in the next Section. As can be seen from the top-left panel, the addition of the
effective mass makes EMG more similar to EDE models (see Fig. [3.6) with respect
to nearly massless NMC models [2,3,228]. Indeed, o starts frozen deep in the radia-
tion era and, when its effective mass becomes larger than the Hubble flow, eventually
rolls down the potential and starts oscillating around its effective minimum located at
o = 0. It is clear from Fig.[5.1] that the corrections to the effective mass of the scalar
field induced by the non-minimal coupling F(¢) modify the dynamics of o, which, for
& > 0, experiences a temporary growth before falling down the potential. Because of
this initial growth, the oscillations around o = 0 have a visibly larger amplitude and

their phase is slightly shifted compared to the case with £ = 0.

The importance of such a modification to the dynamics for £ = 0 can be understood
by looking at the shape of €2, in the top-right panel of Fig. [5.1] For the same values of
{oi, Vo}, a larger ¢ sizeably increases the energy that the scalar field injects into the
cosmic fluid once it starts to roll down its potential, an effect which, at a fixed value
of ¢, can also be obtained by increasing the initial value of the scalar field o;. On
the other hand, for larger values of &, €2, becomes gradually more negative, therefore
suppressing H (z), with respect to the & = 0 case, before o starts to thaw, reducing
the degeneracy of the non-minimal coupling £ with the initial condition o; (see also
next Section). Therefore the EMG model offers a broader phenomenology than EDE
ones, which is interesting since the exact shape in redshift of the energy injection

plays a crucial role in physical models that aim at solving the Hj tension, as stressed
in Section [3.4l

Although the main focus of the following analysis will be on the £ > 0 regime, it
is also instructive to show the behavior of €, when the coupling is negative. I take
the conformal coupling £ = —1/6 as an example. For such a large and negative ¢,
the profile of the energy injection is continuous and resembles the one in models with

extra dark radiation, exactly as the massless case with A = 0 in Section |4.3

By the addition of the effective mass, consistency of Geg and PN parameters
with Cavendish-type measurements and Solar System constraints, respectively, can
be obtained without any fine tuning for £ > 0, as can be seen from the bottom panels
of Fig. . Note also that, thanks to the potential V (o), Geg now grows with time,
which is not possible in standard scalar-tensor models involving only the coupling
F(0), for which Geg decreases with time regardless of the sign of the non-minimal
coupling, see Fig. 4.3 However, in the conformally coupled case, Geg decreases as in

the massless case [3].
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5.3 Imprints of the Non-Minimal coupling on CMB
and LSS

I now show the imprints of EMG on CMB and LSS observables. The temperature
and E-mode polarization CMB angular power spectra are shown in the top panels of
Fig.[5.2] from which it can be seen that the coupling sizeably affects the acoustic peaks
structure of the CMB spectra, as a consequence of the modification to gravity around
recombination. However, note that thanks to the potential V(o) and the different
cosmological evolution of o, the imprint of £ is drastically reduced with respect to the
massless case with A = 0. Indeed, in the latter case, relative changes in AC,/C, of
the same magnitude of the ones shown in the top panels of Fig. can be obtained
with much smaller values of &, see e.g. Fig. 9 of Ref. [2]. It is also instructive to see
that the modifications to acoustic peaks for £ = —1/6 are out of phase with respect

to the case of a positive coupling.

As discussed in the previous Subsection, the non-minimal coupling £ enhances
the energy injection of the scalar field into the cosmic fluid, similarly to what can
be obtained with a larger ¢;. In order to compare the two effects, in the bottom
panels of Fig. I fix £ = 0 and plot the residual CMB spectra for a set of initial
conditions o; that give the same maximum energy injection of the curves presented
in the top panel. Although both parameters modify the acoustic structure of the
CMB, the pattern of the CMB residuals is different. In particular, given the same
energy injection obtained by varying £ or o; with £ = 0 respectively, the former has
a stronger impact on the CMB since, thanks to the non-minimal coupling, the scalar
field modifies the expansion history already while it is frozen, slightly decreasing H (z)
since its effective energy density is negative (see Fig. .

In the perspective of future experiments dedicated to CMB polarization, it is also
instructive to show the imprints of EMG on primordial B-mode polarization. These
are shown in Fig. 5.3 where I vary ¢ in the left panel and fix £ = 0 and vary o; in
the right one. As explained in Section [2.3.1] the non-minimal coupling modifies the
propagation equation for the two polarization states of the gravitational waves h .
In the language of Eq. , in this model the non-minimal coupling contributes to

an additional friction term ay = F/HF.

As shown in Refs. [265,267,268], such an additional friction term induced by the
non-minimal coupling may leave interesting observational signatures. In the case of
V(o) = 0, the impact on B-mode polarization was analyzed in Ref. [2], where it
was found the effects increase with |£]. In the EMG model, where the potential V(o)
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Figure 5.2: [Top| Lensed CMB TT (left) and EE (right) angular power spectrum
as a function of the non-minimal coupling £. [Center] Lensed CMB TT (left) and EE
(right) angular power spectrum as a function of the initial condition on the scalar field
o; with £ = 0. [Bottom] Lensed CMB TT (left) and EE (right) angular power spec-
trum as a function of the potential parameter V| keeping the non-minimal coupling
fixed to £ = 0.1. I utilize the set of parameters used to produce Fig. |5.1
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Figure 5.3: CMB BB angular power spectrum due to tensor perturbations. In order
to clarify the distinction between effects due to the shift in cosmological parameters
and the genuine effects of the non-minimal coupling, I plot both the relative differences
between the EDE and ACDM baselines in Eq. (5.2.1)) and (left) and the ones
obtained by fixing the EDE parameters in Eq. (5.2.1)) and varying & (right). I set the
tensor-to-scalar ratio to rgg5 = 0.05. The lensing spectra are almost unaffected by
the variation of these parameters, so the relative differences for the total spectra do
not change from the ones in the plots. Figure taken from Ref. .

enlarge the range of £ which is compatible with the data (see next Section), the effects
can indeed be larger, as can be seen from the left panel of Fig. |5.3] The effect of an
increasing ¢ is twofold. First it changes the acoustic structure of the Cy’s for £ 2 100,
with a pattern which cannot be mimicked by a change in ¢;, similarly to what happens
with the other CMB spectra, as can be appreciated by looking at the right panel of
Fig. . Second, it also decreases the power in the range 10 < ¢ < 100 compared to
the ACDM model. The plots also show a bump at very large scales. This, however,
is a feature which is not directly ascribed to the EMG model or the EDE one. In
fact, such a peak comes from the interplay of the different cosmological parameters in
Eqgs. and . Nevertheless, such a bump also occurs when considering the
relative differences between the bestfit values for ACDM and EMG/EDE cosmologies
shown in the next Section, and thus it may constitute an indirect signature of EMG

and EDE models that can be tested with future CMB B modes experiments.

Since EDE scenarios have been recently shown to be constrained by the matter
power spectrum at low redshift [216/218,269,270], it is important to investigate the

imprints of our model also on LSS and compare them to the ones of NMC and EDE
models. I plot the ratio between the linear matter power spectra for our EMG model
and the ACDM one in the left panel of Fig. 5.4 As previously studied in [2,[221}-
, the matter power spectrum is enhanced at small scales in effectively massless
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Figure 5.4: Ratio of the EMG and ACDM linear matter power spectra at z = 0
(left) and evolution of the dark matter perturbation dp. for k = 0.1 h/Mpc divided
by the one for the ACDM model (right) as a function of the non-minimal coupling &.
As in the previous plot, for solid lines, I utilize the set of parameters used to produce
Fig. and I compute relative differences between the EDE and ACDM baselines in
Eq. and . To make clear which are the effects due only to the variation
of £, T also plot in dashed lines P(k) by keeping fixed the EDE baseline parameters

in Eq. (5.2.1) and varying £ in dashed lines. Figure taken from Ref. [266].

scalar-tensor models aiming at alleviating the Hy problem since gravity was relatively
stronger at early times. Analogously, EDE models also enhance the matter power
spectrum at small scales compared to the ACDM one, as can be seen from the orange
line in the plot. It is however important to understand that this effect is not due to
the EDE component itself, but rather by the shift towards a larger w, that is needed
to maintain the fit to the CMB data, see Eqgs. and . In fact, the larger is
the fraction of EDE the greater is the suppression of the growth of the perturbations
within the horizon during the epoch when EDE is not negligible. From the right
panel of Fig. [5.4] it can be seen that, fixing all the other parameters, the non-minimal
coupling £ goes instead in the direction of suppressing the power at small scales, as
it weakens the strength of gravity during the EMG epoch, see Fig. [5.1] This is not
true anymore for the £ = —1/6 case in which a stronger gravity (Geg/G > 1) at early
times leads to an enhancement of the power at smaller scales. Again, the results are
completely different from the case with A\ = 0, for which the Gt always decreases
with time, leading to a stronger gravity at early times and a consequent larger power
in P(k) at small scales [2].

The results in Fig. [5.4] can be better understood by looking at the evolution of
dark matter perturbations. For this purpose, the evolution of the ratio of the dark
matter perturbation dp. for the EMG and the ACDM model for the mode £ = 0.1
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Figure 5.5: 1 loop ¢ = 0 (left) and ¢ = 2 (right) multipole moments of the galaxy
power spectrum as a function of the non-minimal coupling £&. 1 utilize the set of
parameters used to produce Fig. 5.1} I also plot the ACDM results in magenta dotted
lines for a comparison. Figure taken from Ref. .

h/Mpc is plotted in the right panel of Fig. As can be seen, for a positive &,
initially scalar field perturbations enhance the growth of dark matter perturbations
with respect to the ACDM case, overcoming the suppression factor due to having
Ger/G < 1. The opposite occurs for a negative value, as can be seen from the brown
line. On even smaller scales (larger k), there is also a fifth force (scale dependent)
contribution from the scalar field perturbations that further enhances the growth of
dark matter perturbations at very early times with respect to the ACDM case, which

explains the raise in the P(k) at small scales for £ = 0.5 in the left panel of Fig. |5.4]

Once the scalar field starts to roll down the potential, however, the scalar field
perturbations become negligible and the only effect of the modification to gravity
is to suppress (enhance) the gravitational potentials by a factor of F(o) < 1 (> 1)
depending on the sign of £, leading to the observed suppression (enhancement) in the
left panel of Fig. [5.4

Furthermore, it is instructive to show the effects on the observed redshift-space
galaxy-spectrum. I plot the multipole moments in Fig. [5.5 where also the monopole
¢ =0 (left panel) and the quadrupole ¢ = 2 (right panel) resummed at 1 loop order
in perturbation theory are shown. These spectra are produced with the publicly
available code PyBirdH . Although PyBird works in the framework of a ACDM
effective field theory of LSS, the deviations from General Relativity at the relevant
redshift considered by PyBird are so small that its use in this context is safe (see
Fig. . As an example, I have considered the multipole moments at z = 0.38,

Thttps://github.com /pierrexyz/pybird
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which corresponds to the redshift of the low-z NGC BOSS data (see next Section).
Note that the effect of £ is to reduce the amplitude of both Py(k) and Pa(k). It is
very interesting to note that, starting from the parameters in Egs. and ,
similar spectra for ACDM and the EMG model with £ = 0.1 are recovered, suggesting

that the non-minimal coupling can help reconcile EDE models with LSS observations.

5.4 Constraints from cosmological data

In this Section, I report the constraints obtained from the the MCMC exploration of
the EMG model, see Ref. [266]. In this MCMC massless neutrinos (Neg = 3.046) are
assumed the I set the initial velocity of the scalar field to zero and adiabatic initial

conditions on the scalar field perturbations [2,5].

For the extra parameters I consider flat priors £ € [0,1], o;/M, € [0,0.9] and
Vo € [0.6, 3.5]. Note that EDE models are usually parameterized with two parameters
describing the redshift at which the scalar field starts to roll down the potential,
usually denoted as critical redshift z., and the maximum energy injection fyr |189}
199,200]. For the particular case of the RnR model, the correspondence between
{Vb, 0;} and {z., fsr} is unique under the assumption of the same initial velocity of
the scalar field. However, as explained in Section [5.2] this one to one correspondence
is not possible in our model, where also £ contributes to the energy injection into the
cosmic fluid. For this reason, it is better to use the physical parameters describing
the EMG model as in Chapter . Nevertheless, I quote log,, z. and fsr = et
as derived parameters. The non-linear power spectra is modelled using HALOFIT
[271,272]. In this respect, see also Ref. [215] for a comparison between of HALOFIT
and HMcode [273] in the context of EDE.

Differently from the previous Chapters, I also compute the best-fit values extracted
using the MINUIT algorithm [274] implemented in the IMINUIT python package[]
and quote the difference in the model x? with respect to ACDM one, i.e. Ayx? =
X2 — x*(ACDM), where negative values indicate an improvement in the fit of the

given model with respect to the ACDM for the same dataset.

In addition, in order to quantify to what extent the improvement in the fit to
the data warrants the increase in the model complexity compared to the baseline
ACDM model, I compute the Bayes factor defined as the ratio of the evidences for
the extended model Mg with respect to the baseline My, as [275]:

Thttps://iminuit.readthedocs.io/en/stable/
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B = J A0 (05| Mp)L(x|05, Mp),
PET 140, w0, ML)L(x|0,, My),

(5.4.1)

where 7m(6y 1,) is the prior for the parameters 0 1, and £(x|0g,1,) the likelihood of the
data given the model Mg 1,. The extent to what the extended model M is preferred
over the baseline M, can be qualitatively assessed using the Jeffreys scale reported in
Table [276]. T compute the evidence directly from our MCMC using the method
introduced in Ref. [277] implemented in the MCEvidence codd']

In B =In Bgy, Strength of preference for model M;

0<InB<1 Weak

1<InB<3 Definite

3<InB<5 Strong
InB>5 Very strong

Table 5.1: Revised Jeffreys scale used to interpret the values of In B obtained when
comparing two competing models through their Bayesian evidence [276]. A value of
In B > 0 indicates that the extended model is favoured with respect to the ACDM
baseline model.

I now present the results of our MCMC analysis performed using several combi-
nations of the data sets introduced in Chapter [1] and comment on each combination
in turn. For convenience, I collect in Section all the Tables containing the mean
values and error on the cosmological parameters and their best-fit values, as well as
the x? for each data set and the Bayes factors.

I start by discussing the results obtained using the data set P18 + BAO +
FS + SN + H,, which are presented in Fig. and Table They clearly show
that in the EMG model a large value of Hy = 71.007057 km s~'Mpc~' at 68% CL is
obtained, reducing the tension with SHOES + HOLICOW at 1.70, better than the 2.1
(4) o reduction for the EDE (ACDM) obtained for Hy = 70.57"07% (68.82 4 0.39) km
sIMpc~! at 68% CL. This reduction comes both from the larger mean value of H
and the larger errors compared to ACDM. As for other models aiming at solving the
Hy, I obtain a larger w,. and n, compared to the ACDM model.

It is interesting to note that EMG helps fitting CMB data better with respect
to EDE (and also to the ACDM). This is reflected in our 68 % CL estimate for
€ =0.157008 its 95 % CL upper limit ¢ < 0.42, and a best-fit value of ¢ = 0.178. 1

Thttps://github.com/yabebalFantaye/MCEvidence
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also get o; = 0.4910 5 at 68%CL, or equivalently fi; = 0.08410039. Note however the
remarks in Section about the meaning of fi in the context of EMG.

Compared to ACDM, both the EMG and the EDE model exacerbate the tension
with measurements of og and Sg. I get consistent results in terms of og for EMG
and EDE, i.e. oz = 0.830 & 0.008 at 68%CL for EMG and o3 = 0.832750%) at
68%CL for EDE. However, the larger w. and H, leads to essentially the same Sg =
0.829 4 0.011(40.13) at 68%CL for EMG (EDE).

Overall, the EMG models fits the data much better than the ACDM model with
an improvement of Ay? = —16.0. Such an improvement (better than Ax? = —9.3
for the EDE model) is largely due to the better fit to the Hy prior, but there is also
some improvement in the fit to CMB data, in particular to high-¢ TTTEEE data. As
for LSS data, there is only a very small degradation compared to ACDM due to the
Ax? = +2.5 in the fit to BAO DR12 FS + BAO, high-» NGC. The suppression of the
matter power spectrum given by the large positive coupling £ helps fitting FS + BAO
data keeping the value of Hy large at the same time. This large improvement in the
fit corresponds to a Bayes factor of In B;; = +1.0 for EMG. The EDE model, which
leads to a smaller improvement in the fit , i.e. Ax? = —9.3, has nevertheless a slightly
larger Bayes factor of In B;; = +1.5 due to the smaller number of extra parameters
compared to EMG. Note that, from its definition in Eq. (5.4.1)), the Bayes factor
depends on the prior range of the extra parameter £ and as such has to be interpreted
with some caution. In fact, especially if a parameter is not well constrained (as for the
case of some the EMG parameters as Vj and £, see next Section) one could enhance the
evidence for the EMG model by reducing the prior range and therefore the sampling
volume. For attempts towards model selection techniques which are less dependent

on the specific choice of the prior see e.g. Ref. |278].

With the choice of V} prior as above, however, it is not possible to recover the
model studied in Ref. [3] as the particular A — 0 limit. The reason of this choice is to
make sure that for every possible combination of parameters the scalar field always
decreases toward o = 0, so to be able to safely use the FS data. Indeed, for A = 0,
the deviation from GR grows at late times, invalidating the use of the F'S likelihood

and PyBird for a large portion of the parameter space.

On the other hand, it is instructive to study the effects of widening the V prior to
see if the data constrain the model with A = 0. For this purpose I perform an MCMC
analysis with the data set P18 + BAO + SN + H, that does not suffer from the
issue raised above and I set the prior range V; € [—4, 3.5]. I have checked that for
Vo < —3, the potential is essentially negligible.

The posteriors obtained for this MCMCs analysis are shown as red contours in
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Fig. and they show that data do not prefer the small V; region for which the scalar
field grows. The results also show another interesting feature of the EMG model, i.e.
there is only a small difference in constraints on the EMG model when using BAO in
place of the more complete BAO + FS data. As can be seen, the only effect of using
BAO is have slightly larger posteriors, but with the same mean as those obtained
with BAO + FS data. Note that this is in agreement for the findings of Ref. [210] in
the context of the New Early Dark Energy model.

In order to further assess the role of BAO + FS data, I also perform an MCMC
analysis without considering them, and use the data set P18 + SN + H,. The
results are presented in Fig. and Table As can be seen, removing BAO and
FS data leads to a somewhat larger value of Hy = 70.85 4 0.92 km s~ 'Mpc~! for the
EDE (and a much larger bestfit of Hy = 71.38 km s~ 'Mpc™!), confirming that BAO
+ FS have the power to constrain these models, as shown in Refs. [216-218]. On the
other hand, H, for the EMG model increases only a bit to Hy = 71.21 4+ 0.93 km
sIMpc!, since BAO + FS data constrain it less than they constrain EDE models.
It is very interesting to note that the best-fit value for the coupling & = 0.17 is very
close to the one found including BAO + FS data. The EMG model fits most of the
data, with the exception of CMB lensing, better than both the EDE and the ACDM
model, leading to a Ayx? = —17.1. This time, however, the improvement in the fit
does not warrant the increase in the model complexity compared to ACDM and 1

obtain a Bayes factor of In B;; = —0.2.

I have shown that the EMG model leads to a larger value of Sg compared to the
ACDM one. Therefore, it would be interesting to test it against weak lensing data.
Strictly speaking, this would require using data from e.g. the KiDS-VIKING galaxy
shear measurements. However, it was claimed in Refs. [216]217] that the same results
can be obtained by implementing weak lensing data through a Gaussian prior on the
parameter Sg = 0.770 4+ 0.017 (see also Ref. [215] for a thorough comparison of this
method to the correct use of cosmic shear measurements). With these caveats, I follow
Refs. [216,217] and present in Fig. and Table the results for the data set P18
+ BAO + FS + SN + Sg + Hy. Note, despite being far from a resolution to
the Sg tension, the EMG model shows now a much smaller Sg = 0.809 £ 0.009 and a
bestfit value of Sg = 0.807, lower than the one obtained for ACDM i.e. Sy = 0.811.
This confirms the conclusion of Ref. [215] for EDE models that, even though it is true
that the Sg tension is not resolved within this model, the same holds for the ACDM
model which, however, is not able to address the Hy tension, as opposed to the EMG
model, for which I obtain a mean Hy = 70.637)5) and a best fit of Hy = 71.59 km
s~ !Mpc~t.
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Even in this case, however, I note that the large improvement in the fit (not
followed by a preference from the model-selection point of view) is coming mainly
from the substantial improvement in the fit to Hy. It is therefore natural to ask what

happens when the prior on Hj is removed from the data set.

I present the results obtained without the combined SHOES-Holicow determina-
tion of Hy in Fig. and Table for the data set P18 + BAO + FS + SN.
The results show that the mean value for Hy in the EMG model (and in the EDE
one) is only slightly larger then the one in ACDM, as also found in previous studies
of effectively massless models of scalar-tensor theories [221,222] . This can be appre-
ciated by looking at the larger posterior distributions of Hy and w,. for the EMG and
EDE models in Figs.[5.9] The incapability of EDE to solve the Hy tension when prior
information on Hy is not included, has been recently discussed in the literature [216].
A similar result holds for EMG. []

Although the best-fit parameters shown in the third column of Table do not
lead to a very large Hy, I confirm the results of Refs. [215,)279] for EMG and find
some set of parameters exist that lead to a large Hy without a significant change in
Ax2. For example, I find that 100w, = 2.285, w. = 0.1308, 100 * , = 1.04089,
Teeio = 0.057, In10° A, = 3.066 n, = 0.9840, & = 0.151, Vj = 2.19, and o; = 0.57
leads to Ax? = 0.7, fitting the data very similarly to ACDM, with an improvement
in the fit to CMB data and a slight worsening to the fit to BAO DR12 FS + BAO,
high-z NGC data. Such a parameter set, leads to a large f.s = 0.081 and and a large
Hy =70.15 km s~ 'Mpc~.

5.5 Analysis of the 1 parameter extension

The ACDM model predictions can be recovered in both the EDE and the EMG models
when o;, or equivalently the energy injection of the scalar field into the cosmic fluid,
goes to zero. In this regime, both Vy and the coupling ¢ essentially play no role.
When using the Metropolis-Hasting algorithm, as in this case, this can give rise to a
large portion of the parameter space that can artificially enhance the statistical weight
of ACDM models. This issue has been recently addressed, within EDE models, in
Refs. [198,202,[203}208},218].

Here, I take a similar, but somewhat alternative approach, and follow the lines of

"However, it has also been proposed in Refs. [215,279] (see also next Section), that a distinction
should be made between looking at the posterior distributions and the fact that there are some
parameters that fit the data in a way that is statistically indistinguishable from ACDM and still lead
to a large Hy.
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Figure 5.6: 1D and 2D posterior distributions of a subset of parameters for ACDM,
EDE and EMG obtained using the data set P18 + BAO 4+ FS + SN + H,. Red
contours show the results obtained for EMG with a larger prior on V; (see main text),
for which I use the data set P18 + BAO + SN + H,. 2D contours contain 68%
and 95% of the probability. I also plot the 68% and 95% CL for the priors on Hy and
Sg described in the main text. Figure taken from Ref. .
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Figure 5.7: 1D and 2D posterior distributions of a subset of parameters for ACDM,
EDE and EMG obtained using the data set P18 + SN + H, . 2D contours contain
68% and 95% of the probability. I also plot the 68% and 95% CL for the priors on
Hy and Sg described in the main text. Figure taken from Ref. .
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Figure 5.9: 1D and 2D posterior distributions of a subset of parameters for ACDM,
EDE and EMG obtained using the data set P18 + BAO + FS + SN . 2D contours
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Refs. [215,279], where it was shown that by ﬁXingEI logy, ze (or Vj in our language) it
is possible to extend the fi.s — Hy degeneracy even for a choice of datasets without
prior information on Hj, avoiding problems related to the volume sampling and to the
choice of a prior that allows for a ACDM limit. Such a degeneracy is clearly disrupted
(see Fig. when a prior on Hj is not included in the data set and a tight upper

bound on f is obtained.

Note, however, that in absence of theoretical motivations, this must be seen only as
a purely phenomenological approach, which is rather unorthodox from the standard
Bayesian point of view, for which all the parameters has to be varied altogether.
Nevertheless, in the class of MG considered here, there is however the possibility to
reduce the number of parameters by restricting to £ = —1/6, which corresponds to
the theoretical value for conformal coupling 2] (see more in the following Section).

Based on the former argument, I perform an analysis similar to the one of Ref. |208],
215| for the EMG model, for which I fix V; and & to their best-fit values in the third
column of Table and leave o; free to vary. I do not include Hy data and I use the
P18 + BAO + FS + SN data set. The results are presented in Fig. where
I confront our results to ones for EMG obtained in the previous section considering
the data sets P18 + BAO + FS + SN and P18 + BAO + FS + SN + H,.

From the plot, it is easy to see that the degeneracy between o; and Hj is now more
visible leading to a larger of Hy = 69.1819:7 km s~'Mpc~' at 68% CL and slightly
reducing the tension with SHOES+HOLICOW (3.20 vs 4.20 in the 3 parameter case
using the same data set). However, the value of ¢; remains consistent with o; = 0
and most of the improvement in reducing the tension is ascribed to a larger error
on Hy compared to the 3 parameters case. In fact, the best-fit value for Hy that I
obtain is Hy = 68.79 km s~ 'Mpc™!, corresponding to o; = 0.30 M,,;. The best-fit
cosmology for the 1 parameter EMG leads to a total y? of 4001.5, i.e. Ayx? = 1.8,
nearly indistinguishable from the 3 parameters one. Compared to the 3 parameters
models I have a Ax? ~ —1.3 and a Ax? ~ —0.9 gain in the fitting Planck high-¢
TTTEEE data and BAO DR12 FS 4+ BAO, low-z NGC and high-z SGC respectively,
whereas the fit to BAO DR12 FS + BAO, high-z NGC is worsen by a factor of ~ +1.6,
all the other partial y?s being essentially the same.

It is interesting to note that now there is only 1 extra parameter and the model
is not as penalized as for the case with 3 parameters. In fact, the Bayes factor is now
In B = 1.4 and for the data set P18 4+ BAO + FS 4+ SN, the model results slightly
preferred over ACDM according to the Jeffreys scale in Table [5.1]

In the EDE model of Refs. [215279] also a second parameter related to the axion decay constant
f, namely ©;, has to be fixed.
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Figure 5.10: 1D and 2D posterior distributions of a subset of parameters for the
EMG model. Blue and dark red contours are drawn from the samples in Fig. [5.6| and
5.9 respectively, while the green ones are drawn from the sample obtained by using
the data set P18 4+ BAO + FS 4+ SN and fixing V; and £ to their best-fit values in
the third column of Table 2D contours contain 68% and 95% of the probability. I
also plot the 68% and 95% CL for the prior on Hy described in the main text. Figure

taken from Ref. .

The conclusion is therefore that by fixing two parameters does not help much
alleviate the Hj tension, which is only addressed when additional prior information
from local measurements of the Hubble constant is added, as shown in the previous
Section. As in Section [5.4] though, I do find some choices of parameters for which
the fit to the data is not substantially different from the one in the ACDM model,
but lead to a larger Hy, as in Refs. [215,279], with which I qualitatively agree. A
fully quantitative comparison with Refs. , is however not possible because
of the presence of the non-minimal coupling and the different potential considered.
Indeed, potentials with a different curvature such as those with flattened wings and

power-law minima are well known to lead to a larger value of Hy compared to the

simpler quartic potential [1],(189./198.1202].
p q p ) ) )
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5.6 The { = —1/6 case

So far, I have focused on the case of a positive coupling & > 0 and only touched upon
negative couplings. As a representative example of the parameter space with £ < 0,
I also show the results obtained by fixing £ = —1/6 (see also Chapter

From Fig. in Section [5.2] it can be seen that the energy injection is not sharp
in redshift anymore, but rather a continuous energy injection in the early Universe is
observed, until the scalar field contribution redshits away. The similarity between the
background dynamics of this model and the one of a model with extra dark-radiation
parameterized by N.g and the consequent difficulty in constraining the coupling &
has been studied in Chapter [4l Here, the contribution of the scalar field to the total
energy budget is similar so significant differences between the results here and the
ones found in Chapter 4] are not expected. However, note that thanks to the small
effective mass, the scalar field decreases more rapidly compared to the massless case
with A = 0, see e.g. Fig. [4.14]

For the MCMC analysis I use the data set P18 + BAO + FS + SN + H,
and I fix £ = —1/6. The results are shown in Fig. , where I compare to results of
the previous section and show also the results for the case with ¢ = —1/6 and A =0
obtained with the same prior on o; for a comparison (for simplicity I refer to it as
CC). Note that, for the A = 0, I have used the data set P18 4+ BAO 4+ SN + H,,
since for a large portion of the o; prior I have Geg/G — 1 ~ 1073 and the use of the
F'S likelihood might be less accurate.

Fig. shows that the EMG case with £ = —1/6 leads to Hy = 70.11 £0.79 km
sT!Mpc~! at 68% CL a value smaller than the one obtained in the EDE and EMG
model with & > 0. This is expected, as the ability of the EDE and EMG model
with & > 0 to alleviate the Hy tension relies on an energy injection very localized in
redshift, a feature that is not shared by the EMG model with £ = —1/6. The bestfit
value of o; = 0.46 M, leads to Hy = 70.30 km s~ 'Mpc™!, again smaller than the
€ =0 and £ < 0 case. The improvement in the fit is Ax? = —9.0 accompanied by
a Bayes factor of In B;; = —1.4, as in the EDE case, which has the same number of
parameters. The main improvement in the Ax? comes from a better fit to Planck
high-¢ data compared to the other EMG and EDE models, but it is compensated by
a degradation in the fit to LSS and H, data.

On the other hand, in the latter model, the energy density of the scalar field
redshifts away much faster than for A\ = 0, since the scalar field is driven towards
o =~ 0 by the quartic potential. This is the reason why the Hy in this model is larger
than Hy = 69.78 4+ 0.66 km s~ !Mpc~! at 68% CL, obtained for A = 0, for which
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the scalar field contribution is not completely negligible after recombination. For
the very same argument, note that a larger |£0?|, which is a measure of the scalar
field contribution to the fractional AH(z)/H(z) before recombination when £ < 0, is
allowed in the EMG model compared to the CC one. Also, the value of ypy is orders
of magnitude larger in the CC model, i.e. ypy > —2.1-107° at 95%CL, compared to
the EMG case with £ = —1/6 in which ypxy > —3.5- 107 at 95%CL. If the former is
comparable to Solar System experiments, the latter is much smaller.

Furthermore, as expected from the discussion in Section and Fig. 5.4 the
negative coupling leads to larger og. I get og = 0.8371053% and og = 0.835 + 0.010
for A # 0 and A = 0, respectively, larger than the EDE or EMG model with a
positive coupling (see Table . However, this is accompanied by a comparable
Sg = 0.83370035 for EMG with ¢ = —1/6 and a smaller Sy = 0.822 + 0.011 for
& = —1/6,\ = 0, since Hy is smaller and therefore the shift in the value of w,
necessary to restore the fit with CMB data is slightly smaller as well. This is again in
line with the observation that models that lead to a larger Hy modifying the sound

horizon inevitably lead to a larger w. and therefore Sg [280].

5.7 Summary of the results

In this Chapter, I have presented a model of Early Modified Gravity (EMG) where a
scalar field with a non-minimal coupling to the Ricci scalar of the type Mgl—kfa? has a
self-interacting potential. In this model, which extends the massless one of Section [4.3]
and reduces to the Rock’'n’Roll Early Dark Energy (EDE) model of Ref. [199] for
& = 0, the scalar field o, which is frozen during radiation era, grows around the time of
recombination driven by the coupling to pressureless matter and is subsequently driven
into damped oscillations around its minimum at ¢ = 0 by the small effective mass
induced by the quartic potential. The rolling of the field towards ¢ = 0 suppresses
the modification to gravity at late times, recovering an excellent agreement of the
laboratory experiments and Solar System tests with General Relativity. The addition
of the effective potential has the virtue of reconciling the £ > 0 branch of the model
studied in Section [4.3] with GR without any fine tuning.

The modification to gravity at early times, however, has the important conse-
quence of alleviating the Hj tension as it modifies the redshift profile of the energy
injected into the cosmic fluid when the scalar field thaws. The MCMC analysis, per-
formed with a variety of cosmological data, shows that the tension can be reduced
substantially and at the same time a positive coupling £ > 0 suppresses the small scale

matter power spectrum and thus helps fit the full Shape of the matter power spectrum
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Figure 5.11: 1D and 2D posterior distributions of a subset of parameters for the
EDE (orange), EMG (blue) and conformally coupled EMG (brown) using the data
set P18 + BAO + FS + SN + H,. I also show in green the results for the case
with £ = —1/6 and A\ = 0 for a comparison. Note that for the latter case the data set
P18 + BAO + SN + H, is instead used. 2D contours contain 68% and 95% of the
probability. T also plot the 68% and 95% CL for the priors on Hy and Sg described in
the main text. Figure taken from Ref. .
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data, that has recently claimed to constrain the EDE resolution of the Hy tension. In
particular, the tension with the combination of recent SHOES and HOLiCOW mea-
surements, i.e. Hy = 73.4 4+ 1.1 km s~ !Mpc~!, is reduced at the 1.70 level when
this is added to Cosmic Microwave Background, SNe, Baryonic Acoustic Oscillations
and the Full Shape of the matter power spectrum data. For this data set, I obtain
Hy = 71.007)57 km s—'Mpc~! at 68 % CL which is larger than, but consistent with,
the one I get for EDE for ¢ = 0 i.e. Hy = 70.57755% km s™*Mpc~.

Performing the MCMC analysis with different combinations of the data mentioned
above helps trace the origin of the larger H,y back to the suppression of the power
spectrum caused by the non minimal coupling ¢, for which I get & = 0.15%05 at
68% CL (£ < 0.39 at 95%CL). In fact, for all the data set that are used, a similar
constrain on the parameter £ is recovered. Although the fit to data is always improved
the Bayesian model selection for EMG depends on the data set considered, and is
penalized by the larger number (3) of extra parameters compared to ACDM, therefore
never resulting in a strong preference.

In order to confirm the argument above I have performed the same analysis fixing
¢ to the conformal coupling £ = —1/6. In this case rather than a suppression there is
an enhancement of the matter power spectrum and the capability of the model to ease
the tension is therefore reduced, with Hy = 70.11 4 0.79 km s~ *Mpc~!, smaller than
the the £ = 0 case, showing a clear hierarchy for negative, null and positive couplings.
Note, however, that the addition of the small effective mass to the £ = —1/6 case
leads to larger Hy than the one for the conformally coupled massless case of Ref. [3]
for which Hy = 69.78 & 0.66 km s~*Mpc™! (see Section [5.6).

As a last comment, in this Chapter I have considered two dimensionless couplings
for a cosmological scalar field, which rule the coupling to the Ricci scalar (£) and
its self-interaction (A). A quartic potential for the scalar field o, implies that the
RnR model [199] is recovered for & = 0. However, it is known that potentials with
flattened wings that have a different curvature around the minimum at o = 0, such
as those in the original EDE proposal of Ref. [189] or in the a-attractor EDE model
of Section [3.4] provide a better fit to Planck polarization data and lead to an even
larger Hy. An exploration of different choices of the potential in the EMG framework

is currently ongoing.
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5.8 Tables

Here I collect the Tables containing the constraints from the MCMC analysis in Sec-
tion . Note that Hy, 0y, 75 and {07 are given in units of [km s™'Mpc™1], My, Mpc

and M} respectively.

ACDM EDE EMG
10%w, 2.256 +0.013 (2.255) 2.280 +0.018 (2.286) 2.273 +0.017 (2.281)
We 0.1182 4 0.0009 (0.1184) 0.125370°6503% (0.1242) 0.128270-9032 (0.1302)
100 * 0, 1.04209 + 0.00028 (1.04216)  1.04152 +0.00036, (1.04170)  1.0411873-590%0 (1.04120)
Treio 0.058 & 0.007 (0.052) 0.05815-05% (0.059) 0.056 & 0.007 (0.057)
In (1010 4y) 3.049 +0.014 (3.038) 3.059 +0.016 (3.059) 3.061 +0.015 (3.067)
ng 0.9701 4 0.0036 (0.9710) 0.978370:50%4 (0.9813) 0.9782 4 0.0055 (0.9849)
i - <0.70 (0.48) 0.4979 06 (0.53)
Vo — 2.217097 (2.09) 2.21701% (2.25)
¢ — — < 0.42 (0.18)
Hy 68.82 4+ 0.39 (68.74) 70.5775 0% (70.90) 71.000 55 (71.59)
T 147.37 +0.22 (147.33) 143.5 4+ 1.8 (143.78) 142.2%50 (141.21)
o8 0.821 +0.006 (0.818) 0.832+5-007 (0.831) 0.830 + 0.008 (0.850)
Sg 0.817 +0.010 (0.815) 0.829 +0.013 (0.820) 0.829 +0.011 (0.847)
logg Ze — 3.58709% (3.53) 3.60705¢ (3.63)
fsct — < 0.119 (0.057) 0.08415:039 (0.099)
Eo? - — < 0.067 (0.050)
PN — 1 — — > —1.7-107%(-8.9-1079)
Ay - 9.3 -16.0
lnBZ-j — +15 +1O
P18 + BAO + FS + SN + H, ACDM EDE  EMG
Planck high-¢ TTTEEE 2350.07 2352.08 2347.75
Planck low-¢ EE 395.70  396.69  396.37
Planck low-¢ TT 22.32  21.51 21.52
Planck lensing 9.37 9.36 9.17
BAO BOSS low-z 2.21 2.74 2.06

BAO DR12 FS + BAO, high-z NGC  65.13 65.15 67.64
BAO DR12 FS + BAO, high-z SGC 62.63 63.29 62.83
BAO DR12 FS + BAO, low-z NGC 70.06 70.53 69.89

Pantheon 1026.86 1026.93 1026.88
Hy 18.57 5.35 2.81
Total 4022.94 4013.64 4006.92

Table 5.2: [Upper table|] Constraints on main and derived parameters considering
the data set P18 + BAO + FS 4+ SN + H, for ACDM, ¢ =0 and £ > 0. I report
mean values and the 68% CL, except for the case of upper or lower limits, for which
I report the 95% CL. I also report the best-fit values in round brackets. [Lower table]
Best-fit x? per experiment for the data set P18 + BAO + FS + SN + H, for
ACDM, EDE and EMG model.
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ACDM

EDE

EMG

10%wy, 2.261 & 0.014 (2.263) 2.283 + 0.018 (2.292) 2.275 % 0.018 (2.284)
We 0.1175 + 0.0011 (0.1170) 0.125370 0035 (0.1285) 0.1288 + 0.0046 (0.131)
100 * 6, 1.04216 4 0.00029 (1.04200) 1.04153 +0.00038 (1.04135) 1.04114 + 0.00048 (1.04107)
Treio 0.061F5-00% (0.060) 0.06015-09% (0.061) 0.05870 005 (0.056)
In (10104;) 3.05315-01% (3.050) 3.062 £ 0.016 (3.072) 3.067 £ 0.016 (3.067)
ng 0.9707 + 0.0040 (0.9733) 0.9788 + 0.0061 (0.9849) 0.9800 + 0.0059 (0.9870)
i - 0.48F5:-14(0.58) 0.50%0:67 (0.56)
Vo - 2.2370° 18 (1.97) 2.2210:11 (2.24)
3 — - <0.39 (0.17)
Hy 69.13 + 0.49 (69.25) 70.85 + 0.92 (71.38) 71.21 4 0.93 (71.87)
T 147.49 + 0.25 (147.61) 1434+ 1.9 (141.83) 141.9735 (140.70)
os 0.820 + 0.006 (0.818) 0.833 4 0.011 (0.842) 0.833 4 0.008 (0.836)
Sg 0.811 + 0.011 (0.806) 0.827 4+ 0.016 (0.838) 0.831 4 0.014 (0.833)
log o Ze - 3.597595 (3.50) 3.6010:05 (3.64)
et - < 0.134 (0.083) 0.08870032 (0.107)
£o? - - < 0.072 (0.053)
N — 1 — - >—1.7-107° (~1.8-1077)
Ax? — —11.5 —17.1
In Bij - +1.8 —0.2
P18 + SN + Hy ACDM EDE  EMG
Planck high-¢ TTTEEE 2351.75 2352.22 2349.25
Planck low-¢ EE 396.94  397.51  396.23
Planck low-¢ TT 22.08  21.41 21.29
Planck lensing 9.59 9.07 9.32
Pantheon 1026.96 1026.87 1026.86
Hy 14.76 3.50 2.00
Total 3822.08 3810.58 3804.97

Table 5.3: [Upper table|] Constraints on main and derived parameters considering

the data set P18 + SN + H, for ACDM, £ = 0 and £ > 0. I report mean values
and the 68% CL, except for the case of upper or lower limits, for which I report the
95% CL. T also report the best-fit values in round brackets. [Lower table] Best-fit x>
per experiment for the data set P18 + SN + H, for ACDM, EDE and EMG model.
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ACDM EDE EMG

10%wy, 2.262 +0.013 (2.265) 2.277+0.016 (2.276) 2.272 +0.016 (2.275)
We 0.1174 +0.0008 (0.1178)  0.121879:9922 (0.1228) 0.123419-00%3 (0.1262)
100 * 0, 1.04213 £ 0.00029 (1.04229)  1.041607 000053 () 1.04154 + 0.00043 (1.04148)
Treio 0.055 + 0.007 (0.057) 0.055 £+ 0.007 (0.058) 0.054 £+ 0.007 (0.057)
In (1010 4y) 3.041 +£0.014 (3.047) 3.044 +0.015 (3.042) 3.047 £ 0.015 (3.058)
ng 0.9716 + 0.0035 (0.9719)  0.975679:994% (0.9752) 0.97551 00054 (0.9791)
o — < 0.60 (0.47) 0.3970-10 (0.50)
Vo - 2.5970 73 (3.21) 2.4470°15 (2.05)
¢ — — < 0.63 (0.14)
H, 69.17 +0.35 (69.09) 70.40 £ 0.76 (70.75) 70637050 (71.59)
T 147.51 4+ 0.21 (147.38) 145.017°7 (144.43) 144.3732 (142.75)
o3 0.815 4 0.005 (0.819) 0.81915-05% (0.81682) 0.81915-058 (0.820)
Sy 0.805 + 0.008 (0.811) 0.808 + 0.010 (0.804) 0.809 + 0.009 (0.807)
logqo 2e — 3.72703T (4.12) 3.667055 (3.52)
ot — < 0.101 (0.064) < 0.121 (0.085)
£o? - - < 0.054 (0.030)
pN — 1 — — > —1.8-107 (—8.0-10710)
Ax? - —11.0 —11.5
In B;; - —0.4 —0.12
P18 + BAO+FS+SN + Hy+ Ss ACDM EDE  EMG
Planck high-¢ TTTEEE 2351.17 2351.13 2351.51
Planck low-¢ EE 396.43  396.47  396.48
Planck low-¢ TT 2236 21.70  22.19
Planck lensing 9.32 10.09 10.46
BAO BOSS low-2z 2.65 2.96 2.91
BAO DR12 FS + BAO, high-z NGC  64.76 64.08 65.53
BAO DRI12 FS + BAO, high- SGC  63.11  63.23  63.00
BAO DR12 FS + BAO, low-z NGC 70.57 71.14 70.54
Pantheon 1026.89 1026.97 1026.98
Hy 15.88 6.00 2.90
Ss 5.66 4.02 4.82
Total 4028.81 4017.81 4017.35

Table 5.4: [Upper table|] Constraints on main and derived parameters considering

the data set P18 + BAO + FS + SN + Hy + Sg for ACDM, { =0 and £ > 0. I
report mean values and the 68% CL, except for the case of upper or lower limits, for
which I report the 95% CL. I also report the best-fit values in round brackets. [Lower
table] Best-fit x? per experiment for the data set P18 + BAO + FS + SN + H,
+ Sg for ACDM, EDE and EMG model.
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ACDM

EDE

EMG

102wy, 2.243 +0.013 (2.251) 2.24575-07% (2.240) 2.244 4 0.015 (2.247)
We 0.1195 4 0.0009 (0.1186) 0.120615-009% (0.1200) 0.120670 0019 (0.1234)
100 * 0, 1.04193 +0.00029 (1.04199)  1.04182 +0.00032, (1.04181)  1.0418175:05033 (1.04168)
Treo 0.054 +0.007 (0.059) 0.054 +0.007, (0.054) 0.054 +0.007 (0.54)
In (1010 4y) 3.043 +0.014 (3.050) 3.045 +0.014 (3.044) 3.045 +0.014 (3.0491)
ng 0.9666 + 0.0037 (0.9699) 0.967815-003T (0.9663) 0.9673 + 0.0044 (0.9686)
o ~ < 0.50 (0.05) < 0.45 (0.31)
Vo - 2.144+0.78 (0.69) 2471055 (2.28)
¢ — — < 0.81 (0.18)
Hy 68.16 £ 0.41 (68.55) 68.46 7052 (67.90) 68.3970 0, (68.94)
T 147.16 £ 0.22 (147.32) 146.531593 (147.08) 146.5970-98 (145.17)
o8 0.822 + 0.0058 (0.823) 0.82315-056 (0.824) 0.822 + 0.007 (0.824)
Sg 0.830 +0.010 (0.823) 0.831 +0.011 (0.836) 0.830 +0.011 (0.834)
108, Ze - 3.2679:55 (2.07) 3.44105% (3.54)
et — < 0.0617 (0.0004) < 0.0726 (0.037)
£o? - - < 0.0381 (0.0172)
pn — 1 — - > —1.7-10"% (=5.0-10719)
Ax? — 1.2 2.6
lnBij — —-1.3 —2.7
P18 + BAO + FS+ SN ACDM EDE  EMG
Planck high-¢ TTTEEE 2347.99 2346.77 2345.32
Planck low-¢ EE 396.89  396.00  396.04
Planck low-¢ TT 22.69 2323  23.34
Planck lensing 8.82 8.86 8.80
BAO BOSS low-z 2.00 1.33 1.44
BAO DR12 FS + BAO, high- NGC  65.78  67.86  67.91
BAO DR12 FS + BAOQO, high-z SGC 62.42 61.76 61.69
BAO DR12 FS + BAO, low-z NGC ~ 69.82  69.25 69.17
Pantheon 1026.89 1027.09 1027.02
Total 4003.30 4002.15 4000.74

Table 5.5: [Upper table|] Constraints on main and derived parameters considering

the data set P18 + BAO + FS + SN for ACDM, £ = 0 and & > 0. I report
mean values and the 68% CL, except for the case of upper or lower limits, for which
I report the 95% CL. I also report the best-fit values in round brackets. [Lower table]
Best-fit x? per experiment for the data set P18 + BAO + FS + SN for ACDM,
EDE and EMG model.
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Chapter 6

Scalar-tensor theories and neutrino

physics

In the previous Chapters, I have studied the dynamics of several models belonging
to the class of ST theories and constrained them with cosmological data. Except for
the introduction of a new degree of freedom, identified with the scalar field of ST
theories, I have not modified any of the other ACDM assumptions. In particular,
I have always assumed a standard neutrino physicsE] and fixed all the parameters
describing the number of effective relativistic species and the neutrino masses. With
these assumptions, I have shown that a generic outcome of these ST theories is a
larger value of the Hubble constant compared to the one derived within the ACDM
model.

In the specific case of the models studied in Chapter [4 however, the mechanism
that drives a higher inferred Hj relies on a behavior of the scalar field contribution the
the expansion history at early times which resembles the one of relativistic species.
Therefore, it is interesting to investigate to what extent these simple scalar-tensor
theories are degenerate with effective number neutrinos and to any additional massless
particles produced well before recombination N.g. The current tight constraints from
the latest Planck 2018 data Neg = 2.89 +0.19 (Neg = 2.99 £ 0.17 including BAO) at
68% CL [21] can indeed be changed in modified gravity theories as previously shown
in the context of f(R) gravity in [281}282] for Planck DRI.

While changing N.g can lead to a higher value for Hy compared with the value
inferred in the ACDM model from CMB anisotropies measurements, in its extension
model with non-zero neutrino mass m,,, the two parameters are instead anti-correlated
so lower values of Hy correspond to higher values of m, and viceversa. For instance,
the constraint from Planck 2018 data in combination with BAO data is m, < 0.12
eV at 95% CL [21},283] and combining with the measurement from the SHOES team
the limit further tightens to m, < 0.076 eV [284]. On the other hand in ST theories

!Note that I have always considered massless neutrinos with Neg = 3.046 in comparing the
models of Chapters [4] and [5| with cosmological data, whereas oftentimes the choice of one massive
neutrino with m, = 0.06 eV is adopted in the literature [21] (see discussions in Chapters [4] and
and in the following).
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of gravity, it is possible to keep fixed the angular diameter distance at decoupling or
even increase it in order to recover a higher Hy while increasing the total neutrino
mass [285]. Given that neutrino oscillations are the only evidence of physics beyond
the Standard Model of Particle Physics [286], a natural question is to explore how
the constraints on neutrino physics can be relaxed or tightened if the underlying
cosmological model is one of those analyzed in the previous Chapters, rather than the
ACDM one.

I also note that future CMB experiments, such as the Simons ObservatoryE] [287],
CMB-S4 [288], and future LSS surveys from DESI| [289], Euclid] [200,291], LSST[]|
[292], SKAP|[293][294] will help improve the constraints on these extended cosmologies
[260,261295] and limit the degeneracy of neutrino parameters Neg and m,, with scalar-
tensor theories [296].

This Chapter is based on the research work in Ref. [4], in particular, T will focus on
the models studied in Chapter 4| and set boundary conditions on ¢ so that laboratory
experiments on the variation of G' are automatically satisfied, as explained in Sec. [4.2]
All the results and plots are produced using the CLASSig code [2[221].

6.1 Degeneracy with the number of effective rela-

tivistic degrees of freedom

As explained in Sec. [6.1], in the context of the ACDM model, the presence of extra
relativistic degrees of freedom in the Universe increases the expansion rate during the
radiation-dominated era and shifts the epoch of matter-radiation equality, the shape
of the matter power spectrum, and the history of recombination (see Refs. [182}297]
for a review). The extra radiation is usually parameterized by ANeg = Neg — 3.046
[298-301). By reducing the size of the comoving sound horizon at baryon drag, a
larger value of N.g can ease the tension on Hj, at the price of worsening the fit to
CMB polarization and BAO data [21][178], see Sec. [6.1]

In the context of modified gravity theories, however, there is an interplay (negative
correlation) between the contribution of extra radiation ANeg and the scalar field
coupling| which acts as an additional source of radiation in the analogue Einstein

system at the background level. By decreasing the effective number of extra relativistic

Thttps://simonsobservatory.org/

Zhttps://cmb-s4.org/

3http://desi.lbl.gov/

4http://sci.esa.int /euclid/

Shttp://www.lsst.org/

Shttp://www.skatelescope.org/

"See Refs. 281,282 for an application in the context of f(R) gravity.
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Figure 6.1: Differences with respect to the ACDM with (Neg = 3.046) with IG
(top panels) for & = 0.0008, 0.0016 (solid, dashed) and N.g = 2.846, 3.046, 3.246
(red, green, blue), and CC (bottom panels) for N, = 1.00003, 1.00004 M,; (solid,
dashed) and N.g = 2.846, 3.046, 3.246 (red, green, blue). D, = ¢(¢{ + 1)C,/(27) are
the band-power angular power spectra. Figure taken from Ref. .
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Figure 6.2: Marginalized joint 68% and 95% CL regions 2D parameter space using
the P18 (gray) in combination with BAO (blue) and BAO + R19 (red) for the IG+ Ng
model. In the central panel, I include the Hy — N.g contours for the ACDM in green.
In the right panel, I include the Hy — & contours for the IG with Nog = 3.046 in green.
Figure taken from Ref. [4].
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Figure 6.3: Marginalized joint 68% and 95% CL regions 2D parameter space using
the Planck legacy data (gray) in combination with DR12 (blue) and DR12 + R19
(red) for the CC+Neg model. Figure taken from Ref. .

species to Neg = 2.846 it is possible to obtain deviations of the CMB anisotropies
angular power spectra to the ACDM model of the same order of the ones obtained
with & halved and Neg = 3.046, see Fig. [6.1]

Therefore, preferring lower values of Neg, the datasets allow for larger values for £
compared to the case with Neg = 3.046 fixed. The constraints on the coupling change
from £ < 0.00098 to £ < 0.0019 at 95% CL with P18 alone (and from & < 0.00055 to
¢ < 0.00078 once BAO are included), see Tab. and Tables in Chapter .

The mean of N.g moves around 1o towards lower values with respect to the ACDM
case with a similar error. For IG, I get at 68% CL Neg = 2.79+0.20 for P18 compared
to Neg = 2.89 £ 0.19 in ACDM and Nz = 2.85 £ 0.17 in combination with BAO
compared to Neg = 2.99 £ 0.17 in ACDM. In Fig. [6.2| (central panel), I show the
enlarged Hy— N g parameter space in IG compared to the ACDM concordance model
(green contours) where it is possible to reach higher value of Hy without increasing
Neg in presence of a modification of gravity.

In the CC model, an analogous correlation in the N.g — N, parameter space is
found, see Fig. [6.3] The constraints on N,; are larger, from N,; < 1.000028 M,; (see
Chapter to N, < 1.000057 M,,; at 95% CL with P18 alone and from N,; < 1.000018
M, to N,y < 1.000019 M, at 95% CL once BAO are included, see Tab. [6.2]

While the Hubble constant is larger than in ACDM for the combination P18 +
BAO Hy, i.e. Hy = (68.78%023) km s™'Mpc™" and Ho = (68.627¢() km s~'Mpc!,
for the IG and CC models respectively, the addition of R19 data leads to a closer
posterior distribution for Hy among the three cases, i.e. (70.1 4 0.8) km s™*Mpc~?
for IG, (69.6 £ 0.7) km s~ 'Mpc™! for CC, and Hy = (70.0 £ 0.9) km s~ 'Mpc~! for
ACDM+Neg. I find a similar posterior distribution also for IG4+Ng (CC+Neg), i.e.
(70.3 +£0.9) km s™'Mpc™! ((70.1 £0.9) km s~'Mpc™1), see Fig. [6.2

The addition of BAO data reduces the degeneracy Hy — & (—N,;) increasing the
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one between Neg — & (—N,) and Hy — Neg. In order to reduce the comoving sound

horizon and therefore accommodate a larger value of Hy, in this case N.g is moved
towards larger values, i.e. 3.11 £ 0.19 for IG and 3.16 + 0.19 for CC, see Tab. [6.1}

6.2 Degeneracy with Neutrino masses

As opposed to Ngg, which mainly changes the early expansion of the Universe, the
changes in the background evolution caused by neutrino masses, under standard as-
sumptions and for a fixed set of standard cosmological parameters, are confined to late
times. In particular, the neutrino mass impact the angular diameter distance and 2z,
(the redshift of matter-to-cosmological-constant equality) (see Refs. [1824,297/302-306]
for a review on neutrino mass in cosmology).

In the standard ACDM scenario, a larger value of m, results in a lower Hubble
rate inferred from the CMB, exacerbating the H, tension. However, there is partial
correlation between the equation of state of dark energy (DE) w and the total neutrino
mass m,, as first noticed by [303]. When m,, is increased (or more generally €2,), Q,,
can be kept unchanged by simultaneously decreasing w in order to keep the angular
diameter distance at decoupling fixed. In this case, the impact of neutrino mass on
the background is confined to variations of z, and of the late-time ISW effect.

Cosmological bounds on the neutrino masses can therefore be relaxed if a DE com-
ponent with wpg # —1 is used instead of a cosmological constant. Vice versa, cosmo-
logical constraints on the DE parameters become larger in comparison to cosmologies
with massless neutrinos or with the standard minimal assumption of m, = 0.06 eV.
Analogous conclusions were obtained in the context of Galileon gravity [285].

In Fig.[6.4] T show the combined effect on the CMB anisotropies of varying both &
and m,, in the IG model. Note that my assumption, which is the one I adopt through-
out this Section is to have one massive and two massless neutrinos. For a fixed value
of the coupling parameter £ = 0.0008, the differences with respect to the ACDM con-
cordance model are reduced by increasing the value of the neutrino mass m, from 0.1
eV to 0.3 eV. On the late-time observables, i.e. the weak lensing CMB anisotropies
and the linear matter power spectrum, the partial degeneracy between modified grav-
ity and the neutrino mass is still present but with differences concentrated on small
scales, see Fig. [6.5]

In this case the constraints on the coupling parameter £ become tighter compared
to the case with m, = 0, i.e. from & < 0.00098 to & < 0.00094 at 95% CL for P18. The
CMB anisotropies data prefer to relax the upper bound on the neutrino mass which
becomes m, < 0.31 eV at 95% CL for P18 29% larger to the ACDM case m, < 0.24
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Figure 6.4: Differences with respect to the ACDM with m, = 0 eV with IG (top
panels) for £ = 0.0008, 0.0016 (solid, dashed) and m, = 0.1, 0.2, 0.3 eV (red, green,
blue), and CC (bottom panels) for N, = 1.00003, 1.00004 M,; (solid, dashed) and
m,, = 0.06, 0.1, 0.2 eV (red, green, blue). Figure taken from Ref. .
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Figure 6.5: Differences with respect to the ACDM with m, = 0 eV with IG (top
panels) for £ = 0.0008, 0.0016 (solid, dashed) and m, = 0.1, 0.2, 0.3 eV (red, green,
blue), and CC (bottom panels) for N, = 1.00003, 1.00004 M,, (solid, dashed) and
m, = 0.06, 0.1, 0.2 eV (red, green, blue). Figure taken from Ref. [4].
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Figure 6.6: Marginalized joint 68% and 95% CL regions 2D parameter space using
P18 (gray) in combination with BAO (blue) and BAO + R19 (red) for the IG+m,,
model. In the central panel, I include the Hy — Nqg contours for the ACDM in green.
Figure taken from Ref. .
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Figure 6.7: Marginalized joint 68% and 95% CL regions 2D parameter space using
P18 (gray) in combination with BAO (blue) and BAO + R19 (red) for the CC+m,,
model. Figure taken from Ref. .

eV. Including the BAO data, the total neutrino mass is constrained to m, < 0.17
eV at 95% CL, 42% larger to the ACDM case m, < 0.12 eV, and I find £ < 0.00076
at 95% CL, see Tab. The addition of R19 data leads to Hy = (70.1 £ 0.8) km
s~ !Mpc~! with an upper bound on the total neutrino mass m, < 0.19 eV at 95% CL,
2.5 times larger than the limit based on the ACDM model, with a 20 detection of the
coupling parameter £ = 0.00065 £ 0.00057 at 95% CL, see Fig.

Analogously, for CC the constraint on N,; becomes tighter compared to the case
with m, = 0, i.e. N, < 1.000026 M,; for P18 and N, < 1.000024 M,; for P18 +
BAO at 95% CL, see Fig. Also, for this model, the upper bound on the neutrino
mass becomes 30% larger compared to the ACDM case, see Tab.
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Figure 6.8: Samples of the P18 + BAO chains in the Hy — Neg (Ho — m,,) plane,
colour-coded by & for the IG+ N g+m, model. Dashed blue contours show the con-
straints for IG+N.g+m, with P18 alone. Solid red contours show the constraints
for the ACDM+ N g+m, model. The gray bands denote the local Hubble parameter
measurement from R19 [145]. Figure taken from Ref. [4].
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Figure 6.9: Samples of the P18 + BAO chains in the Hy — Neg (Ho — m,) plane,
colour-coded by N, for the CC+Neg+m, model. Dashed blue contours show the
constraints for CC+Nyg+m, with P18 alone. Solid red contours show the constraints
for the ACDM+ N.g+m, model. The gray bands denote the local Hubble parameter
measurement from R19 [145]. Figure taken from Ref. [4].

6.3 Joint constraints on N, and neutrino mass

Finally, it is interesting to consider also the case where both N.g and m,, are allowed
to vary. Despite the larger parameter space and the larger limits on the parameters,
the models do not accommodate higher values of the Hubble parameter compared to
the 7- and 8-parameters case analysed before, see Figs. Moreover, contrary
to the case where N.g was fixed, the total neutrino mass is now almost uncorrelated
with the Hubble parameter. In this case, the modified gravity parameters £ and N
are always compatible at 20 with the GR limit due to the larger parameter space and
are given by (see Tabs. [6.56.6)):
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£ < 0.0018 (95% CL), Neg = 2.74 £0.22, m, < 0.26 eV (95% CL)
for IG and
N, < 1.000050 M,,; (95% CL), Neg = 2.734+0.21, m, < 0.26 eV (95% CL)
for the CC case. When BAO data are included, the constraints change to
£ < 0.0012 (95% CL), Neg = 2.77 £ 0.20, m, < 0.19 eV (95% CL)
for IG and
N, < 1.000042 M,; (95% CL), Neg = 2.75+0.21, m, < 0.17 eV (95% CL)
for the CC case. Further adding R19, I get
£ < 0.0013 (95% CL), Neg = 3.08 £0.20, m, < 0.19 eV (95% CL)
for IG and
N, < 1.000040 M,; (95% CL), Neg = 3.14 £ 0.20, m, < 0.14 eV (95% CL)

for the CC case.

6.4 Summary of the results

In this Chapter, I have investigated the degeneracy of the ST theories studied in
Chapter [ with the the physics of neutrinos [4]. To do so, I have extended the analysis
for the IG and CC models in Sections and [4.4] respectively, to a general neutrino
sector by allowing the effective number of relativistic species Ng and the neutrino
mass m,, to vary. Both N.g and m,, are partially degenerate with the deviations from
GR, as happens in other modified gravity models [281,282,285]. Whereas N.g and the
scalar field act as an additional source of radiation in the early Universe, at late times
the background contribution to €2,, due to m, can be compensated from the scalar
field in order to keep the angular diameter distance at decoupling fixed, see Figs. 6.1
6.5, However, I have shown that these are only partial degeneracies which could

be broken by combination of observations at different redshifts.
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In the case where Nog is left free to vary (Sec. the limit on £ becomes ~ 94% (~
42%) larger with P18 (P184+BAO) while the mean on the number of neutrinos moves
around lo towards lower values compared to the ACDM case without significantly
degrading its uncertainty, i.e. Neg = 2.79 + 0.20 (Neg = 2.85 £ 0.17). For CC the
limit on N,; becomes ~ 104% (~ 6%) larger with P18 (P18+BAO) and analogously
to IG I find Neg = 2.73%02 (Neg = 2.81 £ 0.19).

The upper bound on the neutrino mass (Sec. is ~ 29% (~ 42%) is also
degraded with P18 (P184+BAQO) compared to the ACDM case, i.e. m, < 0.31 eV
(m, < 0.17 eV), whereas the constraint on ¢ is slightly tighter with CMB data alone
in order to relax the constraint on m,. Analogously, for CC the limit on the neutrino
mass is ~ 17% (~ 33%) larger with P18 (P184+BAO) compared to the ACDM case.
When both Neg and m,, are allowed to vary, the constraints on £ and Ny, degrade by a
factor two compared to the case with Neg = 3.046 and m, = 0 eV also in presence of
BAO data, i.e. £ < 0.0012 and N, < 1.000042 M,; at 95% CL. For the data used, the
combination of the modification to gravity in our models to non-standard neutrino
physics does not lead to higher values of Hy compared to the case with standard

assumptions in the neutrino sector.

6.5 Tables

Here I collect the Tables containing the constraints from the MCMC analysis consid-

ered in this Chapter.
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P18

P18 + BAO

P18 + BAO + R19

Wh 0.0222770-000%% 0.02225 & 0.00019 0.02250 £ 0.00019
We 0.1161 + 0.0031 0.1172 + 0.0030 0.1210 + 0.0029
Hp [km s~'Mpc™!] 69.213% (2.30) 67.9719 (3.50) 70.28 +0.92 (2.20)
T 0.0547 £ 0.0078 0.0526 + 0.0069 0.0549 £ 0.0072
In (10104;) 3.038 £+ 0.016 3.035 + 0.015 3.050 £0.016

ng 0.961770-05%% 0.960070 0975 0.9707 + 0.0069
Gie < 0.0076 (95% CL) < 0.0031 (95% CL) < 0.0040 (95% CL)
Nogt 2.79 4 0.20 2.85+0.17 3.1140.19

3 < 0.0019 (95% CL) < 0.00078 (95% CL) < 0.0010 (95% CL)
VPN > 0.9925 (95% CL) > 0.9969 (95% CL) > 0.9960 (95% CL)

5GN/.GN (ZZO)
1013GN/GN (Z:O) [yrfl]

> —0.055 (95% CL)
> —2.2 (95% CL)

> —0.023 (95% CL)
> —0.93 (95% CL)

> —0.029 (95% CL)
> —1.2 (95% CL)

6Gx /G (2=0) > 0.9962 (95% CL) > 0.9985 (95% CL) > —0.9980 (95% CL)
O 0.29070 02 0.3022 + 0.0074 0.2906 + 0.0067
o3 0.83410-012 0.825 4 0.010 0.841 4 0.010

s [Mpc] 148.2718 148.4 £ 1.7 1455+ 1.5

Ax? 1.7 -1.8 -3.0

Table 6.1: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the IG+ Neg

model.
P18 P18 + BAO P18 + BAO + R19
b 0.02223 £ 0.00022 0.02215 & 0.00022 0.02257 £ 0.00018
we 0.1151 + 0.0033 0.1162 = 0.0031 0.1213 =+ 0.0030

Ho [km s~1Mpc™!]
-
In (1010 4y)

67.94 1.4 (3.10)
+0.0060
0'053970.0074
3.034 4 0.017

67.1+ 1.2 (3.70)

+0.0061
0‘05447040074

3.035 £ 0.016

70.10 £ 0.92 (2.00)
+0.0063
0050170083
3.053Z¢7016

ns 0.9598 -+ 0.0084 0.9606 = 0.0071 0.9736 = 0.0062
N1 [Mp] < 1.000057 (95% CL) < 1.000019 (95% CL) < 1.000032 (95% CL)
Negt 2.7310%5 2.8140.19 3.16 +0.19

PN >0.999943 (95% CL) > 0.999981 (95% CL) > 0.999968 (95% CL)
BpN < 1.0000048 (95% CL) < 1.0000015 (95% CL) < 1.0000027 (95% CL)

dGN/Gn (2=0)
1013GN/GN (z=0) [yr~1]

> —0.052 (95% CL)
> —7.5x 107° (95% CL)

> —0.018 (95% CL)

> —2.5x 107? (95% CL)

> —0.030 (95% CL)

> —4.3 x 107° (95% CL)

Gn/G (2=0) > 0.999975 (95% CL) > 0.999991 (95% CL) > 0.999984 (95% CL)
Om 0.2997057% 0.3070 £ 0.0066 0.2929 + 0.0062

os 0.82770-01% 0.8204 + 0.0099 0.8391 4 0.0095

rs [Mpd] 149.5 4 2.0 149.3 £+ 2.0 145.5 4+ 1.6

Ax? 1.4 —0.2 —3.8

Table 6.2: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the CC+Ng
model.
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P18

P18 + BAO

P18 + BAO + R19

Wh

We

Ho [km s~'Mpc~1]
-

In (1010 Ay)

s

§te’

my [eV]

0.02239 £ 0.00017
0.1205 £ 0.0013
68.5 &+ 1.8 (2.40)

00567t
. +0.013
0.9668 + 0.0053
< 0.0037 (95% CL)
< 0.31 (95% CL)

0.02241 £ 0.00014
0.1203 + 0.0011
68.6670°52 (3.40)
005640 0000
305178010
0.9672 £ 0.0038
< 0.0030 (95% CL)
< 0.17 (95% CL)

0.02247 % 0.00013
0.1203 4 0.0012
70.12 £ 0.81 (2.40)

+0.0063
0'057218‘8?:?0
3.05410 012
0.9700 + 0.0038
+0.0010
0.0026Z¢ 9013
< 0.19 (95% CL)

3

YPN

8GN /GN (2=0)

1013GN /G (2=0) [yr~?]

< 0.00094 (95% CL)
> 0.9963 (95% CL)

> —0.027 (95% CL)
> —1.1 (95% CL)

< 0.00076 (95% CL)
> 0.9970 (95% CL)
> —0.022 (95% CL)
> —0.93 (95% CL)

0.00065 £ 0.00057 (95% CL)
+0.0013
o 0190585
_0.019018:&())75
_0'78—0:31

Gn/G (z=0) > 0.9981 (95% CL) > 0.9985 (95% CL) 0.998715-00057
Om 0.30675512 0.3029 + 0.0076 0.2905 %+ 0.0068
o8 0.815175-622 0.82115-612 0.832 +0.013
rs [Mpc] 146.18 7058 146.3170°%7 145.560.78
Ax? 3.0 0.2 —3.3

Table 6.3: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the IG+m,,

model.
P18 P18 + BAO P18 - BAO 1 R19
o 0.02240 £ 0.00016 0.02242 & 0.00013 0.02252 + 0.00013
We 0.1203 =+ 0.0013 0.12011 + 0.00097 0.1197 + 0.0010

Ho [km s~ Mpc™?]
-
In (1019 4y)

68.0 + 1.4 (3.00)
+0.0063
0.0563;8'8??8)0
3.051Z¢7015

e (g
0.0564;8:8?57
3-04725515

69.62 0.71 (2.80)
+0.0067
0.0576;8'8?3?7
3.054%4515

ns 0.9674 4 0.0053 0.9681 + 0.0043 0.9720 + 0.0041

Npi [Mp] < 1.000026 (95% CL) < 1.000024 (95% CL) 1.00001973-99961% (95% CL)
my [eV] < 0.28 (95% CL) < 0.16 (95% CL) < 0.13 (95% CL)

YPN > 0.999926 (95% CL) > 0.999924 (95% CL) 0.999919275-596009"(95% CL)
BpN < 1.0000021 (95% CL) < 1.0000020 (95% CL) < 1.0000030 (95% CL)
5Gn/GN > —0.024 (95% CL) > —0.023 (95% CL) —0.018175:5099
1013GN/GN (z=0) [yr—'] > —-3.6x1079 (95% CL) > —3.3x 1079 (95% CL) (—=2.7713) x 1079
GN/G (2=0) > 0.999987 (95% CL) > 0.9999988 (95% CL) 0.9999904 19-6000054

Om 0.30970 011 0.3047 £ 0.0067 0.2935 £ 0.0064

os 0.814 + 0.010 0.82019-01% 0.831 + 0.012

rs [Mpc] 146.521037 146.587037 146.26 7055

Ax? 3.0 0.0 —1.5

Table 6.4: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the CC+m,,

model.
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P18

P18 4+ BAO

P18 + BAO + R19

wh 0.02218 + 0.00022 0.0222070 50578 0.02250 + 0.00020
We 0.1162 + 0.0034 0.1164 4 0.0031 0.1208 + 0.0030
Hy [km s~ Mpc~!] 67.7129 (2.60) 67.6 + 1.2(3.50) 70.25 +0.92 (2.20)
T 0.0556™0 00as 0.055419-0062 0.057679-0063

In (10'04,) 303970016 3.039 +0.016 3.056 4 0.016

ng 0.9577 & 0.0086 0.9582 4 0.0076 0.9710 + 0.0071
e < 0.0070 (95% CL) < 0.0047 (95% CL) < 0.0053 (95% CL)
m, [eV] < 0.26 (95% CL) < 0.19 (95% CL) < 0.19 (95% CL)
Negt 2.74 4 0.22 2.774+0.20 3.08 + 0.20

3 <0.0018 (95% CL) < 0.0012 (95% CL) < 0.0013 (95% CL)
VPN >0.9931 (95% CL) > 0.9954 (95% CL) > 0.9948 (95% CL)

5GN/.GN (ZZO)
1013GN/GN (Z:O) [yrfl]

> —0.050 (95% CL)
> —2.0 (95% CL)

> —0.034 (95% CL)
> —1.4 (95% CL)

> —0.038 (95% CL)
> 1.6 (95% CL)

Gx/G (2=0) > 0.9966 (95% CL) > 0.9977 (95% CL) > 0.9974 (95% CL)
Om 0.30370 022 0.3035 + 0.0081 0.2904 + 0.0069
o3 0.81410-42 0.81570:913 0.83370 013

rs [Mpc] 148.6 + 1.9 148.6 + 1.8 14534+ 1.6
Ax? 1.1 0.5 2.5

Table 6.5: Constraints on main and derived parameters (at 68% CL if not oth-
erwise stated) considering P18 in combination with BAO and BAO + R19 for the

1G4+ Neg+m, model.

P18 P18 + BAO P18 + BAO + R19
wh 0.02217 £ 0.00022 0.02222 £ 0.00020 0.02257 £+ 0.00018
we 0.1158 £ 0.0034 0.1158 4 0.0032 0.1212 £+ 0.0031

Hy [km s~ 'Mpc~1]

-
In (1010 Ay)

66.7 + 1.8 (3.20)
+0.0064
0.055475-0064

67.2 4+ 1.1(3.80)
+0.0063
0'0556—040075

69.96 + 0.93 (2.10)
+0.0069
0.0577+9-5069

3.039 £ 0.017 3.039 £+ 0.016 3.057 +0.016
ne 0.9582 % 0.0084 0.9596 + 0.0074 0.9745 + 0.0064
Ny [Mp] < 1.000050 (95% CL) < 1.000042 (95% CL) < 1.000040 (95% CL)
my [eV] < 0.26 (95% CL) < 0.17 (95% CL) < 0.14 (95% CL)
Nog 2.73+£0.21 2.75£0.21 3.14 £ 0.20
Y > 0.999950 (95% CL) > 0.9958 (95% CL) > 0.9960 (95% CL)
BpN < 1.0000041 (95% CL) < 1.0000035 (95% CL) < 1.0000033 (95% CL)

3G /Gx (2=0)
1013GN /G (2=0) [yr™?]

> —0.046 (95% CL)

> —6.7 x 107 (95% CL)

> —0.040 (95% CL)

> —5.7x 10792 (95% CL)

> —0.037 (95% CL)

> —5.5x 107 (95% CL)

Gn/G (2=0) > 0.999975 (95% CL) > 0.999979 (95% CL) > 0.999980 (95% CL)
Om 0.31070015 0.3056 % 0.0074 0.2939 £ 0.0064
o8 0.8080-022 0.81415-015 0.833 +0.012

rs [Mpc] 149.315 % 149.2 £1.9 145.4 £ 1.7

Ax? 3.0 0.4 —0.6

Table 6.6: Constraints on main and derived parameters (at 68% CL if not oth-
erwise stated) considering P18 in combination with BAO and BAO + R19 for the
CC+Ngg+m, model.
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Chapter 7

Isocurvature initial conditions in

scalar-tensor theories

7.1 Introduction

In the previous Chapters I have always assumed adiabatic initial conditions on the cos-
mological perturbations, following the discussion in Section [I.8 In the same Section,
though, I also discussed that the current constraints do not rule out completely isocur-
vature perturbations, but leave open the possibility of a small fraction of isocurvature
modes that can arise because of the multi-component nature of the cosmic fluid. In
the context of ST tensor theories, the scalar field o is yet another component which
is active during the expansion of the Universe, and therefore additional isocurvature
modes can arise.

This fact is very well known in the case of quintessence models with F(o) =
1, for which it was found that fluctuations are very close to be adiabatic during a
tracking regime in which the parameter of state of quintessence mimics the one of
the component dominating the total energy density of the Universe [307]. In the case
of thawing quintessence models, in which a tracking regime is absent, isocurvature
quintessence fluctuations are instead allowed [307,[308]. From the phenomenological
point of view, a mixture of curvature and quintessence isocurvature perturbations is
an interesting explanation of the low amplitude of the quadrupole and more in general
of the low-¢ anomaly of the CMB anisotropies pattern [308},309].

In this Chapter, I study the most general set of set of cosmological perturbations
produced in ST theories with the Lagrangian of the form ([2.2.3)), focusing in particular
on a new isocurvature mode exclusively due to the presence of o and absent in Einstein
Gravity. I analytically derive the initial conditions for Einstein-Boltzmann codes and
analyze its imprints on the CMB spectra. I conclude by constraining the allowed
isocurvature fraction using the recent CMB data from the last Planck release to

constrain their allowed fraction.

147



This Chapter is based on the research work in Ref. [5] and on the preliminary re-
sults that will be soon published in Ref. [6], where the phenomenology of isocurvature
modes is studied in the context of the IG. For this reason, in this Chapter, I focus
on the latter model, leaving the detailed analysis of isocurvature perturbations in ST
models described by the action in Eq. for future studies.

7.2 Initial Conditions in Scalar-Tensor Theories

The initial conditions on the cosmological perturbations are usually expressed as a
series in power of k7, where 7 is the conformal time [37,40]. To derive them, the
set of the perturbed Einstein-Boltzmann equations described in Chapters [1| and
has therefore to be expanded in powers of k7 — 0 and solved at every order in
k7. This amounts to considering perturbations deep in the radiation era and in the
super-horizon limit.

In order to solve the perturbed equations, expressions for the background quan-
tities, such as the scale factor a and the Hubble parameter H = a’/a, need to be
derived in the 7 — 0 limit too. In ST theories, also the scalar field o is needed. By
expanding the background equations in Section in powers of the conformal time

7, the following solutions at the leading order in 7 the are easily obtained:

Pro w b £207(146¢)
AT =\[3RT {1 16 Rroee U (7-21)

1 W 1 F; +4&%2(4 + 158) , ,
= |1+ = L 2.2
H(T) - { T F, + 66207 1 (7.22)
3 2F;(1 = 36) +27%07(1 4+ 26) , ,
o(t) = o; [1 + QSWT - 8(F; 4 6€202) T (723)
where I define w as 7
pmo__ VE; (7.2.4)

7 Vo Fi+ 6%
and F; = N + &o7. As can be seen from the solution above, the scalar field o is
initially frozen and starts to thaw because of its coupling to non-relativistic matter,
as discussed in the previous Chapters.

Inserting these solutions in the perturbed Einstein-Boltzmann equations, it is pos-
sible to derive the most general set of initial conditions. As mentioned above, this
consists in the usual adiabatic and isocurvature modes discussed in Section [1.8] sup-
plemented with a new isocurvature mode caused by the presence of the field o. The

results presented here are specific of the choice F(o) = Ngl + &0, but can easily
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generalized to every functional form of F(o).

I closely follow Ref. [40] in presenting the initial conditions, for which I explicitly
report the leading order in the k7 series expansion. To complete the characterization
of the initial conditions, I also report the leading order of the Newtonian potentials
and the curvature perturbation R. The latter is very important since, as discussed
in Section [I.8] adiabatic and isocurvature initial conditions are classified according to
their contribution to the comoving gauge curvature perturbation [35]. In particular,
the adiabatic mode leads R ~ C at leading order in the k7 expansion, where C'is a
normalization related to the primordial spectrum produced by inflation, whereas at
leading order R ~ 0 for isocurvature modes.

I closely follow Ref. [40] in presenting the initial conditions, for which I explicitly
report the leading orders in a double expansion in k7 and w7r. To complete the char-
acterization of the initial conditions, I also report the leading order of the Newtonian
potentials ® and ¥ and the curvature perturbation Raq = ® + (®'/H + ¥)/2[]

For later convenience I define the quantities:

R, = , Ry=—, R,=1—-R, R.=1-R, (7.2.5)

Adiabatic mode (ADI) The adiabatic mode in Einstein Gravity is slightly mod-
ified by the presence of the scalar field and becomes [2]:

4. 4 20 ,, wT

6, =0, = 30 = 30, =~k [1—?},

0 _Ck'r? - 3wt (R, + R, F; + 30&%07
T 36 20 R,F; ’

o —  Cras|4R +23  3wr ((8R2 4 50R,, + 275)F; + 60(5 — 4R,)&%0?)
Y18 4R, + 15 20(2R, + 15)(4R, + 15)F; ’

ACK* 12
o, =———
3(4R, + 15)

A(4R, + 15)(2R, + 15) "

(4R, — 5)(F, + 6€20?) ]

h = Ck2r? [1 — ﬂ] ,

5

o ORI (AR, +5) 150(4R, = 5)¢0? + (16RE + 280K, + 325)F,
= 6 | (4R, +15) 10(2R, + 15)(4R, + 15)F, ’
do _C&quT?’ N CEw?k274 [26202(24 + 45€) + (4 — 9€) F] (7.2.6)
o 4 40 (F; + 6£202) ‘ -

The Newtonian potentials are given by ¥ = % and ¢ = ﬁ at leading

order and the curvature perturbation is equal to R ~ C.

INote that Raq coincides with the right hand side of Eq. ((1.8.18)) for wiot = 1/3
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Baryon Isocurvature mode (BI)

5o 2wt | 6N L B+ 69)(15¢ + 2)o?

1T T3 16(F; + 66202) 16(F; + 6¢207) ’
5, = 6,
97 _ _W_Rf>k272 + szwz(Fz‘ + 652‘7@'2) k23 4 Ryw? (5(1 + 65)(155 + 22)‘72'2 + 2N§1) k27'3,

12 16R, F; 96(F; + 6£207)

- _ 1 15¢ + 2)0? + 2N
e 5 T+32(Fi+6£202-2) §(1468)(15 + 2)0; + 2N |,
6 = 146,

Ry*w*(F; + 6£%02) , 4
0, =10, — k28,
v 16R, F, !

o — _RbW(Fi + 6¢%07) 23

Y 6(2R, + 15)F; ’

6N? 3¢(1 + 6£)(15¢ + 2)0?
h = Rywr |1 — ol - :
ST T 6 T 6e20n) T T T 16(F + 6€%07) ’

__h

=
6o 3Rt | (65— 120N} L S+ GE(BE + 5)o}
o 2 12(F; + 6£202) 12(F; + 6£202) '

The Newtonian potentials are given by

Ryw(15¢07(1 — 6€) + 15N2 + 4R, F)
= — 7—’

8(2R, + 15)F;
Ryw (15607 (1 4 88) + 15N2 — 4R, F})

= T

8(2R, + 15)F;

at leading order and R ~ 0.

CDM Isocurvature mode (CDI)

2R.wT 6N, 3¢(1 + 6)(15¢ + 2)0}
57 = — — 5 WwT — 2 9 wT |,
3 16(F; + 6€202) 16(F; + 6¢%07)
5, =4,
0, - _W_Ji’ck27_2 RAWH(F; + 6€20i2)k27-3 N Rw? (£(1 4 6€)(15¢ + 22>‘7i2 +2N3) k273,
12 16R, F, 96(F; + 6£207)
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R.w 3R.wT?
2 32(F; 4 6£%07)

£(1+ 6£)(15¢ + 2)07 + 2N

pl|>

60 =1+ (sba
R w*(F; + 66%07)
0,=0,——= - B
g 16R, F, T
: 2,2
o, = _RCW(E + 65 0; ) k?27'37
6(2R, + 15)F;
6N 3¢(1 + 66)(15€ + 2)0?
h = Ruwr |1 — ol - :
TR 6o T T 16(E +6e%07) |
_
77 - 67
) . 5 — 12¢)N? 1 1 2
bo _ 3¢Rwr | BZLON, - LO+6)ASE+5)0f | 7oy
o 2 12(F; + 6&207) 12(F; + 6&%07)
The Newtonian potentials are given by
B Rew (15807 (1 — 66) + 15N + 4R, F;)
- 8(2R, + 15)F, B
. Rew (15607 (1 4 88) + 15N — 4R, F})
- 8(2R, + 15)F; ’
at leading order and, again, R ~ 0.
Neutrino Density Isocurvature mode (NDI)
R R, Kk*R,T?
6, = ——24,=——~ =
K R, R, i 6R, ’
0 _K*R,7 N 3(F; + 6£202)k*Ry R, wT?
" 4R, 16R2F; ’
k}2 . 2 k?2 . 3 y
8 = R,7 ’ 502_M+k474}%—7
S8R, 80R, 72(4R, + 15)
k21 k272
b = T ad o= e Ty
Lo E?RyR, 3w - R, k>
= T 10r, "7 T6@4R, +15)
oo PR R, T3w
— = 7.2.8
g; 32R«/ ( )
The Newtonian potentials are given by
R, 2R,
V=——— b=——""
iR, +15 iR, + 15
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at leading order and, again, R ~ 0.

Neutrino Velocity Isocurvature mode (NIV)

AR, RyR,wE;(R, +2) + 12&%07
0, = kT — X L r?
" T3R, 1RZF, T
kR, v (£ Yo} k372 v 2 i 2 o (i g7
6, — — R N 3Ry R, w( : + 6 JZ)kT—i— T°R,  27(Rywo;) }z (2 + 6§ Ul)sz
R, 4R2F; 61, 8RS F;
_ 3RyR,w(F; + 6£%02) (3R, — R7>k7'2
16 R3F; ’
” yw(F; 2) + 12207
5 :R—k’r _ 3R w(Fi(R, +2) +12¢%0; k72,
R, 16 R2F;
50 _ 3RbR,,w ]CTQ,
16R,
- 4 RbR,,w 2
0, = 3ij IR, kTe,
0 — (AR, +9) 5 5
Y 6(4R, +5) ’
. 2,2
o — or AR, w(F; + 6£%07) 2,
3(4R, +5) (4R, +5)(4R, + 15)F;
SRbR,,w 2
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SR,
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N=— =kt — T kTe,
3(4R, +5) 16 R, (4R, +5)(4R, + 15)F;
oo £Rle,w 2
I k 7.2.9
o; 2R7 g ( )
The Newtonian potentials are given by
4R,
V=—>9o=———
kE(4R, +5)T

at leading order and, again, R ~ 0.
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New Isocurvature mode (ISONMC) The initial conditions for the new isocurva-
ture mode, which unlike the previous ones is peculiar of ST theories, are the following:
Eo?  2wTE(1+680? K& Wi (14680

2
8y =0, = — 2L — i S L 1(156 — 4)N?
7 F, 3 F 162 6 F 16 (F 1 6&02) [( <

— 26(1 + 6£)(15¢ +2)0? |,

0 — &} Sure _WKTPE(L 4 68)a7 | 3Ry (F + 68%07)607 wkPT?

" 4F, 12 F, + 66207 R, F? 16

 wré(1+6807 | 3wT*(1 + 68)a} , (15§ —4)Nj
e = 2 F 1607 T 3a(F 1 66%07) £(1 + 66)(15¢ 4 2)0? 5 :
k212 {03
51) _60_’_ ] Fz )
9 — 50—@ kQ Wk27—2 €(1+6§)012
v AF; 12 F + 682072
_ 5‘71‘2 2 9
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§<1+6§)Uz‘2 2 2 5(1"‘65)012 2 2
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2 2,22
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6 F,+ 6202 ' 6(4R, + 15)F; 64(E+6§2 02)2
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A iF 46207 12 16(F + 6807)
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(7.2.10)

(6¢ — 2)Npy — 3¢(6¢ + 1)(19¢ — 2)o7

The Newtonian potentials are given by

v (But5) &of
(4R, +15) F;’
2R, +5) &0?
" (4R, + 15) F,

at leading order and R ~ 0.
Note that in all the isocurvature modes above, for simplicity, I omitted an overall

multiplying constant D = fisoC' which represents the isocurvature power spectrum.

The new mode (|7.2.10) has no analogue in Einstein Gravity. Crucial for the

existence and linear independence of this mode is the fact that the background scalar
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field is almost frozen deep in the radiation era, leading to a constant synchronous
gauge perturbation do. On the other hand, if the background scalar field is described
by a running or scaling solution, such a mode is negligible |310] and the set of initial
conditions is completely described by the ADI, CDI, BI, NDI and NIV modes [40].

Another feature of this new mode is that it is independent on the scalar field
potential, as can be read off from Eqgs. , and is completely characterized by
the non-minimal coupling with the Ricci scalar. The choice of the potential affects
only higher orders in the k7 expansion which are negligible. Egs. show that,
in the limit & — 0, all the leading orders in the perturbations vanish except for the
constant and second order perturbations in the scalar field. Going to higher orders in
the expansion, it can be seen that the first non-vanishing ones are those dependent
on the potential of the scalar field would become only source term for the scalar
field perturbations. This confirms results in the literature, where it was proved that
isocurvature perturbations due to ¢ have only a small effect in minimally-coupled
quintessence models [307-309,311].

As discussed above, the new mode gives a vanishing contribution to the gauge-
invariant curvature perturbation in the comoving gauge R [312] and therefore can
be accounted as an isocurvature. As a cautionary remark, however, note that the
definition of the curvature perturbation R and its interpretation in the Jordan frame
are not obvious [313]. Independently on the interpretation, though, the mode in
Egs. is a growing one and regular and independent on the other modes and
as such can have interesting physical implications that I discuss in the following.

As discussed above, the new mode gives a vanishing contribution to R,.q and
therefore can be accounted as an isocurvature mode. The variable R,.q should be
the leading order contribution of a gauge-invariant curvature perturbation in the
comoving gauge in the Jordan frame. The search and the full definition of gauge-
invariant curvature perturbation in a multi-fluid system in the Jordan frame is in

progress, but beyond the scope of this thesis.

7.3 Correlated Isocurvature and Adiabatic Pertur-

bations

As already stressed, CMB measurements tightly constrain the nature of the initial con-
ditions and only allow for a small fraction of isocurvature ones. Moreover, constraints
change depending on the correlation between adiabatic and isocurvature initial condi-

tions, which ultimately depends on the specific inflationary mechanism that generated
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the primordial fluctuations [314,315]. Before discussing the imprints of the new mode
on the CMB spectra, it is therefore necessary to discuss the formalism to deal with
such a correlation [316}317].

Defining the transfer functions for the pure adiabatic and isocurvature modes as

02(k) and ©F°(k) respectively, it is useful to define the following quantities:

= [ %(kﬁo)nm_l[@l&%kﬂ% (731)
v = [ (kf) O m), (732)

corr dk k (laa+iiso) 271 a iso
= [E(5) o7 (k)6 (k). (733

which contribute to the total angular power spectrum as follows
Crot = A?C? 1 B*Ci° + 2AB cos C;°™. (7.3.4)
The equation above can be conveniently expressed as

Crot = A?[CM 4 f2 CF° + 2 figo cos 0O, (7.3.5)
Therefore the correlation is parameterized by the two parameters fis, and cosf. An-
other possibility which is commonly used in the literature, see e.g. Refs. [317,318],
is to identify o = B?/(A? + B?) and 8 = cos6, so that in order to o can run from
a purely adiabatic mode (o = 0) to a purely isocurvature one (o = 1). The two
parameterizations are related by a = f2 /(1 + f2.) so that Eq. now reads:

Cit = (42 + BA)(1 = )i+l + 26+/al — @) 7). (73

Note that, since the isocurvature fraction allowed by data is usually very small, i.e.
fiso < 1, the dominant isocurvature contribution comes from the cross-correlation
with the adiabatic mode, which is in turn why the largest fraction of isocurvature
modes is allowed for uncorrelated modes with cosf = 0 [54]. In the following I will

consider nyso = n, for simplicity.

7.4 Impact on CMB anisotropies

Armed with the formalism of Section [7.3] I now go on to analyze the imprints of the
new mode in Eq. (7.2.10) on the CMB power spectra, focusing on the IG model [5,6].
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Figure 7.1: CMB anisotropy angular power spectra in temperature, solid lines, and
E-mode polarization, dashed lines. The black curve is the adiabatic case, thin curves
represent the three standard ACDM isocurvature modes and the thick curve represent
the new isocurvature mode. In order to compare the spectrum shapes I have assumed
equal amplitude between isocurvatures and adiabatic mode, i.e. fiso = 1. Note that
blue and red lines are superimposed. Figure taken from Ref. [5].
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Figure 7.2: [Left] Temperature angular power spectrum of adiabatic+isocurvature
modes for the different correlation extrema. |[Right] Relative differences to show the
impact of isocurvatures in IG. The difference between IG and the standard LCDM
corresponding model and the isocurvature contributions are plotted in pink and green,
gold and blue lines respectively. In particular I plot the change with respect to the
adiabatic case with the same coupling. Figure taken from Ref. [6].

In Fig.[7.1] T show the comparison of the new mode with the adiabatic and standard
isocurvature modes in the ACDM model within Einstein gravity. Fig.[7.1] also shows
the weak dependence of the new isocurvature mode on £ (v in the Figure) at least for
the small values consistent with the cosmological 95%CL upper bound ¢ < 0.75x 1073
[222] (updated to the time Ref. [5] was published) and for Solar System constraints
v < 0.6 x 1075 [134].

I show the total angular power spectra in temperature and polarization given by
the mixture of adiabatic and isocurvature, considering an isocurvature figo = 0.5 in
the left panels of Figs. and [7.3] and their relative differences in the right ones.
In order to isolate the effect of isocurvature perturbations, I show in pink the effect
of the adiabatic ST case with respect to the one in LCDM and in colored curves the
relative difference with respect to the IG adiabatic case with the same coupling. The
presence of the isocurvature perturbations has an impact on both intermediate and
small angular scales affecting also the acoustic peak region. In polarization, there is
also an evident effect on the reionization bump which represents an interesting target

for future CMB experiments dedicated to the large scale polarization measurements.

7.5 Constraints with Planck data

In this Section, I present Planck constraints on the new isocurvature mode.
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Figure 7.3: [Left] E-mode polarization angular power spectrum of adia-

batic+isocurvature modes for the different correlation extrema. [Right] Relative dif-
ferences to show the impact of isocurvatures in IG. The difference between IG and the
standard LCDM corresponding model and the isocurvature contributions are plotted
in pink and green, gold and blue lines respectively. Figure taken from Ref. [6].

Planck 2015. Constraints on this isocurvature mode were first obtained in Ref. [5]
and I start by discussing the results obtained therein. At the time of preparation of
Refs. [b] and [2], a serious bottleneck was a problem in the memory allocation of the
ClassIG code, which was responsible for a very limited capability to explore cosmo-
logical models by MCMC. For this analysis the value of the non-minimal coupling is
fixed to v =5 x 10™* to contain the computational cost of the MCMC investigation.
The only extra parameter with respect to the baseline adiabatic ACDM is therefore
the isocurvature fraction fiso, with a flat prior fiso € [0,0.8], but a smooth ACDM
limit cannot be recovered since the non-minimal coupling is not allowed to vanish by
construction. The three cases of correlation between adiabatic and isocurvature per-
turbations cos# = —1,0, 1 are considered separately as in Ref. [318]. Since at the time
of the publication of Ref. [5] P18 data were not public yet, the results discussed here
are obtained using P15 data, like in Section In order to speed up the MCMC
exploration, the foreground marginalized PlikLite likelihood at high ¢ is used instead
of the full binned Plik one: the use of PlikLite should be a good approximation for one
parameter extensions of ACDM such as the model including a fraction of isocurvature

perturbations with fixed correlation and spectral index [319].

The results of Ref. [5] show no evidence at a statistical significant level for the new
isocurvature mode Eq. . The 95% CL bounds from the MCMC exploration
are fiso < 0.07 for the fully anti-correlated case cosf = —1, fiso < 0.12 for the fully
correlated case cosf = 1 and fiso < 0.31 for the uncorrelated case § = 7/2. These

allowed abundances are slightly larger than those of the known isocurvature modes
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in Einstein gravity, although scale similarly with the degree of correlation [318].

Planck 2018. As of the time I am writing this thesis, an update of the results
presented above is in preparation and I will now present some preliminar results.
The problem of memory allocation of the ClassIG code reported in the analysis with
Planck 2015 data has now been resolved by a significant update of the ClasslG code
which allowed an efficient MCMC exploration of cosmological models beyond ACDM
as in [4].

Differently from the previous analysis, now the coupling v is varied together with
the six ACDM parameters and the isocurvature fraction fiso and now the Planck
2018 baseline likelihood, denoted as P18 in the previous Chapters, is used. Also here,
for simplicity, the relation njgo = ns is assumed and the extrema of the possible
correlations cos# = —1, 1 are considered separatelyE], as in [54].

The results for the isocurvature fraction and the coupling 7 are presented in Table
[7.1l In Figure I show the triangle plot representing the posterior distribution

Correlated Anti-Correlated
Yia < 0.00090 < 0.00105
fiso  <0.08 < 0.20

(=0.1075:55at 68% CL)

Table 7.1: Constraints on the amplitude of the isocurvature allowed and the non-
minimal coupling ~.

of the relevant parameters together with their correlation, and compare them to the
pure adiabatic case with figso = 0.

Note that the presence of isocurvature perturbations has an almost negligible
impact on the constraints on the coupling v. Nonetheless, introducing isocurvatures
changes the distribution of standard cosmological parameters, most notably the scalar
spectral index, as for other isocurvature modes [54].

In Table I present the constraints on the cosmological parameters the stan-
dard cosmological parameters compared with the adiabatic case. Note that almost all
cosmological parameters are perfectly recovered in presence of isocurvature. The shift
in the amplitude of scalar primordial fluctuations is within at 1-o as the differences
in the scalar spectral index. The only exception, although always compatible with
adiabatic initial conditions at one o, is the anticorrelated case that shows a slight de-
generacy of both isocurvature and coupling parameters with the normalization power

spectrum of scalar fluctuations A,.

'Note that here I am not presenting results for the uncorrelated case, as they are not ready yet.
I expect the results to be ready for the revised version of this thesis.
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Figure 7.4: Posterior distribution of cosmological+isocurvature parameters com-
pared with the adiabatic case. Preliminary results from Ref. @
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Correlated Anti-Correlated Adiabatic
10~ 2w, 2.244 £+ 0.015 2.242 £0.015 2.244 £ 0.015
Wedm 0.120 £ 0.001 0.121 +0.001 0.120 + 0.001
1006, 1.0417 £ 0.0003 1.0420 £ 0.0003 1.0418 £ 0.0003
In(10°A,)  3.04440.015  3.065 =+ 0.017 3.05075015

n 0.9660 & 0.0053  0.978470-00% 0.96870: 0081
Treio 0.055710 007 0.05551 0005 0.055510 007
ViG < 0.00090 < 0.00105 < 0.00094

Table 7.2: Comparison of cosmological parameters with the adiabatic case. I report
68% CL constraints except for upper limits, for which I report 95% CL limits.

7.6 Summary of the results

In this Chapter, I have studied in details the most general set of initial conditions
for the cosmological perturbations in ST theories. In particular, I have derived a new
regular and growing isocurvature mode which is due to the presence of the nearly
frozen non-minimally coupled scalar field during the radiation era. The mode, which
is absent in GR, is characterized by constant perturbations to the density contrast of
photons and neutrinos and to the perturbation to the scalar field do.

Its imprints on the CMB spectra are much stronger than the ones of the corre-
sponding mode in minimally-coupled quintessence models and are enhanced by the
non-minimal coupling F(o0), at least in the IG model studied in this Chapter. Fur-
thermore, the CMB spectra for this new mode are completely different from the ones
derived assuming other known isocurvature initial conditions.

Assuming the three benchmark cases of fully correlated, fully anti-correlation and
uncorrelated adiabatic and isocurvature initial conditions, I have shown how current
Planck data constrain the contribution of this isocurvature mode to be significantly
subdominant with respect to the adiabatic one. This is in line with results in the
literature, although the bounds I find are slightly less tight then the ones derived for

other Einstein Gravity isocurvature modes.
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Chapter 8

Discussion and Outlook

During my PhD, the field of observational cosmology has seen important devel-
opments. The last release by the Planck team in 2018 has provided a map of the
Cosmic Microwave Background (CMB) anisotropies of a quality never reached before,
the BOSS team released extraordinary constraints on the matter power spectrum
and on the Baryon Acoustic Oscillations (BAO) and the list is still very long. Fur-
thermore, a special mention goes to nascent field of Gravitational Waves astronomy
which is already revolutionizing our understanding of the Universe. One one hand,
this lead to improved constraints on the cosmological parameters describing the stan-
dard ACDM cosmological model. On the other, the unprecedented precision (and the
growing number) of cosmological and astrophysical measurements have increased con-
siderably some of the already existing tensions between datasets, such as the tensions
on Sg = Ugm and Hy. The latter is a tension between the model dependent
inference of the Hy parameter from early Universe data such as the CMB and other
cosmological observations and its model independent local measurements. Given the
constraining power of cosmological data and the number of unanswered questions,

this is a great time to explore new physics beyond the ACDM model.

The aim of my thesis work is to use data to constrain cosmological models of Scalar-
Tensor (ST) theories where a scalar field o is coupled to the Ricci scalar through a
function of the form F(o) = N7 + £o®. In these models, also named Non-Minimally
Coupled (NMC) model, the modification to gravity manifests itself in a time-variation
of the Newton constant Gy (o) = 1/87F (o) and its derivatives, the so called Post

Newtonian (PN) parameters, with respect to General Relativity (GR). Despite these
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theories are very simple and only constitute a small corner in the more complex space
of theoretically and observationally viable ST theories, the functional form of F(o)
introduced above, together with the freedom of choosing the potential V' (o), lead to
a vast phenomenology. I focus on those models in which the scalar field is frozen deep
in the radiation era and starts to move around the time of matter-radiation equality
and its energy density eventually redshifts away, leading to a late time evolution of
the Universe very close to ACDM. These peculiarities make these modified gravity
models candidates for early solutions to Hy tension. The latter has become more
and more pressing over the past few years and a series of recent works has shown
that the solutions which are most likely to work are ’early’ Universe ones that lower
the comoving sound horizon ry compared to ACDM. For this reason, throughout this
thesis, particular attention is given to the consequences of ST theories on the Hubble

tension.

The simplest scenario studied in this thesis is the one of a (nearly) massless scalar
field. This is implemented by choosing a potential of the form V(o) o< F(0)? or simply
by setting it to a cosmological constant V(o) = A, though cosmological data are not
able to tell the two choices apart, so they are effectively equivalent. When dealing
with these models, a strategy commonly used to deal with the tight constraints on the
Newton constant from laboratory experiments is to fix it to its measured value using a
shooting algorithm on one of the ST parameters. With this method I have contributed
to derive constraints the model parameters using a variety of cosmological data such
as Planck 2015 (P15) and 2018 (P18) measurements of the CMB anisotropies, BAO
and SHOES measurements of Hy (R19). Although in the most general NMC models,
cosmological constraints on the PN parameters are in agreement with Solar System
ones, in the Induced Gravity (IG) model, which is a redefinition of the Jordan-Brans-
Dicke (JBD) one, Solar System constraints are much tighter than cosmological ones.
Within NMC, we can alternatively set Ny = My, sample on the initial value of the
field o; and abandon the prior on the Newton constant. With these priors, the region
with & < 0, where the scalar field decreases in the matter dominated era, covers most
of the parameter space allowed by the data. As expected, all these possibilities lead to
an Hj significantly larger than the obtained in ACDM, regardless of particular choice
of dataset, although the Hubble tension is only alleviated.

A more complex situation is obtained when a small effective mass for the scalar
field o is induced by a a quartic potential V(o) = Ao?/4. In this case, dubbed Early
Modified Gravity (EMG) model, the scalar field eventually becomes massive compared
to the Hubble flow, rolls down its potential and undergoes damped oscillations around

its minimum in turn injecting a sharp amount of energy into the cosmic fluid, similarly
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to what happens in Early Dark Energy models. Specializing again to N, = My
the model is naturally in agreement with all the tests of gravity. An interesting
consequences of adding the potential is that the positive branch of the coupling & > 0,
which is not allowed in the massless case, is now consistent with cosmological data
and actually helps fit Large Scale Structure (LSS) data such as measurements of the
full shape of the matter power spectrum. Furthermore, compared to the massless
models, the Hj tension is significantly reduced, although the price to pay is a higher

degree of fine tuning in .

A common consequence of many modified gravity theories is a radical change in
the cosmological constraints on neutrino masses m, and on the number of active
relativistic species Nog. This, together with the fact that a large Neg is very well
known to significantly ease the tension, as our models, naively suggests a degeneracy
between the physics of Neutrinos and the one of ST theories. To this purpose, I have
used several combinations of cosmological datasets in the context of NMC and IG to
analyze their interplay with Neutrino physics, by opening the Monte-Carlo-Markov-
Chain (MCMC) exploration to the parameters m, and Neg. I discuss that only small
degeneracies are left by current data and the tension on Hj is only mildly affected
and constraints on m, and N.g are relaxed with respect to the ones in the ACDM

context.

Finally, the presence of a nearly frozen scalar field deep in the radiation era could
justify a new isocurvature mode in the set of initial conditions for the linear cosmolog-
ical perturbations. For this new growing and regular mode the imprints on cosmologi-
cal observables are boosted by the non-minimal coupling compared to its counterpart
in minimally-coupled quintessence models. As for other isocurvature modes it leads to
a vanishing contribution to the curvature perturbations at leading order in expansion
in powers of k7. An MCMC analysis with CMB P15 and P18 data shows that only
a small fraction of this new isocurvature mode (but slightly larger than other known
isocurvature modes in GR) is allowed in combination with the adiabatic one. The
latter fraction, quantified by the parameter fiso, depends on the specific correlation
between curvature and isocurvature modes and is found to be maximum when the
modes are uncorrelated, consistently with bounds on other isocurvature modes in the

literature.

The results of this thesis show that non-minimally coupled scalar field have a
wide range of implications for cosmology and are a very good candidate to address
the Hy tension. These are the simplest ST tensor theories that can be extended in
several ways from the model building point of view. It is therefore natural to expect

an even richer phenomenology by exploring, e.g. different shapes for the scalar field

164



potential, an issue that I am currently exploring, and/or non-trivial kinetic terms or
self-interactions in the Horndeski framework. In particular, these terms can induce
a scale dependent modification to the growth of structure that can help solve the Sg
tension, which is instead exacerbated in our models. This is also suggested by the
results for the EMG model, which show that the non-minimal coupling help improve
the fit to LSS data compared to minimally-coupled EDE ones. A necessary step in
this direction is also to analyze the models proposed in this thesis, and eventually
their extensions, in light of weak-lensing full likelihoods from collaborations such as
DES and KiDS.
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Appendix A

Activities carried out during the PhD

In this Appendix I list, in inverse chronological order, all the activities carried out

during my PhD. These include working as a reviewer for scientific journals, attending

schools, conferences, meetings and talks. A list of the publications and preprints that

I produced during this PhD is given at the beginning of this thesis.

Reviewing services

I have been working as a reviewer for manuscripts submitted to the following journals:

Journal of Cosmology and Astroparticle Physics (JCAP)

Physical Review D (PRD)

Physical Review Letters (PRL)

Astronomy & Astrophysics (A&A)

European Physical Journal C (EPJ C)

Talks in schools, workshops and conferences

. Scalar tensor theories and the Hy tension, web Ph.D. seminars, University of

Bologna, Italy, September 01, 2020

The Hy tension and non-minimal couplings to gravity, invited web lecture, APC,
Paris, France, June 30, 2020

Features at Small and Large Scales from Two Stages of Inflation, web seminar
for Gravity Meeting, ICG, Portsmouth, UK, June 03, 2020

Dark Energy as a Non-Minimally coupled scalar field: early and late time cos-
mological imprints, Ph.D. seminars, University of Bologna, Italy, January 13,
2020

Cosmological implications of a non-minimally coupled scalar field as Dark Energy
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10.

in 30th Texas Symposium on Relativistic Astrophysic, Portsmouth, UK, Decem-
ber 15-20, 2019;

Cosmological implications of a non- minimally coupled scalar field: Dark Energy
and Inflationary predictions, Theoretical Cosmology Seminar, ICG, Portsmouth,
November 6 2019;

Cosmological implications of scalar-tensor theories of modified gravity, UWC sem-

inar, University of Western Cape, Cape Town, South Africa, May 27 2019;

. Isocurvature Initial Conditions in JBD Models in [Testing Gravity 2019, Simon

Fraser University Vancouver, Canada, January 23-26 2019.;

Cosmological Perturbations in Scalar-Tensor Theories of Gravity, Ph.D. semi-
nars, University of Bologna, Italy, October 9, 2018;
Isocurvature Initial Conditions in Scalar-Tensor Modified Gravity Models in Uni-

versum Meeting 2018, Bologna, Italy, April 11-13 2018;

Participation to meetings and conferences

1. 3° Meeting Nazionale Collaborazione Fuclid, Bologna, Italy, January 10-12, 2020;

.\ 80th Texas Symposium on Relativistic Astrophysic, Portsmouth, UK, Decem-

ber 15-20, 2019;

3. The Hubble constant day University of Ferrara, Italy, June 11, 2019;

Universum Meeting 2019, Milano, Italy, April 3-5 2019.

5. Testing Gravity 2019, Simon Fraser University Vancouver, Canada, January 23-

26 2019.;

COSMOS meeting on astroparticle and fundamental physics with the CMB Uni-
versity of Ferrara, Italy, June 26-27, 2018;
Unwversum Meeting 2018, Bologna, Italy, April 11-13 2018.

Participation to schools

Theoretical Aspects of Astroparticle Physics, Cosmology and Gravitation - 2019,
GGI Institute, Firenze, Italy, March 11-22, 2019;

2. The Hubble constant day University of Ferrara, Italy, June 11, 2019;

Testing Gravity 2019, Simon Fraser University Vancouver, Canada, January 23-
26 2019.;
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4. CosmoTools 1§ RWTH Aachen University, Germany, April 23-27, 2018;
5. 11th TRR33 Winter PhD School,Passo del Tonale, Italy, December 11-16 2017.
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