
Universidad Nacional de La Plata

Facultad de Ciencias Exactas

Departamento de Física

Tesis presentada para optar al grado de

Doctor de la Facultad de Ciencias Exactas.

Modelos quirales para las interacciones

fuertes: fenomenología de mesones y

transiciones de fase en presencia de campos

magnéticos externos

María Florencia Izzo Villafañe

Director: Dr. Daniel Gómez Dumm

Año 2017





Resumen

La dinámica de quarks se encuentra descrita en el marco del Modelo Estándar por la

Cromodinámica Cuántica (QCD), que formalmente es una teoría de campos de gauge no

abeliana.

En procesos de altas energías la propiedad de libertad asintótica presente en QCD per-

mite obtener predicciones a partir del lagrangiano fundamental de la teoría. Sin embargo,

a bajas energías (À1 GeV) la constante de acoplamiento fuerte aumenta su valor de modo

tal que las técnicas perturbativas ya no son aplicables. En este régimen los quarks se en-

cuentran confinados en hadrones, y la simetría quiral se encuentra espontáneamente rota.

El empleo de teorías efectivas permite estudiar la fenomenología de las partículas ha-

drónicas y analizar el comportamiento de la materia fuertemente interactuante en sistemas

con temperatura y densidad finitas. En esta Tesis se estudiaron modelos efectivos para la

descripción de la interacción fuerte a bajas energías. En particular, se consideraron mode-

los de quarks relativistas del tipo Nambu–Jona-Lasinio con interacciones no locales para

dos sabores de quarks de modo de estudiar la fenomenología de los mesones livianos. Se

estudió también el acoplamiento con campos magnéticos externos uniformes, y el efecto de

éstos sobre las propiedades de los mesones y las transiciones de fase que sufre la materia

hadrónica a temperatura finita.

El presente trabajo está estructurado de la siguiente manera:

En el Capítulo 1 se presenta una breve introducción que describe el comportamiento

a bajas energías de la materia fuertemente interactuante indicando los problemas que im-

plica lidiar con QCD en la vecindad de las transiciones de fase. Se introducen dos de las

principales alternativas para hacerlo: Lattice QCD (LQCD) y modelos efectivos, en particu-

lar, el propuesto por Nambu y Jona-Lasinio (NJL). También se discuten los resultados que

motivan el estudio del efecto de campos magnéticos sobre la materia de quarks.

En el Capítulo 2 se discuten las características principales de la Cromodinámica Cuánti-

ca relevantes para la construcción de los modelos efectivos que serán utilizados, prestando

especial atención a las simetrías de sabor y las simetrías de gauge.

En el Capítulo 3 se presenta el modelo de Nambu–Jona-Lasinio en su versión local de
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dos sabores, detallando los cálculos del condensado quark-antiquark y de las propieda-

des mesónicas del sector escalar y pseudoescalar mediante el formalismo de bosonización,

para luego incorporar interacciones no locales y acoplamientos que den cuenta de la re-

normalización de la función de onda.

En el Capítulo 4 se extiende el modelo NJL no local incorporando acoplamientos entre

corrientes vectoriales y axiales. En este marco se estudian las características del sector de

mesones vectoriales livianos, con especial atención en el estudio de los mesones ρ y π en

el vacío.

El Capítulo 5 se concentra en el procedimiento por el cual se incluye un acoplamiento

con un campo magnético externo. Se incorpora dicho campo mediante la derivada cova-

riante, indicando cómo debe realizarse el cálculo del determinante fermiónico correspon-

diente a la acción en la aproximación de campo medio. Luego, se desarrolla la acción efec-

tiva a órdenes superiores en las fluctuaciones de los campos a fin de encontrar expresiones

analíticas para las masas de los mesones π y σ, así como el ancho de decaimiento débil del

pion, en función de la magnitud del campo magnético.

En el Capítulo 6 se comienza explicando el formalismo de tiempo imaginario para in-

corporar temperatura finita, teniendo en cuenta a su vez el acoplamiento con el “Loop de

Polyakov” (PL). En la segunda sección del capítulo se incorpora este formalismo al modelo

descrito en el Cap. 5 para estudiar las transiciones de fase en función de la temperatu-

ra. En ambos casos se calculan los condensados quirales y la traza del loop de Polyakov

en función de la magnitud del campo magnético y la temperatura, comparando nuestros

resultados con los obtenidos en LQCD.

En el Capítulo 7, finalmente, se resume el trabajo realizado y se exponen las conclusio-

nes.
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Capítulo 1

Introducción

De acuerdo con el Modelo Estándar de las partículas elementales [1] los hadrones son

estados ligados de fermiones llamados quarks, que interactúan entre sí a través de boso-

nes mediadores llamados gluones. La teoría que describe dichas interacciones es una teoría

de gauge no abeliana llamada Cromodinámica Cuántica (o QCD, por Quantum Chromody-

namics) [2, 3]. En esta teoría, tanto los quarks como los gluones poseen una propiedad

conocida como “carga de color”, análoga a la carga eléctrica de la electrodinámica, que

es la responsable de las interacciones fuertes. Uno de los objetivos de QCD es describir

adecuadamente cómo los quarks y los gluones interactúan para formar los estados ligados

que conforman la materia hadrónica, los cuales se clasifican en bariones y mesones.

El hecho de que el grupo de simetría interna SU(3) de color sea no abeliano hace que

QCD tenga características muy diferentes a las de la Electrodinámica Cuántica. En particu-

lar, QCD tiene dos propiedades sumamente importantes: libertad asintótica y confinamiento.

La libertad asintótica implica que en procesos en los cuales el momento transferido es muy

grande, tales como dispersiones profundamente inelásticas, los quarks se comportan como

casi libres, es decir, la interacción entre dos quarks debida al intercambio de gluones resulta

ser muy pequeña. Esto permite obtener predicciones a partir del lagrangiano fundamen-

tal de la teoría utilizando teoría de perturbaciones, esto es, a través de un desarrollo en

serie de potencias de la constante de acoplamiento quark-gluon, partiendo de un sistema

de quarks no interactuantes. Por el contrario, para bajos momentos transferidos (À 1 GeV)

QCD es altamente no lineal y da lugar al confinamiento, lo cual significa que los quarks

no existen como partículas libres sino que forman estados ligados debido a que la intensi-

dad de interacción entre ellos aumenta con la distancia. Este fenómeno se refleja en que las

variables de color se acomodan necesariamente en estados conocidos como “singuletes”,

cuya carga neta de color es nula y que requieren de más de un quark o antiquark para

formarse.
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Por otro lado, también son de importancia las propiedades de simetría ante transforma-

ciones globales en el espacio de sabor. El lagrangiano de QCD está construido de manera

de ser aproximadamente simétrico ante los grupos SU(2) de isospín y SU(2) axial en el

sector de quarks livianos. Sin embargo, en el estado de vacío de QCD la simetría axial se

rompe espontáneamente debido a las interacciones, pudiendo caracterizarse la fase corres-

pondiente mediante parámetros de orden como el condensado quiral, el cual está a su vez

relacionado con la generación dinámica de masa. De hecho, la ruptura espontánea de la

simetría axial de QCD es la responsable de la mayor parte de la masa de los nucleones.

Debido a estas características, poco después del advenimiento de QCD se conjeturó que

a temperaturas y/o densidades suficientemente elevadas podrían existir nuevos estados

de materia, conocidos con el nombre genérico de plasma de quarks y gluones (QGP) [4, 5],

que se encuentran caracterizados por el deconfinamiento de color. Esto motivó el estudio

teórico de las fases posibles de QCD en tales condiciones extremas y reveló una estructura

de fases potencialmente compleja, cuya descripción continúa resultando hasta el día de

hoy un desafío tanto teórico como experimental [6, 7, 8].

Los efectos dinámicos de las rupturas de simetrías son de gran importancia en el es-

tudio del diagrama de fases de QCD ya que existen indicios de que la simetría axial se

encuentra restaurada en la fase QGP. Además, las evidencias experimentales y teóricas

conducen a suponer que las transiciones de fase de deconfinamiento y de restauración de

simetría quiral ocurren en forma prácticamente simultánea a densidades bajas, y que el pa-

saje de una fase a otra tiene lugar a través de una transición suave del tipo crossover [9, 10].

Sin embargo, el mecanismo preciso que da lugar a esta transición simultánea aún no ha

sido comprendido en su totalidad.

Se cree que en la Naturaleza el plasma de quarks y gluones existió en el universo tem-

prano, en los primeros instantes posteriores al Big Bang, cuando la temperatura era muy

elevada, y que luego, a medida que el Universo se fue enfriando, tuvo lugar el proceso de

hadronización. Hoy en día se considera que es posible que aún exista alguna forma de ma-

teria de quarks deconfinados en el interior de objetos compactos [11] como las estrellas de

neutrones, cuyo interior profundo correspondería a la región de altas densidades y bajas

temperaturas en el diagrama de fases. Las estrellas compactas [12] son objetos extrema-

damente estables y densos, y constituyen uno de los posibles escenarios finales en el ciclo

de vida de una estrella. Al producirse una supernova se eyecta al espacio gran parte de la

materia que constituye la estrella y su núcleo se comprime fuertemente. El remanente de

dicha explosión puede convertirse en una estrella compacta cuando la masa del objeto se

encuentra por debajo del límite de Chandrasekhar. En esta etapa de su ciclo de vida ya no

se producen reacciones de fusión, y la fuerza gravitatoria es equilibrada por una presión

de origen cuántico debida al principio de exclusión de Pauli.
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CAPÍTULO 1. INTRODUCCIÓN

El fuerte interés por estudiar las propiedades de la materia de quarks (o el QGP) y las

condiciones bajo las cuales es posible producirla ha motivado en los últimos años la cons-

trucción de grandes instalaciones experimentales que permitan obtenerla en el laboratorio.

Una de ellas es el Relativistic Heavy Ion Collider (RHIC) en Brookhaven, USA [13], donde se

llevan a cabo estudios relacionados con el plasma de quark y gluones a través de colisiones

entre iones pesados a energías relativistas. También en el Large Hadron Collider ubicado en

el CERN en la frontera franco-suiza cerca de Ginebra se realizan experimentos de este tipo,

estando el detector Alice especialmente dedicado a este fin [14]. Además de éstas, existen

otras instalaciones en construcción, el Facility for Antiproton and Ion Research (FAIR) [15] en

Darmstadt, Alemania, y el NICA [16] en Dubna, Rusia.

En este tipo de aceleradores el objetivo es colisionar iones pesados como plomo, plata

u oro a energías de centro de masa del orden de 100 - 200 GeV o más. Durante el proceso

de colisión se alcanzan temperaturas extremadamente altas, por encima de la temperatura

crítica esperada de deconfinamiento, Tc � 170 MeV [17]. Los resultados actuales sugieren

que el QGP ha logrado formarse [18, 19] durante períodos de tiempo del orden de 10 fm/c,

incluso exhibiendo propiedades de equilibrio termodinámico a pesar de su corta duración,

y además dando evidencias que confirman la hipótesis de que la transición entre las fases

hadrónica y QGP es de tipo crossover.

Es importante destacar que las condiciones producidas en aceleradores de iones pe-

sados corresponden esencialmente a la zona de baja densidad del diagrama de fases. Si

bien en el FAIR se espera que se puedan alcanzar densidades algo mayores, los efectos de

densidad finita más relevantes están aún lejos de observarse en este tipo de experimentos,

relegando la posibilidad de observar fases densas al estudio de estrellas compactas.

Para poder describir la materia hadrónica y de quarks, así como las transiciones de fa-

se, es esencial disponer de métodos que permitan analizar la dinámica asociada a QCD. Si

bien se conoce la teoría fundamental que describe toda la dinámica del sistema, para proce-

sos físicos de bajas energías resulta muy difícil obtener información relevante partiendo en

forma directa de ella. Para describir las propiedades estáticas de los hadrones, tales como

sus masas, constantes de decaimiento, etc., así como para estudiar la transición entre la fase

hadrónica y la de materia de quarks, es necesario considerar el rango de momentos trans-

feridos pequeños, y resulta fundamental desarrollar formalismos que permitan estudiar la

teoría en esta región mediante técnicas no perturbativas. Un método posible consiste en

resolver numéricamente las ecuaciones de movimiento en un espacio-tiempo discretizado,

lo que se denomina “QCD en la red” o Lattice QCD (LQCD) [20]. Disponiendo de suficiente

poder de cómputo es posible disminuir el espaciamiento de la red e incrementar el tamaño

del sistema de manera de acercarse tanto al límite del continuo como al termodinámico. Al

mismo tiempo es posible muestrear un número suficientemente grande de configuraciones
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de manera de disminuir el error estadístico. Sin embargo, los métodos tipo Monte Carlo

comúnmente utilizados para evaluar la función de partición son confiables solamente en

el caso en el que el potencial químico es cero [21]. La extensión de los cálculos a potencial

químico finito presenta grandes dificultades, y si bien existen algunos resultados, éstos se

encuentran aún en discusión.

Otra de las maneras posibles de encarar el estudio de QCD a bajas energías consiste en

desarrollar modelos efectivos. Un modelo efectivo constituye una simplificación de la teo-

ría completa de modo de facilitar su análisis, y a la vez contiene en su formulación ciertos

ingredientes básicos de la teoría original que permiten reproducir aspectos específicos y

realizar predicciones cuantitativas de interés. Una ventaja de los modelos efectivos frente

a LQCD es que pueden ser extendidos a potencial químico finito sin mayor dificultad, y

de este modo permiten estudiar en forma completa el diagrama de fases. Entre los varios

modelos posibles se encuentran el MIT Bag model [22], el modelo sigma lineal [23] y el que

se usará como punto de partida en esta Tesis, el modelo de Nambu–Jona-Lasinio (NJL).

El modelo NJL fue desarrollado en el año 1961, en el que Y. Nambu y G. Jona-Lasinio

publicaron dos trabajos [24, 25] cuyo objetivo era estudiar las interacciones entre nucleo-

nes, con el propósito de explicar en forma unificada las grandes masas de los bariones y

las masas intermedias o pequeñas de los mesones (en particular, la masa pequeña que dis-

tingue al pion de los demás hadrones) a partir de las propiedades de simetría de isospín

que exhiben las interacciones nucleares. En sus trabajos Nambu y Jona-Lasinio partieron

de un lagrangiano con una interacción de dos cuerpos entre nucleones (los bloques básicos

de materia conocidos hasta ese momento) no masivos que respeta la simetría quiral. Dicha

invarianza se rompe debido a los efectos de las interacciones. Este mecanismo produce

que los campos fundamentales que representan a los nucleones adquieran masas diná-

micas, dando lugar también a bosones de Goldstone, los cuales son identificados con los

piones.

Por esa época QCD aún no había sido formulada. Hacia mediados de los años 70,

cuando los quarks fueron reconocidos como los componentes elementales de la materia

hadrónica en lugar de los protones y neutrones, el modelo NJL empezó a ser abandonado,

debido a su naturaleza no fundamental y a su no renormalizabilidad. Sin embargo, como

consecuencia de las dificultades antes mencionadas para tratar QCD a bajas energías, en

la segunda parte de la década del 80 surgió la idea de reinterpretar el modelo NJL como

un modelo para un sistema de quarks interactuantes. Se supone así que los grados de li-

bertad de los gluones se pueden “congelar” dando lugar a interacciones efectivas entre los

quarks.

En su versión más sencilla, el lagrangiano del modelo NJL contiene términos locales

de interacción del tipo escalar-isoescalar y pseudoescalar-isovectorial entre fermiones, que
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CAPÍTULO 1. INTRODUCCIÓN

son los que reproducen la dinámica de ruptura de simetría quiral de QCD. Este modelo,

así como sus extensiones que incluyen interacciones locales en otros canales, ha sido utili-

zado en numerosos estudios de las propiedades hadrónicas, tanto considerando simetrías

SU(2) como SU(3) de sabor (incluyendo los quarks up, down y strange), y a su vez ha per-

mitido analizar la respuesta de la materia de quarks ante efectos de temperatura, potencial

químico [26, 27, 28] y campo magnético [29]. También ha sido uno de los modelos más

usados para investigar la existencia de fases superconductoras de color [30]. Sin embargo,

para dar cuenta del mecanismo de deconfinamiento no basta con un modelo puramente

fermiónico sino que es necesario incluir en forma explícita la dinámica de los grados de

libertad gluónicos. Recientemente ha sido propuesto que éstos sean incorporados median-

te el acoplamiento de los quarks a un campo de fondo de color asociado al parámetro de

orden usualmente utilizado para describir el deconfinamiento, esto es, el llamado loop de

Polyakov [31, 32]. El modelo así obtenido se conoce bajo el nombre de modelo de Polyakov–

Nambu–Jona-Lasinio (PNJL) [33, 34, 35].

Un problema del modelo NJL, relacionado con el uso de interacciones locales, es que se

debe introducir algún tipo de regularización para evitar que los diagramas involucrados

en la determinación de la autoenergía de los quarks, las masas de los mesones, las cons-

tantes de acoplamiento, etc., resulten divergentes. Esto introduce ciertas ambigüedades en

el cálculo de dichas cantidades, así como de las correcciones debidas a los loops de meso-

nes. A partir de los 90’s han aparecido trabajos que proponen el uso de interacciones no

locales para solucionar este tipo de inconvenientes, a cambio de algunas complicaciones

en el cálculo. En verdad, el carácter no local de las interacciones surge naturalmente en el

contexto de diversos métodos bien establecidos para describir la dinámica a bajas energías

de los quarks, como por ejemplo el modelo de líquido de instantones [36] o las técnicas

de resumación de Schwinger-Dyson [37]. Una de las propuestas de mayor interés surge

de la relación entre el modelo NJL y el modelo de intercambio de un gluon, según el cual

se utiliza el propagador de un gluon modificado fenomenológicamente para generar las

interacciones efectivas entre quarks. El propagador gluónico efectivo provee una forma

natural de introducir una no localidad dentro de la interacción quark-quark [38], y dicha

no localidad se puede caracterizar mediante un factor de forma g(p), que depende del

modelo. El uso de interacciones no locales tiene diversas ventajas ya que, por ejemplo, las

anomalías son automáticamente preservadas [39], y la acción efectiva resulta finita a todo

orden en el desarrollo en loops [40], sin necesidad de introducir parámetros adicionales.

Por otro lado, mediante una adecuada elección del factor de forma es posible lograr que

el propagador fermiónico no tenga polos reales y que, por lo tanto, los quarks no puedan

aparecer como estados asintóticos. Esto ha sido propuesto [41] como una forma de imple-

mentar la propiedad de confinamiento que posee QCD, lo que en el modelo NJL local no
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es posible hacer. Más aún, utilizando este tipo de interacciones es posible obtener depen-

dencias en el momento del propagador efectivo de quarks que son consistentes con las

obtenidas mediante técnicas de LQCD.

En este marco, uno de los objetivos de esta Tesis es investigar el comportamiento de la

materia hadrónica proponiendo una extensión del modelo NJL que incluya acoplamien-

tos no locales entre corrientes vectoriales y axiales que satisfacen las simetrías de QCD.

Asimismo, consideraremos una interacción no local que conduce a la renormalización de

función de onda (WFR, Wave Function Renormalization) de los quarks. Ésta permitirá obte-

ner una descripción del propagador de quarks similar a la que resulta de los cálculos de

LQCD, y realizar comparaciones cuantitativas con los resultados obtenidos en ese forma-

lismo.

Otro objetivo es estudiar, mediante los modelos no locales, el efecto de campos magné-

ticos intensos sobre el comportamiento de materia fuertemente interactuante. Estudios de

este tipo se encuentran motivados por el hecho de que existen indicios claros de que tanto

en las colisiones de iones pesados como en los núcleos de estrellas compactas se producen

campos magnéticos extremadamente elevados. Por ejemplo, en el RHIC, en una colisión

típica, los campos magnéticos pueden alcanzar los 1019G (� 0,06 GeV2 en unidades na-

turales) [42, 43] en la región central. En estrellas compactas, por otra parte, los campos

magnéticos pueden ser tan grandes como 1015 G [44] en su superficie, y alcanzar valores

en el rango de 1018
� 1020 G en el núcleo [45, 46, 47], aunque las estimaciones para estos

últimos valores son dependientes del modelo utilizado. Por ello, es interesante estudiar

cuáles podrían ser los efectos de campos magnéticos intensos sobre la materia de quarks,

y, en particular, determinar si el diagrama de fases sufre modificaciones considerables. Uno

de los efectos más discutidos es el de “Catálisis Magnética” [48], que se refiere a la estabili-

zación del condensado quiral en la fase hadrónica al aplicar un campo magnético externo.

La interpretación básica del fenómeno es que dicho campo favorece el antialineamiento

de los espines del quark y el antiquark que están correlacionados en un condensado. Si

bien la realización de este fenómeno en la fase de vacío se encuentra relativamente com-

prendida, a temperatura finita y densidades bajas existen comportamientos más difíciles

de explicar en forma cualitativa. De hecho, existen cálculos realizados mediante LQCD

donde se observa que a temperaturas intermedias (del orden de 150 MeV) el condensado

quiral disminuye con el campo, contrariamente a lo esperado. Esto a su vez trae apareja-

da una disminución en dicha región de la temperatura crítica de transición de fase quiral.

Este comportamiento, conocido como “Catálisis Magnética Inversa” [49], es difícil de repro-

ducir mediante modelos efectivos y, en particular, modelos como el NJL local predicen

la tendencia exactamente contraria, es decir, un aumento de la temperatura crítica con el

campo magnético [48, 50, 51]. A densidad finita y temperaturas bajas, por otro lado, existe
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otra manifestación del fenómeno de catálisis magnética inversa, el cual está asociado a la

disminución del potencial químico crítico como función del campo magnético.
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Capítulo 2

Generalidades sobre simetrías y QCD

En este capítulo detallaremos algunos de los aspectos básicos del Modelo Estándar

(ME) que resultan relevantes para el desarrollo de este trabajo. En principio nos enfocare-

mos en la noción de simetría dentro de la teoría cuántica de campos, y las simetrías internas

en la física de partículas elementales que consideramos de mayor importancia en el rango

de energía en el cual desarrollaremos el modelo NJL.

Asimismo, haremos un repaso breve de la Cromodinámica Cuántica: su formulación

teórica, sus propiedades más características y las predicciones exitosas de la teoría, y con-

cluiremos con sus limitaciones y los métodos utilizados hoy en día para sortearlas.

2.1. Simetrías

Actualmente el ME representa el marco teórico fundamental para describir los fenó-

menos dentro de la física de partículas. Este modelo es una teoría relativista de campos

cuánticos, que describe la estructura fundamental de la materia y el vacío considerando

las partículas elementales como entes irreducibles cuya cinemática está regida por las in-

teracciones entre ellas. Dentro del ME se describen exitosamente tres de las cuatro fuerzas

fundamentales: la fuerza electromagnética, la fuerza débil y la fuerza fuerte. A su vez, el

modelo permite clasificar todas las partículas elementales conocidas hasta el momento.

Los fermiones elementales pueden dividirse en dos grandes categorías de acuerdo a

cómo interaccionan entre sí: leptones y quarks. Los quarks no se observan en forma aislada

sino que interactúan fuertemente quedando confinados en hadrones: mesones y bariones,

más los hipotéticos tetraquarks, pentaquarks y moléculas hadrónicas. A los seis leptones

y los seis sabores de quarks conocidos hasta el momento se los puede agrupar en tres

generaciones o familias de dos partículas cada una.

Por otro lado, el ME explica las fuerzas que se observan a nivel macroscópico como el

resultado de un intercambio de partículas conocidas como las mediadoras de la fuerza. Las
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partículas mediadoras son de naturaleza bosónica (los fotones, los bosones W� y Z0, y los

gluones), y por lo tanto no siguen el principio de exclusión de Pauli.

La teoría cuántica de campos (QFT por Quantum Field Theory) provee el contexto ma-

temático para el desarrollo del ME, a partir de proponer un lagrangiano que determina la

dinámica de la teoría, y donde cada tipo de partícula es descrita en términos de un campo

dinámico definido sobre el espacio-tiempo. La construcción del ME se realiza del modo

en que lo hacen las mayoría de las teorías de campos, postulando primero un número de

simetrías del sistema y luego escribiendo el lagrangiano renormalizable más general para

los campos que satisfagan dichas simetrías.

Es por ello que resulta clave para comprender las interacciones fundamentales estudiar

y conocer a fondo las simetrías que éstas presentan.

2.1.1. Simetrías exactas y aproximadas

Se dice que existe una simetría en la naturaleza cuando algún cambio en las variables

de un sistema deja la física fundamental intacta. Las simetrías describen invarianzas ante

transformaciones de los campos cuánticos. Por ejemplo, una traslación en el espacio del

tipo xµ Ñ xµ + aµ implica una transformación en un campo φ(x) escalar de modo que

φ(x)Ñ φ(x + a).

El análisis de simetrías en la teoría de campos se enfoca en el lagrangiano, que es una

función escalar dependiente de varios campos ϕi y sus primeras derivadas Bµ ϕi. A par-

tir del lagrangiano, o de su integral temporal denominada acción S, se puede describir la

dinámica de las partículas y las ecuaciones de movimiento del sistema en que se esté tra-

bajando. Asimismo, el Teorema de Noether afirma que para cualquier invarianza de la acción

ante una transformación continua de los campos, existe una carga Q que es independiente

del tiempo (Q̇ = 0) y está asociada con una corriente conservada (Bµ Jµ = 0). Este teorema

cubre tanto las simetrías internas como las espacio-temporales.

Las consideraciones sobre las simetrías son también útiles en situaciones donde hay

una simetría aproximada. Puede suceder que un lagrangiano presente una simetría en el

límite en que ciertos parámetros en él son iguales a cero o iguales entre sí. En ese límite

la invarianza tendría una serie de consecuencias físicas que no se podrían obtener si esos

mismos parámetros tuvieran valores no nulos, o si la diferencia entre ellos fuera distinta

de cero. Sin embargo, si éstos son en algún sentido “pequeños” los términos no invarian-

tes pueden ser tratados como una perturbación y las consecuencias predichas son todavía

aproximadamente válidas. De hecho, cuando la interacción que rompe la invarianza tiene

un comportamiento bien definido bajo la transformación de simetría correspondiente, su

efecto puede ser generalmente analizado en términos de la base de estados de partículas
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no perturbadas utilizando el teorema de Wigner-Eckart. El sentido preciso en el cual los

términos de ruptura de simetría pueden ser considerados pequeños depende del problema

en cuestión. En la práctica, la utilidad de una simetría aproximada raramente se conoce a

priori, pero es evidente luego de que sus predicciones son corroboradas experimentalmen-

te. Si la simetría no es exacta entonces, en principio, las corrientes asociadas y las cargas

no se conservarán.

También es posible encontrar las llamadas anomalías cuánticas, las cuales hacen refe-

rencia a simetrías de langragianos clásicos para las cuales la corriente asociada no resulta

conservada a nivel cuántico.

2.1.2. Simetrías de Gauge

El lagrangiano de Dirac, en ausencia de más términos, describe la propagación de

quarks libres. Éste viene dado por

L = iψ̄γµ
Bµψ�mψ̄ψ, (2.1)

y es invariante ante transformaciones del tipo ψ Ñ e�iθψ, ya que ψ̄ Ñ eiθψ̄, y en la com-

binación ψ̄ψ los factores exponenciales se cancelan. Por razones históricas estas transfor-

maciones son llamadas transformaciones de gauge globales, o transformaciones de fase

global.

Sin embargo, también pueden construirse transformaciones de fase o de gauge locales,

para las cuales θ es un parámetro con dependencia en las coordenadas espacio-temporales,

y por lo tanto el campo transforma como ψ(x) Ñ exp [�iθ(x)] ψ(x). A la hora de aplicar

la transformación local al lagrangiano de Dirac, éste ya no mantiene la invarianza de gau-

ge. En particular, términos cinéticos como iψ̄γµ
Bµψ, generan la aparición de un término

adicional proporcional a Bµθ(x)

iψ̄(x)γµ
Bµψ(x)Ñ iψ̄γµ

Bµψ(x) + ψ̄(x)γµψ(x)Bµθ(x). (2.2)

Para lograr que el lagrangiano sea un invariante de la transformación local se necesita

reemplazar la derivada parcial por una derivada Dµ extendida que transforme de tal modo

que absorba el nuevo término derivativo y cumpla que

Dµψ(x)Ñ exp [�iθ(x)] Dµψ(x). (2.3)

A este nuevo operador Dµ se lo denomina derivada covariante, y para su construcción se

necesitan nuevos campos Aµ, llamados campos de gauge, que frente a las transformaciones

locales mantengan la invarianza del lagrangiano cancelando los términos proporcionales

a Bµθ(x). Para ello se define la transformación de gauge local de los campos Aµ, como

Aµ Ñ Aµ + Bµθ(x), (2.4)
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y la derivada covariante vendrá dada por

Dµ � Bµ � iAµ(x). (2.5)

De este modo estamos agregando un nuevo campo en la dinámica de nuestro sistema. Pa-

ra que el campo Aµ sea dinámico y podamos ahora también calcular sus correspondientes

ecuaciones de movimiento debemos incluir un término cinético, que sea invariante de gau-

ge y de Lorentz. Esto se logra definiendo Fµν = Bµ Aν � Bν Aµ y agregando al lagrangiano

un término proporcional a FµνFµν,

L = iψ̄γµDµψ�mψ̄ψ�
1
4

FµνFµν. (2.6)

Observando el nuevo lagrangiano se descubre que si Aµ es el potencial electromagnético,

los nuevos términos que se agregaron reproducen el lagrangiano de Maxwell y las inter-

acciones electromagnéticas. Se podría decir entonces que la interacción es una manera en

que la naturaleza impone la invarianza, y que las propiedades de la interacción electro-

magnética pueden obtenerse simplemente de exigir que se cumpla la simetría de gauge.

La transformación que hemos descrito corresponde al grupo U(1), es decir que es una

transformación unitaria proporcional a la identidad. Yang y Mills implementaron la inva-

rianza local para transformaciones pertenecientes a los grupos de simetría SU(N). En este

caso, tenemos transformaciones del tipo

U = exp [�iλaθa(x)] (2.7)

donde las matrices λa con a = 1, � � � , N2
� 1 pertenecen al conjunto de matrices unitarias

generadoras del álgebra del grupo SU(N), y los θa(x) son los correspondientes paráme-

tros dependientes de las coordenadas espacio-temporales asociados a los generadores. Al

construir la derivada covariante para este caso se incorporan tantos campos de gauge co-

mo generadores tenga el correspondiente grupo de simetría (por ejemplo, tres en el caso de

SU(2), ocho para SU(3), etc). La transformación de estos campos no es trivial. Las diferen-

cias con el caso U(1) surgen de que en estos casos los grupos de simetría son no abelianos, y

por lo tanto los generadores no conmutan. Entonces, se pueden definir dos tipo de teorías

de gauge: las abelianas o de Weyl, y las no abelianas o de Yang-Mills.

En el contexto de la simetría SU(3) de color de las interacciones fuertes y la simetría

SU(2)bU(1) de las interacciones electrodébiles la teoría de Yang-Mills toma un rol pre-

ponderante en la física de altas energías. Explicaremos más en profundidad este tipo de

teorías en las secciones posteriores aplicado directamente al estudio de la simetría SU(3)c

de la cromodinámica cuántica.
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2.1.3. Simetría quiral

Se dice que los fermiones tienen quiralidad bien definida cuando sus espines están

alineados (dextrógiros o “right”) o anti-alineados (levógiros o “left”) con sus impulsos. Si

introducimos proyectores para ambas quiralidades, dados por

PR =
1 + γ5

2
y PL =

1� γ5

2
, (2.8)

donde γ5 es el operador de quiralidad, los campos dextrógiro, ψR, y levógiro, ψL, pueden

construirse según

ψR = PRψ, ψL = PLψ , ψ̄R = ψ:Rγ0 = ψ̄PL , ψ̄L = ψ:Lγ0 = ψ̄PR . (2.9)

En esta base el lagrangiano libre de Dirac L0 correspondiente a fermiones sin masa toma

la forma

L0 = iψ̄Lγµ
BµψL + iψ̄Rγµ

BµψR . (2.10)

Como vemos, L0 se descompone en dos subespacios ortogonales left y right, que además

se encuentran desacoplados entre sí. Este lagrangiano resulta invariante ante el grupo pro-

ducto de transformaciones globales U(1)RbU(1)L dadas por

U(1)L : ψL Ñ exp(�iθL)ψL , U(1)R : ψR Ñ exp(�iθR)ψR , (2.11)

con fases constantes arbitrarias θL,R. Esta simetría es la llamada simetría quiral U(1)LbU(1)R

cuyas transformaciones son proporcionales a la identidad.

Nos interesa analizar las propiedades del lagrangiano ante transformaciones en el es-

pacio de sabor de los quarks. En el “límite quiral”, donde m̂ = 0, obtenemos el caso más

simétrico posible. En general el término de masa del lagrangiano de Dirac no es invarian-

te ante transformaciones unitarias arbitrarias en el espacio completo de sabor, en virtud

de las grandes diferencias entre las masas de las distintas especies de quarks. Sin embar-

go, si nos restringimos al subespacio de sabores livianos, existen ciertas simetrías que se

satisfacen en forma aproximada.

En este trabajo nos concentraremos únicamente en el subespacio de sabores up y down,

cuyas masas se encuentran en el rango 4-10 MeV. Por lo tanto, estudiaremos la invarianza

de L0 ante el grupo de transformaciones quirales de sabor U(2)LbU(2)R que viene dado

por

U(2)L : ψR Ñ exp
(

iθR
a τa

)

ψR, U(2)R : ψL Ñ exp
(

iθL
a τa

)

ψL, (2.12)

con a = 0, 1, 2, 3, donde cada una de éstas actúa independientemente sobre el subespacio

correspondiente, rotando los estados en el espacio de sabor. Aquí, τ0 es la matriz identi-

dad en espacio de sabor, mientras que τk, con k = 1, 2, 3, es el conjunto de matrices de
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Pauli y θL,R
a son los ángulos que parametrizan las transformaciones. Aplicando el teore-

ma de Noether, la invarianza del lagrangiano ante estas transformaciones conduce a las

siguientes corrientes conservadas

Bµ j
µ
R,a = 0 Ñ j

µ
R,a = ψ̄R(x)γµτaψR(x), (2.13)

Bµ j
µ
L,a = 0 Ñ j

µ
L,a = ψ̄L(x)γµτaψL(x).

Los correspondientes operadores de carga se obtienen integrando la componente µ = 0 de

la corriente en las coordenadas espaciales,

QR
a =

»

d3xψ+
R (x)τaψR(x) , QL

a =

»

d3xψ+
L (x)τaψL(x). (2.14)

Al ser operadores de simetría, QR
a y QL

a conmutan con el hamiltoniano, por lo cual existe

una base de autoestados con número de ocupación de estados de quiralidad bien defi-

nida. Los operadores de carga satisfacen las mismas relaciones de conmutación que los

generadores del grupo y actúan como generadores de las transformaciones quirales. Al-

ternativamente, podemos escribir

V
µ
a = j

µ
R,a + j

µ
L,a = ψ̄(x)γµτaψ(x) , A

µ
a = j

µ
R,a � j

µ
L,a = ψ̄(x)γµγ5τaψ(x) , (2.15)

donde V
µ
a y A

µ
a son corrientes vectoriales y vectoriales axiales conservadas (BµV

µ
a = Bµ A

µ
a =

0). Entonces, la simetría quiral U(2)LbU(2)R es equivalente a la invarianza ante el grupo

U(2)VbU(2)A con transformaciones en el espacio de sabor

U(2)V : ψ Ñ exp
(

iθV
a τa

)

ψ , U(2)A : ψ Ñ exp
(

iθA
a γ5τa

)

ψ . (2.16)

Por otro lado, si consideramos una matriz arbitraria perteneciente a alguna de las trans-

formaciones de (2.12) notamos que, como el generador τ0 conmuta con los restantes gene-

radores, podemos escribir

exp (iθaτa) = exp (iθ0τ0) exp (iθkτk) . (2.17)

Dado que los generadores τk son de traza nula, el segundo factor del lado derecho de la

ecuación (2.17) tiene determinante 1 y pertenece al grupo SU(2), mientras que el factor aso-

ciado a a = 0 corresponde a U(1) y es proporcional a la identidad, por lo tanto multiplica a

los estados u y d por la misma fase. Como el caso de las transformaciones (2.15) es análogo,

el lagrangiano resulta invariante ante

U(2)R bU(2)L = U(2)V bU(2)A = U(1)V b SU(2)V bU(1)A b SU(2)A. (2.18)

El análisis anterior de las simetrías no es válido cuando las partículas tienen masa no

nula y se incorpora el término de masa Lm = �ψ̄m̂ψ. Las cuadridivergencias de las co-

rrientes dejan, en general, de ser cero, y se rompe la simetría axial U(1)A explícitamente.
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Se pasa a obtener:

BµV
µ
a = 2iψ̄(x)[m̂, τa]ψ(x) (2.19)

Bµ A
µ
a = 2iψ̄tm̂, τauγ5ψ(x). (2.20)

En la aproximación mu = md � m0 � 0 tenemos que m̂ = diag(mu , md) = m012�2 lo cual

implica la conservación de la corriente vectorial. El lagrangiano toma la forma

Lm = �m0ψ̄ψ = �m0 (ψ̄LψR + ψ̄RψL) (2.21)

y por lo tanto los subespacios left y right quedan acoplados mediante el término de masas,

con lo cual no pueden realizarse sobre ellos transformaciones independientes que sean

simétricas. Sin embargo, este término continúa siendo simétrico ante una transformación

conjunta en la cual los estado left y right son rotados en el mismo ángulo, correspondiente

al grupo SU(2)V , como puede observarse en (2.19) donde el comutador se anula. Es decir

que la introducción del término de masa reduce la simetría de la siguiente manera

SU(2)V b SU(2)A Ñ SU(2)V , (2.22)

manteniéndose conservada únicamente la corriente vectorial (simetría de isospín). Para la

corriente axial, la ruptura de simetría es pequeña en virtud de las masas corrientes peque-

ñas y, por supuesto, la conservación de esta corriente se recupera tomando el límite quiral.

Es importante notar que tomando mu � md se dará lugar a una ruptura explícita del gru-

po SU(2)V también. Las masas de los quarks u y d suelen tomarse iguales a pesar de que

existen estimaciones según las cuales estas cantidades son levemente diferentes. En este

trabajo tomaremos siempre mu = md, aunque veremos más adelante que la interacción

con un campo magnético externo rompe la simetría SU(2)V de manera explícita.

Finalmente, las matrices de transformación de los grupos U(1)V y U(1)A que podemos

deducir realizando el mismo procedimiento a partir de las transformaciones presentes en

(2.11) están dadas por

U(1)V = exp(iθ), U(1)A = exp(iγ5θ). (2.23)

La primera de éstas está asociada a la conservación del número bariónico, mientras que la

segunda, si bien es una simetría del lagrangiano clásico quiral, no se mantiene al cuantizar

la teoría, dado que la medida de integración en la integral de camino correspondiente no

es invariante ante dicha transformación. Este fenómeno es conocido como anomalía axial.

2.2. Ruptura espontánea de simetrías

Gran parte de la física se altas energías del siglo pasado se construyó sobre los prin-

cipios de simetría, formulando las teorías de las interacciones fundamentales a partir de
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proponer lagrangianos invariantes ante ciertos grupos de transformaciones que respetasen

las simetrías internas del sistema. Fue alentador cuando en 1960 inspeccionando el espec-

tro de partículas elementales se descubrió que existen más simetrías internas de las que

se creía. Podemos encontrar simetrías exactas y aproximadas, y también simetrías que se

“rompen espontáneamente”, en el sentido de que no se comportan como transformaciones

de simetría de los estados físicos de la teoría, y en particular, no dejan el estado de vacío

invariante.

Cuando se considera una simetría exacta del lagrangiano, como ocurre en el límite

quiral de QCD, existen distintas realizaciones posibles en lo que respecta al espectro de

estados. En el modo de Wigner-Weyl, la simetría del estado de vacío es la misma que la

del lagrangiano. En este caso, el vacío no se encuentra degenerado y de hecho transforma

de acuerdo a la representación trivial del grupo, por lo que es aniquilado por los operado-

res de carga asociados a la simetría. Por otro lado, en la realización de Nambu-Goldstone,

el estado fundamental se ve modificado por las interacciones, de modo que ocurre una

ruptura espontánea de la simetría y ésta se mantiene ante a lo sumo un subconjunto de

los operadores del grupo original. Los restantes generadores ya no aniquilan el vacío, sino

que crean excitaciones no masivas que se encuentran degeneradas con el fundamental, y

limitan las interacciones de dichas excitaciones a bajas energías. Estas partículas, conocidas

como bosones de Goldstone (o bosones de Nambu-Goldstone), se encontraron por primera

vez en modelos de Godstone y Nambu, y pruebas generales de su existencia teórica fueron

luego dadas por Goldstone, Salam y Weinberg [52, 53]. Por otro lado, las rupturas espon-

táneas de simetrías aproximadas implican la presencia de partículas de espín cero y masa

pequeña, comúnmente llamadas pseudo-bosones de Goldstone. Este tipo de procesos son im-

portantes en la teoría de interacciones fuertes, como también en áreas de física de materia

condensada.

Un ejemplo clásico de una ruptura de simetría en la física de partículas elementales es

la simetría quiral aproximada que describimos en la sección anterior. De acuerdo con los

conocimientos actuales, esta simetría surge porque hay dos campos de quarks, up y down,

que tienen masas relativamente pequeñas, pero no iguales a cero, y por lo tanto la simetría

SU(2)A no es exacta. La ruptura espontánea de esta simetría quiral aproximada implica la

existencia de pseudo-bosones de Goldstone de baja masa con los mismos números cuán-

ticos de los generadores de la simetría rota: deben ser estados de paridad negativa, espín

cero, isospín igual a 1, número bariónico cero y extrañeza cero. Justamente ocurre que los

más livianos de todos los hadrones son los piones, que tienen precisamente estos números

cuánticos, por lo que se los identifica como los pseudo-bosones asociados con la ruptura

espontánea de la simetría quiral aproximada.

Si la simetría quiral fuera exacta a nivel del lagrangiano (límite quiral) los piones no

16



CAPÍTULO 2. GENERALIDADES SOBRE SIMETRÍAS Y QCD

tendrían masa. Su pequeña pero finita masa refleja la ruptura explícita de la simetría a

través de las masas de los quarks u y d. De una forma análoga, el octete de mesones pseu-

doescalares corresponde a los bosones de Goldstone (ocho en este caso) asociados con la

ruptura espontánea de la simetría SU(3)A (extensión de la simetría quiral para el caso de

tres sabores de quarks) [54].

Los bosones de Goldstone obedecen varios teoremas que proveen la base para la “teoría

de perturbaciones quirales” (Chiral perturbation theory, χPT [55]). A diferencia de una teoría

de perturbaciones en las constantes de acoplamiento, χPT corresponde a un desarrollo

en serie de potencias de la masa de los quarks y el momento de los mesones, y puede

ser aplicada en regiones donde la constante de acoplamiento de QCD, αs, no permite un

tratamiento perturbativo.

2.3. QCD

La cromodinámica cuántica es una teoría de gauge de Yang-Mills invariante ante las

transformaciones del grupo de simetría SU(3)c llamado de color, donde 3 es el número de

“colores”. Esta teoría describe las interacciones fuertes y tiene a los quarks y gluones como

los grados de libertad básicos. QCD se formula en términos de campos de fermiones que

representan a los quarks y campos de gauge para los gluones. Ambos tipos de partículas

llevan carga de color, la cual es responsable de esta interacción.

La teoría se define por un lagrangiano

LQCD = ψ̄
(

iγµDµ � m̂
)

ψ�
1
4

G
µν
a Ga

µν, (2.24)

donde Dµ es la derivada covariante

Dµ = Bµ � ig
λa

2
Ga

µ, (2.25)

y Ga
µν es el tensor de fuerza del campo de los gluones

Ga
µν = BµGa

ν �BνGa
µ + g f abcGb

µGc
ν. (2.26)

El campo ψ corresponde a los quarks, e incluye grados de libertad internos de color

y de sabor. En la teoría completa de QCD los estados de color son 3 y se denominan red

(r), green (g), y blue (b), mientras que los estados de sabor son 6 y se definen como up (u),

down (d), strange (s), charm (c), bottom (b), y top (t). Estos estados se introducen mediante

un producto tensorial resultando en 18 espinores. La matriz de masas en el espacio de

sabor está dada por m̂ = diag(mu , md, ms, mc, mb, mt), mientras que g es la constante de

acoplamiento de QCD, Ga
µ es el conjunto de campos vectoriales no masivos asociados a
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los gluones con a = 1, � � � , 8, λa es el conjunto de matrices de Gell-Mann, generadoras

del álgebra del grupo SU(3), y f abc indican las constantes de estructura completamente

antisimétricas del grupo, que satisfacen las relaciones

[λa, λb] = 2i f abcλc, (2.27)

tr(λaλb) = 2δab.

Los campos de quarks transforman de acuerdo a la representación fundamental de este

grupo, la cual es de dimensión 3. En dicha representación, los generadores son las matrices

de Gell-Mann, en términos de las cuales podemos escribir una transformación arbitraria

del grupo de la siguiente manera

U = exp(iλaθa), (2.28)

donde θa son los correspondientes parámetros asociados a los generadores. Ahora bien, el

lagrangiano completo de QCD se construye partiendo del lagrangiano de Dirac y requi-

riendo que el mismo sea invariante ante transformaciones locales de SU(3)c en lugar de

globales. Es decir, en cada punto del espacio se efectúa una transformación independiente,

convirtiéndose los parámetros θa en funciones de las coordenadas, como hemos discutido

en la Sec. 2.1.2. Igual que en el caso de un grupo abeliano, es necesario definir en la teo-

ría una derivada covariante a través de la cual introducimos el conjunto de campos que

transforman adecuadamente de modo de cancelar los términos adicionales que se produ-

cen. En este caso se debe incorporar un campo por cada generador del grupo de simetría,

resultando en los 8 campos vectoriales identificados con los gluones. De esta forma, tam-

bién se introduce el acoplamiento entre el sector de gluones y el de quarks. Para que el

lagrangiano resulte invariante los campos de gauge Ga
µ deben transformar conjuntamente

de acuerdo a

Ga
µ Ñ Ga

µ �
1
g
Bµθa

� f abcθbGc
µ. (2.29)

Finalmente, el término en (2.24) que involucra al tensor de fuerza del campo de los gluones

de la ecuación (2.26) describe la dinámica propia de los campos de gluones en ausencia de

quarks. Las propiedades de transformación de los campos Ga
µ ante el grupo SU(3)c local

conducen a que deba agregarse un término adicional en el tensor, en comparación con

el caso abeliano, para mantener la invarianza del lagrangiano. En efecto, éste contiene,

además del término de propagación, el término f abcGb
µGc

ν que generará la aparición de

acoplamientos entre los propios gluones a través de vértices de tres y cuatro campos.

Una de las principales consecuencias de la presencia de los términos de autointeracción

es el comportamiento de la constante de acoplamiento en función del impulso transferido

Q. Es sabido que al estudiar un proceso cualquiera en una teoría de gauge renormalizable,
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la inclusión de sucesivos diagramas de Feynman que se presentan en un desarrollo en serie

puede reestructurarse de modo de expresar el resultado final en términos de una constante

de acoplamiento “vestida” que depende de Q. Como consecuencia, la interacción tendrá

comportamientos distintos según la escala de energía involucrada en el proceso estudiado,

y su dependencia funcional exacta estará determinada por los detalles de las interacciones

en consideración. En el caso particular de QCD, la constante de acoplamiento tiende lo-

garítmicamente a cero cuando el impulso transferido tiende a infinito. Esta propiedad,

conocida con el nombre de libertad asintótica, permite estudiar procesos a altas energías

mediante teoría de perturbaciones. Por otro lado, para impulsos transferidos pequeños,

y en particular por debajo del parámetro de escala de la teoría llamado ΛQCD, la cons-

tante de acoplamiento es mayor que uno, por lo cual no es adecuada como parámetro de

expansión en un desarrollo en serie. Ahora bien, dado que las escalas de energía de liga-

dura de los hadrones se encuentran por debajo de este umbral, el estudio de la mayoría

de las propiedades hadrónicas debe tratarse mediante métodos alternativos de naturaleza

no perturbativa. El propio mecanismo de confinamiento, que hace referencia al hecho em-

pírico de que los objetos con color no existen como grados de libertad asintóticos, y para

el cual no existe aún una explicación analítica satisfactoria, es una de estas propiedades.

Entre los métodos a los que se puede recurrir para el estudio de la cromodinámica cuántica

a bajas energías se encuentra el desarrollo de modelos efectivos de quarks, como los que

se tratarán en este trabajo en los capítulos siguientes.

Una técnica alternativa que ha sido desarrollada para tratar la dinámica de QCD a bajas

energías es la que se conoce como “Lattice QCD” (LQCD) o QCD en la red. Ésta consiste en

resolver las ecuaciones de QCD numéricamente en forma explícita en un espacio-tiempo

discretizado. En este contexto la función de partición se puede estimar utilizando el mé-

todo Monte Carlo, es decir, aproximando la integral funcional correspondiente como una

suma sobre configuraciones que están pesadas por la acción. El método de muestreo por

importancia permite reducir los cálculos a un número limitado de configuraciones, según

la probabilidad con la que ellas pueden ocurrir, e�SE , lo cual implica que este método tiene

sentido si la acción euclídea es una cantidad definida positiva.

Sin embargo, la técnica de LQCD presenta algunas dificultades importantes. Una de

ellas tiene que ver con que al discretizar la teoría, la cantidad de puntos en la grilla usada

no puede ser demasiado alta puesto que el problema se vuelve intratable numéricamente.

Por otro lado, todavía en muchos casos resulta dificultoso hacer cálculos confiables usando

las masas de los quarks livianos u y d, con lo cual se debe trabajar con valores por encima de

los considerados “realistas” para luego extraer conclusiones basados en la extrapolación,

complementando esto con el uso de modelos efectivos. Una limitación más fundamental

aparece al intentar estudiar LQCD a densidades finitas, debido al hecho de que al agregar
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el potencial químico µ la acción euclídea resulta en general una cantidad compleja, por lo

que las funciones de peso usadas para el muestreo estadístico se vuelven imaginarias y

no hay manera de comparar las probabilidades asociadas a distintas configuraciones. Este

es el llamado “problema del signo”, que impide realizar cálculos para valores grandes

de µ/T, donde T es la temperatura. Se han desarrollado varios métodos para tratar de

superar esta complicación, pero la región de altas densidades y temperaturas bajas como

la que puede esperarse en algunos núcleos estelares aún está lejos de poder ser analizada

con este tipo de técnicas.

Es importante tener en cuenta que, como consecuencia del fenómeno de confinamiento

en la fase de vacío, las masas de los quarks no son observables físicos. Por esta razón,

cuando las masas corrientes de los quarks son usadas como parámetros de entrada de

la teoría, sus valores están sujetos a un margen de variabilidad debido a que dependen

de la escala de renormalización considerada. La determinación de las masas corrientes

de los quarks con cierto grado de precisión puede, de hecho, realizarse mediante modelos

efectivos resultando en cantidades dependientes de la escala. A partir de éstos, se concluye

que los quarks de sabores u, d, y s son relativamente livianos, encontrándose sus masas por

debajo de ΛQCD.

El descubrimiento en 1973 de la libertad asintótica en teorías de gauge no abelianas co-

mo QCD realizado por Gross, Wilczec y Politzer [56, 57] persuadió a los físicos teóricos de

que QCD es la teoría correcta para las interacciones fuertes. Este cálculo explicaba los re-

sultados controversiales de un famoso experimento realizado en 1968 en SLAC (Stanford,

EE.UU.) sobre dispersión inelástica entre electrones y nucleones, donde las interacciones

fuertes parecían hacerse más débiles a energías altas. Pero la importancia histórica del des-

cubrimiento de la libertad asintótica en teorías de Yang-Mills no se debe únicamente a que

explica un viejo resultado experimental, sino a que por primera vez abrió la perspectiva

de realizar cálculos perturbativos confiables de procesos de interacción fuerte, al menos

a altas energías. La disminución de la constante de acoplamiento fuerte a altas energías,

o distancias cortas, naturalmente implica que ésta aumenta a bajas energías o distancias

largas, y se creyó que esto explicaría por qué no se detectan quarks o gluones libres. De

acuerdo con esta hipótesis, sólo partículas neutras de color como los bariones o mesones

pueden aparecer en forma aislada. Esto continúa siendo una hipótesis más que un teo-

rema, pero hay pocas dudas de su veracidad. Aunque los quarks y gluones no pueden

materializarse como partículas libres, pueden ser observadas indirectamente ya que dan

origen a jets hadrónicos en procesos de colisión a altas energías.

Por otra parte, una característica importante del lagrangiano de QCD es su aproxima-

da simetría quiral, es decir, su simetría ante transformaciones globales SU(N f )LbSU(N f )R.

Como explicamos anteriormente, esta simetría sería exacta en el límite correspondiente a
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una teoría de N f sabores sin masa. Para el caso de la simetría SU(N f )V es suficiente con

tener N f sabores degenerados. Si bien en QCD todos los quarks tienen masas no nulas,

la simetría quiral es un concepto útil en el sector de los quarks u y d (N f = 2) e incluso,

aunque con menor exactitud, cuando el quark s es incluido también (N f = 3). Esta carac-

terística se debe a que las masas corrientes de los quarks u y d se encuentran en el orden

de unos pocos MeVs y son aproximadamente iguales, por lo cual es de esperar en princi-

pio que la simetría quiral SU(2)AbSU(2)V se encuentre aproximadamente conservada. La

SU(2)V es, en efecto, una simetría aproximada del vacío de QCD, reflejada por la existen-

cia de multipletes de isospín casi degenerados en el espectro hadrónico, y la existencia de

corrientes conservadas aproximadas en procesos dominados por la interacción fuerte.

A su vez, la evidencia experimental y teórica indica que la simetría SU(2)A se realiza

en el modo de Goldstone. Dado que el operador de carga QA cambia de paridad de los

estados, la realización de esta simetría en el modo de Wigner-Weyl implicaría la existen-

cia de un “compañero quiral” para cada partícula hadrónica, es decir, por cada multiplete

de isospín la existencia de otro multiplete degenerado con paridad opuesta, lo cual no es

observado en la naturaleza. Además, las masas hadrónicas se encuentran muy por encima

de las masas corrientes de los quarks livianos, sugiriendo la existencia de un mecanismo

dinámico de generación de masa, lo cual a su vez genera la ruptura de la simetría. Estas

observaciones sugieren que una formulación adecuada de QCD puede obtenerse partien-

do de un lagrangiano aproximadamente simétrico ante SU(2)AbSU(2)V , donde la simetría

axial se rompe en forma dinámica. En este marco, los operadores QA de la simetría rota

crean un triplete de isospín de bosones de Goldstone, que pueden identificarse con los

piones. Además, dado que los mismos son no masivos, el hecho de que los componen-

tes del triplete piónico tengan masa excepcionalmente baja en relación a otros hadrones

(mπ/mN � 0, 15) sostiene la idea de que los piones son bosones de Goldstone, cuya masa

no nula se origina en la leve ruptura explícita de simetría producida por las masas corrien-

tes.

La ruptura de simetría del estado de vacío de QCD y la subsiguiente generación de

masa dinámica se encuentran estrechamente relacionadas con la existencia de condensa-

dos no nulos formados a partir de productos bilineales de campos de quarks y de gluones.

Entre ellos se encuentra el condensado quiral, definido como el valor de expectación en el

vacío xψ̄ψy, que puede expresarse como

xψ̄ψy = �i

»

d4 p

(2π)4 Tr S(p), (2.30)

donde S(p) es el propagador de quarks del lagrangiano completo de QCD, y la traza se

toma sobre los espacios de color, sabor y Dirac. El operador ψ̄ψ no es invariante ante trans-

formaciones SU(2)A, por lo cual un valor medio no nulo del mismo indica que el vacío de
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QCD se realiza en el modo de Goldstone de dicha simetría. De este modo, el condensado

quiral suele considerarse como un parámetro de orden para la ruptura espontánea de la si-

metría quiral. Las estimaciones teóricas presentes para el condensado sugieren que esto es

efectivamente así. Por ejemplo, según cálculos basados en el álgebra de corrientes y las re-

glas de suma de QCD se tiene que |
�

f̄ f
D

|

1/3 = 190� 260 MeV, donde f representa al sabor

u o al d. Mientras tanto, cálculos típicos en LQCD conducen a |
�

f̄ f
D

|

1/3 = 231� 8� 6 MeV.

En una teoría efectiva formulada en términos de grados de libertad de quarks, también

pueden ser relevantes otros condensados asociados a operadores bilineales más generales,

de la forma xψ̄Oψy. En particular, el valor medio no nulo de O = i~τγ5 puede relacionarse

con la presencia de condensados de piones.
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Capítulo 3

Modelo de Nambu–Jona-Lasinio

En este capítulo presentaremos las características más importante del modelo de Nam-

bu Jona-Lasinio (NJL) local y de sus extensiones con interacciones no locales. Trabajaremos

para ello en el marco de la simetría SU(2) de sabor, considerando interacciones de tipo es-

calar y pseudoescalar.

3.1. Introducción al modelo NJL

Si queremos partir de un lagrangiano fermiónico efectivo más simple que el de QCD

pero con características y simetrías similares, nos vemos naturalmente inducidos a consi-

derar el lagrangiano utilizado por Y. Nambu y G. Jona-Lasinio en sus trabajos de 1961 [24,

25]. Como comentamos en el Cap. 1 este modelo fue originalmente concebido para des-

cribir nucleones interactuantes, por lo que es necesario reinterpretar los grados de liber-

tad fermiónicos en términos de quarks, suponiendo que las interacciones locales de dos

cuerpos se corresponden con una interacción efectiva, resultante de complicados procesos

gluónicos.

La principal utilidad de este modelo radica en que puede ser diseñado para incorpo-

rar las simetrías globales de QCD, y permite estudiar en detalle el mecanismo de ruptura

espontánea de la simetría quiral y sus manifestaciones en la física de hadrones, como la

generación dinámica de masa de los quarks, la aparición de un condensado de quarks y el

papel de los piones como bosones de Goldstone. Tal vez el punto débil más importante del

modelo es que no posee la propiedad de confinamiento de color de QCD. Su aplicabilidad

está entonces limitada a aquellos fenómenos hadrónicos y nucleares que no dependen sen-

siblemente de los detalles del mecanismo de confinamiento. No obstante, cabe esperar que

para muchos aspectos importantes de la física hadrónica de bajas energías, las simetrías de

QCD sean tan o más importantes que el confinamiento.

Para comenzar entonces analizaremos el modelo NJL más simple, basado en el siguien-
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te lagrangiano de dos sabores:

LNJL = ψ̄(iγµ
Bµ � m̂)ψ + Lint, (3.1)

donde la matriz de masas de quarks desnudas es m̂ = diag(mu , md), y el lagrangiano de

interacción Lint viene dado por un acoplamiento local de cuatro fermiones. Esta interacción

debe satisfacer la simetría quiral SU(2)RbSU(2)L junto con la simetría de color SU(3)c y las

simetrías discretas C, P y T.

A partir de la propuesta original de Nambu y Jona-Lasinio, consideraremos un lagran-

giano de interacción de la forma

Lint = G
[

(ψ̄ψ)2 + (ψ̄iγ5~τψ)2] . (3.2)

De este modo, en este modelo se considera a los quarks livianos u y d como los grados de

libertad del sistema, suponiendo que en el límite de bajas energías los grados de libertad

gluónicos están absorbidos dentro de una interacción efectiva local entre quarks.

3.1.1. Generación dinámica de la masa fermiónica

Consideremos el lagrangiano de interacción Lint, con un número de fermiones N f = 2

de igual masa m. Si la constante de acoplamiento G es pequeña se puede aplicar la teoría

de perturbaciones para trabajar con los términos de interacción. Sin embargo, si el aco-

plamiento es fuerte es preciso realizar resumaciones. En este último caso comúnmente se

utiliza la aproximación de Hartree (campo medio), en la que se toman en cuenta sólo los

términos directos. Esto equivale a linealizar la interacción en la ecuación (3.2) reempla-

zando los términos (ψ̄Γψ)2 por 2ψ̄Γψ xψ̄Γψy, donde xψ̄Γψy es el valor de expectación en el

vacío (estado fundamental) de ψ̄Γψ, y Γ es cualquiera de los operadores que aparecen en

Lint. Como el vacío debe ser invariante de Lorentz y debe conservar paridad, el único valor

de expectación no nulo en el nivel fundamental es xψ̄ψy, el condensado quark-antiquark

relacionado con la densidad escalar ψ̄ψ = ψ:γ0ψ. Entonces, la ecuación de Dirac en la

aproximación de campo medio resulta

[

iγµB
µ
� m̂ + 2G xψ̄ψy

]

ψ(x) = 0 (3.3)

y es posible definir una masa fermiónica dinámica

M = m� 2G xψ̄ψy , (3.4)

con xψ̄ψy = xūu + d̄dy, generada por una interacción escalar suficientemente fuerte del

fermión con el vacío de Dirac. A la ecuación (3.4) se la denomina ecuación del gap del mo-

delo NJL, en analogía con la correspondiente ecuación que determina el gap de energía en
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Figura 3.1: Representación diagramática de la ecuación del gap (3.4). Las líneas fina y gruesa

representan el propagador del quark desnudo y vestido respectivamente. El loop fermió-

nico representa al condensado quiral.

un superconductor. Dicha ecuación se puede representar diagramáticamente mediante la

Figura 3.1.

En la aproximación de campo medio el condensado xψ̄ψy está dado por

xψ̄ψy = �i Tr SF(0), (3.5)

donde SF es el propagador de Dirac definido por

SF(x� y) = �i xT [ψ(x)ψ̄(�x)]y =

»

d4 p

(2π)4
eip�(x�y)

p/� M + iǫ
. (3.6)

La aparición de SF(0) en (3.5) refleja el loop cerrado de la Figura 3.1, con la línea fermiónica

comenzando y terminando en el mismo punto del espacio-tiempo. Como la masa dinámica

M está presente en la expresión de xψ̄ψy, la ecuación del gap es una ecuación de Hartree

autoconsistente.

La integral SF(0) es cuadráticamente divergente y requiere, por lo tanto, de un proce-

dimiento de regularización apropiado. La prescripción más sencilla consiste en introducir

un cut-off Λ3 para el módulo del trivector momento ~p e integrar sobre la componente tem-

poral p0 en la ecuación (3.5). Se obtiene

xψ̄ψy = �

NcN f

π2

»

Λ3

0
dp~p 2 M

a

~p 2 + M2
. (3.7)

donde Nc = 3 y N f = 2 son el número de colores y el número de sabores respectivamente.

La ecuación del gap describe la interacción de un fermión con la parte “activa” del mar de

Dirac, la cual corresponde a impulsos |~p | ¤ Λ3. Equivalentemente se puede interpretar el

cut-off pensando que la interacción controlada por G está “prendida” mientras |~p | ¤ Λ3, y

se “apaga” para momentos superiores |~p | ¡ Λ3, en forma consistente con la hipótesis de

libertad asintótica.

A partir de la ecuación (3.7), se reescribe la ecuación del gap como

M = m +
2GNc N f

π2

»

Λ3

0
~p 2dp

M
a

~p 2 + M2
. (3.8)
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Para el caso m = 0 (límite quiral), es fácil ver que esta ecuación tiene una solución no trivial

(M � 0) cuando la constante de acoplamiento G supera un valor crítico Gcrit = π2/Λ
2
3. Los

quarks adquieren en ese caso una masa dinámica.

La generación dinámica de la masa va en paralelo con la reestructuración del vacío:

para G ¡ Gcrit el vacío contiene un condensado xψ̄ψy no nulo. Como la densidad escalar

ψ̄ψ rompe la simetría quiral, el estado fundamental no tiene la simetría SU(2)RbSU(2)L

del lagrangiano. La simetría quiral se rompe espontáneamente, y el condensado xψ̄ψy es el

correspondiente parámetro de orden.

Por lo tanto, se distinguen las dos fases de la simetría quiral discutidas previamente:

1. La fase de Wigner-Weyl, en donde xψ̄ψy = 0 y los fermiones no tienen masa. Equi-

valentemente, la carga axial Q5 =
³

d3x ψ̄γ0γ5ψ aniquila el vacío: Q5|0y = 0. En el

modelo NJL este es el caso para G   Gcrit.

2. La fase de Nambu-Goldstone en donde xψ̄ψy � 0 y los fermiones adquieren masas

dinámicas. En esta fase la simetría quiral está rota espontáneamente y existe un bosón

de Nambu-Goldstone no masivo. La carga axial no aniquila el vacío: Q5|0y � 0. En el

modelo NJL esto sucede cuando G ¡ Gcrit.

Para el caso de m � 0, si bien la masa dinámica nunca llega a ser cero, tiene un compor-

tamiento similar al descrito para m = 0, mostrando una curva asintótica a la correspon-

diente al límite quiral, tanto para el rango de G pequeños como también para GΛ
2
3 " 1.

3.1.2. Bosón de Goldstone pseudoescalar

Como ya se ha mencionado, la ruptura espontánea de una simetría global implica la

existencia de modos de frecuencia cero llamados bosones de Nambu-Goldstone. En este

caso se trata de modos fermión-antifermión pseudoescalares neutros (JP = 0�) identifica-

dos con los piones. Su espín y paridad reflejan los números cuánticos de la simetría axial

SU(2)A rota.

Para analizar como emergen del modelo estos piones de Goldstone sin masa como con-

secuencia de la ruptura de simetría SU(2)A, construimos la matriz T que surge de resolver

la ecuación de Bethe-Salpeter (ecuación de dos cuerpos) en el canal fermión-antifermión

pseudoescalar para un dado cuadrimomento cuadrado q2 del mesón, ilustrado en la Figu-

ra 3.2:

Tπ(q
2) = Kπ + Kπ Jπ(q

2)Kπ + � � � =
Kπ

1� Kπ Jπ(q2)
. (3.9)

La interacción en este canal está dada por el término G(ψ̄iγ5~τψ)2 del lagrangiano de la

ecuación (3.2). Entonces, Kπ = 2G, y Jπ es la integral a un loop de interacción dada por
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Figura 3.2: Representación esquemática de la ecuación de Bethe-Salpeter para la matriz

quark-antiquark T. Los propagadores de mesones aparecen como bandas sombreadas,

mientras que las líneas sólidas corresponden a los quarks vestidos en la aproximación de

Hartree (ver Figura 3.1).

Jπ(q
2) = i Tr

»

d4 p

(2π)4






iγ5τk

1

p/ +
q/
2
� M + iǫ

iγ5τk
1

p/�
q/
2
� M + iǫ






. (3.10)

Para regularizar esta integral puede usarse un proceso idéntico al utilizado en la ecuación

del gap (3.4).

La masa mπ del pion queda determinada por los polos de la matriz T, es decir, por la

condición

1� 2GJπ (q2 = m2
π) = 0. (3.11)

Utilizando la ecuación del gap (3.8) es posible ver que en el límite quiral una solución

de esta ecuación es mπ = 0, lo que significa que el pion es un pseudo-bosón de Goldstone,

un modo de masa nula que surge como consecuencia de una ruptura de simetría. Para ver

esto partimos de

Jπ(q
2 = 0) = �i Tr

»

d4 p

(2π)4

[

γ5τk
p/ + M

p2
� M2 + iǫ

γ5τk
p/ + M

p2
� M2 + iǫ

]

, (3.12)

y utilizando que TrD [γ5(p/ + M)γ5(p/ + M)] = TrD(M2
� p/p/) = �4(p2

� M2), se tiene

Jπ(q
2 = 0) = 4N f Nc i

»

d4 p

(2π)4
1

p2
� M2 + iǫ

=
i

M
Tr SF(0). (3.13)

A partir de las ecuaciones (3.8) y (3.5) se observa que

Kπ Jπ(q
2 = 0) = �

2G

M
xψ̄ψy = 1, (3.14)

por lo cual se verifica la validez del teorema de Nambu-Goldstone.

El próximo paso es examinar la influencia de la ruptura explícita de la simetría quiral,

que se produce al considerar el término Lm = �mψ̄ψ, con una masa fermiónica desnuda

27



3.1. INTRODUCCIÓN AL MODELO NJL

m no nula. En SU(2) ante una rotación quiral ψ Ñ exp(iγ5τaθa/2), para ángulo θ pequeño,

este término se transforma en

δLθ = �mψ̄

(

iγ5τaθa �
1
2

θ2
a + � � �

)

ψ. (3.15)

La densidad pseudoescalar ψ̄iγ5ψ es la fuente del campo de piones φ, por lo que pode-

mos identificar θ = φ/ fπ , donde fπ es una constante de normalización, con dimensiones

de energía. Esta fπ es la constante de decaimiento del pion, definida por el elemento de

matriz
A

0|J a
Aµ(0)|π

b(q)
E

=
A

0|ψ̄(0) γµγ5τa ψ(0)|πb(q)
E

= 2i fπ qµ δab , (3.16)

que describe el decaimiento débil del pion vía la corriente axial J a
Aµ.

Consideremos ahora el término de orden θ2 = φ2/ f 2
π en la ecuación (3.15). Este tér-

mino tiene la forma m/(2 f 2
π)ψ̄ψφ2. Esto corresponde exactamente al término de masa

Lm = �

1
2

m2
πφ2 para el pion. Usando nuevamente la aproximación de campo medio con el

reemplazo ψ̄ψ Ñ xψ̄ψy, podemos hallar la relación de Gell-Mann-Oakes-Renner:

m2
π f 2

π = �m xψ̄ψy . (3.17)

Esta importante ecuación conecta los parámetros de la ruptura explícita y espontánea de

la simetría quiral con las constantes mπ y fπ características del pion. La masa fermiónica

desnuda finita m eleva la masa del pion mπ desde el valor nulo que tenía en el límite quiral,

de tal manera que mπ es proporcional a
?

m. Notar que el teorema de Goldstone se verifica

nuevamente para m Ñ 0.

En la Sec. 2.3 se comentó que, debido al confinamiento, las masas corrientes de los

quarks no son observables físicos, sino que dependen de la escala de renormalización.

Es interesante mencionar que lo mismo ocurre para el condensado xψ̄ψy. En cambio, los

valores de las constantes mπ y fπ en el lado izquierdo de la ecuación (3.17) son cantidades

físicas medibles experimentalmente.

El escenario de ruptura espontánea de simetría recién descrito es de naturaleza muy

general, independientemente de la forma precisa de la interacción subyacente. Existen ana-

logías de este mecanismo en diversas áreas de la física. Uno de los ejemplos más conocidos

es el de un ferromagneto: su fase de baja temperatura se caracteriza por una magnetización

no nula, análoga al condensado quiral xψ̄ψy. El Hamiltoniano del sistema de espines que

describe al ferromagneto es simétrico ante rotaciones espaciales. Sin embargo, en el esta-

do fundamental la magnetización apunta en una dirección definida en el espacio: muchos

espines cooperan para formar el material magnetizado macroscópicamente. Lentas varia-

ciones en la dirección de magnetización producen un movimiento de onda larga de los

espines, que corresponde al bosón de Nambu-Goldstone asociado a la simetría rotacional

espontáneamente rota.
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3.2. Extensiones no locales del modelo NJL

Como forma de obtener un esquema que se aproxime más a la teoría de QCD, se han

propuesto extensiones que incluyen interacciones no locales [58]. De hecho, la no localidad

surge naturalmente en el contexto de varios enfoques bien establecidos para la dinámica

de quarks a bajas energías, como por ejemplo en el caso del modelo de líquido de insta-

tones [36] o los modelos que utilizan desarrollos de Schwinger-Dyson [37]. También los

cálculos de LQCD [59] indican que las interacciones entre los quarks tienen lugar para un

determinado rango en el espacio de momentos. Los modelos que incluyen interacciones

no locales ofrecen la posibilidad de elegir los parámetros de modo tal de reproducir los

resultados de LQCD para las dependencias con el momento de la función de masa m(p)

y la función de renormalización Z(p) en el propagador efectivo para los quarks, así como

los valores empíricos de mπ y fπ .

Por otra parte, las extensiones no locales del modelo NJL no muestran algunos de los

inconvenientes mencionados de la teoría local. En efecto, las interacciones no locales per-

miten regularizar el modelo de tal manera que la interacción efectiva resulte finita a todos

los órdenes en el desarrollo en loops y por lo tanto no haya necesidad de introducir cut-offs

adicionales [60]. Además, puede verse que las anomalías se preservan [39] y las cargas son

cuantizadas correctamente.

Con el propósito de hacer el problema manejable, la mayoría de los cálculos reportados

en la literatura trabajan con interacciones no locales que son separables en el espacio de

momento. De hecho, básicamente fueron consideradas dos alternativas para introducir la

no localidad de un modo separable. La primera de ellas esta inspirada en el líquido de

instantones de QCD, mientras que en la segunda alternativa la no localidad surge de una

aproximación separable para una interacción efectiva de intercambio de un gluon.

3.2.1. Interacciones no locales

Como fue mencionado anteriormente, un paso adelante hacia un modelo efectivo más

acorde con la teoría fundamental es el sugerido por la representación de instantones del

vacío de QCD [61], donde la interacción se implementa mediante un vértice efectivo, no

local y separable. La naturaleza separable de la interacción permite simplificaciones en los

cálculos y a la vez la no localidad provee al modelo de una regularización natural, a través

de la presencia de factores de forma suaves (como funciones gaussianas o lorentzianas)

que aseguran la convergencia ultravioleta de las integrales.

Alternativamente, una interacción efectiva no local entre quarks puede generarse con-
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siderando el intercambio de un gluon. Comenzamos por escribir la acción efectiva como

S =

»

d4 p1

(2π)4
d4 p2

(2π)4 (2π)4δ(4)(p1 � p2)ψ̄(p1)
[

p/�m
]

ψ(p2) + Sint. (3.18)

En este esquema el término de interacción viene dado por

Sint = �

g2

2

»

d4 p1

(2π)4

d4 p11
(2π)4

d4 p2

(2π)4

d4 p12
(2π)4 ja

µ(p1, p11) D
µν
ab jb

ν(p2, p12), (3.19)

donde g es la constante de acoplamiento quark-gluon y la matriz D
µν
ab representa un pro-

pagador efectivo del gluon. Los factores ja
µ representan corrientes de quarks del octete de

color.

Los modelos basados en interacciones de intercambio de un gluon suponen que los

efectos no perturbativos pueden ser tenidos en cuenta a través del propagador D
µν
ab , que

usualmente se elige de manera que ajuste fenomenológicamente. El propagador efectivo

del gluon provee así una forma natural de introducir la no localidad en la interacción.

Por medio de transformaciones de Fierz [30, 58], la interacción en (3.18) puede expresarse

introduciendo operadores que distinguen los canales escalar, pseudoescalar, vectorial y

pseudovectorial.

El término de interacción efectivo tendrá en general la forma

Sint =
1
2

»

d4 p1

(2π)4

d4 p11
(2π)4

d4 p2

(2π)4

d4 p12
(2π)4 K12,1121(P, p; P1, p1) ψ̄1(p1)ψ2(p2) ψ̄21(p12)ψ11(p11) ,

(3.20)

donde se ha utilizado la notación P = (p1 + p2)/2, p = p1 � p2, y los índices 1, 2, 1’ y

2’ corren sobre color, sabor y espacio de Dirac. Por supuesto, el núcleo de la interacción

K12,1121(P, p, P1, p1) debe respetar la conservación total de momentos así como las simetrías

de QCD detalladas anteriormente.

Luego de realizar la transformación de Fierz se obtiene un núcleo de la forma

K12,1121(P, p; P1, p) = �K(P� P1) δ(4)(p� p1)
¸

α

cαΛ
α
12Λ

α
1121 , (3.21)

donde Λ
α representa matrices en los espacios de color, sabor y Dirac, y cα son los coeficien-

tes que surgen de las transformaciones de Fierz. En general, en los modelos más simples,

sólo se retienen las componentes singuletes de color relevantes para el mecanismo de rup-

tura de simetría. Esto puede justificarse teniendo en cuenta que éstos son los términos

dominantes en el desarrollo en potencias de 1/Nc. Es decir,

¸

α

cαΛ
α
12Λ

α
1121 Ñ

¸

α

Γ
α
12Γ

α
1121 , (3.22)

donde Γα = (1, iγ5τa) con a = 1, 2, 3. En cuanto a la dependencia en los momentos, la

función K(P� P1) lleva a ecuaciones del gap no lineales que son complicadas de resolver.
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Figura 3.3: Representación diagramática de la ecuación (3.24). En el diagrama de la izquier-

da K es un núcleo de interacción de cuatro puntos que depende de todos los momentos,

mientras que en la derecha aparece en cada vértice el factor de forma g(p), que depende

de un solo momento.

Introduciremos aquí una simplificación adicional que consiste en suponer que la interac-

ción es separable, es decir,

K(P� P1) ÝÑ K0 g(P)g(P1) , (3.23)

donde K0 es una constante y g(0) = 1. Teniendo en cuenta las aproximaciones hasta aquí

mencionadas, una forma adecuada para el núcleo de interacción es

K12,1121(P, p; P1, p) = �δpp1K0 g(P)g(P1) Γ
α
12Γ

α
1121 , (3.24)

donde la suma sobre α = 0, 1, 2, 3 está sobreentendida. Este reemplazo está representado

en la Figura 3.3. En la función g(P), que usualmente recibe el nombre de regulador o factor

de forma, se encuentra la información acerca de la no localidad de la interacción.

Debido a este carácter no local de la interacción, los quarks adquieren masas dinámicas

(o autoenergías) que dependen de su momento P a través de los factores de forma según

Σ(P) = m +
[

Σ(0) �m
]

g(P). En el espacio de Minkowski, para que un quark exista en

forma aislada se debe cumplir que Σ
2(P) = P2 para valores reales de P. Dada la dependen-

cia en P de la autoenergía, esta ecuación no necesariamente presenta soluciones reales. En

particular, dependiendo del factor de forma, puede ocurrir que el propagador del quark

no tenga polos reales a partir de un valor crítico de Σ(0), lo que puede interpretarse como

una situación de confinamiento.

3.2.2. Modelo quiral no local de quarks con renormalización de la función de

onda

De acuerdo con resultados de LQCD, podemos considerar modelos no locales adop-

tando una descripción más confiable del propagador efectivo de los quarks incluyendo
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en él una renormalización de función de onda (WFR) dependiente del momento [59, 62].

Estos resultados sugieren que dicha renormalización puede tener un efecto del orden del

30 % o mayor a momento cero. Además, estos cálculos también muestran que las masas de

los quarks tienden a sus valores asintóticos de un modo suave. Por lo tanto, es importante

estudiar la incorporación de estas características en este tipo de modelos, y analizar su rol

en la predicción para los diferentes observables hadrónicos.

El lagrangiano que utilizaremos en esta sección nos permitirá analizar las característi-

cas de la no localidad en un modelo quiral con simetría SU(2) de sabor, así como incorporar

una dependencia del propagador de quark con el momento a través de la masa y de la fun-

ción de renormalización de onda. Calcularemos en este marco las propiedades del mesón

escalar σ y los mesones pseudoescalares πa. El mesón σ tiene los mismos números cuánti-

cos que el vacío: su espín es igual a cero y su paridad es par (JPC = 0++), por ello puede

condensar en el vacío y romper simetrías.

Debido a que deseamos comparar los resultados de este modelo con los obtenidos en

LQCD, escribiremos la acción en el espacio euclídeo. Se tiene

SE =

»

d4(x)

"

ψ̄(x)
(

� iC + m̂
)

ψ(x)�
G

2

[

jS(x)jS(x) + ja
P(x)ja

P(x) + jM(x)jM(x)
]

*

,

(3.25)

donde ψ(x) es un doblete fermiónico (N f = 2), ψ = (u d)T, y m̂ = diag(mu, mu) es la matriz

de las masas corrientes de los quarks. El término cinético incluye el operador C = γµBµ,

que en el espacio euclídeo se define como ~γ � ~∇+ γ4
B

Bτ
con γ4 = iγ0. La no localidad del

modelo es introducida a través de las corrientes jS(x), ja
P(x) y jM(x), definidas como:

jS(x) =

»

d4z g(z) ψ̄
(

x +
z

2

)

ψ
(

x�
z

2

)

,

ja
P(x) =

»

d4z g(z) ψ̄
(

x +
z

2

)

i γ5 τaψ
(

x�
z

2

)

,

jM(x) =
1

2κ

»

d4z f (z) ψ̄
(

x +
z

2

)

i
�Ñ

/
B ψ

(

x�
z

2

)

, (3.26)

con a = 1, 2, 3, y u(x1)
�Ñ

B v(x) = u(x1)Bxv(x)�Bxu(x1)v(x).

Las funciones g(z) y f (z) son factores de forma covariantes responsables del carácter

no local de las interacciones. Para mantener la invarianza quiral el factor de forma g(z)

debe ser el mismo para las cuatro corrientes de quark estándar jS(x) y ja
P(x), y los acopla-

mientos correspondientes deben llevar una misma constante de acoplamiento G.

El término de interacción de momento es autoinvariante ante transformaciones quira-

les, por lo tanto presenta un factor de forma f (z) diferente en general al del resto de las

interacciones. Por comodidad, sin embargo, utilizaremos también la constante de acopla-

miento G, controlando el peso relativo entre estas interacciones y las escalares y pseudoes-

calares a través del parámetro de masa κ en la ecuación (3.26).
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La corriente jS(x) introduce en el propagador el factor de forma g(z), dando lugar a una

masa dinámica para los quarks dependiente del momento, a su vez que la “corriente de

momentos” jP(x) es responsable de introducir la renormalización de la función de onda,

a través de la dependencia con el factor de forma f (z). Es por ello que resulta conveniente

tomar la transformada de Fourier de g(z) y f (z) para llevarlos al espacio de momentos. La

invarianza de Lorentz implica que las transformadas g(p) y f (p) sólo podrán ser funciones

de p2.

Para estudiar propiedades hadrónicas es conveniente realizar una bosonización de la

teoría fermiónica. Siguiendo el procedimiento descrito en el Apéndice A, partiremos de

la función de partición Z =
³

DψDψ exp[�SE], e introduciremos campos bosónicos auxi-

liares: σ1(x), σ2(x) (escalares, relacionados respectivamente con las corrientes jS y jM), y

πa(x) (pseudoescalares, asociados con ja
P), donde el índice a corre desde 1 a 3. Luego de

integrar los campos fermiónicos la función de partición en el vacío puede escribirse como

Z =

»

Dσ1Dσ2D~π exp[�Sbos
E ], (3.27)

donde Sbos
E es la acción Eulídea bosonizada. En el espacio de impulsos, ésta viene dada por

Sbos
E = � log det A(p, p1)

+

»

d4 p

(2π)4

"

1
2G

[

σ1(p)σ1(�p) + ~π(p) � ~π(�p) + σ2(p)σ2(�p)
]

*

, (3.28)

donde el operador A(p, p1) es

A(p, p1) = (2π)4δ(4)(p� p1)(�/p + mc) + g

(

p + p1

2

) [

σ1(p1 � p) + iγ5~τ � ~π(p1 � p)

]

+ f

(

p + p1

2

)

/p + /p1

2κ
σ2(p1 � p) . (3.29)

Sin perder generalidad, las constantes de acoplamiento se pueden elegir de forma tal que

los factores de formas quedan normalizados a f (0) = g(0) = 1.

3.2.3. Aproximación de campo medio

Consideraremos ahora la aproximación de campo medio (MFA). Para ello desarrollare-

mos los campos bosónicos alrededor de sus valores de expectación de vacío. Basándonos

en las simetrías de carga, paridad y Lorentz, supondremos que los campos escalares σ1(x)

y σ2(x) tienen valores medios (invariantes traslacionales) no triviales σ̄1 y κ σ̄2, respectiva-

mente, mientras que los valores de expectación de vacío de los campos bosónicos pseudo-

escalares son cero (vale la pena notar que σ̄2 es adimensional, debido a la introducción del
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parámetro κ). Esto es,

σ1(x) = σ̄1 + δσ1(x),

σ2(x) = κ σ̄2 + δσ2(x),

~π(x) = δ~π(x). (3.30)

Reemplazando en la ecuación (3.29) se puede reescribir el operador como A(p, p1) =

A0(p, p1) + δA(p, p1), donde

A0(p, p1) = (2π)4δ(4)(p� p1)
!

�

[

1� σ̄2 f (p)
]

/p + mc + σ̄1 g(p)
)

. (3.31)

De este modo, el término A0(p, p1) depende únicamente de los factores de forma g(p) y

f (p) y de los valores de expectación de vacío σ̄1 y σ̄2. Por otro lado, δA(p, p1) dependerá

de las fluctuaciones de los campos mesónicos.

Dentro de esta aproximación podemos desarrollar el logaritmo del determinante fer-

miónico como

log det A = Tr log A = Tr log A0 + Tr
(

A�1
0 δA

)

�

1
2

Tr
(

A�1
0 δA A�1

0 δA
)

+ . . . , (3.32)

donde la traza se extiende sobre los espacios de Dirac, color, sabor y momento. El operador

A�1
0 viene dado por

A�1
0 =

(2π)4δ4(p� p1)z(p)

�p/ + m(p)
, (3.33)

donde las funciones m(p) y z(p) —masa efectiva dependiente del momento y renormali-

zación de función de onda— están relacionados con los factores de forma no locales y con

los valores de expectación del vacío de los campos escalares por

z(p) = [1 � σ̄2 f (p)]�1 ,

m(p) = z(p) [mc + σ̄1 g(p)] . (3.34)

Calcular el determinante fermiónico es, entonces, equivalente a calcular la traza del ope-

rador log A(p, p1) en los espacios de color, sabor, Dirac e impulsos. Debido a que en este

modelo no tenemos dependencias explícitas con los números cuánticos de color de los

quarks, calcular la traza en ese espacio es trivial, obteniendo un factor Nc = 3 correspon-

diente al número total de colores del modelo. En el espacio de sabor, como consideramos

los quarks u y d bajo una simetría SU(2), para obtener la traza se debe tener en cuenta las

matrices de Pauli que provienen de la corrientes pseudoescalares.

Al reemplazar la ecuación (3.32) en la acción efectiva bosonizada (3.28), podemos desa-

rrollar la misma en potencias de las fluctuaciones de los campos mesónicos, obteniendo

Sbos
E = S MFA

E + S
quad
E + . . . (3.35)
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Aquí la acción a campo medio por unidad de volumen es [63]

S MFA
E

V(4)
= �2 Nc

»

d4 p

(2π)4 TrD log[D�1
0 (p)] +

1
2GS

(

σ̄2
1 +κ

2σ̄2
2
)

, (3.36)

donde TrD es la traza sobre el espacio de Dirac, y el propagador efectivo de quark a campo

medio D0(p) resulta

D0(p) =
z(p)

�/p + m(p)
. (3.37)

Las valores de campo medio σ̄1,2 se pueden calcular minimizando la acción S MFA
E , con

lo cual se obtienen las ecuaciones de Dyson-Schwinger, también conocidas como las ecua-

ciones del gap. Así surge el siguiente conjunto de ecuaciones de gap acopladas [63]

σ̄1 = 8 NC GS

»

d4 p

(2π)4 g(p)
z(p)m(p)

D(p)
,

σ̄2 = � 8 NC GS

»

d4 p

(2π)4
p2

κ
2 f (p)

z(p)

D(p)
, (3.38)

donde definimos D(p) = p2 + m(p)2.

Los condensados quirales de quarks —parámetros de orden para la transición de res-

tauración quiral— están dados por los valores de expectación del vacío xq̄qy, donde q =

u, d. Las expresiones correspondientes pueden obtenerse diferenciando la función de par-

tición a campo medio Z = exp [�S MFA
E ] con respecto a la masa corriente del quark corres-

pondiente. Alejados del límite quiral, esto lleva en general a integrales divergentes. Como

estamos interesados en la descripción de propiedades no triviales del vacío que surgen de

las interacciones fuertes, es usual regularizar estas integrales sustrayendo las contribucio-

nes de quarks libres (ver por ejemplo [64, 65, 66, 67]). Se tiene de este modo

xq̄qy = � 4 NC

»

d4 p

(2π)4

(

z(p)m(p)

D(p)
�

mc

p2 + m2
c

)

. (3.39)

El buen comportamiento de las funciones g(p) y f (p) garantiza la convergencia ultravio-

leta de (3.38) y (3.39).

3.2.4. Fluctuaciones cuadráticas

Estamos interesados en la descripción de la fenomenología de los mesones, lo que re-

quiere ir más allá de la aproximación de campo medio. En esta subsección y la siguiente

derivamos las expresiones que utilizamos para calcular las cantidades fenomenológicas

medibles básicas, como las masas de los mesones y la constante de decaimiento débil del

pion.

En general, las masas de los mesones se pueden obtener a partir de los términos en

la acción euclídea que son cuadráticos en las variaciones de los campos bosónicos. Por
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lo tanto, siguiendo el desarrollo de Sbos
E en la ecuación (3.35) a segundo orden podemos

escribir S
quad
E como

S
quad
E =

1
2

»

d4 p

(2π)4

"

Gσ1(p2) δσ1(p) δσ1(�p) + Gσ2(p2) δσ2(p) δσ2(�p)

+ Gσ1σ2(p2)
[

δσ1(p) δσ2(�p) + δσ2(p) δσ1(�p)
]

+ Gπ(p2) δ~π(p) � δ~π(�p)

*

,

(3.40)

donde las funciones GM(p2), M = σ1, σ2, π están dadas por integrales a un loop que surgen

del determinante fermiónico en la acción bosonizada. Se tiene

Gσ1(p2) =
1

GS
� 8Nc

»

d4q

(2π)4 g2(q)
z(q+)z(q�)

D(q+)D(q�)

[

(q+ � q�)�m(q+)m(q�)
]

,

Gπ(p2) =
1

GS
� 8Nc

»

d4q

(2π)4 g2(q)
z(q+)z(q�)

D(q+)D(q�)

[

(q+ � q�) + m(q+)m(q�)
]

,

Gσ2(p2) =
1

GS
+

8Nc

κ
2

»

d4q

(2π)4 q2 f 2(q)
z(q+)z(q�)

D(q+)D(q�)

[

(q+ � q�)�m(q+)m(q�)

+
(q+)2(q�)2

� (q+ � q�)2

2q2

]

, (3.41)

donde q� = q� p/2.

Encontramos también en S
quad
E un término de mezcla Gσ1σ2(p2) que viene dado por

Gσ1σ2(p2) = �

8Nc

κ

»

d4q

(2π)4 f (q) g(q)
z(q+)z(q�)

D(q+)D(q�)
q �
[

q+m(q�) + q�m(q+)
]

. (3.42)

Para reescribir el sector σ1, σ2 en términos de campos mesónicos desacoplados, definimos

dos nuevos campos σ y σ1, combinaciones lineales de σ1 y σ2, de modo tal que

δσ = cos θ δσ1 � sin θ δσ2 , δσ1 = sin θ1 δσ1 + cos θ1 δσ2 . (3.43)

Los ángulos θ y θ1 se ajustan de manera tal que se cancelen los términos de mezcla del

sector escalar a nivel cuadrático de la acción para p2 = �m2
σ(1) , donde el signo menos se

debe al hecho de que la acción está dada en el espacio euclídeo.

Una vez que los términos cruzados se han eliminado, las funciones GM(p2) representan

las recíprocas de los propagadores efectivos de los mesones. Por consiguiente, las masas

mesónicas pueden obtenerse resolviendo las ecuaciones GM(�m2
M) = 0, con M = σ, σ1, π.

Finalmente, debe llevarse a cabo una renormalización de los campos. Los campos re-

normalizados M̃(p) = M(p) / Z1/2
M se definen fijando el residuo de GM(p2) en el polo del

propagador, es decir, requiriendo que en la vecindad del polo la contribución correspon-

diente al lagrangiano cuadrático esté dada por

(

L
quad
E

)

M
�

1
2

(

p2 + m2
M

)

δM̃(p) � δM̃(�p). (3.44)
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De este modo se obtiene

Z�1
M = g�2

Mqq =
dGM(p)

dp2

�

�

�

�

p2=�m2
M

. (3.45)

La constante gMqq se puede también interpretar como una constante de acoplamiento efec-

tiva entre el mesón M y los quarks.

3.2.5. Decaimiento débil del pion

Por definición la constante de decaimiento débil del pion fπ está dada por el elemento

de matriz de la corriente axial J a
Aµ(x) entre el vacío y el estado renormalizado de un pion,

x0|J a
Aµ(x)|~̃πb(p)y = i e�ip�x δab fπ(p2) pµ , (3.46)

evaluados en el polo del pion. Para determinar la expresión de la corriente axial, debemos

realizar una transformación de gauge a la acción efectiva SE, introduciendo campos de

gauge externos. En general, para una teoría local, esto se lleva a cabo reemplazando

Bµ ÝÑ Bµ � i Gµ . (3.47)

Sin embargo, en nuestro modelo, dada la no localidad de las interacciones, la transforma-

ción de gauge requiere la introducción de campos de gauge no sólo a través de la derivada

covariante en la ecuación (3.47), sino que también se deben realizar reemplazos adicionales

a través de un transporte paralelo de los campos fermiónicos en las corrientes no locales

(ver Refs. [41, 58, 63, 68, 69]):

ψ(x� z/2) Ñ WG(x, x� z/2) ψ(x� z/2) ,

ψ:(x + z/2) Ñ ψ:(x + z/2) WG(x + z/2, x) . (3.48)

Aquí, x y z son las variables en la definición de las corrientes no locales en la ecuación

(3.26), mientras que la función WG(x, y) está definida por

WG(x, y) = P exp
[

�i

» y

x
dsµ Gµ(s)

]

, (3.49)

donde s recorre un camino arbitrario que conecta x con y. En el caso de la corriente axial

introducimos campos de gauge axiales W a
µ (x), tomando

Gµ =
1
2

γ5 ~τ � ~Wµ . (3.50)

Una vez construida la acción efectiva con su correspondiente transformación de gau-

ge, podemos obtener la corriente axial derivando la acción con respecto al campo W a
µ(x),

y evaluando esta derivada en ~Wµ(x) = 0. Luego, podemos identificar los elementos de
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matriz como la derivada de la expresión resultante con respecto al campo del pion renor-

malizado,

x0|J a
Aµ(x)|π̃b(p)y =

δ2Sbos
E

δW a
µ(x) δπ̃b(p)

�

�

�

�

W a
µ=π̃b=0

. (3.51)

π
π

Figura 3.4: Representación diagramática de las contribuciones a la constante de decaimien-

to débil del pion. La cruz representa el vértice de la corriente axial.

Las contribuciones resultantes a un loop están esquematizadas en forma diagramática

en la Figura 3.4. En este modelo no local se obtienen contribuciones de diagramas tipo

tadpole, que no están presentes en el modelo local NJL, y surgen de la introducción de los

campos de gauge a través de las ecuaciones (3.48). Finalmente obtenemos

fπ =
mc gπqq̄

m2
π

F0(�m2
π), (3.52)

donde

F0(p2) = 8Nc

»

d4q

(2π)4 g(q)
z(q+)z(q�)

D(q+)D(q�)

[

(q+ � q�) + m(q+)m(q�)
]

. (3.53)

Es importante destacar que este resultado no depende del camino elegido para la función

de transporte en la ecuación (3.49).
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Capítulo 4

Modelo NJL no local con

acoplamientos vectoriales y

vectoriales-axiales

En este capítulo nos concentraremos en la incorporación de interacciones vectoriales

y axiales en el modelo NJL no local. Por lo tanto nuestro objetivo será construir un mo-

delo incluyendo acoplamientos entre corrientes no locales vectoriales y vectoriales-axiales

que satisfagan las simetrías de QCD, manteniendo al mismo tiempo los acoplamientos

escalares y psudoescalares analizados en el capítulo anterior. De este modo, no sólo podre-

mos calcular características propias de la fenomenología del sector vectorial, sino también

podremos analizar cómo se ve modificado el sector escalar-pseudoescalar por la incorpo-

ración de estos nuevos acoplamientos.

Nos dedicaremos primero a trabajar con el formalismo de forma tal de poder derivar

las expresiones analíticas para algunas propiedades básicas de los mesones vectoriales y

axiales de paridad JP = 1� y JP = 1+ respectivamente, como masas y anchos de decai-

miento. Luego presentaremos los resultados numéricos obtenidos considerando formas

funcionales de los factores de forma consistentes con datos obtenidos de LQCD para los

propagadores efectivos de quarks.

4.1. Construcción del modelo

4.1.1. Aproximación de campo medio

Para obtener la acción euclídea efectiva se debe primero proponer un lagrangiano que

contenga las simetrías que se observan en QCD. El objetivo es extender la acción propuesta

en el capítulo anterior [ecuación (3.25)] añadiendo interacciones vectoriales y axiales que
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mantengan las simetrías SU(2)Vb SU(2)AbU(1)V .

Las interacciones son del tipo (ψ̄Γaψ)2 con Γa = (γµ, γµ~τ) para el caso vectorial, y Γa =

(γµγ5, γµγ5~τ) para el vectorial-axial. A la hora de proponer un lagrangiano es necesario

conocer cómo transforman estos términos para saber si conservan las simetrías de QCD.

Es sencillo comprobar la invarianza de los acoplamientos corriente-corriente ante las

transformaciones SU(2)V y U(1)V . Sin embargo no es tan evidente en el caso de la simetría

SU(2)A. Esto se debe a que esta transformación contiene a las matrices γ5 y ~τ del siguiente

modo ψ Ñ exp(�i~τ �~θγ5/2)ψ = [cos(θ/2)� i~τ � θ̂γ5 sin(θ/2)]ψ, y se debe tener en cuenta

tanto las reglas de conmutación entre γ5 y las matrices γµ que ahora se encuentran en las

interacciones, como las reglas de conmutación de las matrices ~τ que son los generadores

del grupo SU(2).

Al calcular el lagrangiano trasformado se llega a que la suma (ψ̄γµ~τψ)2 + (ψ̄γµγ5~τψ)2

es una combinación invariante ante las transformaciones SU(2)A y entonces es necesario

incluir ambos términos en el lagrangiano acoplados con la misma constante, a diferencia

de los términos (ψ̄γµψ)2 y (ψ̄γµγ5ψ)2 que son invariantes independientemente.

Por lo tanto puede proponerse como lagrangiano quiral del modelo NJL local a

Lquiral = ψ̄iCψ + G
[

(ψ̄ψ)2 + (ψ̄iγ5τψ)2
]

+ H
[

(

ψ̄γµ~τψ
)2

+
(

ψ̄γµγ5~τψ
)2
]

+ I(ψ̄γµψ)2 + J(ψ̄γµγ5ψ)2 . (4.1)

A partir de este lagrangiano, introduciendo interacciones no locales y el término de

masa, podemos obtener la acción efectiva para un modelo de dos sabores de quarks que

incluya corrientes quark-antiquark no locales vectoriales y axiales [70, 71]. Se tiene

SE =

»

d4x

"

ψ̄(x) (� i/B + m̂)ψ(x)�
GS

2

[

jS(x) jS(x) +~jP(x) �~jP(x) + jM(x) jM(x)
]

�

GV

2

[

~j
µ
V (x) �~jVµ(x) +~j

µ
A(x) �~jA µ(x)

]

�

G0

2
j

0 µ
V (x) j 0

Vµ(x)�
G5

2
j

0 µ
A (x)j 0

A µ(x)

*

.

(4.2)

Esta acción es análoga a la del capítulo anterior manteniendo las mismas expresiones para

las corrientes escalares jS(x) y jM(x) (I = 0), y pseudoescalar ja
P(x) (I = 1) presentes en la

ecuación (3.26), e introduciendo además las corrientes vectoriales ja
Vµ(x) y j 0

Vµ(x), y axiales

ja
A µ(x) y j 0

A µ(x), que transforman como singuletes o tripletes de isospín, y se definen como
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ja
Vµ(x) =

»

d4z h(z) ψ̄
(

x +
z

2

)

τaγµψ
(

x�
z

2

)

,

ja
A µ(x) =

»

d4z h(z) ψ̄
(

x +
z

2

)

τaγµγ5ψ
(

x�
z

2

)

,

j 0
Vµ(x) =

»

d4z h0(z) ψ̄
(

x +
z

2

)

γµψ
(

x�
z

2

)

,

j 0
A µ(x) =

»

d4z h5(z) ψ̄
(

x +
z

2

)

γµγ5ψ
(

x�
z

2

)

. (4.3)

Las funciones h(z), h0(z) y h5(z) son los factores de forma covariantes responsables del

carácter no local de las nuevas interacciones. Vale la pena destacar que, como se encon-

tró en el capítulo anterior para g(z), el factor de forma h(z) debe ser el mismo para ja
Vµ y

ja
A µ para garantizar la invarianza quiral. Los factores de forma h0(z) y h5(z) son en prin-

cipio funciones independientes debido a que pertenecen a términos autoinvariantes ante

transformaciones quirales.

Finalmente, se introdujeron nuevas constantes de acoplamiento: GV para el acopla-

miento entre las corrientes isovectoriales vectoriales y axiales, y G0 y G5 para las interac-

ciones de las corrientes isoescalares.

Siguiendo el procedimiento descrito en el capítulo anterior, procedemos a realizar una

bosonización de la teoría fermiónica, introduciendo ahora también los campos bosónicos

auxiliares v0
µ(x), va

µ(x) y a0
µ(x), aa

µ(x). Luego de integrar los campos fermiónicos la función

de partición puede escribirse como

Z =

»

Dσ1 Dσ2 D ~π D v0
µ D a0

ν D~vα D~aβ exp
[

�Sbos
E

]

, (4.4)

donde Sbos
E es la acción euclídea bosonizada. En el espacio de momentos, ésta está dada

por

Sbos
E = � log det A(p, p1)

+

»

d4 p

(2π)4

"

1
2GS

[

σ1(p) σ1(�p) + ~π(p) � ~π(�p) + σ2(p) σ2(�p)
]

+
1

2GV

[

~vµ(p) �~v µ(�p) +~aµ(p) �~a µ(�p)
]

+
1

2G0
v0

µ(p) v0µ(�p) +
1

2G5
a0

µ(p) a0µ(�p)

*

, (4.5)

donde el operador A(p, p1) es

A(p, p1) = (2π)4δ(4)(p� p1)(�/p + mc) + g( p̄)

[

σ1(p1 � p) + iγ5~τ � ~π(p1 � p)

]

+ f ( p̄)
/̄p
κ

σ2(p1 � p) + h( p̄) γµ

[

~τ �~vµ(p1 � p) + γ5~τ �~aµ(p1 � p)

]

+ h0( p̄) γµ v0
µ(p1 � p) + h5( p̄) γµγ5 a0

µ(p1 � p) , (4.6)
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con p̄ � (p + p1)/2.

Consideraremos nuevamente en primer lugar la aproximación de campo medio. Del

mismo modo que en el modelo discutido en el capitulo anterior, únicamente los campos

σ1(x) y σ2(x) pueden tener valores de expectación de vacío no triviales. Por lo tanto pode-

mos escribir

v0µ(x) = δv0µ(x),

~vµ(x) = δ~vµ(x),

a0µ(x) = δa0µ(x),

~aµ(x) = δ~aµ(x). (4.7)

A causa de esto, el cálculo de la acción a campo medio por unidad de volumen realizado

con anterioridad no se ve modificado, y nos encontramos con la misma forma funcional

que la expresada en la ecuación (3.36). Asimismo, las ecuaciones de gap y de los conden-

sados quirales también vendrán dadas por (3.38) y (3.39). La diferencias con el caso ya

estudiado se comenzarán a encontrar a partir del desarrollo cuadrático de la acción.

4.1.2. Fluctuaciones cuadráticas

Para calcular las masas de los mesones continuamos con el desarrollo de la acción eu-

clídea a segundo orden en las fluctuaciones de los campos bosónicos. Obtenemos entonces

una nueva expresión para S
quad
E extendida al sector vectorial-axial

S
quad
E =

1
2

»

d4 p

(2π)4

!

Gσ(p2) δσ(p) δσ(�p) + Gσ1(p2) δσ1(p) δσ1(�p)

+ Gπ(p2) δ~π(p) � δ~π(�p) + i Gπa(p2)
[

pµ δ~aµ(�p) � δ~π(p)� pµ δ~aµ(p) � δ~π(�p)
]

+ G
µν
0 (p2) δv0

µ(p) δv0
ν(�p) + G

µν
5 (p2) δa0

µ(p) δa0
ν(�p)

+ G
µν
v (p2) δ~vµ(p) � δ~vν(�p) + G

µν
a (p2) δ~aµ(p) � δ~aν(�p)

)

. (4.8)

En virtud del carácter vectorial de las fluctuaciones de los campos, encontramos que

ellos se encuentran acoplados a tensores de segundo orden que denominamos G
µν
v , G

µν
a ,

G
µν
0 y G

µν
5 . Estos tensores se pueden descomponer en partes trasversa y longitudinal

G
µν
v (p2) = Gρ(p2)

(

gµν
�

pµ pν

p2

)

+ L+(p2)
pµ pν

p2 ,

G
µν
a (p2) = Ga1(p2)

(

gµν
�

pµ pν

p2

)

+ L
�

(p2)
pµ pν

p2 , (4.9)
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donde definimos las funciones

G( ρ
a1
)(p2)=

1
GV

� 8Nc

»

d4q

(2π)4 h2(q)
z(q+)z(q�)

D(q+)D(q�)

[

q2

3
+

2(p � q)2

3p2 �

p2

4
�m(q�)m(q+)

]

,

(4.10)

L
�

(p2)=
1

GV
� 8Nc

»

d4q

(2π)4 h2(q)
z(q+)z(q�)

D(q+)D(q�)

[

q2
�

2(p � q)2

p2 +
p2

4
�m(q�)m(q+)

]

,

(4.11)

con q� = q� p/2. Las funciones Gρ,a1(p2) y L
�

(p2) corresponden a las proyecciones tras-

versas y longitudinales de los campos vectoriales y vectorial-axiales, describiendo estados

mesónicos de espín 1 y 0, respectivamente. Las masas correspondientes a los estados físicos

que describen a los mesones vectoriales ρ0 y ρ� (JCP = 1��) (que corresponden a un tri-

plete de isospín en la aproximación md = mu que se está considerando) pueden obtenerse

resolviendo la ecuación

Gρ(�m2
ρ) = 0 . (4.12)

También aquí debemos llevar a cabo la renormalización de los campos fijando el residuo

de Gρ(p2) en el polo del propagador, esto es,

δva
µ(p) = Z1/2

ρ ṽa
µ(p) , (4.13)

donde

Z�1
ρ = g�2

ρqq =
dGρ(p2)

dp2

�

�

�

�

p2=�m2
ρ

. (4.14)

Para los canales de isospín cero, es sencillo de comprobar que las expresiones de G
µν
0 (p2)

se pueden calcular a partir de G
µν
v (p2), únicamente reemplazando GV por G0, y h(q) por

h0(q). De este modo puede definirse para el mesón vectorial ω una función Gω(p2), y así

calcular su masa y renormalización de función de onda de acuerdo a las ecuaciones (4.12)

y (4.14). Relaciones similares son aplicables para el sector axial, donde G
µν
5 (p2) puede ob-

tenerse a partir de G
µν
a (p2) reemplazando GV por G5 y h(q) por h5(q). El estado físico más

liviano observado asociado a este sector (con números cuánticos I = 0, JP = 1+) es el

mesón axial f1, por lo que denominamos G f1(p2) al factor de forma correspondiente a la

proyección transversa de G
µν
5 (p2).

En el caso del sector pseudoescalar, mientras que el término cuadrático en δπ no se ve

modificado con respecto al calculado en la expresión (3.41), surge, debido a la inclusión

del sector vectorial-axial, una mezcla entre el campo pseudoescalar y la proyección lon-

gitudinal del campo axial [72, 73]. El término de mezcla Gπa(p2), que se origina a partir

de los términos cruzados del determinante fermiónico entre los campos ~π(p) y ~aµ [ver
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ecuación (4.8)], está dado por una integral a un loop de la forma

Gπa(p2) =
8Nc

p2

»

d4q

(2π)4 g(q) h(q)
z(q+)z(q�)

D(q+)D(q�)

[

(q+ � p)m(q�)� (q� � p)m(q+)
]

,

(4.15)

donde una vez más utilizamos q� = q� p/2. Pueden obtenerse estados físicos desacopla-

dos ~̃aµ y ~̃π a través de las relaciones [72, 73]

δπb(p) = Z1/2
π π̃b(p) ,

δab
µ(p) = Z1/2

a ãb
µ(p)� i λ(p2) pµ Z1/2

π π̃b(p) , (4.16)

donde se ha introducido una función de mezcla λ(p2), que se determina reemplazando las

relaciones (4.16) en la ecuación (4.8) y exigiendo que se cancele el término cruzado en el

desarrollo cuadrático de la acción. Encontramos de este modo

λ(p2) =
Gπa(p2)

L
�

(p2)
, (4.17)

y también la expresión para Gπ̃(p2) dada por

Gπ̃(p2) = Gπ(p2)�
Gπa(p2)2

L
�

(p2)
p2 . (4.18)

Evaluando en el polo Gπ̃(�m2
π) = 0 calculamos la masa del pion, mientras que su función

de renormalización de onda se obtiene como

Z�1
π = g�2

πqq =
dGπ̃(p2)

dp2

�

�

�

�

p2=�m2
π

. (4.19)

En el caso de los mesones axiales a1 (triplete I = 1), al no encontrarse ninguna mezcla

que involucre la proyección transversa de los campos ab
µ, la masa correspondiente y la

renormalización de función de onda se consiguen gracias a relaciones análogas a las utili-

zadas en el sector vectorial, es decir las ecuaciones (4.12) y (4.14), con Ga1(p2) dada por la

ecuación (4.10).

4.2. Decaimientos

4.2.1. Decaimiento débil del pion

La constante de decaimiento débil del pion se define a partir del campo correspon-

diente al estado físico de la partícula. Es por ello que, de acuerdo con la ecuación (4.16),

ahora debemos incluir las contribuciones a esta constante provenientes de la mezcla con el

campo vectorial-axial.
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Tal como vimos en el capítulo anterior fπ se calcula a partir de los elementos de matriz

que se obtienen derivando la acción con respecto a los campos de gauge y el campo del

pion físico. En este modelo esto es equivalente a

x0|J a
Aµ(x)|π̃b(p)y = Z1/2

π

δ2Sbos
E

δW a
µ(x) δπb(p)

�

�

�

�

W a
µ=πb=0

+ iλpνZ1/2
π

δ2Sbos
E

δW a
µ(x) δab

ν(p)

�

�

�

�

W a
µ=ab

ν=0
.

(4.20)

De este modo, no es suficiente con calcular únicamente el desarrollo de la acción bosoniza-

da en los campos de gauge W a
µ(x) y el campo pseudoescalar ~π, sino que también debemos

considerar el desarrollo lineal en el campo~aµ.

El proceso por el cual se construye la transformación de gauge de la acción efectiva SE

es semejante al detallado en el capítulo anterior. Una vez realizada dicha transformación

y haciendo las derivadas pertinentes se obtienen dos nuevas contribuciones a la constante

de decaimiento, esquematizadas en la Figura (4.1).

a1
a1

Figura 4.1: Representación diagramática de las contribuciones a la constante de decaimien-

to débil del pion provenientes del campo vectorial-axial.

Finalmente, luego de un cálculo relativamente extenso, obtenemos

fπ =
mc gπqq̄

m2
π

[

F0(�m2
π) + λ(p2) F1(�m2

π)
]

, (4.21)

donde

F0(p2) = 8Nc

»

d4q

(2π)4 g(q)
z(q+)z(q�)

D(q+)D(q�)

[

(q+ � q�) + m(q+)m(q�)
]

,

F1(p2) = 8Nc

»

d4q

(2π)4 h(q)
z(q+)z(q�)

D(q+)D(q�)

[

(q+ � p)m(q�)� (q� � p)m(q+)
]

. (4.22)

En ausencia de campos vectoriales el término de mezcla en la ecuación (4.21) desaparece y

nuestra expresión se reduce a la obtenida en el capítulo anterior.

4.2.2. Vértice ρ0-fotón y constante de decaimiento electromagnética del ρ

Otra importante cantidad para ser estudiada es el vértice ρ0-fotón. En nuestro modelo

no local, los acoplamientos mesón-fotón reciben las contribuciones del transporte paralelo

en las ecuaciones (3.48), por lo tanto consideramos relevante confirmar que la conservación
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de la corriente vectorial se satisface. Además, a partir de este vértice es posible obtener una

predicción para la amplitud del decaimiento electromagnético ρ0
Ñ e+e�.

El vértice ρ0-fotón está dado por el elemento de matriz de la corriente electromagnética

entre el estado del mesón vectorial y el vacío,

x0|Jem µ(x)|ṽ3
ν(p)y = i e�ip�x

Π
3
µν(p) . (4.23)

Para calcular este elemento de matriz se puede seguir el procedimiento discutido anterior-

mente, tomando ahora

Gµ = Q̂Aµ , (4.24)

donde Q̂ = diag(e 2/3 , �e 1/3) es la matriz de carga en la representación fundamental

del grupo SU(2) f , y e es la carga del protón.

Una vez más es posible distinguir dos contribuciones a Π
3
µν, digamos Π

(I) 3
µν y Π

(II) 3
µν , que

surgen del diagrama de dos vértices y del de tipo tadpole respectivamente (ver Figura 4.2).

Obtenemos

Π
(I) 3
µν (p) = 4NC e Z1/2

ρ

»

d4q

(2π)4
z(q+)z(q�)

D(q+)D(q�)
h(q)

�

#

1
2

[ 1
z(q+)

+
1

z(q�)

][

q+µ q�ν + q+ν q�µ � (q+ � q�) δµν �m(q+)m(q�) δµν

]

+ σ̄1

[

m(q+) q�ν + m(q�) q+ν

]

αg µ(q, p)

+ σ̄2

[

�

(q�)2

2
q+ν �

(q+)2

2
q�ν + m(q+)m(q�) qν

]

α f µ(q, p)

+

, (4.25)

Π
(II) 3
µν (p) = � 4NC e Z1/2

ρ

»

d4q

(2π)4
z(q)

D(q)
qν αh µ(q, p) . (4.26)

Aquí hemos definido, para una dada función r(p),

αr µ(q, p) =

»

d4ℓ

(2π)4

[

r(q + ℓ/2) Sµ(p� ℓ, ℓ) + r(q� ℓ/2) Sµ(ℓ, p� ℓ)
]

, (4.27)

con

Sµ(k, k1) = � i

»

d4z eik1z

» z

0
dtµ e�i(k+k1)t , (4.28)

donde t recorre un camino que une el origen de coordenadas con el punto ubicado en z.

Los tensores Π
(I) 3
µν y Π

(II) 3
µν son en general no transversos. Sin embargo, la suma de

ambas contribuciones satisface p µ
Π

3
µν = 0, como se requiere de la conservación de la

corriente electromagnética. Esto puede verificarse notando que

(k + k1)µSµ(k, k1) = � i

»

d4z eik1z

» z(k+k1)

0
dω e�iω = (2π)4

[

δ(4)(k)� δ(4)(k1)
]

, (4.29)
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ρ
ρ

Figura 4.2: Diagramas que contribuyen al vértice ρ0-fotón.

lo cual conduce a

pµαr µ(q, p) = r(q+)� r(q�) . (4.30)

Por lo tanto, el resultado en la ecuación (4.30) no depende en la integral de camino en (4.28)

[un mecanismo similar lleva a una independencia de camino en las funciones en las ecua-

ciones (4.22)]. Utilizando la relación en la ecuación (4.30), luego de un adecuado cambio

de variables se obtiene

p µ
(

Π
(I) 3
µν + Π

(II) 3
µν

)

= 0 . (4.31)

Una cancelación similar se encontró en la Ref. [64], en el marco de un modelo nlNJL que

incluye mesones vectoriales sin WFR.

Nos concentraremos ahora en la constante de decaimiento electromagnético fv, defini-

da a partir del decaimiento ρ0
Ñ e+e�. Se tiene

Γ(ρ0
Ñ e+e�) =

4π

3
α2 mρ f 2

v , (4.32)

donde α = e2/(4π) es la constante de estructura fina electromagnética. Podemos relacio-

nar el valor de la constante fv con la traza de Π
3
µν(p) a través de

3 m2
ρ e fv = gµν Π

3
µν(p)

�

�

�

p2=�m2
ρ

. (4.33)

Resulta ahora necesario evaluar la parte transversa del tensor Π
3
µν. Para ello se debe tomar

un camino para la integral sobre tµ en la ecuación (4.28), siendo la trayectoria más sencilla

un camino lineal. Dicha elección conduce a

αr µ(q, p) =

» 1

�1
dλ
(

qµ + λ
pµ

2

)

r1
(

q + λ
p

2

)

, (4.34)

donde r1(p) denota la derivada de r con respecto a p2. Luego de algo de álgebra, obtenemos

fv =
Z1/2

ρ

3 m2
ρ

[

J(I)(�m2
ρ) + J(II)(�m2

ρ)
]

, (4.35)
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con

J(I)(p2) = � 4Nc

»

d4q

(2π)4 h(q)

#

3
2
[z(q+) + z(q�)]

D(q+)D(q�)

[

(q+ � q�) + m(q+)m(q�)
]

+
1
2

z(q+)

D(q+)
+

1
2

z(q�)

D(q�)
+

q2

(q � p)

[

z(q+)

D(q+)
�

z(q�)

D(q�)

]

+
z(q+)z(q�)

D(q+)D(q�)

[

(q � p)�
q2 p2

(q � p)

] [

� σ̄1
[

m(q+) + m(q�)
]

α+
g (q, p)

+ σ̄2
[

q2 +
p2

4
�m(q+)m(q�)

]

α+
f (q, p)

]

+

,

J(II)(p2) = � 4Nc

»

d4q

(2π)4
z(q)

D(q)

"

q2

(q � p)

[

h(q+)� h(q�)
]

+

[

(q � p)�
q2 p2

(q � p)

]

α+
h (q, p)

*

.

(4.36)

Los superíndices (I) y (II) corresponden a las contribuciones de los diagramas en las Fi-

guras 4.2a y 4.2b, respectivamente, mientras que las funciones α+
f (q, p) vienen definidas

como

α+
f (q, p) =

» 1

�1
dλ

λ

2
f 1
(

q� λ
p

2

)

. (4.37)

4.2.3. Decaimiento π0
Ñ γγ

Vamos a analizar en el contexto de nuestro modelo el decaimiento anómalo π0
Ñ γγ.

En el modelo NJL este decaimiento suele ser problemático: para poder reproducir el re-

sultado observado experimentalmente es necesario realizar integraciones a un loop en el

espacio de momentos hasta el infinito, en lugar de integrar hasta un cut-off Λ3 como en el

caso del condensado xq̄qy [74]. La amplitud de decaimiento puede calcularse a partir del

elemento de matriz

x0|Jem µ(x)Jem ν(0)|π̃3(p)y =
δ3Sbos

E

δAµ(x) δAν(0) δπ̃3(p)

�

�

�

�

Aµ,ν=π̃3=0
. (4.38)

En principio hay varios diagramas que contribuyen a la amplitud al nivel de un loop.

Tal como ocurre cuando calculamos la constante de decaimiento débil del pion fπ , como el

campo asociado al π0, π̃3(p), es una combinación de los campos π3 y a3
µ, debemos conside-

rar la parte lineal del desarrollo de la acción bosonizada en δπ3 y δa3
µ. Los diagramas que

tienen contribuciones distintas de cero se muestran en la Figura 4.3. Si los fotones salientes

tienen impulsos k1 y k2 con vectores de polarización ε
(λ1)
µ (k1) y ε

(λ2)
ν (k2), respectivamente,

la amplitud de decaimiento puede escribirse como

M(π0
Ñ γγ) = i 4πα F̃(k1, k2) ǫµναβ ε

(λ1)
µ (k1)

�ε
(λ2)
ν (k2)

�k1α k2β , (4.39)
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donde el factor de forma F̃(k1, k2) está dado por la suma de las contribuciones de los cam-

pos π3 y a3
µ al estado π̃3,

F̃(k1, k2) = Z1/2
π

[

Fπ(k1, k2) + λ(p2) Fa(k1, k2)
]

, (4.40)

con p = k1 + k2.

El primer término entre corchetes, correspondiente al diagrama en la Figura 4.3a, ha

sido calculado (a menos del factor de isospín) en la Ref. [69]. Se obtiene

Fπ(k1, k2) =
2Nc

3

»

d4q

(2π)4 h

(

q +
k2

2
�

k1

2

)

z(q)z(q� k1)z(q + k2)

D(q)D(q� k1)D(q + k2)
A(q, k1, k2) , (4.41)

donde

A(q, k1, k2) =

(

1
z(q)

+
1

z(q� k1)

)(

1
z(q)

+
1

z(q + k2)

)"

m(q) �
q2

2
�

[

m(q + k2)�m(q)

(q � k2)
�

m(q� k1)�m(q)

(q � k1)

]*

. (4.42)

Por otro lado, el factor de forma Fa(k1, k2) surge de la suma de las contribuciones corres-

π

γ

γ

(a)

a1

γ

γ

(b)

a1

γ

γ

(c)

Figura 4.3: Diagramas que contribuyen al decaimiento π0
Ñ γγ.

pondientes a los diagramas en las Figuras 4.3b y 4.3c. Aunque éstas son divergentes por

separado, analíticamente se observa que las partes divergentes se cancelan en la suma, que

resulta finita. Obtenemos

Fa(k1, k2) = �

2Nc

3

»

d4q

(2π)4

#

h
(

q + k2/2� k1/2
) z(q)z(q� k1)z(q + k2)

D(q)D(q� k1)D(q + k2)
�

[

(

m(q� k1) + m(q + k2)
)

A(q, k1, k2) +

q2

2

(

B(q, q� k1, q + k2)

(q � k2)
�

B(q, q + k2, q� k1)

(q � k1)

)]

+

q2
[

h(q + k2/2)
(q � k2)

C(q, k1) +
h(q + k1/2)

(q � k1)
C(q, k2)

]

+

, (4.43)
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P,M

p1, m1

p2, m2

Figura 4.4: Esquema de decaimiento en dos cuerpos.

donde

B(q, r, s) =

(

1
z(q)

+
1

z(r)

)(

1
z(q)

�

1
z(s)

)

D(s) ,

C(q, k) =

(

1
z(q + k/2)

+
1

z(q� k/2)

)

z(q + k/2)z(q � k/2)
D(q + k/2)D(q� k/2)

. (4.44)

Finalmente, luego de integrar en el espacio de momentos y sumar sobre las polarizaciones

de los fotones salientes, la amplitud de decaimiento π0
Ñ γγ resulta

Γ(π0
Ñ γγ) =

π

4
α2 m3

π F̃(k1, k2)
2 . (4.45)

Como los fotones están on-shell, es decir k2
1 = k2

2 = 0, de la invarianza de Lorentz se puede

ver que F̃(k1, k2) sólo puede ser función del producto escalar (k1 � k2) = �m2
π/2.

4.2.4. Decaimiento ρÑ ππ

En general, varias amplitudes de transición pueden calcularse desarrollando la acción

bosonizada a órdenes mayores en las fluctuaciones de los campos mesónicos. En esta sec-

ción nos concentraremos en los procesos ρ0
Ñ π+π� y ρ� Ñ π�π0, responsables de más

del 99 % de los decaimientos de los mesones ρ. Para ello desarrollaremos la acción hasta el

orden cúbico.

En la Figura 4.4 se esquematiza un decaimiento de una partícula de masa M y momento

P en dos cuerpos [75]. El ancho diferencial de decaimiento se escribe en términos de una

amplitud invariante M según:

dΓ =
1

32π2 |M|

2 |p1|

M2 dΩ, (4.46)

donde dΩ es el diferencial de ángulo sólido de uno de los cuerpos salientes.

Las amplitudes correspondientes al decaimiento de interés M
[

va
µ(p)Ñ πb(q1)π

c(q2)
]

se obtienen calculando las correspondientes derivadas funcionales de la acción efectiva,
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que pueden escribirse en términos de dos factores de forma F̃ρππ(p2, q2
1, q2

2) y G̃ρππ(p2, q2
1, q2

2):

δ3Sbos
E

δṽa
µ(p)δπ̃b(q1)δπ̃c(q2)

�

�

�

�

δvµ=δπ=0
= (2π)4 δ(4)(p + q1 + q2) ǫabc �

[

F̃ρππ(p2, q2
1, q2

2)
(q1µ + q2µ)

2
+ G̃ρππ(p2, q2

1, q2
2)

(q1µ � q2µ)

2

]

. (4.47)

Sólo la parte transversa, dada por el factor de forma G̃ρππ(p2, q2
1, q2

2), contribuye al ancho

de decaimiento ρ Ñ ππ. En el límite isospín tenemos

Γρ0
Ñπ+π� = Γρ�Ñπ�π0 =

1
48π

mρ g2
ρππ

(

1�
4m2

π

m2
ρ

)3/2

, (4.48)

donde gρππ � G̃ρππ(�m2
ρ,�m2

π,�m2
π).

El factor de forma G̃ρππ(p2, q2
1, q2

2) surge del vértice efectivo ρ̃π̃π̃, donde ρ̃ y π̃ son cam-

pos renormalizados. Como en los procesos analizados anteriormente, dado que la acción

efectiva se encuentra expresada en potencias de los campos no renormalizados, es conve-

niente escribir el vértice efectivo en términos de los campos originales ρ, π y aµ. De este

modo, el factor de forma recibe contribuciones de los diagramas esquematizados en la

Figura 4.5. Se tiene

G̃ρππ(p2, q2
1, q2

2) = Z1/2
ρ Zπ

[

Gρππ(p2, q2
1, q2

2)

+λ(p2) Gρπa(p2, q2
1, q2

2) + λ(p2)2 Gρaa(p2, q2
1, q2

2)

]

, (4.49)

donde Gρππ(p2, q2
1, q2

2), Gρπa(p2, q2
1, q2

2) y Gρaa(p2, q2
1, q2

2) son funciones a un loop que surgen

del desarrollo de la acción efectiva.

ρ

π

π

ρ

a1

π

ρ

a1

a1

Figura 4.5: Diagramas que contribuyen al decaimiento ρ Ñ ππ.

La forma analítica de estas funciones pueden obtenerse luego de un largo cálculo. Para

la amplitud de decaimiento ρ Ñ ππ, debemos evaluar las funciones en p2 = �m2
ρ, y

q2
1 = q2

2 = (p� q1)
2 = �m2

π. Resulta conveniente introducir el momento v = q1 � p/2, que

satisface p � v = 0, y v2 = m2
ρ/4�m2

π . Entonces, las funciones Gρxy(p2, q2
1, q2

2), donde los

subíndices x e y refieren a π o a, pueden escribirse como

Gρxy(p2, q2
1, q2

2) = 16Nc

»

d4q

(2π)4 h(q) g
(

q +
v

2
+

p

4

)

g
(

q +
v

2
�

p

4

)

�

z(q+)z(q�)z(q + v)

D(q+)D(q�)D(q + v)
fxy(q, p, v) , (4.50)
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donde hemos definido q� = q� p/2. Las expresiones resultantes para fxy(q, p, v) son

fππ =

[

(q+ � q�) + m(q+)m(q�)

] [

1 +
(q � v)

v2

]

�

(q � v)

v2

"

2
[

q � (q + v)
]

+ m(q + v)
[

m(q+) + m(q�)
]

*

,

fπa = �2 m(q + v)

[

(q+ � q�) � 2
(q � v)2

v2 + m(q+)m(q�)

]

+

[

1 +
(q � v)

v2

]"

(q+ � p)m(q�)� (q� � p)m(q+) � 2(q � v)
[
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]

*

,

faa =
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� (q+ � q�) (q + v)2

�

(
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p2

4

)

m(q+)m(q�)

]

+ m(q + v)

"

m(q+) (q� � p) � m(q�) (q+ � p)

+
(q � v)

v2

(

v2
�

p2

4

)

[

m(q+) + m(q�)
]

*

+ 2
(q � v)

v2 (q + v)2
[

(q � v)�
p2

4

]

.

(4.51)

4.3. Factores de forma y parámetros del modelo

Para definir el modelo es necesario especificar los valores de los parámetros y los facto-

res de forma en las corrientes fermiónicas no locales. En este modelo hay seis parámetros a

determinar: la masa corriente de quark mc, y las constantes de acoplamiento GS, GV , G0, G5

y κ. Para elegir las formas analíticas de los factores de forma consideraremos los resulta-

dos obtenidos en LQCD para el propagador de quarks, que permitirán aproximar su masa

dinámica y la función de renormalización de onda, las cuales son funciones del momento

como se observa en (3.34). De acuerdo con la Ref. [76], escribimos la masa efectiva m(p)

como

m(p) = mc + αm fm(p2) , (4.52)

donde αm es un parámetro de masa definido por la condición de normalización fm(0) = 1.

Como los cálculos de LQCD consideran diferentes masas corrientes de quark (hay que

recordar que mc no es una cantidad física, sino que depende de la escala de renormaliza-

ción), decidimos tomar como entrada la forma de la función fm(p2) normalizada, usando

los resultados de LQCD en el límite de baja mc y el espaciado de la red más pequeño con-

siderado. Teniendo en cuenta el análisis de LQCD en la Ref. [76], parametrizamos esta

función como

fm(p2) =
1

1 + (p2/Λ2
0)

α
, (4.53)
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con α = 3/2. Por otra parte, para la renormalización de función de onda utilizamos la

siguiente parametrización [63, 65]

z(p) = 1 � αz fz(p2) , (4.54)

donde

fz(p2) =
1

(

1 + p2/Λ2
1

)β
. (4.55)

A partir de esta forma funcional de z(p) los resultados de LQCD resultan mejor descri-

tos con valores relativamente bajos para el exponente β, por ello tomamos β = 5/2 que

es el menor exponente compatible con la convergencia ultravioleta de las ecuaciones de

gap (3.38). Del análisis dimensional y la invarianza de Lorentz, las funciones fm(p2) y

fz(p2) deben incluir parámetros dimensionales Λ0 y Λ1, los cuales representan cut-offs

efectivos para el momento en los canales correspondientes. De este modo, utilizamos las

formas funcionales señaladas para los factores de forma, tomando Λ0 y Λ1 como dos nue-

vos parámetros libres del modelo. Por otra parte, los parámetros αm y αz introducidos en

las ecuaciones (4.52) y (4.54), en virtud de las expresiones en (3.34), están relacionadas con

los valores de expectación de campo medio de los campos escalares a partir de

m(0) = mc + αm =
mc + σ̄1

1� σ̄2
, (4.56)

z(0) = 1� αz =
1

1� σ̄2
, (4.57)

y por lo tanto, para un dado conjunto de parámetros, se pueden obtener a partir de las

ecuaciones de gap (3.38).

El modelo también incluye los factores de forma h(p), h0(p) y h5(p), introducidos por

las interacciones corriente-corriente vectoriales y axiales. Vamos a suponer por simplici-

dad que el comportamiento efectivo de las interacciones de quark es similar en los canales

J = 0 y J = 1, y por ello tomaremos para h(p) la misma forma que para g(p). En el sec-

tor vectorial-isoescalar, como es usual, supondremos una degeneración aproximada con

el sector vectorial-isovectorial tomando h(p) � h0(p). El sector vectorial-isoescalar-axial

puede estudiarse separadamente ya que se desacopla del resto de lagrangiano. Aquí to-

maremos h5(p) = h(p) y estimaremos el valor resultante para la constante G5.

Dadas las formas funcionales de los factores de forma, para estudiar la fenomenología

descrita debemos determinar los valores de los ahora ocho parámetros del modelo (masa

corriente, constantes de acoplamiento y cut-offs efectivos de momento). Primero llevamos

a cabo una aproximación numérica de los resultados de LQCD para las funciones fm(p2) y

z(p), del cual obtenemos valores para Λ0 y Λ1, así como para el parámetro αz. Éste último,

junto con otras cinco cantidades fenomenológicas, será utilizado como valor de entrada
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para determinar los seis parámetros libres restantes. A partir de los resultados de LQCD

en Ref. [59] se obtiene

Λ0 = 917 � 14 MeV , Λ1 = 1775 � 53 MeV , αz = 0,244 � 0,010 , (4.58)

con χ2/dof = 1,17 y χ2/dof = 0,25 para los fits de fm(p2) y z(p), respectivamente. Los

cálculos fueron realizados considerando los resultados de LQCD hasta 2.5 GeV. Estos va-

lores y la curva de aproximación para fm(p2) y z(p) se muestran en la Figura 4.6. En el

caso de z(p), se observa que se obtienen valores que superan los puntos de LQCD para

momentos bajos. Notamos, sin embargo, que en esta región los errores son relativamen-

te grandes, y además corresponden a los puntos más sensibles a los posibles cambios del

espaciado de la red [59].
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Figura 4.6: Aproximación a los datos de LQCD para las funciones fm(p2) y z(p).

Ahora bien, una vez fijados los valores para Λ0 y Λ1 es posible determinar los pará-

metros mc, GV , GS, G0, G5 y κ a partir de seis cantidades iniciales. Como parámetros de

entrada elegimos el valor de αz obtenido a partir del fit anterior, más los valores empí-

ricos de la constante de decaimiento débil del pion fπ , y las masas de los mesones π, ρ,

ω y f1. De nuestro análisis numérico encontramos que se puede obtener un conjunto de

parámetros que nos permite reproducir apropiadamente estos valores. Los resultados co-

rrespondientes se encuentran en la Tabla 4.1.

El análisis numérico requiere la resolución de un sistema de ecuaciones acopladas que

incluye las ecuaciones de gap (3.38), las ecuaciones GM(�m2
M) = 0 para M = π, ρ, ω y

f1 para determinar las masas mesónicas, y la ecuación (4.21) para fπ . Este procedimiento

involucra calcular las integrales correspondientes a un loop, lo cual en general no es trivial

debido al hecho de que el factor de forma fm(p2), como función de la cuarta componen-

te p4 del momento, tiene cortes cuando p4 se extiende al campo complejo. Dependiendo

del valor del momento tridimensional ~p estos cortes pueden ocasionalmente cruzar el eje
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Parámetros Inputs Parámetros Inputs

Λ0 [MeV] fit (LQCD) mc [MeV] 1,59 αz fit (LQCD)

Λ1 [MeV] fit (LQCD) GSΛ
2
0 19,0 mπ [MeV] 139

κ/Λ0 11,2 fπ [MeV] 92,2

GVΛ
2
0 13,0 mρ [MeV] 775

G0Λ
2
0 12,8 m f1

[MeV] 1280

G5Λ
2
0 � 14 mω [MeV] 783

Tabla 4.1: Parámetros del modelo. Los valores de Λ0, Λ1 y αz se han obtenido a partir de

datos de LQCD para el propagador efectivo de los quarks [ecuación (4.58)]. Los parámetros

mc, GS, κ, GV , G0 y G5 fueron calculados a partir de cinco observables hadrónicos, junto

con el valor de αz.

real, y deben ser tenidos en cuenta a través de deformaciones adecuadas del camino de

integración. Estos cálculos se encuentran detallados en el Apéndice B.

De la Tabla 4.1 encontramos una relación GS/GV � 1, 5, lo cual está de acuerdo con

las parametrizaciones estándar del modelo NJL [26, 27, 28]. Para el valor G0, es necesario

tener en cuenta que estamos trabajando en un modelo con sólo dos sabores de quarks, y

por lo tanto no estamos considerando efectos relacionados con el quark s. Nuestro cálcu-

lo para G0 sería válido únicamente en el caso de una mezcla ideal entre el singulete de

SU(3) f y el octete de estados I = 0, tal que el mesón φ sea un estado s̄s aproximadamente

puro. En el caso del mesón axial f1 encontramos una dificultad adicional, que es común

a varios modelos de quarks. Los modelos que no incluyen un mecanismo explícito para

el confinamiento usualmente tienen dificultades para describir las resonancias mesónicas,

ya que hay un umbral a partir del cual la masa del mesón es lo suficientemente grande

como para permitir su decaimiento en dos quarks. Este umbral es en general del orden

de 2m(0), por lo tanto los modelos para los que las masas constituyentes de quarks son

mayores que aproximadamente 400 MeV (como ocurre en nuestro caso) pueden sortear

esta dificultad para resonancias de baja masa como el mesón ρ [77]. En el caso en que la

resonancia supera el umbral, es posible tratar el problema a través de extensiones de las

funciones GM(�s) al plano complejo [78], o de la búsqueda de un pico en la función espec-

tral del mesón [79]. Matemáticamente, en nuestro modelo la apertura del canal no físico

qq̄ ocurre debido a que las integrales de la forma de (4.10) tienen un “pinch point” en el

cual ambas funciones D(q+) y D(q�) en el integrando son iguales a cero (es decir, ambos

quarks constituyentes están simultáneamente on-shell). Para los parámetros en la Tabla 4.1,

el umbral se encuentra a los 1264 MeV, debajo del valor empírico m f1 � 1280 MeV, y el

parámetro libre a ser ajustado para obtener el valor fenomenológico de la masa de f1 es la
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constante de acoplamiento G5. En nuestro trabajo, para obtener un valor aproximado para

esta constante resolvemos la ecuación G f1(�m2) = 0 variando G5Λ
2
0 desde grandes valores

de G5 hasta G5Λ
2
0 � 22, lo que lleva hasta m � 1 GeV, y luego extrapolamos a la región por

arriba del umbral obteniendo m f1 � 1280 MeV para G5Λ
2
0 � 14.

4.4. Resultados numéricos

Usando los parámetros y los factores de forma no locales definidos en la sección ante-

rior, podemos calcular las predicciones del modelo para las cantidades fenomenológicas

analizadas. Nuestros resultados para dichos observables se encuentran resumidos en la

Tabla 4.2 (no incluimos allí los observables que utilizamos como entrada para fijar la para-

metrización, es decir, mπ, fπ , mρ, mω y m f1
). De la tabla podemos concluir que las predic-

ciones del modelo para los anchos de decaimiento π0
Ñ γγ, ρ Ñ e+e� y ρ Ñ ππ están de

acuerdo con los valores encontrados experimentalmente, siendo compatibles con los resul-

tados publicados por el Particle Data Group [75] dentro de un rango de error menor al 10 %.

También fue posible obtener una predicción para el ancho de decaimiento Γ(ω Ñ e+e�),

Modelo Empírico

Γ(π0
Ñ γγ) [MeV] 7,82� 10�6 (7,63� 0,16)� 10�6

Γ(ρ Ñ e+e�) [MeV] 6,71� 10�3 (7,04� 0,06)� 10�3

Γ(ρ Ñ ππ) [MeV] 137 149,1� 0,8

mσ [MeV] 683 400 - 550

ma1 [MeV] 1200 - 1250 1190 - 1270

Tabla 4.2: Predicciones del modelo y valores empíricos [75] para varios observables.

cuyo valor determinamos alrededor de 0,8 keV, algo mayor que el valor experimental de

0, 60� 0, 02 keV [75]. Sin embargo, como discutimos anteriormente, nuestro resultado po-

dría modificarse luego de incluir grados de libertad de extrañeza debido a la mezcla ω�φ.

Con respecto al sector σ� σ1, obtuvimos un estado físico con una masa de alrededor de 680

MeV, el cual puede identificarse con la resonancia del mesón σ observada (cuya masa es in-

cierta), mientras que para σ1 encontramos un crecimiento monótono de la función Gσ1(�s)

con s, indicando que este estado no representa una partícula física (en la Ref. [63] se discute

con mayor profundidad la física relacionada al estado σ1 en este tipo de modelos).

En el caso de los mesones axiales a1 encontramos que la función Ga1(�s) decrece con s

hasta llegar a un mínimo en
?

s � 1250 MeV, cerca del umbral de producción de pares de

quarks on-shell, encontrado en 1264 MeV. Teniendo en cuenta la discusión en la subsección
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anterior, para estimar el valor de la masa del a1 en posible tomar el mínimo de Ga1(�s) o

realizar una extrapolación basada en el comportamiento de Ga1(�s) hasta s � (1 GeV)2.

Ambos caminos conducen a una masa aproximada de ma1 � 1200� 1250 MeV, que está en

buen acuerdo con los valores experimentales.

También analizamos la dependencia de nuestros resultados con αz dentro del error

obtenido para el cálculo de este parámetro en la aproximación a los datos de LQCD [ecua-

ción (4.58)], observando que las predicciones del modelo no varían significativamente.

Finalmente, en la Tabla 4.3 mostramos los resultados para los valores de campo me-

dio de los campos escalares y los condensados quirales de quark. La masa efectiva de los

quarks livianos a momento cero en nuestro modelo resulta m(0) = (mc + σ̄1)/(1� σ̄2) �

400 MeV, algo mayor que los 311 MeV obtenidos en la Ref. [63] para un modelo nlNJL

sin el sector de los grados de libertad vectoriales. Cabe destacar que las parametrizaciones

de los modelos NJL estándar predicen masas constituyentes de quarks dependientes del

momento que rondan los 350 MeV [26, 27, 28]. Con respecto a los condensados de quarks,

los resultados son relativamente grandes en comparación con las estimaciones usuales de

la fenomenología y los cálculos de LQCD, que conducen a condensados dentro del rango

de (�240 MeV)3 a (�320 MeV)3 [80]. Además, al determinar los parámetros del modelo

hemos encontrado un valor relativamente bajo para la masa corriente de los quarks, siendo

mc = 1,59 MeV, en comparación con las estimaciones de LQCD de mc � 3,4� 0,25 MeV en

el límite de isospín [75]. En los modelos NJL con interacciones no locales estas cantidades

dependen fuertemente de las formas funcionales de los factores de forma, como se explica

en las Refs. [63, 81, 82], en donde se consideran distintas extensiones de estos modelos con

dos o tres sabores de quarks, sin el sector vectorial. Como se discute en esos artículos, es

importante tener en cuenta la dependencia de mc y xq̄qy con la escala de renormalización.

En nuestro caso, para el fit de los propagadores de quarks se utilizaron datos de LQCD

correspondientes a una escala µ = 3 GeV, mayor que la usual de 2 GeV. Para evitar este

tipo de dependencias se puede, por ejemplo, calcular el producto�xq̄qymc, para el cual ob-

tenemos, dentro de nuestra parametrización, un resultado de 8,12� 10�5 GeV4. Este valor

concuerda con el proveniente de la relación de Gell-Mann-Oakes-Renner a primer orden

en la expansión quiral, �xq̄qymc = f 2
πm2

π/2 � 8,21� 10�5 GeV4.

Modelo

σ̄1 [MeV] 524

σ̄2 -0.322

�xq̄qy1/3 [MeV] 371

Tabla 4.3: Resultados numéricos para varias cantidades fenomenológicas.
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Capítulo 5

Modelo NJL no local en presencia de

campo magnético

Como se ha comentado en el Cap. 1, el comportamiento de la materia hadrónica y de

quarks en presencia de campos magnéticos intensos, y los efectos de estos campos sobre

el diagrama de fases, revisten importante interés teórico y experimental. En este capítulo

estudiaremos la interacción entre la materia hadrónica y un campo magnético homogéneo

en un modelo NJL no local. En primer lugar, calcularemos el determinante fermiónico en

la acción bosonizada y realizaremos una aproximación de campo medio. Esto nos permi-

tirá encontrar expresiones analíticas para la ecuación del gap, el propagador de quarks

en presencia de campo magnético y el condensado quiral. Luego, desarrollando la acción

a segundo orden en las fluctuaciones de los campos mesónicos calcularemos las masas

de los mesones π y σ, e incorporando un acoplamiento con una corriente externa obten-

dremos la expresión para la constante de decaimiento débil del pion. También mostrare-

mos dentro de nuestro modelo la validez de las relaciones de Goldberger-Treiman y de

Gell-Mann-Oakes-Renner en presencia del campo magnético. Por último, mostraremos los

resultados numéricos obtenidos para las cantidades fenomenológicas mencionadas consi-

derando diferentes parametrizaciones del modelo, y compararemos estos resultados con

los obtenidos en LQCD.

5.1. Interacciones magnéticas en el modelo NJL no local

Es natural que la presencia de interacciones con campos magnéticos intensos afecte

significativamente a los observables hadrónicos y a las características de las transiciones

de fase. Es de particular interés el estudio de los condensados quirales xq̄qy, parámetros

de orden de la restauración de la simetría quiral. Cálculos realizados por LQCD [83, 84]
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muestran que, en efecto, los condensados quirales tanto en el vacío como en sistemas con

temperatura finita resultan fuertemente alterados en presencia de una interacción con un

campo magnético externo B uniforme suficientemente intenso. En el vacío se observa el

efecto conocido como “catálisis magnética”, esto es, la presencia del campo favorece la

presencia de un condensado no nulo, y de este modo puede interpretarse como un “cata-

lizador” de la transición de fase. Asimismo, los cálculos realizados en LQCD muestran un

efecto de “catálisis magnética inversa”, que consiste en el hecho de que las temperaturas

críticas de transición disminuyen al incrementarse el valor del campo externo. Notable-

mente, este efecto no es reproducido en general por modelos efectivos simples para QCD

a bajas energías, como el modelo NJL local, χPT, o el “modelo de la bolsa del MIT” (MIT

Bag model), que de hecho predicen el efecto contrario [85, 86, 87]. En el caso del modelo

NJL local, una posible solución para este problema se obtiene proponiendo una dependen-

cia ad-hoc con B y T en las constantes de acoplamiento [88, 89].

En esta Tesis realizaremos un análisis detallado del modelo NJL no local que incluye el

acoplamiento magnético con un campo B uniforme y constante [90, 91]. Mostraremos que

los modelos NJL no locales no sólo proveen una descripción natural para los efectos de

la catálisis magnética y la catálisis magnética inversa, sino que también permiten obtener

una dependencia de la masa del π0 con B que resulta compatible con los resultados de

LQCD [92, 93]. El estudio de la variación de las masas de los piones en presencia de un

campo magnético ha sido abordado en los últimos años en el marco de diversas técnicas

teóricas para el análisis de QCD a bajas energías, como modelos de tipo NJL [94, 95, 96, 97],

χPT [98, 99] y Path Integral Hamiltonians (PIH) [100, 101].

5.1.1. Formalismo en la aproximación de campo medio

Para estudiar las interacciones magnéticas comenzamos escribiendo la acción euclídea

del modelo NJL no local para dos sabores de quarks,

SE =

»

d4x

"

ψ̄(x) (�i/B+ mc)ψ(x)�
G

2
ja(x)ja(x)

*

, (5.1)

donde las corrientes no locales ja(x) están dadas por

ja(x) =

»

d4z G(z) ψ̄
(

x +
z

2

)

Γa ψ
(

x�
z

2

)

. (5.2)

Definimos aquí Γa = (1, iγ5~τ), mientras que la función G(z) corresponde al factor de for-

ma no local que caracteriza la interacción efectiva. Como estamos interesados en estudiar

la influencia del campo magnético, introducimos en la acción efectiva un acoplamiento con

un campo de gauge electromagnético externo Aµ. Esto se lleva a cabo de forma análoga a

lo realizado en el Cap. 4 para estudiar el vértice ρ-fotón, es decir, se reemplaza la derivada
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covariante de acuerdo a la ecuación (3.47), y se introduce el campo electromagnético se-

gún (4.24). Como también se discutió anteriormente, las transformaciones de gauge deben

incluirse en las corrientes no locales a través del transporte paralelo que se observa en las

ecuaciones (3.48).

Luego procedemos a realizar la bosonización de la teoría introduciendo el campo es-

calar σ(x) y los campos pseudoescalares ~π(x), e integrando los campos fermiónicos en

la función de partición de acuerdo con los lineamientos explicados en el Apéndice A. La

acción bosonizada resulta [63, 69]

Sbos = � log detDx,x1 +
1

2G

»

d4x
[

σ(x)σ(x) + ~π(x) � ~π(x)
]

, (5.3)

con

Dx,x1 = δ(4)(x� x1)
(

� i /D + mc

)

+G(x� x1) γ0 W(x, x̄) γ0
[

σ(x̄) + i γ5~τ � ~π(x̄)
]

W(x̄, x1) , (5.4)

donde hemos definido x̄ = (x + x1)/2 y las funciones W(x, x̄) son las definidas en (3.49).

El operador Dx,x1 es análogo al que hemos definido en los Caps. 3 y 4 como A(p, p1) en

ausencia del campo magnético. Consideraremos en este análisis el caso particular de un

campo magnético ~B homogéneo y constante en el tiempo, eligiendo el eje 3 en la dirección

del campo. Utilizaremos el gauge de Landau, en el que Aµ = B x1 δµ2.

Supondremos también que el campo σ(x) tiene un valor de expectación de vacío no

trivial invariante traslacional (es decir, que σ̄ es independiente de x), mientras que los

valores de campo medio de los campos pseudoescalares πi son nulos. Esta hipótesis no

implica que el propagador de quark resultante sea invariante traslacional. De hecho, ve-

remos a partir de nuestro análisis que esta invarianza se rompe por la aparición de una

“fase de Schwinger”. A partir de (5.3), dentro de la aproximación de campo medio (MFA)

obtenemos

DMFA
x,x1 = diag

(

DMFA,u
x,x1 , DMFA,d

x,x1
)

, (5.5)

donde

D
MFA, f
x,x1 = δ(4)(x� x1)

(

Π
f + mc

)

+ σ̄ G(x� x1) exp
[

iΦ f (x, x1)
]

, (5.6)

sobreentendiendo un producto directo por una matriz identidad en el espacio de color.

En la ecuación (5.6) hemos introducido el operador Π
f = �i/B � q f B x1γ2 junto con la

denominada “fase de Schwinger”

Φ f (x, x1) =
q f B

2
(x2 � x12) (x1 + x11) . (5.7)

Debido a que los quarks u y d tienen cargas eléctricas diferentes, el campo magnético in-

teractúa de distinto modo con cada uno de ellos. Por lo tanto, este modelo no es simétrico
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en el espacio de sabor, lo cual se refleja en la dependencia con q f que representa las cargas

eléctricas de cada sabor de quark provenientes de la matriz de carga Q̂ que se introduce en

el acoplamiento electromagnético.

De este modo, la acción bosonizada en MFA por unidad de volumen puede escribirse

como

SMFA
bos

V(4)
=

σ̄2

2G
�

Nc

V(4)

¸

f=u,d

tr logD
MFA, f
x,x1 , (5.8)

donde en el segundo término las trazas sobre color y sabor ya han sido evaluadas. Para

realizar las trazas en el espacio de coordenadas y de Dirac utilizaremos el formalismo de

las autofunciones de Ritus [102], realizando la transformada de Ritus de D
MFA, f
x,x1 . Ésta se

define como

D
MFA, f
p̄, p̄ 1 =

»

d4x d4x1 Ē p̄(x) D
MFA, f
x,x1 E p̄ 1(x1) , (5.9)

donde E p̄(x), con p̄ = (k, p2, p3, p4) (siendo k un valor discreto), son las funciones de Ritus,

cuyas definiciones y propiedades están dadas en el Apéndice C. Usando estas propiedades

obtenemos

D
MFA, f
p̄, p̄ 1 = δ̂p̄, p̄ 1 Pk,s f

(

�s f

b

2k|q f B| γ2 + p‖ � γ‖ + mc 1

)

+ σ̄
¸

λ=�

G
λ, f
p̄, p̄ 1 ∆

λ , (5.10)

donde δ̂p̄, p̄ 1 es una notación para (2π)4δkk1 δ(p2 � p 1

2) δ(p3 � p 1

3) δ(p4 � p 1

4), y hemos intro-

ducido las definiciones s f = signo(q f B), p‖ = (p3, p4), γ‖ = (γ3, γ4), ∆
+ = diag(1, 0, 1, 0),

∆
� = diag(0, 1, 0, 1) y Pk,�1 = (1� δk0)1+ δk0 ∆

�. Las funciones G
λ, f
p̄, p̄ 1 están dadas por

G
λ, f
p̄, p̄ 1 =

»

d4x d4x1 E�p̄λ(x) G(x� x1) exp
[

iΦ f (x, x1)
]

Ep̄ 1λ(x1) , (5.11)

y la expresión de Ep̄λ(x) viene dada por la ecuación (C4). Tal como se discute en el Apéndi-

ce D, luego de un largo cálculo podemos mostrar que G
λ, f
p̄, p̄ 1 es diagonal en p̄, p̄ 1. Obtenemos

entonces G
λ, f
p̄, p̄ 1 = δ̂p̄, p̄ 1 g

λ, f
k,p‖

, donde

g
λ, f
k,p‖

=
4π

|q f B|
(�1)kλ

»

d2 p
K

(2π)2 g
(

p2
K

+ p2
‖

)

exp
(

�

p2
K

|q f B|

)

Lkλ

(

2p2
K

|q f B|

)

. (5.12)

Aquí hemos utilizado las definiciones k
�

= k� 1/2� s f /2 y p
K

= (p1, p2), mientras que

g(p2) es la transformada de Fourier de G(x) y Lm(x) son los polinomios de Laguerre, con

la convención usual L
�1(x) = 0. Definiendo ahora

M
λ, f
k,p‖

=
(

1� δkλ,�1
)

mc + σ̄ g
λ, f
k,p‖

, (5.13)

llegamos a la expresión D
MFA, f
p̄, p̄ 1 = δ̂p̄, p̄ 1D

f
k,p‖

, donde

D
f
k,p‖

= Pk,s f

(

�s f

b

2k|q f B| γ2 + p‖ � γ‖

)

+
¸

λ=�

M
λ, f
k,p‖

∆
λ . (5.14)
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Luego, usando la ecuación (C16) y escribiendo explícitamente la traza sobre el espacio

de coordenadas obtenemos

tr logD
MFA, f
x,x1 =

Nc

2π

»

d4x
8

¸

k=0

d2 p‖
(2π)2

»

8

�8

dp2

2π
trD

[

E p̄(x) log
(

D
f
k,p‖

)

Ē p̄(x)
]

, (5.15)

donde trD es la traza sobre el espacio de Dirac. A partir de la propiedad cíclica de la traza,

junto con la ecuación (C9), esta expresión se reduce a

tr logD
MFA, f
x,x1 = V(4) Nc

|q f B|

2π

8

¸

k=0

»

d2 p‖

(2π)2 trD

[

Pk,s f
log
(

D
f
k,p‖

)

]

. (5.16)

Como la matriz D
f
k,p‖

no es diagonal en el espacio de Dirac, es conveniente usar aquí la

identidad tr log A = log det A. Luego de calcular el determinante y reemplazar en la ecua-

ción (5.8) obtenemos finalmente

SMFA
bos

V(4)
=

σ̄2

2G
�Nc

¸

f=u,d

|q f B|

2π

»

d2 p‖
(2π)2

[

log
(

p2
‖ + M

λ, f
0,p‖

2
)

+
8

¸

k=1

log ∆
f
k,p‖

]

, (5.17)

donde λ = + (�) para s f = +1 (�1), y ∆
f
k,p‖

está definida por

∆
f
k,p‖

=
(

2k|q f B|+ p2
‖ + M

+, f
k,p‖

M
�, f
k,p‖

)2
+ p2

‖

(

M
+, f
k,p‖

� M
�, f
k,p‖

)2
. (5.18)

Se observa que las funciones M
�, f
k,p‖

representan las masas efectivas dinámicas (dependien-

tes del momento) de los quarks en presencia del campo magnético externo. El valor de

expectación de vacío σ̄ puede calcularse ahora encontrando el mínimo de la acción efecti-

va en la ecuación (5.17). Esto lleva a la ecuación de gap

σ̄

G
= Nc

¸

f=u,d

|q f B|

π

8

¸

k=0

»

d2 p‖
(2π)2

¸

λ=�

Â
λ, f
k,p‖

g
λ, f
k,p‖

, (5.19)

donde hemos definido

Â
�, f
k,p‖

=
M
	, f
k,p‖

(

2k|q f B|+ p2
‖ + M

�, f
k,p‖

M
+, f
k,p‖

)

+ p2
‖

(

M
�, f
k,p‖

� M
	, f
k,p‖

)

∆
f
k,p‖

. (5.20)

Asimismo, a partir de la expresión en (5.14), se pueden obtener los propagadores de

quark en MFA. Los detalles de este cálculo están dados en el Apéndice E. En el espacio de

coordenadas obtenemos [91]

S
MFA, f
x,x1 =

(

D
MFA, f
x,x1

)

�1
= exp

[

iΦ f (x, x1)
]

»

d4 p

(2π)4 ei p�(x�x1) S̃ f (p
K

, p‖) , (5.21)
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donde

S̃ f (p
K

, p‖) = 2 exp
(

�

p2
K

|q f B|

)

8

¸

k=0

¸

λ=�

[

(�1)kλ
(

Â
λ, f
k,p‖

� B̂
λ, f
k,p‖

p‖ � γ‖

)

Lkλ

(

2p2
K

|q f B|

)

+2 (�1)k
(

Ĉ
λ, f
k,p‖

� D̂
λ, f
k,p‖

p‖ � γ‖

)

p
K

� γ
K

L1
k�1

(

2p2
K

|q f B|

)

]

∆
λ . (5.22)

Aquí hemos introducidos las definiciones

B̂
�, f
k,p‖

= Ĉ
�, f
k,p‖

� M
	, f
k,p‖

D̂
�, f
k,p‖

, (5.23)

Ĉ
�, f
k,p‖

=
2k|q f B|+ p2

‖ + M
�, f
k,p‖

M
+, f
k,p‖

∆
f
k,p‖

, (5.24)

D̂
�, f
k,p‖

=
M
�, f
k,p‖

� M
	, f
k,p‖

∆
f
k,p‖

, (5.25)

mientras que las funciones L1
k(x) son los polinomios de Laguerre generalizados, con L1

�1 =

0. A partir de estas definiciones, las funciones Â
λ, f
k,p‖

en (5.20) satisfacen

Â
�, f
k,p‖

= M
	, f
k,p‖

Ĉ
�, f
k,p‖

+ p2
‖ D̂

�, f
k,p‖

. (5.26)

De este modo, hemos obtenido que los propagadores de quark pueden escribirse como el

producto de una exponencial de la fase de Schwinger por una función invariante traslacio-

nal, en acuerdo con los análisis llevados a cabo en la Ref. [103].

Una vez obtenida la expresión para los propagadores, los condensados de quark para

cada sabor pueden calcularse fácilmente a partir de la relación

xq̄ f q f y = �Nc trD

[

S
MFA, f
x,x

]

. (5.27)

A partir de este cálculo se obtiene 1

xq̄ f q f y = �

1
V(4)

Tr SMFA
f = �NC

»

d4 p

(2π)4 trD S̃ f (p
K

, p‖)

= � 4
8

¸

k=0

»

q‖

¸

λ=�

(�1)kλ Â
λ, f
k,p‖

»

d2 p
K

(2π)2 exp
(

�

p2
K

|q f B|

)

Lkλ

(

2p2
K

|q f B|

)

= �

NC |q f B|

π

8

¸

k=0

»

q‖

¸

λ=�

Â
λ, f
k,q‖

. (5.28)

Del mismo modo que en el Cap. 3 la integral en el condensando quiral resulta ser diver-

gente y es por eso necesario regularizarlo. Siguiendo la misma prescripción se define

xq̄ f q f y
reg
B = xq̄ f q f y � xq̄ f q f y

f ree + xq̄ f q f y
reg
f ree . (5.29)

1Otra forma de determinar los condensados es a través de la derivada de SMFA con respecto a la masa

corriente de los quarks.
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Por contribución “libre” se entiende aquí al condensado en ausencia de el acoplamiento

efectivo de cuatro fermiones, pero manteniendo la interacción con el campo magnético.

Esta contribución puede regularizarse obteniendo [50, 91, 104]

xq̄ f q f y
reg
f ree =

NC m3
c

4π2

[

log Γ(x f )

x f
�

log 2π

2x f
+ 1�

(

1�
1

2x f

)

log x f

]

, (5.30)

donde x f = m2
c /(2|q f B|).

Finalmente, para comparar con los resultados de LQCD presentados en la Ref. [84]

definimos el “condensado normalizado” Σ
f
B según

Σ
f
B = �

2 mc

S4

[

xq̄ f q f y
reg
B � xq̄ f q f y

reg
0

]

+ 1 , (5.31)

donde S es una escala fenomenológica fijada en S = (135� 86)1/2 MeV. También introdu-

cimos las definiciones ∆Σ
f
B = Σ

f
B �Σ

f
0 y ∆Σ̄B = (∆Σ

u
B + ∆Σ

d
B)/2 .

5.1.2. Constantes fenomenológicas para los mesones σ y π0

Masas del sigma y del pion

La expresión del propagador de quark (5.21) puede utilizarse de modo de obtener ex-

presiones analíticas para las masas de los mesones π0 y σ en presencia del campo magnéti-

co uniforme ~B. Primero nos concentraremos en la masa del π0, la cual surge de los términos

en la expansión de la acción bosonizada Sbos que son cuadráticos en δπ3. Desarrollando el

primer término en el lado derecho de la ecuación (5.3) alrededor de los valores medios de

los campos mesónicos obtenemos

� log detD = �Tr logD0 � Tr log(1 +D�1
0 δD)

= �Tr logD0 � Tr (D�1
0 δD) +

1
2

Tr (D�1
0 δD)2 + . . . (5.32)

De este modo, el desarrollo a orden cuadrático de la ecuación (5.4) en las fluctuaciones del

campo δπ3 está dada por

1
2

Tr (D�1
0 δD)2

�

�

�

�

(δπ3)2

= �

1
2

»

G(x1 � x2) G(x3 � x) trc f D

[

D�1
0 (x, x1) γ5 exp[Φ(x1, x2)]�

D�1
0 (x2, x3) γ5 exp[Φ(x3, x)]

]

δπ3

( x1 + x2

2

)

δπ3

( x3 + x

2

)

, (5.33)

donde la integral se extiende sobre los espacios coordenados x, x1, x2 y x3, y la traza actúa

sobre los espacios de color, sabor y Dirac.
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Realizando las correspondientes transformadas de Fourier, podemos escribir la acción

bosonizada en el espacio de momentos como

Sbos
�

�

(δπ3)2 =
1
2

Tr (D�1
0 δD)2

�

�

�

(δπ3)2
+

1
2G

»

d4t

(2π)4 δπ3(t) δπ3(�t)

=
1
2

»

d4t

(2π)4

[

F(t2
K

, t2
‖) +

1
G

]

δπ3(t) δπ3(�t) , (5.34)

y, eligiendo el marco de referencia en el que el π0 se encuentra en reposo, su masa se

obtiene como solución de la ecuación

F(0,�m2
π0) +

1
G

= 0 . (5.35)

De este modo, debemos calcular dentro de nuestro modelo la función F
(

t2
K

, t2
‖

)

en el límite

t2
K

= 0. A partir de la ecuación (5.33) se obtiene

F(0, t2
‖) = 16 π2 NC

¸

f=u,d

1
(q f B)2

»

q
K

p
K

p1
K

q‖

g
(

q2
K

+ q2
‖

)

g
[

(p1
K

+ p
K

� q
K

)2+ q2
‖

]

�

exp
[

i 2 φ(q
K

, p
K

, p1
K

)

q f B

]

trD

[

S̃ f (p
K

, q+
‖
) iγ5 S̃ f (p1

K

, q�
‖
) iγ5

]

, (5.36)

donde hemos definido q�
‖
= q‖ � t‖/2, y la función φ en la exponencial (siempre conside-

rando el gauge de Landau) está dada por

φ(q
K

, p
K

, p1
K

) = p2 p11 + q1 (p12 � p2)� p1 p12 � q2 (p11 � p1) . (5.37)

Para las integrales sobre los vectores de dos dimensiones hemos utilizado la notación

»

p q ...
�

»

d2 p

(2π)2
d2q

(2π)2 . . . (5.38)

La evaluación de la traza en (5.36) conduce a

trD

[

S̃ f (p
K

, q+
‖
) iγ5 S̃ f (p1

K

, q�
‖
) iγ5

]

= � 8 e�(p2
K

+p12
K

)/B f

8

¸

k,k1=0

(�1)k+k1
�

[

¸

λ=�

F
λ, f (AB)

kk1 ,q+
‖

q�
‖

Lkλ

(

2p2
K

B f

)

Lk1λ

(

2p12
K

B f

)

+ 8 F
+, f (CD)

kk1 ,q+
‖

q�
‖

(p � p1) L1
k�1

(

2p2
K

B f

)

L1
k1�1

(

2p12
K

B f

)

]

,

(5.39)

con

F
λ, f (XY)

kk1 ,q+
‖

q�
‖

= X̂
λ, f

k,q+
‖

X̂
λ, f

k1 ,q�
‖

+ (q+‖ � q
�

‖
) Ŷ

λ, f

k,q+
‖

Ŷ
λ, f

k1,q�
‖

, (5.40)

donde por simplicidad hemos introducido la notación B f = |q f B|, y X, Y = A, B, C, D

representan las funciones (5.23-5.26).
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Para realizar las integrales sobre p
K

, p1
K

y q
K

, que involucran polinomios de Laguerre,

es conveniente introducir una transformada de Laguerre-Fourier de los factores de forma

no locales, calculando la inversa de la ecuación (5.12):

g
(

p2
K

+ p2
‖

)

= 2 e�p2
K

/B f

8

¸

k=0

(�1)kλ g
λ, f
k,p‖

Lkλ

(

2p2
K

B f

)

, (5.41)

tanto para λ = + como λ = �. Usando esta relación para transformar las funciones

g(q2
K

+ q2
‖) y g[(p1

K

+ p
K

� q
K

)2 + q2
‖] en (5.36), se puede mostrar que las integrales so-

bre las componentes perpendiculares del momento se pueden realizar analíticamente. El

cálculo correspondiente, detallado en el Apéndice F, conduce a la expresión [105]

F(0, t2
‖) = �

NC

π

¸

f=u,d

B f

8

¸

k=0

»

d2q‖

(2π)2

[

¸

λ=�

g
λ, f
k,q‖

2
F

λ, f (AB)

kk,q+
‖

q�
‖

+ 4k B f g
+, f
k,q‖

g
�, f
k,q‖

F
+, f (CD)

kk,q+
‖

q�
‖

]

.

(5.42)

En el caso del mesón σ, la masa se puede determinar a partir de una relación similar

a (5.35). La función correspondiente G(0, t2
‖) se obtiene siguiendo los mismos pasos lleva-

dos a cabo para el caso del π0. La diferencia esencial es que se deben quitar los factores

iγ5 en la traza de la ecuación (5.36). Al calcular esta traza se obtiene un resultado análogo

a (5.39), donde las nuevas funciones G
λ, f (XY)

kk1 ,q+
‖

q�
‖

están dadas por

G
λ, f (AB)

kk1,q+
‖

q�
‖

= �Â
λ, f

k,q+
‖

Â
λ, f

k1,q�
‖

+ (q+‖ � q
�

‖
) B̂

λ, f

k,q+
‖

B̂
λ, f

k1,q�
‖

,

G
λ, f (CD)

kk1,q+
‖

q�
‖

= Ĉ
λ, f

k,q+
‖

Ĉ
λ, f

k1,q�
‖

� (q+‖ � q
�

‖
) D̂

λ, f

k,q+
‖

D̂
λ, f

k1,q�
‖

. (5.43)

La expresión final para G(0, t2
‖) tiene la misma forma que (5.42), únicamente reemplazando

F
�, f (XY)

kk1 ,q+
‖

q�
‖

Ñ G
�, f (XY)

kk1,q+
‖

q�
‖

.

Constante de decaimiento débil del pion

La constante de decaimiento débil del pion fπ0 se define a través de la relación (3.46),

donde el campo normalizado asociado al estado π0 en el espacio de momentos es π̃3(t) =

Z�1/2
π0 π3(t). El factor de renormalización de función de onda Z1/2

π0 está dado por el residuo

del polo del propagador del pion en t2 = �m2
π0 , que en presencia del campo magnético

viene dado por

Z�1
π0 =

dF(0, t2
‖)

dt2
‖

�

�

�

�

t2
‖
=�m2

π0

, (5.44)

donde F(0, t2
‖) es la función en la ecuación (5.42). Para el cálculo de fπ0 debemos introdu-

cir, a través de la derivada covariante y el transporte paralelo, los acoplamientos con los
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campos de gauge auxiliares, además del acoplamiento con el campo magnético externo.

Las expresiones para la derivada covariante y el transporte paralelo resultan

Dµ = Bµ � i Q̂Aµ(x)�
i

2
γ5 τ3W3µ(x) , (5.45)

W(r, s) = P exp
"

� i

» s

r
dℓµ

[

Q̂Aµ(ℓ) +
1
2

γ5 τ3W3µ(ℓ)

]*

. (5.46)

Necesitamos entonces desarrollar la acción bosonizada a primer orden en W3 y δπ3. Escri-

biendo

Sbos
�

�

W3 δπ3
=

»

d4t

(2π)4 Fµ(t) W3µ(t) δπ3(�t) , (5.47)

se encuentra

fπ0 = i Z1/2
π0

tµFµ(t)

t2

�

�

�

�

t2
K

=0,t2
‖
=�m2

π0

. (5.48)

Para calcular la función Fµ(t) consideraremos nuevamente el desarrollo en (5.32), sepa-

rando en δD términos con diferentes potencias de δπ3 y W3:

δD = δDW + δDπ + δDWπ + . . . . (5.49)

Se tiene así

Sbos
�

�

W3 δπ3
= �Tr (D�1

0 δDWπ) + Tr (D�1
0 δDWD�1

0 δDπ) . (5.50)

Los operadores explícitos en la expresión (5.49) son

δDπ(x, x1) = i γ5 τ3 exp[Φ(x, x1)]G(x� x1) δπ3(x̄) , (5.51)

δDW(x, x1) = δ(4)(x� x1)
τ3

2
γ5 γµ W3µ(x̄)

+i σ̄ γ5
τ3

2
exp[Φ(x, x1)]G(x� x1)

[

a3(x, x̄)� a3(x̄, x)
]

, (5.52)

δDWπ(x, x1) = �

1
2

exp[Φ(x, x1)]G(x� x1)
[

a3(x, x̄)� a3(x̄, x)
]

δπ3(x̄) , (5.53)

donde hemos introducido las definiciones x̄ = (x + x1)/2 y

a3(x, y) =

» y

x
dℓµ W3µ(ℓ) , (5.54)

y está implícito un producto directo por una matriz identidad en el espacio de color.

El primer y el segundo término en la ecuación (5.50) se pueden entender desde el pun-

to de vista diagramático como una contribución tipo tadpole y una contribución de dos

propagadores, respectivamente. Para la de tipo tadpole, al cabo de cierto trabajo se obtiene

� Tr (D�1
0 δDWπ) =

»

d4t

(2π)4 F
(I)
µ (t) W3µ(t) δπ3(�t) , (5.55)
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donde

F
(I)
µ (t) = i

NC

2

¸

f=u,d

»

d4 p

(2π)4
d4q

(2π)4

#

g

[

(

p�
q

2

)2
]

� g

[

(

p�
q

2
+

t

2

)2
]+

�

trD

[

S̃ f (p
K

, p‖)
]

hµ(q, t� q) , (5.56)

con

hµ(q, q1) = � i

»

d4z eiq1�z

» z

0
dℓµ ei(q+q1)�ℓ . (5.57)

Como estamos interesados en el producto escalar t � F(I)(t), podemos usar la relación

tµ hµ(q, t� q) = (2π)4
[

δ(4)(t� q)� δ(4)(q)
]

, (5.58)

que resulta independiente del camino elegido para la integral en (5.57). Teniendo en cuenta

la expresión para S̃ f (p
K

, p‖) en (5.22) obtenemos

tµ F
(I)
µ (t)

�

�

�

t
K

=0
= i 2 NC

¸

f=u,d

8

¸

k=0

»

p
K

p‖

[

g
(

p+
2)

+ g
(
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2)
� 2 g

(

p2)
]

�

exp
(

�

p2
K

B f

)

¸

λ=�

(�1)kλ Â
λ, f
k,p‖

Lkλ

(

2p2
K

B f

)

, (5.59)

donde p�
2 = p2

K

+ (p‖ � t‖/2)2. Al igual que para las masas de los mesones, podemos

calcular la integral sobre p
K

luego de realizar la transformada de Laguerre-Fourier de los

factores de forma no locales, según la ecuación (5.41). Se tiene así

tµ F
(I)
µ (t)

�

�

�

t
K

=0
= i 4NC

¸

f=u,d

8

¸

k,k1=0

(�1)k+k1
»

p
K

p‖

exp
(

�

2p2
K

B f

)

�

¸

λ=�

(

g
λ, f
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‖

+ g
λ, f
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‖

� 2 g
λ, f
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)

Â
λ, f
k,p‖

Lk1λ

(

2p2
K

B f

)

Lkλ

(

2p2
K

B f

)

= i
NC

2π

¸

f=u,d

B f

8

¸

k=0

»

p‖

¸

λ=�

(

g
λ, f

k,p+
‖

+ g
λ, f

k,p�
‖

� 2 g
λ, f
k,p‖

)

Â
λ, f
k,p‖

, (5.60)

donde hemos utilizado la propiedad de ortogonalidad de los polinomios de Laguerre.

Para analizar la contribución de dos propagadores escribimos

Tr (D�1
0 δDWD�1

0 δDπ) =

»

d4t

(2π)4

[

F
(II)
µ (t) + F

(III)
µ (t)

]

W3µ(t) δπ3(�t) , (5.61)

donde F
(II)
µ (t) y F

(III)
µ (t) corresponden a las contribuciones que surgen del primer y segun-

do término de δDW en (5.52), respectivamente. Para el primer término se obtiene

F
(II)
µ (t) = i 8π2NC

¸

f=u,d

1
B2

f

»

q‖ q
K

p
K

p1
K

g(q2) exp
[

i 2 ϕ(q
K

, p
K

, p1
K

, t
K

)

B f

]

�

trD

[

S̃ f (p
K

, q+
‖
) γ5 γµ S̃ f (p1

K

, q�
‖
) γ5

]

, (5.62)
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donde q�
‖
= q‖ � t‖/2, y la función ϕ en la exponencial está dada por

ϕ(q
K

, p
K

, p1
K

, t
K

) = p2

(

q1 �
t1

2

)

� p12

(

q1 +
t1

2

)

� q1 t2 � p2 p11 � (1 Ø 2) . (5.63)

Como estamos interesados en el producto tµ F
(II)
µ (t) para t

K

= 0, calculamos la traza

trD

[

S̃ f (p
K

, q+
‖
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+, f

k1,q�
‖

D̂
+, f

k,q+
‖

]

�

L1
k�1

(

2p2
K

B f

)

L1
k�1

(

2p12
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B f
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. (5.64)

Ahora podemos introducir la transformada (5.41) para g(q2), que permite integrar sobre

los momentos transversos y escribir el resultado en términos de las transformadas de

Laguerre-Fourier de los factores de forma. Este cálculo, descrito en el Apéndice G, con-

duce a

tµ F
(II)
µ (t)

�

�

�

t
K

=0
= � i

NC

π

¸

f=u,d

B f

8

¸

k=0

»

q‖
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‖ ) � (5.65)
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.

Finalmente, para el segundo término en (5.61) encontramos

F
(III)
µ (t) = i 8π2 NC σ̄

¸

f=u,d
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K

, q+‖ ) iγ5 S̃ f (p1
K

, q�
‖
) iγ5

]

,

(5.66)

donde la función ϕ(q
K

, p
K

, p1
K

, k
K

) está dada en (5.63). Usando la relación en (5.58) obtene-

mos
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, (5.67)

donde φ(q
K

, p
K

, p1
K

) está dada en la ecuación (5.37), y hemos definido s
K

= p1
K

+ p
K

� q
K

.

Comparando con la ecuación (5.36), se puede ver que el cálculo que se debe llevar a cabo

es básicamente el realizado en el caso de la masa del π0, descrito en el Apéndice F. De este

modo se encuentra
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, (5.68)

donde hemos definido

g̃
λ, f
k,q‖t‖

= g
λ, f

k,q+
‖

+ g
λ, f

k,q�
‖

� 2 g
λ, f
k,q‖

. (5.69)

Cuando sumamos las contribuciones dadas en las ecuaciones (5.60), (5.66) y (5.68) pode-

mos ver que hay cancelaciones que ayudan a simplificar la expresión final para t � F(t)|t
K

=0 .

Luego de algo de álgebra se llega, en efecto, a

tµ Fµ(t)
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. (5.70)

La expresión para fπ0 se puede simplificar aún más utilizando la ecuación de gap y la

relación (5.35) obtenida para la masa del π0. Teniendo en cuenta que la ecuación del gap

puede escribirse como

σ̄

G
=

NC

π

¸

f=u,d

B f

8

¸

k=0

»

q‖

¸

λ=�

g
λ, f
k,q‖

Â
λ, f
k,q‖

, (5.71)

mientras que para la masa del pion tenemos

1
G

= �F(0,�m2
π0) , (5.72)

con F(0, t2
‖) dado por (5.42), a partir de estas ecuaciones y la relación en (5.13) se puede

observar que existen cancelaciones extra para t2
‖ = �m2

π0 en (5.70). De este modo, llegamos

a una expresión final de la forma

m2
π0 fπ0 = mc Z1/2

π0 J(�m2
π0) , (5.73)
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donde la función J(t2
‖) está dada por
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NC
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, (5.74)

con q�
‖
= q‖ � t‖ [105].

Relaciones quirales

En esta subsección mostramos que las relaciones de Goldberger-Treiman (GT) y Gell-

Mann-Oakes-Renner (GOR) permanecen válidas en nuestro modelo en presencia del cam-

po magnético externo. Análisis previos en este sentido se han llevado a cabo en las Refs. [99]

y [100] en el contexto de χPT y PIH, respectivamente. Siguiendo el análisis en la Ref. [68],

es útil definir la función

K(t2
‖) = mc J(t2

‖)� σ̄F(0, t2
‖) , (5.75)

donde J(t2
‖) y F(0, t2

‖) están dadas por las ecuaciones (5.74) y (5.42), respectivamente. De la

ecuación (5.70), teniendo en cuenta la relación en (5.13) es sencillo mostrar que
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. (5.76)

A partir de la ecuación del gap, podemos observar que el segundo término es constante, e

igual a �σ̄/G. Además, teniendo en cuenta las relaciones

F
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= Â
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, (5.77)

se puede ver que

mc J(0)� σ̄F(0, 0) =
NC

π

¸
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8

¸

k=0

»

q‖

¸
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Â
λ, f
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, (5.78)

por lo tanto podemos escribir

� i tµ Fµ(t)
�

�

�

t
K

=0
= K(t2

‖)�K(0) . (5.79)

De este modo, de la ecuación (5.48) obtenemos

fπ0 = �Z1/2
π0

[

K(�m2
π0)�K(0)

]

�m2
π0

. (5.80)
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En el límite quiral se cumple que mc Ñ 0, m2
π0 Ñ 0, por lo tanto la constante de decai-

miento del pion en ese límite vendrá dada por

fπ0,0 = �Z1/2
π0,0

dK0(t2
‖)

dt2
‖

�

�

�

�

t‖=0
= Z1/2

π0,0 σ̄0

dF0(0, t2
‖)

dt2
‖

�

�

�

�

t‖=0
= Z�1/2

π0,0 σ̄0 , (5.81)

donde hemos tenido en cuenta la relación entre Zπ0 y la derivada de F(0, t2
‖) en la ecua-

ción (5.44). Los subíndices 0 indican que todas las cantidades tienen que ser evaluadas en

el límite quiral. Notando que Z1/2
π0 resulta ser la constante de acoplamiento efectiva gπqq̄

entre el campo π3 y las corrientes pseudoescalares quark-antiquark, llegamos a

fπ0,0 gπqq̄,0 = σ̄0 , (5.82)

que es la expresión para la relación de Goldberger-Treiman a nivel de quarks.

Finalmente, consideraremos los condensados de quarks, xūuy y xd̄dy, dados por la ecua-

ción (5.28). Teniendo en cuenta las relaciones (5.77), se puede observar que en el límite

quiral se obtiene

xūu + d̄dy0 = � σ̄0 J0(0) (5.83)

(recordar que fuera del límite quiral las integrales en (5.28) son en general divergentes,

y necesitan ser regularizadas). Además, podemos realizar un desarrollo quiral a ambos

lados de la ecuación (5.73), dejando únicamente el orden más bajo distinto de cero. Esto

conduce a

m2
π0 fπ0,0 = mc Z1/2

π0,0 J0(0) . (5.84)

A partir de esta expresión y de la ecuación (5.81), obtenemos la relación de Gell-Mann-

Oakes-Renner

mc xūu + d̄dy0 = �m2
π0 f 2

π0,0 . (5.85)

5.2. Parametrizaciones

A fin de obtener predicciones numéricas para el comportamiento de las cantidades

definidas en la sección anterior como funciones de la temperatura y del campo magnético

externo, es necesario especificar la forma funcional del factor de forma no local g(p2).

Consideraremos aquí dos formas utilizadas usualmente: la función gaussiana

g(p2) = exp(�p2/Λ
2) (5.86)

y la función “5-Lorentziana”

g(p2) =
1

1 + (p2/Λ2)5 . (5.87)
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(�x qq̄ y
reg
0 )1/3 Factor de forma mc GΛ

2
Λ

220 G 7,4 29,06 604

L5 7,4 10,34 790

230 G 6,5 23,66 678

L5 6,5 9,700 857

240 G 5,8 20,65 752

L5 5,8 9,267 926

250 G 5,1 18,78 827

L5 5,1 8,958 996

Tabla 5.1: Parámetros del modelo para los factores de forma gaussiano y 5-Lorentziano con

los cuales se calculan algunos valores representativos del condensado quiral. Los valores

de los condensados, las masas corrientes y la constante Λ se encuentran expresados en

MeV, mientras que GΛ
2 es adimensional.

Estos factores de forma deben incluir un parámetro adicional Λ con unidades de energía,

que actúa como un cut-off efectivo covariante en el espacio de momentos. En el caso par-

ticular de la función gaussiana se tiene la ventaja de que la integral en la ecuación (5.12)

puede realizarse analíticamente, dando como resultado

M
λ, f
p̄,k =

(

1� δkλ,�1
)

mc + σ̄

(

1� |q f B|/Λ
2
)kλ

(

1 + |q f B|/Λ2
)kλ+1 exp

(

� p̄ 2/Λ
2) . (5.88)

Dados los factores de forma no locales, se deben todavía determinar los valores de los

parámetros libres mc, G y Λ. Consideraremos varios conjuntos de parámetros, obtenidos

a partir de exigir que el modelo reproduzca los valores empíricos de la masa y la cons-

tante de decaimiento del pion, así como un valor fenomenológicamente aceptable para

el condensado xq̄ f q f y
reg
0 . Tomaremos en particular los valores (�xq̄ f q f y

reg
0 )1/3 = 220, 230,

240 y 250 MeV. Los parámetros así obtenidos para los factores de forma gaussiano y 5-

lorentziano se encuentran en la Tabla 5.1. Las expresiones analíticas utilizadas para cal-

cular la masa y la constante de decaimiento débil del pion para este modelo son las que

obtuvimos en el Cap. 3, ecuaciones (3.41), (3.52) y (3.53), en el límite z(q) = 1 [68].

5.3. Resultados numéricos

A continuación discutiremos el comportamiento de los condensados quirales norma-

lizados, de las masas de los mesones σ y π y de la constante de decaimiento del pion
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como función de eB para los factores de forma introducidos previamente, utilizando las

parametrizaciones de la Tabla 5.1.

En los paneles superiores de la Figura 5.1 se observan las predicciones del modelo para

∆Σ̄B como función de eB, mientras que en los paneles inferiores se muestran los resultados

correspondientes para Σ
u
B � Σ

d
B. Por comparación se muestran también los resultados de

LQCD presentados en la Ref. [84]. Las curvas sólidas (negras), a rayas (rojas) y punteadas

(azules) corresponden a (�xq̄ f q f y
reg
0 )1/3 = 220, 230 y 240 MeV, respectivamente. Se puede

ver que las predicciones de nuestro modelo son muy similares para todas las parametri-

zaciones consideradas, y muestran un buen acuerdo con los resultados de LQCD. En el

caso de Σ
u
B � Σ

d
B puede notarse cierta dependencia con la parametrización, obteniéndose

para ambos factores de forma un mejor acuerdo con los datos de LQCD en el caso de los

parámetros correspondientes al condensado (�xq̄ f q f y
reg
0 )1/3 = 230 MeV.
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Figura 5.1: Condensados normalizados en función de campo magnético. Panel superior:

promedio de sabor; panel inferior: diferencia de sabores. Las curvas sólidas (negras), a

rayas (rojas) y punteadas (azules) corresponden a las parametrizaciones que conducen a

(�xq̄qy
reg
0 )1/3 = 220, 230 y 240 MeV, respectivamente. Los símbolos cuadrados indican los

resultados de LQCD tomados de la Ref. [84].
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El aumento de los condensados quirales en función del campo magnético que se puede

observar en la Figura 5.1 refleja la llamada catálisis magnética. Debido a que los condensa-

dos quirales son los parámetros de orden de la ruptura dinámica de la simetría quiral, este

efecto puede interpretarse como una intensificación de dicha ruptura debida a la presencia

del campo magnético. El fenómeno puede entenderse como consecuencia de la tendencia

del campo magnético a fortalecer la unión de partículas de cargas opuestas en los conden-

sados.

Nuestros resultados para el comportamiento de la masa del pion mπ0(B) y el cuadrado

de la constante de decaimiento del pion f 2
π0(B) en función de eB se pueden observar en las

Figuras 5.2 y 5.3 respectivamente. En ambos casos las curvas han sido normalizadas para

los valores a B = 0 siendo mπ0(0) = 139 MeV y f 2
π0(0) = (92,4 MeV)2. La parametriza-

ción utilizada fue la correspondiente al condensado (�xq̄ f q f y
reg
0 )1/3 = 230 MeV tanto para

el factor de forma gaussiano como el 5-lorentziano. No se incluyen resultados para otros

valores de (�xq̄ f q f y
reg
0 )1/3 dado que las curvas en las Figuras 5.2 y 5.3 se mantienen prácti-

camente sin variación cuando se utilizan parametrizaciones que conducen a condensados

a B = 0 entre �(220 MeV)3 y �(250 MeV)3.

Como se observa en la Figura 5.2, la masa del π0 decrece a medida que eB aumenta,

llegando a un valor cercano al 65 % de mπ0(0) a eB � 1, 5 GeV2, el cual corresponde a un

campo magnético de alrededor de 2, 5� 1020 G. También se incluye en la figura una banda

gris que corresponde a los resultados presentados recientemente por LQCD [93]. A causa

de la problemática que se presenta en los cálculos de LQCD para obtener las masas de

los mesones livianos, estos resultados fueron calculados a partir de una extrapolación al

continuo del espaciado de la red, considerando una masa relativamente alta para el pion,

mπ0 = 415 MeV. Por comparación también mostramos los resultados obtenidos dentro de

nuestro modelo variando el valor del parámetro mc a 56, 3 MeV, lo cual conduce a este valor

de mπ0 . En general, se puede ver que nuestras predicciones resultan estar de acuerdo con

los cálculos de LQCD. Es importante tener en cuenta que a diferencia de otros modelos,

nuestros resultados fueron obtenidos directamente a partir de las parametrizaciones utili-

zadas en el caso de B = 0 en trabajos anteriores, sin realizar ajustes para que concuerden

con los datos provenientes de LQCD. Con respecto a la constante de decaimiento del pion

fπ0 , como se observa en la Figura 5.3, encontramos que ésta se comporta como una fun-

ción creciente de B. Esto es perfectamente consistente con la relación de Gell-Mann-Oakes-

Renner para un valor pequeño de la masa constituyente mc. Teniendo en cuenta el compor-

tamiento de la masa del pion y el resultado en la ecuación (5.85), f 2
π0(B) debe crecer más

rápidamente que los condensados, lo cual puede observarse al comparar con las curvas en

la Figura 5.1. Por ejemplo, para eB = 1, 5 GeV2 se obtiene mcxūu + d̄dy/(m2
π0 f 2

π0) � �0, 98

para los factores de forma gaussiano y 5-lorentziano, en acuerdo con la ecuación (5.85).
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Figura 5.2: Masas del mesón π0 en función de eB. Las curvas negra y roja a las parametri-

zaciones de (�xq̄qy
reg
0 )1/3 = 230 MeV, con el factor de forma gaussiano y 5-lorentziano res-

pectivamente. La curva azul resultada de una parametrización en la que mπ0 = 417 MeV

con el factor de forma gaussiano, mientras que la banda gris indica los resultados de LQCD

tomados de la Ref. [93].

Finalmente, en la Figura 5.4 se presentan los valores para el masa del mesón σ normali-

zada a mσ(0). En este caso los resultados resultan ser más dependientes de la parametriza-

ción, por lo cual hemos considerado tres conjuntos de parámetros correspondientes a los

condensados (�xq̄ f q f y
reg
0 )1/3 = 230, 240 y 250 MeV con factor de forma gaussiano. Los va-

lores obtenidos para mσ(0) son 771, 683 y 616 MeV, respectivamente. A diferencia del caso

de mπ0 , las curvas para mσ presentan un máximo antes de comenzar a decrecer. Para valo-

res menores del condensado a B = 0, así como en el caso del factor de forma 5-lorentziano,

la determinación de la masa del mesón σ se vuelve problemática ya que excede el umbral

a partir del cual puede tener lugar un decaimiento en dos quarks. Esta situación es similar

a la descrita en la Sec. 4.3 cuando se analizó el caso de la masa del mesón axial f1.
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Figura 5.3: Constante de decaimiento del pion al cuadrado normalizada en función del

campo magnético externo. Las curvas sólida (negra) y a rayas (roja) corresponden a para-

metrizaciones con los factores de forma gaussiano y 5-lorentziano, respectivamente.
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Figura 5.4: Masa del mesón σ en función de eB normalizada a partir de su valor correspon-

diente para B = 0. Las curvas negras, verde y violeta corresponden a las parametrizacio-

nes de (�xq̄qy
reg
0 )1/3 = 230, 240 y 250 MeV, respectivamente utilizando el factor de forma

gaussiano.

79





Capítulo 6

Modelo NJL no local a temperatura

finita en presencia de campo

magnético

En este capítulo extenderemos el modelo NJL no local de dos sabores de quarks al

régimen de temperatura T finita, con lo cual podremos estudiar las predicciones del mismo

para las transiciones de fases quiral y de deconfinamiento en función de la temperatura.

Para ello se utilizará el formalismo de Matsubara para la incorporación de la temperatura

y se incluirá un acoplamiento con el loop de Polyakov, que permite una descripción del

confinamiento. Detallaremos seguidamente el modo en que puede introducirse en este

marco la interacción con un campo magnético externo uniforme.

6.1. Modelo NJL local a temperatura finita

6.1.1. Formalismo de Matsubara o de tiempo imaginario

Para describir un sistema a temperatura finita en el marco de una teoría cuántica de

campos es usual considerar la matriz densidad ρ̂, cuyos valores de expectación xφ|ρ̂|φy in-

dican la probabilidad de que, para una temperatura T específica, el sistema se encuentre en

el estado |φy. El comportamiento estadístico de un sistema cuántico en equilibrio térmico

puede estudiarse a través de su función de partición, definida como

Z(β) = Tr ρ̂(β), (6.1)

donde la traza es la suma sobre todos los valores de expectación en cualquier base com-

pleta, y β es la recíproca de la temperatura (se utilizan unidades tales que la constante de

Boltzman es k = 1). La función de partición Z es una herramienta mediante la cual pueden
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obtenerse todas las propiedades termodinámicas del sistema. El promedio estadístico del

valor esperado de un observable Â viene dado por

xAy = Z(β)�1 Tr
[

ρ̂(β) Â
]

=
Tr
[

ρ̂(β)Â
]

Tr ρ̂(β)
. (6.2)

En general para estudiar la estadística de sistemas con la posibilidad de creación y

destrucción de partículas, se debe considerar la matriz densidad para el ensamble gran

canónico,

ρ̂ = exp(�βĤ) , donde Ĥ = Ĥ� µN̂ . (6.3)

Aquí Ĥ y N̂ son los operadores hamiltoniano y número de partículas respectivamente, y

µ es el potencial químico. En esta Tesis nos concentraremos en particular en el caso µ = 0

(N fijo).

Para el tratamiento de sistemas con temperatura finita consideraremos el formalismo

de Matsubara o de tiempo imaginario. La idea básica consiste en que los valores de ex-

pectación de operadores en un ensamble térmico se pueden reescribir como valores de

expectación en teoría cuántica de campos, donde la configuración evoluciona en un tiem-

po imaginario o euclídeo T = it. De esta forma, se puede realizar una transformación a

un espacio-tiempo con métrica euclídea, donde la traza de la ecuación (6.2) lleva a requerir

que los campos bosónicos y fermiónicos sean respectivamente periódicos o anti-periódicos

con respecto a la dirección del tiempo euclídeo, con periodicidad β. En el espacio de mo-

mentos, esto conduce al reemplazo de frecuencias continuas por frecuencias discretas. Esto

se puede comprender fácilmente dentro del contexto de integrales funcionales de camino.

Para ello consideraremos el caso de campo escalar φ. La amplitud de transición entre dos

estados en una teoría cuántica de campos viene dada por

�

φ(~x1, t1)
�

�φ(~x2, t2)
D

=
�

φ1
�

� exp(�iH(t1 � t2))
�

�φ2
D

= N1

»

Dφ eiS, (6.4)

donde N1 es una constante de normalización y S la acción definida por

S =

» t1

t2

dt

»

d3x L (6.5)

con L representando la densidad lagrangiana apropiada para el sistema. La integral fun-

cional está definida sobre caminos cuyos extremos se mantienen fijos,

φ(~x1, t1) = φ1 , φ(~x2, t2) = φ2 . (6.6)

Dadas las tres últimas ecuaciones es fácil ver que identificando t1 � t2 = �iβ, se puede

escribir la función de partición para cualquier sistema cuántico en la base de estados |φay

como

Z(β) = Tr e�βH =

»

dφa

�

φa

�

�e�βH
�

�φa

D

= N1

»

Dφ e�SE , (6.7)
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donde SE, la acción euclídea (tiempo imaginario), es

SE =

» β

0
dτ

»

d3x LE , (6.8)

mientras que los campos satisfacen condiciones de contorno periódicas

φ(~x, β) = φ(~x, 0). (6.9)

Cuando pasamos al espacio de momentos, encontramos que la integración sobre un inter-

valo finito implica que las frecuencias en la transformada de Fourier toman valores discre-

tos.

Las distintas condiciones de contorno determinan los posibles valores para dichas fre-

cuencias, conocidas como frecuencias o modos de Matsubara. A diferencia de los campos

bosónicos, los campos fermiónicos satisfacen condiciones de contorno antiperiódicas, por

lo tanto las frecuencias de Matsubara vienen dadas por

ωn =

$

'

'

&

'

'

%

2nπ

β
para bosones

(2n + 1)π
β

para fermiones.
(6.10)

donde n es un entero.

En conclusión, el formalismo de Matsubara propone la siguiente sustitución en las in-

tegrales sobre momentos consideradas en los modelos de los capítulos anteriores:

»

d4q

(2π)4 F(q) =

»

dq0

2π

»

d3~q

(2π)3 F
(

q0,~q
)

Ñ T
8

¸

n=�8

»

d3~q

(2π)3 F
(

ωn ,~q
)

, (6.11)

donde F(q) representa al integrando en cada caso.

6.1.2. Loop de Polyakov

El loop de Polyakov fue propuesto por A.M. Polyakov [31] como una aplicación del

loop de Wilson al problema de propiedades térmicas de campos de gauge, en particular

como un mecanismo que explicara el deconfinamiento de quarks a una cierta temperatura.

Para introducirlo es conveniente primero mencionar brevemente la simetría involucrada.

Simetría global Z(N) en SU(N)

Tal como se indica en el trabajo de t’Hooft [106], en una teoría de gauge SU(N) local

existe una simetría global Z(N). Para ver esto partimos de una densidad lagrangiana que
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incluya la interacción de los quarks con los campos gluónicos

L =
1
2

Tr G2
µν + ψ̄iγµDµψ, (6.12)

donde

Dµ = Bµ � igAµ y Gµν =
i

g

[

Dµ, Dν

]

. (6.13)

El campo Aµ está definido según Aµ = Aa
µ ta, donde las matrices ta son los generadores

del grupo SU(N) normalizados como Tr(tatb) = δab/2. Este lagrangiano es invariante ante

transformaciones de gauge Ω, dadas por

Dµ Ñ Ω
:DµΩ , ψ Ñ Ω

:ψ . (6.14)

Al ser un elemento de SU(N), Ω satisface que

Ω
:

Ω = 1 , det Ω = 1 . (6.15)

Siendo una transformación de gauge local, Ω es en general función de las coordenadas

espacio-temporales.

Consideremos una transformación de gauge global dada por una fase constante por la

matriz unidad:

Ωc = e�iϕ
1 . (6.16)

Para que esta transformación sea un elemento de SU(N), el determinante debe ser igual a

uno, lo cual requiere que

ϕ =
2πj

N
, j = 0, 1, ...(N� 1). (6.17)

Esto determina un grupo cíclico, cuyos elementos son generados por las potencias j de

un único elemento, definiendo así una simetría global Z(N). Se dice que estos elementos

conforman el centro del grupo SU(N).

Z(N) a temperatura finita

Al ser un subgrupo de las transformaciones de gauge, las rotaciones del grupo Z(N) son

siempre una simetría del Lagrangiano, con quarks o sin ellos. Sin embargo, en presencia

de quarks dinámicos, las rotaciones de Z(N) no son una simetría de la teoría ya que violan

las condiciones de borde requeridas.

En efecto, trabajando en un espacio-tiempo euclídeo a una temperatura T, la coorde-

nada de tiempo imaginario τ es de extensión finita, τ : 0 Ñ β = 1/T. Las condiciones de

borde que deben satisfacer los campos están dadas por la estadística propia de cada uno

de ellos. Esto es, los gluones deben ser periódicos en τ, mientras que los quarks deben ser

anti-periódicos:

Aµ(~x, β) = +Aµ(~x, 0) , ψ(~x, β) = �ψ(~x, 0) . (6.18)
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Cualquier transformación de gauge que sea periódica en τ respeta estas condiciones de

borde. Sin embargo, t’Hooft encontró que es posible considerar transformaciones de gauge

más generales, las cuales son periódicas a menos de Ωc:

Ω(~x, β) = Ωc , Ω(~x, 0) = 1. (6.19)

Los campos de color adjuntos son invariantes ante esta transformación, mientras que los

que están en la representación fundamental no lo son:

AΩ(~x, β) = Ω
:

c Aµ(~x, β)Ωc = Aµ(~x, β) = +Aµ(~x, 0) , (6.20)

ψΩ(~x, β) = Ω
:

c ψ(~x, β) = eiϕψ(~x, β) � �ψ(~x, 0). (6.21)

Aquí se ha utilizado el hecho de que Ωc, al ser una fase constante por la matriz unitaria,

conmuta con cualquier matriz de SU(N). En consecuencia, las teorías de gauge SU(N) “pu-

ras” (sin fermiones) tienen una simetría global Z(N), la cual deja de ser exacta al incluir

quarks dinámicos.

En la teoría de gluones pura, un parámetro de orden para la simetría Z(N) se construye

utilizando la línea de Wilson térmica:

L(~x) = P exp

(

ig

» β

0
A0(~x, τ) dτ

)

, (6.22)

donde g es la constante de acoplamiento de gauge, A0 es el vector potencial en la dirección

temporal, y el símbolo P denota ordenamiento de camino. Con esta definición, la línea de

Wilson térmica transforma como un campo adjunto ante transformaciones de gauge SU(N)

locales:

L(~x)Ñ Ω
:(~x, β) L(~x)Ω(~x, 0). (6.23)

El loop de Polyakov [31] se define como la traza de la línea de Wilson térmica, y es, por lo

tanto, invariante de gauge:

φ(~x) =
1
N

Tr L = N�1 TrP exp

(

ig

» β

0
A0(~x, τ) dτ

)

. (6.24)

Ante transformaciones globales Z(N), el loop de Polyakov φ transforma como un campo

con carga uno:

φ Ñ eiϕφ. (6.25)

A muy alta temperatura g � 0, por lo que se esperaría que xφy � 1. Sin embargo, el

vacío permitido exhibe una degeneración de N hojas. Esto es,

xφy = exp
(

i 2πj

N

)

φ0, j = 0, 1, ..., (N � 1), (6.26)
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donde φ0 es una función real, que además cumple que φ0 Ñ 1 cuando T Ñ 8. Cualquier

valor de j es equivalente, por lo que cualquier elección conduce a la ruptura espontánea de

la simetría global Z(N).

A temperatura cero, el confinamiento implica que φ0 se cancela [32]. Por lo tanto, debe

existir cierto valor de temperatura Tc a partir del cual φ0 deja de ser nulo y se produce el

deconfinamiento. Esto es
#

φ0 = 0 si T   Tc,

φ0 ¡ 0 si T ¡ Tc.
(6.27)

Como es habitual, si φ0 se vuelve distinto de cero en forma continua alrededor de Tc,

la transición es de segundo orden, mientras que si se produce un salto en T = Tc es de

primer orden.

Por otro lado, en presencia de quarks dinámicos la simetría Z(N) está explícitamente

rota. En este caso entonces, el loop de Polyakov deja de ser un parámetro de orden riguro-

so, pero sirve aún como indicador de un crossover hacia el deconfinamiento.

Recientemente se ha propuesto una extensión del modelo NJL incluyendo al loop de

Polyakov [34]. La idea principal es introducir a φ como un campo efectivo que se acople

con los quarks siguiendo las reglas dictadas por las simetrías y patrones de ruptura de si-

metría de QCD, unificando así los aspectos de confinamiento y ruptura de simetría quiral.

Se suele referir a este esquema como modelo PNJL (NJL extendido con loop de Polyakov).

6.1.3. Modelo Polyakov-Nambu-Jona Lasinio (PNJL)

La acción a temperatura T finita se puede obtener utilizando el formalismo de Mat-

subara de tiempo imaginario, tal como se explicó en la Sec. 6.1.1, y para estudiar el com-

portamiento de la materia fuertemente interactuante de modo de incluir una descripción

del deconfinamiento se propone incorporar el acoplamiento al loop de Polyakov (PL). Pa-

ra ello se puede hacer uso de algunas características conocidas de su comportamiento en

función de la temperatura, introduciendo un modelo efectivo para la teoría de gauge pura,

que luego se acople al modelo de NJL. Dentro de las propiedades generales que debe tener

el potencial efectivo de Polyakov, éste debe satisfacer la simetría global Z(3) al igual que

las simetrías del lagrangiano puro SU(3) de Yang-Mills [66, 107, 108, 109, 110, 111].

Como hemos visto puede identificarse al valor de expectación de la traza del loop de

Polyakov Φ = xφy como un parámetro de orden, siendo Φ = 0 el valor correspondiente a

la fase en que los quarks y gluones están confinados. Cálculos de LQCD para el valor de la

traza del PL como función de la temperatura indican que la transición de deconfinamiento

es ausencia de quarks dinámicos ocurre a una temperatura T0 = 270 MeV, siendo esta

transición de primer orden.
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Es posible construir un potencial efectivo U(Φ, T) de acuerdo a las estimaciones de

LQCD. Éste deberá tener un mínimo en Φ = 0 cuando T   T0, y en T = T0 pasar a tener

un máximo local en Φ = 0 y un mínimo en un valor Φ ¡ 0, dando lugar a la transición

de fase. Esto se corresponde con la ruptura de simetría Z(3). El mínimo debe acercarse a

Φ = 1 cuando la temperatura continúa aumentando por encima de T0. A continuación se

describirán dos potenciales propuestos en la literatura.

En primer lugar consideraremos un potencial efectivo basado en la forma logarítmica

de la medida de Haar de integración asociada con el grupo SU(3) de color [112]. La forma

funcional de este potencial es

ULog(Φ, Φ
�, T)

T4 = �

1
2

a(T) (ΦΦ
�) + b(T) log

[

1� 6 (ΦΦ
�) + 4

(

Φ
3 + Φ

�3)
� 3 (ΦΦ

�)2
]

,

(6.28)

con los coeficientes a(T) y b(T) parametrizados según

a(T) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

y b(T) = b3

(

T0

T

)3

. (6.29)

Los parámetros del potencial están ajustados de manera tal que se puede reproducir la

ecuación de estado para la teoría de gauge pura y el valor asintótico de expectación del

loop de Polyakov cuando T Ñ8. Esto conduce a

a0 = 3, 51, a1 = �2, 47, a2 = 15, 2, a3 = �1, 75. (6.30)

Una forma alternativa, basada en el ansatz de Ginzburg-Landau [34, 113] viene dada por

una función polinómica de la forma

UPoly(Φ, Φ
�; T)

T4 = �

b2(T)

2
ΦΦ

�

�

b3

3

(

Φ
3 + Φ

�3)+
b4

4
(ΦΦ

�)2 , (6.31)

donde

b2(T) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

+ a3

(

T0

T

)3

. (6.32)

Ajustando una vez más el valor de las constantes a resultados de la teoría de gauge pura

en LQCD, se obtiene

a0 = 6, 75, a1 = �1, 95, a2 = 2, 625,

a3 = �7, 44, b3 = 0, 75, b4 = 7, 5. (6.33)

En relación al parámetro T0, que fija la escala para el potencial del PL, se ha argumen-

tado que su valor debe ser modificado en presencia de quarks dinámicos. De acuerdo con

el análisis en la Ref. [114] se obtiene T0 = 210 MeV para N f = 2 y T0 = 180 MeV para

N f = 3, con un error de aproximadamente 30 MeV.
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Hasta aquí tenemos por un lado el modelo de NJL para los quarks, y por otra parte

un potencial para el PL que involucra al sector gluónico. El acoplamiento entre ellos se

puede implementar utilizando la derivada covariante. Esto es, reemplazando en la acción

euclídea

B Ñ Dµ � Bµ � iAµ (6.34)

con Aµ(x) = g Aa
µ(x) λa/2 donde Aa

µ son los campos de gauge de SU(3), y λa son las

matrices de Gell-Mann.

En general el modelo supone que los quarks se mueven en presencia de un campo de

color de fondo uniforme y estático, y por eso no se toma en cuenta la dependencia espacial

del PL. Se considera entonces Aµ = δ0
µ A0, con A4 = iA0 = ϕ. Además, trabajando en el

llamado gauge de Polyakov, la matriz A4 tiene representación diagonal

A4 = φ3λ3 + φ8λ8 , (6.35)

de manera que hay sólo dos variables independientes: φ3 y φ8. Entonces, la traza del PL

Φ = 1
3Tr exp

[

i
T (φ3λ3 + φ8λ8)

]

, que puede tomarse como parámetro de orden para el con-

finamiento, se puede escribir como

Φ =
1
3

[

exp
(

�

2i
?

3
φ8

T

)

+ 2 exp
(

i
?

3
φ8

T

)

cos
(

φ3

T

)]

. (6.36)

Debido a las propiedades de conjugación de carga del lagrangiano de QCD [115], Φ

debe ser una cantidad real. Por ende si φ3 y φ8 son valores reales, esta condición implica

que necesariamente φ8 = 0 [112], y la expresión anterior para la traza del loop de Polyakov

se reduce a

Φ = Φ
� =

1
3

[

1 + 2 cos
(

φ3

T

)]

. (6.37)

6.2. Modelo PNJL no local con campo magnético a temperatura

finita

Extenderemos en esta sección el modelo introducido en el Cap. 5 a un sistema con tem-

peratura finita. Partiendo de la ecuación (5.17) es posible estudiar las transiciones de fase

y la dependencia con la temperatura de observables termodinámicos. Para ello, considera-

remos el potencial termodinámico por unidad de volumen en la aproximación de campo

medio (MFA) empleando el formalismo de Matsubara descrito en la Sec. 6.1 de este capí-

tulo. También se incluirá el acoplamiento de los fermiones con el loop de Polyakov (PL)

para considerar los efectos debido al confinamiento. Para ello trabajaremos con las hipó-

tesis propuestas en la sección anterior, suponiendo que los los quarks se mueven en un

campo de color de fondo constante y se utilizará el gauge de Polyakov, que conduce a la
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ecuación (6.37). De esta forma, el potencial termodinámico del sistema en presencia de un

campo magnético externo está dado por

Ω
MFA
B,T =

σ̄2

2G
� T

8

¸

n=�8

¸

c, f

|q f B|

2π

»

dp3

2π

[

ln
(

p‖
2
nc
+ M

λ, f
0,p‖nc

2
)

+
8

¸

k=1

ln
(

∆
f
k,p‖nc

)

]

+ U(Φ, T) , (6.38)

donde hemos definido p‖nc
= (p3 , (2n + 1)πT + φc). Las sumas sobre los índices de color

y sabor corren según c = r, g, b y f = u, d, respectivamente, mientras que los campos de

color de fondo son φr = �φg = φ3, φb = 0, es decir, φc = c φ3 con c = 1,�1, 0 para r, g y b.

Como es usual en los modelos no locales se puede observar que Ω
MFA resulta ser di-

vergente, y, por lo tanto, necesita ser regularizado. Utilizamos para ello una prescripción

similar a la considerada por ejemplo en la Ref. [116], la cual consiste en sustraer la con-

tribución del potencial termodinámico en ausencia de interacciones fermiónicas y luego

sumarla en su forma regularizada. Siguiendo este procedimiento obtenemos una expre-

sión para Ω
MFA,reg
B,T

Ω
MFA,reg
B,T = Ω

MFA
B,T � Ω

free
B,T + Ω

free,reg
B,T . (6.39)

Aquí el potencial Ω
free
B,T se obtiene manteniendo la interacción con el campo magnético y el

loop de Polyakov tomando σ̄ = 0, y Ω
f ree
reg es la expresión regularizada para el potencial

termodinámico de quarks en ausencia de los acoplamientos corriente-corriente. Para esta

contribución la suma de Matsubara puede realizarse analíticamente, resultando

Ω
free,reg
B,T = �

Nc

2π2

¸

f

(q f B)2

[

ζ1(�1, x f ) +
x2

f

4
�

1
2
(x2

f � x f ) log x f

]

� T
¸

f ,c

|q f B|

π

8

¸

k=0

αk

»

dp

2π
log

"

1 + exp
[

�(ǫ
f
kp + iφc)/T

]

*

, (6.40)

donde x f = m2
c /(2|q f B|), αk = 2� δk0 y ǫ

f
kp = (2k|q f B|+ p2 +m2

c)
1/2. A su vez, ζ1(�1, x f ) =

dζ(z, x f )/dz|z=�1 donde ζ(z, x f ) es la función zeta de Hurwitz. A partir del potencial ter-

modinámico se pueden determinar σ̄ y φ3 resolviendo el sistema acoplado de ecuaciones

de gap
BΩ

MFA,reg
B,T

Bσ̄
= 0 ,

BΩ
MFA,reg
B,T

Bφ3
= 0 . (6.41)

Para el estudio de las transiciones de fase resulta esencial analizar el comportamiento

de los condensados quirales, debido a que éstos pueden utilizarse como parámetros de

orden para las transiciones de fase de restauración de la simetría quiral, junto con la traza

del loop de Polyakov que nos permitirá estudiar el deconfinamiento. Si estas transiciones

son de primer orden, esto se verá reflejado en una discontinuidad en los parámetros de
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orden y la funciones termodinámicas. En cambio, si ocurren de manera suave (crossover),

no existe una única manera de definir la temperatura de transición. Para estos casos será

de utilidad definir las susceptibilidades correspondientes en función de la temperatura, lo

cual hará posible tomar como temperaturas críticas a aquéllas en las que encontramos un

máximo en dichas susceptibilidades.

En virtud de la expresión obtenida para el potencial Ω
MFA,reg
B,T se calcula el condensado

para cada sabor de quark derivando con respecto a la correspondiente masa corriente,

xq̄ f q f y
reg
B,T =

BΩ
MFA,reg
B,T

Bm f
. (6.42)

Esto conduce a la siguiente expresión para el condensado quiral

xq̄ f q f y
reg
B,T = �

|q f B| T

π

¸

c

»

dp3

2π

8

¸
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8

¸
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(

¸

λ=�
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�
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4π2

[
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+ 1�

(
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1

2x f
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log x f

]

+
|q f B|

π

¸

c

8

¸

k=0

αk

»

dp

2π

mc

ǫ
f
kp

1

1 + exp[(ǫ f
kp + iφc)/T]

. (6.43)

La susceptibilidad quiral y la susceptibilidad asociada a la traza del PL pueden definirse

ahora como

χΦ =
dΦ

dT
, (6.44)

χch =
Bxq̄ f q f y

reg
B,T

BT
, (6.45)

en donde la susceptibilidad quiral se encuentra promediada en los sabores u y d.

Al igual que en la Sec. 5.1.1, definimos ahora el “condensado normalizado” Σ
f
B,T (que

en este caso depende también de la temperatura) como

Σ
f
B,T = �

2 mc

S4

[

xq̄ f q f y
reg
B,T � xq̄ f q f y

reg
0,0

]

+ 1 . (6.46)

Reintroducimos a su vez las definiciones ∆Σ
f
B,T = Σ

f
B,T�Σ

f
0,T y ∆Σ̄B,T = (∆Σ

u
B,T +∆Σ

d
B,T)/2 .

6.2.1. Resultados numéricos para temperatura finita

En esta sección se presentan los resultados para las cantidades definidas en la subsec-

ción anterior, empleando los factores de forma introducidos en el Cap. 5 y los potenciales

efectivos discutidos en la Sec. 6.1.3.

En los paneles superiores de la Figura 6.1 mostramos el comportamiento del conden-

sado quiral promedio Σ̄B,T y la traza del loop de Polyakov Φ como funciones de la tem-

peratura, para tres valores representativos del campo magnético externo B, eB = 0, 0,6 y
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Gaussiana 5-Lorentziana

(�x qq̄ y
reg
0,0 )

1/3 220 230 240 250 220 230 240 250

Tc quiral 182,1 179,1 177,4 176,6 177,0 177,0 177,8 179,5

Tc deconfinamiento 182,1 178,0 175,8 174,6 174,8 174,7 175,5 176,8

Tabla 6.1: Temperaturas críticas de las transiciones de fase para la restauración de simetría

quiral y el deconfinamiento con B = 0 en varias parametrizaciones. Los valores de las

temperaturas y de los condensados se encuentran expresados en MeV.

1 GeV2. Las curvas corresponden a los parámetros que conducen a un condensado quiral

(�xq̄qy
reg
0,0 )

1/3 = 230 MeV, para un potencial de Polyakov polinómico con T0 = 210 MeV.

Dado un valor de B, se puede observar que tanto para el caso del factor de forma gaussiano

como el 5-lorentziano las transiciones de restauración de la simetría quiral y de deconfi-

namiento son de tipo crossover, y tienen lugar aproximadamente a la misma temperatura

crítica. Por definición tomamos estas temperaturas como las correspondientes a los máxi-

mos de la susceptibilidades χch y χΦ. Nuestros resultados para el comportamiento de las

susceptibilidades como funciones de la temperatura, para B = 0, 0.6 y 1 GeV2, se muestran

en los paneles inferiores de la Figura 6.1.

Las temperaturas críticas de restauración de simetría quiral y deconfinamiento obteni-

das en ausencia de campo magnético para diferentes parametrizaciones se encuentran en

la Tabla 6.1. Se puede observar que para todos los casos la separación entre ambas tempe-

raturas críticas es menor a los 5 MeV, lo cual es consistente con los resultados obtenidos

en LQCD. De los resultados mostrados en esta tabla podemos ver también que los valores

de las temperaturas críticas no varían significativamente con las parametrizaciones (recor-

demos que en todos los casos los parámetros fueron ajustados de forma tal de reproducir

los valores empíricos de la masa y la constante de decaimiento débil del pion). Por otra

parte, estas temperaturas críticas son ligeramente mayores que las obtenidas en LQCD,

que rondan el valor de 160 MeV. En realidad, el valor de Tc y la pendiente de la transi-

ción dependen de la forma del potencial de Polyakov. En particular, para un potencial de

Polyakov polinómico podemos obtener Tc � 160 a 165 MeV, dependiendo de la parametri-

zación. El potencial logarítmico en la ecuación (6.28) conduce a transiciones más abruptas,

las cuales pueden ser incluso de primer orden para ciertos valores de los parámetros. Vale

la pena notar que en ausencia de interacción con el loop de Polyakov los valores de Tc

bajan a 130 MeV [90].

Para analizar el efecto de los campos magnéticos en la transición de fase vemos que en

la Figura 6.1 la separación de las temperaturas críticas de restauración de simetría quiral
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Figura 6.1: Izquierda: Condensado sustraído normalizado promediado en sabor como fun-

ción de eB para diferentes temperaturas representativas. Derecha: condensado normaliza-

do promediado en sabor como función de la temperatura para diferentes valores represen-

tativos de eB. Los resultados en ambos paneles corresponden a (�xq̄qy
reg
0,0 )

1/3 = 230 MeV.
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y deconfinamiento se mantiene pequeña en presencia del campo externo (de hecho, un

análisis detallado muestra que la separación se reduce a medida que aumenta eB). Ade-

más, podemos ver que el modelo NJL no local muestra el efecto conocido como Catálisis

Magnética Inversa, es decir que, al contrario de lo que ocurre en el modelo NJL local es-

tándar [85, 86, 87], en nuestro modelo la temperatura crítica de la restauración quiral es

cada vez menor a medida que el campo magnético externo aumenta. Esto se relaciona con

el hecho de que, en general, los condensados no crecen monótonamente con B para un da-

do valor fijo de temperatura. Esta situación se ve representada en la Figura 6.2, donde se

muestra el comportamiento del parámetro ∆Σ̄B,T como función de eB para el caso de T = 0

y para los valores de temperatura cercanos a la temperatura de transición. Las curvas en

los paneles izquierdo y derecho corresponden al modelo con factores de forma gaussianos

y lorentzianos, respectivamente, con la parametrización correspondiente al condensado

(�xq̄qy
reg
0,0 )

1/3 = 230 MeV, y potencial de Polyakov polinómico. Para estas parametrizacio-

nes las temperaturas críticas para B = 0 se ubican ligeramente por debajo de los 180 Mev

(ver la Tabla 6.1). A pesar de que para T = 0 el valor de ∆Σ̄B,0 crece monótonamente con

el campo magnético externo, podemos ver que, a medida que las temperaturas se acercan

a los valores críticos, las curvas presentan un máximo y luego comienzan a decrecer a me-

dida que aumenta el campo. Finalmente, en la Figura 6.3 se presentan los gráficos de las

temperaturas críticas de la restauración quiral Tc(B), normalizadas con los valores corres-

pondientes a campo magnético nulo. La figura incluye las curvas para los modelos NJL no

locales con factores de forma gaussianos (izquierda) y 5-lorentzianos (derecha) y diferentes

paramerizaciones. Las bandas grises en ambos paneles corresponden a los resultados ob-

tenidos en LQCD, tomados de la Ref. [84]. Las líneas gruesas para ambos factores de forma

corresponden a los potenciales de PL polinómicos según la ecuación (6.31). Se omitieron

los resultados para el potencial logarítmico debido a que en ese caso las transiciones son

muy abruptas comparadas con los resultados de LQCD. Podemos observar en la figura

que la catálisis magnética inversa ocurre para todas las parametrizaciones consideradas.

Para ambos factores de forma, se encuentra que el efecto es más intenso para las parametri-

zaciones correspondientes a los condensados quirales de menor valor absoluto, y también

depende de los potenciales de Polyakov. Como una conclusión general, podemos decir que

el comportamiento de las temperaturas críticas con el campo magnético es compatible con

los resultados de LQCD para valores adecuados de los condensados quirales.

El mecanismo que conduce a la catálisis magnética inversa en el contexto de los mo-

delos no locales se puede comprender notando que las transformadas de los factores de

forma no locales son funciones del campo magnético externo. Esto se puede ver claramen-

te en la ecuación (5.12). Recordando que en el modelo NJL no local los factores de forma

representan interacciones efectivas mediadas por un gluón de rango finito, el origen de la
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Figura 6.2: Izquierda: condensado sustraído promedio en sabor como función de eB pa-

ra diferentes valores representativos de la temperatura. Los paneles derecho e izquierdo

corresponden a los factores de forma gaussiano y 5-lorentziano respectivamente. Los re-

sultados es ambos paneles corresponden a (�xq̄qy
reg
0,0 )

1/3 = 230 MeV.
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Figura 6.3: Temperaturas de restauración de la simetría quiral normalizadas como función

de eB para varias parametrizaciones del modelo. Para comparación se incluyen en la banda

gris los resultados de LQCD presentados en Ref. [84]. Los paneles derecho e izquierdo

corresponden a los factores de forma gaussiano y 5-lorentziano respectivamente.
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dependencia del factor de forma con el campo magnético puede interpretarse como de-

bido a una acción de respuesta de los quarks sobre los campos gluónicos. Es interesante

considerar la masa efectiva para el caso particular del factor de forma gaussiano, dada por

la ecuación (5.88). Se puede ver que en este caso las componentes del momento que son

paralelas y transversas al campo magnético se desacoplan. Mientras que las componentes

3 y 4 de la forma exponencial original exp (�p2/Λ
2) permanecen allí, las componentes

transversas 1 y 2 conducen a un factor dado por un cociente de polinomios en |q f B|/Λ
2,

que tiende a cero cuando B es muy grande. De este modo, para cualquier nivel de Lan-

dau k la intensidad del acoplamiento efectivo decrece a medida que eB aumenta. Esto es

análogo a lo que ocurre con los modelos en donde se proponen constantes de acoplamiento

dependientes del campo B (ver por ejemplo las Refs. [89, 117]).

95





Capítulo 7

Resumen y conclusiones

A lo largo de esta Tesis Doctoral se han estudiado distintos aspectos del comportamien-

to de la materia fuertemente interactuante en el marco de modelos de quarks relativistas

que incluyen interacciones de tipo no local. Como aspectos principales de la investigación

original realizada se destacan en primer lugar el análisis de la fenomenología asociada con

el sector de mesones vectoriales y vectoriales-axiales, y en segundo lugar el estudio de

los efectos de campos magnéticos intensos sobre la materia de quarks, en particular, los

efectos de Catálisis Magnética y Catálisis Magnética Inversa. También se analizó el com-

portamiento, en presencia de estos campos, de la masa y constante de decaimiento de los

mesones π.

Comenzamos presentando una introducción general en la que se detallan los objetivos

de esta Tesis. En el Cap. 2 introdujimos la noción de simetría dentro del Modelo Estándar y

repasamos algunos conceptos esenciales de la Cromodinámica Cuántica (QCD), enfocán-

donos en aquéllos relacionados con la ruptura espontánea de las simetrías vinculadas a

las transiciones de fase. Luego, en el Cap. 3 introdujimos los modelos efectivos como una

herramienta para estudiar la fenomenología de los hadrones a bajas energías. En particular

consideramos el modelo de Nambu y Jona-Lasinio (NJL) mostrando que permite describir

adecuadamente la ruptura espontánea de la simetría quiral y la aparición de los pseudo-

bosones de Goldstone identificados con los mesones π. Finalmente notamos que es posible

obtener una descripción más realista de las interacciones entre quarks teniendo en cuenta

interacciones de tipo no local.

En estos tres primeros capítulos presentamos las bases fundamentales para lo que cons-

tituye el aporte original de esta Tesis, que puede dividirse en tres partes. En el Cap. 4 ana-

lizamos un modelo de quarks con interacciones no locales con simetría SU(2) de sabor que

incluyen acoplamientos entre corrientes vectoriales y vectoriales-axiales, fijando los pará-

metros libres de la teoría, es decir, las constantes de acoplamiento, la masa corriente de los
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quarks y los factores de forma. En el Cap. 5 consideramos en este marco teórico general

sistemas hadrónicos en presencia de campos magnéticos externos intensos, estudiando la

Catálisis Magnética, y determinando el efecto de la presencia de dichos campos sobre la

masa y la constante de decaimiento débil del pion. Finalmente, en el Cap. 6 analizamos el

efecto conocido como Catálisis Magnética Inversa estudiando las transiciones de fase qui-

ral y de deconfinamiento en función de la temperatura para sistemas sometidos a campos

magnéticos externos.

El análisis del Cap. 4 está centrado en una extensión del modelo NJL que incluye in-

teracciones no locales de cuatro fermiones y un acoplamiento entre las llamadas “corrien-

tes de momento” que conduce a la renormalización de la función de onda (WFR) de los

quarks. Mostramos cómo a partir de este modelo se obtiene un propagador de quark “ves-

tido”, en el cual la masa efectiva y la WFR son funciones del momento del quark a través

de factores de forma no locales. Mostramos también que el modelo permite ajustar estos

factores de forma de modo tal de reproducir resultados obtenidos en cálculos de LQCD.

Para el tratamiento del modelo se recurrió al formalismo de bosonización, por medio del

cual se reescribe la función de partición del sistema en término de campos mesónicos,

integrando los grados de libertad fermiónicos. Trabajando en la aproximación de campo

medio, obtuvimos expresiones para las masas dinámicas de los quarks y el condensado

quiral xψ̄ψy, el cual es utilizado como parámetro de orden de la transición de fase asociada

con la ruptura espontánea de la simetría quiral. Desarrollando la acción efectiva a segundo

orden en las fluctuaciones de los campos, determinamos las masas de los mesones escala-

res, pseudoescalares, vectoriales y vectoriales-axiales, y a su vez analizamos la mezcla en el

sector π� a1 encontrando una prescripción que nos permitió definir los campos bosónicos

~̃π y~̃aµ desacoplados correspondientes a los estados físicos de estos mesones. Por otro lado,

considerando acoplamientos con corrientes externas a través de la derivada covariante, ob-

tuvimos expresiones para anchos parciales de decaimiento débil y electromagnético de los

mesones π, y para el decaimiento del mesón ρ0 en dos leptones. Encontramos que, debido

al carácter no local de las interacciones, el modelo incluye, además de las contribuciones de

loops de quarks usuales, la contribución de diagramas tipo tadpole que no se encuentran

presentes en el modelo NJL local. Se encontró también que para el decaimiento electro-

magnético del mesón π0, a pesar de que las contribuciones individuales de los diagramas

resultan divergentes, al sumar el total de las contribuciones dichas divergencias se cance-

lan encontrando así resultados finitos. Algo similar ocurre para el caso del decaimiento de

mesón ρ0, para el que se obtienen contribuciones de naturaleza longitudinal que se cance-

lan entre ellas al momento de realizar la suma total, que resulta transversa como lo requiere

la conservación de la corriente electromagnética. Por último, se llevó a cabo una extensión

del desarrollo de la acción euclídea hasta el orden cúbico para calcular el ancho de decai-
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miento ρ Ñ ππ. Consideramos una parametrización para las interacciones determinada a

partir del ajuste de las funciones de masa M(p) y renormalización de la función de onda

Z(p) de quarks a resultados obtenidos en LQCD. Los parámetros libres de la teoría, es

decir, la masa corriente de los quarks y las constantes de acoplamiento corriente-corriente,

se determinaron a partir de observables fenomenológicos, eligiendo como inputs valores

empíricos de masas de mesones y la constante de decaimiento débil del pion. A partir de

la evaluación numérica de las expresiones analíticas, para la cual se debió introducir una

prescripción que permite tratar con las integrales a un loop, encontramos que el modelo

es capaz de reproducir los valores empíricos de los observables calculados, y conduce a

valores fenomenológicamente aceptables para las masas y los anchos de decaimiento. Esto

incluye predicciones satisfactorias para los anchos de desintegración π0
Ñ γγ, ρ Ñ ππ y

ρ Ñ e+e�, y para la masa de la resonancia a1(1260).

En los Caps. 5 y 6 nos enfocamos en las propiedades de la materia hadrónica en pre-

sencia de campos magnéticos intensos en el contexto de los modelos con interacciones

no locales. En el Cap. 5 comenzamos por incluir en la acción efectiva con acoplamientos

corriente-corriente no locales escalares y pseudoecalares un acoplamiento a un campo elec-

tromagnético externo uniforme. Definimos entonces una derivada covariante dependiente

de la carga de los quarks up y down, la cual rompe la simetría de isospín. Utilizamos el mé-

todo de autofunciones de Ritus para obtener una expresión de la acción efectiva diagonal

en el espacio de sabor, y en la aproximación de campo medio encontramos la ecuación del

gap y obtuvimos expresiones analíticas para los condensados quirales de quarks y para los

propagadores de quarks en presencia del campo magnético. Desarrollando la acción efec-

tiva a segundo orden en los campo mesónicos, y utilizando dicho propagador, logramos

luego de un largo cálculo analítico encontrar expresiones para las masas de los mesones π

y σ, y para la constante de decaimiento del pion. Para el factor de forma no local se consi-

deraron dos formas funcionales: en primer lugar utilizamos funciones gaussianas (con las

que el cálculo resulta más simple), y en segundo lugar utilizamos la función denominada

5-lorentziana. En ambos casos se consideraron varios conjuntos de parámetros fenomeno-

lógicamente aceptables.

A partir del análisis numérico se estudió el comportamiento de los condensados pro-

mediados, el cual resultó compatible con el efecto de catálisis magnética, esto es, se en-

contró que el condensado quiral tiende a estabilizarse en la fase hadrónica al aplicarse

un campo magnético externo. Tal como sucede en otros modelos, nuestras predicciones

concuerdan cuantitativamente con los resultados de LQCD. En los cálculos de las masas

de los mesones livianos se observa que éstas disminuyen a medida que el campo magné-

tico es más intenso, mientras que la constante de decaimiento débil del pión muestra el

comportamiento opuesto, aumentando su valor con el campo.
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En el Cap. 6, siempre en el marco de los modelos de quarks no locales, comenzamos

describiendo el formalismo necesario para estudiar sistemas hadrónicos a temperatura fi-

nita y mostramos cómo acoplar los grados de libertad fermiónicos al loop de Polyakov

en lo que llamamos “modelo nlPNJL”. Presentamos dos formas alternativas para el tér-

mino de gauge puro en el potencial termodinámico: una polinómica basada en el ansatz

de Ginzgurg-Landau y otra basada en la forma logarítmica de la medida de Haar de in-

tegración asociada con el grupo SU(3) de color. En la Sección 6.2 incorporamos al mode-

lo descrito en el Cap. 5 el formalismo de temperatura finita y así obtuvimos un modelo

para estudiar las temperaturas críticas y transiciones de fase de restauración de la sime-

tría quiral y deconfinamiento en presencia de campos magnéticos. Utilizando las mismas

parametrizaciones descritas anteriormente obtuvimos que a temperaturas intermedias el

condensado quiral disminuye a medida que aumenta la intensidad del campo magnético.

Estudiando las curvas para la transición de fase en función de la temperatura, notamos

que el modelo predice una disminución de la temperatura crítica de transición de fase

quiral al incrementarse el campo magnético externo. Este comportamiento, conocido co-

mo Catálisis Magnética Inversa, ha sido también obtenido a partir de cálculos realizados

mediante LQCD. Sin embargo, sólo ha sido posible reproducirlo en el marco de mode-

los efectivos como el NJL local introduciendo una dependencia ad hoc de las constantes de

acoplamiento con el campo magnético. Nuestros resultados muestran que los modelos que

incluyen interacciones no locales conducen naturalmente a la Catálisis Magnética Inversa,

lo cual puede entenderse teniendo en cuenta que debido a la no localidad los acoplamien-

tos corriente-corriente resultan ser dependientes de la temperatura y el campo magnético

a través de los factores de forma, que de este modo actúan como interacciones magnéticas

efectivas. Esta dependencia surge del proceso analítico para el cálculo de la acción efecti-

va, sin introducir dependencias ad hoc en las constantes de acoplamiento u otras formas

utilizadas en modelos alternativos para reproducir este efecto.

Para obtener una descripción más realista de la termodinámica de las interacciones

fuertes, y el cálculo del diagrama de fases de QCD, es importante la inclusión de la WFR y

el potencial químico. Es nuestro objetivo continuar con este desarrollo incorporando estos

nuevos elementos al modelo en presencia de campos magnéticos, de modo tal de avanzar

en el estudio de las propiedades de la materia hadrónica y poder abarcar, por ejemplo, el

análisis de estrellas compactas.

En lo que hace a la fenomenología de los mesones, concluimos que la inclusión del sec-

tor de mesones vectoriales y axiales ofrece una visión más completa de la fenomenología

de los mesones livianos, y sus efectos son importantes para el análisis de observables ha-

drónicos. Dada la importancia del mesón ρ en las colisiones de iones pesados, planeamos

a futuro extender el estudio de las propiedades del mesón ρ a sistemas con temperatura
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finita. Además, para el caso de sistemas hadrónicos a potencial químico finito se espera

que las interacciones vectoriales conduzcan a un condensado distinto de cero en el canal

“ω” (JCP = 11��, I = 0), el cual es importante para el estudio del diagrama de fase de

QCD [118] y la física de estrellas compactas [119].
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Apéndice A

Bosonización

El término bosonización de una teoría fermiónica refiere a la transformación del lagran-

giano fermiónico original en uno equivalente que únicamente dependa de grados de li-

bertad bosónicos. Una transformación de este tipo sólo puede realizarse en algunos casos.

En el modelo NJL el lagrangiano bosónico correspondiente puede ser construido solamen-

te en forma aproximada, y la acción bosónica efectiva resultante refleja la dinámica de la

acción original del modelo en el régimen de bajas energías.

La ventaja de este método es que provee relaciones entre observables físicos como cons-

tantes de acoplamiento, condensados, etc. Es una formulación conveniente para discutir

características importantes del modelo a bajas energías, y además permite realizar compa-

raciones con lagrangianos fenomenológicos de mesones quirales.

Para el caso del modelo no local con dos sabores de quarks y con WFR, consideramos la

función de partición correspondiente Z =
³

DψDψ exp[�SE], e introducimos los campos

mesónicos σ1,2(x) y ~π(x) (escalares y pseudoescalares respectivamente), junto con campos

auxiliares S1,2(x) y ~P(x). Esto puede hacerse mediante el uso de las igualdades

F [jS(x), ja
P(x)] =

»

Dσ1DπaDS1DPa F
[

S1(x), Pa(x)
]

� (A1)

exp
(
»

d4x
!

σ1(x)
[

S1(x)� jS(x)
]

+ πa(x)
[

Pa(x)� ja
P(x)

]

)

)

,

y

F [jM(x)] =

»

Dσ2DS2 F
[

S2(x)
]

� exp
(
»

d4x
!

σ2(x)
[

S2(x)� jM(x)
]

)

)

. (A2)

Reemplazando en la acción euclídea SE dada en la ecuación (3.25), obtenemos una ex-

presión dependiente de los campos fermiónicos, así como de los nuevos campos bosónicos

que introdujimos. La integral sobre los campos fermiónicos puede resolverse analíticamen-

te a través de la propiedad
»

Dψ̄Dψ exp
[

d4x1d4x2ψ̄(x1)A(x1, x2)ψ(x2)
]

= det A(x1, x2). (A3)
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Una vez realizada esta integral, la expresión para la función de partición resulta

Z =

»

Dσ1 D~π Dσ2 exp
[

log det A (σ1, ~π, σ2)
]

�

»

DS1 D~PDS2 exp
[

σ1S1 + ~π � ~P + σ2S2 +
GS

2

(

S1S1 + ~P � ~P + S2S2

)

]

. (A4)

Por último, se integran los campos auxiliares S1,2(x) y ~P(x), y se realiza una trans-

formación de Fourier pasando todo al espacio de momentos. De ese modo se obtiene la

expresión de la acción bosonizada en la ecuación (3.28), con el operador A(p, p1) dado por

la ecuación (3.29).
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Apéndice B

Integrales a un loop y factores de

forma en el plano complejo

Como describimos en la Sec. 4.3, consideramos una parametrización para el modelo

NJL no local que nos permite reproducir los resultados obtenidos por LQCD para la de-

pendencia del propagador efectivo de los quarks con el momento. De la comparación con

los datos de LQCD, los factores de forma g(p) y f (p) fueron escritos en términos de las

funciones fm(p2) y fz(p2) dadas por las ecuaciones (4.53) y (4.55). En este apéndice dis-

cutiremos la evaluación numérica de las integrales a un loop, que deben ser tratadas con

precaución dada la forma funcional de fm(p2).

Consideremos integrales a un loop que involucran un momento externo p, como es el

caso para las funciones GM(p2), F0,1(p2) y J(I,II)(p2), definidas en las Secs. 4.1.2 y 4.2. Las

integrales pueden expresarse genéricamente como

I(p2) =

»

d4q

(2π)4 F(q+, q�, p) , (B1)

donde q� = q� p/2, y F(q+, q�, p) es una función que incluye los factores de forma explí-

citamente o a través de las masas efectivas de los quarks y/o de las renormalizaciones de

las funciones de onda. Más precisamente, se observa que en general F(q+, q�, p) puede in-

cluir los factores de forma fm(s) evaluados en s = (q+)2, (q�)2 y/o q2. Estamos interesados

en esta función ya que su forma explícita fm(s) = 1/[1 + (s/Λ
2
0)

3/2] implica la existencia

de un corte en el campo complejo s, en Re(s)   0, Im(s) = 0. Es conveniente destacar que

en todos los casos las integrales deben ser evaluadas numéricamente en p2 = �M2, donde

M es la masa de alguna partícula mesónica.

Para realizar los cálculos escogemos, como se realiza usualmente, el eje 4 en la dirección

del momento externo, obteniendo así pµ = (iM,~0), de modo que I(p2) se reduce a una

integral doble en q4 y |~q |. En virtud de la simetría de las funciones F(q+, q�, p) ante el
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intercambio q+ Ø q�, es sencillo concluir que F(q+, q�, p) = F(q+�, q�
�, p), lo que asegura

que I(q2) sea real.

Ahora tomamos un |~q | fijo y consideramos la estructura analítica del integrando en el

plano complejo q4. Inmediatamente podemos identificar dos cortes en este plano que sur-

gen de la función fm(q2), y otros pares de cortes aparecerán por la presencia de fm[(q+)2]

y fm[(q�)2], respectivamente. En el caso de fm(q2) = fm(q2
4 + |~q |2), los cortes están dados

por Re(q4) = 0, |Im(q4)| ¡ |~q |, y por lo tanto estos nunca cruzarán el eje real q4, sobre

el cual debe realizarse la integral. Por otro lado, para fm[(q�)2] los cortes se encuentran

en Re(q4) = 0, |Im(q4) � M/2| ¡ |~q |, y entonces, si |~q |   M/2, tanto fm[(q+)2] como

fm[(q�)2] presentarán cortes que en efecto atravesarán el eje real q4.

El modo de tratar estos cortes es una cuestión de prescripción. De hecho, luego de to-

mar los factores de forma de los cálculos de LQCD en el espacio Euclídeo se puede volver

al espacio de Minkowski a través de una rotación de Wick. Entonces se encontraría que

los cortes se ubican sobre el eje de integración, y para evaluar las integrales éstas debe-

rían ser modificadas siguiendo alguna receta. En nuestro caso tomamos la prescripción de

trasladar los argumentos de fm(s) de acuerdo con

fm[(q
+)2] Ñ fm[(q

+)2
� iε] , (B2)

fm[(q
�)2] Ñ fm[(q

�)2 + iε] , (B3)

mientras que fm(q2) no se modifica. De este modo, los cortes no se superponen entre ellos

y la propiedad F(q+, q�, p) = F(q+�, q�
�, p) se mantiene válida. A partir de las ecuaciones

(B2) y (B3) los cortes asociados a las funciones fm[(q�)2] estarán dados por

$

'

&

'

%

Re(q4)�
ε

M� 2 Im(q4)
= 0 ,

|Im(q4)� M/2| � |~q | ¡ 0 .
(B4)

Las curvas correspondientes en el plano q4 se pueden observar en la Figura B.1, donde he-

mos distinguido dos situaciones: la primera en donde |~q | ¡ M/2 (Figura B.1a), y la segun-

da cuando |~q |   M/2 (Figura B.1b). Los cortes correspondientes a las funciones fm[(q+)2],

fm[(q�)2] y fm(q2) han sido representados con líneas discontinuas, de puntos (azul), tra-

zos (rojo) y puntos y trazos (negro), respectivamente. En la primera situación (|~q | ¡ M/2)

los cortes no cruzan el eje de integración, por lo tanto no hay contribuciones extras a la

integral. En el segundo caso, para |~q |   M/2, dos cortes cruzan de un semiplano al otro,

pasando a través del eje real q4. Como la integral sobre q4 debe ser equivalente a una inte-

gral sobre el momento q0 de Minkowski, obtenida a través de su correspondiente rotación

de Wick, el contorno de integración sobre q4 debería deformarse de forma tal de sustraer

las contribuciones de las partes que cruzan, que se encuentran representadas por las líneas
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sólidas (azul y roja) en la Figura B.1b. Un procedimiento similar se debe emplear cuan-

do polos del integrando cruzan el eje de integración a cierto valor de |~q |; en ese caso las

contribuciones resultantes de la deformación del contorno de integración de q4 se pueden

obtener calculando los residuos de los polos, de acuerdo al teorema de Cauchy. La necesi-

dad de agregar contribuciones de polos o cortes a las integrales de loop se vuelve evidente

observando las integrales relativamente sencillas que aparecen, por ejemplo, en las ecua-

ciones de gap (3.38): si se realiza una traslación del momento del loop p Ñ p 1 = p + r, con

r2 = �M2, para un valor fijo de |~p 1

| aparecerán cortes en el plano complejo p 14 que cruzan

del semiplano superior al inferior (o vice-versa). Además, en general el integrando tendrá

polos que para valores suficientemente grandes de M cruzan el eje real p 14 en algún valor

de |~p 1|. Partiendo del teorema de Cauchy es sencillo calcular las contribuciones correspon-

dientes, que deben ser sustraídas si se requiere que la integral a un loop sea invariante ante

la traslación.

| q |

( b )

0

q4

M/2  | q |

 M/2  | q |

| q |

M/2  | q |

 | q |  | q |

M

 

q4

0

M/2  | q |

M/2  | q |

( a )

Figura B.1: Cortes de las funciones F(q+, q�, p) en el plano complejo q4, de acuerdo con

la prescripción dada por las ecuaciones (B2) y (B3). Las curvas en los gráficos (a) y (b)

corresponden a |~q | ¡ M/2 y |~q |   M/2, respectivamente.

En la práctica las contribuciones de los cortes pueden obtenerse realizando integrales

en el plano q4 sobre contornos adecuados que encierren los trozos que cruzan el eje y luego

tomando ε Ñ 0. Debido a la simetría de las funciones F(q+, q�, p) las partes imaginarias
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de las integrales en los semiplanos superior e inferior se cancelan entre sí, obteniéndose

una contribución total real. Luego, el resultado debe ser integrado sobre el momento tri-

dimensional |~q |. Hay que destacar que —de acuerdo con las condiciones en (B4)— esta

integración tiene como límites |~q | = 0 y |~q | = M/2, de modo que la contribución de los

cortes resultará despreciable si la masa del mesón M es relativamente pequeña, lo cual

ocurre en general para el caso M = mπ .

Finalmente, en el caso del factor de forma para el decaimiento ρ Ñ ππ la situación

es más complicada debido a que la integral relevante, dada por (4.50), involucra dos mo-

mentos externos independientes p y v. Con el mismo procedimiento se encuentra que el

integrando en este caso tiene dos cortes adicionales en el plano complejo q4 que surgen de

las funciones fm(s) evaluadas en s = (q + v/2� p/4)2. Para tratar con estos cortes hemos

utilizado la prescripción fm[(q + v/2� p/4)2] Ñ fm[(q + v/2� p/4)2
� iε1], eligiendo un

camino de integración que encierre los trozos de los cortes que cruzan el eje real p4 del

modo explicado previamente.
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Apéndice C

Autofunciones y transformaciones de

Ritus

En este apéndice proveeremos la forma explícita de las funciones de Ritus [102] y dis-

cutiremos algunas de sus propiedades. Estas funciones son en realidad matrices de 4� 4

que satisfacen la ecuación de autovalores

Π
2

E p̄(x) = ǫp̄ E p̄(x) , (C1)

donde Π es el operador definido en el Cap. 5, Π = �i/B � qBx1γ2. Aquí, p̄ = (k, p2, p3, p4)

representa el conjunto de números cuánticos necesarios para determinar los autoestados,

cuyos autovalores están dados por ǫp̄ = �(2k|qB|+ p2
3 + p2

4). Cabe destacar que de estos

cuatro números cuánticos, únicamente k es un parámetro discreto. Trabajando en el espacio

Euclídeo y eligiendo la representación de Weyl para las matrices de Dirac,

~γ =

(

0 ~σ

�
~σ 0

)

, γ4 = iγ0 = i

(

0 I

I 0

)

, (C2)

tenemos

E p̄(x) =
¸

λ=�

Ep̄λ(x)∆
λ , (C3)

donde ∆
+ = diag(1, 0, 1, 0), ∆

� = diag(0, 1, 0, 1), y

Ep̄λ = Nkλ
ei(p2x2+p3x3+p4x4) Dkλ

(ρ) , (C4)

donde ρ = s
a

2/|qB| (qB x1 � p2), con s = signo(qB). El índice kλ está relacionado con el

número cuántico k por

k
�

= k�
1
2
�

s

2
, (C5)
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mientras que Nn = (4π|qB|)1/4/
?

n! . En la ecuación (C4) hemos introducido las funciones

parabólicas cilíndricas definidas por

Dn(x) = 2�n/2 e�x2/4 Hn(x/
?

2) , (C6)

donde Hn(x) son los polinomios de Hermite, con la convención estándar H
�1(x) = 0.

Debe distinguirse el caso k = 0, para el cual las autofunciones de Ritus E p̄(x) deben ser

definidas como matrices de 2� 2

E(0,p2,p3,p4) = (4π|qB|)1/4 ei(p2x2+p3x3+p4x4) e�ρ2/4 11(2�2) , (C7)

donde 11(2�2) es la matriz identidad en el subespacio donde Ep̄λ(x) es distinto de cero. Por

otro lado, es fácil observar que las matrices ∆
λ satisfacen

∆
�

∆
� = ∆

� , ∆
�

∆
	 = 0 , ∆

�γ
K

= γ
K

∆
	 , ∆

�γ‖ = γ‖ ∆
� , (C8)

donde γ
K

= (γ1, γ2) y γ‖ = (γ3, γ4).

Como es de esperarse, en la dirección del campo magnético la función E p̄(x) preserva

la forma de la autofunción de energía de una partícula libre, estando etiquetada por un

índice continuo p3 que corresponde a la componente del momento paralela a ~B. Ésta es

también la situación en la dirección del tiempo imaginario. Por otra parte, los números

cuánticos correspondientes al plano x1 x2 dependen del gauge utilizado para describir el

potencial vector Aµ. Aquí hemos elegido el gauge de Landau, para el cual los estados

asociados con la dirección x1 están cuantizados y etiquetados por el índice discreto k. En

la dirección x2 las autofunciones tienen la forma correspondiente a una partícula libre, con

la particularidad de que los autovalores no dependen de p2, por lo tanto los estados se

encuentran degenerados. Esta última propiedad nos lleva a la útil relación

»

dp2

2π
E p̄(x) Ē p̄(x) =

»

dp2

2π
Ē p̄(x)E p̄(x) = |qB| Pk,s , (C9)

donde hemos definido Ē p̄ = γ0 E
:

p̄ γ0 y Pk,�1 = (1� δk0) I + δk0 ∆
�. Los operadores Pk,�1

son proyectores, esto es, satisfacen Pk,s = (Pk,s)
2. También se puede ver que Pk,s E p̄ =

E p̄ Pk,s = E p̄ .

Las funciones de Ritus E p̄(x) satisfacen relaciones de ortonormalidad y completitud

dadas por

»

d4x Ē p̄(x)E p̄ 1(x) = δ̂p̄, p̄ 1 Pk,s , (C10)
»

¸

p̄

E p̄(x) Ē p̄(x1) = δ(4)(x� x1) , (C11)
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donde las siguientes notaciones fueron introducidas

»

¸

p̄

�

1
2π

8

¸

k=0

»

dp2

2π

dp3

2π

dp4

2π
, δ̂p̄, p̄ 1 � (2π)4 δkk1 δ(p2 � p12) δ(p3 � p13) δ(p4 � p14) . (C12)

Además, se verifica la importante identidad

Π E p̄(x) = E p̄(x)
(

�s
b

2k|qB| γ2 + p‖ � γ‖

)

, (C13)

donde p‖ = (p3, p4).

Dadas las funciones de Ritus se puede definir la transformación de Ritus de alguna

función de Dirac arbitraria ψ(x) como

ψ(x) =

»

¸

p̄

E p̄(x) ψp̄ , ψ̄(x) =

»

¸

p̄

ψ̄p̄ Ē p̄(x) , (C14)

junto con la transformación inversa

ψp̄ =

»

d4x Ē p̄(x) ψ(x) , ψ̄p̄ =

»

d4x ψ̄(x) E p̄(x) . (C15)

Del mismo modo, la transformada de Ritus O p̄, p̄ 1 de un operador arbitrario Ox,x1 se define

como

O p̄, p̄ 1 =

»

d4x d4x1 Ē p̄(x) Ox,x1 E p̄ 1(x1) , (C16)

Ox,x1 =

»

¸

p̄, p̄ 1
E p̄(x) O p̄, p̄ 1 Ē p̄ 1(x1) . (C17)
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Apéndice D

Cálculo de G
λ, f
p̄,p̄ 1

De acuerdo con la relación en la ecuación (5.11) se tiene

G
λ, f
p̄, p̄ 1 =

»

d4x d4x1 E�p̄λ(x) G(x� x1) exp
[

iΦ f (x, x1)
]

Ep̄ 1λ(x1) , (D1)

donde Φ f (x, x1) = (q f B/2) (x2 � x12) (x1 + x11), y las funciones Ep̄λ(x) están dadas en la

ecuación (C4). Para trabajar con esta expresión introducimos la transformada de Fourier

de G(x),

g(t2) =

»

d4x e�it �x G(x) , (D2)

y realizamos el cambio de variables x = z + y/2, x1 = z� y/2. De este modo obtenemos

G
λ, f
p̄, p̄ 1 =

»

d4t

(2π)4 g(t2)

»

d4y d4z E�pλ

(

z +
y

2

)

exp(it � y) exp(iq f By2z1) Ep1λ

(

z�
y

2

)

.

(D3)

Dadas las formas explícitas de las funciones Ep̄λ(x), las integrales sobre y3, y4 y z2, z3, z4

pueden realizarse fácilmente. Obtenemos

G
λ, f
p̄, p̄ 1 = (2π)3 δ(p2 � p12) δ(p3 � p13) δ(p4 � p14) Γ

λ, f
k,k1,p‖

, (D4)

donde

Γ
λ, f
k,k1 ,p‖

= Nkλ
Nk1λ

»

d2t
K

(2π)2 g(t2
K

+ p2
‖)

»

dz1d2y
K

exp(�ip2y2) exp(it
K

� y
K

) exp(iq f By2z1) Dkλ
(ρ) Dk1λ

(ρ1) , (D5)

con t
K

= (t1, t2) y

ρ = s f

d

2
|q f B|

[

q f B (z1 + y1/2)� p2
]

, ρ1 = s f

d

2
|q f B|

[

q f B (z1 � y1/2)� p2
]

. (D6)
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Recordemos que s f = signo(q f B), mientras que kλ está relacionada con k según la ecua-

ción (C5). Notemos ahora que la integración sobre y2 introduce un factor 2π δ(q f Bz1� p2 +

t2), el cual permite realizar fácilmente la integral sobre t2. Teniendo en cuenta la forma ex-

plícita de ρ y ρ1 obtenemos

Γ
λ, f
k,k1 ,p‖

=
1

[

2π 2kλ+k1λ kλ! k1λ !
]1/2

»

dγ dη dψ g
[

|q f B|

2
(γ2 + η2) + p2

‖

]

�

exp(iγψ) exp
(

�

η2 + ψ2

2

)

Hkλ

(η + ψ
?

2

)

Hk1λ

(η � ψ
?

2

)

, (D7)

donde hemos utilizado la expresión de Dn en términos de los polinomios de Hermite,

ecuación (C6), y por conveniencia hemos introducido las variables adimensionales

γ =

d

2
|q f B|

t1 , η = s f

d

2
|q f B|

(

q f Bz1 + p2
)

, ψ =

d

|q f B|

2
y1 . (D8)

Realizando un nuevo cambio de variables a coordenadas polares r, φ en el plano γ η, obte-

nemos

Γ
λ, f
k,k1,p‖

=

»

8

0
dr r g

(

|q f B|

2
r2 + p2

‖

)

exp
(

�

r2

2

)

Iλ
k,k1(r) , (D9)

donde

Iλ
k,k1(r) =

1
[

2π 2kλ+k1λ kλ! k1λ!
]1/2

» 2π

0
dφ

»

8

�8

dψ exp
[

�

(ψ� ir cos φ)2

2

]

�

Hkλ

( r sin φ + ψ
?

2

)

Hk1λ

( r sin φ� ψ
?

2

)

. (D10)

Luego realizamos una traslación en el plano complejo ψ, ψ Ñ ψ 1 = ψ� ir cos φ. Dado que

el integrando en (D10) en una función analítica, utilizando el teorema de Cauchy se puede

mostrar que la integral resultante puede realizarse sobre el eje Im ψ 1 = 0. De este modo,

obtenemos

Iλ
k,k1(r) =

1
[

2π 2kλ+k1λ kλ! k1λ !
]1/2

» 2π

0
dφ

»

8

�8

dψ exp
(

�

ψ2

2

)

Hkλ

[ ir exp (�iφ) + ψ
?

2

]

Hk1λ

[

�ir exp (iφ)� ψ
?

2

]

.(D11)

Luego, utilizamos la relación Hn(�x) = (�1)nHn(x) y la identidad [120]
»

8

�8

dx e�x2
Hm(x + y) Hn(x + z) = 2n

?

π m! zn�m Ln�m
m (�2yz) , n ¥ m , (D12)

donde La
b(x) son los polinomios de Laguerre generalizados. Finalmente, usando

» 2π

0
dφ exp(iφ m) = 2π δm0 , (D13)
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P̄,P̄ 1

obtenemos

Iλ
k,k1(r) = 2π (�1)kλ Lkλ

(r2) δkk1 . (D14)

Reemplazando la ecuación (D14) en (D9), y teniendo en cuenta la ecuación (D4), luego de

un nuevo cambio de variables r Ñ |p
K

| = r
b

|q f B|/2 llegamos a

G
λ, f
p̄, p̄1 = δ̂p,p1 g

λ, f
k,p‖

, (D15)

donde g
λ, f
k,p‖

está dada por la ecuación (5.12).
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Apéndice E

Cálculo del propagador de quark a

campo medio

En esta sección describiremos la derivación de los propagadores de quarks u y d dentro

de la aproximación de campo medio. En el espacio de Ritus éstos vienen dados por

S
MFA, f
p̄, p̄ 1 =

(

D
MFA, f
p̄, p̄ 1

)

�1
= δ̂p̄, p̄ 1

(

D
f
k,p‖

)

�1 , (E1)

donde D
f
k,p‖

, dado en (5.14), es diagonal en los índices de Landau/momento p̄. Como este

operador es no diagonal únicamente en el espacio de Dirac, su inversa puede calcularse

fácilmente. Definiendo S
f
k,p‖

= (D
f
k,p‖

)�1, se encuentra que S
f
k,p‖

puede escribirse como

S
f
k,p‖

=
¸

λ=�

[

Â
λ, f
k,p‖

� B̂
λ, f
k,p‖

p‖ � γ‖ + s f

b

2kB f

(

Ĉ
λ, f
k,p‖

� D̂
λ, f
k,p‖

p‖ � γ‖

)

γ2

]

∆
λ , (E2)

donde hemos definido B f = |q f B|, y las funciones Â
λ, f
k,p‖

a D̂
λ, f
k,p‖

están dadas en las ecuacio-

nes (5.23-5.26). Hay que notar que en el caso particular de k = 0 (es decir kλ = 0 ó �1) el

espacio de Dirac se ve reducido a uno de dos dimensiones, por lo tanto en este caso sólo

es necesario considerar los coeficientes Â
λ, f
k,p‖

y B̂
λ, f
k,p‖

.

Para encontrar la expresión de los propagadores en el espacio de coordenadas se debe

calcular la antitransformada de Ritus de S
MFA, f
p̄, p̄ 1 . Es decir

S
MFA, f
x,x1 =

»

¸

p̄, p̄ 1
E p̄(x) S

MFA, f
p̄, p̄ 1 Ē p̄ 1(x1)

=
1

2π

8

¸

k=0

»

d2 p‖

(2π)2 eip‖�∆x‖
¸

λ,λ1=�

Iλλ1
[

δλλ1
(

Â
λ, f
k,p‖

� B̂
λ, f
k,p‖

p‖ � γ‖

)

∆
λ

+s f

b

2kB f (1� δλλ1)
(

Ĉ
λ1, f
k,p‖

� D̂
λ1, f
k,p‖

p‖ � γ‖

)

γ2 ∆
λ1
]

, (E3)
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donde hemos definido ∆x‖ = (∆x3, ∆x4), con ∆xi = xi � x1i, y las integrales Iλλ1 están

dadas por

Iλλ1 = Nkλ
Nkλ1

»

dp2

2π
eip2(x2�x12) Dkλ

(ρ) Dkλ1
(ρ1) , (E4)

con ρ(1) = s f

b

2/B f

[

B f x
(1)
1 � p2

]

=
a

2 B f

[

x
(1)
1 � (s f /B f ) p2

]

. Analizaremos las integrales

I�� y I�	 separadamente. Considerando las expresiones explícitas para Nkλ
y Dkλ

(x) [ver

ecuación (C6)], y realizando la traslación p2 = q2 + s f B f (x1 + x11)/2, se obtiene

Iλλ =




B f

π

2�kλ

k!
exp[iΦ f (x, x1)] exp

(

�

B f ∆x2
1

4

)

»

8

�8

dq2 exp(iq2∆x2) �

exp
(

�

q2
2

B f

)

Hkλ

(

a

B f ∆x1

2
�

s f q2
a

B f

)

Hkλ

(

�

a

B f ∆x1

2
�

s f q2
a

B f

)

, (E5)

donde Φ f (x, x1) es la fase de Schwinger que ya hemos definido. Ahora es posible realizar

una traslación en el campo complejo a una nueva variable ω = (q2 � iB f ∆x2/2)s f /
a

B f .

Como el integrando es una función analítica de q2 en todo el plano, la integral puede

calcularse sobre el eje Im ω = 0. Se obtiene de este modo

Iλλ =
B f
?

π

2�kλ

k!
exp[iΦ f (x, x1)] exp

(

�

B f ∆x2
K

4

)

»

8

�8

dω exp(�ω2) �

Hkλ

[

ω�

a

B f

2
(∆x1 � is f ∆x2)

]

Hkλ

[

ω +

a

B f

2
(∆x1 + is f ∆x2)

]

, (E6)

donde ∆x
K

= (∆x1, ∆x2). La integral en (E6) puede evaluarse usando la relación en (D12),

lo cual conduce a

Iλλ = B f exp[iΦ f (x, x1)] exp

[

�

B f ∆x2
K

4

]

Lkλ

(

B f ∆x2
K

2

)

. (E7)

Considerando la integral

K(0)(m, y
K

) =

»

d2 p
K

eip
K

�y
K exp

(

�

p2
K

B f

)

Lm

(

2p2
K

B f

)

, (E8)

donde p
K

= (p1, p2), y
K

= (y1, y2), se obtiene

K(0)(m, y
K

) =

»

8

0
d |p

K

| |p
K

| exp
(

�

p2
K

B f

)

Lm

(

2p2
K

B f

)
» 2π

0
dθ ei|p

K

|(y1 cos θ+y2 sin θ)

= 2π

»

8

0
d |p

K

| |p
K

| exp
(

�

p2
K

B f

)

Lm

(

2p2
K

B f

)

J0(|pK| |yK|)

= πB f (�1)m exp

(

�

B f y2
K

4

)

Lm

(

B f y2
K

2

)

, (E9)
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donde J0(x) es una función de Bessel. La última igualdad en la ecuación (E9) se obtuvo

usando la siguiente relación general, la cual involucra polinomios de Laguerre generaliza-

dos y funciones de Bessel:
»

8

0
dx xν+1 e�βx2

Lν
m(αx2)Jν(xy) = (2β)�ν�1

(

1�
α

β

)m
yνe�y2/(4β) Lν

m

[

αy2

4β(α� β)

]

. (E10)

De las ecuaciones (E7), (E8) y (E9) finalizamos con

Iλλ =
1
π

exp[iΦ f (x, x1)] (�1)kλ K(0)(kλ, ∆x
K

)

= 4π exp[iΦ f (x, x1)] (�1)kλ

»

d2 p
K

(2π)2 eip
K

�∆x
K exp

(

�

p2
K

B f

)

Lkλ

(

2p2
K

B f

)

. (E11)

Un procedimiento similar se lleva a cabo para el cálculo de las integrales I�	. Reali-

zando los mismos cambios de variables que en el caso anterior obtenemos

I�	 =
B f
?

π

2�(k++k
�

)/2
?

k (k� 1)!
exp[iΦ f (x, x1)] exp

(

�

B f ∆x2
K

4

)

(�1)k++k
�

»

8

�8

dω e�ω2
�

Hk+

[

ω	

a

B f

2
(∆x1 	 is f ∆x2)

]

Hk
�

[

ω �

a

B f

2
(∆x1 � is f ∆x2)

]

= B f




B f

2k
s f exp[iΦ f (x, x1)](�∆x1 � i∆x2) exp

(

�

B f ∆x2
K

4

)

L1
k�1

(B f ∆x2
K

2

)

,

(E12)

donde hemos usado nuevamente la relación en la ecuación (D12) para evaluar la integral

sobre ω. Notar que para k = 0 se tiene I+� = I�+ = 0 automáticamente a partir de la

definición en (E4), ya que k+ = �1 o k
�

= �1, y D
�1(ρ

(1)) = 0. Ahora consideremos las

integrales

K
(1)
j (m, y

K

) =

»

d2 p
K

pj eip
K

�y
K exp

(

�

p2
K

B f

)

L1
m

(

2p2
K

B f

)

, (E13)

donde j = 1, 2. Usando la ecuación (E10) con ν = 1 es sencillo demostrar que

K
(1)
j (m, y

K

) = 2π i
yj

|y
K

|

»

8

0
d |p

K

| p2
K

exp
(

�

p2
K

B f

)

L1
m

(

2p2
K

B f

)

J1(|pK| |yK|)

=
π

2
i B2

f (�1)m yj exp

(

�

B f y2
K

4

)

L1
m

(

B f y2
K

2

)

, (E14)

de donde obtenemos

I�	 = (�i)
2
π

s f exp[iΦ f (x, x1)]
(�1)k

b

2kB f

[

	K
(1)
1 (k� 1, ∆x

K

) + iK
(1)
2 (k� 1, ∆x

K

)
]

= �i 8π s f exp[iΦ f (x, x1)]
(�1)k

b

2kB f

»

d2 p
K

(2π)2 ei∆x
K

�p
K

�

(	p1 + ip2) exp
(

�

p2
K

B f

)

L1
k�1

(

2p2
K

B f

)

. (E15)
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Los resultados en (E11) y (E15) pueden combinarse de la siguiente forma

Iλλ1 = 4π (�i)kλ+kλ1

( 2
k B f

)

|kλ�kλ1 |

exp[iΦ f (x, x1)]

»

d2 p
K

(2π)2 ei∆x
K

�p
K exp

(

�

p2
K

B f

)

�

[

(kλ � kλ1) p1 � is f p2

]

|kλ�kλ1 |

L
|kλ�kλ1 |

(kλ+kλ1�|kλ�kλ1 |)/2

(

2p2
K

B f

)

(E16)

(una expresión análoga es obtenida en la Ref. [103]). Reemplazando en (E3), y notando que

�i(�p1 + ip2)γ2∆
� = p

K

� γ
K

∆
� , finalmente llegamos a

S
MFA, f
x,x1 = exp[iΦ f (x, x1)]

»

d4 p

(2π)4 ei p�(x�x1) S̃ f (p
K

, p‖) , (E17)

donde S̃ f (p
K

, p‖) en el modelo NJL no local está dada por la expresión (5.22).
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Apéndice F

Cálculo de la masa del pion en

presencia de campo magnético

Describiremos aquí cómo se deriva la relación (5.42). La ecuación (5.36) se puede rees-

cribir en la forma

F(0, k2
‖) = � 128 π2 NC

¸

f=u,d

1
B2

f

8

¸

k,k1=0

»

q‖

[

¸

λ=�

F
λ, f (AB)

kk1 ,q+
‖

q�
‖

I
λ, f (0)
kk1,q‖

+ F
+, f (CD)

kk1 ,q+
‖

q�
‖

I
f (1)
kk1 ,q‖

]

, (F1)

donde

I
λ, f (0)
kk1 ,q‖

= (�1)k+k1
»

q
K

p
K

p1
K

exp
[

i 2 φ(q
K

, p
K

, p1
K

)

B f

]

exp
[

�

p2
K

+ p12
K

B f

]

�

g
(

q2
K

+ q2
‖

)

g
[

(p1
K

+ p
K

� q
K

)2+ q2
‖

]

Lkλ

(

2 p2
K

B f

)

Lk1λ

(

2 p12
K

B f

)

, (F2)

I
f (1)
kk1 ,q‖

= 8 (�1)k+k1
»

q
K

p
K

p1
K

exp
[

i 2 φ(q
K

, p
K

, p1
K

)

B f

]

exp
[

�

p2
K

+ p12
K

B f

]

�

(p
K

� p1
K

) g
(

q2
K

+ q2
‖

)

g
[

(p1
K

+ p
K

� q
K

)2+ q2
‖

]

L1
k�1

(

2 p2
K

B f

)

L1
k1�1

(

2 p12
K

B f

)

.

(F3)

Estas integrales pueden resolverse tomando las transformaciones de Laguerre-Fourier de

los factores de forma no locales dadas en (5.41). Obtenemos de este modo
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I
λ, f (0)
kk1 ,q‖

= 4 (�1)k+k1
8

¸

m,m1=0

(�1)m+m1

g
λ, f
m,q‖ g

λ, f
m1,q‖

»

q
K

p
K

p1
K

exp
[

i 2 φ(q
K

, p
K

, p1
K

)

B f

]

�

exp
[

�

p2
K

+ p12
K

+ q2
K

+ (p1
K

+ p
K

� q
K

)2

B f

]

�

Lkλ

(

2 p2
K

B f

)

Lk1λ

(

2 p12
K

B f

)

Lmλ

(

2 q2
K

B f

)

Lm1

λ

[

2 (p1
K

+ p
K

� q
K

)2

B f

]

, (F4)

I
f (1)
kk1 ,q‖

= 32 (�1)k+k1
8

¸

m,m1=0

(�1)m+m1

g
+, f
m,q‖ g

�, f
m1,q‖

»

q
K

p
K

p1
K

exp
[

i 2 φ(q
K

, p
K

, p1
K

)

B f

]

�

exp
[

�

p2
K

+ p12
K

+ q2
K
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K

+ p
K

� q
K

)2

B f

]

(p
K

� p1
K

) �

L1
k�1

(

2 p2
K

B f

)

L1
k1�1

(

2 p12
K

B f

)

Lm+

(

2 q2
K

B f

)

Lm1

�

[

2 (p1
K

+ p
K

� q
K

)2

B f

]

. (F5)

Si cambiamos las variables de integración, definiendo los vectores adimensionales u =

�

b

(2/B f ) p
K

, v =
b

(2/B f ) p1
K

, w =
b

(2/B f ) (p
K

� q
K

), las integrales resultan

I
λ, f (0)
kk1 ,q‖

=
B3

f

2
(�1)k+k1

8

¸

m,m1=0

(�1)m+m1

g
λ, f
m,q‖ g

λ, f
m1,q‖

K
λ, f (0)
kk1mm1

,

I
f (1)
kk1 ,q‖

= 2 B4
f (�1)k+k1

8

¸

m,m1=0

(�1)m+m1

�1 g
+, f
m,q‖ g

�, f
m1,q‖

K
f (1)
kk1mm1

, (F6)

donde

K
λ, f (0)
kk1mm1

=

»

u v w
exp

[

�w2] exp
[

� u2
� u �w� is f (u1w2 � u2w1)

]

Lkλ

(

u2) Lmλ

[

(u + w)2]
�

exp
[

� v2
� v �w� is f (v1w2 � v2w1)

]

Lk1λ

(

v2)Lm1

λ

[

(v + w)2]

K
f (1)
kk1mm1

= �

»

u v w
exp

[

�w2] exp
[

� u2
� u �w� is f (u1w2 � u2w1)

]

L1
k�1

(

u2) Lm+

[

(u + w)2]
�

(u � v) exp
[

� v2
� v �w� is f (v1w2 � v2w1)

]

Lk1�1
(

v2)Lm1

�

[

(v + w)2] . (F7)

Se puede observar que K
λ, f (0)
kk1mm1

y K
f (1)
kk1mm1

no dependen del momento o en el campo mag-

nético. Para calcular estas cantidades contamos con la ayuda de las siguientes relaciones

útiles
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APÉNDICE F. CÁLCULO DE LA MASA DEL PION EN PRESENCIA DE CAMPO
MAGNÉTICO

1
2π

» 2π

0
dθ Ln

(

x2+ y2+ 2xy cos θ
)

exp
[

� xy exp(�iθ)
]

= Ln

(

x2) Ln

(

y2) , (F8)

1
2π

» 2π

0
dθ cos θ Ln

(

x2+ y2+ 2xy cos θ
)

exp
[

� xy exp(�iθ)
]

= �

xy

2

[

L1
n

(

x2
)

L1
n

(

y2
)

n + 1
+

L1
n�1

(

x2
)

L1
n�1

(

y2
)

n

]

, (F9)

1
2π

» 2π

0
dθ sin θ Ln

(

x2+ y2+ 2xy cos θ
)

exp
[

� xy exp(�iθ)
]

= 	

i xy

2

[

L1
n

(

x2
)

L1
n

(

y2
)

n + 1
�

L1
n�1

(

x2
)

L1
n�1

(

y2
)

n

]

, (F10)

junto con las propiedades de ortogonalidad de los polinomios de Laguerre generalizados.

En el caso de K
λ, f (0)
kk1mm1

, a partir de la relación (F8) se obtiene

K
λ, f (0)
kk1mm1

=
1

(4π)2

»

w
exp

(

�w2)
»

8

0
du2 exp

(

� u2) Lkλ

(

u2) Lmλ

(

u2) Lmλ

(

w2)
�

»

8

0
dv2 exp

(

� v2) Lk1λ

(

v2) Lm1

λ

(

v2) Lm1

λ

(

w2)

=
1

(4π)3 δkm δk1m1 δmm1 , (F11)

y como consecuencia

I
λ, f (0)
kk1 ,q‖

=
B3

f

128 π3 g
λ, f
k,q‖

g
λ, f
k,q‖

δkk1 . (F12)

Finalmente, usando las ecuaciones (F9) y (F10) obtenemos

K
f (1)
kk1mm1

= �

1
128π3 k δkk1

(

δm+1 k
�

δm1k+ + δmk
�

δm1

�1 k+

)

, (F13)

lo cual conduce a

I
f (1)
kk1 ,q‖

=
k B4

f

32π3 g
+, f
k,q‖

g
�, f
k,q‖

δkk1 . (F14)

Reemplazando los resultados (F12) y (F14) en la ecuación (F1) llegamos a nuestra expresión

final (5.42).
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Apéndice G

Cálculo de la constante de

decaimiento del pion en presencia de

campo magnético

Aquí se discutirá la derivación de nuestros resultados en las ecuaciones (5.66) y (5.68).

Partiremos de las expresiones (5.62), e introducimos la transformación de Fourier-Laguerre

de g(q2). Luego, cambiamos el orden de las integrales y las sumas obteniendo

tµ F
(II)
µ (t)

�

�

�

t
K

=0
= i 128 π2NC

¸

f=u,d

1
B2

f

8

¸
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»

q‖

"

¸

λ=�

g
λ, f
m,q‖ �
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(

t‖ � q
�

‖

)

Â
λ, f

k,q+
‖

B̂
λ, f

k1,q�
‖

�

(

t‖ � q
+
‖

)

Â
λ, f

k1,q�
‖

B̂
λ, f

k,q+
‖

]

K̃
λ, f (0)
kk1m +

8 i g
+, f
m,q‖

[

(

t‖ � q
�

‖

)

Ĉ
+, f

k,q+
‖

D̂
+, f

k1,q�
‖

�

(

t‖ � q
+
‖

)

Ĉ
+, f

k1,q�
‖

D̂
+, f

k,q+
‖

]

K̃
f (1)
kk1m

*

, (G1)

donde

K̃
λ, f (0)
kk1m = (�1)k+k1+mλ

»

q
K

p
K

p1
K

exp
[

�

i 2φ(q
K

, p
K

, p1
K

)

B f

]

�

exp
[
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p2
K

+ p12
K

+ q2
K

B f

]

Lkλ

(

2 p2
K

B f
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(

2 p12
K

B f
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(
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K

B f

)

, (G2)

K̃
f (1)
kk1m = (�1)k+k1+m+

»

q
K

p
K

p1
K

exp
[

�

i 2φ(q
K

, p
K

, p1
K

)

B f

]

(p1 p12 � p2 p11) �

exp
[
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p2
K

+ p12
K

+ q2
K

B f

]
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(
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K

B f

)

L1
k1�1

(

2 p12
K

B f

)

Lm+

(

2 q2
K

B f

)

.

(G3)

Ahora realizamos un cambio de variables de integración, definiendo los vectores adimen-

sionales u =
b

(2/B f ) q
K

, v =
b

(2/B f ) p
K

, w =
b

(2/B f ) (p1
K

� p
K

). Las expresiones
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para K
λ, f (0)
kk1m y K

f (1)
kk1m toman la forma

K̃
λ, f (0)
kk1m = (�1)k+k1+mλ

B3
f

8

»

v w
exp

[

i s f (v1w2 � v2w1)
]
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[
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(
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2
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, (G4)

K̃
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B4
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16
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2

)
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(

u2) exp
[

i s f (w1u2 �w2u1)
]

. (G5)

Para evaluar las integrales en u, fijamos el vector externo w sobre la dirección 1, lo cual

conduce a la expresión
»

u
exp

(

�

u2

2

)

Lmλ

(

u2) exp
[

i s f (w1u2 �w2u1)
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1

(2π)2

»

8

0
d|u| |u| exp

(

�

u2

2

)

Lmλ

(

u2)
» 2π

0
dθ exp

(

i s f |wu| sin θ
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1
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exp
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w2) , (G6)

donde hemos usado las relaciones
» 2π

0
dθ exp

(

� i y sin θ
)

= 2π J0(y) (G7)

y
»

8

0
dx xν+1 e�βx2

Lν
n

(

αx2) Jν(xy) =
(1� α/β)n

(2β)ν+1 yν e�y2/(4β) Lν
n

[

αy2

4β(α� β)

]

, (G8)

siendo Jν(x) las funciones de Bessel de primer tipo. Ahora, teniendo en cuenta la ecuación

(F8), junto con la propiedad de ortogonalidad de los polinomios de Laguerre, encontramos

K̃
λ, f (0)
kk1m = (�1)k+k1
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f

128π4
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256π3 δkk1 δk1m . (G9)
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APÉNDICE G. CÁLCULO DE LA CONSTANTE DE DECAIMIENTO DEL PION EN
PRESENCIA DE CAMPO MAGNÉTICO

Para la integral K̃
f (1)
kk1m usamos el resultado en la ecuación (G6) y luego cambiamos a las

nuevas variables v̄ = �v y w̄ = w + v. Obtenemos

K̃
f (1)
kk1m = (�1)k+k1

B4
f
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8
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= is f k
B4

f

1024 π3 δkk1 (δm+k�1 � δm+k) , (G10)

donde hemos utilizado la relación en (F10). Finalmente, notando que

8

¸

m=0

s f (δm+k�1 � δm+k) g
+, f
m,q‖ = g

�, f
k,q‖

� g
+, f
k,q‖

, (G11)

a partir de las ecuaciones (G1), (G9) y (G10) podemos llegar a la expresión (5.66).
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