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Resumen

La dindmica de quarks se encuentra descrita en el marco del Modelo Estdndar por la
Cromodindmica Cudntica (QCD), que formalmente es una teoria de campos de gauge no

abeliana.

En procesos de altas energias la propiedad de libertad asintética presente en QCD per-
mite obtener predicciones a partir del lagrangiano fundamental de la teoria. Sin embargo,
a bajas energias (<1 GeV) la constante de acoplamiento fuerte aumenta su valor de modo
tal que las técnicas perturbativas ya no son aplicables. En este régimen los quarks se en-

cuentran confinados en hadrones, y la simetria quiral se encuentra espontdneamente rota.

El empleo de teorias efectivas permite estudiar la fenomenologia de las particulas ha-
drénicas y analizar el comportamiento de la materia fuertemente interactuante en sistemas
con temperatura y densidad finitas. En esta Tesis se estudiaron modelos efectivos para la
descripcion de la interaccion fuerte a bajas energifas. En particular, se consideraron mode-
los de quarks relativistas del tipo Nambu-Jona-Lasinio con interacciones no locales para
dos sabores de quarks de modo de estudiar la fenomenologia de los mesones livianos. Se
estudi6 también el acoplamiento con campos magnéticos externos uniformes, y el efecto de
éstos sobre las propiedades de los mesones y las transiciones de fase que sufre la materia
hadroénica a temperatura finita.

El presente trabajo esta estructurado de la siguiente manera:

En el Capitulo 1 se presenta una breve introduccién que describe el comportamiento
a bajas energias de la materia fuertemente interactuante indicando los problemas que im-
plica lidiar con QCD en la vecindad de las transiciones de fase. Se introducen dos de las
principales alternativas para hacerlo: Lattice QCD (LQCD) y modelos efectivos, en particu-
lar, el propuesto por Nambu y Jona-Lasinio (NJL). También se discuten los resultados que
motivan el estudio del efecto de campos magnéticos sobre la materia de quarks.

En el Capitulo 2 se discuten las caracteristicas principales de la Cromodindmica Cudénti-
ca relevantes para la construccion de los modelos efectivos que serédn utilizados, prestando
especial atencién a las simetrias de sabor y las simetrias de gauge.

En el Capitulo 3 se presenta el modelo de Nambu—Jona-Lasinio en su versién local de
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dos sabores, detallando los célculos del condensado quark-antiquark y de las propieda-
des mesoénicas del sector escalar y pseudoescalar mediante el formalismo de bosonizacién,
para luego incorporar interacciones no locales y acoplamientos que den cuenta de la re-
normalizacién de la funciéon de onda.

En el Capitulo 4 se extiende el modelo NJL no local incorporando acoplamientos entre
corrientes vectoriales y axiales. En este marco se estudian las caracteristicas del sector de
mesones vectoriales livianos, con especial atencion en el estudio de los mesones p y 7 en
el vacio.

El Capitulo 5 se concentra en el procedimiento por el cual se incluye un acoplamiento
con un campo magnético externo. Se incorpora dicho campo mediante la derivada cova-
riante, indicando cémo debe realizarse el calculo del determinante fermiénico correspon-
diente a la accién en la aproximaciéon de campo medio. Luego, se desarrolla la accién efec-
tiva a 6rdenes superiores en las fluctuaciones de los campos a fin de encontrar expresiones
analiticas para las masas de los mesones 77 y ¢, asi como el ancho de decaimiento débil del
pion, en funcién de la magnitud del campo magnético.

En el Capitulo 6 se comienza explicando el formalismo de tiempo imaginario para in-
corporar temperatura finita, teniendo en cuenta a su vez el acoplamiento con el “Loop de
Polyakov” (PL). En la segunda seccién del capitulo se incorpora este formalismo al modelo
descrito en el Cap. 5 para estudiar las transiciones de fase en funcién de la temperatu-
ra. En ambos casos se calculan los condensados quirales y la traza del loop de Polyakov
en funcién de la magnitud del campo magnético y la temperatura, comparando nuestros
resultados con los obtenidos en LQCD.

En el Capitulo 7, finalmente, se resume el trabajo realizado y se exponen las conclusio-

nes.
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Capitulo 1

Introduccion

De acuerdo con el Modelo Estandar de las particulas elementales [1] los hadrones son
estados ligados de fermiones llamados quarks, que interacttian entre si a través de boso-
nes mediadores llamados gluones. La teoria que describe dichas interacciones es una teoria
de gauge no abeliana llamada Cromodindmica Cudntica (o0 QCD, por Quantum Chromody-
namics) [2, 3]. En esta teoria, tanto los quarks como los gluones poseen una propiedad
conocida como “carga de color”, anédloga a la carga eléctrica de la electrodindmica, que
es la responsable de las interacciones fuertes. Uno de los objetivos de QCD es describir
adecuadamente cémo los quarks y los gluones interacttian para formar los estados ligados

que conforman la materia hadroénica, los cuales se clasifican en bariones y mesones.

El hecho de que el grupo de simetria interna SU(3) de color sea no abeliano hace que
QCD tenga caracteristicas muy diferentes a las de la Electrodindmica Cudntica. En particu-
lar, QCD tiene dos propiedades sumamente importantes: libertad asintética y confinamiento.
La libertad asintética implica que en procesos en los cuales el momento transferido es muy
grande, tales como dispersiones profundamente ineldsticas, los quarks se comportan como
casi libres, es decir, la interacciéon entre dos quarks debida al intercambio de gluones resulta
ser muy pequefia. Esto permite obtener predicciones a partir del lagrangiano fundamen-
tal de la teoria utilizando teoria de perturbaciones, esto es, a través de un desarrollo en
serie de potencias de la constante de acoplamiento quark-gluon, partiendo de un sistema
de quarks no interactuantes. Por el contrario, para bajos momentos transferidos (< 1 GeV)
QCD es altamente no lineal y da lugar al confinamiento, lo cual significa que los quarks
no existen como particulas libres sino que forman estados ligados debido a que la intensi-
dad de interaccion entre ellos aumenta con la distancia. Este fenémeno se refleja en que las
variables de color se acomodan necesariamente en estados conocidos como “singuletes”,
cuya carga neta de color es nula y que requieren de mds de un quark o antiquark para

formarse.



Por otro lado, también son de importancia las propiedades de simetria ante transforma-
ciones globales en el espacio de sabor. El lagrangiano de QCD estd construido de manera
de ser aproximadamente simétrico ante los grupos SU(2) de isospin y SU(2) axial en el
sector de quarks livianos. Sin embargo, en el estado de vacio de QCD la simetria axial se
rompe espontdneamente debido a las interacciones, pudiendo caracterizarse la fase corres-
pondiente mediante pardmetros de orden como el condensado quiral, el cual estd a su vez
relacionado con la generacién dindmica de masa. De hecho, la ruptura espontdnea de la
simetria axial de QCD es la responsable de la mayor parte de la masa de los nucleones.

Debido a estas caracteristicas, poco después del advenimiento de QCD se conjetur6 que
a temperaturas y/o densidades suficientemente elevadas podrian existir nuevos estados
de materia, conocidos con el nombre genérico de plasma de quarks y gluones (QGP) [4, 5],
que se encuentran caracterizados por el deconfinamiento de color. Esto motivé el estudio
tedrico de las fases posibles de QCD en tales condiciones extremas y revel6 una estructura
de fases potencialmente compleja, cuya descripciéon continta resultando hasta el dia de
hoy un desafio tanto teérico como experimental [6, 7, 8].

Los efectos dindmicos de las rupturas de simetrias son de gran importancia en el es-
tudio del diagrama de fases de QCD ya que existen indicios de que la simetria axial se
encuentra restaurada en la fase QGP. Ademas, las evidencias experimentales y tedricas
conducen a suponer que las transiciones de fase de deconfinamiento y de restauracién de
simetria quiral ocurren en forma practicamente simultdnea a densidades bajas, y que el pa-
saje de una fase a otra tiene lugar a través de una transicién suave del tipo crossover [9, 10].
Sin embargo, el mecanismo preciso que da lugar a esta transiciéon simultdnea atin no ha
sido comprendido en su totalidad.

Se cree que en la Naturaleza el plasma de quarks y gluones existi6 en el universo tem-
prano, en los primeros instantes posteriores al Big Bang, cuando la temperatura era muy
elevada, y que luego, a medida que el Universo se fue enfriando, tuvo lugar el proceso de
hadronizacién. Hoy en dia se considera que es posible que atin exista alguna forma de ma-
teria de quarks deconfinados en el interior de objetos compactos [11] como las estrellas de
neutrones, cuyo interior profundo corresponderia a la region de altas densidades y bajas
temperaturas en el diagrama de fases. Las estrellas compactas [12] son objetos extrema-
damente estables y densos, y constituyen uno de los posibles escenarios finales en el ciclo
de vida de una estrella. Al producirse una supernova se eyecta al espacio gran parte de la
materia que constituye la estrella y su ntcleo se comprime fuertemente. El remanente de
dicha explosiéon puede convertirse en una estrella compacta cuando la masa del objeto se
encuentra por debajo del limite de Chandrasekhar. En esta etapa de su ciclo de vida ya no
se producen reacciones de fusién, y la fuerza gravitatoria es equilibrada por una presién

de origen cuédntico debida al principio de exclusién de Pauli.
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CAPITULO 1. INTRODUCCION

El fuerte interés por estudiar las propiedades de la materia de quarks (o el QGP) y las
condiciones bajo las cuales es posible producirla ha motivado en los tltimos afios la cons-
truccién de grandes instalaciones experimentales que permitan obtenerla en el laboratorio.
Una de ellas es el Relativistic Heavy Ion Collider (RHIC) en Brookhaven, USA [13], donde se
llevan a cabo estudios relacionados con el plasma de quark y gluones a través de colisiones
entre iones pesados a energias relativistas. También en el Large Hadron Collider ubicado en
el CERN en la frontera franco-suiza cerca de Ginebra se realizan experimentos de este tipo,
estando el detector Alice especialmente dedicado a este fin [14]. Ademads de éstas, existen
otras instalaciones en construccion, el Facility for Antiproton and Ion Research (FAIR) [15] en
Darmstadt, Alemania, y el NICA [16] en Dubna, Rusia.

En este tipo de aceleradores el objetivo es colisionar iones pesados como plomo, plata
u oro a energias de centro de masa del orden de 100 - 200 GeV o més. Durante el proceso
de colisién se alcanzan temperaturas extremadamente altas, por encima de la temperatura
critica esperada de deconfinamiento, T, ~ 170 MeV [17]. Los resultados actuales sugieren
que el QGP ha logrado formarse [18, 19] durante periodos de tiempo del orden de 10 fm/c,
incluso exhibiendo propiedades de equilibrio termodindmico a pesar de su corta duracién,
y ademds dando evidencias que confirman la hipétesis de que la transicién entre las fases
hadrénica y QGP es de tipo crossover.

Es importante destacar que las condiciones producidas en aceleradores de iones pe-
sados corresponden esencialmente a la zona de baja densidad del diagrama de fases. Si
bien en el FAIR se espera que se puedan alcanzar densidades algo mayores, los efectos de
densidad finita mds relevantes estan atin lejos de observarse en este tipo de experimentos,
relegando la posibilidad de observar fases densas al estudio de estrellas compactas.

Para poder describir la materia hadrénica y de quarks, asi como las transiciones de fa-
se, es esencial disponer de métodos que permitan analizar la dindmica asociada a QCD. Si
bien se conoce la teorfa fundamental que describe toda la dindmica del sistema, para proce-
sos fisicos de bajas energias resulta muy dificil obtener informacién relevante partiendo en
forma directa de ella. Para describir las propiedades estaticas de los hadrones, tales como
sus masas, constantes de decaimiento, etc., asi como para estudiar la transicién entre la fase
hadrénica y la de materia de quarks, es necesario considerar el rango de momentos trans-
feridos pequefios, y resulta fundamental desarrollar formalismos que permitan estudiar la
teoria en esta regiéon mediante técnicas no perturbativas. Un método posible consiste en
resolver numéricamente las ecuaciones de movimiento en un espacio-tiempo discretizado,
lo que se denomina “QCD enla red” o Lattice QCD (LQCD) [20]. Disponiendo de suficiente
poder de computo es posible disminuir el espaciamiento de la red e incrementar el tamafio
del sistema de manera de acercarse tanto al limite del continuo como al termodindmico. Al

mismo tiempo es posible muestrear un ntimero suficientemente grande de configuraciones
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de manera de disminuir el error estadistico. Sin embargo, los métodos tipo Monte Carlo
comunmente utilizados para evaluar la funcién de particién son confiables solamente en
el caso en el que el potencial quimico es cero [21]. La extension de los célculos a potencial
quimico finito presenta grandes dificultades, y si bien existen algunos resultados, éstos se
encuentran atin en discusion.

Otra de las maneras posibles de encarar el estudio de QCD a bajas energias consiste en
desarrollar modelos efectivos. Un modelo efectivo constituye una simplificacién de la teo-
ria completa de modo de facilitar su andlisis, y a la vez contiene en su formulacién ciertos
ingredientes bésicos de la teoria original que permiten reproducir aspectos especificos y
realizar predicciones cuantitativas de interés. Una ventaja de los modelos efectivos frente
a LQCD es que pueden ser extendidos a potencial quimico finito sin mayor dificultad, y
de este modo permiten estudiar en forma completa el diagrama de fases. Entre los varios
modelos posibles se encuentran el MIT Bag model [22], el modelo sigma lineal [23] y el que
se usara como punto de partida en esta Tesis, el modelo de Nambu—Jona-Lasinio (N]JL).

El modelo NJL fue desarrollado en el afio 1961, en el que Y. Nambu y G. Jona-Lasinio
publicaron dos trabajos [24, 25] cuyo objetivo era estudiar las interacciones entre nucleo-
nes, con el propdsito de explicar en forma unificada las grandes masas de los bariones y
las masas intermedias o pequefas de los mesones (en particular, la masa pequefia que dis-
tingue al pion de los demds hadrones) a partir de las propiedades de simetria de isospin
que exhiben las interacciones nucleares. En sus trabajos Nambu y Jona-Lasinio partieron
de un lagrangiano con una interaccién de dos cuerpos entre nucleones (los bloques bésicos
de materia conocidos hasta ese momento) no masivos que respeta la simetria quiral. Dicha
invarianza se rompe debido a los efectos de las interacciones. Este mecanismo produce
que los campos fundamentales que representan a los nucleones adquieran masas diné-
micas, dando lugar también a bosones de Goldstone, los cuales son identificados con los
piones.

Por esa época QCD auin no habia sido formulada. Hacia mediados de los afios 70,
cuando los quarks fueron reconocidos como los componentes elementales de la materia
hadroénica en lugar de los protones y neutrones, el modelo NJL empez6 a ser abandonado,
debido a su naturaleza no fundamental y a su no renormalizabilidad. Sin embargo, como
consecuencia de las dificultades antes mencionadas para tratar QCD a bajas energias, en
la segunda parte de la década del 80 surgi6 la idea de reinterpretar el modelo NJL como
un modelo para un sistema de quarks interactuantes. Se supone asi que los grados de li-
bertad de los gluones se pueden “congelar” dando lugar a interacciones efectivas entre los
quarks.

En su versiéon més sencilla, el lagrangiano del modelo NJL contiene términos locales

de interacciéon del tipo escalar-isoescalar y pseudoescalar-isovectorial entre fermiones, que

4



CAPITULO 1. INTRODUCCION

son los que reproducen la dindmica de ruptura de simetria quiral de QCD. Este modelo,
asi como sus extensiones que incluyen interacciones locales en otros canales, ha sido utili-
zado en numerosos estudios de las propiedades hadroénicas, tanto considerando simetrias
SU(2) como SU(3) de sabor (incluyendo los quarks up, down y strange), y a su vez ha per-
mitido analizar la respuesta de la materia de quarks ante efectos de temperatura, potencial
quimico [26, 27, 28] y campo magnético [29]. También ha sido uno de los modelos mas
usados para investigar la existencia de fases superconductoras de color [30]. Sin embargo,
para dar cuenta del mecanismo de deconfinamiento no basta con un modelo puramente
fermidnico sino que es necesario incluir en forma explicita la dindmica de los grados de
libertad gluénicos. Recientemente ha sido propuesto que éstos sean incorporados median-
te el acoplamiento de los quarks a un campo de fondo de color asociado al parametro de
orden usualmente utilizado para describir el deconfinamiento, esto es, el llamado loop de
Polyakov [31, 32]. El modelo asi obtenido se conoce bajo el nombre de modelo de Polyakov—
Nambu-Jona-Lasinio (PN]JL) [33, 34, 35].

Un problema del modelo NJL, relacionado con el uso de interacciones locales, es que se
debe introducir algtin tipo de regularizaciéon para evitar que los diagramas involucrados
en la determinacién de la autoenergia de los quarks, las masas de los mesones, las cons-
tantes de acoplamiento, etc., resulten divergentes. Esto introduce ciertas ambigiiedades en
el célculo de dichas cantidades, asi como de las correcciones debidas a los loops de meso-
nes. A partir de los 90’s han aparecido trabajos que proponen el uso de interacciones no
locales para solucionar este tipo de inconvenientes, a cambio de algunas complicaciones
en el cdlculo. En verdad, el cardcter no local de las interacciones surge naturalmente en el
contexto de diversos métodos bien establecidos para describir la dindmica a bajas energias
de los quarks, como por ejemplo el modelo de liquido de instantones [36] o las técnicas
de resumacion de Schwinger-Dyson [37]. Una de las propuestas de mayor interés surge
de la relacién entre el modelo NJL y el modelo de intercambio de un gluon, segtin el cual
se utiliza el propagador de un gluon modificado fenomenolégicamente para generar las
interacciones efectivas entre quarks. El propagador gluénico efectivo provee una forma
natural de introducir una no localidad dentro de la interacciéon quark-quark [38], y dicha
no localidad se puede caracterizar mediante un factor de forma g(p), que depende del
modelo. El uso de interacciones no locales tiene diversas ventajas ya que, por ejemplo, las
anomalias son automdticamente preservadas [39], y la accién efectiva resulta finita a todo
orden en el desarrollo en loops [40], sin necesidad de introducir pardmetros adicionales.
Por otro lado, mediante una adecuada eleccién del factor de forma es posible lograr que
el propagador fermiénico no tenga polos reales y que, por lo tanto, los quarks no puedan
aparecer como estados asintéticos. Esto ha sido propuesto [41] como una forma de imple-

mentar la propiedad de confinamiento que posee QCD, lo que en el modelo NJL local no
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es posible hacer. Mdas atin, utilizando este tipo de interacciones es posible obtener depen-
dencias en el momento del propagador efectivo de quarks que son consistentes con las
obtenidas mediante técnicas de LQCD.

En este marco, uno de los objetivos de esta Tesis es investigar el comportamiento de la
materia hadrénica proponiendo una extensién del modelo NJL que incluya acoplamien-
tos no locales entre corrientes vectoriales y axiales que satisfacen las simetrias de QCD.
Asimismo, consideraremos una interacciéon no local que conduce a la renormalizacién de
funcién de onda (WFR, Wave Function Renormalization) de los quarks. Esta permitird obte-
ner una descripcién del propagador de quarks similar a la que resulta de los célculos de
LQCD, y realizar comparaciones cuantitativas con los resultados obtenidos en ese forma-
lismo.

Otro objetivo es estudiar, mediante los modelos no locales, el efecto de campos magné-
ticos intensos sobre el comportamiento de materia fuertemente interactuante. Estudios de
este tipo se encuentran motivados por el hecho de que existen indicios claros de que tanto
en las colisiones de iones pesados como en los nticleos de estrellas compactas se producen
campos magnéticos extremadamente elevados. Por ejemplo, en el RHIC, en una colisién
tipica, los campos magnéticos pueden alcanzar los 101G (~ 0,06 GeV? en unidades na-
turales) [42, 43] en la region central. En estrellas compactas, por otra parte, los campos
magnéticos pueden ser tan grandes como 10'®> G [44] en su superficie, y alcanzar valores
en el rango de 10'® — 10?° G en el nucleo [45, 46, 47], aunque las estimaciones para estos
ultimos valores son dependientes del modelo utilizado. Por ello, es interesante estudiar
cudles podrian ser los efectos de campos magnéticos intensos sobre la materia de quarks,
y, en particular, determinar si el diagrama de fases sufre modificaciones considerables. Uno
de los efectos més discutidos es el de “Catdlisis Magnética” [48], que se refiere a la estabili-
zacion del condensado quiral en la fase hadrénica al aplicar un campo magnético externo.
La interpretacion bésica del fenémeno es que dicho campo favorece el antialineamiento
de los espines del quark y el antiquark que estdn correlacionados en un condensado. Si
bien la realizacién de este fenémeno en la fase de vacio se encuentra relativamente com-
prendida, a temperatura finita y densidades bajas existen comportamientos mads dificiles
de explicar en forma cualitativa. De hecho, existen cdlculos realizados mediante LQCD
donde se observa que a temperaturas intermedias (del orden de 150 MeV) el condensado
quiral disminuye con el campo, contrariamente a lo esperado. Esto a su vez trae apareja-
da una disminucién en dicha regién de la temperatura critica de transicion de fase quiral.
Este comportamiento, conocido como “Catilisis Magnética Inversa” [49], es dificil de repro-
ducir mediante modelos efectivos y, en particular, modelos como el NJL local predicen
la tendencia exactamente contraria, es decir, un aumento de la temperatura critica con el

campo magnético [48, 50, 51]. A densidad finita y temperaturas bajas, por otro lado, existe
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otra manifestacion del fendmeno de catélisis magnética inversa, el cual estd asociado a la

disminucién del potencial quimico critico como funcién del campo magnético.






Capitulo 2

Generalidades sobre simetrias y QCD

En este capitulo detallaremos algunos de los aspectos béasicos del Modelo Estdndar
(ME) que resultan relevantes para el desarrollo de este trabajo. En principio nos enfocare-
mos en la nocién de simetria dentro de la teoria cudntica de campos, y las simetrias internas
en la fisica de particulas elementales que consideramos de mayor importancia en el rango
de energia en el cual desarrollaremos el modelo NJL.

Asimismo, haremos un repaso breve de la Cromodindmica Cudntica: su formulacién
tedrica, sus propiedades més caracteristicas y las predicciones exitosas de la teorfa, y con-

cluiremos con sus limitaciones y los métodos utilizados hoy en dia para sortearlas.

2.1. Simetrias

Actualmente el ME representa el marco tedrico fundamental para describir los fenoé-
menos dentro de la fisica de particulas. Este modelo es una teoria relativista de campos
cudnticos, que describe la estructura fundamental de la materia y el vacio considerando
las particulas elementales como entes irreducibles cuya cinemaética esta regida por las in-
teracciones entre ellas. Dentro del ME se describen exitosamente tres de las cuatro fuerzas
fundamentales: la fuerza electromagnética, la fuerza débil y la fuerza fuerte. A su vez, el
modelo permite clasificar todas las particulas elementales conocidas hasta el momento.

Los fermiones elementales pueden dividirse en dos grandes categorias de acuerdo a
cémo interaccionan entre si: leptones y quarks. Los quarks no se observan en forma aislada
sino que interactdan fuertemente quedando confinados en hadrones: mesones y bariones,
mas los hipotéticos tetraquarks, pentaquarks y moléculas hadrénicas. A los seis leptones
y los seis sabores de quarks conocidos hasta el momento se los puede agrupar en tres
generaciones o familias de dos particulas cada una.

Por otro lado, el ME explica las fuerzas que se observan a nivel macroscépico como el

resultado de un intercambio de particulas conocidas como las mediadoras de la fuerza. Las
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particulas mediadoras son de naturaleza bosénica (los fotones, los bosones W+ y AS y los
gluones), y por lo tanto no siguen el principio de exclusiéon de Pauli.

La teoria cuantica de campos (QFT por Quantum Field Theory) provee el contexto ma-
temadtico para el desarrollo del ME, a partir de proponer un lagrangiano que determina la
dindmica de la teoria, y donde cada tipo de particula es descrita en términos de un campo
dindmico definido sobre el espacio-tiempo. La construcciéon del ME se realiza del modo
en que lo hacen las mayoria de las teorias de campos, postulando primero un niimero de
simetrias del sistema y luego escribiendo el lagrangiano renormalizable més general para
los campos que satisfagan dichas simetrias.

Es por ello que resulta clave para comprender las interacciones fundamentales estudiar

y conocer a fondo las simetrias que éstas presentan.

2.1.1. Simetrias exactas y aproximadas

Se dice que existe una simetria en la naturaleza cuando algtin cambio en las variables
de un sistema deja la fisica fundamental intacta. Las simetrias describen invarianzas ante
transformaciones de los campos cudnticos. Por ejemplo, una traslacién en el espacio del
tipo x, — x, + a, implica una transformacién en un campo ¢(x) escalar de modo que
¢(x) = ¢(x +a).

El anélisis de simetrias en la teorfa de campos se enfoca en el lagrangiano, que es una
funcién escalar dependiente de varios campos ¢; y sus primeras derivadas 0, ¢;. A par-
tir del lagrangiano, o de su integral temporal denominada accién S, se puede describir la
dindmica de las particulas y las ecuaciones de movimiento del sistema en que se esté tra-
bajando. Asimismo, el Teorema de Noether afirma que para cualquier invarianza de la accién
ante una transformacién continua de los campos, existe una carga Q que es independiente
del tiempo (Q = 0) y estd asociada con una corriente conservada (0uJ" = 0). Este teorema
cubre tanto las simetrias internas como las espacio-temporales.

Las consideraciones sobre las simetrias son también ttiles en situaciones donde hay
una simetria aproximada. Puede suceder que un lagrangiano presente una simetria en el
limite en que ciertos pardmetros en él son iguales a cero o iguales entre si. En ese limite
la invarianza tendria una serie de consecuencias fisicas que no se podrian obtener si esos
mismos pardmetros tuvieran valores no nulos, o si la diferencia entre ellos fuera distinta
de cero. Sin embargo, si éstos son en algtin sentido “pequefios” los términos no invarian-
tes pueden ser tratados como una perturbacién y las consecuencias predichas son todavia
aproximadamente vélidas. De hecho, cuando la interaccién que rompe la invarianza tiene
un comportamiento bien definido bajo la transformacién de simetria correspondiente, su

efecto puede ser generalmente analizado en términos de la base de estados de particulas
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no perturbadas utilizando el teorema de Wigner-Eckart. El sentido preciso en el cual los
términos de ruptura de simetria pueden ser considerados pequefios depende del problema
en cuestion. En la préctica, la utilidad de una simetria aproximada raramente se conoce 4
priori, pero es evidente luego de que sus predicciones son corroboradas experimentalmen-
te. Si la simetria no es exacta entonces, en principio, las corrientes asociadas y las cargas
Nno se conservaran.

También es posible encontrar las llamadas anomalias cudnticas, las cuales hacen refe-
rencia a simetrias de langragianos cldsicos para las cuales la corriente asociada no resulta

conservada a nivel cuéntico.

2.1.2. Simetrias de Gauge

El lagrangiano de Dirac, en ausencia de mds términos, describe la propagacion de

quarks libres. Este viene dado por

L = iy ouyp — mipy, 2.1)

y es invariante ante transformaciones del tipo ¥ — e~®y, ya que P — ¢, y en la com-
binacién Py los factores exponenciales se cancelan. Por razones histdricas estas transfor-
maciones son llamadas transformaciones de gauge globales, o transformaciones de fase
global.

Sin embargo, también pueden construirse transformaciones de fase o de gauge locales,
para las cuales 6 es un pardmetro con dependencia en las coordenadas espacio-temporales,
y por lo tanto el campo transforma como (x) — exp [—if(x)] ¥(x). A la hora de aplicar
la transformacién local al lagrangiano de Dirac, éste ya no mantiene la invarianza de gau-
ge. En particular, términos cinéticos como i1p*0,1p, generan la aparicion de un término

adicional proporcional a 9,,6(x)

P ()Y oup(x) — iy 0up(x) + P(x) ¥ p(x)0,0(x). (2.2)

Para lograr que el lagrangiano sea un invariante de la transformacién local se necesita
reemplazar la derivada parcial por una derivada D, extendida que transforme de tal modo

que absorba el nuevo término derivativo y cumpla que

Dyp(x) — exp [~i8(x)] Dyp(x): 23)

A este nuevo operador D, se lo denomina derivada covariante, y para su construccién se
necesitan nuevos campos A, llamados campos de gauge, que frente a las transformaciones
locales mantengan la invarianza del lagrangiano cancelando los términos proporcionales

a 0,0(x). Para ello se define la transformacién de gauge local de los campos A, como
Ay — Ay +0,0(x), (2.4)
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y la derivada covariante vendra dada por
D, =0, — iAy(x). (2.5)

De este modo estamos agregando un nuevo campo en la dindmica de nuestro sistema. Pa-
ra que el campo A, sea dindmico y podamos ahora también calcular sus correspondientes
ecuaciones de movimiento debemos incluir un término cinético, que sea invariante de gau-
ge y de Lorentz. Esto se logra definiendo F,, = d,A, — 0,A, y agregando al lagrangiano

un término proporcional a F,,, F*",

L = iy Dy — mpyp — }LPWPW. 2.6)

Observando el nuevo lagrangiano se descubre que si A, es el potencial electromagnético,
los nuevos términos que se agregaron reproducen el lagrangiano de Maxwell y las inter-
acciones electromagnéticas. Se podria decir entonces que la interaccién es una manera en
que la naturaleza impone la invarianza, y que las propiedades de la interaccién electro-
magnética pueden obtenerse simplemente de exigir que se cumpla la simetria de gauge.
La transformacién que hemos descrito corresponde al grupo U(1), es decir que es una
transformacion unitaria proporcional a la identidad. Yang y Mills implementaron la inva-
rianza local para transformaciones pertenecientes a los grupos de simetria SU(N). En este

caso, tenemos transformaciones del tipo
U = exp [—iA0"(x)] (2.7)

donde las matrices A, cona = 1,--- ,N? —1 pertenecen al conjunto de matrices unitarias
generadoras del algebra del grupo SU(N), y los 6”(x) son los correspondientes parame-
tros dependientes de las coordenadas espacio-temporales asociados a los generadores. Al
construir la derivada covariante para este caso se incorporan tantos campos de gauge co-
mo generadores tenga el correspondiente grupo de simetria (por ejemplo, tres en el caso de
SU(2), ocho para SU(3), etc). La transformacién de estos campos no es trivial. Las diferen-
cias con el caso U(1) surgen de que en estos casos los grupos de simetria son no abelianos, y
por lo tanto los generadores no conmutan. Entonces, se pueden definir dos tipo de teorias
de gauge: las abelianas o de Weyl, y las no abelianas o de Yang-Mills.

En el contexto de la simetria SU(3) de color de las interacciones fuertes y la simetria
SUR2)®U(1) de las interacciones electrodébiles la teoria de Yang-Mills toma un rol pre-
ponderante en la fisica de altas energias. Explicaremos mds en profundidad este tipo de
teorias en las secciones posteriores aplicado directamente al estudio de la simetria SU(3),

de la cromodindamica cuéntica.
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2.1.3. Simetria quiral

Se dice que los fermiones tienen quiralidad bien definida cuando sus espines estdn
alineados (dextrégiros o “right”) o anti-alineados (levégiros o “left”) con sus impulsos. Si
introducimos proyectores para ambas quiralidades, dados por

145

]_ _
_ pp=-_1, 2.8)

Pr >

donde 75 es el operador de quiralidad, los campos dextrégiro, g, y levégiro, i1, pueden

construirse segiin

Yr=PrY, =P, Gr=thvo=¢P., =iy = PPk. (2.9)

En esta base el lagrangiano libre de Dirac £, correspondiente a fermiones sin masa toma

la forma
Lo = ipry" 0, + ipryY" 0upr - (2.10)

Como vemos, Ly se descompone en dos subespacios ortogonales left y right, que ademds
se encuentran desacoplados entre si. Este lagrangiano resulta invariante ante el grupo pro-

ducto de transformaciones globales U(1)r®U(1); dadas por

U :¢pr — exp(—ib)yr, U(1)r: pr — exp(—ifr)Yr, (2.11)

con fases constantes arbitrarias 0 . Esta simetria es la llamada simetria quiral U(1);, ®U(1)r
cuyas transformaciones son proporcionales a la identidad.

Nos interesa analizar las propiedades del lagrangiano ante transformaciones en el es-
pacio de sabor de los quarks. En el “limite quiral”, donde 7z = 0, obtenemos el caso més
simétrico posible. En general el término de masa del lagrangiano de Dirac no es invarian-
te ante transformaciones unitarias arbitrarias en el espacio completo de sabor, en virtud
de las grandes diferencias entre las masas de las distintas especies de quarks. Sin embar-
g0, si nos restringimos al subespacio de sabores livianos, existen ciertas simetrias que se
satisfacen en forma aproximada.

En este trabajo nos concentraremos tinicamente en el subespacio de sabores up y down,
cuyas masas se encuentran en el rango 4-10 MeV. Por lo tanto, estudiaremos la invarianza
de Ly ante el grupo de transformaciones quirales de sabor U(2),®U(2)r que viene dado
por

) s pr — exp (1057 ) pr,  UQ)x s g1 — exp (057 ) g, (2.12)

cona = 0,1,2,3, donde cada una de éstas actiia independientemente sobre el subespacio
correspondiente, rotando los estados en el espacio de sabor. Aqui, Ty es la matriz identi-

dad en espacio de sabor, mientras que 7, con k = 1,2,3, es el conjunto de matrices de
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Pauli y Gé'R son los dngulos que parametrizan las transformaciones. Aplicando el teore-
ma de Noether, la invarianza del lagrangiano ante estas transformaciones conduce a las

siguientes corrientes conservadas

dujke = 0 = jh.=Pr(X)7'TPr(x), (2.13)
aﬂjg,a =0 - j?,u:l/_]L(x)r)’yTﬂ[]L(x)'

Los correspondientes operadores de carga se obtienen integrando la componente y = 0 de

la corriente en las coordenadas espaciales,

QF = Jd3xl/2f{(X)TalPR(X), QL = fd3x1/;2‘(x)ra1pL(x). (2.14)

Al ser operadores de simetrfa, QX y QL conmutan con el hamiltoniano, por lo cual existe
una base de autoestados con ntimero de ocupacién de estados de quiralidad bien defi-
nida. Los operadores de carga satisfacen las mismas relaciones de conmutacién que los
generadores del grupo y acttian como generadores de las transformaciones quirales. Al-

ternativamente, podemos escribir

Vi = fra+iLa = PV T (x) Al = Jra —iLe = POV sTp(x),  (215)

donde V' y Al son corrientes vectoriales y vectoriales axiales conservadas (0, vl = @AZ =
0). Entonces, la simetria quiral U(2).®U(2)r es equivalente a la invarianza ante el grupo

U(2)y®U(2) 4 con transformaciones en el espacio de sabor

UQ2)y : ¢ — exp (i@;/ra> Y, U(2)a: P — exp <i9f’y5ra) Y. (2.16)

Por otro lado, si consideramos una matriz arbitraria perteneciente a alguna de las trans-
formaciones de (2.12) notamos que, como el generador 1y conmuta con los restantes gene-

radores, podemos escribir
exp (10,7,) = exp (i6o0) exp (6 Tk ) - (2.17)

Dado que los generadores 1 son de traza nula, el segundo factor del lado derecho de la
ecuacion (2.17) tiene determinante 1 y pertenece al grupo SU(2), mientras que el factor aso-
ciado aa = 0 corresponde a U(1) y es proporcional a la identidad, por lo tanto multiplica a
los estados u y d por la misma fase. Como el caso de las transformaciones (2.15) es analogo,

el lagrangiano resulta invariante ante
UR)Rr®U2), =UR)y@UR2)a=U1)y®@SU2)y®@U(1)4®SU(2)A. (2.18)

El anélisis anterior de las simetrias no es valido cuando las particulas tienen masa no
nula y se incorpora el término de masa £,, = —riip. Las cuadridivergencias de las co-

rrientes dejan, en general, de ser cero, y se rompe la simetrfa axial U(1)4 explicitamente.
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Se pasa a obtener:
GV = 20(x) i, () 219)
Al = 20, T} ys(x). (2.20)

En la aproximacion m, = my; = mg # 0 tenemos que 1t = diag(m,, my) = mylay; lo cual

implica la conservacion de la corriente vectorial. El lagrangiano toma la forma

Ly = —mopp = —mo (Pripr + PrYr) (2.21)

y por lo tanto los subespacios left y right quedan acoplados mediante el término de masas,
con lo cual no pueden realizarse sobre ellos transformaciones independientes que sean
simétricas. Sin embargo, este término contintia siendo simétrico ante una transformacion
conjunta en la cual los estado left y right son rotados en el mismo dngulo, correspondiente
al grupo SU(2)y, como puede observarse en (2.19) donde el comutador se anula. Es decir

que la introduccién del término de masa reduce la simetria de la siguiente manera
SU2)y ®@SU(2)4 — SU(2)y, (2.22)

manteniéndose conservada tinicamente la corriente vectorial (simetria de isospin). Para la
corriente axial, la ruptura de simetria es pequefia en virtud de las masas corrientes peque-
fias y, por supuesto, la conservacion de esta corriente se recupera tomando el limite quiral.
Es importante notar que tomando m, # my se dard lugar a una ruptura explicita del gru-
po SU(2)y también. Las masas de los quarks u y d suelen tomarse iguales a pesar de que
existen estimaciones segtn las cuales estas cantidades son levemente diferentes. En este
trabajo tomaremos siempre m, = m;, aunque veremos mds adelante que la interaccién
con un campo magnético externo rompe la simetria SU(2)y de manera explicita.
Finalmente, las matrices de transformacién de los grupos U(1)y y U(1)4 que podemos
deducir realizando el mismo procedimiento a partir de las transformaciones presentes en

(2.11) estan dadas por
U(1)y = exp(if), U(1)a = exp(iysh). (2.23)

La primera de éstas estd asociada a la conservacién del nimero bariénico, mientras que la
segunda, si bien es una simetria del lagrangiano cldsico quiral, no se mantiene al cuantizar
la teoria, dado que la medida de integracién en la integral de camino correspondiente no

es invariante ante dicha transformacion. Este fendmeno es conocido como anomalia axial.

2.2. Ruptura espontanea de simetrias

Gran parte de la fisica se altas energias del siglo pasado se construy6 sobre los prin-

cipios de simetria, formulando las teorias de las interacciones fundamentales a partir de
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proponer lagrangianos invariantes ante ciertos grupos de transformaciones que respetasen
las simetrias internas del sistema. Fue alentador cuando en 1960 inspeccionando el espec-
tro de particulas elementales se descubrié que existen més simetrias internas de las que
se creia. Podemos encontrar simetrias exactas y aproximadas, y también simetrias que se
“rompen espontdneamente”, en el sentido de que no se comportan como transformaciones
de simetria de los estados fisicos de la teoria, y en particular, no dejan el estado de vacio
invariante.

Cuando se considera una simetria exacta del lagrangiano, como ocurre en el limite
quiral de QCD, existen distintas realizaciones posibles en lo que respecta al espectro de
estados. En el modo de Wigner-Weyl, la simetria del estado de vacio es la misma que la
del lagrangiano. En este caso, el vacio no se encuentra degenerado y de hecho transforma
de acuerdo a la representacion trivial del grupo, por lo que es aniquilado por los operado-
res de carga asociados a la simetria. Por otro lado, en la realizacién de Nambu-Goldstone,
el estado fundamental se ve modificado por las interacciones, de modo que ocurre una
ruptura espontdnea de la simetria y ésta se mantiene ante a lo sumo un subconjunto de
los operadores del grupo original. Los restantes generadores ya no aniquilan el vacio, sino
que crean excitaciones no masivas que se encuentran degeneradas con el fundamental, y
limitan las interacciones de dichas excitaciones a bajas energias. Estas particulas, conocidas
como bosones de Goldstone (o bosones de Nambu-Goldstone), se encontraron por primera
vez en modelos de Godstone y Nambu, y pruebas generales de su existencia tedrica fueron
luego dadas por Goldstone, Salam y Weinberg [52, 53]. Por otro lado, las rupturas espon-
tdneas de simetrias aproximadas implican la presencia de particulas de espin cero y masa
pequefia, comtnmente llamadas pseudo-bosones de Goldstone. Este tipo de procesos son im-
portantes en la teoria de interacciones fuertes, como también en dreas de fisica de materia
condensada.

Un ejemplo clésico de una ruptura de simetria en la fisica de particulas elementales es
la simetria quiral aproximada que describimos en la seccién anterior. De acuerdo con los
conocimientos actuales, esta simetria surge porque hay dos campos de quarks, up y down,
que tienen masas relativamente pequefias, pero no iguales a cero, y por lo tanto la simetria
SU(2) 4 no es exacta. La ruptura espontdnea de esta simetria quiral aproximada implica la
existencia de pseudo-bosones de Goldstone de baja masa con los mismos ntmeros cuan-
ticos de los generadores de la simetria rota: deben ser estados de paridad negativa, espin
cero, isospin igual a 1, nimero bariénico cero y extrafieza cero. Justamente ocurre que los
mas livianos de todos los hadrones son los piones, que tienen precisamente estos ntimeros
cudnticos, por lo que se los identifica como los pseudo-bosones asociados con la ruptura
espontédnea de la simetria quiral aproximada.

Si la simetria quiral fuera exacta a nivel del lagrangiano (limite quiral) los piones no
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tendrian masa. Su pequefia pero finita masa refleja la ruptura explicita de la simetria a
través de las masas de los quarks u y d. De una forma andloga, el octete de mesones pseu-
doescalares corresponde a los bosones de Goldstone (ocho en este caso) asociados con la
ruptura espontdnea de la simetria SU(3)4 (extensién de la simetria quiral para el caso de
tres sabores de quarks) [54].

Los bosones de Goldstone obedecen varios teoremas que proveen la base para la “teoria
de perturbaciones quirales” (Chiral perturbation theory, xPT [55]). A diferencia de una teoria
de perturbaciones en las constantes de acoplamiento, xPT corresponde a un desarrollo
en serie de potencias de la masa de los quarks y el momento de los mesones, y puede
ser aplicada en regiones donde la constante de acoplamiento de QCD, «;, no permite un

tratamiento perturbativo.

2.3. QCD

La cromodindmica cudntica es una teoria de gauge de Yang-Mills invariante ante las
transformaciones del grupo de simetria SU(3). llamado de color, donde 3 es el nimero de
“colores”. Esta teoria describe las interacciones fuertes y tiene a los quarks y gluones como
los grados de libertad bésicos. QCD se formula en términos de campos de fermiones que
representan a los quarks y campos de gauge para los gluones. Ambos tipos de particulas
llevan carga de color, la cual es responsable de esta interaccién.

La teoria se define por un lagrangiano

e N 1
EQCD = ll] (Z’)/VDV — m) 1IJ — ZG{?VGZV’ (224:)
donde D es la derivada covariante
/\ﬂ
D,=0,— igTG“, (2.25)
y Gy, es el tensor de fuerza del campo de los gluones
Gi, = 0uGi — 0,Gl + g f°G},Gs. (2.26)

El campo ¢ corresponde a los quarks, e incluye grados de libertad internos de color
y de sabor. En la teoria completa de QCD los estados de color son 3 y se denominan red
(r), green (g), y blue (b), mientras que los estados de sabor son 6 y se definen como up (u),
down (d), strange (s), charm (c), bottom (b), y top (t). Estos estados se introducen mediante
un producto tensorial resultando en 18 espinores. La matriz de masas en el espacio de
sabor estd dada por M = diag(m,, my, ms, mc, my, m;), mientras que g es la constante de

acoplamiento de QCD, Gy, es el conjunto de campos vectoriales no masivos asociados a
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los gluones cona = 1,---,8, A" es el conjunto de matrices de Gell-Mann, generadoras
del algebra del grupo SU(3), y f*¢ indican las constantes de estructura completamente

antisimétricas del grupo, que satisfacen las relaciones

AT, AP] = 2ifbe), (2.27)
tr(A°AY) = 267

Los campos de quarks transforman de acuerdo a la representacién fundamental de este
grupo, la cual es de dimensién 3. En dicha representacion, los generadores son las matrices
de Gell-Mann, en términos de las cuales podemos escribir una transformacién arbitraria

del grupo de la siguiente manera
U = exp(ir,0%), (2.28)

donde 6 son los correspondientes pardmetros asociados a los generadores. Ahora bien, el
lagrangiano completo de QCD se construye partiendo del lagrangiano de Dirac y requi-
riendo que el mismo sea invariante ante transformaciones locales de SU(3), en lugar de
globales. Es decir, en cada punto del espacio se efectiia una transformacién independiente,
convirtiéndose los pardmetros 6* en funciones de las coordenadas, como hemos discutido
en la Sec. 2.1.2. Igual que en el caso de un grupo abeliano, es necesario definir en la teo-
ria una derivada covariante a través de la cual introducimos el conjunto de campos que
transforman adecuadamente de modo de cancelar los términos adicionales que se produ-
cen. En este caso se debe incorporar un campo por cada generador del grupo de simetria,
resultando en los 8 campos vectoriales identificados con los gluones. De esta forma, tam-
bién se introduce el acoplamiento entre el sector de gluones y el de quarks. Para que el
lagrangiano resulte invariante los campos de gauge Gy, deben transformar conjuntamente
de acuerdo a
Gl — Gy — éayeﬂ — f6°Gy,. (2.29)
Finalmente, el término en (2.24) que involucra al tensor de fuerza del campo de los gluones
de la ecuacion (2.26) describe la dindmica propia de los campos de gluones en ausencia de
quarks. Las propiedades de transformacion de los campos Gy ante el grupo SU(3), local
conducen a que deba agregarse un término adicional en el tensor, en comparacién con
el caso abeliano, para mantener la invarianza del lagrangiano. En efecto, éste contiene,
ademads del término de propagacion, el término f“bCGZGﬁ que generard la aparicion de
acoplamientos entre los propios gluones a través de vértices de tres y cuatro campos.
Una de las principales consecuencias de la presencia de los términos de autointeracciéon
es el comportamiento de la constante de acoplamiento en funcién del impulso transferido

Q. Es sabido que al estudiar un proceso cualquiera en una teoria de gauge renormalizable,
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la inclusion de sucesivos diagramas de Feynman que se presentan en un desarrollo en serie
puede reestructurarse de modo de expresar el resultado final en términos de una constante
de acoplamiento “vestida” que depende de Q. Como consecuencia, la interaccién tendra
comportamientos distintos segtin la escala de energia involucrada en el proceso estudiado,
y su dependencia funcional exacta estara determinada por los detalles de las interacciones
en consideracion. En el caso particular de QCD, la constante de acoplamiento tiende lo-
garitmicamente a cero cuando el impulso transferido tiende a infinito. Esta propiedad,
conocida con el nombre de libertad asintética, permite estudiar procesos a altas energias
mediante teorfa de perturbaciones. Por otro lado, para impulsos transferidos pequefios,
y en particular por debajo del pardmetro de escala de la teoria llamado Agcp, la cons-
tante de acoplamiento es mayor que uno, por lo cual no es adecuada como parametro de
expansion en un desarrollo en serie. Ahora bien, dado que las escalas de energia de liga-
dura de los hadrones se encuentran por debajo de este umbral, el estudio de la mayoria
de las propiedades hadroénicas debe tratarse mediante métodos alternativos de naturaleza
no perturbativa. El propio mecanismo de confinamiento, que hace referencia al hecho em-
pirico de que los objetos con color no existen como grados de libertad asintéticos, y para
el cual no existe atin una explicacién analitica satisfactoria, es una de estas propiedades.
Entre los métodos a los que se puede recurrir para el estudio de la cromodindmica cuédntica
a bajas energfas se encuentra el desarrollo de modelos efectivos de quarks, como los que
se tratardn en este trabajo en los capitulos siguientes.

Una técnica alternativa que ha sido desarrollada para tratar la dindmica de QCD a bajas
energias es la que se conoce como “Lattice QCD” (LQCD) o0 QCD en la red. Esta consiste en
resolver las ecuaciones de QCD numéricamente en forma explicita en un espacio-tiempo
discretizado. En este contexto la funcién de particién se puede estimar utilizando el mé-
todo Monte Carlo, es decir, aproximando la integral funcional correspondiente como una
suma sobre configuraciones que estdn pesadas por la acciéon. El método de muestreo por
importancia permite reducir los cdlculos a un ntimero limitado de configuraciones, segtin
la probabilidad con la que ellas pueden ocurrir, e~5¢, o cual implica que este método tiene
sentido si la accién euclidea es una cantidad definida positiva.

Sin embargo, la técnica de LQCD presenta algunas dificultades importantes. Una de
ellas tiene que ver con que al discretizar la teoria, la cantidad de puntos en la grilla usada
no puede ser demasiado alta puesto que el problema se vuelve intratable numéricamente.
Por otro lado, todavia en muchos casos resulta dificultoso hacer cdlculos confiables usando
las masas de los quarks livianos u y d, con lo cual se debe trabajar con valores por encima de
los considerados “realistas” para luego extraer conclusiones basados en la extrapolacion,
complementando esto con el uso de modelos efectivos. Una limitacién més fundamental

aparece al intentar estudiar LQCD a densidades finitas, debido al hecho de que al agregar
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el potencial quimico y la accién euclidea resulta en general una cantidad compleja, por lo
que las funciones de peso usadas para el muestreo estadistico se vuelven imaginarias y
no hay manera de comparar las probabilidades asociadas a distintas configuraciones. Este
es el llamado “problema del signo”, que impide realizar calculos para valores grandes
de u/T, donde T es la temperatura. Se han desarrollado varios métodos para tratar de
superar esta complicacién, pero la region de altas densidades y temperaturas bajas como
la que puede esperarse en algunos nticleos estelares atin estd lejos de poder ser analizada
con este tipo de técnicas.

Es importante tener en cuenta que, como consecuencia del fendmeno de confinamiento
en la fase de vacio, las masas de los quarks no son observables fisicos. Por esta razén,
cuando las masas corrientes de los quarks son usadas como pardmetros de entrada de
la teoria, sus valores estdn sujetos a un margen de variabilidad debido a que dependen
de la escala de renormalizacién considerada. La determinaciéon de las masas corrientes
de los quarks con cierto grado de precisiéon puede, de hecho, realizarse mediante modelos
efectivos resultando en cantidades dependientes de la escala. A partir de éstos, se concluye
que los quarks de sabores u, d, y s son relativamente livianos, encontrandose sus masas por
debajo de Agcp.

El descubrimiento en 1973 de la libertad asintética en teorias de gauge no abelianas co-
mo QCD realizado por Gross, Wilczec y Politzer [56, 57] persuadi6 a los fisicos teéricos de
que QCD es la teoria correcta para las interacciones fuertes. Este calculo explicaba los re-
sultados controversiales de un famoso experimento realizado en 1968 en SLAC (Stanford,
EE.UU.) sobre dispersién ineléstica entre electrones y nucleones, donde las interacciones
fuertes parecian hacerse mas débiles a energias altas. Pero la importancia histérica del des-
cubrimiento de la libertad asintética en teorias de Yang-Mills no se debe tinicamente a que
explica un viejo resultado experimental, sino a que por primera vez abri6 la perspectiva
de realizar calculos perturbativos confiables de procesos de interaccion fuerte, al menos
a altas energfas. La disminucién de la constante de acoplamiento fuerte a altas energfas,
o distancias cortas, naturalmente implica que ésta aumenta a bajas energias o distancias
largas, y se crey6 que esto explicaria por qué no se detectan quarks o gluones libres. De
acuerdo con esta hipétesis, s6lo particulas neutras de color como los bariones o0 mesones
pueden aparecer en forma aislada. Esto contintia siendo una hipétesis méds que un teo-
rema, pero hay pocas dudas de su veracidad. Aunque los quarks y gluones no pueden
materializarse como particulas libres, pueden ser observadas indirectamente ya que dan
origen a jets hadrénicos en procesos de colisién a altas energias.

Por otra parte, una caracteristica importante del lagrangiano de QCD es su aproxima-
da simetria quiral, es decir, su simetrfa ante transformaciones globales SU(N ). ®@SU(N ).

Como explicamos anteriormente, esta simetria seria exacta en el limite correspondiente a
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una teorfa de Ny sabores sin masa. Para el caso de la simetria SU(Ny)y es suficiente con
tener Ny sabores degenerados. Si bien en QCD todos los quarks tienen masas no nulas,
la simetria quiral es un concepto util en el sector de los quarks u y d (Ny = 2) e incluso,
aunque con menor exactitud, cuando el quark s es incluido también (Ny = 3). Esta carac-
teristica se debe a que las masas corrientes de los quarks u y d se encuentran en el orden
de unos pocos MeVs y son aproximadamente iguales, por lo cual es de esperar en princi-
pio que la simetria quiral SU(2) 4,®SU(2)y se encuentre aproximadamente conservada. La
SU(2)y es, en efecto, una simetria aproximada del vacio de QCD, reflejada por la existen-
cia de multipletes de isospin casi degenerados en el espectro hadrénico, y la existencia de
corrientes conservadas aproximadas en procesos dominados por la interaccion fuerte.

A su vez, la evidencia experimental y tedrica indica que la simetria SU(2)4 se realiza
en el modo de Goldstone. Dado que el operador de carga Q4 cambia de paridad de los
estados, la realizacién de esta simetria en el modo de Wigner-Weyl implicaria la existen-
cia de un “companero quiral” para cada particula hadroénica, es decir, por cada multiplete
de isospin la existencia de otro multiplete degenerado con paridad opuesta, lo cual no es
observado en la naturaleza. Ademads, las masas hadrénicas se encuentran muy por encima
de las masas corrientes de los quarks livianos, sugiriendo la existencia de un mecanismo
dindmico de generacion de masa, lo cual a su vez genera la ruptura de la simetria. Estas
observaciones sugieren que una formulacién adecuada de QCD puede obtenerse partien-
do de un lagrangiano aproximadamente simétrico ante SU(2) 4®SU(2)y, donde la simetria
axial se rompe en forma dindmica. En este marco, los operadores Q4 de la simetria rota
crean un triplete de isospin de bosones de Goldstone, que pueden identificarse con los
piones. Ademds, dado que los mismos son no masivos, el hecho de que los componen-
tes del triplete pidénico tengan masa excepcionalmente baja en relacién a otros hadrones
(mz/my ~ 0,15) sostiene la idea de que los piones son bosones de Goldstone, cuya masa
no nula se origina en la leve ruptura explicita de simetria producida por las masas corrien-
tes.

La ruptura de simetria del estado de vacio de QCD y la subsiguiente generacién de
masa dindmica se encuentran estrechamente relacionadas con la existencia de condensa-
dos no nulos formados a partir de productos bilineales de campos de quarks y de gluones.
Entre ellos se encuentra el condensado quiral, definido como el valor de expectacién en el
vacio (), que puede expresarse como

4

> =i | 5 TS0, 230

donde S(p) es el propagador de quarks del lagrangiano completo de QCD, y la traza se
toma sobre los espacios de color, sabor y Dirac. El operador {1 no es invariante ante trans-

formaciones SU(2) 4, por lo cual un valor medio no nulo del mismo indica que el vacio de
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QCD se realiza en el modo de Goldstone de dicha simetria. De este modo, el condensado
quiral suele considerarse como un pardmetro de orden para la ruptura espontdnea de la si-
metria quiral. Las estimaciones tedricas presentes para el condensado sugieren que esto es
efectivamente asi. Por ejemplo, segtn célculos basados en el dlgebra de corrientes y las re-
glas de suma de QCD se tiene que | (ff ) |'/3 = 190 — 260 MeV, donde f representa al sabor
u 0 al d. Mientras tanto, cdlculos tipicos en LQCD conducena | {ff) |'/% = 231 £8 + 6 MeV.
En una teoria efectiva formulada en términos de grados de libertad de quarks, también
pueden ser relevantes otros condensados asociados a operadores bilineales mas generales,
de la forma (pOy). En particular, el valor medio no nulo de O = iT75 puede relacionarse

con la presencia de condensados de piones.
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Capitulo 3

Modelo de Nambu—-Jona-Lasinio

En este capitulo presentaremos las caracteristicas més importante del modelo de Nam-
bu Jona-Lasinio (NJL) local y de sus extensiones con interacciones no locales. Trabajaremos
para ello en el marco de la simetria SU(2) de sabor, considerando interacciones de tipo es-

calar y pseudoescalar.

3.1. Introducciéon al modelo NJL

Si queremos partir de un lagrangiano fermionico efectivo méas simple que el de QCD
pero con caracteristicas y simetrias similares, nos vemos naturalmente inducidos a consi-
derar el lagrangiano utilizado por Y. Nambu y G. Jona-Lasinio en sus trabajos de 1961 [24,
25]. Como comentamos en el Cap. 1 este modelo fue originalmente concebido para des-
cribir nucleones interactuantes, por lo que es necesario reinterpretar los grados de liber-
tad fermiénicos en términos de quarks, suponiendo que las interacciones locales de dos
cuerpos se corresponden con una interaccion efectiva, resultante de complicados procesos
gludnicos.

La principal utilidad de este modelo radica en que puede ser disefiado para incorpo-
rar las simetrias globales de QCD, y permite estudiar en detalle el mecanismo de ruptura
espontdnea de la simetria quiral y sus manifestaciones en la fisica de hadrones, como la
generacion dindmica de masa de los quarks, la aparicién de un condensado de quarks y el
papel de los piones como bosones de Goldstone. Tal vez el punto débil mds importante del
modelo es que no posee la propiedad de confinamiento de color de QCD. Su aplicabilidad
estd entonces limitada a aquellos fendmenos hadrénicos y nucleares que no dependen sen-
siblemente de los detalles del mecanismo de confinamiento. No obstante, cabe esperar que
para muchos aspectos importantes de la fisica hadrénica de bajas energias, las simetrias de
QCD sean tan o mds importantes que el confinamiento.

Para comenzar entonces analizaremos el modelo NJL més simple, basado en el siguien-
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te lagrangiano de dos sabores:
Ly = P(iy" 0y — 1) + Ling, (3.1)

donde la matriz de masas de quarks desnudas es 1t = diag(m,, my), y el lagrangiano de
interaccién L;,; viene dado por un acoplamiento local de cuatro fermiones. Esta interaccion
debe satisfacer la simetria quiral SU(2)r®SU(2),, junto con la simetria de color SU(3), y las
simetrias discretas C, Py T.

A partir de la propuesta original de Nambu y Jona-Lasinio, consideraremos un lagran-

giano de interaccién de la forma
Lin = G [(§9)* + (PinsTy)’] (3.2)

De este modo, en este modelo se considera a los quarks livianos u y d como los grados de
libertad del sistema, suponiendo que en el limite de bajas energias los grados de libertad

gludnicos estdn absorbidos dentro de una interaccién efectiva local entre quarks.

3.1.1. Generacion dindmica de la masa fermidnica

Consideremos el lagrangiano de interacciéon L;,;, con un nimero de fermiones N =2
de igual masa m. Si la constante de acoplamiento G es pequena se puede aplicar la teoria
de perturbaciones para trabajar con los términos de interaccién. Sin embargo, si el aco-
plamiento es fuerte es preciso realizar resumaciones. En este tiltimo caso comtinmente se
utiliza la aproximacién de Hartree (campo medio), en la que se toman en cuenta sélo los
términos directos. Esto equivale a linealizar la interaccién en la ecuacién (3.2) reempla-
zando los términos (PT'y)? por 29Ty (T, donde (PT) es el valor de expectacién en el
vacio (estado fundamental) de I'yp, y T es cualquiera de los operadores que aparecen en
Liyt. Como el vacio debe ser invariante de Lorentz y debe conservar paridad, el tinico valor
de expectacion no nulo en el nivel fundamental es (), el condensado quark-antiquark
relacionado con la densidad escalar Py = ¢yoyp. Entonces, la ecuacion de Dirac en la

aproximacion de campo medio resulta
(70" = +2G ()] (x) = 0 (3.3)
y es posible definir una masa fermiénica dinamica
M =m—-2G{{yp), (3.4)

con {Yyp) = {(itu + dd), generada por una interaccién escalar suficientemente fuerte del
fermién con el vacio de Dirac. A la ecuacion (3.4) se la denomina ecuacion del gap del mo-

delo NJL, en analogia con la correspondiente ecuaciéon que determina el gap de energia en
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()

Figura 3.1: Representacion diagramatica de la ecuacion del gap (3.4). Las lineas fina y gruesa
representan el propagador del quark desnudo y vestido respectivamente. El loop fermié-

nico representa al condensado quiral.

un superconductor. Dicha ecuacién se puede representar diagramaticamente mediante la
Figura 3.1.

En la aproximacién de campo medio el condensado (i) estd dado por

) = —iTr S¢(0), (3.5)
donde Sr es el propagador de Dirac definido por

x—y)
Se(x —y) = —i(T[PF(—x)]) = f p, e (3.6)

La aparicién de Sp(0) en (3.5) refleja el loop cerrado de la Figura 3.1, con la linea fermidnica
comenzando y terminando en el mismo punto del espacio-tiempo. Como la masa dindmica
M esté presente en la expresién de (¢ip), la ecuacién del gap es una ecuacién de Hartree
autoconsistente.

La integral Sp(0) es cuadraticamente divergente y requiere, por lo tanto, de un proce-
dimiento de regularizacién apropiado. La prescripcion més sencilla consiste en introducir
un cut-off Az para el médulo del trivector momento p e integrar sobre la componente tem-
poral pg en la ecuacion (3.5). Se obtiene

Gy = f N (3.7)

P+ M

donde N. = 3y Nf = 2 son el nimero de colores y el nimero de sabores respectivamente.
La ecuacion del gap describe la interaccién de un fermién con la parte “activa” del mar de
Dirac, la cual corresponde a impulsos |f| < Az. Equivalentemente se puede interpretar el
cut-off pensando que la interaccién controlada por G esta “prendida” mientras |7 | < Az, y
se “apaga” para momentos superiores |f| > Az, en forma consistente con la hipétesis de
libertad asintética.

A partir de la ecuacion (3.7), se reescribe la ecuacién del gap como
2GNN¢ JAS my M

PP M2

M=m+ (3.8)
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Para el caso m = 0 (limite quiral), es f4cil ver que esta ecuacién tiene una solucién no trivial
(M # 0) cuando la constante de acoplamiento G supera un valor critico Gy = 2/ A%. Los
quarks adquieren en ese caso una masa dindmica.

La generacion dindmica de la masa va en paralelo con la reestructuraciéon del vacio:
para G > G el vacio contiene un condensado () no nulo. Como la densidad escalar
P rompe la simetria quiral, el estado fundamental no tiene la simetria SU(2)r®SU(2).
del lagrangiano. La simetria quiral se rompe espontdneamente, y el condensado (i) es el
correspondiente pardmetro de orden.

Por lo tanto, se distinguen las dos fases de la simetria quiral discutidas previamente:

1. La fase de Wigner-Weyl, en donde () = 0 y los fermiones no tienen masa. Equi-
valentemente, la carga axial Q5 = Sd3 x PyoysyP aniquila el vacio: Q5|0) = 0. En el

modelo NJL este es el caso para G < Gyt

2. La fase de Nambu-Goldstone en donde (i) # 0 y los fermiones adquieren masas
dindmicas. En esta fase la simetria quiral est4 rota espontdneamente y existe un bosén
de Nambu-Goldstone no masivo. La carga axial no aniquila el vacio: Qs|0) # 0. En el

modelo NJL esto sucede cuando G > G ;.

Para el caso de m # 0, si bien la masa dindmica nunca llega a ser cero, tiene un compor-
tamiento similar al descrito para m = 0, mostrando una curva asintética a la correspon-

diente al limite quiral, tanto para el rango de G pequefios como también para GA% > 1.

3.1.2. Bosén de Goldstone pseudoescalar

Como ya se ha mencionado, la ruptura espontdnea de una simetria global implica la
existencia de modos de frecuencia cero llamados bosones de Nambu-Goldstone. En este
caso se trata de modos fermién-antifermién pseudoescalares neutros (J© = 0~) identifica-
dos con los piones. Su espin y paridad reflejan los ntimeros cudnticos de la simetria axial
SU(2) 4 rota.

Para analizar como emergen del modelo estos piones de Goldstone sin masa como con-
secuencia de la ruptura de simetria SU(2) 4, construimos la matriz T que surge de resolver
la ecuacion de Bethe-Salpeter (ecuacién de dos cuerpos) en el canal fermién-antifermiéon
pseudoescalar para un dado cuadrimomento cuadrado g2 del mesén, ilustrado en la Figu-

ra 3.2:
Kr

T 1= KaJa (@)

La interaccién en este canal esta dada por el término G($iys7Ty)? del lagrangiano de la

To(q?) = Ky + K J(q%) K + - - (3.9)

ecuacion (3.2). Entonces, K; = 2G, y J es la integral a un loop de interaccién dada por
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= X + K @ K, +
X + %, @

Figura 3.2: Representacion esquematica de la ecuaciéon de Bethe-Salpeter para la matriz

quark-antiquark T. Los propagadores de mesones aparecen como bandas sombreadas,
mientras que las lineas sélidas corresponden a los quarks vestidos en la aproximacién de

Hartree (ver Figura 3.1).

, dp |. 1 . 1
Jo(q?) =i Trfﬁ 5T —— 5% — . (3.10)
pf—l-E—M—l—ie pf—E—M—l—ie

Para regularizar esta integral puede usarse un proceso idéntico al utilizado en la ecuacion
del gap (3.4).

La masa m, del pion queda determinada por los polos de la matriz T, es decir, por la
condicién

1-2GJ. (¢ = m%) = 0. (3.11)

Utilizando la ecuacién del gap (3.8) es posible ver que en el limite quiral una solucién
de esta ecuacién es m, = 0, lo que significa que el pion es un pseudo-bosén de Goldstone,
un modo de masa nula que surge como consecuencia de una ruptura de simetria. Para ver

esto partimos de

d*p [ P+ M y+M (3.12)

2
J=(g°=0) = 1Trf(2n)4 Y5 Tk p2 — M2+ ie 5Tk p*— M2 +ie|’

y utilizando que Trp [y5(§f + M)ys(¢ + M)] = Trp(M? — gy ) = —4(p? — M?), se tiene

4 .
d’p ! L Tr 5¢(0). (3.13)

2 _ ) — ; _
J=(q~=0) —4NfNClJ Qmip —MZtie M

A partir de las ecuaciones (3.8) y (3.5) se observa que

Kelnl? = 0) = =22 Gy = 1, 314

por lo cual se verifica la validez del teorema de Nambu-Goldstone.
El préximo paso es examinar la influencia de la ruptura explicita de la simetria quiral,

que se produce al considerar el término £,, = —my, con una masa fermiénica desnuda
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m no nula. En SU(2) ante una rotacién quiral ¢ — exp(iy57°6,/2), para dangulo 6 pequefio,

este término se transforma en
(. 1
0Ly = —my <175T“9a — 595 + - ) P. (3.15)

La densidad pseudoescalar iysy es la fuente del campo de piones ¢, por lo que pode-
mos identificar 0 = ¢/ f, donde f es una constante de normalizacién, con dimensiones
de energfa. Esta f; es la constante de decaimiento del pion, definida por el elemento de
matriz

(0174, 017" (@) ) = (OIF(O) 15T O (9) ) = 2 freq 8, (316
que describe el decaimiento débil del pion via la corriente axial

Consideremos ahora el término de orden 6> = ¢/ f2 en la ecuacién (3.15). Este tér-
mino tiene la forma m/(2f2){p¢?*. Esto corresponde exactamente al término de masa

Ly = —Em%gbz para el pion. Usando nuevamente la aproximacién de campo medio con el

reemplazo Py — (PyP), podemos hallar la relacién de Gell-Mann-Oakes-Renner:
M fr = —m (P (317)

Esta importante ecuacién conecta los pardmetros de la ruptura explicita y espontdnea de
la simetria quiral con las constantes m y f. caracteristicas del pion. La masa fermiénica
desnuda finita m eleva la masa del pion m, desde el valor nulo que tenia en el limite quiral,
de tal manera que m es proporcional a 4/m. Notar que el teorema de Goldstone se verifica
nuevamente para m — 0.

En la Sec. 2.3 se coment6é que, debido al confinamiento, las masas corrientes de los
quarks no son observables fisicos, sino que dependen de la escala de renormalizacién.
Es interesante mencionar que lo mismo ocurre para el condensado (). En cambio, los
valores de las constantes m,; y f, en el lado izquierdo de la ecuacién (3.17) son cantidades
tisicas medibles experimentalmente.

El escenario de ruptura espontdnea de simetria recién descrito es de naturaleza muy
general, independientemente de la forma precisa de la interacciéon subyacente. Existen ana-
logias de este mecanismo en diversas areas de la fisica. Uno de los ejemplos mds conocidos
es el de un ferromagneto: su fase de baja temperatura se caracteriza por una magnetizacion
no nula, andloga al condensado quiral (i). El Hamiltoniano del sistema de espines que
describe al ferromagneto es simétrico ante rotaciones espaciales. Sin embargo, en el esta-
do fundamental la magnetizacién apunta en una direccién definida en el espacio: muchos
espines cooperan para formar el material magnetizado macroscépicamente. Lentas varia-
ciones en la direcciéon de magnetizaciéon producen un movimiento de onda larga de los
espines, que corresponde al bosén de Nambu-Goldstone asociado a la simetria rotacional

espontdaneamente rota.
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3.2. Extensiones no locales del modelo NJL

Como forma de obtener un esquema que se aproxime mads a la teoria de QCD, se han
propuesto extensiones que incluyen interacciones no locales [58]. De hecho, la no localidad
surge naturalmente en el contexto de varios enfoques bien establecidos para la dindmica
de quarks a bajas energias, como por ejemplo en el caso del modelo de liquido de insta-
tones [36] o los modelos que utilizan desarrollos de Schwinger-Dyson [37]. También los
célculos de LQCD [59] indican que las interacciones entre los quarks tienen lugar para un
determinado rango en el espacio de momentos. Los modelos que incluyen interacciones
no locales ofrecen la posibilidad de elegir los pardmetros de modo tal de reproducir los
resultados de LQCD para las dependencias con el momento de la funcién de masa m(p)
y la funcién de renormalizacion Z(p) en el propagador efectivo para los quarks, asi como

los valores empiricos de m, y fr.

Por otra parte, las extensiones no locales del modelo NJL no muestran algunos de los
inconvenientes mencionados de la teoria local. En efecto, las interacciones no locales per-
miten regularizar el modelo de tal manera que la interaccién efectiva resulte finita a todos
los 6rdenes en el desarrollo en loops y por lo tanto no haya necesidad de introducir cut-offs
adicionales [60]. Ademads, puede verse que las anomalias se preservan [39] y las cargas son

cuantizadas correctamente.

Con el propésito de hacer el problema manejable, la mayoria de los cdlculos reportados
en la literatura trabajan con interacciones no locales que son separables en el espacio de
momento. De hecho, bdsicamente fueron consideradas dos alternativas para introducir la
no localidad de un modo separable. La primera de ellas esta inspirada en el liquido de
instantones de QCD, mientras que en la segunda alternativa la no localidad surge de una

aproximacién separable para una interaccion efectiva de intercambio de un gluon.

3.2.1. Interacciones no locales

Como fue mencionado anteriormente, un paso adelante hacia un modelo efectivo més
acorde con la teoria fundamental es el sugerido por la representaciéon de instantones del
vacio de QCD [61], donde la interaccién se implementa mediante un vértice efectivo, no
local y separable. La naturaleza separable de la interaccién permite simplificaciones en los
célculos y a la vez la no localidad provee al modelo de una regularizaciéon natural, a través
de la presencia de factores de forma suaves (como funciones gaussianas o lorentzianas)

que aseguran la convergencia ultravioleta de las integrales.

Alternativamente, una interaccién efectiva no local entre quarks puede generarse con-
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siderando el intercambio de un gluon. Comenzamos por escribir la accion efectiva como

4 4
0= f (”;f)g éﬁfzx (270)*8Y) (p1 — p2)§(p1) [¥ — m]p(p2) + Sin- (3.18)

En este esquema el término de interaccién viene dado por

2 4 4.1 4 4.1
&[4y dpy dpy dpy I\ Y b /
Sint = 2 f (27.(>4 (27‘[)4 (27.()4 (27‘[)4 ]y(plf pl) Dab ]V(le Pz)/ (3'19)

donde g es la constante de acoplamiento quark-gluon y la matriz bev representa un pro-
pagador efectivo del gluon. Los factores j; representan corrientes de quarks del octete de
color.

Los modelos basados en interacciones de intercambio de un gluon suponen que los
efectos no perturbativos pueden ser tenidos en cuenta a través del propagador D', que
usualmente se elige de manera que ajuste fenomenolégicamente. El propagador efectivo
del gluon provee asi una forma natural de introducir la no localidad en la interaccién.
Por medio de transformaciones de Fierz [30, 58], la interacciéon en (3.18) puede expresarse
introduciendo operadores que distinguen los canales escalar, pseudoescalar, vectorial y
pseudovectorial.

El término de interaccién efectivo tendra en general la forma

4 4,0 g4 41
St = 5 | Ty T s s Kz (P, ) () () () 9 (),
(3.20)
donde se ha utilizado la notacién P = (p1 + p2)/2, p = p1 — p2, y los indices 1,2, 1" y

2’ corren sobre color, sabor y espacio de Dirac. Por supuesto, el niicleo de la interaccién
Kiz12/(P, p, P!, p') debe respetar la conservacion total de momentos asi como las simetrias
de QCD detalladas anteriormente.

Luego de realizar la transformacion de Fierz se obtiene un ntcleo de la forma
Koo (P, p; P, p) = =K(P = P") 6@ (p—p') Y caMu ALy, (3.21)
4

donde A* representa matrices en los espacios de color, sabor y Dirac, y ¢, son los coeficien-
tes que surgen de las transformaciones de Fierz. En general, en los modelos més simples,
s6lo se retienen las componentes singuletes de color relevantes para el mecanismo de rup-
tura de simetria. Esto puede justificarse teniendo en cuenta que éstos son los términos

dominantes en el desarrollo en potencias de 1/ N.. Es decir,
Z COCA%ZA%’Z’ - 2 F%ZF%/Z/ ’ (322)
14 4

donde I'y = (1,iy57,) con a = 1,2,3. En cuanto a la dependencia en los momentos, la

funcion K(P — P’) lleva a ecuaciones del gap no lineales que son complicadas de resolver.
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Figura 3.3: Representacién diagramatica de la ecuacion (3.24). En el diagrama de la izquier-
da K es un ntcleo de interaccién de cuatro puntos que depende de todos los momentos,
mientras que en la derecha aparece en cada vértice el factor de forma g(p), que depende

de un solo momento.

Introduciremos aqui una simplificacion adicional que consiste en suponer que la interac-
cién es separable, es decir,
K(P—P') — Kog(P)g(P'), (3.23)

donde Kj es una constante y g(0) = 1. Teniendo en cuenta las aproximaciones hasta aqui

mencionadas, una forma adecuada para el ntcleo de interaccion es
Ky (P, p; P, p) = =0,y Ko g(P)g(P") T1,I11y (3.24)

donde la suma sobre « = 0,1,2,3 esta sobreentendida. Este reemplazo estd representado
en la Figura 3.3. En la funcién g(P), que usualmente recibe el nombre de regulador o factor
de forma, se encuentra la informacioén acerca de la no localidad de la interaccion.

Debido a este cardcter no local de la interaccién, los quarks adquieren masas dindmicas
(o autoenergias) que dependen de su momento P a través de los factores de forma segtin
2(P) = m + [£(0) — m] g(P). En el espacio de Minkowski, para que un quark exista en
forma aislada se debe cumplir que £?(P) = P? para valores reales de P. Dada la dependen-
cia en P de la autoenergia, esta ecuacion no necesariamente presenta soluciones reales. En
particular, dependiendo del factor de forma, puede ocurrir que el propagador del quark
no tenga polos reales a partir de un valor critico de 2(0), lo que puede interpretarse como

una situacion de confinamiento.
3.2.2. Modelo quiral no local de quarks con renormalizacién de la funcién de
onda

De acuerdo con resultados de LQCD, podemos considerar modelos no locales adop-

tando una descripcién mds confiable del propagador efectivo de los quarks incluyendo
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en él una renormalizacién de funcién de onda (WFR) dependiente del momento [59, 62].
Estos resultados sugieren que dicha renormalizacién puede tener un efecto del orden del
30 % o mayor a momento cero. Ademas, estos calculos también muestran que las masas de
los quarks tienden a sus valores asintéticos de un modo suave. Por lo tanto, es importante
estudiar la incorporacion de estas caracteristicas en este tipo de modelos, y analizar su rol
en la prediccién para los diferentes observables hadrénicos.

El lagrangiano que utilizaremos en esta seccién nos permitird analizar las caracteristi-
cas delano localidad en un modelo quiral con simetria SU(2) de sabor, asi como incorporar
una dependencia del propagador de quark con el momento a través de la masa y de la fun-
cién de renormalizacion de onda. Calcularemos en este marco las propiedades del mesén
escalar ¢ y los mesones pseudoescalares 77,. El meson ¢ tiene los mismos niimeros cudnti-
cos que el vacio: su espin es igual a cero y su paridad es par (J'¢ = 0*), por ello puede
condensar en el vacio y romper simetrias.

Debido a que deseamos comparar los resultados de este modelo con los obtenidos en

LQCD, escribiremos la accion en el espacio euclideo. Se tiene

$¢ = [ (v {¢<x> (= i+ ) p(x) — o [ (e)js () + b)) + o (0)jma ()] }
(3.25)
donde 1(x) es un doblete fermiénico (Ny = 2), ¢ = (ud)”, y it = diag(m,, m,) esla matriz
de las masas corrientes de los quarks. El término cinético incluye el operador ¢ = 7,,0,,
que en el espacio euclideo se define como 7 - vV + 746—81_ con 4 = iYp. La no localidad del

modelo es introducida a través de las corrientes js(x), j5(x) y jm(x), definidas como:
o = [regb(se2)v(-3).
B = [dzg@d (e 3) ity (x-3),
m(x) = i Jd‘*z f(z)t/3<x+§) i'Ty <x—§> , (3.26)

cona=1,2,3,yu(x')To(x) = u(x)d0(x) — deu(x)o(x).

Las funciones g(z) y f(z) son factores de forma covariantes responsables del caracter
no local de las interacciones. Para mantener la invarianza quiral el factor de forma g(z)
debe ser el mismo para las cuatro corrientes de quark estandar js(x) y j%(x), y los acopla-
mientos correspondientes deben llevar una misma constante de acoplamiento G.

El término de interaccién de momento es autoinvariante ante transformaciones quira-
les, por lo tanto presenta un factor de forma f(z) diferente en general al del resto de las
interacciones. Por comodidad, sin embargo, utilizaremos también la constante de acopla-
miento G, controlando el peso relativo entre estas interacciones y las escalares y pseudoes-

calares a través del parametro de masa s en la ecuacion (3.26).
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La corriente js(x) introduce en el propagador el factor de forma g(z), dando lugar a una
masa dindmica para los quarks dependiente del momento, a su vez que la “corriente de
momentos” jp(x) es responsable de introducir la renormalizacién de la funcién de onda,
a través de la dependencia con el factor de forma f(z). Es por ello que resulta conveniente
tomar la transformada de Fourier de ¢(z) y f(z) para llevarlos al espacio de momentos. La
invarianza de Lorentz implica que las transformadas g(p) y f(p) sélo podran ser funciones
de p?.

Para estudiar propiedades hadrénicas es conveniente realizar una bosonizacién de la
teoria fermidnica. Siguiendo el procedimiento descrito en el Apéndice A, partiremos de
la funcién de particion Z = { DypDy exp[—Sg], e introduciremos campos bosénicos auxi-
liares: 07 (x), 02(x) (escalares, relacionados respectivamente con las corrientes js y jm), v
7 (x) (pseudoescalares, asociados con j}), donde el indice a corre desde 1 a 3. Luego de

integrar los campos fermiénicos la funcién de particion en el vacio puede escribirse como
Z= f Doy Doy Dit exp|—SE], (3.27)
donde S%OS es la accion Eulidea bosonizada. En el espacio de impulsos, ésta viene dada por

S]?Eos = —log detA(P/ Pl)

*J <§:;4 {%[‘71(7")‘71(—?)”(?)-ﬁ(—r’>+az<v>az<—p)}}, (3.28)

donde el operador A(p, p’) es

/

Alpy) = @) p+m)+g (E5E) [y -p) +ivst- a2 -p)]

_'_f(P;P) V+V02(p’—p). (3.29)

2

Sin perder generalidad, las constantes de acoplamiento se pueden elegir de forma tal que

los factores de formas quedan normalizados a f(0) = g(0) = 1.

3.2.3. Aproximacién de campo medio

Consideraremos ahora la aproximacién de campo medio (MFA). Para ello desarrollare-
mos los campos bosénicos alrededor de sus valores de expectacion de vacio. Basdndonos
en las simetrias de carga, paridad y Lorentz, supondremos que los campos escalares o7 (x)
y 02(x) tienen valores medios (invariantes traslacionales) no triviales 7 y s 0», respectiva-
mente, mientras que los valores de expectaciéon de vacio de los campos bosénicos pseudo-

escalares son cero (vale la pena notar que 0, es adimensional, debido a la introduccién del
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pardmetro ). Esto es,

o (x) = 01+001(x),
m(x) = x0y+00(x),

(x) = o67(x). (3.30)

Reemplazando en la ecuacién (3.29) se puede reescribir el operador como A(p,p’) =
Ao(p,p') +6A(p, p'), donde

Alpp) = oW (p—p){ - 1@ f(p)] p+m+agp)}. (B3

De este modo, el término Ao (p, p’) depende tnicamente de los factores de forma g(p) y
f(p) y de los valores de expectacion de vacio &1 y 7. Por otro lado, dA(p, p’) dependera
de las fluctuaciones de los campos mesénicos.
Dentro de esta aproximaciéon podemos desarrollar el logaritmo del determinante fer-
midnico como
1
logdetA = TrlogA = Trlog Ag+ Tr (A '0A) — 5 Tr (Ag16AAFI6A) +..., (3.32)
donde la traza se extiende sobre los espacios de Dirac, color, sabor y momento. El operador

Ay ! viene dado por

454 !
a1 = 2 (p = p)z(p) (333)
—¥ +m(p)
donde las funciones m(p) y z(p) —masa efectiva dependiente del momento y renormali-

zacién de funcién de onda— estédn relacionados con los factores de forma no locales y con

los valores de expectacion del vacio de los campos escalares por

2(p) = N -aflp) ',
m(p) = z(p) [mc + a18(p)] - (3.34)

Calcular el determinante fermiénico es, entonces, equivalente a calcular la traza del ope-
rador log A(p, p') en los espacios de color, sabor, Dirac e impulsos. Debido a que en este
modelo no tenemos dependencias explicitas con los niimeros cuanticos de color de los
quarks, calcular la traza en ese espacio es trivial, obteniendo un factor N. = 3 correspon-
diente al namero total de colores del modelo. En el espacio de sabor, como consideramos
los quarks u y d bajo una simetria SU(2), para obtener la traza se debe tener en cuenta las
matrices de Pauli que provienen de la corrientes pseudoescalares.

Al reemplazar la ecuacién (3.32) en la accién efectiva bosonizada (3.28), podemos desa-

rrollar la misma en potencias de las fluctuaciones de los campos mesoénicos, obteniendo
Shos = gy o gIed (3.35)
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Aqui la accién a campo medio por unidad de volumen es [63]

S— = — Nf ; Trplog[Dy (p)] +2%5(a{- +3°%03) , (3.36)

donde Trp es la traza sobre el espacio de Dirac, y el propagador efectivo de quark a campo

medio Dy(p) resulta

__z(p)
Do(p) = iy (3.37)

Las valores de campo medio 71, se pueden calcular minimizando la accién Sy, con
lo cual se obtienen las ecuaciones de Dyson-Schwinger, también conocidas como las ecua-

ciones del gap. Asi surge el siguiente conjunto de ecuaciones de gap acopladas [63]

4 m
01 = 8Nc Gsf{l—p)z;g(P) v )(pgp) ,
» = —8Nc Gsf (d4) — f(p) D( )) (3.38)

donde definimos D(p) = p* + m(p)>.

Los condensados quirales de quarks —pardmetros de orden para la transicién de res-
tauracion quiral— estdn dados por los valores de expectacion del vacio (jg), donde q =
u,d. Las expresiones correspondientes pueden obtenerse diferenciando la funcién de par-
ticion a campo medio Z = exp [-S}™] con respecto a la masa corriente del quark corres-
pondiente. Alejados del limite quiral, esto lleva en general a integrales divergentes. Como
estamos interesados en la descripcién de propiedades no triviales del vacio que surgen de
las interacciones fuertes, es usual regularizar estas integrales sustrayendo las contribucio-

nes de quarks libres (ver por ejemplo [64, 65, 66, 67]). Se tiene de este modo

a* M,
Gy = —4ch(2n’;4 (z(;g(rgp) - p2+mg~> . (3.39)

El buen comportamiento de las funciones ¢(p) y f(p) garantiza la convergencia ultravio-
leta de (3.38) y (3.39).

3.2.4. Fluctuaciones cuadraticas

Estamos interesados en la descripcién de la fenomenologia de los mesones, lo que re-
quiere ir mas alld de la aproximacién de campo medio. En esta subseccién y la siguiente
derivamos las expresiones que utilizamos para calcular las cantidades fenomenolégicas
medibles bésicas, como las masas de los mesones y la constante de decaimiento débil del
pion.

En general, las masas de los mesones se pueden obtener a partir de los términos en

la acciéon euclidea que son cuadréticos en las variaciones de los campos bosoénicos. Por
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lo tanto, siguiendo el desarrollo de S en la ecuacién (3.35) a segundo orden podemos

escribir S%uad como
stad LA s () Sov (=) + Gy (57) Boa(p) S
ET 2 2ot o (P?) 801 (p) 801 (—p) + Go, (p?) 802(p) 0 (—p)

+ G, (P?) [601(p) 602(—p) + 60a(p) 601 (—p)] + Gr(p®) 67 (p) -57?(—17)} ,
(3.40)

donde las funciones Gu(p?), M = 01, 03, 7 estan dadas por integrales a un loop que surgen

del determinante fermidnico en la accidon bosonizada. Se tiene

6nl#) = & —oN [ L) 2L (g ) iy i),
6r?) = o8N [ e go) AL (G4 g7y g ymiq ),
6nlt) = o+ [ Lo ) AL g ) gty

N (oﬁ)z(q);—2 (q+ -4)2] , (3.41)

donde g™ =g+ p/2.

. d P .
Encontramos también en S%ua un término de mezcla G,,,, (p*) que viene dado por

4 2(a\z(a—
Guea17) = =0 [ g S8 S g [ m(q )l @42

Para reescribir el sector 01, 07 en términos de campos mesénicos desacoplados, definimos

dos nuevos campos ¢ y ¢’/, combinaciones lineales de o7 y 0>, de modo tal que
S0 = cos doq —sin B b, b0’ =sin@’ doq + cos b’ o, . (3.43)

Los angulos 0 y 6 se ajustan de manera tal que se cancelen los términos de mezcla del
sector escalar a nivel cuadrético de la accion para p? = —mi(,), donde el signo menos se
debe al hecho de que la accion estd dada en el espacio euclideo.

Una vez que los términos cruzados se han eliminado, las funciones Gy;(p?) representan
las reciprocas de los propagadores efectivos de los mesones. Por consiguiente, las masas
mesonicas pueden obtenerse resolviendo las ecuaciones GM(—m%A) =0,conM =0, 0, .

Finalmente, debe llevarse a cabo una renormalizaciéon de los campos. Los campos re-
normalizados M(p) = M(p) / Z/? se definen fijando el residuo de G;(p?) en el polo del
propagador, es decir, requiriendo que en la vecindad del polo la contribucién correspon-
diente al lagrangiano cuadratico esté dada por

(£374) , ~ 3 (7 + ni3y) 6K (p) - M (~p). (.44
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De este modo se obtiene

_ _ dGum(p)

1 —2 _ 4bm(p

Zm = 8Migg = = (3.45)
77mM

La constante gy144 se puede también interpretar como una constante de acoplamiento efec-

tiva entre el mesén M y los quarks.

3.2.5. Decaimiento débil del pion

Por definicién la constante de decaimiento débil del pion f; estd dada por el elemento

de matriz de la corriente axial 74, (x) entre el vacio y el estado renormalizado de un pion,

O1T4, (N7 (p)) = ie P 6™ f(p®) Py, (3.46)

evaluados en el polo del pion. Para determinar la expresion de la corriente axial, debemos
realizar una transformacién de gauge a la accién efectiva Sg, introduciendo campos de

gauge externos. En general, para una teoria local, esto se lleva a cabo reemplazando

Sin embargo, en nuestro modelo, dada la no localidad de las interacciones, la transforma-
cién de gauge requiere la introduccién de campos de gauge no sélo a través de la derivada
covariante en la ecuacién (3.47), sino que también se deben realizar reemplazos adicionales
a través de un transporte paralelo de los campos fermiénicos en las corrientes no locales
(ver Refs. [41, 58, 63, 68, 69]):

P(x—2z/2) — Wg(x,x—2/2) ¢p(x—2/2),
vi(x+2/2) — ¢i(x+2/2) Wo(x+2/2,x). (3.48)

Aqui, x y z son las variables en la definicién de las corrientes no locales en la ecuacion

(3.26), mientras que la funcién Wg(x, y) esta definida por

We(x,y) = P exp [—i Jy ds gy(s)] , (3.49)

donde s recorre un camino arbitrario que conecta x con y. En el caso de la corriente axial

introducimos campos de gauge axiales W, (x), tomando

1 Lo
G, = 5 Y5 T- Wy (3.50)

Una vez construida la accién efectiva con su correspondiente transformacién de gau-
ge, podemos obtener la corriente axial derivando la accién con respecto al campo Wj(x),

y evaluando esta derivada en Wy(x) = 0. Luego, podemos identificar los elementos de
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matriz como la derivada de la expresion resultante con respecto al campo del pion renor-

malizado,
5251&05
—OWa(x) 67t (p) Wﬁzﬁbzo'

O1T4, ()7 (p)) (3.51)

™

Figura 3.4: Representacion diagramatica de las contribuciones a la constante de decaimien-

to débil del pion. La cruz representa el vértice de la corriente axial.

Las contribuciones resultantes a un loop estdn esquematizadas en forma diagramética
en la Figura 3.4. En este modelo no local se obtienen contribuciones de diagramas tipo
tadpole, que no estan presentes en el modelo local NJL, y surgen de la introduccién de los

campos de gauge a través de las ecuaciones (3.48). Finalmente obtenemos

fr= %%?Fo(—mi), (3.52)
dond
e ) P 2(g)ag)

Es importante destacar que este resultado no depende del camino elegido para la funcién

) (gt g )+m@g*)ym(q)].  (353)

de transporte en la ecuacion (3.49).
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Capitulo 4

Modelo NJL no local con
acoplamientos vectoriales y

vectoriales-axiales

En este capitulo nos concentraremos en la incorporacién de interacciones vectoriales
y axiales en el modelo NJL no local. Por lo tanto nuestro objetivo sera construir un mo-
delo incluyendo acoplamientos entre corrientes no locales vectoriales y vectoriales-axiales
que satisfagan las simetrias de QCD, manteniendo al mismo tiempo los acoplamientos
escalares y psudoescalares analizados en el capitulo anterior. De este modo, no sélo podre-
mos calcular caracteristicas propias de la fenomenologia del sector vectorial, sino también
podremos analizar como se ve modificado el sector escalar-pseudoescalar por la incorpo-
raciéon de estos nuevos acoplamientos.

Nos dedicaremos primero a trabajar con el formalismo de forma tal de poder derivar
las expresiones analiticas para algunas propiedades basicas de los mesones vectoriales y
axiales de paridad J” = 1~ y J¥ = 1" respectivamente, como masas y anchos de decai-
miento. Luego presentaremos los resultados numéricos obtenidos considerando formas
funcionales de los factores de forma consistentes con datos obtenidos de LQCD para los

propagadores efectivos de quarks.

4.1. Construccion del modelo

4.1.1. Aproximacién de campo medio

Para obtener la accién euclidea efectiva se debe primero proponer un lagrangiano que
contenga las simetrias que se observan en QCD. El objetivo es extender la accién propuesta

en el capitulo anterior [ecuacion (3.25)] afiadiendo interacciones vectoriales y axiales que

39



4.1. CONSTRUCCION DEL MODELO

mantengan las simetrias SU(2)y® SU(2) aQU(1)y .

Las interacciones son del tipo (¢T,9)? con Ty, = (7, 7,,T) para el caso vectorial, y I'; =
(Y175, YuY5T) para el vectorial-axial. A la hora de proponer un lagrangiano es necesario

conocer coémo transforman estos términos para saber si conservan las simetrias de QCD.

Es sencillo comprobar la invarianza de los acoplamientos corriente-corriente ante las
transformaciones SU(2)y y U(1)y. Sin embargo no es tan evidente en el caso de la simetria
SU(2) 4. Esto se debe a que esta transformacién contiene a las matrices 75 y T del siguiente
modo ¢ — exp(—iT - 07y5/2)p = [cos(0/2) —iT - Oyssin(6/2)]1, y se debe tener en cuenta
tanto las reglas de conmutacion entre <5 y las matrices 7y, que ahora se encuentran en las
interacciones, como las reglas de conmutacion de las matrices T que son los generadores
del grupo SU(2).

Al calcular el lagrangiano trasformado se llega a que la suma ($7,79)? + (P7,75T9)?
es una combinacién invariante ante las transformaciones SU(2)4 y entonces es necesario
incluir ambos términos en el lagrangiano acoplados con la misma constante, a diferencia

de los términos ($,9)? y ($,7y5¢)? que son invariantes independientemente.

Por lo tanto puede proponerse como lagrangiano quiral del modelo NJL local a

Lot = id9 + G [(§9)° + (inste)’| + H | ($1,7%)* + ($77579)°]
@) + T @rarsy)®. 41

A partir de este lagrangiano, introduciendo interacciones no locales y el término de
masa, podemos obtener la accion efectiva para un modelo de dos sabores de quarks que

incluya corrientes quark-antiquark no locales vectoriales y axiales [70, 71]. Se tiene

=[x {0 (-4 ) = G o))+ ) o) () )

= S [0 o 0+ T4 00 Tan)] = L 90 8) — 8,0}
(4.2)

Esta accion es andloga a la del capitulo anterior manteniendo las mismas expresiones para
las corrientes escalares js(x) y jm(x) (I = 0), y pseudoescalar j§(x) (I = 1) presentes en la
ecuacion (3.26), e introduciendo ademas las corrientes vectoriales j“‘/y (x)y j‘% (x),y axiales

Jau(x)y i% 4(x), que transforman como singuletes o tripletes de isospin, y se definen como
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fu) = [atzn@ 9 (x4 3 ) e (x=3)

B = [dznp(x+3) vy (x-3)

) = [dzio@ e (x+3) 79 (x-3)

9, = Jd‘*th (x+3) rrs (x—3) - (4.3)

Las funciones h(z), ho(z) y hs(z) son los factores de forma covariantes responsables del

I\JIN

NIN

carécter no local de las nuevas interacciones. Vale la pena destacar que, como se encon-
tré en el capitulo anterior para g(z), el factor de forma h(z) debe ser el mismo para jj,, y
J'4  para garantizar la invarianza quiral. Los factores de forma /(z) y h5(z) son en prin-
cipio funciones independientes debido a que pertenecen a términos autoinvariantes ante
transformaciones quirales.

Finalmente, se introdujeron nuevas constantes de acoplamiento: Gy para el acopla-
miento entre las corrientes isovectoriales vectoriales y axiales, y Go y G5 para las interac-
ciones de las corrientes isoescalares.

Siguiendo el procedimiento descrito en el capitulo anterior, procedemos a realizar una
bosonizacion de la teoria fermionica, introduciendo ahora también los campos bosénicos
auxiliares v (x), v (x)y ag (x), a5 (x). Luego de integrar los campos fermiénicos la funciéon

K
de particién puede escribirse como

f Doy Do, D D) Da) D, Didg exp [—5205} , (4.4)

donde S%OS es la accion euclidea bosonizada. En el espacio de momentos, ésta estd dada
por
Sbos  —  _log detA(p, p')
[ o Ll [aa(-p)+ () 7-p) +op)ea(-p)]
(2n) 2G51P1 p p p 2\p) 02{—p

=L [5,(p) 3 (—p) + 3 (p) - 77 (p)

1
36 PP+ 5 B ), 49

donde el operador A(p, p’) es

Alpp) = @)W (p—p)(—p+me)+g(p) [m(p’ —p) +iysTA(p - P)}

2, oa(p' —p) + h(p) " [?-%(P’—P)+75?-ﬁy(P’—P)]

el
)Y N (p' = p) + hs(p) s a (P —p) (4.6)
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conp=(p+p)/2

Consideraremos nuevamente en primer lugar la aproximacién de campo medio. Del
mismo modo que en el modelo discutido en el capitulo anterior, inicamente los campos
01(x) y 02(x) pueden tener valores de expectacion de vacio no triviales. Por lo tanto pode-

mos escribir

o (x) = 6% (x),
' (x) = ov*(x),
a%(x) = 6a%(x),
at(x) = éa*(x). (4.7)

A causa de esto, el calculo de la accién a campo medio por unidad de volumen realizado
con anterioridad no se ve modificado, y nos encontramos con la misma forma funcional
que la expresada en la ecuacion (3.36). Asimismo, las ecuaciones de gap y de los conden-
sados quirales también vendran dadas por (3.38) y (3.39). La diferencias con el caso ya

estudiado se comenzardn a encontrar a partir del desarrollo cuadréatico de la accién.

4.1.2. Fluctuaciones cuadraticas

Para calcular las masas de los mesones continuamos con el desarrollo de la accién eu-
clidea a segundo orden en las fluctuaciones de los campos bosénicos. Obtenemos entonces

.. uad . . .
una nueva expresion para S% extendida al sector vectorial-axial

4
st = 3 [ e (6ol d0tp) d0(op) + Gur?) 60'(p) o' ()
+ Grl(p?) 67(p) - 67 (—p) + i Gralp >[pﬂ5ay< p) - 07(p) — p" 0 (p) - 67(~p)|
+ GJ (1) 60 (p) 603(=p) + GL(p?) 608 (p) 6a%(—p)
+ GL'(p?) 05, (p) - 6%.(—p) + Gz‘”(pw@(m-ma—p)}. (48)

En virtud del cardcter vectorial de las fluctuaciones de los campos, encontramos que
. v v
ellos se encuentran acoplados a tensores de segundo orden que denominamos G}", G",

Gj' y GL'. Estos tensores se pueden descomponer en partes trasversa y longitudinal

v , HayV HapV
Gy (p*) = Gp(p?) (g” —%) + L () B,

y 1V 2
Gi'(p?) = Gal(p?) (ﬂ“%)JrL(Pz)p L, (4.9)
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donde definimos las funciones

4 - 2 SN2 2
i) ()= g~ 8N [ e (o) i L |4y 2D P s ym(y)|,

al Gy 2r) D(4%)D(q7) 32 4
4.10)
4 - SN2 2
Li(p?)= Giv — 8N f (5734 i*(q) 5832%_)) [qz z(ppzq) + 5+ m(q‘)mw*)} :
4.11)

con gt = g+ p/2. Las funciones Gy, (p?) y L+ (p?) corresponden a las proyecciones tras-
versas y longitudinales de los campos vectoriales y vectorial-axiales, describiendo estados
mesoénicos de espin 1y 0, respectivamente. Las masas correspondientes a los estados fisicos
que describen a los mesones vectoriales p° y p* (J¥ = 177) (que corresponden a un tri-
plete de isospin en la aproximacién m; = m, que se esta considerando) pueden obtenerse

resolviendo la ecuacién

Go(—m2) = 0. (4.12)

También aqui debemos llevar a cabo la renormalizacién de los campos fijando el residuo

de G,(p?) en el polo del propagador, esto es,

505 (p) = Z,/* 9(p) , (4.13)
donde
de(Pz)

-1 -2
Zo = &pi = - (414)

Para los canales de isospin cero, es sencillo de comprobar que las expresiones de G (p?)
se pueden calcular a partir de G}’ (p?), Gnicamente reemplazando Gy por Gy, y h(q) por
ho(q). De este modo puede definirse para el mesén vectorial w una funcién G, (p?), y asi
calcular su masa y renormalizacién de funcién de onda de acuerdo a las ecuaciones (4.12)
y (4.14). Relaciones similares son aplicables para el sector axial, donde Gf'(p?) puede ob-
tenerse a partir de G} (p?) reemplazando Gy por Gs y h(q) por hs(q). El estado fisico més
liviano observado asociado a este sector (con ntmeros cuanticos I = 0, ¥ = 11) es el
meso6n axial f, por lo que denominamos Gy, (p?) al factor de forma correspondiente a la
proyeccion transversa de GL' (p?).

En el caso del sector pseudoescalar, mientras que el término cuadrético en 67t no se ve
modificado con respecto al calculado en la expresion (3.41), surge, debido a la inclusion
del sector vectorial-axial, una mezcla entre el campo pseudoescalar y la proyecciéon lon-
gitudinal del campo axial [72, 73]. El término de mezcla G,(p?), que se origina a partir

de los términos cruzados del determinante fermionico entre los campos 7(p) y 4, [ver
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ecuacion (4.8)], estd dado por una integral a un loop de la forma

8N, d* z(g%)z(q7) _ _
N c q q q + . _ . +
Cualp?) = =5 f )i 8 h@) ] (g pym(g )= (g -p)m(g")],
(4.15)

donde una vez més utilizamos g* = g + p/2. Pueden obtenerse estados fisicos desacopla-
dos fzﬂ y 7t a través de las relaciones [72, 73]

on'(p) = Z/2 7 (p),

oay(p) = Z,/*ay(p) —iA(p®) pp 23 2 (p) (416)
donde se ha introducido una funcién de mezcla A(p?), que se determina reemplazando las

relaciones (4.16) en la ecuacion (4.8) y exigiendo que se cancele el término cruzado en el

desarrollo cuadrético de la accion. Encontramos de este modo

AMp?) = ii“((lf;)) , (4.17)

y también la expresion para Gz (p?) dada por

sz 2\2
Gx(p?) = Go(p?) - %}’ZZ; p?. (4.18)

Evaluando en el polo Gz(—m?%) = 0 calculamos la masa del pion, mientras que su funcién

de renormalizacion de onda se obtiene como

71 2 _ dGﬁ(P?")

© =8y = g (4.19)

pr=—m%

En el caso de los mesones axiales a; (triplete I = 1), al no encontrarse ninguna mezcla
que involucre la proyeccién transversa de los campos a,li, la masa correspondiente y la
renormalizacién de funcién de onda se consiguen gracias a relaciones andlogas a las utili-
zadas en el sector vectorial, es decir las ecuaciones (4.12) y (4.14), con G,, (p?) dada por la

ecuacion (4.10).

4.2. Decaimientos

4.2.1. Decaimiento débil del pion

La constante de decaimiento débil del pion se define a partir del campo correspon-
diente al estado fisico de la particula. Es por ello que, de acuerdo con la ecuacién (4.16),
ahora debemos incluir las contribuciones a esta constante provenientes de la mezcla con el

campo vectorial-axial.
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Tal como vimos en el capitulo anterior f,; se calcula a partir de los elementos de matriz
que se obtienen derivando la accién con respecto a los campos de gauge y el campo del

pion fisico. En este modelo esto es equivalente a

(525b0s
VATCI ) — .
W) 05 (1) by
(4.20)

De este modo, no es suficiente con calcular tiinicamente el desarrollo de la accién bosoniza-

2 cbos
OLTE ()R (p)y = 22— 2

+ iAp,
T (5Wﬁ(x)(57rb(p) Wy=rh=0 P

da en los campos de gauge Wy (x) y el campo pseudoescalar 7z, sino que también debemos
considerar el desarrollo lineal en el campo @,.

El proceso por el cual se construye la transformacion de gauge de la accién efectiva Sg
es semejante al detallado en el capitulo anterior. Una vez realizada dicha transformacion
y haciendo las derivadas pertinentes se obtienen dos nuevas contribuciones a la constante

de decaimiento, esquematizadas en la Figura (4.1).

ay
a1

Figura 4.1: Representacion diagramatica de las contribuciones a la constante de decaimien-

to débil del pion provenientes del campo vectorial-axial.

Finalmente, luego de un cdlculo relativamente extenso, obtenemos
—T [Fo(—m2) + A(p?) Fy(—m2)] (4.21)

donde

En ausencia de campos vectoriales el término de mezcla en la ecuacién (4.21) desaparece y

nuestra expresion se reduce a la obtenida en el capitulo anterior.

4.2.2. Vértice p'-fotén y constante de decaimiento electromagnética del p

Otra importante cantidad para ser estudiada es el vértice p’-fotén. En nuestro modelo
no local, los acoplamientos mesén-fotdn reciben las contribuciones del transporte paralelo

en las ecuaciones (3.48), por lo tanto consideramos relevante confirmar que la conservacion
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de la corriente vectorial se satisface. Ademads, a partir de este vértice es posible obtener una
prediccién para la amplitud del decaimiento electromagnético p° — eTe™
El vértice p°-foton estd dado por el elemento de matriz de la corriente electromagnética

entre el estado del mesén vectorial y el vacio,
O1Tem i ()182(p)) = 1™ TT,(p) (4.23)

Para calcular este elemento de matriz se puede seguir el procedimiento discutido anterior-

mente, tomando ahora

G, = QA,, (4.24)

donde Q = diag(e2/3, —e1/3) es la matriz de carga en la representacion fundamental

del grupo SU(2)y, y e es la carga del proton.

(1) 3

Una vez més es posible distinguir dos contribuciones a I3, digamos H;,IV) 3 yIL,/”, que

pv’
surgen del diagrama de dos vértices y del de tipo tadpole respectivamente (ver Figura 4.2).

Obtenemos

4
I’ (p) = 4Ncezzl>/zf(7%4 ;E ;z(?q )) M)

X{%[z(;ﬂ * z(;)} 50 a7 0 = (@) S —mlq mlq ) b

+ 7 [m(lfr) q, +m(g”) q;r] agu(q,p)

-)2 +)2
+c‘fz[— <q2) q - <q2) %+m(q+)m(q)qv}afy(q,p)}, (4.25)
d4
' (p) = —4Ncez)/? f - %4 é((v;)) Gu (4,7 - (4.26)

Aqui hemos definido, para una dada funcién r(p),

4
wuap) = [ [+ DS =00+ 0=t 0p-0], @2

con

-1 Z . 7
Su(kK) = —z'fd‘*z e f dty, e {HEE (4.28)
0

donde t recorre un camino que une el origen de coordenadas con el punto ubicado en z.
1)3 1) 3 .
Los tensores H,(HB y H;(w) son en general no transversos. Sin embargo, la suma de
ambas contribuciones satisface p# wa = 0, como se requiere de la conservacién de la

corriente electromagnética. Esto puede verificarse notando que
L, (2K ,
(k+K)'S,(kK) = —i f iz o2 f dw e = () [s0(k) —sWK)], @29)
0
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Figura 4.2: Diagramas que contribuyen al vértice p°-fotén.

lo cual conduce a
plasu(qp) = (@) —rg7). (4.30)

Por lo tanto, el resultado en la ecuacién (4.30) no depende en la integral de camino en (4.28)
[un mecanismo similar lleva a una independencia de camino en las funciones en las ecua-
ciones (4.22)]. Utilizando la relacién en la ecuacién (4.30), luego de un adecuado cambio

de variables se obtiene

pt (1 +1)%) = o. (4.31)

Una cancelacion similar se encontré en la Ref. [64], en el marco de un modelo nINJL que
incluye mesones vectoriales sin WFR.
Nos concentraremos ahora en la constante de decaimiento electromagnético f,, defini-

da a partir del decaimiento p° — eTe™. Se tiene

_ 47
(e —ete”) = Y w?m, f2, (4.32)
donde a = ¢?/(47) es la constante de estructura fina electromagnética. Podemos relacio-

nar el valor de la constante f, con la traza de H?W (p) a través de

3 mf; efo = S wa(p) . (4.33)

pr=—mj

Resulta ahora necesario evaluar la parte transversa del tensor H?w. Para ello se debe tomar
un camino para la integral sobre t, en la ecuacién (4.28), siendo la trayectoria mas sencilla

un camino lineal. Dicha eleccion conduce a
1
p# / p
o , = dA + A= )r +A=), 4.34
ruld,p) fl (4 2) (7 2) (4.34)

donde 7' (p) denota la derivada de r con respecto a p>. Luego de algo de dlgebra, obtenemos

Z;/z I 2 I 2
fo = e []m(_mp)ﬂ( )<—m,,)] ) (4.35)
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_ d*q 3 [z(q7) +z(q7)] _ _
JOG) = 4N | & )4h<q>{§ DD L@ 1)+ mla ) m )]
1z(g") [ 1z() ¢ [z zq)
“2D(g) T 2Dy TG [D(vﬁ) D<q>]
z(q*)z(q7) [0 I I SR
+pipe |@en =T | [ = o na) +mia )] s @p)

) (") —h(g™)| + [(q p) - (Zz-p:)} %*(w)}-
(4.36)

Los superindices (I) y (II) corresponden a las contribuciones de los diagramas en las Fi-
guras 4.2a y 4.2b, respectivamente, mientras que las funciones (x}r(q, p) vienen definidas

como

zx}’(q,p) = fl d}\%f’ (q—)\%) . (4.37)

4.2.3. Decaimiento 710 — vy

Vamos a analizar en el contexto de nuestro modelo el decaimiento anémalo 7° — .
En el modelo NJL este decaimiento suele ser problematico: para poder reproducir el re-
sultado observado experimentalmente es necesario realizar integraciones a un loop en el
espacio de momentos hasta el infinito, en lugar de integrar hasta un cut-off Az como en el
caso del condensado {(4g) [74]. La amplitud de decaimiento puede calcularse a partir del
elemento de matriz

53 Slicos

Ay (x) 0A,(0) 072 (p) Ay =73=0 '

(Ol Fem u(¥) Tem v (0)| 2 (p)) = 5 (4.38)

En principio hay varios diagramas que contribuyen a la amplitud al nivel de un loop.

Tal como ocurre cuando calculamos la constante de decaimiento débil del pion f,;, como el

3
I3

rar la parte lineal del desarrollo de la accién bosonizada en & Vi y (591}3. Los diagramas que

campo asociado al 71, 7%(p), es una combinacién de los campos 7t y a3, debemos conside-

tienen contribuciones distintas de cero se muestran en la Figura 4.3. Si los fotones salientes
tienen impulsos ki y k» con vectores de polarizacion 824/\1) (k1) y el (k2), respectivamente,

la amplitud de decaimiento puede escribirse como
M(r" = y) = idmaF(k ko) P e (k) el (ko) ks, (439)
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donde el factor de forma F(ky, k;) estd dado por la suma de las contribuciones de los cam-

pos 77 y a3, al estado 7°,
F(ki,ko) = ZY?[Fr(k1, ko) + A(p?) Fa(ke, k2)] , (4.40)

con p = ki + k.
El primer término entre corchetes, correspondiente al diagrama en la Figura 4.3a, ha

sido calculado (a menos del factor de isospin) en la Ref. [69]. Se obtiene

4 _
Frlki ko) = 21;& f (;34 h<q G ﬁ) 5((;))[2)((2 _’;{11))2[()‘2; +k2_) Alg, ki k), (441)

donde

Alakie) = <z<1q> " Z(qikﬂ) <z<1q> " z(ﬂ—lkkz)> {m(”” - %2 .

mg+k) —mq)  mlq—k) —m(q)
[ G5 k) ]} @2

Por otro lado, el factor de forma F,(kq, kz) surge de la suma de las contribuciones corres-

Y y Y
T ag al
7 7
Y
)

(b) (c)

(a
Figura 4.3: Diagramas que contribuyen al decaimiento 7t° — .

pondientes a los diagramas en las Figuras 4.3b y 4.3c. Aunque éstas son divergentes por
separado, analiticamente se observa que las partes divergentes se cancelan en la suma, que

resulta finita. Obtenemos

4 z z — V4
ikl = =55 | équ{"(“’”/ R (i

[(m(q—k1)+m(q+k2)> A(g,k, k) +

h(q+k2/2) h(61+k1/2)
qz [Wc(q/kl) + W C(q,kz):| } , (4.43)
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P1, My

PM

P2, ms

Figura 4.4: Esquema de decaimiento en dos cuerpos.

donde

Bars = (s + z9) (e~ 79) PO

B 1 1 z(q+k/2)z(qg —k/2)
cub = (sgrem * sawm) DormDGfy O

Finalmente, luego de integrar en el espacio de momentos y sumar sobre las polarizaciones

de los fotones salientes, la amplitud de decaimiento 7 — 7+ resulta

7T ~
(' =) = JemFky,ko)?. (4.45)

Como los fotones estdn on-shell, es decir k‘% = k% = 0, de la invarianza de Lorentz se puede

ver que F(ky, ky) s6lo puede ser funcién del producto escalar (k; - ko) = —m?2 /2.

4.2.4. Decaimiento p — 7t7t

En general, varias amplitudes de transiciéon pueden calcularse desarrollando la accién
bosonizada a 6rdenes mayores en las fluctuaciones de los campos mesénicos. En esta sec-

cién nos concentraremos en los procesos p° — tt 7~ y pt — 70

, responsables de mas
del 99 % de los decaimientos de los mesones p. Para ello desarrollaremos la accién hasta el
orden cubico.
Enla Figura 4.4 se esquematiza un decaimiento de una particula de masa M y momento
P en dos cuerpos [75]. El ancho diferencial de decaimiento se escribe en términos de una
amplitud invariante M segtn:
1

al’ = 32772

M % dQ, (4.46)

donde d() es el diferencial de dngulo sélido de uno de los cuerpos salientes.
Las amplitudes correspondientes al decaimiento de interés M [vf, (p) — 7 (q1) 7 (q2)]

se obtienen calculando las correspondientes derivadas funcionales de la accién efectiva,

50



CAPITULO 4. MODELO NJL NO LOCAL CON ACOPLAMIENTOS VECTORIALES Y
VECTORIALES-AXIALES

que pueden escribirse en términos de dos factores de forma Fp;m (pz, q%, q%) y Gmm(pz, q%, q%);
(3351%os
694, (p)o7t (q1)07(q2)
- (P +qu) | =~ (71 — q2p)
[Fpm@"v 7 03) 5+ Gpnn(17, 47, 03) %] . (4.47)

Sélo la parte transversa, dada por el factor de forma Gmn( pz, q%, q%), contribuye al ancho

= (271)4 5(4)(;7 + g1+ q2) €ape ¥

00, =0m=0

de decaimiento p — 7r7r. En el limite isospin tenemos

m2

1 A2 3/2
rp0—>7'[+7'[— = rpi—ﬂrino = 4877 mp ggm'[ (1 - :) ’ (4.48)

El factor de forma G (p? 43, 43) surge del vértice efectivo g7/, donde 'y 7 son cam-
pos renormalizados. Como en los procesos analizados anteriormente, dado que la accién
efectiva se encuentra expresada en potencias de los campos no renormalizados, es conve-
niente escribir el vértice efectivo en términos de los campos originales p, 71 y a,. De este
modo, el factor de forma recibe contribuciones de los diagramas esquematizados en la

Figura 4.5. Se tiene

Gpmr(Pzr‘ﬁrqg) = Z;/ZZ,T Gpmr(Pzr‘ﬁrqg)

‘f’/\(Pz) Gpm(Pzr ‘ﬁ/ q%) + A(PZ)Z Gpﬂﬂ(PZ/ q'%/ q%)} , (4.49)

donde Gorr(p* 4%, 43), Gora(P?, 43, 93) Y Goaa(P?, 43, 93) son funciones a un loop que surgen

del desarrollo de la accién efectiva.

p/ZW p/ZW p/—
\zw \_al \_

Figura 4.5: Diagramas que contribuyen al decaimiento p — 7.

ay

al

La forma analitica de estas funciones pueden obtenerse luego de un largo célculo. Para

la amplitud de decaimiento p — 77, debemos evaluar las funciones en p? = —mf,, y

7> = g5 = (p — q1)*> = —m?%. Resulta conveniente introducir el momento v = q; — p/2, que
satisface p-v = 0,y v = mf;/ 4 — m% Entonces, las funciones pry(pz, q%, q%), donde los

subindices x e y refieren a 7t 0 4, pueden escribirse como
d* v v
2 2 oy _ q v.P v_’r
Goxy(P",41,72) = 16N, f(2ﬂ>4 ha)g (9+ >t 4) g(a+ > 4) x
)z(

2(q)z(q")z(q +0) ;
D(47)D(q )D(g o) /¥ P ¥)

(4.50)
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donde hemos definido g* = g + p/2. Las expresiones resultantes para fx, (g, p,v) son

fr = [ a4 migymia)] 1+ 452

fra = —2m(q+0) { g -q7) -2

4.3. Factores de forma y parametros del modelo

Para definir el modelo es necesario especificar los valores de los pardmetros y los facto-
res de forma en las corrientes fermidnicas no locales. En este modelo hay seis pardmetros a
determinar: la masa corriente de quark m,, y las constantes de acoplamiento Gs, Gy, Go, Gs
y ». Para elegir las formas analiticas de los factores de forma consideraremos los resulta-
dos obtenidos en LQCD para el propagador de quarks, que permitiran aproximar su masa
dindmica y la funcién de renormalizacién de onda, las cuales son funciones del momento
como se observa en (3.34). De acuerdo con la Ref. [76], escribimos la masa efectiva m(p)

como

m(p) = me + am fu(p?), (4.52)

donde &, es un parametro de masa definido por la condicién de normalizacion f,,(0) = 1.
Como los calculos de LQCD consideran diferentes masas corrientes de quark (hay que
recordar que m. no es una cantidad fisica, sino que depende de la escala de renormaliza-
ci6én), decidimos tomar como entrada la forma de la funcién f, ( pz) normalizada, usando
los resultados de LQCD en el limite de baja m, y el espaciado de la red més pequefio con-
siderado. Teniendo en cuenta el andlisis de LQCD en la Ref. [76], parametrizamos esta

funcién como
1

2\
fm(p”) = T (/A (4.53)
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con « = 3/2. Por otra parte, para la renormalizacién de funcién de onda utilizamos la

siguiente parametrizacién [63, 65]

z2(p) = 1 - a. fu(p?), (4.54)

donde
N 455
f(p7) (11 2 ) (4.55)

A partir de esta forma funcional de z(p) los resultados de LQCD resultan mejor descri-
tos con valores relativamente bajos para el exponente 3, por ello tomamos = 5/2 que
es el menor exponente compatible con la convergencia ultravioleta de las ecuaciones de
gap (3.38). Del anélisis dimensional y la invarianza de Lorentz, las funciones f,(p?) y
f.(p?) deben incluir pardmetros dimensionales Ag y Aj, los cuales representan cut-offs
efectivos para el momento en los canales correspondientes. De este modo, utilizamos las
formas funcionales sefialadas para los factores de forma, tomando Ag y A; como dos nue-
vos parametros libres del modelo. Por otra parte, los parametros &, y «, introducidos en
las ecuaciones (4.52) y (4.54), en virtud de las expresiones en (3.34), estdn relacionadas con

los valores de expectacién de campo medio de los campos escalares a partir de

z(0) = 1—a, = , (4.57)

y por lo tanto, para un dado conjunto de parametros, se pueden obtener a partir de las
ecuaciones de gap (3.38).

El modelo también incluye los factores de forma h(p), ho(p) y hs(p), introducidos por
las interacciones corriente-corriente vectoriales y axiales. Vamos a suponer por simplici-
dad que el comportamiento efectivo de las interacciones de quark es similar en los canales
J =0y ] =1,y por ello tomaremos para h(p) la misma forma que para g(p). En el sec-
tor vectorial-isoescalar, como es usual, supondremos una degeneracién aproximada con
el sector vectorial-isovectorial tomando (p) ~ hy(p). El sector vectorial-isoescalar-axial
puede estudiarse separadamente ya que se desacopla del resto de lagrangiano. Aqui to-
maremos hs(p) = h(p) y estimaremos el valor resultante para la constante Gs.

Dadas las formas funcionales de los factores de forma, para estudiar la fenomenologia
descrita debemos determinar los valores de los ahora ocho pardmetros del modelo (masa
corriente, constantes de acoplamiento y cut-offs efectivos de momento). Primero llevamos
a cabo una aproximacién numérica de los resultados de LQCD para las funciones f,,(p?) y
z(p), del cual obtenemos valores para Ag y A1, asi como para el pardmetro «,. Este tiltimo,

junto con otras cinco cantidades fenomenolégicas, serd utilizado como valor de entrada
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para determinar los seis pardmetros libres restantes. A partir de los resultados de LQCD
en Ref. [59] se obtiene

Ng =917 + 14 MeV, Ay =1775 + 53 MeV, x, = 0,244 £+ 0,010 , (4.58)

con x2/dof = 1,17 y x?/dof = 0,25 para los fits de f.(p?) y z(p), respectivamente. Los
cédlculos fueron realizados considerando los resultados de LQCD hasta 2.5 GeV. Estos va-
lores y la curva de aproximacién para f,,(p?) y z(p) se muestran en la Figura 4.6. En el
caso de z(p), se observa que se obtienen valores que superan los puntos de LQCD para
momentos bajos. Notamos, sin embargo, que en esta region los errores son relativamen-
te grandes, y ademads corresponden a los puntos mds sensibles a los posibles cambios del

espaciado de la red [59].

0.9+
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our fit
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064 our fit
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Figura 4.6: Aproximacion a los datos de LQCD para las funciones f,,(p?) y z(p).

Ahora bien, una vez fijados los valores para Ao y A es posible determinar los para-
metros m., Gy, Gs, Go, G5 y »r a partir de seis cantidades iniciales. Como pardmetros de
entrada elegimos el valor de a, obtenido a partir del fit anterior, mds los valores empi-
ricos de la constante de decaimiento débil del pion f,, y las masas de los mesones 7, p,
w'y f1. De nuestro andlisis numérico encontramos que se puede obtener un conjunto de
pardmetros que nos permite reproducir apropiadamente estos valores. Los resultados co-
rrespondientes se encuentran en la Tabla 4.1.

El andlisis numérico requiere la resolucién de un sistema de ecuaciones acopladas que
incluye las ecuaciones de gap (3.38), las ecuaciones Gy (—m3,) = 0 para M = 71,p,w y
f1 para determinar las masas mesoénicas, y la ecuacién (4.21) para f. Este procedimiento
involucra calcular las integrales correspondientes a un loop, lo cual en general no es trivial
debido al hecho de que el factor de forma f,,(p?), como funcién de la cuarta componen-
te ps del momento, tiene cortes cuando ps4 se extiende al campo complejo. Dependiendo

del valor del momento tridimensional p estos cortes pueden ocasionalmente cruzar el eje
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Pardmetros Inputs Pardmetros Inputs

Ag [MeV] fit (LQCD) me [MeV] 1,59 a fit (LQCD)

A1 [MeV] fit (LQCD) GsA3 19,0  my [MeV] 139
2/ N\ 112 fr [MeV] 92,2
GvAj 130  m, [MeV] 775
GoA3 128 my, [MeV] 1280
GsA3 ~14  my, [MeV] 783

Tabla 4.1: Pardmetros del modelo. Los valores de A, A1 y &, se han obtenido a partir de
datos de LQCD para el propagador efectivo de los quarks [ecuacion (4.58)]. Los pardmetros
me, Gs, 2, Gy, Go y Gs fueron calculados a partir de cinco observables hadrénicos, junto

con el valor de «;.

real, y deben ser tenidos en cuenta a través de deformaciones adecuadas del camino de

integracion. Estos cédlculos se encuentran detallados en el Apéndice B.

De la Tabla 4.1 encontramos una relacién Gs/Gy ~ 1,5, lo cual esta de acuerdo con
las parametrizaciones estandar del modelo NJL [26, 27, 28]. Para el valor Gy, es necesario
tener en cuenta que estamos trabajando en un modelo con sélo dos sabores de quarks, y
por lo tanto no estamos considerando efectos relacionados con el quark s. Nuestro célcu-
lo para Gq seria valido tinicamente en el caso de una mezcla ideal entre el singulete de
SU(3)s y el octete de estados I = 0, tal que el meson ¢ sea un estado s aproximadamente
puro. En el caso del mesén axial f; encontramos una dificultad adicional, que es comtn
a varios modelos de quarks. Los modelos que no incluyen un mecanismo explicito para
el confinamiento usualmente tienen dificultades para describir las resonancias mesoénicas,
ya que hay un umbral a partir del cual la masa del mesén es lo suficientemente grande
como para permitir su decaimiento en dos quarks. Este umbral es en general del orden
de 2m(0), por lo tanto los modelos para los que las masas constituyentes de quarks son
mayores que aproximadamente 400 MeV (como ocurre en nuestro caso) pueden sortear
esta dificultad para resonancias de baja masa como el mesén p [77]. En el caso en que la
resonancia supera el umbral, es posible tratar el problema a través de extensiones de las
funciones Gy(—s) al plano complejo [78], o de la busqueda de un pico en la funcién espec-
tral del mesén [79]. Matemadticamente, en nuestro modelo la apertura del canal no fisico
qg ocurre debido a que las integrales de la forma de (4.10) tienen un “pinch point” en el
cual ambas funciones D(q%) y D(47) en el integrando son iguales a cero (es decir, ambos
quarks constituyentes estdn simultdneamente on-shell). Para los pardmetros en la Tabla 4.1,
el umbral se encuentra a los 1264 MeV, debajo del valor empirico my, ~ 1280 MeV, y el

parametro libre a ser ajustado para obtener el valor fenomenolégico de la masa de f; es la
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constante de acoplamiento Gs. En nuestro trabajo, para obtener un valor aproximado para
esta constante resolvemos la ecuacion Gp, (—m?) = 0 variando GsAj3 desde grandes valores
de Gs hasta GsA3 ~ 22, lo que lleva hasta m ~ 1 GeV, y luego extrapolamos a la regién por
arriba del umbral obteniendo my, ~ 1280 MeV para G5A% ~ 14.

4.4. Resultados numéricos

Usando los pardmetros y los factores de forma no locales definidos en la seccién ante-
rior, podemos calcular las predicciones del modelo para las cantidades fenomenolégicas
analizadas. Nuestros resultados para dichos observables se encuentran resumidos en la
Tabla 4.2 (no incluimos alli los observables que utilizamos como entrada para fijar la para-
metrizacion, es decir, Mz, fr, My, My y Mg ). De la tabla podemos concluir que las predic-
ciones del modelo para los anchos de decaimiento ©° — 7, p — eTe™ y p — 77t estan de
acuerdo con los valores encontrados experimentalmente, siendo compatibles con los resul-
tados publicados por el Particle Data Group [75] dentro de un rango de error menor al 10 %.

También fue posible obtener una prediccién para el ancho de decaimiento I'(w — ete™),

Modelo Empirico
[(7° - v7) [MeV] 7,82 x 1076 (7,63 +0,16) x 1076
I'(p—ete”) [MeV] 6,71 x 1073 (7,04 +£0,06) x 103
I'(p — ntr) [MeV] 137 149,1+0,8
my [MeV] 683 400-550
ma, [MeV] 1200-1250 1190-1270

Tabla 4.2: Predicciones del modelo y valores empfiricos [75] para varios observables.

cuyo valor determinamos alrededor de 0,8 keV, algo mayor que el valor experimental de
0,60 + 0,02 keV [75]. Sin embargo, como discutimos anteriormente, nuestro resultado po-
dria modificarse luego de incluir grados de libertad de extrafieza debido a la mezcla w — ¢.
Con respecto al sector o — ¢’, obtuvimos un estado fisico con una masa de alrededor de 680
MeV, el cual puede identificarse con la resonancia del mesén ¢ observada (cuya masa es in-
cierta), mientras que para ¢’ encontramos un crecimiento monétono de la funcién G,/ (—s)
con s, indicando que este estado no representa una particula fisica (en la Ref. [63] se discute
con mayor profundidad la fisica relacionada al estado ¢’ en este tipo de modelos).

En el caso de los mesones axiales a; encontramos que la funcién G,, (—s) decrece con s
hasta llegar a un minimo en +/s ~ 1250 MeV, cerca del umbral de produccién de pares de

quarks on-shell, encontrado en 1264 MeV. Teniendo en cuenta la discusién en la subseccién
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anterior, para estimar el valor de la masa del a; en posible tomar el minimo de G,,(—s) o
realizar una extrapolacion basada en el comportamiento de G,, (—s) hasta s ~ (1 GeV)z.
Ambos caminos conducen a una masa aproximada de m,, ~ 1200 — 1250 MeV, que esté en
buen acuerdo con los valores experimentales.

También analizamos la dependencia de nuestros resultados con «, dentro del error
obtenido para el cdlculo de este pardmetro en la aproximacién a los datos de LQCD [ecua-
cién (4.58)], observando que las predicciones del modelo no varfan significativamente.

Finalmente, en la Tabla 4.3 mostramos los resultados para los valores de campo me-
dio de los campos escalares y los condensados quirales de quark. La masa efectiva de los
quarks livianos a momento cero en nuestro modelo resulta m(0) = (m.+01)/(1 —02) ~
400 MeV, algo mayor que los 311 MeV obtenidos en la Ref. [63] para un modelo nINJL
sin el sector de los grados de libertad vectoriales. Cabe destacar que las parametrizaciones
de los modelos NJL estandar predicen masas constituyentes de quarks dependientes del
momento que rondan los 350 MeV [26, 27, 28]. Con respecto a los condensados de quarks,
los resultados son relativamente grandes en comparacion con las estimaciones usuales de
la fenomenologia y los calculos de LQCD, que conducen a condensados dentro del rango
de (—240 MeV)? a (—320 MeV)? [80]. Ademas, al determinar los pardmetros del modelo
hemos encontrado un valor relativamente bajo para la masa corriente de los quarks, siendo
m. = 1,59 MeV, en comparacién con las estimaciones de LQCD de m, ~ 3,4 £ 0,25 MeV en
el limite de isospin [75]. En los modelos NJL con interacciones no locales estas cantidades
dependen fuertemente de las formas funcionales de los factores de forma, como se explica
en las Refs. [63, 81, 82], en donde se consideran distintas extensiones de estos modelos con
dos o tres sabores de quarks, sin el sector vectorial. Como se discute en esos articulos, es
importante tener en cuenta la dependencia de m, y () con la escala de renormalizacion.
En nuestro caso, para el fit de los propagadores de quarks se utilizaron datos de LQCD
correspondientes a una escala ¢ = 3 GeV, mayor que la usual de 2 GeV. Para evitar este
tipo de dependencias se puede, por ejemplo, calcular el producto —(jgq)m,, para el cual ob-
tenemos, dentro de nuestra parametrizacion, un resultado de 8,12 x 10~5 GeV*. Este valor
concuerda con el proveniente de la relaciéon de Gell-Mann-Oakes-Renner a primer orden

en la expansién quiral, —(gq)m. = f2m%/2 ~ 8,21 x 107> GeV*.

Modelo
01 [MeV] 524
> -0.322
—(gg'"? [MeV] 371

Tabla 4.3: Resultados numéricos para varias cantidades fenomenolégicas.
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Capitulo 5

Modelo NJL no local en presencia de

campo magnético

Como se ha comentado en el Cap. 1, el comportamiento de la materia hadrénica y de
quarks en presencia de campos magnéticos intensos, y los efectos de estos campos sobre
el diagrama de fases, revisten importante interés tedrico y experimental. En este capitulo
estudiaremos la interaccion entre la materia hadrénica y un campo magnético homogéneo
en un modelo NJL no local. En primer lugar, calcularemos el determinante fermiénico en
la accién bosonizada y realizaremos una aproximacién de campo medio. Esto nos permi-
tird encontrar expresiones analiticas para la ecuacion del gap, el propagador de quarks
en presencia de campo magnético y el condensado quiral. Luego, desarrollando la accién
a segundo orden en las fluctuaciones de los campos mesénicos calcularemos las masas
de los mesones yo,e incorporando un acoplamiento con una corriente externa obten-
dremos la expresion para la constante de decaimiento débil del pion. También mostrare-
mos dentro de nuestro modelo la validez de las relaciones de Goldberger-Treiman y de
Gell-Mann-Oakes-Renner en presencia del campo magnético. Por tiltimo, mostraremos los
resultados numéricos obtenidos para las cantidades fenomenolégicas mencionadas consi-
derando diferentes parametrizaciones del modelo, y compararemos estos resultados con
los obtenidos en LQCD.

5.1. Interacciones magnéticas en el modelo NJL no local

Es natural que la presencia de interacciones con campos magnéticos intensos afecte
significativamente a los observables hadrénicos y a las caracteristicas de las transiciones
de fase. Es de particular interés el estudio de los condensados quirales (jg), pardmetros

de orden de la restauracién de la simetria quiral. Célculos realizados por LQCD [83, 84]
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muestran que, en efecto, los condensados quirales tanto en el vacio como en sistemas con
temperatura finita resultan fuertemente alterados en presencia de una interaccién con un
campo magnético externo B uniforme suficientemente intenso. En el vacio se observa el
efecto conocido como “catélisis magnética”, esto es, la presencia del campo favorece la
presencia de un condensado no nulo, y de este modo puede interpretarse como un “cata-
lizador” de la transicion de fase. Asimismo, los cédlculos realizados en LQCD muestran un
efecto de “catalisis magnética inversa”, que consiste en el hecho de que las temperaturas
criticas de transicion disminuyen al incrementarse el valor del campo externo. Notable-
mente, este efecto no es reproducido en general por modelos efectivos simples para QCD
a bajas energias, como el modelo NJL local, xPT, o el “modelo de la bolsa del MIT” (MIT
Bag model), que de hecho predicen el efecto contrario [85, 86, 87]. En el caso del modelo
NJL local, una posible solucién para este problema se obtiene proponiendo una dependen-
cia ad-hoc con B y T en las constantes de acoplamiento [88, 89].

En esta Tesis realizaremos un analisis detallado del modelo NJL no local que incluye el
acoplamiento magnético con un campo B uniforme y constante [90, 91]. Mostraremos que
los modelos NJL no locales no sélo proveen una descripcién natural para los efectos de
la catalisis magnética y la catalisis magnética inversa, sino que también permiten obtener
una dependencia de la masa del ¥ con B que resulta compatible con los resultados de
LQCD [92, 93]. El estudio de la variacion de las masas de los piones en presencia de un
campo magnético ha sido abordado en los tltimos afios en el marco de diversas técnicas
tedricas para el andlisis de QCD a bajas energias, como modelos de tipo NJL [94, 95, 96, 97],
XPT [98, 99] y Path Integral Hamiltonians (PIH) [100, 101].

5.1.1. Formalismo en la aproximaciéon de campo medio

Para estudiar las interacciones magnéticas comenzamos escribiendo la accién euclidea

del modelo NJL no local para dos sabores de quarks,

. , G., ..
Sp = fd‘lx {1/)(35) (—igd +m¢) P(x) — Eja(x)]a(x)} , (5.1)
donde las corrientes no locales j,(x) estan dadas por

ja(x) = fd“z g(z)q‘;(x+§> Fulﬁ(x—g). (5.2)

Definimos aqui I'; = (1,iy57), mientras que la funcién G(z) corresponde al factor de for-
ma no local que caracteriza la interaccion efectiva. Como estamos interesados en estudiar
la influencia del campo magnético, introducimos en la accion efectiva un acoplamiento con
un campo de gauge electromagnético externo A,. Esto se lleva a cabo de forma andloga a

lo realizado en el Cap. 4 para estudiar el vértice p-fotén, es decir, se reemplaza la derivada
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covariante de acuerdo a la ecuacién (3.47), y se introduce el campo electromagnético se-
gun (4.24). Como también se discutié anteriormente, las transformaciones de gauge deben
incluirse en las corrientes no locales a través del transporte paralelo que se observa en las
ecuaciones (3.48).

Luego procedemos a realizar la bosonizacion de la teoria introduciendo el campo es-
calar o(x) y los campos pseudoescalares 77(x), e integrando los campos fermiénicos en
la funcién de particiéon de acuerdo con los lineamientos explicados en el Apéndice A. La

accion bosonizada resulta [63, 69]

Spos = — logdet Dy v + % f dx[o()o(x) + 7(x) - 7)), (5.3)
con
Dyw = 6W(x—o)(—il+m.)
+G(x =X ) Yo W(x, %) yo[o(X) +ivsT- (%) W(%,x'), (5.4)

donde hemos definido ¥ = (x + x") /2 y las funciones W(x, %) son las definidas en (3.49).
El operador D, v es andlogo al que hemos definido en los Caps. 3 y 4 como A(p, p/) en
ausencia del campo magnético. Consideraremos en este andlisis el caso particular de un
campo magnético B homogéneo y constante en el tiempo, eligiendo el eje 3 en la direccién
del campo. Utilizaremos el gauge de Landau, en el que A, = B x1 .

Supondremos también que el campo o(x) tiene un valor de expectacién de vacio no
trivial invariante traslacional (es decir, que & es independiente de x), mientras que los
valores de campo medio de los campos pseudoescalares 77; son nulos. Esta hipdtesis no
implica que el propagador de quark resultante sea invariante traslacional. De hecho, ve-
remos a partir de nuestro andlisis que esta invarianza se rompe por la aparicién de una
“fase de Schwinger”. A partir de (5.3), dentro de la aproximacién de campo medio (MFA)
obtenemos

DV = diag (DY, DY), (5.5)

! /
X X, X X,X

donde

P = s (x—x) <Hf + mc> + 7Gx —x') exp [iDs(x,x)] , (5.6)

x,x!

sobreentendiendo un producto directo por una matriz identidad en el espacio de color.
En la ecuacién (5.6) hemos introducido el operador I/ = —i7 — g B x172 junto con la

denominada “fase de Schwinger”

qfB
s (x,x) = fT (x2 = x3) (31 +x7) - (5.7)
Debido a que los quarks u y d tienen cargas eléctricas diferentes, el campo magnético in-

teractia de distinto modo con cada uno de ellos. Por lo tanto, este modelo no es simétrico
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en el espacio de sabor, lo cual se refleja en la dependencia con g¢ que representa las cargas
eléctricas de cada sabor de quark provenientes de la matriz de carga o] que se introduce en
el acoplamiento electromagnético.

De este modo, la accién bosonizada en MFA por unidad de volumen puede escribirse

cCOmo
S]I\;FA (72 Nc MEA, f
V((‘)S = 55~ Wdetrlog D, (5.8)
=u,

donde en el segundo término las trazas sobre color y sabor ya han sido evaluadas. Para
realizar las trazas en el espacio de coordenadas y de Dirac utilizaremos el formalismo de
las autofunciones de Ritus [102], realizando la transformada de Ritus de D:[,S?’f . Esta se
define como

Dy;?,’f = fd“x d*x' Ej(x) D?i’?f E; (x'), (5.9)
dondeE;(x), con p = (k, p2, p3, pa) (siendo k un valor discreto), son las funciones de Ritus,
cuyas definiciones y propiedades estdn dadas en el Apéndice C. Usando estas propiedades

obtenemos
5 A
D;{;Af Op,p" Prosy <—5f 2k|q¢Bl y2 + p) - vy + me ) +a 2 G, f AN, (5.10)

donde 3;5,;5/ es una notacion para (271)*6 6(p2 — py) 6(ps — p4) 8(pa — p4), y hemos intro-
ducido las definiciones s = signo(qu), p| = (p3, pa), v = (73, 71), AT = diag(1,0,1,0),
A~ =diag(0,1,0,1) y Py 1 = (1 —8k0) 1 + dkg A™. Las funciones Gg/’;, estan dadas por

)‘f = Jd‘lx d*x" B3y (x) G(x —«') exp [i®(x, x)] Epra(x'), (5.11)

y la expresion de Ep, (x) viene dada por la ecuacion (C4). Tal como se discute en el Apéndi-
Af

ce D, luego de un largo célculo podemos mostrar que G5 es diagonalen p, p ’. Obtenemos

entonces Gmf; ) = (5p,p gk,;{ , donde

Af o 4mo d*py P’ 2p%
S = Ty | G s+ i) ew (- |qu|) Ly <|qu|> (512)

Aqui hemos utilizado las definiciones k+ = k —1/2£5s¢/2 y p1 = (p1, p2), mientras que
¢(p?) es la transformada de Fourier de G(x) y Ly, (x) son los polinomios de Laguerre, con

la convencién usual L_q(x) = 0. Definiendo ahora

MQ,}{” = (1=0x,1)me + t‘fg,?,;fu , (5.13)
llegamos a la expresién D, FAf =85 D{ oy donde
/ AfAM
Dipy = Thss (_Sf\/ 2klq¢B| v2 + pj -w) Mka A (5.14)

A=
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Luego, usando la ecuacién (C16) y escribiendo explicitamente la traza sobre el espacio
de coordenadas obtenemos

d ]
trlog D™ = Nc f O f i’: tp[Ep(x) log (D], ) Ep(x)] . (515)
—o

donde trp es la traza sobre el espacio de Dirac. A partir de la propiedad ciclica de la traza
junto con la ecuacion (C9), esta expresion se reduce a

B d?
trlogDiAZﬁf VAN, |qf | Zf ll 5 trp [Pksf log (D,{p‘ )] (5.16)
Como la matriz Df

kp
identidad trlog A =

no es diagonal en el espacio de Dirac, es conveniente usar aqui la

log det A. Luego de calcular el determinante y reemplazar en la ecua-
cién (5.8) obtenemos finalmente

MFA =2
5 bos 4

lasBl [ dp|
o e _ch_Z:d—Zn eE {1 g <p + My >+Z logAkpl] (5.17)

donde A = + (—) paras; = +1(-1),y A{IPH esta definida por

f +f Ag—of 2 (vt f = f)?
Akl’n <2k|qu| +p|\ +MkPH MkPH) TP <Mk/PII _Mkfpu>

(5.18)
Se observa que las funciones M, f representan las masas efectivas dindmicas (dependien-
tes del momento) de los quarks en presencia del campo magnético externo. El valor de

expectacion de vacio ¢ puede calcularse ahora encontrando el minimo de la accién efecti-
va en la ecuacion (5.17). Esto lleva a la ecuacion de gap

Q<

|51fB| d*p, N A
= N Y. ZJ B Z Ay 8y (5.19)
f=ud
donde hemos definido

Soaptof Lf TS
A kPH <2k|qu| T pl\ * MkPHMk Pn) L <M’Wu Mk'i’n) (5.20)
kpp f : '
AkPH

Asimismo, a partir de la expresiéon en (5.14), se pueden obtener los propagadores de

quark en MFA. Los detalles de este cdlculo estan dados en el Apéndice E. En el espacio de
coordenadas obtenemos [91]

4 ; s
S = (D)™ = explidy 2] [ vt

VS5 (pipy) (5.21)
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donde
S (pLpp) 2e><p< pi)iZ[( D9 (Ayd =By pym)L (—2%)
1, = — ) .
[ |qu| & kp| k,p” 711 Fka |qu|
RO D gy pre i (). 622
k,p” kp” 7l k 1 |q B|
Aqui hemos introducidos las definiciones
At ARf T ARS
BkPH o CkPH kp) DkPH ! (5-23)
2K|q¢B| + p? + M, M/
At f I kp~hpy
Copy = N , (5.24)
kp
+,f +.f
M -M
NS k,p k,p
D, pf] - A, (5.25)
A
kp)

mientras que las funciones L} (x) son los polinomios de Laguerre generalizados, con L' | =
0. A partir de estas definiciones, las funciones A f en (5.20) satisfacen
A = MG+ D (5.26)
De este modo, hemos obtenido que los propagadores de quark pueden escribirse como el
producto de una exponencial de la fase de Schwinger por una funcién invariante traslacio-
nal, en acuerdo con los andlisis llevados a cabo en la Ref. [103].
Una vez obtenida la expresién para los propagadores, los condensados de quark para

cada sabor pueden calcularse facilmente a partir de la relacién

@papy = = Netrp|S¥27] (5.27)
A partir de este célculo se obtiene !
- 1 dtp ~
<‘1f51f> = V@ )TI'S}AFA = —NCJWtI'DSf(PL,PQ

- s [ Ero p 2p
= —4 f —1RAY —ex< L)L < L)

2 9 /\2+( ) “riJ (2m)? P 9B |9¢B|
B NC |QfB| f i (5.28)
= Al .

T k=0 Y1l A=+ Al

Del mismo modo que en el Cap. 3 la integral en el condensando quiral resulta ser diver-

gente y es por eso necesario regularizarlo. Siguiendo la misma prescripcion se define

Graps® = Grap —rap)™ +arapss,- (5.29)

10tra forma de determinar los condensados es a través de la derivada de SM™ con respecto a la masa

corriente de los quarks.
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Por contribucién “libre” se entiende aqui al condensado en ausencia de el acoplamiento
efectivo de cuatro fermiones, pero manteniendo la interaccién con el campo magnético.

Esta contribucién puede regularizarse obteniendo [50, 91, 104]

. Ncm logF(xf) 10g27‘[ +1— (

1
<qf qf>free ~ 472 xs 2Xf 1-— E) log Xf:| , (5.30)

donde xy = mz/(2|qB|).
Finalmente, para comparar con los resultados de LQCD presentados en la Ref. [84]

definimos el “condensado normalizado” Z/; segin

2m _ I _ I
o} = —=1 a5 = Gpapn ] +1, (5.31)

donde S es una escala fenomenoldgica fijada en S = (135 x 86)'/2 MeV. También introdu-
cimos las definiciones AZ{; = Z{; — ZJO( y ALp = (AZY + AZE) /2.

5.1.2. Constantes fenomenolégicas para los mesones o y 7r°
Masas del sigma y del pion

La expresion del propagador de quark (5.21) puede utilizarse de modo de obtener ex-
presiones analiticas para las masas de los mesones 71’ y ¢ en presencia del campo magnéti-
co uniforme B. Primero nos concentraremos en la masa del 7%, 1a cual surge de los términos
en la expansion de la accién bosonizada Sy,,s que son cuadréticos en d7t3. Desarrollando el
primer término en el lado derecho de la ecuacién (5.3) alrededor de los valores medios de

los campos mesénicos obtenemos

—logdetD = -TrlogDy — Tr log(1+ D, ' 6D)
= —TrlogDy — Tr (D, ' 6D) + %Tr(pgl D + ... (532

De este modo, el desarrollo a orden cuadratico de la ecuacién (5.4) en las fluctuaciones del

campo d713 estd dada por

%Tr (Dy'éD)?

- __fg X —x")Gg(x" — trch[ ") s exp[®(x, x")] x
((57'[3
n

Dy (¢, 2") 75 exp[@(x”’,x)]] (57r3(x Zx ) om 3<x 2+ 2, 63

donde la integral se extiende sobre los espacios coordenados x, x’, x” y x”, y la traza acttia

sobre los espacios de color, sabor y Dirac.
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Realizando las correspondientes transformadas de Fourier, podemos escribir la accién

bosonizada en el espacio de momentos como

_ Lnpispr (oAt _

Stoslsmye = 5 T(Dg"6D) ‘(m) +36 | @y 5713(t) 6113(—t)
- ! J At e, 2) 1+ L] sra(t) 675 (—t) (5.34)
2] (2n)® Gl N '

y, eligiendo el marco de referencia en el que el ¥ se encuentra en reposo, su masa se

obtiene como solucién de la ecuacion

F(0, —m? )+é =0. (5.35)

De este modo, debemos calcular dentro de nuestro modelo la funcién F (t 1 H) en el limite

L = 0. A partir de la ecuacién (5.33) se obtiene

1
FOf) = 167 Ne ), gy f g(ad +a7) g[(p +pL—a0)*+af] x
Fema AP Jarpip g
i2¢(q1,p1, ) o N
exP{ 4’(’1;}(}? PJ_):| trp [Sf(l?i,qﬁ)zvs Sf(pl,qH )175] , (5.36)

donde hemos definido qﬁ—” = q) £ t/2, y la funcién ¢ en la exponencial (siempre conside-

rando el gauge de Landau) esta dada por

o(qLpLp)) = p2p1+q1(Pa—p2) —p1pa—q2(p1 — p1) - (5.37)

Para las integrales sobre los vectores de dos dimensiones hemos utilizado la notacién

_ ?p d%q
Lq.‘. - f(zﬂ)z 2m)2 (5.38)

La evaluacion de la traza en (5.36) conduce a

trp [S}(m,qpi% gf(pl,q[)i%} — _8e (PL+PD)/By Z DEH
k=
z 12 n”
M AB ﬂ Lo 2pT F+f(CD) o p . 2p"2
(5.39)
con
MXY) _ A wAf R
K gy X’”’H Xk’q‘ + (ql\ ’JH) kai Y ar (5.40)

donde por simplicidad hemos introducido la notacién B = g fB|, y X,Y = A,B,C,D

representan las funciones (5.23-5.26).
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) . , . . )
Para realizar las integrales sobre p |, p', y 4.1, que involucran polinomios de Laguerre,
es conveniente introducir una transformada de Laguerre-Fourier de los factores de forma

no locales, calculando la inversa de la ecuacion (5.12):

0 2
2 2p

g(pi—i—pﬁ) = 2¢ PL/Bs Z (-1) gk;{“ ka <B—l> ’ (5.41)
k=0 f

tanto para A = + como A = —. Usando esta relaciéon para transformar las funciones

(7 + qﬁ) y ¢l(p' +pL—q0)*+ qﬁ] en (5.36), se puede mostrar que las integrales so-
bre las componentes perpendiculares del momento se pueden realizar analiticamente. El

célculo correspondiente, detallado en el Apéndice F, conduce a la expresion [105]

N d*q
2 INc I /\f A f (AB) +f o= f ptf(CD)
Fo Zu fo [ kq” Fkk"u"u +4kagk‘7” Skay b Kkayay

(5.42)

En el caso del mesén o, la masa se puede determinar a partir de una relacion similar

a (5.35). La funcién correspondiente G(0, tﬁ) se obtiene siguiendo los mismos pasos lleva-
dos a cabo para el caso del 7. La diferencia esencial es que se deben quitar los factores
ivs en la traza de la ecuacion (5.36). Al calcular esta traza se obtiene un resultado andlogo

a (5.39), donde las nuevas funciones G Af (XY)

g estdn dadas por

Mf(AB)  _  AMf RMS Af pAf
Gkk"qﬁq[ B Ak"u A"'qn * (q“ q”) kay Bk'/”’[ ’
MF(CD)  _ AAf A+ AM AAS
Gty = LGl — (qi -ay) DL DY (5.43)

La expresion final para G(0, t‘ﬁ) tiene la misma forma que (5.42), inicamente reemplazando

&£ (X0) +,f (XY)
F G .
KK g - KKy

Constante de decaimiento débil del pion

La constante de decaimiento débil del pion f,0 se define a través de la relacién (3.46),
donde el campo normalizado asociado al estado 7t° en el espacio de momentos es 73 (t) =
Z Y2 75(t). El factor de renormalizacién de funcién de onda Zléz estd dado por el residuo

del polo del propagador del pion en t* = —m?,, que en presencia del campo magnético

07
viene dado por
2

T dt2 2 2
I ==

(5.44)

donde F(0, tﬁ) es la funcién en la ecuacion (5.42). Para el calculo de f,,0 debemos introdu-

cir, a través de la derivada covariante y el transporte paralelo, los acoplamientos con los
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campos de gauge auxiliares, ademds del acoplamiento con el campo magnético externo.

Las expresiones para la derivada covariante y el transporte paralelo resultan

A i
Dy = ay —1 QAV(X) ) Y5 73W3y<x) ’ (5.45)
- (* A 1
W(T’,S) = P exp {— 1 J}: dfy [Q.AH (ﬁ) + E Y5 T3W3ﬂ (ﬁ):| } . (5.46)
Necesitamos entonces desarrollar la accién bosonizada a primer orden en Ws y é73. Escri-
biendo

S = 't F,(t) W3y (t) 6 t 5.47
bOS‘W3(57T3 - W ]4( ) 3]4( ) 7-[3(_ )/ ( . )

se encuentra

tyFy (1)

fro = 123 5 (5.48)

2 _02—_ 2
tJ_fo,tnffmnO

Para calcular la funcién F, (t) consideraremos nuevamente el desarrollo en (5.32), sepa-

rando en 6D términos con diferentes potencias de é713 y Wa:
0D = 6Dy + 0D+ 6Dwr+ ... . (5.49)

Se tiene asi
Sboslw, 50, = — Tt (Dy ' 0Dwr) + Tr (Dy ' 6DwDy " 6Dx) (5.50)

Los operadores explicitos en la expresion (5.49) son
0Dx(x,x") = iv51 exp[@(x,x')] G(x —x')éms(x), (5.51)
SDw(x,x) = oW (x—x) % 5 Y Wap (%)
+im5§ exp[®(x,x')] G(x — ¥') [a3(x, %) —a3(%,%)],  (5.52)

Dwr(x,x") = — % exp[®(x, x")] G(x —x') [a3(x, %) —a3(%, x)] dm3(x),  (5.53)

donde hemos introducido las definiciones ¥ = (x +x') /2y

Y
az(x,y) = J dl, Ws, (£) , (5.54)

y estd implicito un producto directo por una matriz identidad en el espacio de color.

El primer y el segundo término en la ecuacién (5.50) se pueden entender desde el pun-
to de vista diagramatico como una contribucién tipo tadpole y una contribucién de dos
propagadores, respectivamente. Para la de tipo tadpole, al cabo de cierto trabajo se obtiene

d*t
(27)*

Te(Dy 6Dy = f ED(8) Wi (1) d73(—1), (5.55)
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donde
2
() = AYS q.,t
Fo(t) = {g[(r) 2)] g[<p 2+2> }x
f u,d
trp |:Sf(pj_,p”):| hﬂ<q,t — q) , (556)
con
0q) = _ZJ}#ze Jc% ilata) L (5.57)

Como estamos interesados en el producto escalar ¢ - F(D(t), podemos usar la relacién

buh(a,t—q) = 2)*| 0¥ (- q) = oW (g) ], (5.58)

que resulta independiente del camino elegido para la integral en (5.57). Teniendo en cuenta

la expresion para S¢(p, p) en (5.22) obtenemos

tyP;E‘)(t)Lro = i2Ne Y ) J (r™%) +8(p%) —28(p?)] x
- f=ud k=0 VPLP|
p A, 2p3
exp <_§> AZ( 1)kAAkrf;”L (B—fi> (5.59)

donde piz = p2 + (p) £t/ 2)2. Al igual que para las masas de los mesones, podemos
calcular la integral sobre p | luego de realizar la transformada de Laguerre-Fourier de los

factores de forma no locales, segtin la ecuacién (5.41). Se tiene asi

0 2
tEN (1) = iaNc Y Y (—1)k+’<’f exp< §L> x
£L=0 F=ud k=0 pLp f
A, A, 2p 2p
2, (gk’,{ﬁ +gk’f ~28y, PH ka ( L) ( L)
A=t I P
_ ;e Af_ S\ AMS
- 12” =u,d fZ P| /\ + gk?’ +gk4’[ 28 PII) Akfpu ’ (5:60)

donde hemos utilizado la propiedad de ortogonalidad de los polinomios de Laguerre.

Para analizar la contribucién de dos propagadores escribimos
d*t
(27)*

donde F,EH) (t)y F,SHI) (t) corresponden a las contribuciones que surgen del primer y segun-

Tr (D, 1 6DwD, L 6D,) = f Y@+ BN 0] wau () oms(-), 66D

do término de 6Dy en (5.52), respectivamente. Para el primer término se obtiene

‘ 1 i2 PPt
B0 = iseNe 3 g [ gl exp | REIELELL)
f=ud Of JN9LPLPL f
trp {SNf(PL q) 5 Y SNf(PLCI[)’YS} , (5.62)
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donde qr‘i = ¢ £ t/2,y la funcién ¢ en la exponencial estd dada por

t t
P(qL,pL P tL) = p2 <q1 - %) — b <q1 + %) —qib—papi—(1e2). (563

Como estamos interesados en el producto ¢, FP(,H) (t) parat; = 0, calculamos la traza

> i Se(p'Lay PLtrt] s k+K
k,k'=0

MfopMf f Af 2p7 2p'%
{ 2 [(t” A ki B""‘?[ (ty-a) Ay qun]L ( By > b ( B

S R et ptf =f ptf
+81 (p1ps — p2p1) [(tl\ qH)qu” Dk’ql () - qH)Ck n Dkqu}

2p% 2p"?
L} (—L> L} ( > (5.64)
1 Bf 1 Bf

Ahora podemos introducir la transformada (5.41) para ¢(g?), que permite integrar sobre

los momentos transversos y escribir el resultado en términos de las transformadas de

Laguerre-Fourier de los factores de forma. Este calculo, descrito en el Apéndice G, con-

duce a
(1) _ Nc
b Ef (t)‘tl:O = —i=t Y] BfZL () a) (5.65)
f u,d I
/\f +f oo et phf
[2 gkqn qH r +2kBy (gqu gkqn)ck,q[ Dkﬂﬁ

Finalmente, para el segundo término en (5.61) encontramos

. _ d*r
FFEHI)(t) = i87*Nc & Z 2 —7) f / g(7%) x
f=u,d f q9LpPLpy

{g [(m— % - %>2+ <P| P - 2)22]
-8 [(PL—%)2+ <P|+P’| ol —%+%> ” X

12 , , ,,k B ‘ ~ N
exp[ (4. g; Py L)] trp [Sf(pL/q‘T)l’)@ Sr(v'La; )175] )

(5.66)

donde la funcién ¢(q., p1, p',, k1) estd dada en (5.63). Usando la relacién en (5.58) obtene-

mos
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, _ 1 2 _2
B (1) = i8mNco ), ?J [g(si%—qﬁ ) +8(1 +a;7)
=0 f=ud Of JILPLPL
i2¢(qL, pLp’
—2g(s7 +Q|2\)] 8(q*) exp [— (P(qLBfL Pi)} x

trp [gf(Pqur\r) ivs S¢(p'Lq)) i%} , (5.67)

donde ¢(q.1, p1,p', ) estd dada en la ecuacién (5.37), y hemos definidos; = p', +p1. —q..
Comparando con la ecuacion (5.36), se puede ver que el calculo que se debe llevar a cabo
es basicamente el realizado en el caso de la masa del 719, descrito en el Apéndice F. De este

modo se encuentra

0
) . Ne . Af Af pAf(AB)
ty By (£) = Tt ¢ 2 B, [ 2, Skoay Skoay Fkk,qﬁq[

f1=0 f=ud k=0 Y| A=+
+.f s=f —f =+.f +,f (CD)
+2ka (gk,q” gk,q”t” + gk,q” gk’thH ) Fkk,qﬁrq[ :| ’ (568)
donde hemos definido
Af o Af Mf o AS
Sy = Skgr T 8y T 28ka (5.69)

Cuando sumamos las contribuciones dadas en las ecuaciones (5.60), (5.66) y (5.68) pode-
mos ver que hay cancelaciones que ayudan a simplificar la expresion final para t - F(t)|¢, = .
Luego de algo de algebra se llega, en efecto, a

. Nc - Af [ oAf(AB) x A AMS
ty Fu(t) T > B J [2 8k (Fkk,qﬁ’q[ Mica, _Ak,qu)
f=ud k=0 9 LA=+

o arof o g At D)
+2k By (g M + g M) Rl ] . (5.70)

La expresion para f,o se puede simplificar atin mds utilizando la ecuacién de gap y la
relacién (5.35) obtenida para la masa del 7t°. Teniendo en cuenta que la ecuacién del gap
puede escribirse como
g _ Nc S B i S g AM (5.71)
G f Skay eay '
f=ud k=0 VIl A=+
mientras que para la masa del pion tenemos
1
c = —F(0,—m2,), (5.72)
con F(0, tﬁ) dado por (5.42), a partir de estas ecuaciones y la relacién en (5.13) se puede
observar que existen cancelaciones extra para tﬁ = —mi o en (5.70). De este modo, llegamos

a una expresion final de la forma
miO fro = me Z}rézﬂ_mio) , (5.73)
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donde la funcién | (tﬁ) esta dada por

_ Ne f Af(AB) Af(CD)
J(#) = B +2kBF, ) (5.74)
il qu]d meO a9 A=+ qu kkq"qll S rkaia; >

con qr‘i =q) Lt [105].

Relaciones quirales

En esta subseccién mostramos que las relaciones de Goldberger-Treiman (GT) y Gell-
Mann-Oakes-Renner (GOR) permanecen validas en nuestro modelo en presencia del cam-
po magnético externo. Analisis previos en este sentido se han llevado a cabo en las Refs. [99]
y [100] en el contexto de xPT y PIH, respectivamente. Siguiendo el anélisis en la Ref. [68],
es 1til definir la funcién

K() = mcJ(t) —oF(0,), (5.75)

donde | (tﬁ) y F(O, tﬁ) estan dadas por las ecuaciones (5.74) y (5.42), respectivamente. De la

ecuacion (5.70), teniendo en cuenta la relacién en (5.13) es sencillo mostrar que
; 2
—it R0, Z By Z f > gqu kq” (5.76)
f u,d A=+

A partir de la ecuacion del gap, podemos observar que el segundo término es constante, e

igual a —0/G. Ademas, teniendo en cuenta las relaciones

Af (AB) MDY _ phf
Fucaq, +2kBr iy g™ = Biy
+f g T\ pM(CD) S
(My Al M’”IH) P = Dray-
pAf A Af o QM
B, q”Mk i 2k By Dk a = Ak,qH , (5.77)
se puede ver que
Nc AN
mcJ(0) —F(0,0) = > BfZ f kq” kqu, (5.78)
(y—y 9 A=+
por lo tanto podemos escribir
—it, Fy(t)‘uzo = K(f}) —K(0). (5.79)

(5.80)
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En el limite quiral se cumple que m, — 0, mi o — 0, por lo tanto la constante de decai-
miento del pion en ese limite vendréd dada por

dKo(t})

1/2 — ~1/2 =
froo = —Zy—mo| = Za—at| = Zafn, (68D
dty -y o dty -y

donde hemos tenido en cuenta la relaciéon entre Z,0 y la derivada de F(0, tﬁ) en la ecua-
cién (5.44). Los subindices 0 indican que todas las cantidades tienen que ser evaluadas en
el limite quiral. Notando que Z}T{)Z resulta ser la constante de acoplamiento efectiva gr45

entre el campo 713 y las corrientes pseudoescalares quark-antiquark, llegamos a

fr008maz0 = 00, (5.82)

que es la expresion para la relaciéon de Goldberger-Treiman a nivel de quarks.

Finalmente, consideraremos los condensados de quarks, {iiu) y {(dd), dados por la ecua-
cién (5.28). Teniendo en cuenta las relaciones (5.77), se puede observar que en el limite
quiral se obtiene

(iu+ddyy = — 9 Jo(0) (5.83)

(recordar que fuera del limite quiral las integrales en (5.28) son en general divergentes,
y necesitan ser regularizadas). Ademds, podemos realizar un desarrollo quiral a ambos
lados de la ecuacién (5.73), dejando tinicamente el orden mads bajo distinto de cero. Esto
conduce a

m% frog = me ZL2 Jo(0) . (5.84)

A partir de esta expresion y de la ecuaciéon (5.81), obtenemos la relacién de Gell-Mann-
Oakes-Renner
me (iiu +ddyy = — mio ff;o,o ) (5.85)

5.2. Parametrizaciones

A fin de obtener predicciones numéricas para el comportamiento de las cantidades
definidas en la seccién anterior como funciones de la temperatura y del campo magnético
externo, es necesario especificar la forma funcional del factor de forma no local g(p?).

Consideraremos aqui dos formas utilizadas usualmente: la funcién gaussiana

g(p*) = exp(—p*/A?) (5.86)

y la funcién “5-Lorentziana”

1

g(p*) = TT (/A% - (5.87)
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(—(q3 ) %)}  Factor de forma m, GA? A

220 G 74 29,06 604
L5 74 10,34 790
230 G 6,5 23,66 678
L5 6,5 9,700 857
240 G 58 20,65 752
L5 5,8 9,267 926
250 G 51 18,78 827
L5 51 8,958 996

Tabla 5.1: Parametros del modelo para los factores de forma gaussiano y 5-Lorentziano con
los cuales se calculan algunos valores representativos del condensado quiral. Los valores
de los condensados, las masas corrientes y la constante A se encuentran expresados en

MeV, mientras que GAZ? es adimensional.

Estos factores de forma deben incluir un pardmetro adicional A con unidades de energia,
que acttia como un cut-off efectivo covariante en el espacio de momentos. En el caso par-
ticular de la funcién gaussiana se tiene la ventaja de que la integral en la ecuacién (5.12)

puede realizarse analiticamente, dando como resultado

(1—|q¢B|/A2)"
1+ B /A2 ky+1
qf

>

MY = (1=6, 1)me + &

Y exp(—p2/A?) . (5.88)
Dados los factores de forma no locales, se deben todavia determinar los valores de los
pardmetros libres m., G y A. Consideraremos varios conjuntos de parametros, obtenidos
a partir de exigir que el modelo reproduzca los valores empiricos de la masa y la cons-
tante de decaimiento del pion, asi como un valor fenomenolégicamente aceptable para
el condensado (7¢q f>geg. Tomaremos en particular los valores (—{q¢q f>geg)1/ 3 = 220, 230,
240 y 250 MeV. Los pardametros asi obtenidos para los factores de forma gaussiano y 5-
lorentziano se encuentran en la Tabla 5.1. Las expresiones analiticas utilizadas para cal-
cular la masa y la constante de decaimiento débil del pion para este modelo son las que
obtuvimos en el Cap. 3, ecuaciones (3.41), (3.52) y (3.53), en el limite z(g) = 1 [68].

5.3. Resultados numéricos

A continuacién discutiremos el comportamiento de los condensados quirales norma-

lizados, de las masas de los mesones ¢ y 77 y de la constante de decaimiento del pion
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como funcién de eB para los factores de forma introducidos previamente, utilizando las

parametrizaciones de la Tabla 5.1.

En los paneles superiores de la Figura 5.1 se observan las predicciones del modelo para
AY g como funcion de eB, mientras que en los paneles inferiores se muestran los resultados
correspondientes para X — Z‘é. Por comparaciéon se muestran también los resultados de
LQCD presentados en la Ref. [84]. Las curvas sdlidas (negras), a rayas (rojas) y punteadas
(azules) corresponden a (—(7¢q f>5eg )1/3 = 220, 230 y 240 MeV, respectivamente. Se puede
ver que las predicciones de nuestro modelo son muy similares para todas las parametri-
zaciones consideradas, y muestran un buen acuerdo con los resultados de LQCD. En el
caso de 2% — 24 puede notarse cierta dependencia con la parametrizacién, obteniéndose
para ambos factores de forma un mejor acuerdo con los datos de LQCD en el caso de los

parédmetros correspondientes al condensado (—{g¢q f>geg)1/ 3 =230 MeV.

1,2 T T T T T T T T T T T T T T T T T
Gaussiana 7z 1 5-Lorentziana 3

0,8 - - -

> 0,6 > . . i

AZo

0,24 _ _ > _

0,0 -- T T T T T T T T T --- T T T T T T T T T

1,0 T T T T T T T T T
Gaussiana 1 5-Lorentziana

0,84 PR e < 4
0,6 L g y Al 4

o 044 S i i T i

0,2 7 4 4 N 1

0,0 T y T T T T T T T T T T T T T
0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0
eB [GeV’] eB [GeV?]

Figura 5.1: Condensados normalizados en funcién de campo magnético. Panel superior:
promedio de sabor; panel inferior: diferencia de sabores. Las curvas sélidas (negras), a
rayas (rojas) y punteadas (azules) corresponden a las parametrizaciones que conducen a
(—{G9)y )1/ = 220, 230 y 240 MeV, respectivamente. Los simbolos cuadrados indican los
resultados de LQCD tomados de la Ref. [84].
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El aumento de los condensados quirales en funcién del campo magnético que se puede
observar en la Figura 5.1 refleja la llamada catélisis magnética. Debido a que los condensa-
dos quirales son los pardmetros de orden de la ruptura dindmica de la simetria quiral, este
efecto puede interpretarse como una intensificacién de dicha ruptura debida a la presencia
del campo magnético. El fendmeno puede entenderse como consecuencia de la tendencia
del campo magnético a fortalecer la unién de particulas de cargas opuestas en los conden-
sados.

Nuestros resultados para el comportamiento de la masa del pion m,,0(B) y el cuadrado
de la constante de decaimiento del pion fio (B) en funcién de eB se pueden observar en las
Figuras 5.2 y 5.3 respectivamente. En ambos casos las curvas han sido normalizadas para
los valores a B = 0 siendo m,0(0) = 139 MeV y f2,(0) = (92,4 MeV)?. La parametriza-
ci6n utilizada fue la correspondiente al condensado (—(7¢q f>6eg)1/ 3 = 230 MeV tanto para
el factor de forma gaussiano como el 5-lorentziano. No se incluyen resultados para otros
valores de (—{g¢q f>(r)eg)1/ 3 dado que las curvas en las Figuras 5.2 y 5.3 se mantienen practi-
camente sin variacién cuando se utilizan parametrizaciones que conducen a condensados
a B = 0 entre —(220 MeV)3 y —(250 MeV ).

Como se observa en la Figura 5.2, la masa del 710 decrece a medida que eB aumenta,
llegando a un valor cercano al 65% de m.,0(0) a eB ~ 1,5 GeV?, el cual corresponde a un
campo magnético de alrededor de 2,5 x 1020 G. También se incluye en la figura una banda
gris que corresponde a los resultados presentados recientemente por LQCD [93]. A causa
de la problematica que se presenta en los calculos de LQCD para obtener las masas de
los mesones livianos, estos resultados fueron calculados a partir de una extrapolacion al
continuo del espaciado de la red, considerando una masa relativamente alta para el pion,
m o = 415 MeV. Por comparacién también mostramos los resultados obtenidos dentro de
nuestro modelo variando el valor del pardmetro m. a 56,3 MeV, lo cual conduce a este valor
de m 0. En general, se puede ver que nuestras predicciones resultan estar de acuerdo con
los célculos de LQCD. Es importante tener en cuenta que a diferencia de otros modelos,
nuestros resultados fueron obtenidos directamente a partir de las parametrizaciones utili-
zadas en el caso de B = 0 en trabajos anteriores, sin realizar ajustes para que concuerden
con los datos provenientes de LQCD. Con respecto a la constante de decaimiento del pion
fr0, como se observa en la Figura 5.3, encontramos que ésta se comporta como una fun-
cién creciente de B. Esto es perfectamente consistente con la relacién de Gell-Mann-Oakes-
Renner para un valor pequefio de la masa constituyente m.. Teniendo en cuenta el compor-
tamiento de la masa del pion y el resultado en la ecuacién (5.85), fio (B) debe crecer més
rapidamente que los condensados, lo cual puede observarse al comparar con las curvas en
la Figura 5.1. Por ejemplo, para eB = 1,5 GeV? se obtiene m(iiu + ddy/ (m2,f2,) ~ —0,98

para los factores de forma gaussiano y 5-lorentziano, en acuerdo con la ecuacion (5.85).
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1,1

<qg> (B=0) = - (230 MeV)®
1,0
09}
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~~
—
m
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06 | Gaussiana, m (B=0) = 417 MeV
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Figura 5.2: Masas del mesén ¥ en funcién de eB. Las curvas negra y roja a las parametri-
zaciones de (—{gg),®)'/® = 230 MeV, con el factor de forma gaussiano y 5-lorentziano res-
pectivamente. La curva azul resultada de una parametrizacion en la que m 0o = 417 MeV
con el factor de forma gaussiano, mientras que la banda gris indica los resultados de LQCD
tomados de la Ref. [93].

Finalmente, en la Figura 5.4 se presentan los valores para el masa del mesén ¢ normali-
zada a m,(0). En este caso los resultados resultan ser mas dependientes de la parametriza-
cién, por lo cual hemos considerado tres conjuntos de parametros correspondientes a los
condensados (—{g¢q f>geg)1/ 3 =230, 240 y 250 MeV con factor de forma gaussiano. Los va-
lores obtenidos para m,(0) son 771, 683 y 616 MeV, respectivamente. A diferencia del caso
de m 0, las curvas para m, presentan un maximo antes de comenzar a decrecer. Para valo-
res menores del condensado a B = 0, asi como en el caso del factor de forma 5-lorentziano,
la determinacién de la masa del mesén ¢ se vuelve problematica ya que excede el umbral
a partir del cual puede tener lugar un decaimiento en dos quarks. Esta situacion es similar

a la descrita en la Sec. 4.3 cuando se analiz6 el caso de la masa del mesén axial f;.
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Figura 5.3: Constante de decaimiento del pion al cuadrado normalizada en funcién del
campo magnético externo. Las curvas sélida (negra) y a rayas (roja) corresponden a para-

metrizaciones con los factores de forma gaussiano y 5-lorentziano, respectivamente.
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Figura 5.4: Masa del meson ¢ en funcién de eB normalizada a partir de su valor correspon-
diente para B = 0. Las curvas negras, verde y violeta corresponden a las parametrizacio-
nes de (—(7q)y %)% = 230, 240 y 250 MeV, respectivamente utilizando el factor de forma

gaussiano.
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Capitulo 6

Modelo NJL no local a temperatura
finita en presencia de campo

magnético

En este capitulo extenderemos el modelo NJL no local de dos sabores de quarks al
régimen de temperatura T finita, con lo cual podremos estudiar las predicciones del mismo
para las transiciones de fases quiral y de deconfinamiento en funcién de la temperatura.
Para ello se utilizard el formalismo de Matsubara para la incorporacién de la temperatura
y se incluird un acoplamiento con el loop de Polyakov, que permite una descripcién del
confinamiento. Detallaremos seguidamente el modo en que puede introducirse en este

marco la interaccién con un campo magnético externo uniforme.

6.1. Modelo NJL local a temperatura finita

6.1.1. Formalismo de Matsubara o de tiempo imaginario

Para describir un sistema a temperatura finita en el marco de una teoria cuédntica de
campos es usual considerar la matriz densidad g, cuyos valores de expectacion {¢p|p|¢) in-
dican la probabilidad de que, para una temperatura T especifica, el sistema se encuentre en
el estado |¢). El comportamiento estadistico de un sistema cudntico en equilibrio térmico

puede estudiarse a través de su funcion de particioén, definida como

Z(B) = Tep(p), (6.1)

donde la traza es la suma sobre todos los valores de expectacién en cualquier base com-
pleta, y B es la reciproca de la temperatura (se utilizan unidades tales que la constante de

Boltzman es k = 1). La funcién de particion Z es una herramienta mediante la cual pueden
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obtenerse todas las propiedades termodindmicas del sistema. El promedio estadistico del
valor esperado de un observable A viene dado por
(A= Z(B) " Tr|p(B) 4] = M (6.2)
T p()
En general para estudiar la estadistica de sistemas con la posibilidad de creaciéon y
destrucciéon de particulas, se debe considerar la matriz densidad para el ensamble gran
canonico,

p =exp(—pH), donde H =H-uN. (6.3)

Aqui H y N son los operadores hamiltoniano y nimero de particulas respectivamente, y
u es el potencial quimico. En esta Tesis nos concentraremos en particular en el caso y = 0
(N fijo).

Para el tratamiento de sistemas con temperatura finita consideraremos el formalismo
de Matsubara o de tiempo imaginario. La idea bdsica consiste en que los valores de ex-
pectacion de operadores en un ensamble térmico se pueden reescribir como valores de
expectacion en teorfa cuantica de campos, donde la configuracién evoluciona en un tiem-
po imaginario o euclideo T = it. De esta forma, se puede realizar una transformacién a
un espacio-tiempo con métrica euclidea, donde la traza de la ecuacién (6.2) lleva a requerir
que los campos bosénicos y fermiénicos sean respectivamente periédicos o anti-periédicos
con respecto a la direccién del tiempo euclideo, con periodicidad . En el espacio de mo-
mentos, esto conduce al reemplazo de frecuencias continuas por frecuencias discretas. Esto
se puede comprender facilmente dentro del contexto de integrales funcionales de camino.
Para ello consideraremos el caso de campo escalar ¢. La amplitud de transiciéon entre dos

estados en una teoria cudntica de campos viene dada por

(p(Fr, 1) |p(Fo, 1)) = (1] exp(—iH (1 —t2))|2) = N'JDGD e, (6.4)

donde N’ es una constante de normalizacién y S la accién definida por

ty
S = f dt Jd%z (6.5)
5]
con L representando la densidad lagrangiana apropiada para el sistema. La integral fun-
cional esta definida sobre caminos cuyos extremos se mantienen fijos,
¢(¥1,t1) = ¢1, P(Xo,t2) = o . (6.6)

Dadas las tres dltimas ecuaciones es facil ver que identificando t; — t, = —if3, se puede
escribir la funcién de particién para cualquier sistema cudntico en la base de estados |¢,)

como

Z(B) = Tre P = f dpa {pale F"|pa) = N’ f Dpe St 6.7)
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donde Sg, la acciéon euclidea (tiempo imaginario), es

B
Sp = f dt f BxLe, (6.8)
0

mientras que los campos satisfacen condiciones de contorno periédicas

¢(%,B) = ¢(%,0). (6.9)

Cuando pasamos al espacio de momentos, encontramos que la integracién sobre un inter-
valo finito implica que las frecuencias en la transformada de Fourier toman valores discre-
tos.

Las distintas condiciones de contorno determinan los posibles valores para dichas fre-
cuencias, conocidas como frecuencias o modos de Matsubara. A diferencia de los campos
bosoénicos, los campos fermiénicos satisfacen condiciones de contorno antiperiddicas, por

lo tanto las frecuencias de Matsubara vienen dadas por

2nm
— para bosones

T para fermiones.

donde 7 es un entero.
En conclusién, el formalismo de Matsubara propone la siguiente sustitucion en las in-

tegrales sobre momentos consideradas en los modelos de los capitulos anteriores:

4
J (znq)‘LP(EI) dqo

6]0,

wo ) (6.11)

donde F(q) representa al integrando en cada caso.

6.1.2. Loop de Polyakov

El loop de Polyakov fue propuesto por A.M. Polyakov [31] como una aplicacién del
loop de Wilson al problema de propiedades térmicas de campos de gauge, en particular
como un mecanismo que explicara el deconfinamiento de quarks a una cierta temperatura.

Para introducirlo es conveniente primero mencionar brevemente la simetria involucrada.

Simetria global Z(N) en SU(N)

Tal como se indica en el trabajo de t'Hooft [106], en una teoria de gauge SU(N) local

existe una simetria global Z(N). Para ver esto partimos de una densidad lagrangiana que
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incluya la interaccién de los quarks con los campos gluénicos
1 -
L=3Tr Gy + Piy" Dy, (6.12)

donde )
. 1
D,=0,—-igA, 'y Gu= §[Dy, D,]. (6.13)

El campo A, estd definido segin A, = Aj t*, donde las matrices {* son los generadores
del grupo SU(N) normalizados como Tr(t*t") = §?° /2. Este lagrangiano es invariante ante

transformaciones de gauge (), dadas por
D, - Q'D,Q, yp-Qfy. (6.14)
Al ser un elemento de SU(N), () satisface que
O'ao=1, detQ=1. (6.15)

Siendo una transformacion de gauge local, () es en general funcién de las coordenadas
espacio-temporales.
Consideremos una transformacién de gauge global dada por una fase constante por la
matriz unidad:
Q. =e1. (6.16)

Para que esta transformacion sea un elemento de SU(N), el determinante debe ser igual a
uno, lo cual requiere que

2mj .
Esto determina un grupo ciclico, cuyos elementos son generados por las potencias j de
un dnico elemento, definiendo asi una simetria global Z(N). Se dice que estos elementos

conforman el centro del grupo SU(N).

Z(N) a temperatura finita

Al ser un subgrupo de las transformaciones de gauge, las rotaciones del grupo Z(IN) son
siempre una simetria del Lagrangiano, con quarks o sin ellos. Sin embargo, en presencia
de quarks dindmicos, las rotaciones de Z(N) no son una simetria de la teoria ya que violan
las condiciones de borde requeridas.

En efecto, trabajando en un espacio-tiempo euclideo a una temperatura T, la coorde-
nada de tiempo imaginario T es de extensioén finita, T : 0 — f = 1/T. Las condiciones de
borde que deben satisfacer los campos estan dadas por la estadistica propia de cada uno
de ellos. Esto es, los gluones deben ser periédicos en 7, mientras que los quarks deben ser
anti-periddicos:

Au(¥,B) = +Au(%,0), p(%,B) = —(%,0). (6.18)
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Cualquier transformacién de gauge que sea periddica en T respeta estas condiciones de
borde. Sin embargo, t' Hooft encontré que es posible considerar transformaciones de gauge

mads generales, las cuales son periddicas a menos de ().:
Q% B) = Q, Q(%,0) =1. (6.19)

Los campos de color adjuntos son invariantes ante esta transformacién, mientras que los

que estan en la representaciéon fundamental no lo son:

AR B) = QTA( L B) Qe = Au(X,B) = +A,(%,0), (6.20)
vO(x,B) = Olp(Ep) = “”w(x B) # —(%,0). (6.21)

Aqui se ha utilizado el hecho de que (), al ser una fase constante por la matriz unitaria,
conmuta con cualquier matriz de SU(N). En consecuencia, las teorias de gauge SU(N) “pu
ras” (sin fermiones) tienen una simetria global Z(N), la cual deja de ser exacta al incluir
quarks dindmicos.

En la teorfa de gluones pura, un parametro de orden para la simetria Z(N) se construye

utilizando la linea de Wilson térmica:
B
L(X) = Pexp (igf Ao(%, T) dT) , (6.22)
0

donde g es la constante de acoplamiento de gauge, Ay es el vector potencial en la direcciéon
temporal, y el simbolo P denota ordenamiento de camino. Con esta definicién, la linea de
Wilson térmica transforma como un campo adjunto ante transformaciones de gauge SU(N)
locales:

L(¥) — Qf(x, B) L(¥) Q(¥,0). (6.23)

El loop de Polyakov [31] se define como la traza de la linea de Wilson térmica, y es, por lo

tanto, invariante de gauge:

p
(%) = %TrL — N 'TrPexp (igf Ao(%,7) dT) : (6.24)
0

Ante transformaciones globales Z(N), el loop de Polyakov ¢ transforma como un campo

con carga uno:
¢ — . (6.25)

A muy alta temperatura ¢ ~ 0, por lo que se esperaria que (¢ ~ 1. Sin embargo, el

vacio permitido exhibe una degeneracién de N hojas. Esto es,

(p) = exp < ) $o, j=01,..,(N-1), (6.26)
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donde ¢y es una funcién real, que ademds cumple que ¢9 — 1 cuando T — co. Cualquier
valor de j es equivalente, por lo que cualquier eleccién conduce a la ruptura espontdnea de
la simetria global Z(N).

A temperatura cero, el confinamiento implica que ¢ se cancela [32]. Por lo tanto, debe
existir cierto valor de temperatura T, a partir del cual ¢y deja de ser nulo y se produce el

deconfinamiento. Esto es

—0 si T<T,
{4’0 St ¢ 6.27)

¢o>0 si T>T..

Como es habitual, si ¢y se vuelve distinto de cero en forma continua alrededor de T,
la transicién es de segundo orden, mientras que si se produce un salto en T = T, es de
primer orden.

Por otro lado, en presencia de quarks dindmicos la simetria Z(N) esta explicitamente
rota. En este caso entonces, el loop de Polyakov deja de ser un pardmetro de orden riguro-
so, pero sirve atiin como indicador de un crossover hacia el deconfinamiento.

Recientemente se ha propuesto una extensién del modelo NJL incluyendo al loop de
Polyakov [34]. La idea principal es introducir a ¢ como un campo efectivo que se acople
con los quarks siguiendo las reglas dictadas por las simetrias y patrones de ruptura de si-
metria de QCD, unificando asi los aspectos de confinamiento y ruptura de simetria quiral.

Se suele referir a este esquema como modelo PNJL (NJL extendido con loop de Polyakov).

6.1.3. Modelo Polyakov-Nambu-Jona Lasinio (PNJL)

La acciéon a temperatura T finita se puede obtener utilizando el formalismo de Mat-
subara de tiempo imaginario, tal como se explicé en la Sec. 6.1.1, y para estudiar el com-
portamiento de la materia fuertemente interactuante de modo de incluir una descripcién
del deconfinamiento se propone incorporar el acoplamiento al loop de Polyakov (PL). Pa-
ra ello se puede hacer uso de algunas caracteristicas conocidas de su comportamiento en
funcién de la temperatura, introduciendo un modelo efectivo para la teorfa de gauge pura,
que luego se acople al modelo de NJL. Dentro de las propiedades generales que debe tener
el potencial efectivo de Polyakov, éste debe satisfacer la simetria global Z(3) al igual que
las simetrias del lagrangiano puro SU(3) de Yang-Mills [66, 107,108, 109, 110, 111].

Como hemos visto puede identificarse al valor de expectacion de la traza del loop de
Polyakov @ = {¢) como un pardmetro de orden, siendo & = 0 el valor correspondiente a
la fase en que los quarks y gluones estan confinados. Calculos de LQCD para el valor de la
traza del PL como funcién de la temperatura indican que la transicién de deconfinamiento
es ausencia de quarks dindmicos ocurre a una temperatura Ty = 270 MeV, siendo esta

transicién de primer orden.
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Es posible construir un potencial efectivo U (P, T) de acuerdo a las estimaciones de
LQCD. Este debera tener un minimo en ® = 0 cuando T < T, yen T = Ty pasar a tener
un maximo local en ® = 0 y un minimo en un valor ® > 0, dando lugar a la transicién
de fase. Esto se corresponde con la ruptura de simetria Z(3). El minimo debe acercarse a
@ = 1 cuando la temperatura contintia aumentando por encima de Tp. A continuacién se
describirdn dos potenciales propuestos en la literatura.

En primer lugar consideraremos un potencial efectivo basado en la forma logaritmica
de la medida de Haar de integracién asociada con el grupo SU(3) de color [112]. La forma

funcional de este potencial es

w _ _%Q(T) (®P%) + b(T) log [1- 6 (0*) +4 (0° + &) -3 (@*)? ],

(6.28)

con los coeficientes a(T) y b(T) parametrizados segin

2 3
a(T) = ag + a1 (%) +a (%) v b(T)=bs (%) . (629)

Los pardmetros del potencial estan ajustados de manera tal que se puede reproducir la
ecuacion de estado para la teoria de gauge pura y el valor asintético de expectacion del

loop de Polyakov cuando T — co. Esto conduce a
ap =3,51, ay = —2,47, ap =15,2, a3 = —1,75. (6.30)

Una forma alternativa, basada en el ansatz de Ginzburg-Landau [34, 113] viene dada por

una funcién polinémica de la forma

MPOIV(CI)’CI)*;T) _ bZ(T) * b3 3 %3 by %2
= == OP —§(d> + @ )+Z(<I>d>) , (6.31)
donde , X
T, T, T,
by(T) = ag + m <T0>+a2 (%) + a3 (%) : (6.32)

Ajustando una vez mads el valor de las constantes a resultados de la teoria de gauge pura
en LQCD, se obtiene
ap =6,75, ay = —1,95, a, = 2,625,

a3 = —7,44, by = 0,75, by =7,5. (6.33)

En relacion al parametro T, que fija la escala para el potencial del PL, se ha argumen-
tado que su valor debe ser modificado en presencia de quarks dindmicos. De acuerdo con
el andlisis en la Ref. [114] se obtiene Tp = 210 MeV para Ny = 2y Tp = 180 MeV para

Ny = 3, con un error de aproximadamente 30 MeV.
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Hasta aqui tenemos por un lado el modelo de NJL para los quarks, y por otra parte
un potencial para el PL que involucra al sector gluénico. El acoplamiento entre ellos se
puede implementar utilizando la derivada covariante. Esto es, reemplazando en la accién
euclidea

0—Dy=0,—1iAy (6.34)

con Ay(x) = gAj(x)A./2 donde Aj, son los campos de gauge de SU(3), y A, son las
matrices de Gell-Mann.

En general el modelo supone que los quarks se mueven en presencia de un campo de
color de fondo uniforme y estatico, y por eso no se toma en cuenta la dependencia espacial
del PL. Se considera entonces A, = 52A0, con Ay = iAg = ¢. Ademads, trabajando en el

llamado gauge de Polyakov, la matriz A, tiene representacién diagonal
Ay = (P3)L3 + (Pg/\g , (6.35)

de manera que hay sélo dos variables independientes: ¢3 y ¢5. Entonces, la traza del PL
D = %Tr exp [% (¢3A3 + ¢8Ag) |, que puede tomarse como parametro de orden para el con-

finamiento, se puede escribir como

1 2i ]
-t (B9 e (ER)m () o

Debido a las propiedades de conjugaciéon de carga del lagrangiano de QCD [115], ©
debe ser una cantidad real. Por ende si ¢35 y ¢g son valores reales, esta condicién implica
que necesariamente ¢g = 0 [112], y la expresioén anterior para la traza del loop de Polyakov

se reduce a

A 1 $3
=70 =3 {1+2cos <?>] (6.37)

6.2. Modelo PNJL no local con campo magnético a temperatura
finita

Extenderemos en esta seccion el modelo introducido en el Cap. 5 a un sistema con tem-
peratura finita. Partiendo de la ecuacién (5.17) es posible estudiar las transiciones de fase
y la dependencia con la temperatura de observables termodindmicos. Para ello, considera-
remos el potencial termodindmico por unidad de volumen en la aproximacién de campo
medio (MFA) empleando el formalismo de Matsubara descrito en la Sec. 6.1 de este capi-
tulo. También se incluira el acoplamiento de los fermiones con el loop de Polyakov (PL)
para considerar los efectos debido al confinamiento. Para ello trabajaremos con las hip6-
tesis propuestas en la seccién anterior, suponiendo que los los quarks se mueven en un

campo de color de fondo constante y se utilizaré el gauge de Polyakov, que conduce a la
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ecuacion (6.37). De esta forma, el potencial termodindmico del sistema en presencia de un

campo magnético externo estd dado por

52 - lasB| [ dps Af 2
MFA  __ 2 f
T IR ID VDM vl v {1“ (PnﬁMw)
n=-—0o0 Cf
< f
+ kE In <Ak,p”m)] +UD,T), (6.38)
=1

donde hemos definido p = (p3, (21 + 1)7T + ¢). Las sumas sobre los indices de color
y sabor corren seginc¢ = 1,g,by f = u,d, respectivamente, mientras que los campos de
color de fondo son ¢, = —¢, = ¢3, P = 0, es decir, ¢ = cp3conc =1,—1,0 parar, gy b.

Como es usual en los modelos no locales se puede observar que QY™ resulta ser di-
vergente, y, por lo tanto, necesita ser regularizado. Utilizamos para ello una prescripcién
similar a la considerada por ejemplo en la Ref. [116], la cual consiste en sustraer la con-
tribucién del potencial termodindmico en ausencia de interacciones fermidnicas y luego
sumarla en su forma regularizada. Siguiendo este procedimiento obtenemos una expre-

MFA re:
sion para ()p &

Ql\éﬂ’? reg QMFA eree + eree reg (6.39)

Aqui el potencial eree se obtiene manteniendo la interaccién con el campo magnético y el
loop de Polyakov tomando ¢ = 0, y Q{e’g@“ es la expresion regularizada para el potencial
termodindmico de quarks en ausencia de los acoplamientos corriente-corriente. Para esta

contribucién la suma de Matsubara puede realizarse analiticamente, resultando
f % 1
Qpr ¢ = 2 q¢B)? [ —1,xf) + i E(xf;—xf)logxf]
Iq fBI p
_ TZ log 1+exp { (ekp + ngc)/T} ,  (6.40)

donde xy = mZ/(2|q;B|), ax = 2 — by yeip = (2k|qsB|+ p*+m?)V/2. Asuvez, ' (—1,xf) =

dC(z,x¢)/dz|,— 1 donde {(z, xs) es la funcién zeta de Hurwitz. A partir del potencial ter-

modindmico se pueden determinar 7 y ¢3 resolviendo el sistema acoplado de ecuaciones
de gap

aa;ﬁf_;"reg . 0™ 0 6.41)

o 03

Para el estudio de las transiciones de fase resulta esencial analizar el comportamiento

de los condensados quirales, debido a que éstos pueden utilizarse como parametros de

orden para las transiciones de fase de restauracion de la simetria quiral, junto con la traza

del loop de Polyakov que nos permitira estudiar el deconfinamiento. Si estas transiciones

son de primer orden, esto se verd reflejado en una discontinuidad en los parametros de
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orden y la funciones termodindmicas. En cambio, si ocurren de manera suave (crossover),
no existe una tinica manera de definir la temperatura de transicién. Para estos casos serd
de utilidad definir las susceptibilidades correspondientes en funcién de la temperatura, lo
cual haré posible tomar como temperaturas criticas a aquéllas en las que encontramos un
maximo en dichas susceptibilidades.

reg

En virtud de la expresién obtenida para el potencial Q'+ se calcula el condensado

para cada sabor de quark derivando con respecto a la correspondiente masa corriente,
MFA,reg
0Qg 1

Py (6.42)

Grappr =
Esto conduce a la siguiente expresion para el condensado quiral
|qu|T dPs AAf 2m,
o - (255 (say
Z k On—foo )\Zi ’pan p‘:‘znc +2k|qu| +m%

logT
_ Nemj [log (xf) In27 c1-(1- 1 log x;
4:7'172 Xf 2x f 2Xf

|qu|22 Jd”’ Me L . (6.43)

25 e, 1+ expl(e], +ige)/T]

La susceptibilidad quiral y la susceptibilidad asociada a la traza del PL pueden definirse
ahora como

Ao

o = G (6.44)
Xqrgp)p
X = 7;]{ BT (6.45)

en donde la susceptibilidad quiral se encuentra promediada en los sabores u y d.
Al igual que en la Sec. 5.1.1, definimos ahora el “condensado normalizado” ZJI;,T (que

en este caso depende también de la temperatura) como

ZmC[

Zhr = @papns — @papiy] +1. (6.46)

Reintroducimos a su vez las definiciones AZJI;,T = Z/;’T - Z{;’T yALpr = (AXf ++ AZ%,T) /2.

6.2.1. Resultados numéricos para temperatura finita

En esta seccién se presentan los resultados para las cantidades definidas en la subsec-
cién anterior, empleando los factores de forma introducidos en el Cap. 5 y los potenciales
efectivos discutidos en la Sec. 6.1.3.

En los paneles superiores de la Figura 6.1 mostramos el comportamiento del conden-
sado quiral promedio ¥ 7 y la traza del loop de Polyakov @ como funciones de la tem-

peratura, para tres valores representativos del campo magnético externo B, eB = 0, 0,6 y
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Gaussiana 5-Lorentziana
220 230 240 250 ‘ 220 230 240 250
182,1 1791 1774 176,6 | 1770 1770 1778 179,55
182,1 178,0 175,8 174,6 | 1748 174,7 175,5 176,8

(=9 )e0)"?
T quiral

T. deconfinamiento

Tabla 6.1: Temperaturas criticas de las transiciones de fase para la restauracion de simetria
) . . _ vari . . v
uiral v el deconfinamiento con B 0 en varias parametrizaciones. Los valores de las

temperaturas y de los condensados se encuentran expresados en MeV.

1 GeV2. Las curvas corresponden a los pardmetros que conducen a un condensado quiral
(—(q@ffg)l/ 3 = 230 MeV, para un potencial de Polyakov polinémico con Ty = 210 MeV.
Dado un valor de B, se puede observar que tanto para el caso del factor de forma gaussiano
como el 5-lorentziano las transiciones de restauracion de la simetrfa quiral y de deconfi-
namiento son de tipo crossover, y tienen lugar aproximadamente a la misma temperatura
critica. Por definicién tomamos estas temperaturas como las correspondientes a los méxi-
mos de la susceptibilidades x.; y xo. Nuestros resultados para el comportamiento de las
susceptibilidades como funciones de la temperatura, para B = 0, 0.6 y 1 GeV?, se muestran

en los paneles inferiores de la Figura 6.1.

Las temperaturas criticas de restauracion de simetria quiral y deconfinamiento obteni-
das en ausencia de campo magnético para diferentes parametrizaciones se encuentran en
la Tabla 6.1. Se puede observar que para todos los casos la separacion entre ambas tempe-
raturas criticas es menor a los 5 MeV, lo cual es consistente con los resultados obtenidos
en LQCD. De los resultados mostrados en esta tabla podemos ver también que los valores
de las temperaturas criticas no varian significativamente con las parametrizaciones (recor-
demos que en todos los casos los pardmetros fueron ajustados de forma tal de reproducir
los valores empiricos de la masa y la constante de decaimiento débil del pion). Por otra
parte, estas temperaturas criticas son ligeramente mayores que las obtenidas en LQCD,
que rondan el valor de 160 MeV. En realidad, el valor de T, y la pendiente de la transi-
cién dependen de la forma del potencial de Polyakov. En particular, para un potencial de
Polyakov polinémico podemos obtener T, ~ 160 a 165 MeV, dependiendo de la parametri-
zacion. El potencial logaritmico en la ecuacion (6.28) conduce a transiciones més abruptas,
las cuales pueden ser incluso de primer orden para ciertos valores de los pardmetros. Vale
la pena notar que en ausencia de interaccién con el loop de Polyakov los valores de T,
bajan a 130 MeV [90].

Para analizar el efecto de los campos magnéticos en la transicion de fase vemos que en

la Figura 6.1 la separacion de las temperaturas criticas de restauracion de simetria quiral
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Figura 6.1: Izquierda: Condensado sustraido normalizado promediado en sabor como fun-
cién de eB para diferentes temperaturas representativas. Derecha: condensado normaliza-
do promediado en sabor como funcién de la temperatura para diferentes valores represen-

tativos de eB. Los resultados en ambos paneles corresponden a (—{gq), ; )1/3 = 230 MeV.
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y deconfinamiento se mantiene pequefa en presencia del campo externo (de hecho, un
analisis detallado muestra que la separacion se reduce a medida que aumenta eB). Ade-
mads, podemos ver que el modelo NJL no local muestra el efecto conocido como Catélisis
Magnética Inversa, es decir que, al contrario de lo que ocurre en el modelo NJL local es-
tdndar [85, 86, 87], en nuestro modelo la temperatura critica de la restauraciéon quiral es
cada vez menor a medida que el campo magnético externo aumenta. Esto se relaciona con
el hecho de que, en general, los condensados no crecen monétonamente con B para un da-
do valor fijo de temperatura. Esta situacién se ve representada en la Figura 6.2, donde se
muestra el comportamiento del pardmetro AY.g 7 como funciéon de eB para el casode T = 0
y para los valores de temperatura cercanos a la temperatura de transiciéon. Las curvas en
los paneles izquierdo y derecho corresponden al modelo con factores de forma gaussianos
y lorentzianos, respectivamente, con la parametrizacién correspondiente al condensado
(—<(7q>gf§)l/ 3 = 230 MeV, y potencial de Polyakov polinémico. Para estas parametrizacio-
nes las temperaturas criticas para B = 0 se ubican ligeramente por debajo de los 180 Mev
(ver la Tabla 6.1). A pesar de que para T = 0 el valor de A¥p crece monétonamente con
el campo magnético externo, podemos ver que, a medida que las temperaturas se acercan
a los valores criticos, las curvas presentan un maximo y luego comienzan a decrecer a me-
dida que aumenta el campo. Finalmente, en la Figura 6.3 se presentan los gréficos de las
temperaturas criticas de la restauracion quiral T.(B), normalizadas con los valores corres-
pondientes a campo magnético nulo. La figura incluye las curvas para los modelos NJL no
locales con factores de forma gaussianos (izquierda) y 5-lorentzianos (derecha) y diferentes
paramerizaciones. Las bandas grises en ambos paneles corresponden a los resultados ob-
tenidos en LQCD, tomados de la Ref. [84]. Las lineas gruesas para ambos factores de forma
corresponden a los potenciales de PL polinémicos segtn la ecuacién (6.31). Se omitieron
los resultados para el potencial logaritmico debido a que en ese caso las transiciones son
muy abruptas comparadas con los resultados de LQCD. Podemos observar en la figura
que la catalisis magnética inversa ocurre para todas las parametrizaciones consideradas.
Para ambos factores de forma, se encuentra que el efecto es mas intenso para las parametri-
zaciones correspondientes a los condensados quirales de menor valor absoluto, y también
depende de los potenciales de Polyakov. Como una conclusién general, podemos decir que
el comportamiento de las temperaturas criticas con el campo magnético es compatible con

los resultados de LQCD para valores adecuados de los condensados quirales.

El mecanismo que conduce a la catélisis magnética inversa en el contexto de los mo-
delos no locales se puede comprender notando que las transformadas de los factores de
forma no locales son funciones del campo magnético externo. Esto se puede ver claramen-
te en la ecuacién (5.12). Recordando que en el modelo NJL no local los factores de forma

representan interacciones efectivas mediadas por un gluén de rango finito, el origen de la

93



6.2. MODELO PNJL NO LOCAL CON CAMPO MAGNETICO A TEMPERATURA
FINITA

— — 71—
7 <aa>;e =~ (230 MeVy’ 7 <da>5s =- (230 MeV)’
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Figura 6.2: Izquierda: condensado sustraido promedio en sabor como funcién de eB pa-
ra diferentes valores representativos de la temperatura. Los paneles derecho e izquierdo
corresponden a los factores de forma gaussiano y 5-lorentziano respectivamente. Los re-

sultados es ambos paneles corresponden a (—<q‘q>§og )1/3 = 230 MeV.

Gaussiana 5-Lorentziana

T (B)/T(0)
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<qq>5e = (240 MeV)’
<qq>rs = (230 MeV)’
<qq>re = (220 MeV)’

0,9 0,9

<qq>r2 = (240 MeV)’
<qq >ps = (230 MeV)’
<qq >0 = (220 MeVy’

0,8 T T T T 0,8 T T T T
0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0

eB [GeV’] eB [GeV’]

Figura 6.3: Temperaturas de restauracion de la simetria quiral normalizadas como funcién
de eB para varias parametrizaciones del modelo. Para comparacién se incluyen en la banda
gris los resultados de LQCD presentados en Ref. [84]. Los paneles derecho e izquierdo

corresponden a los factores de forma gaussiano y 5-lorentziano respectivamente.
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dependencia del factor de forma con el campo magnético puede interpretarse como de-
bido a una accién de respuesta de los quarks sobre los campos gluénicos. Es interesante
considerar la masa efectiva para el caso particular del factor de forma gaussiano, dada por
la ecuacion (5.88). Se puede ver que en este caso las componentes del momento que son
paralelas y transversas al campo magnético se desacoplan. Mientras que las componentes
3 y 4 de la forma exponencial original exp (—p?/A?) permanecen alli, las componentes
transversas 1 y 2 conducen a un factor dado por un cociente de polinomios en |g¢B|/ A2,
que tiende a cero cuando B es muy grande. De este modo, para cualquier nivel de Lan-
dau k la intensidad del acoplamiento efectivo decrece a medida que eB aumenta. Esto es
analogo a lo que ocurre con los modelos en donde se proponen constantes de acoplamiento

dependientes del campo B (ver por ejemplo las Refs. [89, 117]).
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Capitulo 7

Resumen y conclusiones

Alo largo de esta Tesis Doctoral se han estudiado distintos aspectos del comportamien-
to de la materia fuertemente interactuante en el marco de modelos de quarks relativistas
que incluyen interacciones de tipo no local. Como aspectos principales de la investigacion
original realizada se destacan en primer lugar el andlisis de la fenomenologia asociada con
el sector de mesones vectoriales y vectoriales-axiales, y en segundo lugar el estudio de
los efectos de campos magnéticos intensos sobre la materia de quarks, en particular, los
efectos de Catdlisis Magnética y Catdlisis Magnética Inversa. También se analiz6 el com-
portamiento, en presencia de estos campos, de la masa y constante de decaimiento de los

mesones 7tT.

Comenzamos presentando una introduccién general en la que se detallan los objetivos
de esta Tesis. En el Cap. 2 introdujimos la nocién de simetria dentro del Modelo Estdndar y
repasamos algunos conceptos esenciales de la Cromodindmica Cudntica (QCD), enfocan-
donos en aquéllos relacionados con la ruptura espontdnea de las simetrias vinculadas a
las transiciones de fase. Luego, en el Cap. 3 introdujimos los modelos efectivos como una
herramienta para estudiar la fenomenologia de los hadrones a bajas energias. En particular
consideramos el modelo de Nambu y Jona-Lasinio (NJL) mostrando que permite describir
adecuadamente la ruptura espontdnea de la simetria quiral y la aparicién de los pseudo-
bosones de Goldstone identificados con los mesones 7. Finalmente notamos que es posible
obtener una descripcién mas realista de las interacciones entre quarks teniendo en cuenta

interacciones de tipo no local.

En estos tres primeros capitulos presentamos las bases fundamentales para lo que cons-
tituye el aporte original de esta Tesis, que puede dividirse en tres partes. En el Cap. 4 ana-
lizamos un modelo de quarks con interacciones no locales con simetria SU(2) de sabor que
incluyen acoplamientos entre corrientes vectoriales y vectoriales-axiales, fijando los para-

metros libres de la teoria, es decir, las constantes de acoplamiento, la masa corriente de los
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quarks y los factores de forma. En el Cap. 5 consideramos en este marco tedrico general
sistemas hadrénicos en presencia de campos magnéticos externos intensos, estudiando la
Catdlisis Magnética, y determinando el efecto de la presencia de dichos campos sobre la
masa y la constante de decaimiento débil del pion. Finalmente, en el Cap. 6 analizamos el
efecto conocido como Catélisis Magnética Inversa estudiando las transiciones de fase qui-
ral y de deconfinamiento en funcién de la temperatura para sistemas sometidos a campos

magnéticos externos.

El analisis del Cap. 4 estd centrado en una extensiéon del modelo NJL que incluye in-
teracciones no locales de cuatro fermiones y un acoplamiento entre las llamadas “corrien-
tes de momento” que conduce a la renormalizacién de la funcién de onda (WFR) de los
quarks. Mostramos cémo a partir de este modelo se obtiene un propagador de quark “ves-
tido”, en el cual la masa efectiva y la WFR son funciones del momento del quark a través
de factores de forma no locales. Mostramos también que el modelo permite ajustar estos
factores de forma de modo tal de reproducir resultados obtenidos en calculos de LQCD.
Para el tratamiento del modelo se recurri6 al formalismo de bosonizacién, por medio del
cual se reescribe la funcién de particién del sistema en término de campos mesénicos,
integrando los grados de libertad fermiénicos. Trabajando en la aproximacién de campo
medio, obtuvimos expresiones para las masas dindmicas de los quarks y el condensado
quiral ({p), el cual es utilizado como pardmetro de orden de la transicién de fase asociada
con la ruptura espontdnea de la simetria quiral. Desarrollando la accién efectiva a segundo
orden en las fluctuaciones de los campos, determinamos las masas de los mesones escala-
res, pseudoescalares, vectoriales y vectoriales-axiales, y a su vez analizamos la mezcla en el
sector 71— a; encontrando una prescripciéon que nos permitié definir los campos bosénicos
7 y a, desacoplados correspondientes a los estados fisicos de estos mesones. Por otro lado,
considerando acoplamientos con corrientes externas a través de la derivada covariante, ob-
tuvimos expresiones para anchos parciales de decaimiento débil y electromagnético de los
mesones 77, y para el decaimiento del mesén p° en dos leptones. Encontramos que, debido
al cardcter no local de las interacciones, el modelo incluye, ademas de las contribuciones de
loops de quarks usuales, la contribucién de diagramas tipo tadpole que no se encuentran
presentes en el modelo NJL local. Se encontré también que para el decaimiento electro-
magnético del mesén 71, a pesar de que las contribuciones individuales de los diagramas
resultan divergentes, al sumar el total de las contribuciones dichas divergencias se cance-
lan encontrando asi resultados finitos. Algo similar ocurre para el caso del decaimiento de
meson pO, para el que se obtienen contribuciones de naturaleza longitudinal que se cance-
lan entre ellas al momento de realizar la suma total, que resulta transversa como lo requiere
la conservacion de la corriente electromagnética. Por tltimo, se llevé a cabo una extension

del desarrollo de la accién euclidea hasta el orden ctibico para calcular el ancho de decai-
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miento p — 77t. Consideramos una parametrizacion para las interacciones determinada a
partir del ajuste de las funciones de masa M(p) y renormalizacién de la funcién de onda
Z(p) de quarks a resultados obtenidos en LQCD. Los pardmetros libres de la teoria, es
decir, la masa corriente de los quarks y las constantes de acoplamiento corriente-corriente,
se determinaron a partir de observables fenomenolégicos, eligiendo como inputs valores
empiricos de masas de mesones y la constante de decaimiento débil del pion. A partir de
la evaluacién numérica de las expresiones analiticas, para la cual se debi6 introducir una
prescripcién que permite tratar con las integrales a un loop, encontramos que el modelo
es capaz de reproducir los valores empiricos de los observables calculados, y conduce a
valores fenomenolégicamente aceptables para las masas y los anchos de decaimiento. Esto
incluye predicciones satisfactorias para los anchos de desintegracion ¥ — vy, p — nty
p — eTe”, y para la masa de la resonancia a; (1260).

En los Caps. 5 y 6 nos enfocamos en las propiedades de la materia hadrénica en pre-
sencia de campos magnéticos intensos en el contexto de los modelos con interacciones
no locales. En el Cap. 5 comenzamos por incluir en la accién efectiva con acoplamientos
corriente-corriente no locales escalares y pseudoecalares un acoplamiento a un campo elec-
tromagnético externo uniforme. Definimos entonces una derivada covariante dependiente
de la carga de los quarks up y down, la cual rompe la simetria de isospin. Utilizamos el mé-
todo de autofunciones de Ritus para obtener una expresion de la accion efectiva diagonal
en el espacio de sabor, y en la aproximacién de campo medio encontramos la ecuacién del
gap y obtuvimos expresiones analiticas para los condensados quirales de quarks y para los
propagadores de quarks en presencia del campo magnético. Desarrollando la accién efec-
tiva a segundo orden en los campo mesoénicos, y utilizando dicho propagador, logramos
luego de un largo célculo analitico encontrar expresiones para las masas de los mesones 7
y 0, y para la constante de decaimiento del pion. Para el factor de forma no local se consi-
deraron dos formas funcionales: en primer lugar utilizamos funciones gaussianas (con las
que el célculo resulta mas simple), y en segundo lugar utilizamos la funcién denominada
5-lorentziana. En ambos casos se consideraron varios conjuntos de parametros fenomeno-
l6gicamente aceptables.

A partir del anélisis numérico se estudi6 el comportamiento de los condensados pro-
mediados, el cual resulté compatible con el efecto de catdlisis magnética, esto es, se en-
contré que el condensado quiral tiende a estabilizarse en la fase hadrénica al aplicarse
un campo magnético externo. Tal como sucede en otros modelos, nuestras predicciones
concuerdan cuantitativamente con los resultados de LQCD. En los célculos de las masas
de los mesones livianos se observa que éstas disminuyen a medida que el campo magné-
tico es més intenso, mientras que la constante de decaimiento débil del pién muestra el

comportamiento opuesto, aumentando su valor con el campo.
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En el Cap. 6, siempre en el marco de los modelos de quarks no locales, comenzamos
describiendo el formalismo necesario para estudiar sistemas hadrénicos a temperatura fi-
nita y mostramos como acoplar los grados de libertad fermiénicos al loop de Polyakov
en lo que llamamos “modelo nIPNJL”. Presentamos dos formas alternativas para el tér-
mino de gauge puro en el potencial termodindmico: una polinédmica basada en el ansatz
de Ginzgurg-Landau y otra basada en la forma logaritmica de la medida de Haar de in-
tegracion asociada con el grupo SU(3) de color. En la Seccién 6.2 incorporamos al mode-
lo descrito en el Cap. 5 el formalismo de temperatura finita y asi obtuvimos un modelo
para estudiar las temperaturas criticas y transiciones de fase de restauracion de la sime-
tria quiral y deconfinamiento en presencia de campos magnéticos. Utilizando las mismas
parametrizaciones descritas anteriormente obtuvimos que a temperaturas intermedias el
condensado quiral disminuye a medida que aumenta la intensidad del campo magnético.
Estudiando las curvas para la transicién de fase en funciéon de la temperatura, notamos
que el modelo predice una disminucién de la temperatura critica de transiciéon de fase
quiral al incrementarse el campo magnético externo. Este comportamiento, conocido co-
mo Catalisis Magnética Inversa, ha sido también obtenido a partir de calculos realizados
mediante LQCD. Sin embargo, s6lo ha sido posible reproducirlo en el marco de mode-
los efectivos como el NJL local introduciendo una dependencia ad hoc de las constantes de
acoplamiento con el campo magnético. Nuestros resultados muestran que los modelos que
incluyen interacciones no locales conducen naturalmente a la Catélisis Magnética Inversa,
lo cual puede entenderse teniendo en cuenta que debido a la no localidad los acoplamien-
tos corriente-corriente resultan ser dependientes de la temperatura y el campo magnético
a través de los factores de forma, que de este modo acttian como interacciones magnéticas
efectivas. Esta dependencia surge del proceso analitico para el calculo de la accién efecti-
va, sin introducir dependencias ad hoc en las constantes de acoplamiento u otras formas
utilizadas en modelos alternativos para reproducir este efecto.

Para obtener una descripcion més realista de la termodindmica de las interacciones
fuertes, y el célculo del diagrama de fases de QCD, es importante la inclusién de la WFR y
el potencial quimico. Es nuestro objetivo continuar con este desarrollo incorporando estos
nuevos elementos al modelo en presencia de campos magnéticos, de modo tal de avanzar
en el estudio de las propiedades de la materia hadrénica y poder abarcar, por ejemplo, el
analisis de estrellas compactas.

En lo que hace a la fenomenologia de los mesones, concluimos que la inclusién del sec-
tor de mesones vectoriales y axiales ofrece una visién més completa de la fenomenologia
de los mesones livianos, y sus efectos son importantes para el anélisis de observables ha-
drénicos. Dada la importancia del mesén p en las colisiones de iones pesados, planeamos

a futuro extender el estudio de las propiedades del mesén p a sistemas con temperatura

100



CAPITULO 7. RESUMEN Y CONCLUSIONES

finita. Ademads, para el caso de sistemas hadrénicos a potencial quimico finito se espera
que las interacciones vectoriales conduzcan a un condensado distinto de cero en el canal
“w” (J* = 1'==, 1 = 0), el cual es importante para el estudio del diagrama de fase de

QCD [118] y la fisica de estrellas compactas [119].
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Apéndice A
Bosonizacion

El término bosonizacién de una teoria fermidnica refiere a la transformacién del lagran-
giano fermidénico original en uno equivalente que tnicamente dependa de grados de li-
bertad bosénicos. Una transformacién de este tipo sélo puede realizarse en algunos casos.
En el modelo NJL el lagrangiano bosénico correspondiente puede ser construido solamen-
te en forma aproximada, y la accién bosoénica efectiva resultante refleja la dindmica de la
accion original del modelo en el régimen de bajas energias.

La ventaja de este método es que provee relaciones entre observables fisicos como cons-
tantes de acoplamiento, condensados, etc. Es una formulacién conveniente para discutir
caracteristicas importantes del modelo a bajas energias, y ademds permite realizar compa-
raciones con lagrangianos fenomenolégicos de mesones quirales.

Para el caso del modelo no local con dos sabores de quarks y con WFR, consideramos la
funcién de particion correspondiente Z = { Dy Dy exp[—Sg], e introducimos los campos
mesonicos 01, (x) y 71(x) (escalares y pseudoescalares respectivamente), junto con campos

auxiliares S1,(x) y P(x). Esto puede hacerse mediante el uso de las igualdades

Fljs(x),jp(x)] = JDmDn”DSﬂ)P”F[Sl(x),P”(x)]>< (A1)

exp (J d4x{al(x) [S1(x) —js(x)] + 7" (x) [P*(x) — ()] }) ,

Flin(0)] = [ D02 Fs2(0] xexp ([ atx{ono)[s206) ()]} ) - (a2
Reemplazando en la accién euclidea Sk dada en la ecuacién (3.25), obtenemos una ex-
presion dependiente de los campos fermidnicos, asi como de los nuevos campos bosénicos
que introdujimos. La integral sobre los campos fermiénicos puede resolverse analiticamen-

te a través de la propiedad
f DFDY exp [dx1d* 12 (1) Alxr, 12)p(x2)] = det A(xy, 22). (A3)
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Una vez realizada esta integral, la expresion para la funcién de particién resulta
zZ = JDm D7t Doy exp [logdetA (o9, 71, 02)} X
. . G Lo
JDS1 DP DS, exp [0151 L 7Bt oSy + 75 (sls1 + PPy 5252>] . (A4)

Por ultimo, se integran los campos auxiliares S1,(x) y P(x), y se realiza una trans-
formacién de Fourier pasando todo al espacio de momentos. De ese modo se obtiene la
expresion de la accion bosonizada en la ecuacién (3.28), con el operador A(p, p') dado por

la ecuacién (3.29).
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Apéndice B

Integrales a un loop y factores de

forma en el plano complejo

Como describimos en la Sec. 4.3, consideramos una parametrizacion para el modelo
NJL no local que nos permite reproducir los resultados obtenidos por LQCD para la de-
pendencia del propagador efectivo de los quarks con el momento. De la comparaciéon con
los datos de LQCD, los factores de forma g(p) y f(p) fueron escritos en términos de las
funciones f,,(p?) y f.(p*) dadas por las ecuaciones (4.53) y (4.55). En este apéndice dis-
cutiremos la evaluacién numérica de las integrales a un loop, que deben ser tratadas con
precaucion dada la forma funcional de f,, (pz).

Consideremos integrales a un loop que involucran un momento externo p, como es el
caso para las funciones Gps(p?), Fo1(p?) v J&(p?), definidas en las Secs. 4.1.2 y 4.2. Las

integrales pueden expresarse genéricamente como

d4
1) = | G FGTa7), (B1)

donde g* = q+p/2,y F(q",q,p) es una funcién que incluye los factores de forma expli-
citamente o a través de las masas efectivas de los quarks y/o de las renormalizaciones de
las funciones de onda. Mds precisamente, se observa que en general F(q",4~, p) puede in-
cluir los factores de forma f, (s) evaluadosens = (g7)2, (g7)? y/o g*. Estamos interesados
en esta funcién ya que su forma explicita f,,(s) = 1/[1 + (s/A3)%'?] implica la existencia
de un corte en el campo complejo s, en Re(s) < 0, Im(s) = 0. Es conveniente destacar que
en todos los casos las integrales deben ser evaluadas numéricamente en p?> = —M?2, donde
M es la masa de alguna particula mesénica.

Para realizar los cdlculos escogemos, como se realiza usualmente, el eje 4 en la direccién
del momento externo, obteniendo asi p* = (iM,0), de modo que I(p?) se reduce a una

integral doble en g4 y |7|. En virtud de la simetria de las funciones F(q",q~, p) ante el
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intercambio g < ¢, es sencillo concluir que F(g*,q~,p) = F(g7*,47 ", ), lo que asegura
que I(g?) sea real.

Ahora tomamos un |7| fijo y consideramos la estructura analitica del integrando en el
plano complejo q4. Inmediatamente podemos identificar dos cortes en este plano que sur-
gen de la funcion f,,(4%), y otros pares de cortes apareceran por la presencia de f,,[(g")?]
y fu(q97)?], respectivamente. En el caso de f,,(9?) = fu(q5 + |7 %), los cortes estdn dados
por Re(qs) = 0, Im(q4)| > |§], y por lo tanto estos nunca cruzaran el eje real g4, sobre
el cual debe realizarse la integral. Por otro lado, para f,,;[(g*)?] los cortes se encuentran
en Re(qs) = 0, [Im(q4) £ M/2| > |f], y entonces, si |§| < M/2, tanto f,,[(q7)?] como
ful(g~)?] presentaran cortes que en efecto atravesaran el eje real qg.

El modo de tratar estos cortes es una cuestion de prescripciéon. De hecho, luego de to-
mar los factores de forma de los célculos de LQCD en el espacio Euclideo se puede volver
al espacio de Minkowski a través de una rotacion de Wick. Entonces se encontraria que
los cortes se ubican sobre el eje de integracion, y para evaluar las integrales éstas debe-
rian ser modificadas siguiendo alguna receta. En nuestro caso tomamos la prescripcién de

trasladar los argumentos de f,(s) de acuerdo con

ful@] = ful(g)? —ie], (B2)
full@™ ] = ful(q7)? +ie], (B3)

mientras que f,(¢%) no se modifica. De este modo, los cortes no se superponen entre ellos
y la propiedad F(q%,q97,p) = F(q*",q~", p) se mantiene vélida. A partir de las ecuaciones

(B2) y (B3) los cortes asociados a las funciones f,,[(q%)?] estaran dados por

s

Re(qy) - ———— = 0,
e(q4) M+ 2Im(q) (B

Im(gs) + M/2|~ 7] > 0.

Las curvas correspondientes en el plano g4 se pueden observar en la Figura B.1, donde he-
mos distinguido dos situaciones: la primera en donde |7 | > M /2 (Figura B.1a), y la segun-
da cuando || < M/2 (Figura B.1b). Los cortes correspondientes a las funciones f,[(47)?],
ful(g7)?] v fw(g*) han sido representados con lineas discontinuas, de puntos (azul), tra-
zos (rojo) y puntos y trazos (negro), respectivamente. En la primera situacién (|7 | > M/2)
los cortes no cruzan el eje de integracion, por lo tanto no hay contribuciones extras a la
integral. En el segundo caso, para |§| < M/2, dos cortes cruzan de un semiplano al otro,
pasando a través del eje real q4. Como la integral sobre g4 debe ser equivalente a una inte-
gral sobre el momento qo de Minkowski, obtenida a través de su correspondiente rotacion
de Wick, el contorno de integraciéon sobre g4 deberfa deformarse de forma tal de sustraer

las contribuciones de las partes que cruzan, que se encuentran representadas por las lineas
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COMPLEJO

sdlidas (azul y roja) en la Figura B.1b. Un procedimiento similar se debe emplear cuan-

do polos del integrando cruzan el eje de integracion a cierto valor de |f|; en ese caso las

contribuciones resultantes de la deformacién del contorno de integracién de g4 se pueden
obtener calculando los residuos de los polos, de acuerdo al teorema de Cauchy. La necesi-
dad de agregar contribuciones de polos o cortes a las integrales de loop se vuelve evidente
observando las integrales relativamente sencillas que aparecen, por ejemplo, en las ecua-
ciones de gap (3.38): si se realiza una traslacién del momento del loop p — p’ = p +r, con
r2 = —M?, para un valor fijo de |’| apareceran cortes en el plano complejo p; que cruzan
del semiplano superior al inferior (o vice-versa). Ademads, en general el integrando tendra
polos que para valores suficientemente grandes de M cruzan el eje real p en algtin valor
de |p’|. Partiendo del teorema de Cauchy es sencillo calcular las contribuciones correspon-

dientes, que deben ser sustraidas si se requiere que la integral a un loop sea invariante ante

la traslacion.

o |
:AI q4 ': | q4
M2+ (4] PN
| A
. | 2
la”“ 1T‘M/2+|CI‘
'\ \
M2 - |34
M2+ i Ve

o= o\ =
M2 -3t 23] \VIE]

—|Q\‘|

\S]

—

-
ccecccocosa
-

(a) (b)

Figura B.1: Cortes de las funciones F(4%,4~, p) en el plano complejo g4, de acuerdo con

la prescripcién dada por las ecuaciones (B2) y (B3). Las curvas en los graficos (a) y (b)

correspondena |§| > M/2y |f| < M/2, respectivamente.

En la préctica las contribuciones de los cortes pueden obtenerse realizando integrales
en el plano g4 sobre contornos adecuados que encierren los trozos que cruzan el eje y luego

tomando ¢ — 0. Debido a la simetria de las funciones F(q",q~, p) las partes imaginarias
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de las integrales en los semiplanos superior e inferior se cancelan entre si, obteniéndose
una contribucién total real. Luego, el resultado debe ser integrado sobre el momento tri-
dimensional |7|. Hay que destacar que —de acuerdo con las condiciones en (B4)— esta
integracion tiene como limites |§| = 0y |§| = M/2, de modo que la contribucién de los
cortes resultard despreciable si la masa del mesén M es relativamente pequefa, lo cual
ocurre en general para el caso M = .

Finalmente, en el caso del factor de forma para el decaimiento p — 77t la situacién
es mds complicada debido a que la integral relevante, dada por (4.50), involucra dos mo-
mentos externos independientes p y v. Con el mismo procedimiento se encuentra que el
integrando en este caso tiene dos cortes adicionales en el plano complejo g4 que surgen de
las funciones f,,(s) evaluadas en s = (g + v/2 + p/4)?. Para tratar con estos cortes hemos
utilizado la prescripcién fi[(q +v/2 £ p/4)?] = ful(q+v/2 £ p/4)? Li€'], eligiendo un
camino de integracién que encierre los trozos de los cortes que cruzan el eje real ps del

modo explicado previamente.
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Apéndice C

Autofunciones y transformaciones de
Ritus

En este apéndice proveeremos la forma explicita de las funciones de Ritus [102] y dis-
cutiremos algunas de sus propiedades. Estas funciones son en realidad matrices de 4 x 4

que satisfacen la ecuaciéon de autovalores
I Ep(x) = & Eplx), (1)

donde IT es el operador definido en el Cap. 5, IT = —ig — gBx1y2. Aqui, p = (k, p2, p3, pa)
representa el conjunto de nimeros cuédnticos necesarios para determinar los autoestados,
cuyos autovalores estén dados por €; = —(2k|gB| + p} + p3). Cabe destacar que de estos
cuatro nimeros cudnticos, inicamente k es un pardmetro discreto. Trabajando en el espacio

Euclideo y eligiendo la representaciéon de Weyl para las matrices de Dirac,

0 @ 0 7
v = , — l e l 7 C2
Y (_3 O) Ya = iY0 (I O) (C2)
tenemos
Ep(x) = ) Epa(x)A*, (C3)
A=+

donde A" = diag(1,0,1,0), A~ = diag(0,1,0,1),y
Epp = Ny, ePtpntps) Dy (o), (C4)

donde p = s4/2/|gB| (qB x1 — p2), con s = signo(¢qB). El indice k) esta relacionado con el
nimero cudntico k por
ki =k—

-, (C5)

N +—
N »
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mientras que N,, = (47|gB|)'/#/+/n!. En la ecuacién (C4) hemos introducido las funciones

parabdlicas cilindricas definidas por
Du(x) = 2 2 ¥4 H,(x/V?2), (C6)

donde H,(x) son los polinomios de Hermite, con la convencion estandar H_1(x) = 0.
Debe distinguirse el caso k = 0, para el cual las autofunciones de Ritus IE;(x) deben ser

definidas como matrices de 2 x 2

i _n2
E(0,p0,ps,ps) = (47t|qB|)1/4 ol (P2xa+paxa+paxy) p—p? /4 1v2) s (C7)

donde 1,5 es la matriz identidad en el subespacio donde Ej, (x) es distinto de cero. Por

otro lado, es facil observar que las matrices A satisfacen
ATAT = AT, ATAT =0, Aty =914, Aty =A%, (C8)

donde v1 = (v1,72) y 7| = (73, 74)-

Como es de esperarse, en la direccién del campo magnético la funcion [E;(x) preserva
la forma de la autofuncién de energia de una particula libre, estando etiquetada por un
indice continuo p3 que corresponde a la componente del momento paralela a B. Esta es
también la situacién en la direcciéon del tiempo imaginario. Por otra parte, los ntimeros
cudnticos correspondientes al plano x; x, dependen del gauge utilizado para describir el
potencial vector A,. Aqui hemos elegido el gauge de Landau, para el cual los estados
asociados con la direccién x; estdn cuantizados y etiquetados por el indice discreto k. En
la direccién x; las autofunciones tienen la forma correspondiente a una particula libre, con
la particularidad de que los autovalores no dependen de p», por lo tanto los estados se

encuentran degenerados. Esta tltima propiedad nos lleva a la 1til relacion

d . dpy
J%Eﬁ(xmﬁ(x) = fﬂ]Eﬂx)]Ep(X) = 9B Py, (C9)

donde hemos definido [E; = 7o IEI7 Yoy Pe+1 = (1 —3k0) Z + 6k A*. Los operadores Dy 41
son proyectores, esto es, satisfacen P s = (Pys)% También se puede ver que Py E; =
Ej; Ps =Ejp.

Las funciones de Ritus IE;(x) satisfacen relaciones de ortonormalidad y completitud

dadas por

Jd“ Ep(x) Epr(x) = 855 Prs (C10)
%L] Ej(x) Ep(x') = 6W(x-x'), (C11)
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donde las siguientes notaciones fueron introducidas

_ 1 & (dp2dpsdps 2
%: = EI;)JE 57 o 5;5,;7’ = (2m) 5kk’5(p2 - P,’z) 5(173 - pé) 5(174 - pf;) . (C12)

Ademas, se verifica la importante identidad

ITE(x) = Ep(x) (—s/2KgBl 72+ p) 7)), (C13)

donde p| = (p3, pa).
Dadas las funciones de Ritus se puede definir la transformacién de Ritus de alguna

funcion de Dirac arbitraria (x) como

e =§§ o)y,  §(x) =§i B Ep(x), C14)

junto con la transformacién inversa
Py = fd‘*x Ep(x) p(x),  §p= Jd‘lx (x) Ep(x) . (C15)
Del mismo modo, la transformada de Ritus O 5+ de un operador arbitrario O, - se define

como
Oppr = Jd“x d*x’ By(x) Oy Epi (), (C16)
Ox/x/ = ; IEI_J(X) Oﬁ/ﬁ/ H—Eﬁ/(x') . (C17)
ﬁ/
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Apéndice D

Calculo de Gp j_f ,

De acuerdo con la relacién en la ecuacién (5.11) se tiene

;\5, = Jd‘lx d*x" Ex) (x) G(x — x') exp [i®@f(x,x")] Epra(x), (D1)

donde @ (x,x') = (q¢B/2) (x2 — x3) (x1 + x7), y las funciones Ep,(x) estian dadas en la
ecuacion (C4). Para trabajar con esta expresion introducimos la transformada de Fourier

de G(x),
g(?) = fd‘*x et G(x), (D2)

y realizamos el cambio de variables x = z +y/2, x’ = z — y/2. De este modo obtenemos

4
A dt 2 4. 44 Y Yy
Gy = J L g(t9) Jd yd'zE, <z—|— 2) exp(it -y) exp(igfByaz1) E, (z 2) :
(D3)
Dadas las formas explicitas de las funciones E;)(x), las integrales sobre y3,y4 y 22,23, 24

pueden realizarse facilmente. Obtenemos

A, A
Gyl = (2m)8(p2—p5) 6(ps — 1) 8(pa — pl) Fk,,ﬁ,p” , (D4)
donde
A, dZtJ_
I1kl£ 2 = NkANk/A f W g(tzl + Pﬁ) szldzyj_

exp(—ipay2) exp(it. -y1) exp(iqsBy>z1) Dy, (p) Dy, (0') (D5)

cont; = (k,t)y

[2 , 2
p=sf w[%3<21+y1/2)—m], p=s 19B] [97B (z1 —y1/2) = p2] . (D6)
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Recordemos que sy = signo(qsB), mientras que k) esta relacionada con k segtn la ecua-
cién (C5). Notemos ahora que la integracién sobre y» introduce un factor 27t 6(qsBz1 — p2 +
tp), el cual permite realizar facilmente la integral sobre f,. Teniendo en cuenta la forma ex-

plicita de p y p’ obtenemos

ibn - [271 2kA+kA1k tky } 2 Jd’y an dy gqu |(72+'72) + pﬂ .
exp(ivy) exp (— T ;¢2> Hm(”j/—;]) Hy, (;7\;;]) , (D7)

donde hemos utilizado la expresién de D, en términos de los polinomios de Hermite,

ecuacion (C6), y por conveniencia hemos introducido las variables adimensionales

/ ]2 _[lqsB|
|qB b, =s W(quzlerz), p=A—5wn. (D8

Realizando un nuevo cambio de variables a coordenadas polares r, ¢ en el plano vy 17, obte-

B 2
kk’PH f drr g <|CIf |72 + P|> exp <—E> I]é\/k,<r) , (D9)

nemos

donde

1 27 @© — ircos ¢)?
I,ék,(r) = ; 72 f d(,bf dy exp [—u] X
[m 2RAHK) e k’A!] 0 o

Hy, (%) Hy, (%) . (DI10)

Luego realizamos una traslacién en el plano complejo ¢,  — ¢’ = ¢ — ir cos ¢. Dado que
el integrando en (D10) en una funcién analitica, utilizando el teorema de Cauchy se puede
mostrar que la integral resultante puede realizarse sobre el eje Im ¢’ = 0. De este modo,

obtenemos

N 1 27T 0 ¢2
Ik,k' <1’) = 172 f dqbf dll) exp <—7>
|27 20t kgt 0 e

Hy, [zr exp (\/24)) + 1,IJ] Hy [—ir eXIi/%(P) — 1/]} (D11)

Luego, utilizamos la relacién H, (—x) = (—1)"H,(x) y la identidad [120]

0
f dx e’szm(x +y) Hy(x+z) = 2" V/mm! 2" ™ L"(-2yz), n>=m, (D12
—00
donde L} (x) son los polinomios de Laguerre generalizados. Finalmente, usando
27T

dp exp(ipm) = 27, (D13)
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APENDICE D. CALCULO DE Gy,

obtenemos
e (r) = 2m (=1)5 Ly, (r) S - (D14)

Reemplazando la ecuaciéon (D14) en (D9), y teniendo en cuenta la ecuaciéon (D4), luego de
un nuevo cambio de variables r — [p1 | = r4/|q¢B|/2 llegamos a

Mo_g o oM
Goy = Opp 8k, * (D15)
donde g,i'gl | estd dada por la ecuacion (5.12).
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Apéndice E

Calculo del propagador de quark a

campo medio

En esta seccion describiremos la derivacion de los propagadores de quarks u y d dentro

de la aproximaciéon de campo medio. En el espacio de Ritus éstos vienen dados por

Spa = (D)™ = b5p (DL,)7 (E1)

donde D,J: by dado en (5.14), es diagonal en los indices de Landau/momento p. Como este

operador es no diagonal tinicamente en el espacio de Dirac, su inversa puede calcularse
_ (Df

facilmente. Definiendo S/ k)

kp

f AASf A
Sy = 2 [ ko~ kp”pH 7|+ 554/ 2By (C kp” —Dip, PH'VH)%]A . (B2)

)1, se encuentra que S,{ 7 puede escribirse como

X i{ | a Dk J | estan dadas en las ecuacio-

nes (5.23-5.26). Hay que notar que en el caso particular de k = 0 (es decir k) = 06 —1) el

donde hemos definido By = |q¢B, y las funciones A

espacio de Dirac se ve reducido a uno de dos dimensiones, por lo tanto en este caso s6lo
es necesario considerar los coeficientes A, ij’(l y B, ;{‘ ‘
Para encontrar la expresion de los propagadores en el espacio de coordenadas se debe

calcular la antitransformada de Ritus de S;_A?,’f . Es decir
MFA,f MFA, f =
. ;: Ep(x) S By ()
p/

2
_ 1 if d sz oiP)-0%| Z M [‘SAA’(Akf Alihf P _,YH)A)\
2 =) (2m) Nt P 2

AN, AN, ’
+s74/2kBs (1 —5M,)(ck,pf; — Dk,pj;pu 7)) 72 AA] , (E3)
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donde hemos definido Ax| = (Ax3, Axg), con Ax; = x; — x!, y las integrales I estan

dadas por

/ d 1 !
IAA — NkA NkN f% elPZ(Xz x2) DkA (P) DkA/ (pl) , (E4:)

conp) = ss,/2/Bs|[ By xgl) —p2] =+/2Bf[ xgl) — (sg/By) p2]. Analizaremos las integrales
[** y I** separadamente. Considerando las expresiones explicitas para Ny, y Dy, (x) [ver

ecuacién (C6)], y realizando la traslacién pa = g2 +s¢Bs(x1 + x7)/2, se obtiene

Bf Z*k)\ ) ,
=\ 7 expli®s(x, x")] exp f dgs exp(igaAxy) x

2 / /B
_& BfAX1 B quz _ fol _ Ssz
exP( Bf> H"A( 2 4/_Bf> H"A( 2 4/_Bf)’ (E3)

donde ®¢(x, x) es la fase de Schwinger que ya hemos definido. Ahora es posible realizar

™ Bf Axl

una traslacion en el campo complejo a una nueva variable w = (g2 —iBfAx2/2)s¢/+/By.
Como el integrando es una funcién analitica de g, en todo el plano, la integral puede

calcularse sobre el eje Im w = 0. Se obtiene de este modo

I)\)\

Bf 2k BA
\/fﬁ 2k! [iDf(x,x")] exp( / xi) J dw exp(—w?) x

\/B
Hk)\ aJ—Tf(Aaq —iSfoZ)] Hk)\

+/B
w + Tf(Axl + iszxz)] , (E6)

donde Ax; = (Ax;,Ax;). La integral en (E6) puede evaluarse usando la relacién en (D12),

lo cual conduce a

BAY2 BAY2
I™ = Bj expli®(x, x')] exp [— f4xl] LkA< f;“) . (E7)

Considerando la integral

K(O) (m,yL) = Jvdzpl EZPJ‘.yJ‘ exp <—g—l> Lm <%> ’ (ES)
f f

donde p; = (p1,p2), y1 = (¥1,Y2), se obtiene

2
J d |pL| |PL| exp ( > <2PJ-> J 4o el\]zul (1 cos B4y, sin 6)

= 2nf dlpL| |pLl exP< > m Jo(lpollyLl)

L
f
2
= 7By (-1)" exP< nyL) (szh> (E9)

KO (m,y.1)
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donde Jp(x) es una funcién de Bessel. La ultima igualdad en la ecuacion (E9) se obtuvo
usando la siguiente relacién general, la cual involucra polinomios de Laguerre generaliza-

dos y funciones de Bessel:

[ axat et ) - )+ (1-5) e o [
0 p

1 ﬁ)] - (F10)

De las ecuaciones (E7), (E8) y (E9) finalizamos con
M= explid (x,2)] (<1 KO (ky, A1)
42 . 2 212
- ; N (1) | EPL ipiaxy _Pi “P1
41 expli®s(x, x')] (—1) f(27t)2 e exp< Bf> Ly, ( B; ) . (E11)

Un procedimiento similar se lleva a cabo para el cdlculo de las integrales I 7+, Reali-

zando los mismos cambios de variables que en el caso anterior obtenemos

— By - (ky+k-)/2 B:Ax2 0 )
F o= L2 iDe(x,x 2SR (ke f dwe " x
A/B +/B
I‘IkJr |:(U T+ Tf(Axl T+ iSfAXz):| H, [w + Tf(Axl =+ iSfAX2)1|

.| Bf . B(Ax2 B;Ax2
= By I{sfexp[zq)f(x ](£Ax —lez)exp(— f4 L>L11—1< f2 L)/

(E12)

donde hemos usado nuevamente la relacién en la ecuacién (D12) para evaluar la integral
sobre w. Notar que para k = 0 se tiene [T~ = [~ = 0 automédticamente a partir de la
definicién en (E4), yaquek, = —1o0k_ = —1,y D_1(p")) = 0. Ahora consideremos las

integrales
KD, ,) = f £p. py eI exp (J;_L) L (%) , (E13)
f f

donde j = 1,2. Usando la ecuacién (E10) con v = 1 es sencillo demostrar que

(1) P a1 (2
K0y = 2mi 2 [Tl g2 exp (<ED) b (22) pd o)
J ly.| By By

B B/ 1P
= ZiB 1)y exp (—%) Ly (%) , (E14)

de donde obtenemos

_ 1)k
¥ = (—i)%sf expli®f(x, x')] (1) TR = 1,8x0) + iKY (1,871 |

dk
\/2173

2 2
(Fp1 +ip2) exp < pL) L,Ll (%) . (E15)
Bf f

ZAXJ_ PL o«

= —i8mss expli®s(x,x')



Los resultados en (E11) y (E15) pueden combinarse de la siguiente forma

7 2 ‘k}kka/‘ dz i 2
™M = a4 (=it (= exp|i®r(x, x’ J PL jibxips gy (—p—i> X
= (57 Pli®s (6 )] | (5 p(—5,

‘ Fa—kul i —k,| 2p7
[(kA —ky)pr - Zsfpz} L(kAA+kAA,—\kA—kAr\)/2 B—f (El6)

(una expresion andloga es obtenida en la Ref. [103]). Reemplazando en (E3), y notando que
—i(E£p1 +ip2)y2A* = py -y A*, finalmente llegamos a
d4

Syar! = expliws(x,x") f g ¢S ). (E17)

donde §/(p,, p|) en el modelo NJL no local estd dada por la expresion (5.22).
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Apéndice F

Calculo de la masa del pion en

presencia de campo magnético

Describiremos aqui cémo se deriva la relacién (5.42). La ecuacién (5.36) se puede rees-

cribir en la forma

1 < Af(AB) [, cp
FO.K)) = ~128 7" Ne ), B2 ) J [ Fk’fq(+q*) kk’fq(||)+F+j;(q )II{kgq)H , (F1)
f=ud "f k=041 tA=+ I K

donde

PO (Cqye f exp {i2¢(qul)] exp {_Piﬂ?’f}
A qLpLy, Bf Bf
2 2 ! . 2 2 L ﬁ L ZPIJ% E2
g(qi+qH)g[(pL+pi q1) +‘1H] ky I k) Br )’ (F2)
- 8(_1)k+k’f exp [i24>(m,mfpi)] exp [_Piﬂﬂ y
Al qupipl By By
2 2 2 2
(po-pP) (91 +47) g[(PL + pr—q0)*+q7] Liz 1< ;;) L%r_1< g’;) :

Estas integrales pueden resolverse tomando las transformaciones de Laguerre-Fourier de

los factores de forma no locales dadas en (5.41). Obtenemos de este modo

121



0

Af (0 / ! A, i2¢(q1,p1,
Ikk{q(u) - 4<—1)k+k 2 (-1) - 8mj;||gm qf Lo eXP[ ? fo pL)} X
1

m,m’'=0

exp [_P2¢+P'f+ﬂli+ (P +p1L—q1) ] y
By
12 2 14 _ 2
L <2pi> Lk’ <2pL> LmA <2qL> Lm' |:2<PL+PJ_ ‘JJ_) :| , (F4)
By *\ By By g By
f TR i gl ot i2¢(q1,p1, 7))
m,m’'=0 qipLp f

2+ 12+ 2+ I+ _ 2
exp |:_PJ_ PiT4q1 BEPL pL—q1) ] (po-p) x

28N 1 (207 247 2(p +pL—q.1)?

Si cambiamos las variables de integracion, definiendo los vectores adimensionales u =

—/(2/Bf)p1,v=4/(2/Bf) p',,w=4/(2/Bf) (pL —q.), las integrales resultan

B3 0
Af (0 f Y A, /\
m,m’'=0
f(1) R +, (1)
Ikk’ A - 2le‘ (_1)k+k Z (_1)m+m 1gm g” gm A Kik’mm’ 4 (F6)
m,m’'=0
donde
Kli\l;fng(r)n)’ = Lw?xp [— wz} exp [ — w—u-w— is(u1wy — upwy)| Ly, (uz) Ly, [(u + w)z] X
exp [—v*—v-w —is(vwz — vaw)| Lir (0%) Ly, [(0 + w)?]

K{k(,}qzm, = —vaexp [—w?] exp [ —u?—u-w—isp(uywy — ugwr)] Lg_q (u?) Ly, [(u + w)?] x

(u-v) exp [ —0*—v-w —isf(vyw2 — vawy)] Lu_1 (0*) Ly [(04+w)?] .  (F7)

Se puede observar que Kkk{(ngm), y K,{k(, m)m, no dependen del momento o en el campo mag-
nético. Para calcular estas cantidades contamos con la ayuda de las siguientes relaciones

utiles
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APENDICE F. CALCULO DE LA MASA DEL PION EN PRESENCIA DE CAMPO
MAGNETICO

1 27T

o ), d6 L, (x*+ y*+ 2xycos8) exp [ —xyexp(+if)] = Lu(x*) Ly(v*), (F8)

27T
L [0 coso Ly (x4 y*+ 2xy cos 0) exp [ — xyexp(+if)]

27k o [L,a(xa L(?) | Lha(?) Lilm

, F9
2 n+1 n (F9)

27T
L d9 sinf L, (x*+ y*+ 2xy cos 8) exp [ — xy exp(+if)]

27T
ixy [Ly(¥P) Li(v?)  Loa(¥®) Ly (v?)
2 n+1 n !

-+

(F10)

junto con las propiedades de ortogonalidad de los polinomios de Laguerre generalizados.

En el caso de KM/ 0 3 partir de la relacién (F8) se obtiene

kk'mm'”
KA = e e (=) [ exp (=) L4, () L (42) L ()
Lwdvz exp (— ) Ly (07) Ly, (07) Ly (w?)
_ mlT)s‘skm‘Sk’m"W' (F11)

y como ConsecuenCia

BS

Af(O) f A Af

gy = 128 73 Skay Ska Ok - (F12)

Finalmente, usando las ecuaciones (F9) y (F10) obtenemos

KLY = 128 (Oms1k Surk. + Ok Owr1x,) s (F13)
lo cual conduce a .
kB
O _ " f A f = f
g = 3375 Skay Skay O - (F14)

Reemplazando los resultados (F12) y (F14) en la ecuacion (F1) llegamos a nuestra expresion
final (5.42).
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Apéndice G

Calculo de la constante de

decaimiento del pion en presencia de

campo magnético

Aqui se discutird la derivacion de nuestros resultados en las ecuaciones (5.66) y (5.68).

Partiremos de las expresiones (5.62), e introducimos la transformacién de Fourier-Laguerre

de g(4?). Luego, cambiamos el orden de las integrales y las sumas obteniendo

= f= ud f kk,m=0"1| )\ +
Af pMf )\f Af ] gAf(0)
{( I qu) kai Bk/,q[ () - q 1) A n quu} K~ +
.+, -\ A+ +, +,
8iguy [(tH -qH)quf; D"";u —(t-a7) € ;H Dkqﬂ o )}, (G1)
donde
: !
RO (Cqppekm f exp [_1290(%;&,;&)} y
qLpLpy By
2 n ., 2 2 ) 2
m+m+cu} <2m> <2m> 249
exp [—— Le (Z22)) o (255) 1, (222) , (@2
Bf A Bf A Bf A Bf
7% / 12 7 7 !
Kik(’l) (_1)k+k +m+f exp |:_ 4’<qJ-BPJ- pJ_):| (Plplz . prll) %
qLpLpl f
2 ” 2 2 ” 2
PL"’PL""M} 1 <2PL> (2PL> 2q7
exp[—— Ll LL Lo, (S .
By 1\ By By ) "\ By
(G3)

Ahora realizamos un cambio de variables de integracion, definiendo los vectores adimen-

sionales u = ,/(2/Bf)q1, v = \/mpp w = \/(Z/Bf) (P —p1)
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para Kkk{( (©) y K{k(, ) toman la forma

) B ,
K,i\];fngo) = (—1)k+k +my ?f J;}w exp [iSf<7)1ZU2 — Uzw1)] exp |:_ <02 +v-w+ w?>:| %

Ly, (02) Ly [(0 4+ w)?] f

u

2
exp (=15 ) Lo (2) exp [isyoaa — w2)], (G

,  B% 2
K,{k(,l) = (—1)kk +m+1—£ P [isf(v1wy — vyw1)] exp [— (vz +v-w+ w?ﬂ X
(viws — vawy) Ly (0%) Ly [(v 4+ w)?] x
u? .
J exp <—7> Ly, (%) exp [i s¢(wiuy —wouy)] . (G5)
u

Para evaluar las integrales en u, fijamos el vector externo w sobre la direccién 1, lo cual

conduce a la expresién
MZ 2 .
J exp <—?> Ly, (u*) exp [isg(wiuy — wouy)]
u
u2 27T
= J dlu] |u] exp( > Ly, (4?) | d6 exp (isf|wu|sinf)

2

@
_ }j dlulul exp (= ) Ly (4) o)
il

= exp < > Ly, (wz) , (G6)
donde hemos usado las relaciones
27T
d0 exp (+ iysin6) = 27 Jo(y) (G?7)
0

0 _ n 2
dx xVt1 e—ﬁxz LY (a2 Jo(x _ <1 ‘X/:B) VoY 2/ (4B) Lv xy (G8)
. n y y

(28)"+ 4p(a ﬁ)} '

siendo ], (x) las funciones de Bessel de primer tipo. Ahora, teniendo en cuenta la ecuacién

(F8), junto con la propiedad de ortogonalidad de los polinomios de Laguerre, encontramos

o0
Kli\lé’fng()) = (—1)kt* 1287t4 J dlw| [w| exp (— ) Ly, (w?) L dlv| o] exp ( —vz) X

27T
Ly, (%) ; dp Ly (0* + w* + 2 Jow| cos ) exp [ — [vw| exp(issp)]

, B} (=
= (=1)kk W;ﬁjo dlw| |w| exp ( —wz) L, (wZ)Lk/A (wz) X

Q0
jo dJo| o] exp ( - 0?) Ly, (%) Ly, (o?)
B}
— 256 3 (Skk’ (Sk’ . (G9)
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APENDICE G. CALCULO DE LA CONSTANTE DE DECAIMIENTO DEL PION EN
PRESENCIA DE CAMPO MAGNETICO

Para la integral K/, (,l) usamos el resultado en la ecuacion (G6) y luego cambiamos a las
& Kk m y lueg

nuevas variables = —v y @ = w + v. Obtenemos

Q0
Ki(,;z = (=1)ktk 556 7_[4J d|w| * exp ( — @) Lpy_; (@0?) L d|o| 9% exp (—7?) x
27T
Ly 4(9%) dip sin Ly, (0% + @ 4 2 [0w| cos ) exp [ — |[0w] exp(—isfip)]
0

, B
R [m++ : f 41| [P exp (— a?) Ly_; (@?)Lh, (a?) x
00
fo 41o]|0f* exp (— ) Lh 4 ()L () — (s miy _1>}
B}
= lsfk1024 5 Ok (Omyk—1 = Omok) (G10)

donde hemos utilizado la relacién en (F10). Finalmente, notando que

RgE

57 (Bt = O k) Gty = &erl =i (G1D)

m=0

a partir de las ecuaciones (G1), (G9) y (G10) podemos llegar a la expresion (5.66).
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