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Abstract
The synchrotron oscillation, which is both longitudinal

and horizontal oscillations, occurs under a constant longitu-
dinal velocity of revolving particle.The synchrotron and be-
tatron equations for revolving particles are derived from the
improved Hamiltonian. The betatron equation accompanys
the shinchro-betatron resonant coupling term. The coherent
synchrotron oscillation frequency of the bunch is defined
from the integrated phase. Taking advantage of the reso-
nant coupling term, an experiment to suppress magnetically
the destabilized coupled-bunch mode of the synchrotron
oscillation is proposed.

INTRODUCTION
We discussed the oscillating synchrotron motion [1] us-

ing the Hamiltonian composed of coasting, synchrotron and
betatron motions. We call it the synchrotron oscillation. The
synchrotron oscillation is not only the longitudinal oscil-
lation of the revolution frequency but also the horizontal
oscillation of the average radius. It is unveiled that the lon-
gitudinal velocity v of revolving particle is constant under
the synchrotron oscillation. On the frame of revolving par-
ticle, the synchrotron oscillation is a pure horizontal oscil-
lation. Therefore, if we can somehow artificially suppress
the horizontal oscillation, we can suppress the synchrotron
oscillation as a whole. The Hamiltonian, which clarified
the synchro-betatron resonant coupling mechanism in a stor-
age ring, revealed that the energy exchange between the
betatron and synchrotron oscillations was possible (x̄ and
δs are coupled) since both oscillations have the horizontal
component [2]. However, the synchro-betatron resonant
coupling term did not arise naturally. The synchrotron os-
cillation coupled with the betatron oscillation around the
on-momentum (reference) closed orbit but not with that
around the off-momentum closed orbit. In this manuscript,
a scale factor term of the geometry (x̄/ρ)δs is introduced
into the Hamiltonian to overcome this problem. Then the
synchrotron oscillation will be derived and discussed related
to the coherent synchrotron mode of the bunch. We propose
a method to suppress the destabilized coupled-bunch mode
of the synchrotron oscillation through the synchro-betatron
resonant coupling term.

THE IMPROVED HAMILTONIAN FOR
REVOLVING PARTICLES

In the right-handed curvilinear coordinate (x, s, z, x is the
horizontal coordinate, px is the horizontal momentum and
∗ jimbo@iae.kyoto-u.ac.jp

s is the orbital length. We assume that an on-momentum
particle of mass m and momentum p0 is revolving on the
orbit of the average radius R under the dipole magnetic field
−B. δ is the (rationalized) fractional deviation, ϕ is the
phase and t is time. Then the orbit angle is θ = s/R, the
revolution frequency is ω = dθ/dt and the (longitudinal)
velocity is v = ds/dt, which satisfies v = βc and c is the
velocity of light. For the off-momentum closed orbit, x̄ is
the horizontal coordinate, p̄x is the horizontal momentum,
ϕD is the phase delay, D is the dispersion function and ρ
is the radius of curvature. They are defined in [1]. The
prime denotes differentiation with respect to s. Keeping
up to the 2nd order to describe a revolving particle with
coasting, betatron and synchrotron motions, the Hamiltonian
H̄ composed of three motions is obtained [2]. Now we
neglect the DC component δC of the fractional deviation
δ = δC + δs for convenience (δ → δs). The oscillating
component δs is the fractional deviation of the kinetic energy
caused by the synchrotron oscillation. Then, add a scale
factor term (x̄/ρ)δs in the coasting motion. The improved
Hamiltonian turns to be

H = − (1 + δs) + (x̄/ρ)δs +
1
2

(
p̄x

p0

)2
+

1
2

Ks x̄2 +
1
2
(−η)δ2

s

(1)

−
hqV

2πβ2E0
[cos(ϕ + ϕD) − cos(ϕs + ϕD)

+ (ϕ − ϕs) sin(ϕs + ϕD)]

where the coasting motion consists of the 0th (on-momentum
particle) and 1st (δs) order effects. In the 0th order, ϕ = ωt.
ϕs is the synchronous phase. h is the harmonic number and
hω is the RF frequency. V is the (effective) RF voltage. η is
the phase slip factor. Since v is a constant in the synchrotron
oscillation [1], we have s =

∫
v dt = v(t − t ′) where t ′ is an

arbitrary reference time. Then

θ =
s
R
=

v(t − t ′)
R

. (2)

Now it is possible to replace s−description with
t−description in the next section.

We assume ϕ→ ϕs for the synchrotron oscillation in the
following discussion.
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THE BETATRON EQUATION WITH THE
SYNCHRO-BETATRON COUPLING TERM

Hamilton’s equations of motion for (x̄, p̄x/p0) are

dx̄
ds
=

∂H
∂ (p̄x/p0)

=
p̄x

p0
(3)

d (p̄x/p0)

ds
= −
∂H
∂ x̄
= −Kx x̄ −

δs
ρ

(4)

From Eqs. (3) and (4), the betatron equation of motion
with the synchro-betatron resonant coupling is obtained

d2 x̄
ds2 + Ks x̄ = −

δs
ρ

(5)

Since the polarity of δs is chosen arbirarily, this equa-
tion corresponds to Eq. (33) of [2]. The synchrobetatron
resonant coupling term arises naturally. Now the betatron
motion is coupled with the synchrotron motion around the
off-momentum closed orbit (x̄ and δs are coupled).

THE SYNCHROTRON EQUATION AND
THE COHERENT SYNCHROTRON

OSCILLATION FREQUENCY
Hamilton’s equations of motion for (ϕ, δs) are obtained

from H as
dϕ
dθ
=
∂H
∂δs
= −1 +

x̄
ρ
+ (−η)δs −

[
D′

(
p̄s
p0

)
+ DKx x̄

]
.

(6)

We have
d
ds

[
D′

(
p̄x

p0

)
+ DKx x̄

]
=

1
ρ

dx̄
ds

−
dD
ds
δs
ρ
.

Since particles generally revolve more than 104 times for
one oscillation, it is possible to consider that δs is a constant
during one revolution. Then,

D′

(
p̄x

p0

)
+ dKx x̄ =

x̄
ρ
−
δs
ρ

∫
C

D′ ds + C1 =
x̄
ρ
+ C1 (7)

where D′ = dD/ds and
∫
C

dD =
∫
C

D′ds = 0 for the cir-
cumference C in the closed orbit of the circular ring. C1 is
an integraion constant. From Eq. (6),

dϕ
dθ
=
∂H
∂δs
= −1 + (−η)δs − C1 . (8)

We consider a small amplitude oscillation of δs. Putting
ϕ→ ϕs , we obtain

dδs
dθ
= −

hqV cos (ϕs + ϕD)
2πβ2 E0

(ϕ − ϕs) (9)

and

d2δs

dθ2 = −
hqV cos (ϕs + ϕD)

2πβ2 E0

dϕ
dθ

= −
hqV cos (ϕs + ϕD)

2πβ2 E0
[(−η)δs − (1 + C1)] . (10)

This is the synchrotron equation of motion

d2

dθ2 (δs − δ0) = −v2
s (δs − δ0) (11)

where δ0 = (1 + C1)/(−η) and

v2
s =
ω2
s

ω2 =
hqV |η cos (ϕs + ϕD) |

2πβ2 E0
.

vs is the synchrotron tune, ωs is the angular synchrotron fre-
quency, and θ0 is an arbitrary orbit angle. From Eq. (11) the
synchrotron equation of motion is obtained, using Eq. (2):

δs = δ̂ cos [vs(θ − θ0)] + (1 + C1)/(−η) (12)
→ δ̂ cos [ωs(t − t0)] + (1 + C1)/(−η)

where t0 is an arbitrary reference time which satisfies t0 =
t ′+θ0/ω. Since v is a constant, an oscillation in θ-coordinate
is converted into an oscillation in t-coordinate. We have the
following relation [3]:

∆ω

ω
= −ηδs , (13)

where ∆ω is the deviation of angular revolution frequency.
From Eq. (12)

∆ω

ω
=
∆ω̂

ω
cos [ωs(t − t0)] + 1 + C1 , (14)

where ∆ω̂ is the oscillation amplitude which satisfies
∆ω̂/ω = −ηδ̂. From Equations (8), (13), and (14), the
1st order variation of ϕ is

dϕ =
∆ω̂

ω
cos [ωs(t − t0)] dθ . (15)

Then, including the 0th order term,
dϕ
dt
= ∆ω̂ cos [ωs(t − t0)] + ω . (16)

The synchrotron oscillation frequency is observed as side-
bands of ω. If we average ∆ω̂ for the particles in a bunch to
see its coherent effect, the time variation of averaged ϕ is in
tune with the RF frequency because of the phase stability
principle near RF phase 0 or π. It is observed as sidebands
of the RF frequency hω (not as sidebands of ω). These
spectra are classified as the coherent synchrotron mode of
the bunch [4]. Assume ∆ω̂ is a function of ξ and define ϕ̄
as the averaged value of ϕ. From Eq. (16),

dϕ̄
dt

∫
∆ω̂(ξ)ρ(ξ)dξ cos [ωs(t − t0)] , (17)

where ρ(ξ) is a distribution function of a bunch, normalized
by

∫
ρ(ξ)dξ = 1, with a proper parameter ξ defined around

the center of gravity of the bunch. Taking one period average,
we can define the coherent synchrotron oscillation frequency
ωcs as follows:

ωcs =

∫
average

dϕ̄ =
∫
∆ω̂(ξ)ρ(ξ)dξ

∫
average

cos (ωs(t − t0)] dt

(18)

=
1
2

∫
∆ω̂(ξ)ρ(ξ)dξ .
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THE DESTABILIZED COUPLED-BUNCH
MODE AND ITS SUPRESSION

The ion beam was bunched by the RF frequency of
2.5192 MHz (h = 100) in S-LSR, Kyoto University [2].
Sidebands of synchrotron frequencies of the resonant tune
(x̄ and δs are coupled) were observed at both sides of each
harmonics around the center peaks of RF frequency (See the
Figure 6 of [5]). The synchrotron oscillation amplitude in the
right side sideband of h = 99 harmonics is prolonged. The
synchrotron oscillation amplitude in the left side sideband of
h = 101 harmonics is also prolonged (See Figure 9 and 10
of [5]). These frequencies are located near the RF frequency.
These prolonged side bands represent the coupled-bunch
mode, in which the sidebands of each harmonics flanked the
RF center peak. The energy of the RF wave is somehow fed
into those nearby frequencies in the resonant tune when x̄
and δs are coupled. Tune jump (ωs has an uncertainty) was
observed near the resonant tune in S-LSR experiment [2].

In the resonant tune, those sideband frequencies may be
influenced by a strong RF wave of their neighbour. The pro-
longed side bands develop and are destabilized as the beam
current increases in the J-PARC Main Ring operation, which
is a high intensity proton synchrotron of 30 GeV [6]. The
coupled-bunch mode was destabilized as the beam current
increases. A longitudinal mode-by-mode feedback system
was installed to stabilize it. An extra RF cavity was used
as a longitudinal kicker [7]. However, it may not work well
as the beam space charge increases since an electrostatic
suppressing procedure is used.

Let’s consider the time development of Eq. (12), which is
given by integrating δs with time as follows,∫
δs(t) dt = δ̂

∫
cos [ωs(t − t0)] dt + (1 + C1)t/(−η) .

(19)

The 1st term of RHS is oscillating. For an arbitrary
particle, we can choose C1 = −1 in the 2nd term, which
contribute nothing. However, it turns to be C1 → −1 −

(δs/ρ)
∫
C

D′ds , −1 if Kx in Eq. (7) is changed by the
beam space charge

D′

(
p̄x

p0

)
+ DKx x̄ =

x̄
ρ
−
δs
ρ

∫
C

D′ds − 1 .

Then x̂ and δs are again coupled: the energy of the RF
wave is somehow fed into those nearby frequencies. The 2nd
term, accordingly δs , slowly increases and δs is destabilized.

This is the destabilized coupled-bunch mode. To suppress it,
δs should be contained directly. In fact the inhomogeneous
Hill’s equation has the term of the magnetic imperfection [8].
Adding the imperfection term together, Eq. (5) turns to be

d2 x̄
ds2 + K(s)x̄ =

∆BZ (t)
Bρ

−
δs(t)
ρ

(20)

where ∆BZ (t) is an additional oscillating dipole field. For
a very slow time scale compared to the betatron oscillation,
we can neglect LHS of Eq. (20). If an additional oscillating
dipole field is supplied so that ∆BZ (t)/B = δs(t) is satis-
fied in the case δs(t) represents the particular destabilizes
coupled-bunch mode, δs(t) will be suppressed. We propose
an experiment to suppress the coupled-bunch mode with an
additional oscillating dipole field ∆BZ (t). Detailed experi-
mental arrangements will be discussed in future publication.
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