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Fig. 1. Schematic of the RFI-QKD system with PLSM. The PLSM module is composed of beam splitters and two local single-

photon detectors. The IM stands for the intensity modulator. The Laser stands for laser. BS stands for the beam splitter. D stands

for the single-photon detector.
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Table 1.  Basic system parameters used in our numerical
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Fig. 2. Key rate of different schemes with intensity fluctu-
ation 0 =0, 0 =1% and o =2% under fixed deviation
angle and with infinite number of pulses. Here the fixed de-
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Abstract

In quantum key distribution (QKD), the users need to share the same reference frame. If their reference
frames are inconsistent, the QKD system will not function properly. The most widely used method today is the
active real-time calibration of both communication reference frames by using classical communication. In order
to get rid of the real-time calibration operation of the reference frames, a QKD protocol independent of
reference frame is proposed, called reference-frame-independent QKD (RFI-QKD). The RFI-QKD protocol is
immune to the effects of slowly changing reference frame drift, requiring that only one set of bases should be
aligned by Alice and Bob, and the remaining two sets of bases can slowly change in the channel. In the real
QKD system, a set of basis vectors can always be found to maintain a stable alignment. However, some
assumptions are made for the sources in most reported researches, i.e. with a trusted and fixed photon-number
distribution (PND), which usually cannot be satisfied in practical implementations. Those unreasonable
assumptions will inevitably compromise the security of practical QKD systems. To solve the problem, in this
work, we present a passive light source monitoring (PLSM) scheme for RFI-QKD, which is accomplished by a
passive monitoring module consisting of a beam splitter and two detectors on the source side. Through the
PLSM module, we can have four monitoring events by using two local detectors and then precisely estimate the
bounds of source distributions. Specifically, we take the three-intensity decoy-state-based RFI-QKD for example
for illustraing the events. Compared with the original RFI-QKD, our PLSM method can passively monitor the
PND and has many advantages, with light source fluctuations, finite-size effects and reference frame deflection
angles taken into account.

Keywords: quantum key distribution, reference frame independent, passive light source monitoring, finite-size
effect
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