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Introduction: 
Compton scattering is a source of valuable 

information about baryons since it offers 

access to some of the more subtle aspects of 

baryon structure such as polarizabilities [1], 

which parameterize the response of the target.  

The nucleon polarizabilities have been studied 

in a number of theoretical approaches. 

Additional insights into the polarizabilities 

have come from chiral perturbation theory 

(ChPT), an effective theory of the low-energy 

strong interaction, specifically from heavy 

baryon chiral perturbation theory (HBChPT) 

which is an extension of ChPT that includes 

the nucleon [2]. The first such calculations of 

nucleon polarizabilities within ChPT were 

carried out in [3]. However, HBChPT has an 

important deficiency in that the chiral 

perturbative series fails to converge in part of 

the low energy region.  The spin-dependent 

(SD) pieces of the forward scattering 

amplitude for real photons of energy ω and 

momentum q is  

 
 From the theoretical perspective there is 

particular interest in the low energy limit of 

the amplitude: 

 
where γ0 is the forward spin polarizability, 

which is related to the photo-absorption cross 

sections for parallel ( σ+) and antiparallel (σ-) 

photon and target helicities. The Low-Gell-

Mann-Goldberger low-energy theorem states 

that  

 
where α=e

2
/4π is the is the fine-structure 

constant, KN is the nucleon anomalous 

magnetic moment.  

  

While a rather large amount of work has been 

devoted, both theoretically and 

experimentally, to the study of the nucleon 

polarizabilities, very little is known about 

hyperon polarizabilities. However, with the 

advent of hyperon beams at FNAL and 

CERN, the experimental situation is likely to 

change, and this possibility has triggered a 

number of theoretical investigations. Already, 

predictions for electric and magnetic 

polarizabilities have been made for low-lying 

octet baryons in the framework of LO 

HBChPT [3], and in the context of several 

other models, yielding a broad spectrum of 

predictions . At present, no experimental data 

is available for the forward spin polarizability 

of the hyperons and no theoretical calculations 

have been published. Motivated by this 

situation, in the present work we extend the 

analysis of SU(2) HBChPT to the SU(3) 

version in order to compute γ0  for hyperons. 

This could serve as a test of low-energy 

structure of QCD in the three-flavor sector. 

However, there is also a need to compute the 

spin polarizabilities in the framework of 

BChPT with the IDR prescription. The paper 

is organized as follows. Section II contains an 

overview of the SU(3) version of HBChPT 

relevant for the calculation of the hyperon 

forward spin polarizabilities γ0. The relevant 

Feynman rules for the case of the γþ 

polarizability are given elsewhere [4]. In Sec. 

III, we give the explicit results for the hyperon 

spin polarizabilities γ0 and discuss the 

corresponding numerical results. Brief 

conclusions are given in Sec. IV.  

 

II. EFFECTIVE LAGRANGIAN 
The lowest-order SU(3) HBChPT Lagrangian 

involving the octet of pseudo scalar mesons Φ 

and the baryon octet   B  consists of two basic 
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pieces; the lowest order chiral effective 

Lagrangian [3 ]  

 
and the lowest order meson-baryon 

Lagrangian 

 
where the superscript (i) attached to the above 

Lagrangians denotes their low-energy 

dimension and the symbols < >, ± denote the 

trace over flavor matrices, commutator and 

anticommutator, respectively. We use the 

following notations: � � �� �
exp �	 


��
 , where F0 is the octet decay 

constant. The ��and Dµ are the covariant 

derivatives acting on the chiral and baryon 

fields, respectively including the external (vµ) 

and (aµ) fields and Sµ  is the covariant spin 

operator.  

III. FORWARD SPIN 

POLARIZABILITY γ0 
In order to calculate the forward spin 

polarizabilities, we work in the Breit frame.. 

We utilize the Weyl (temporal) gauge A0 = 0, 

which, in the language of HBChPT, means v.ε 

= 0 where vµ = (1,0,0,0) is the baryon four-

velocity. At O(p
3
), only the loop diagrams 

contribute to γ0 and hence the hyperon 

polarizabilities are pure loop effects. At LO, 

these loop diagrams have insertions only from

. The relevant loop-

diagrams, which contribute to polarizabilities 

are listed in ref.[4].The value of γ0 are found 

from the calculation of W
1
(ω) via, 

 
Below we list the expressions for γ0 for some 

of the low lying octet baryons: 

 

 
 

 

 
 

 

 

 
 

We note that in the nucleon case, when we 

neglect the kaon loops contribution, we 

reproduce the well-known result of SU(2) 

HBChPT [5]. The other results for spin 

polarizabilities are new predictions.  

IV. CONCLUSIONS 
We have presented the LO contribution to 

spin dependent Compton scattering in the 

framework of HBChPT. In LO HBChPT, 

these contributions are all meson loop effects, 

with no counter term or resonance exchange 

contribution and hence are a test for the chiral 

sector of three-flavor QCD. There exists a 

finite contribution from kaon loops to γ0 for 

the low-lying octet baryons. Our result for γ0 

in the case of the proton and neutron 

reproduces the results of the LO calculation of 

SU(2) HBChPT when kaon loops are not 

considered, and it remains to be seen how the 

predictions for the other baryons will compare 

with future experiments.  
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