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Abstract. It is sometimes pointed out as a curiosity that the state space of
quantum two-level systems, i.e. the qubit, and actual physical space are both
three-dimensional and Euclidean. In this paper, we suggest an information-
theoretic analysis of this relationship, by proving a particular mathematical
result: suppose that physics takes place in d spatial dimensions, and that some
events happen probabilistically (not assuming quantum theory in any way).
Furthermore, suppose there are systems that carry ‘minimal amounts of direction
information’, interacting via some continuous reversible time evolution. We
prove that this uniquely determines spatial dimension d = 3 and quantum theory
on two qubits (including entanglement and unitary time evolution), and that it
allows observers to infer local spatial geometry from probability measurements.
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1. Introduction

The fact that the state space of quantum two-level systems—the Bloch ball—and physical space
are both three dimensional and Euclidean has been regarded as a remarkable coincidence for
many years, provoking interesting ideas and lines of research. Building on this observation, von
Weizsäcker [1] (see also Lyre [2]) constructed his ‘ur theory’ as an attempt to derive spacetime
from quantum mechanics. Similarly, Penrose’s twistor theory [3] was built on the idea that the
geometry of physical and quantum state spaces are fundamentally related, which was elaborated
further by Wootters [4] pointing out the relation between quantum state distinguishability and
geometry.

The idea that the quantum bit state space and physical space are somehow
logically intertwined has become a widespread paradigm, cf [5]. But what is the exact
relationship—which one of the two determines the other? Could a similarly nice relationship
also exist in other dimensions, or is there something special about d = 3?

The goal of this paper is to offer a particular information-theoretic analysis of these
questions: we show that a certain natural interplay between geometry and probability is only
possible if space has three dimensions, and if outcome probabilities of measurements are
exactly as predicted by quantum theory. This result suggests exploring the idea that neither
quantum theory nor spacetime are separately fundamental, but that both might have a common
information-theoretic origin.

Our approach rests on some natural background assumptions. Suppose that physics takes
place in d spatial dimensions (and one time dimension), and some of the physical processes
involve probabilities. That is, there exist experiments with random outcomes—we can imagine
that physicists, or nature, prepare physical systems in certain states, and later on, measurements
on the systems reveal outcomes with certain probabilities. We do not assume that those
probabilities are necessarily described by quantum theory.

Then we consider the situation depicted in figure 1: we have two agents, traditionally
called Alice and Bob. Alice’s goal is to send some spatial direction—that is, a unit vector
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Figure 1. The situation considered in this paper. Bob holds a macroscopic
measurement device that he can rotate in a d-dimensional space; its orientation
in space is thus described by a unit vector (‘direction’) y ∈ Rd . Alice’s goal is
to send a spatial direction x ∈ Rd , |x | = 1, to Bob, by encoding it into a suitable
state ω(x). After obtaining the state, Bob measures it with his device, obtaining
one of several possible measurement outcomes with some probability (indicated
by a flashing lightbulb in the picture). After obtaining many identical copies of
ω(x), and measuring it in many different directions y ∈ Rd , Bob is supposed
to estimate Alice’s direction x , such that his guess becomes arbitrarily close to
Alice’s actual choice in the limit of infinitely many copies. We assume that Alice
and Bob have agreed on an arbitrary protocol beforehand, but they do not share
a common coordinate system, such that Alice cannot simply send a classical
description of x .

x ∈ Rd—to Bob, by encoding it into some state ω(x) and sending a physical system that carries
this state. We assume that they do not share a common coordinate system, such that Alice cannot
simply send a classical description of x . Bob holds a measurement device that can be rotated in
space, which he can apply to the state that he received, obtaining one of finitely many possible
outcomes. The outcome probabilities depend continuously on the device’s spatial orientation.
Furthermore, suppose that the following four postulates are satisfied:

1. Alice can encode any spatial direction x ∈ Rd into some state such that Bob is able to
retrieve x in the limit of many copies.

2. It is impossible for Alice to encode any further information into the state without adding
noise to the direction information.

3. There is a unique way to add up single-system observables on pairs of systems.

4. The state-carrying systems can interact pairwise by continuous reversible time evolution.

As we show below, these postulates can only be satisfied if d = 3 and if these systems, and pairs
of them, are described by quantum theory. That is, we derive the three dimensionality of space,
two-qubit quantum state space and unitary time evolution as the unique solution.

These postulates declare some actions as possible or impossible: it is possible to let two
systems interact, but impossible to encode more than a spatial direction into one system (we
define below what this means in detail). This approach is in line with other recent developments
such as information causality [6], where postulates of impossibility of certain information-
theoretic tasks are exploited to derive properties of physical theories. These approaches also
have successful historical examples, such as the postulate of impossibility to build a perpetuum
mobile of the second kind in thermodynamics.
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Figure 2. Schematic view of the physical setup underlying the framework of
convex state spaces.

The approach in this paper may be interpreted as the application of novel mathematical
tools to the old question of the relation between geometry and probability. These tools have their
origin in the recent wave of axiomatizations of quantum theory [7–12], in particular in Hardy’s
seminal work [8], and are inspired by recent work on quantum reference frames [13–17].

The first part of this paper consists of an introduction to one of these tools, which is the
framework of convex state spaces, generalizing quantum theory in a natural way. Then, the first
two postulates will be defined in more detail, and will be used to derive the state space of a
single system. Finally, joint state spaces and the remaining two postulates will be discussed in
detail, yielding our main result. Throughout the paper, only the main ideas and proof sketches
are given; the full proofs are deferred to the appendix.

2. Setting the stage: convex state spaces

The framework of convex state spaces—also called general probabilistic theories—has
proven useful in the context of quantum information theory [8, 18–23], but dates back
much further [26–30]. We now give a brief introduction; other useful introductory sources
include [31–34], in particular chapters 1 and 2 in the paper by Mielnik [35].

Consider the simple physical setup in figure 2. We have a preparation device, which,
whenever it is operated, generates an instance of a physical system (e.g. a particle). We assume
that we can operate the preparation device as often as we want (say, by pressing a button on the
device, or by waiting until a periodic physical process has completed another cycle). In the end,
the system can be measured, by applying one of several possible measurement devices with a
finite number of outcomes.

The intuition is that the device prepares the system in a certain fixed state ω; operating the
preparation device several times produces many independent copies of ω. To define exactly
what we mean by that, consider any fixed measurement device M. If M is applied to the
preparation device’s output, we assume that we obtain one of k different measurement outcomes
probabilistically, where k ∈ N is an arbitrary natural number (in figure 2, we have k = 2,
represented by the two dots). The probability to obtain the i th outcome (where 16 i 6 k) is
denotedM(i)(ω), such that

∑
iM(i)(ω)= 1.

Suppose we have two devices, both preparing the same type of physical system, but in
two different states ϕ and ω. Then we can use them to build a new device that performs a
random preparation: it prepares state ω with probability p and state ϕ with probability 1 − p.
The resulting state will be denoted pω + (1 − p)ϕ. This is a convex combination of ω and ϕ.
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d) e) f) g)

Figure 3. Examples of convex state spaces: (a) classical bit, (b) and (c) classical
three- and four-level systems, (d) quantum bit, (e)–(g) neither classical nor
quantum, even though (e) can naturally be embedded in a qubit. Note that
quantum n-level systems for n > 3 are not balls [36].

If we apply measurementM to that state, we will obtain the i th outcome with probability

M(i)(pω + (1 − p)ϕ)= pM(i)(ω)+ (1 − p)M(i)(ϕ)

by the basic laws of probability theory. In summary, we see that states ω of some physical
system are elements of a real affine space which we denote by some capital letter, say A; single
measurement outcomes are described by affine mapsM(i) : A → R which yield values between
0 and 1 for every state. Maps of this kind will be called effects. Full measurements are described
by a collection of effects {M(i)

}
k
i=1 that sum to unity if applied to any state. The set of all possible

states of the corresponding physical system will be denoted �A, the state space. It is a bounded
subset of A. We have just seen that ω ∈�A and ϕ ∈�A imply that pω + (1 − p)ϕ ∈�A for all
06 p 6 1; this means that �A is convex. We will only consider finite-dimensional state spaces
in this paper. Since outcome probabilities can only ever be determined to finite precision, we
may (and will) assume that �A is topologically closed.

As a simple example, consider a physical system that resembles a classical bit or coin.
We can perform a measurement by looking at whether the coin shows heads or tails; think of
a two-outcome device which yields the first outcome if the coin shows heads and the second
otherwise. The possible states are then characterized by the probability p ∈ [0, 1] of obtaining
heads. The state space becomes a line segment, with all states being probabilistic mixtures of
two pure states that yield either heads or tails deterministically, see figure 3(a).

The state spaces of a classical three- and four-level system are also shown in figures 3(b)
and (c): they are an equilateral triangle, respectively, a tetrahedron. In general, the state space
of a classical n-level system is the set of all probability distributions (p1, . . . , pn), which is an
(n − 1)-dimensional simplex.

Quantum state spaces look quite different. Quantum bits, the states of spin-1/2 particles,
can be described by 2 × 2 complex density matrices ρ. These can always be written in the form
ρ = (1 + Er · Eσ)/2, where Er is an ordinary real vector in R3 with |Er |6 1, and σ = (σx , σy, σz)

denotes the Pauli matrices [37]. We can consider Er = (rx , ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown in figure 3(d). A spin measurement
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in the z-direction may be described by the two effects M(1)(Er)= (1 + rz)/2 and M(2)(Er)=

(1 − rz)/2, for example, where the two outcomes correspond to ‘spin up’ and ‘spin down’,
respectively.

However, the state space of a quantum n-level system is only a ball for n = 2; for
n > 3, quantum state spaces are not balls, but intricate compact convex sets of dimension
n2

− 1 [36, 39].
Given any state space �A, all effects, i.e. affine maps M : A → R with M(ω) ∈ [0, 1]

describe outcomes of conceivable measurement devices. We can work out the set of these
maps from a description of �A. In general, some of these measurements might be physically
impossible to implement; in order to describe a physical system, we have to specify which ones
are possible and which ones are not.

From the effects, we can construct expectation values of observables, simply called
observables in the following. These are arbitrary affine maps h : A → R; in quantum theory,
they are maps of the form ρ 7→ tr(ρH), where H = H † is any self-adjoint matrix. One way to
measure an observable (on many copies of a state) is to write it as a linear combination of effects,
h =

∑
i hiMi , hi ∈ R, and to measure the effectsMi on different copies (in general, they may

not be jointly measurable on a single copy and thus be outcomes of different measurement
devices).

Similarly, we can describe reversible transformations of a physical system: these are
physical processes that take a state to another state, and may be inverted by another physical
process (in quantum theory, these are the unitaries, mapping ρ to UρU †). Since they must
respect probabilistic mixtures, they must also be affine maps. Due to reversibility, they map
the state space �A onto itself—they are symmetries of the state space. The set of reversible
transformations on A is a closed subgroup GA of all symmetries of �A.

3. Single systems: postulates 1 and 2

We consider a particular situation where measurements take place in d-dimensional space, with
one time dimension. For simplicity, we assume that there is a fixed flat background space,
such that there is a unique way to transport vectors from one laboratory A to another distant
laboratory B (however, we think that our results may apply to more general situations). We will
also assume that all physical operations considered in the following, such as measurements, are
performed locally in a way such that all parties (particles, measurement devices, etc) are relative
to each other at rest4. Thus, we do not have to consider conceivable relativistic effects.

In general, there may be many different kinds of physical systems described by convex
state spaces. We now assume that there exists a particular type of physical system which, in
a sense to be made precise, behaves like a ‘unit of direction information’. We will call these
systems ‘direction bits’ (later on, we show that they are effectively two-level systems, therefore
‘bits’, cf lemma 9 in the appendix). We will not specify by what type of physical object they
are carried—a direction bit could, for example, correspond to the internal degrees of freedom of
a particle, or it could be something completely different. We will only assume that a direction
bit may come in different states (matching the framework described above), with a state space
denoted �d.

4 In the usual vocabulary of special relativity, if we imagine that direction bits are internal degrees of freedom of
particles, this assumption implies that these particles must be massive.
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Figure 4. We assume that direction bits can be measured by some macroscopic
measurement device, which yields one of several outcomes i ∈ {1, . . . , k}

probabilistically. Due to symmetry, its modus operandi depends only on a vector
y ∈ Rd , |y| = 1 specifying its ‘direction’ in the local laboratory frame. The
probability M(i)

y (ω) to obtain the i th outcome depends only on the direction
bit state ω and continuously on the direction y. The device can be rotated in
space according to any rotation R ∈ SO(d). In the rotated reference frame of the
device, this corresponds to a reversible transformation on the direction bit.

We assume that direction bits can be measured by a certain type of measurement device
with a finite number of outcomes. As shown in figure 4, we imagine that the device is
implemented as a macroscopic, massive object which can be rotated arbitrarily, i.e. can be
subjected to any SO(d) rotation. Due to some symmetry of the device, its orientation in space
(locally in the lab) may be described by a unit vector y ∈ Rd , |y| = 1, choosing some arbitrary
but fixed coordinate system in the local laboratory. Instead of naively thinking of the whole
device as ‘pointing in direction y’, we may also think that one of the device’s components
is a vectorial physical quantity which determines the type of measurement that is performed.
A standard example in three dimensions is given by a Stern–Gerlach device, where y is the
direction of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1)= {1} is trivial, and thus no one-dimensional
rotation can map the unit vector +1 ∈ R1 to the unit vector −1 ∈ R1. In order to allow Bob
to collimate his device in all directions also in d = 1, we will thus silently replace SO(1) by
O(1)= {1,−1} in all of the following.

Since the measurement which is performed by the device may depend on its direction y in
space, it is denotedMy . In the following, by a ‘direction’, we shall always mean a unit vector
in Rd . For obvious physical reasons, we assume that the outcome probabilities M(i)

y (ω) are
continuous in the direction y.

Physically, we assume that we can perform a rotation R ∈ SO(d) to the measurement
device without touching the direction bit; this transformsMy toMRy , but leaves the bit’s state ω
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invariant. The fact that the outcome probabilities are altered, fromM(i)
y (ω) toM(i)

Ry(ω), should
be understood as a result of the change in the relative orientation of the bit and the device. Thus,
even though direction bits are considered as informational ‘black boxes’ with arbitrary physical
realization, we are forced to adopt the interpretation that direction bits carry actual physical
geometrical orientation.

This enforces a certain duality that is familiar from quantum mechanics. Suppose that, after
rotating the measurement device by R, we do not perform the measurement, but instead rotate
the joint system of direction bit and measurement device back by R−1. If it is physically unclear
how to do this in practice, we can just imagine performing a passive coordinate transformation.

Since this transformation does not change the relative direction of the system and
measurement apparatus, it does not alter the outcome probabilities. However, by changing to
the new coordinate system, MRy has been transformed back to My , hence the direction bit
state must have changed from ω to some other state ω′ such thatM(i)

y (ω
′)=M(i)

Ry(ω). The state
transformation ω 7→ ω′ can be physically undone (by rotating the joint system again by R),
hence it must be an element of the group of reversible transformations on �d. We call it G R−1 ,
such that we can switch from the ‘Heisenberg’ to the ‘Schrödinger’ picture via

M(i)
Ry(ω)=M(i)

y (G R−1ω).

Clearly G R ◦ GS = G RS; in other words, the map R 7→ G R is a group representation of SO(d)
on the direction bit state space.

Now suppose we have a situation where two agents (Alice and Bob) reside in distant
laboratories as depicted in figure 1. Imagine that Alice holds an actual physical vector x ∈ Rd

(all vectors and rotations will be denoted with respect to Alice’s local coordinate system in the
following), and she would like to send this geometric information to Bob. Since Alice and Bob
have never met, they have never agreed on a common coordinate system. Thus, it is useless for
Bob if Alice sends him a classical description of x , because he does not know what coordinate
system the description is referring to.

However, if Bob holds a measurement device as in figure 4, Alice can send him a direction
bit in some state ω. As usual in information theory (taking into account the statistical definition
of states), we analyze the properties of a single state ω by considering many identical copies
of that state. So suppose Alice sends many independent copies of ω to Bob. On every copy,
Bob can measure in a different direction, and he may find that some outcome probabilities are
varying over the different directions y ∈ Rd , |y| = 1. This breaks rotational symmetry, and so
may be used by Alice to send physical direction information to Bob.

However, Alice cannot send information about the length of the vector x to Bob, if we
assume that Bob can only rotate his device (as in figure 4) and not more. Thus, restricting to the
situation in figure 1, we state that Alice’s task is to send a direction vector x ∈ Rd , |x | = 1, to
Bob, by encoding it into some state.

Postulate 1 (Encoding). There is a protocol (as in figure 1) which allows Alice to encode all
spatial directions x ∈ Rd , |x | = 1, into states ω(x) ∈�d, such that Bob is able to retrieve x in
the limit of many copies.

Denote the coordinates of some vector x ∈ Rd in Bob’s local coordinate system by xB . Then
we stipulate that after obtaining n copies of ω(x), Bob makes a guess x (n)B of xB (based on
his previous measurement outcomes) such that x (n)B → xB for n → ∞ with probability one. For
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obvious physical reasons, we assume that Alice’s encoding x 7→ ω(x) is continuous5. Moreover,
Bob measures each direction bit individually and only once (we may imagine that direction bits
get destroyed upon measurement6).

In principle, direction bits might carry further additional information that can be read
out in measurements. As a naive example, the physical system that Alice transmits could be
a simple wristwatch, with the watch hand pointing in the direction that Alice is intending to
send. However, a wristwatch is hardly ‘economical’ for this task: it carries a large amount of
additional information, such as the details of its head shape, etc. Our second postulate says that
direction bits should be ‘minimal’ in their ability to carry directional information: any attempt
to encode further information can only succeed at the expense of losing some of the directional
information.

Postulate 2 (Minimality). No protocol allows Alice to encode any further information into the
state without adding noise to the directional information.

To spell out the mathematical details, we need to define what it means that one state ϕ is
noisier in its directional information than another state ω. First, by directional information of
ϕ, we mean the probability functions M(i)

z (ϕ) as seen by direction bit measurement device.
If we have two states ϕ, ω with directional probabilities related by a rotation, i.e. M(i)

z (ϕ)=

M(i)
Rz(ω) for some rotation R ∈ SO(d) and all i , we argue that both states are equally noisy

in this respect—they both contain the same ‘amount of asymmetry’, just pointing in different
directions.

We could additionally say that ϕ and ω are equally noisy if H(ϕ)= H(ω) for some entropy
measure H ; however, there is no unique entropy definition for arbitrary state spaces [41–43], and
entropy measures acquire meaning only relative to certain operationally defined tasks which is
a complication we want to avoid. Therefore, we define ϕ to be at least as noisy in its directional
information as ω if its directional probabilities are statistical mixtures of those of ω and other
states that are equally noisy as ω; that is, if there are statistical weights λ j > 0,

∑
j λ j = 1, and

rotations R j ∈ SO(d) such that for all outcomes i ,

M(i)
z (ϕ)=

∑
j

λ jM(i)
R j z(ω) for all z. (1)

Clearly, ϕ is noisier than ω in its directional information if it is at least as noisy, and at the
same time not equally noisy as ω. In definition 4 and following in appendix A, we show
that this notion is a natural generalization of the majorization relation [37] from classical
probability theory and quantum theory. It also has a natural interpretation in terms of resource
theories [14, 38]: for any given ω, the probability functions z 7→M(i)

z (ω)—or rather their
directional asymmetry—constitute a resource for Bob. One resource is less useful—that is, more
noisy—than the other if it can be obtained from the other by ‘free’ operations; in this case, by
tossing a coin and performing a random rotation.

Suppose we had a protocol that satisfied postulate 1, and two states ϕ 6= ω that would work
as a possible encoding of some direction x , in the sense that Bob would in both cases decode

5 We are only assuming that there exists at least one choice of encoding as a continuous map x 7→ ω(x) which
works.
6 This is by no means a crucial assumption—in general, we would have to model the measurement’s effect on the
state by an outcome-dependent state transformation, i.e. an instrument [40]. This is analogous to the construction
in quantum information theory.
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direction x in the limit of obtaining infinitely many copies. Then, by choosing to send either ϕ or
ω, Alice could send an additional classical bit to Bob. Postulate 2 says that this is only possible
at the expense of adding noise—that is, one of the two states must be noisier in its directional
information than the other.

Our goal is to determine the shape of the convex state space of a direction bit, using
only postulates 1 and 2 and the physical background assumptions (postulates 3 and 4 will
be considered later). To this end, suppose Alice encodes some direction x according to some
protocol into a stateω(x) and sends many copies of it to Bob. If the protocol satisfies postulates 1
and 2, Bob will be able to decode x .

Now suppose that Bob secretly performed a rotation R ∈ SO(d) on his laboratory before
the protocol started. Since the protocol must work regardless of the relative orientation of Alice
and Bob, Bob will still succeed to obtain an accurate estimate of x as before.

As we have seen, applying R to a measurement device can be replaced by applying
G R−1 to the direction bit state. Therefore, the following implementation will also allow Bob to
guess x :

• Apply G R−1 to every incoming direction bit; measure as in the protocol above.

• After obtaining n copies, determine the guess x (n) given by the protocol above.

• To compensate for the missing lab rotation, output the guess Rx (n).

Suppose that R is in the stabilizer subgroup of x , i.e. Rx = x . Then the lines above prove that
the original protocol also works if Alice sends the state G R−1(ω(x)) to Bob instead of ω(x).
But these states are equally noisy in their directional information, hence postulate 2 implies that
they are equal. In other words, we have shown the following:

For any encoding x 7→ ω(x), the state ω(x) is invariant with respect to all rotations that
leave x invariant.

For what follows, fix x := (1, 0, . . . , 0)T and an arbitrary protocol that satisfies postulates 1
and 2, yielding a state ω(x) that encodes direction x . If Rx = x , then

M(i)
y (ω(x))=M(i)

y (G R−1ω(x))=M(i)
Ry(ω(x)) for all y.

Thus, for every i , the probability M(i)
y (ω(x)) is a function of the first component of y.

As we show in lemma 3 in appendix A, this has the following consequence: there is at
least one measurement outcome (call it i0) and one direction y such that M(i0)

y (ω(x)) >

M(i0)
−y (ω(x))—otherwise, the state ω(x) would be ‘too symmetric’ to allow the transmission

of direction information, and postulate 1 would be violated.
Fix this i0. For every direction y that satisfies the inequality above (there might be more

than one), we define a new state ω′(y) by averaging over the stabilizer group [44] of y:

ω′(y) :=
∫

R∈SO(d):Ry=y
G Rω(x) dR. (2)

From now on, we are only interested in the outcome i0, and use the abbreviationMz :=M(i0)
z .

Furthermore, for all states ω and directions z, we set

L z(ω) :=Mz(ω)−M−z(ω).

In particular, we obtain L y(ω
′(y))= L y(ω(x)) > 0. As we prove in lemma 4 in appendix A, if

y is chosen in a clever way, then this is the maximal possible value: there is a particular choice
of y such that the map z 7→ L z(ω

′(y)) attains its unique global maximum at z = y.
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This property allows us to construct a new protocol for Alice and Bob to transmit direction
information. Fix this particular choice of y, and ω′(y). For all other directions z 6= y, define
ω′(z) by rotating ω′(y) appropriately, i.e. ω′(z) := GSω

′(y), where S ∈ SO(d) is any rotation
with Sy = z. The new protocol works as follows:

• Alice encodes some direction x into the state ω′(x) and sends many copies of it to Bob.

• By measuring the received copies, Bob determines a good estimate of the function f (z) :=
Mz(ω

′(x)). Bob’s guess is the vector z for which L z(ω
′(x))≡ f (z)− f (−z) is maximal.

Remarkably, from an arbitrary protocol to transmit direction information, we have constructed
a standard protocol. This involves a difference L z(ω)=Mz(ω)−M−z(ω), which has striking
similarity to the spin-1/2 angular momentum expectation value in quantum mechanics7: this
expression is the expectation value of a random variable which assigns ‘+1’ to direction z and
‘−1’ to direction (−z).

Since the new protocol allows Alice to transmit arbitrary spatial directions to Bob, it
must satisfy postulate 2. Thus, if we have two states ω and ϕ that satisfy L y(ω) > L z(ω) and
L y(ϕ) > L z(ϕ) for all z 6= y, they must either be equal, or one must be strictly noisier than the
other, as in equation (1) (exchanging the names ω↔ ϕ if it is the other way round). As we prove
in lemma 1 in appendix A, this equation implies for the states themselves that ϕ =

∑
j λ j G R−1

j
ω,

as states turn out to be uniquely determined by their directional information. Since both ω and
ϕ can be used as codewords for direction y in our standard protocol, our intermediate result one
page above implies that G Rω = ω and G Rϕ = ϕ for all R ∈ SO(d) with Ry = y.

Suppose that furthermore the maxima agree, i.e. L y(ω)= L y(ϕ)=: M holds. Then

M = L y(ϕ)=

∑
j

λ j L y(G R−1
j
ω)=

∑
j

λ j L R j yω︸ ︷︷ ︸
6M

.

This is only possible if L R j yω = M for all j , and thus R j y = y by construction. But then
G R jω = ω for all j as just mentioned, and applying G R−1

j
to both sides and substituting into

the relation between ϕ and ω proves that ϕ = ω. Thus, if two states encode the same direction in
our standard protocol, with the same maximal value of L , they must agree. This property will
now be used to determine the state space of a direction bit.

From now on, x and y will denote arbitrary directions, disregarding the special choices
above. Call any state ω with the property that L x(ω) > L y(ω) for all y 6= x a codeword for x .
The codewords ω′(x) constructed above are in general not the ‘optimal’ ones for the standard
protocol—we might be able to find ‘better’ ones, ω′′(x), with L x(ω

′′(x)) > L x(ω
′(x)). The

previous inequality can be interpreted as saying that the ω′′(x) let Bob determine x more quickly
than the codewords ω′(x) in the standard protocol above, because the difference in probabilities
is larger and statistically visible after transmission of fewer direction bits.

As we show in lemma 5 in appendix A, there is an ‘optimal’ set of codewords which we call
ωx , with the property that L x(ωx)> L x(ω

′(x)) for all other codewords ω′(x). The codewords
for different directions are related by rotations: if y = Rx for R ∈ SO(d), then ωy = G Rωx .
Furthermore, there is a constant 0< a 6 1 such that L y(ωy)= a for all y; we call a the direction
bit’s visibility parameter.

7 A natural first attempt would be to construct a protocol which simply looks for the global maximum ofMz(ω)

instead of L z(ω). However, it is not clear how the existence of any state ω with a unique maximum of z 7→Mz(ω)

can be ensured in this case, at this stage of the proof.
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Figure 5. After a reparametrization, we obtain that the direction bit state space
�̂d is a compact convex subset of a unit ball. Since the maximally mixed state
µ̂ is in the interior, there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂= 0. But we have proven that all states ω̂ are convex
combinations of µ̂ and some state ω̂x with |ω̂x | = 1, thus ω̂x must thus lie on
the line starting at µ̂= 0 and crossing ω̂. Consequently, all points on the sphere
must be contained in the state space—we obtain the full unit ball. By dimension
counting, it is d-dimensional.

Given ωx , we can define a ‘uniform noise’ state which we call the maximally mixed
state µ:

µ :=
∫

R∈SO(d)
G Rωx dR =

∫
R∈SO(d)

ωRx dR.

Since all ωy are related by rotations, µ is independent of the initial choice of x . As this is an
integral over the invariant Haar measure, there is constant c ∈ (0, 1) such that My(µ)= c for
all y. We call c the direction bit’s noise parameter.

Now suppose ω is any state which is a codeword for some direction x . Then λ := L x(ω)/a
is in the interval (0, 1]. Thus, ω′ := λωx + (1 − λ)µ is a valid state, and it is easy to see that
it is also a codeword for x . But L x(ω

′)= L x(ω), and so the intermediate result above implies
that ω = ω′. Since every state can be approximated arbitrarily well by some codeword, we have
proven that every state ω can be written in the form ω = λωx + (1 − λ)µ for some direction x ,
where 06 λ6 1.

We are free to reparametrize the state space�d via some affine map φ : RD
→ RD, where D

is the dimension of �d: replacing states via ω 7→ ω̂ := φ(ω), effects viaM 7→ M̂ :=M ◦φ−1

and transformations via G 7→ Ĝ := φ ◦ G ◦φ−1 does not change any probabilities or physical
predictions. Basic group representation theory [44] tells us that we can choose φ such that the
transformed group Ĝ acts linearly and contains only orthogonal matrices and the transformed
states ω̂x (for different x)—being connected by reversible transformations—have all the same
Euclidean norm 1. Moreover, the maximally mixed state µ̂, being invariant with respect to all
transformations, becomes the zero vector.

Since all states ω̂ are convex mixtures of some ω̂x and µ̂, we obtain the situation depicted
in figure 5: the transformed state space �̂d is compact convex subset of the D-dimensional unit
ball, with all ω̂x on the surface and µ̂= 0 in the center.
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It is easy to see that the maximally mixed state µ̂ is in the interior of �̂d, since it is a
mixture of all pure states. Hence there is some ball of radius ε > 0 around µ̂= 0 which is
fully contained in �̂d. Thus, if v ∈ RD is any unit vector, then εv/2 must be a valid state in
�̂d. As we have proven above, there is some 06 λ6 1 and some direction x ∈ Rd such that
εv/2 = λω̂x + (1 − λ)µ̂. This is only possible if ε = 2λ and v = ω̂x—in other words, v ∈ �̂d.
This proves that �̂d is the full D-dimensional unit ball. By construction, the map x 7→ ω̂x

is a homeomorphism from the unit sphere in Rd to the unit sphere in RD. This proves that
D = d.

Theorem 1. The state space of a direction bit is a d-dimensional unit ball.

This shows that a direction bit cannot be described by a classical probability distribution: it
must carry a non-classical state space, exhibiting uncertainty relations among d independent,
mutually complementary measurements. Probabilistic systems of this type, i.e. ball state spaces,
have been studied before [45–47]. In quantum physics as we know it, there is only one
kind of system with a ball state space: it is the qubit, a quantum two-level state space. It is
three dimensional, which coincides with the spatial dimension, confirming the result we just
proved. By classifying the affine maps from the ball to [0,1], it is easy to check that we must
have

Mx(ω)= c + (a/2)〈ω̂x , ω̂〉. (3)

In the familiar three-dimensional case, if c = 1/2 and a = 1, this describes a quantum spin
measurement in direction x ; if c 6= 1/2 or a < 1, it is a noisy spin measurement.

To see why ball state spaces satisfy postulate 2, note first that two states ϕ, ω, with
corresponding ‘Bloch vectors’ ϕ̂, ω̂ in the d-dimensional Euclidean unit ball, are equally noisy
in their directional information if and only if |ϕ̂| = |ω̂|; similarly, ϕ is noisier than ω if and
only if |ϕ̂|< |ω̂| (in the case d = 3, where the state space is a qubit, this condition becomes
tr(ϕ2) < tr(ω2)). For any protocol, and any spherical shell of fixed Bloch vector norm, there is a
one-to-one correspondence of states in that shell and spatial directions that these states encode.
Thus, if two different states encode the same direction, they must have different norms, and so
one is noisier than the other. We say more about the different possible protocols in lemma 10 in
the appendix.

4. Frame bits instead of direction bits?

Before we formulate postulates 3 and 4 and prove more properties of direction bits, let us
reconsider one basic assumption. As depicted in figure 4, we have assumed that the orientation
of a measurement device in space is given by a direction vector, implicitly assuming some
internal rotational symmetry of the device. What if we drop this assumption? In general,
the orientation of a massive body in Rd is given by an orthonormal frame, that is, by some
oriented orthonormal basis that can be written in the form of an orthogonal matrix X ∈ SO(d),
instead of a unit vector x ∈ Rd . Thus, an interesting question is what happens if we repeat the
calculations above, formulating analogues of the postulates for ‘frame bits’ instead of direction
bits.
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Figure 6. The ‘frame bit’ setup for the special case discussed in section 4.
Instead of a spatial direction, Alice’s goal is now to send an orthonormal frame
X ∈ SO(d) to Bob, by transmitting some state ω(X) of some arbitrary convex
state space. Bob holds a macroscopic binary measurement device that can be
rotated arbitrarily in space. In contrast to the situation in figure 1 for direction
bits, Bob’s measurement device does not possess any rotational symmetry, such
that its working is specified by the orthonormal basis that defines its spatial
orientation, Y ∈ SO(d). Alice and Bob have agreed on the protocol that Bob
detects the frame Y ∈ SO(d) in which the ‘yes’-probability is maximal. This
will be his guess for Alice’s frame X ∈ SO(d). In contrast to the ‘direction bit’
situation, we prove that there is no convex state space that allows this protocol
while at the same time satisfying the analogue of postulate 2—except for spatial
dimension d = 2, where frames and directions coincide.

While we have to leave the general answer open, we can give the answer in a particular
special case. First, note that for direction bits as considered above, our calculations show that
Alice and Bob can also apply the following protocol:

• Alice encodes spatial directions x ∈ Rd into the particular states ωx .
• Bob holds a two-outcome measurement device, where the first outcome is described by

the effectMy , with y the direction in which the device is pointing. Upon receiving (many
copies of) some state ω, Bob looks for the spatial direction y in whichMy(ω) is maximal,
which will be his guess of Alice’s direction x .

Effectively, the device that Bob holds asks the yes–no question ‘is it this direction that Alice
encoded?’ The actual direction is the one in which the probability to obtain ‘yes’ is maximal.

Let us now ask whether we can implement the analogous protocol for the case that

Alice wants to send a frame X ∈ SO(d). The main idea is that X =

 | |

x1 . . . xd

| |

 is used

to denote the spatial orientation of an orthonormal frame attached to an object, with the i th
orthonormal vector pointing in the direction xi ; rotations R ∈ SO(d) will thus map this to

R X =

 | |

Rx1 . . . Rxd

| |

. The protocol is depicted in figure 6. We formulate analogues of

postulates 1 and 2 (encoding and minimality) for this setup, and consider them only in the
special case of this protocol.

As we show in appendix B, a calculation very similar to the one above proves that the
‘frame bit’ state space must be generated by pure states ωY , labeled now by orthogonal matrices
Y ∈ SO(d) that are connected by rotations. In complete analogy to above, every state ω can be
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written in the form ω = λωY + (1 − λ)µ, where 06 λ6 1, µ is a maximally mixed state and
Y ∈ SO(d) some frame. Thus, the frame bit state space must also be a Euclidean ball of some
dimension D.

At this point, we run into a topological problem: similarly as for direction bits, the map
X 7→ ωX turns out to be a homeomorphism, this time from SO(d) to the unit sphere on RD.
Since SO(d) is not simply connected for d > 2, but the unit sphere in RD is simply connected
for D > 3, this is only possible if D = 2 and thus (from dimension counting) d = 2. Thus, we
have proven that there is no convex state space that allows implementation of this protocol,
while satisfying analogues of postulates 1 and 2—unless d = 2, where a frame is the same as
a spatial direction, and the setup reduces to the concept of the direction bit. (We will rule out
d = 2 in section 6, using two further postulates.)

5. Spatial geometry from probability measurements

Before continuing our derivation, we take another slight detour by asking for the relationship
between the geometry of physical space and state space.

As indicated in figure 4, our setting assumes that macroscopic objects can be physically
rotated. The implicit assumption behind this is that local physical space in the laboratory is
a vector space with a Euclidean structure, that is, with an inner product, that determines the
notion of a rotation as a linear orthogonal map and, at the same time, allows us to compute
angles between vectors.

We assume that physical rotations R ∈ SO(d) have representations G R ∈ SO(d)⊆ GA on
the direction bit state space A. As we show in lemma 12 in appendix A, group theory dictates
that the map R 7→ G R is linear and, moreover, that it is of the form G R = O RO−1 for some
orthogonal matrix O . Thus, there is automatically a correspondence between the vector space
and Euclidean structures of state space and physical space. This has an interesting consequence:
it implies that observers can measure physical angles by measuring probabilities. In other
words: even if an observer has no meter stick to measure physical angles, she may infer physical
angles from probabilities.

In appendix C, we give a boot-strapped protocol that allows observers to determine angles
from probability measurements on direction bits. This method generalizes the simple quantum-
mechanical insight that polarized electrons with spin-up in a fixed direction give probability of
spin-up in another direction (of relative angle θ ) with probability cos2(θ/2).

This structural coincidence (which is in particular true for quantum theory) seems
remarkable beyond the specific derivation in this paper. Clearly, in this work, we start with
postulates that assume a Euclidean structure in physical space, and obtain the ball state space
with its reversible rotation transformations as a consequence. It is then not very surprising,
although mathematically not trivial, that observers can use this state space structure to obtain
information on spatial angles.

However, irrespective of the specific construction in this paper, it is interesting to speculate
whether the physically fundamental order of logic (if there is any) might actually be reversed. In
example 2 in appendix C, we give a modification of the direction bit setup where this speculation
can be shown to make sense.

In this example, space is described by a topological manifold, and Bob’s local laboratory
space does not have a vector space structure or inner product to begin with. We then assume that
there are physical processes that can in a certain sense be interpreted as generalized rotations
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of a device, yielding reversible transformations on some convex state space. Under specific
conditions, we show that Bob can use the coefficients of the measurement outcome probabilities
in the space of effects to define natural coordinates on his local physical space.

In these new coordinates, the generalized rotations act linearly and orthogonally on the
devices, establishing spatial Euclidean structure that was not assumed to be there in the
first place. Even though our particular example is not meant to describe an actual physical
mechanism, it is tempting to speculate whether the Euclidean structure of tangent space might
be fundamentally inherited from the convexity of probabilities.

6. Pairs of systems: postulates 3 and 4

Consider two (distinguishable) direction bits A and B; taken together, they form a joint system
AB, described by some convex state space �AB . In the usual formulation of quantum theory,
the joint state space �AB would be given by the density matrices on the tensor product Hilbert
space—however, in this paper, we do not assume quantum theory.

In full generality, for two state spaces �A and �B , the framework of convex state spaces
allows infinitely many possible ways to combine them into some �AB , restricted only by a few
physically obvious constraints. One of them says that if ωA

∈�A and ωB
∈�B are two local

states, then there is a joint state ωAωB
∈�AB which describes the independent local preparation

of both states on the subsystems, analogous to product states in quantum theory. Similarly, if
MA andMB are measurement outcomes (i.e. effects) on A and B, then by assumption there is
a global effectMAMB which asks whether both measurement outcomes have occurred jointly.
It satisfies in particular

(MAMB)(ωAωB)=MA(ωA)MB(ωB),

and can be shown to respect the no-signaling conditions [20]. Furthermore, we assume that
the local state space A (B) is closed with respect to postselection according to measurement
outcomes on B (A), for details see appendix A.

In physics, we are often interested in expectation values of observables such as energy or
angular momentum. Classical as well as quantum physics have an important structural property
regarding composite systems: suppose we have two systems A and B of the same type, and
h is a single-system observable (in quantum theory, where states ωA are density matrices, this
would be a map h(ωA)= tr(ωA H), where H = H †). Suppose we are interested in the sum of
this observable on systems A and B—this defines a new observable h(2) on pairs of systems,
where

h(2)(ωAωB)= h(ωA)+ h(ωB) (4)

for uncorrelated states. What if we want to evaluate h(2)(ωAB) for correlated (possibly
entangled) states ωAB? In quantum theory, there is a unique way to do this, because equation (4)
uniquely determines h(2) and its action on all states. We necessarily have

h(2)(ωAB)= tr
[
ωAB (H ⊗ 1 + 1 ⊗ H)

]
.

Arguably, this uniqueness is an important property of composite systems—if it failed, it would
not be clear how to add up observables on composite systems (e.g. there would be no unique
notion of a ‘non-interacting sum of Hamiltonians’, and thus no unique physical way to combine
systems in trivial non-interacting ways). We promote this property to a postulate.
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Postulate 3 (Sums of observables). If h is any direction bit observable, then there is a unique
observable h(2) on pairs of direction bits such that

h(2)(ωAωB)= h(ωA)+ h(ωB).

It is easy to see that postulate 3 holds true if and only if the uncorrelated states ωAωB

linearly span the global state space �AB . Thus, postulate 3 is equivalent to a condition that
is usually called ‘local tomography’ in the literature [8]: it says that joint states on AB are
uniquely characterized by the local measurement outcome probabilities on A and B and their
correlations. Denoting the dimension of �A by dA, this is also equivalent to

dAB + 1 = (dA + 1)(dB + 1). (5)

The global state space �AB carries its own group of reversible transformations GAB . We assume
that Alice and Bob may still apply their local reversible transformations, that is, if G A

∈ GA and
G B

∈ GB , then G AG B
∈ GAB . Due to postulate 3, this transformation is uniquely determined by

its action on uncorrelated states: (G AG B)(ωAωB)= (G AωA)(G BωB).
This shows that postulate 3 also has geometric significance: suppose we decide to carry out

a local coordinate transformation; in our case, this is a rotation R ∈ SO(d). This transformation
acts on states of direction bits via ωA

7→ G Rω
A. The third postulate now tells us that this

uniquely determines the coordinate transformation map on (correlated) pairs of systems: they
are transformed via ωAB

7→ (G RG R)ω
AB , which is the only possible linear map that transforms

ωAωB into (G Rω
A)(G Rω

B).
Every pair of state spaces �A and �B can be combined into a joint state space �AB in

accordance with postulate 3: the ‘smallest’ possible choice (denoted �min
AB ) is to define it as the

convex hull of all product states ωAωB . On the other hand, the ‘largest’ possible choice (denoted
�max

AB ) is to allow all vectors ωAB such that all local measurements yield valid probabilities, even
after postselection [48–50]. Every compact convex set �AB which satisfies

�min
AB ⊆�AB ⊆�max

AB

is then a possible choice of the global state space, as long as local reversible transformations
map �AB into itself. In quantum theory, �min

AB turns out to be the set of unentangled states, while
the actual global quantum state space �AB lies strictly in between �min

AB and �max
AB .

Composites of convex state spaces have been extensively studied in the quantum
information literature. Some of this interest is due to the fact that many of these state spaces
contain states with non-local correlations that are stronger than those allowed by quantum
theory. For example, if �A =�B is the square state space as in figure 3(f), then the composite
�max

AB is the no-signaling polytope for two binary measurements on two parties, containing PR
box states which violate the Bell–CHSH inequality stronger than any quantum state [20, 51–53].
This example also illustrates that the convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very different from those of quantum theory.

In the case of two direction bits A and B, where the local state spaces are d-balls, there
are also many possible choices of the global state space �AB in accordance with postulate 3,
including �min

AB and �max
AB . Our fourth and final postulate now states that this global state space

allows for continuous reversible interaction.

Postulate 4 (Interaction). For two direction bits A and B, there is a continuous one-parameter
group of transformations {T AB

t }t∈R which is not a product of local transformations, T AB
t 6=

T A
t T B

t .
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Figure 7. Circuit model that yields constraints for the global Lie algebra
elements X . We prepare a pure product state ωA

x ω
B
y , apply the transformation

exp(t X) and perform a product measurement MA
xMB

y . Since this gives
probability 1 for t = 0, and probabilities cannot be larger than 1 for other (small)
t , this implies that the derivative at t = 0 must vanish, and the second derivative
must be non-positive.

The group T AB
t describes continuous reversible time evolution in a closed system of two

direction bits: if we start at time t = 0 with a product state ωAωB , then the state at time t will
be ωAB(t) := T AB

t (ωAωB). If T AB
t was a product transformation T A

t T B
t for all times t , then the

global state would remain a product state forever: ωAB(t)= (T A
t ω

A)(T B
t ω

B). In this case, the
two direction bits could never become correlated; there would be no interaction. Postulate 4
excludes this: it states that there is at least one time t ∈ R such that T AB

t is not of this product
form.

The global transformations T AB
t and the local transformations G AG B with G A,G B

∈

SO(d) generate a Lie subgroup of GAB ; we call it HAB . Due to (5), it is a matrix Lie group
acting on R(d+1)(d+1)−1. The corresponding Lie algebra is called hAB . Let X be some element
of hAB , and consider the circuit in figure 7. It depicts the outcome probability of a product
measurement on an evolved product state

f (t) :=MA
xM

B
y

(
et XωA

x ω
B
y

)
∈ [0, 1].

As we show in lemma 13 in appendix A, we may assume, without loss of generality, that the
direction bit state space has noise parameter c = 1/2 and visibility parameter a = 1. This is the
‘noiseless case’, where spin measurements give probabilities Mx(ω−x)= 0 and Mx(ωx)= 1,
implying in particular that f (0)= 1 for the circuit in figure 7. Since this is the maximal possible
value, we must have f ′(0)= 0 and also f ′′(0)6 0. Thus

MA
xM

B
y XωA

x ω
B
y = 0,

MA
xM

B
y X 2ωA

x ω
B
y 6 0

for all x, y ∈ Rd with |x | = |y| = 1. By considering other circuits of this kind, we obtain a long
list of constraint equalities and inequalities which must be satisfied by all global Lie algebra
elements X .

Surprisingly, as shown in appendix A and in [54], if d 6= 3, then the only matrices X which
satisfy all constraints are those of the form X = X A + X B . And these elements generate non-
interacting time evolution of product form exp(t X)= exp(t X A) exp(t X B). Thus, if d 6= 3,HAB

contains only product transformations, and postulate 4 cannot be satisfied.

Theorem 2. From postulates 1–4 it follows that the spatial dimension must be d = 3.

The main reason why d = 3 is special becomes visible by inspection of the proof in [54]. It boils
down to the group-theoretic fact that (at least for d > 3) the subgroup of SO(d) which fixes a
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given vector (i.e. SO(d − 1)) is Abelian only if d = 3. In other words, the fact that rotations
commute in two dimensions, but not in higher dimensions is the main reason why d = 3 survives.
The cases d = 1 and 2 are special as well, but are ruled out in the proof for other reasons.

It remains to show that we actually get quantum theory for two direction bits if d = 3. We
already know that the dimension of the global state space is dim�AB = (d + 1)(d + 1)− 1 = 15,
which agrees with the number of real parameters in a complex 4 × 4 density matrix. Thus, we
can embed�AB in the real space of Hermitian 4 × 4-matrices of unit trace. Now we have global
Lie algebra elements X ∈ hAB that are not just sums of local generators, i.e. X 6= X A + X B .
However, as shown in [55], these elements are still highly restricted: they generate unitary
conjugations, i.e. transformations of the form ρ 7→ UρU †.

By postulate 4, at least one of these unitaries must be entangling. Moreover, all local unitary
transformations are possible (in the ball representation, these are the rotations in SO(3)). It is a
well-known fact from quantum computation [56] that a set of unitaries of this kind generates the
set of all unitaries—that is, every map of the form ρ 7→ UρU † must be contained in the global
transformation group HAB ⊆ GAB .

The orbit of this group on pure product states generates all pure quantum states, and one can
show [55] that there cannot be any additional non-quantum states. Thus, we have recovered the
state space of quantum theory on two qubits. Due to positivity, all effects must be quantum
effects; in the noisy case (i.e. c 6= 1/2 or a < 1), not all quantum effects may actually be
implementable—that is, we might have a restricted set of measurements. We have thus proven:

Theorem 3. From postulates 1–4, it follows that the state space of two direction bits is two-
qubit quantum state space (i.e. the set of 4 × 4 density matrices), and time evolution is given by
a one-parameter group of unitaries, ρ 7→ U (t)ρU (t)†.

As a simple consequence, there exists some 4 × 4 Hermitian matrix H such that U (t)=

exp(−iHt), i.e. a Hamiltonian that generates time evolution according to the Schrödinger
equation.

7. Conclusions

We have derived two facts about physics from information-theoretic postulates: the three
dimensionality of space [57] and the fact that probabilities of measurement outcomes for some
systems are described by quantum theory. In order to do this, we assumed that there exist
‘reasonable’ physical systems which, in a certain sense, carry minimal amounts of directional
information.

Our result supports and clarifies the point of view that the geometric structure of spacetime
and the probabilistic structure of quantum theory are closely intertwined, similar in spirit
to [1–4, 58–60]. As one can see in figure 3, this conclusion becomes particularly obvious in
the context of convex state spaces. This interrelation is not only axiomatic, but also operational:
as we have shown in section 5, observers can measure—or even define—physical angles by
measuring probabilities.

Furthermore, these findings suggest exploring possible generalizations: the approach to
construct state spaces from physical symmetry properties [70], together with minimality
assumptions, might reproduce quantum systems of higher spin, or even physically interesting
non-quantum state spaces that have so far remained unexplored.
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In summary, there seem to be two possible interpretations of the results in this paper.
Firstly, the results might simply be mathematical coincidence, without any deep physical reason
underlying them. This is perfectly conceivable; in this case, the main contribution of this paper
is a detailed analysis of the structural fit between quantum theory and spacetime. Secondly, the
results might point to an actual logical relation between geometry and probability that arises
from some unknown fundamental physics, such as quantum gravity.

If the second possibility turned out to be true, this would suggest an exciting speculation,
stated also in [61, 62]: in many approaches to quantum gravity, the smoothness and/or three
dimensionality of space is considered to be only an approximation. But then, given the close
relation between smooth Euclidean space and the qubit, maybe the universe’s probabilistic
theory is only approximately quantum? Taking this idea seriously would suggest to go beyond
the usual ‘quantization of geometry’ paradigm.
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Appendix A. Characterization of all direction bit state spaces

The proof consists of four steps: first, we prove that the direction bit state space is a Euclidean
ball (possibly noisy, that is, with a restricted set of measurements). Then we show that the noisy
case can always be reduced to the noiseless case. Given this, the results from [54] do most of the
work: they show that only d = 3 is possible. As a last step, in order to obtain quantum theory
for d = 3, we refer to the results in [55].

We start with a formal definition of state spaces. As we have motivated in the main text, the
set of normalized states on any system is a compact convex set. To simplify the calculations, it
makes sense to start right away with the full set of unnormalized states, which will be all vectors
of the form λ ·ω, where ω is a normalized state and λ> 0. This yields a cone in the sense of
convex geometry—that is, a subset C of a vector space with the property that x ∈ C implies
λx ∈ C for all λ> 0.

For reasons of brevity, we will not give a detailed explanation and motivation of all
definitions. For more discussion, we refer the reader to the references mentioned in the main
text, in particular to chapter 3 in [33].

Definition 1 (State space). A state space is a tuple (A, A+,U A, E A), where

• A is a real finite-dimensional vector space,

• A+ ⊂ A is a proper cone (i.e. a closed, convex cone of full dimension with A+ ∩ (−A+)=

{0}), called the cone of unnormalized states,
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• U A is a linear functional which is strictly positive on A+\{0}, called the order unit of A,

• E A is a closed convex set of functionals which are non-negative on all of A+, containing U A,
having full dimension dim(E A)= dim(A), and satisfying M(x)≤ U A(x) for all x ∈ A+

andM ∈ E A. It is called the set of allowed effects.

Furthermore, we define the dual cone A∗

+ as the set of all linear functionals which are non-
negative on A+, which implies E A ⊆ A∗

+. The set of all ω ∈ A+ with U A(ω)= 1 will be denoted
�A and is called the set of normalized states.

The requirement dim(E A)= dim(A) has a simple physical motivation: if dim(E A) <

dim(A), then we would have states ω 6= ϕ that would yield the same outcome probabilities
for all possible measurements, invalidating to call them ‘different states’ in the first place.

To save some ink, we will usually just write A for the state space, instead of writing the
full tuple. However, keep in mind that the choice of a state space comes also with a choice of
A+, U A and E A.

Given any measurement with an arbitrary number of outcomes, the probability of one of
the outcomes—if measured on some state ω ∈�A—will be a real number in [0,1]. The map
M that takes the state ω to the corresponding probabilityM(ω) must be linear, since statistical
mixtures of states must yield mixtures of probabilities. In principle, every linear functional
M ∈ Emax

A may describe a measurement outcome probability, where

Emax
A := {M ∈ A∗

+ | 06M(ω)6 1 for all ω ∈�A}. (A.1)

However, one may imagine that it might be physically impossible to implement measurement
devices for all these linear functionals. This is why the set E A is introduced in the definition
above: it is meant to describe the collection of all possible effects that may actually be
implemented in measurements. Clearly, we have E A ⊆ Emax

A . In some publications (e.g. [23]),
it is assumed that E A = Emax

A , but not in this paper. In other words, we are not assuming the
‘no-restriction hypothesis’ here [24]. The possibility to have E A 6= Emax

A describes situations, as
we will see below, where all measurements on a direction bit are by necessity intrinsically noisy.

As an example, in finite-dimensional n-level quantum theory,

• A is the real vector space of Hermitian matrices on Cn,

• A+ is the set of positive semi-definite matrices on Cn,

• U A(ρ)= tr(ρ) is the trace functional,

• E A is the set of all maps of the form ρ 7→ tr(ρM), with O 6 M 6 1 a positive semi-definite
matrix,

• �A is the set of density matrices on Cn.

Similarly, the state space of classical n-level probability theory is (B, B+,U B, B+), where

• B = Rn,

• B+ = {p = (p1, . . . , pn) | all pi > 0},

• U B(p)= p1 + p2 + · · · + pn,

• EB is the set of all maps p 7→ p · q with q = (q1, . . . , qn) such that all O 6 qi 6 1,
where · denotes the Euclidean inner product,
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• �B is the set of all probability distributions:

�B =

{
p = (p1, . . . , pn)

∣∣∣∣∣ all pi > 0,
∑

i

pi = 1

}
.

In both classical probability theory and quantum theory, all effects are allowed.
We would like to talk about reversible transformations on state spaces. To this end, we

define

Definition 2 (Dynamical state space). A tuple (A, A+,U A, E A,GA), where (A, A+,U A, E A) is
a state space, and GA is a compact (possibly finite) group of linear maps on A, is called a
dynamical state space, if every G ∈ GA satisfies

• G�A =�A (or, equivalently, U A
◦ G = U A and G A+ = A+), and

• E A ◦ G = E A.

These two conditions say that reversible transformations must respect the set of normalized
states and the set of allowed effects. It is easy to see that the first condition implies that
A∗

+ ◦ G = A∗

+ for all G ∈ GA.
In quantum theory, GA is the group of all maps of the form ρ 7→ UρU †, with U unitary.

In classical probability theory, GB is a representation of the permutation group. Specifically,
for every permutation π , there is a reversible transformation Gπ with Gπ(p1, . . . , pn)=

(pπ(1), . . . , pπ(n)).
Here is a rigorous definition of equivalence of state spaces:

Definition 3 (Equivalent state spaces). Two state spaces A and B are equivalent if there exists
a bijective linear map L : A → B such that the following conditions are satisfied:

• L A+ = B+,

• U B
◦ L = U A,

• EB ◦ L = E A.

Two dynamical state spaces A and B are equivalent, if they are equivalent as state spaces and
additionally satisfy GB = L ◦GA ◦ L−1.

This is clearly an equivalence relation. If two (dynamical) state spaces are equivalent, they
are indistinguishable in all their physical properties.

Now we show how the notion of noisiness in postulate 2 can be seen as a special case of
‘group majorization’, a natural definition of noisiness with respect to a group that encompasses
the classical and quantum cases in the obvious way. This definition is well known in the
mathematics literature [25]; we rephrase it in definition 4 below in the context of convex state
spaces. We start by showing a simple consequence of postulate 2.

Lemma 1. Suppose that ω and ϕ are both possible encodings of the same direction x ∈ Rd ,
|x | = 1, in some protocol that satisfies postulate 1. From postulate 2, it follows that there exist
0< λ j 6 1,

∑
j λ j = 1, and rotations R j ∈ SO(d) (resp. O(d) if d = 1) such that

ϕ =

∑
j

λ j G R−1
j
ω

or with ϕ and ω interchanged. If ϕ 6= ω then this is a proper convex combination.
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Proof. According to postulate 2, the assumptions of this lemma imply

M(i)
z (ϕ)=

∑
j

λ jM(i)
R j z(ω) for all directions z ∈ Rd, |z| = 1,

or vice versa (in the latter case, rename ϕ and ω to fit this formula). Set ω′ :=
∑

j λ j G R−1
j
ω, then

M(i)
z (ω

′)=M(i)
z (ϕ) for all z. But then ω′ could be used as a replacement for ϕ in the protocol,

namely, as yet another codeword for direction x . Moreover, ω′ and ϕ are by construction equally
noisy in their directional information, so postulate 2 implies that they must be equal.

ut

Now we show how this fits into a majorization framework.

Definition 4 (Group majorization). Let A be any dynamical state space, and H a compact
subgroup of GA. Then we define a relation �H on �A in the following way: for ω, ϕ ∈�A, it
holds ω �H ϕ if and only if there are λi > 0, i = 1, . . . , n,

∑n
i=1 λi = 1, and Ti ∈H such that

ω =

∑
i

λi Tiϕ. (A.2)

We write ω � ϕ if any only if ω �GA ϕ.

Lemma 2. The noisiness relation is a partial order on the orbits. That is, for any dynamical
state space A and any compact subgroup H⊆ GA, we have

(i) if ω �H ϕ and ϕ �H ρ, then ω �H ρ;

(ii) ω �H ω for all ω ∈�A; and

(iii) if ω �H ϕ and ϕ �H ω, then there exists T ∈H such that ω = Tϕ.

Moreover, we have

(iv) if ω �H ϕ then T1ω �H T2ϕ for all T1, T2 ∈H.

Proof. Property (ii) is trivial, by setting λ1 = 1 and T1 = 1 in (A.2). If ω �H ϕ, then

T1ω =

∑
i

λi(T1Ti T
−1

2 )T2ϕ �H T2ϕ

if T1, T2 ∈H, proving (iv). If additionally ϕ �H ρ such that ϕ =
∑

j λ
′

j T
′

jρ, then ω =∑
i j λiλ

′

j Ti T ′

jρ �H ρ. This proves (i). It remains to prove (iii). To this end, introduce an inner
product 〈·, ·〉 on A which is invariant with respect to GA (and thus H), i.e.

〈x, y〉 = 〈T x, T y〉 for all x, y ∈ A, T ∈ GA.

Moreover, let ‖ · ‖ be the corresponding norm. Then (A.2) and the triangle inequality yield

‖ω‖=

∥∥∥∥∥∑
i

λi Tiϕ

∥∥∥∥∥6∑
i

λi ‖Tiϕ‖=

∑
i

λi‖ϕ‖ = ‖ϕ‖.

Thus, if both ω �H ϕ and ϕ �H ω, then ‖ω‖=‖ ϕ ‖=‖Tiϕ‖=: r . Let Sr be the unit sphere of
radius r , then (A.2) says that ω ∈ Sr is a convex combination of the Tiϕ ∈ Sr . Geometrically,
it is clear that this is only possible if Tiϕ = ω whenever λi 6= 0 (formally, it follows from the
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fact that all boundary points of the ball are exposed points). Setting T := Ti for any of these i
proves (iii).

ut

Now we see how our definition of noisiness from postulate 2 fits naturally into the well-known
notion of majorization. In the case of quantum theory (with the full unitary group), it follows
from [37, theorem 12.13] that our relation � is identical to Nielsen’s majorization relation on
density matrices. From lemma 1, we obtain the following:

Theorem 4 (Noisiness and group majorization). A state ϕ is at least as noisy in its
directional information as another state ω if and only if

ϕ �SO(d) ω,

where SO(d) denotes the representation of the rotation group within the group of reversible
transformations of a direction bit. (If d = 1, then SO(d) has to be replaced by O(1).)

Given two state spaces A and B, we would like to define a composite state space AB
which, according to postulate 3, satisfies the local tomography property [10]: states on AB are
uniquely characterized by the statistics of local measurements. Equation (5) in the main text
translates into dim(AB)= dim A dim B; thus, we may choose the vector space AB to be the
tensor product A ⊗ B. This will turn out to be a handy choice: we can represent independent
preparations ωAωB by products ωA

⊗ωB . We obtain the following definition:

Definition 5 (Locally tomographic composite). Given two dynamical state spaces A and B,
a dynamical state space (AB, (AB)+,U AB, E AB,GAB) will be called a composite of A and B,
if the following conditions are satisfied:

• the linear space which carries the state space is AB = A ⊗ B,

• U AB
= U A

⊗U B ,

• if ϕA
∈ A+ and ωB

∈ B+, then ϕA
⊗ωB

∈ (AB)+,

• ifMA
∈ E A and N B

∈ EB , thenMA
⊗N B

∈ E AB ,

• if G A ∈ GA and G B ∈ GB , then G A ⊗ G B ∈ GAB ,

• for every N B
∈ EB and ωAB

∈ (AB)+, the vector ωA
cond (‘conditional state’) defined by

MA(ωA
cond)=

MA
⊗N B(ωAB)

U A ⊗N B(ωAB)
for allMA

∈ E A (A.3)

is a valid state, i.e. ωA
cond ∈ A+, and similarly for A and B interchanged.

Note that equation (A.3) is automatically satisfied if all effects on A are allowed. It means that
we cannot get ‘new’ states outside of �A by preparing global states and postselecting on local
measurement outcomes. Similarly, we might demand that any map of the form

ωA
7→MAB(ωA

⊗ωB)

for a fixed bipartite effectMAB and fixed state ωB is itself a valid effect on A. If this is violated,
then the set of possible local measurements on A is increased by composing it with the other
system B. However, since we do not need this condition in the following, we decided not to
have it as part of the definition in order to have a result which is as general as possible.
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By settingN B := U B in equation (A.3), we obtain the conditional state which Alice sees if
Bob does not perform any measurement. This is the reduced state ωA of ωAB

∈�AB , satisfying

MA(ωA)=MA
⊗U B(ωAB) for allMA

∈ E A.

Thus, definition 5 ensures that global states have valid reduced states (marginals).
We continue by proving two claims in the main text in the following two lemmas:

Lemma 3. With the notation of the main text (in particular, x = (1, 0, . . . , 0)T), there is some
outcome i0 and some direction y ∈ Rd , |y| = 1, such thatM(i0)

y (ω(x)) >M(i0)
−y (ω(x)).

Proof. As we have shown in the main text, the probabilitiesM(i)
y (ω(x)) depend only on the first

component y1 of y. Suppose thatM(i)
y (ω(x))=M(i)

−y(ω(x)) for all i and all y. Let S ∈ SO(d)
be the matrix S := diag(−1,−1, 1, . . . , 1) (if d = 1 or d = 2 take S = −1), then it follows that
M(i)

y (ω(x))=M(i)
Sy(ω(x)) for all i and y. Now consider the following two situations under

which Alice attempts to send the spatial direction x = (1, 0, . . . , 0)T to Bob:

1. Bob’s laboratory is aligned in exactly the same way as Alice’s—that is, both share the same
coordinate system (maybe by chance). In this case, Bob’s coordinates xB of x are the same
as Alice’s: xB = (1, 0, . . . , 0)T.

2. Compared to Alice’s laboratory, Bob’s lab is oriented differently, namely it is rotated by S
relative to Alice. In this case, Bob’s coordinates xB of x are xB = (−1, 0, . . . , 0)T.

Since Alice does not know which of the two situations (or any of the infinitely other possible
ones) apply to Bob’s laboratory, her encoding x 7→ ω(x)must work in both cases. However, due
toM(i)

y (ω(x))=M(i)
Sy(ω(x)) for all i and y, Bob sees exactly the same outcome probabilities in

both cases, leading with probability one to the same estimate xB . This contradicts the soundness
of the protocol, i.e. postulate 1.

ut

Lemma 4. Let i0 be any outcome that satisfies the statement of lemma 3. Then there is some
direction y ∈ Rd , |y| = 1, such that the state

ω′(y) :=
∫

R∈SO(d):Ry=y
G Rω(x) dR (A.4)

has the property that the map z 7→ L z(ω
′(y)) attains its unique global maximum at z = y.

Proof. If d = 1, then equation (A.4) becomes ω′(y)= ω(x), and thus L y(ω
′(y))= L y(ω(x)) >

0 according to lemma 3. Since there are only two possible directions y = ±1, and since
L−y = −L y , this must be the global maximum.

Now consider the case d > 2. As in the main text, write Mz :=M(i0)
z . Then L z(ω(x))=

Mz(ω(x))−M−z(ω(x)) depends only on the first component z1 of z; denote this value by
`(z1). This defines a real continuous function ` : [−1, 1] → [−1, 1]. By construction, it is an odd
function: `(−z1)= −`(z1), and we know from lemma 3 that there is some z1 with `(z1) > 0.
Since ` is continuous, it attains its global maximum `max > 0 somewhere. Since the set of points
where this maximum is attained is compact, and since `(z1)= `max implies `(−z1) 6= `max, the
expression

z∗

1 := argmin{|z1| | `(z1)= `max}
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is well defined. Let y ∈ Rd , |y| = 1 be any direction with first component y1 = z∗

1. By
construction, `max = L y(ω(x))> L z(ω(x)) for all z 6= y. Define ω′(y) as in (A.4). Since
L z ◦ G R = L R−1z, we obtain

L y(ω
′(y))= L y(ω(x))= `max.

Consequently, L−y(ω
′(y))= −`max. Let z 6∈ {y,−y}, then

L z(ω
′(y))=

∫
R∈SO(d):Ry=y

L R−1z(ω(x)) dR. (A.5)

We have to show that this is strictly less than `max. To this end, we define a continuous path
on the surface of the d-dimensional unit ball. We will assume that z∗

1 > 0; the case z∗

1 < 0
is treated analogously (z∗

1 = 0 is excluded from `(0)= −`(0)= 0< `max). For t ∈ [−z∗

1, z∗

1],
let z(t) ∈ Rd be some vector with |z(t)| = 1 such that t 7→ z(t) is continuous, z(−z∗

1)= −y,
z(z∗

1)= y, and such that the first component of z(t) equals t . If z 6∈ {−y, y}, then there is some
t ∈ (−z∗

1, z∗

1) such that |z − y| = |z(t)− y|. Hence there is some R ∈ SO(d) with Ry = y such
that R−1z = z(t), and since |t |< |z∗

1|, we have

L R−1z(ω(x))= L z(t)(ω(x))= `(t) < `max.

But this expression appears in (A.5): the integrand is upper bounded by `max for all R, and is
strictly less than `max for the rotation R that we have just found. This proves that L z(ω

′(y)) <
`max.

ut

Now we are ready to give a thorough definition of a ‘direction bit’. It is arguably difficult
to formalize postulates 1 and 2 from the main text into a rigorous mathematical definition:
rigorously defining what is meant by a ‘protocol’ seems hardly worth the effort (the result would
be long and not very illuminating); similarly, a formalization of the physical intuition about
spatial symmetries (rotating the device versus the direction bit, etc), as used in the initial stage
of the proof, seems over the top for the purpose of this paper. Instead, we use two consequences
of postulates 1 and 2, called assumptions 1 and 2, as derived in the main at an intermediate
stage of the proof, to write down a definition of direction bits. This avoids talking about the
physical background situation, but ensures that all the ‘convex state space’ argumentation rests
on rigorous mathematical grounds.

The meaning of the assumptions is as follows. Assumption 1 states that the standard
protocol that we have constructed in the main text works: there is some state ω which may
serve as a codeword for some direction x in the standard protocol. This is because the quantity
L y(ω), i.e. the difference of probabilities in directions y and (−y), has unique maximum in
y = x . Assumption 2 formalizes the consequence of applying postulate 2 to the special case of
the standard protocol, proven in the main text: if two states encode the same direction in the
standard protocol, with the same maximal value of L , they must agree. Assumption 3 subsumes
postulates 3 and 4.

Definition 6 (Direction bit). For d ∈ N, a dynamical state space (A, A+, U A, E A, GA)

together with a distinguished continuous representation of SO(d) (resp. O(1) if d = 1) as
a subgroup of GA (denoted R 7→ G R), a distinguished vector x ∈ Rd with |x | = 1, and a
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distinguished effectM ∈ E A, 06M6 U A, will be called a direction bit for spatial dimension
d, if the following conditions are satisfied:

• For R ∈ SO(d) (resp. O(1) if d = 1), the effect My :=M ◦ G R−1 depends only on y :=
Rx.

• Assumption 1. There exists ω ∈�A with L x(ω) > L y(ω) for all y 6= x, where L y :=
My −M−y .

• Assumption 2. Suppose that ω,ω′
∈�A are states with the property that the maps y 7→

L y(ω) and y 7→ L y(ω
′) both have a unique maximum in the same direction y0, and the

maximal value is the same: L y0(ω)= L y0(ω
′). Then ω = ω′.

• Assumption 3. There exists a locally tomographic composite AB of A and B := A with
the property that GAB contains a one-parameter subgroup {G AB

t }t∈R for which there exists
t ∈ R such that G AB

t cannot be written in the form G A
⊗ G B with G A

∈ GA and G B
∈ GB .

Now the claims of the main text will be proven in detail.

Lemma 5. Let A be a direction bit for spatial dimension d, with distinguished direction x ∈ Rd .
Then there is a constant 0< a 6 1 which we call visibility parameter with the following
property:

a = max{L x(ω) | ω ∈�A, L x(ω) > L y(ω) for all y 6= x}.

Moreover, for every y ∈ Rd with |y| = 1, there is a unique state ωy ∈�A such that L y(ωy)= a
and L z(ωy) < a for all z 6= y. Furthermore, GSωy = ωSy and My ◦ GS =MS−1 y for all S ∈

SO(d) (resp. S ∈ O(1) if d = 1), and the maps y 7→ ωy and R 7→ G R are both homeomorphisms
into their images (in the subspace topology).

Proof. In all of this proof, if d = 1, then all appearances of SO(d) shall be replaced by
O(1). Let x ∈ Rd be the direction bit’s distinguished direction (cf definition 6), and M≡

Mx the distinguished effect. Let ω ∈�A be any state with L x(ω) > L y(ω) for all y 6= x (it
follows that L x(ω) > 0). Let ω′

∈�A be any other state satisfying L x(ω
′) > L y(ω

′) for all
y 6= x and at the same time L x(ω

′) > L x(ω) (if no such state exists, we are done: just set
a := L x(ω) and ωx := ω). Define the state µ :=

∫
R∈SO(d) G Rω dR. By invariance of the Haar

measure, there is a constant β > 0 such that My(µ)= β for all y, and thus L y(µ)= 0. Set
λ := 1 − L x(ω)/L x(ω

′) ∈ (0, 1), and ϕ := λµ+ (1 − λ)ω′, then by construction L x(ϕ) > L y(ϕ)

for all y 6= x , and L x(ϕ)= L x(ω). Thus, assumption 2 implies that ω = ϕ = λµ+ (1 − λ)ω′. In
summary, all states that have x ∈ Rd as their unique maximizing direction of L• lie on the line
which starts at µ and extends through ω to infinity.

Since the state space is compact, this line will hit the topological boundary of �A in some
state that we call ωx . By construction, there is some λ ∈ [0, 1) such that ω = λµ+ (1 − λ)ωx .
But then, L x(ω) > L y(ω) for all y 6= x implies the analogous strict inequality for ωx . Set
a := L x(ωx), then it has the claimed property. For every y ∈ Rd with |y| = 1, choose some
R ∈ SO(d) with Rx = y, and set ωy := G Rωx . Since L y = L x ◦ G R−1 , we have

L y(ωy)= L x(G R−1ωy)= L x(ωx)= a.

Let z 6= y be an arbitrary vector with |z| = 1, and let S ∈ SO(d) be any transformation with
Sx = z. Then z 6= Rx , hence R−1Sx 6= x , and so

L z(ωy)= L Sx(G Rωx)= L R−1 Sx(ωx) < a.
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It follows directly from assumption 2 that ωy is the unique state with these two properties.
Recalling definition 6, we also have

My ◦ GS =M ◦ G R−1 ◦ GS =M ◦ G R−1 S =M ◦ G(S−1 R)−1 =MS−1 Rx =MS−1 y.

A simple calculation also shows that ω := GSωy has the properties L Sy(ω)= a and L z(ω) < a
for all z 6= Sy, which shows that ω = ωSy . Next we show that the map y 7→ ωy is continuous.
To this end, let {yn}n∈N be a sequence of vectors in Rd with |yn| = 1 which converges to some
vector y. Clearly, we can find a sequence of orthogonal linear maps {Rn}n∈N with Rn yn = y and
Rn

n→∞

−→ 1. By continuity of the group representation, we have G Rn

n→∞

−→ 1, and thus

|ωy −ωyn | = |ωRn yn −ωyn | = |G Rnωyn −ωyn |6 |G Rn − 1|∞ · |ωyn |
n→∞

−→ 0

since the state space is compact. Since ωy 6= ωz for y 6= z, the map y 7→ ωy is a continuous
injective map from the compact unit sphere in Rd to its image. Thus [63, 64], it is a
homeomorphism into its image.

Similarly, the calculations above show that R 6= S implies that G R 6= GS. Since the map
R 7→ G R is continuous, it is a homeomorphism into its image.

ut

The next lemma also serves as a definition of the maximally mixed state.

Lemma 6. Let A be a direction bit for d spatial dimensions. Fix any x ∈ Rd with |x | = 1, and
define the maximally mixed state by integration over the Haar measure of SO(d) (resp. O(1) if
d = 1),

µ :=
∫

R∈SO(d)
G Rωx dR =

∫
R∈SO(d)

ωRx dR.

The resulting stateµ does not depend on the choice of x. Moreover, there is a constant 0< c < 1
such that Mx(µ)= c for all x ∈ Rd with |x | = 1, and G Rµ= µ for all R ∈ SO(d) (resp.
R ∈ O(1) if d = 1). We call c the noise parameter of the direction bit A.

Proof. If d > 2, it follows from G Rωy = ωRy that the definition of µ does not depend on the
choice of x . The identity G Rµ= µ follows from the invariance of the Haar measure. Set
c :=Mx(µ), and let y ∈ Rd be any vector with |y| = 1. Then there is S ∈ SO(d) with y = Sx ,
thusMy =MSx =Mx ◦ GS−1 , and so

My(µ)=

∫
R∈SO(d)

Mx ◦ GS−1(ωRx) dR =Mx

∫
R∈SO(d)

ωS−1 Rx dR =Mx(µ)= c

again by invariance of the Haar measure. For the case d = 1, replace all appearances of SO(d)
in the proof by O(1).

ut

Lemma 7. Every state ω of a direction bit can be written in the form ω = λωx + (1 − λ)µ, with
06 λ6 1, some direction x with |x | = 1, and µ the maximally mixed state.

Proof. Let ω be an arbitrary direction bit state. By compactness of the unit sphere and
continuity, there exists x ∈ Rd , |x | = 1 such that L x(ω)> L y(ω) for all y ∈ Rd with |y| = 1
(there may be several maximizers x ; we choose one of them arbitrarily). For 0< ε < 1, define
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ωε := (1 − ε)ω + εωx . Clearly L x(ωε) > L y(ωε) for all y 6= x . According to lemma 5, we have
a = L x(ωx)> L x(ωε), and thus a > L x(ω) by continuity. Define ω′

ε := λεωx + (1 − λε)µ, where
λε := ε + (1 − ε)L x(ω)/a ∈ (0, 1]. It follows that L x(ω

′

ε) > L y(ω
′

ε) for all y 6= x . Moreover,
L x(µ)= 0 implies L x(ω

′

ε)= L x(ωε), so assumption 2 proves that ω′

ε = ωε. Since λ := limε→0λε
exists (and equals L x(ω)/a), we can take the limit ε→ 0 of this equation and obtain ω =

λωx + (1 − λ)µ.
ut

Lemma 8. Every direction bit state space for spatial dimension d is a d-dimensional unit ball.
In more detail, every direction bit state space for spatial dimension d is equivalent to the

dynamical state space (B, B+,U B, EB,GB), where

• B = Rd+1,

• �B = {(1, r)T | r ∈ Rd, |r |6 1}, i.e. �B is a Euclidean unit ball of dimension d,

• U B(x0, x1, . . . , xd)= x0,

• we have SO(d)⊆ GB (resp. O(1)⊆ GB if d = 1), where the inclusion means that a rotation
R ∈ SO(d) (resp. R ∈ O(1) if d = 1) acts on states as G R(1, r)T = (1, Ĝ Rr)T, where
Ĝ R = O RO−1 for some fixed orthogonal matrix O that does not depend on R,

• the set of allowed effects EB contains the ‘noisy spin measurements’ Mx(ω)= c +
(a/2)〈ω̂x , ω̂〉, where x ∈ Rd with |x | = 1 is a fixed unit vector, ω̂ denotes the vector
corresponding to the state ω via ω = (1, ω̂)T, ω̂x is the analogous vector corresponding to
the state ωx and satisfying |ω̂x | = 1, while a and c are the visibility and noise parameters.

Proof. If d = 1, then replace all appearances of SO(d) in this proof by O(1). Let
(A, A+,U A, E A,GA) be a direction bit for spatial dimension d. Let D := dim A − 1. We can
reparametrize the normalized state space �A by an affine map φ: A1

→ RD, where A1 := {x ∈

A | U A(x)= 1} is the affine hyperplane that contains the normalized states. We define φ by first
setting M(ω) := ω−µ and G̃ R := M ◦ G R ◦ M−1 for R ∈ SO(d). Both M and all G̃ R are affine
maps; moreover, G̃ R(0)= 0, hence G̃ R is a linear map, or a D × D-matrix. Define the positive
matrix X > 0 by X :=

∫
R∈SO(d) G̃T

RG̃ R dR, then G̃T
S XG̃S = X for all S ∈ SO(d). Now we set

φ(ω) := α
√

X(ω−µ), where α > 0 is a constant that we will determine later. Let 〈·, ·〉 denote
the standard inner product on RD, and let x and y be directions, and R ∈ SO(d) a rotation with
y = Rx . Abbreviate ω̂ := φ(ω). Then

〈ω̂y, ω̂y〉 = α2
〈
√

X(ωy −µ),
√

X(ωy −µ)〉 = α2
〈ωy −µ, X (ωy −µ)〉

= α2
〈G̃ R(ωx −µ), XG̃ R(ωx −µ)〉 = 〈ω̂x , ω̂x〉.

Hence, by choosing α > 0 appropriately, we achieve that the Euclidean norm satisfies |ω̂x | =

1 for all directions x . Now we define a linear map L : A → RD+1 by linear extension of
L(ω) := (1, ω̂) for all ω ∈ A1. This is clearly an invertible map. Set B := RD+1, �B := L�A

and U B := U A
◦ L−1. Then a vector x ∈ B satisfies U B(x)= 1 if and only if U A(L−1(x))= 1,

that is, iff L−1(x) ∈ A1, or x ∈ L(A1), which is equivalent to x = (x0, . . . , xD) with x0 = 1.
Thus, U B(x)= x0 as claimed.

Due to lemma 7, every L(ω) ∈�B can be written in the form L(ω)= λL(ωx)+ (1 −

λ)L(µ)with some λ ∈ [0, 1]; that is, (1, ω̂)T = λ(1, ω̂x)
T + (1 − λ)(1, 0)T. Thus |ω̂|=λ|ω̂x |6 1.
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That is, the set of all ω̂, i.e. �̂B := {ω̂ | ω ∈�A} is a compact subset of the Euclidean unit ball
in RD (and it has full dimension D by our background assumptions).

Suppose that µ̂= 0 was a (relative) boundary point of �̂B [65]. Then there would be a non-
trivial supporting hyperplane to �̂B which contains µ̂; that is, an affine functional f : B1

→ R
(where B1 := {x ∈ B | x0 = 1}), such that f (µ̂)= 0 and f (ω̂)> 0 for all ω̂ ∈ �̂B . If we had
f (ω̂)= 0 for all ω̂ ∈ �̂B , then �̂B would be fully contained in the corresponding hyperplane,
contradicting the fact that it has full dimension. Thus, there are states ω̂ with f (ω̂) > 0. Since
every ω̂ 6= µ̂ equals λω̂x + (1 − λ)µ̂ for some λ ∈ (0, 1] and some direction x , this proves the
existence of some directions x with f (ω̂x) > 0. Thus,

µ̂=

∫
R∈SO(d)

ω̂Rx dR ⇒ f (µ̂)=

∫
R∈SO(d)

f (ω̂Rx) dR > 0.

This is a contradiction. Thus, µ̂ must be in the relative interior of �̂B . That is, there is some
ε > 0 such that the ε-ball around µ̂= 0 is contained in �̂B . Now let v ∈ RD be any vector
with Euclidean norm |v| = 1. Then (ε/2)v ∈ �̂B , that is, (ε/2)v = ω̂ for some ω ∈�A. Thus,
there is some λ ∈ [0, 1] and some direction x ∈ Rd such that ω̂ = λω̂x . Since |ω̂x | = 1, this is
only possible if λ= ε/2 and v = ω̂x . But this implies that v ∈ �̂B . We conclude that all unit
vectors are contained in �̂B—thus, by convexity, �̂B is the full unit ball. Since all points on
its surface are of the form ω̂x for some direction x , lemma 5 implies that the map x 7→ ω̂x is a
homeomorphism from the unit sphere in Rd to the unit sphere in RD. It follows that d = D.

Set GB := L ◦GA ◦ L−1. Suppose d > 2. Let R 7→ G A
R be the distinguished continuous

representation of SO(d) according to definition 6, and let G R := L ◦ G A
R ◦ L−1

∈ GB . Since
reversible transformations preserve the normalization, this is only possible if G R(1, r)T =

(1, Ĝ Rr)T, where every Ĝ R preserves the Euclidean norm. The results of lemma 5 imply that
the map R 7→ Ĝ R is continuous and injective, hence ĜB := {Ĝ R | R ∈ SO(d)} is a compact
connected subgroup of O(d) containing the identity, hence a Lie subgroup of SO(d). Since
R 7→ Ĝ R is in particular injective, this is only possible if Ĝ B = SO(d). In other words, the map
R 7→ Ĝ R is a continuous group automorphism of SO(d). According to lemma 12 below, there
exists an orthogonal matrix O ∈ O(d) such that Ĝ R = O RO−1.

On the other hand, if d = 1, then every G B ∈ GB preserves the set of pure states
{(1, 1)T, (1,−1)T} as well as the normalization. This is only possible if G1(1, r)T = (1, r)T

and G−1(1, r)T = (1,−r)T.
Let x be the direction bit’s distinguished direction as given in definition 6, and Mx

the corresponding allowed effect. Let EB := E A ◦ L−1, and in particular Ex :=Mx ◦ L−1. By
linearity, we can write Ex in the form Mx(ω)= Ex(1, ω̂)T = α +β〈v̂x , ω̂〉, where α ∈ R, β >
0 and v̂x ∈ Rd is some unit vector. First, Mx(µ)= c and µ̂= 0 implies α = c. For every
rotation R ∈ SO(d), acting on direction bit states via G R, denote by Ĝ R the corresponding
transformation in the ball picture, i.e.

L ◦ G R ◦ L−1(1, ω̂)= (1, Ĝ Rω̂) for all ω ∈�A.

We know that Ĝ R ∈ SO(d), too. For arbitrary directions y ∈ Rd , |y| = 1, choose R ∈ SO(d)
with Rx = y, then

My(ω)=MRx(ω)=Mx ◦ G R−1(ω)= c +β〈v̂x , Ĝ R−1ω̂〉 = c +β〈Ĝ R v̂x , ω̂〉. (A.6)
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If d = 1, we have Ĝ−1 = −1; if d > 2, this follows from Ĝ−1 = O(−1)O−1
= −1. Thus

L x(ωy)=Mx(ωy)−M−1·x(ωy)=Mx(ωy)−Mx ◦ G−1(ωy)

= β〈v̂x , ω̂y〉 −β〈v̂x , Ĝ−1ω̂y〉 = 2β〈v̂x , ω̂y〉.

This expression attains its maximum in y for y = x , thus v̂x = ω̂x . It follows that a =

L x(ωx)= 2β〈ω̂x , ω̂x〉 = 2β, hence β = a/2, and we obtainMx(ω)= c + (a/2)〈ω̂x , ω̂〉. Due to
equation (A.6), the analogous equation holds true for all other directions y 6= x . Thus, we know
that all these My must be allowed effects, i.e. elements of EB . In the following, we always
assume that we have chosen the ball representation right from the start, such that Ex =Mx .

ut

Lemma 8 implies that direction bits have at most two perfectly distinguishable states in their
state space, and not more. This justifies the name ‘direction bits’. In more detail, if A is
any state space, call a set of states ω1, . . . , ωn ∈�A perfectly distinguishable if there are
effects E1, . . . , En ∈ E A with E1 + · · · + En = U A such that Ei(ω j)= δi, j , that is 1 if i = j and
0 otherwise. The maximal number of any set of perfectly distinguishable states will be called
the capacity NA [8, 18]. In the special case of a quantum system, NA equals the system’s Hilbert
space dimension. The following lemma is well known in the context of general probabilistic
theories; we give the proof for completeness. It says that ball state spaces of any dimension d
are bits, i.e. have capacity N = 2; this includes classical bits (d = 1) and quantum bits (d = 3)
as special cases.

Lemma 9. If A is a Euclidean ball state space with all effects allowed, i.e.

A = Rd+1, �A =
{
(1, r)T|r ∈ Rd, |r |6 1

}
,

E A = Emax
A ≡ {M ∈ A∗

+|06M(ω)6 1 for all ω ∈�A},

then it has capacity NA = 2, i.e. it is a generalized bit.

Proof. Let r ∈ Rd be any unit vector, |r | = 1. Set ω1 := (1, r)T ∈�A and ω2 := (1,−r)T ∈�A,
then the two functionals

E1(ω) :=
1

2
〈(1, r)T, ω〉, E2(ω) :=

1

2
〈(1,−r)T, ω〉

are effects in E A that perfectly distinguish ω1 and ω2 and sum up to U A. Thus NA > 2.
Suppose there are n > 3 perfectly distinguishable states ω1, . . . , ωn ∈�A, with

corresponding effects E1, . . . , En. Consider the hyperplane H := {x ∈ Rd+1
| E1(x)= 0}; it is

a support hyperplane [65] of�A. Furthermore, since ω2, . . . , ωn ∈ H , it contains more than one
point of �A, so H ∩�A is a face of �A that contains more than one point. However, all faces of
Euclidean balls contain only one point; we obtain a contradiction. Hence NA 6 2.

ut

According to lemma 8, direction bit state spaces are Euclidean balls. In the case that all
effects are allowed (which, as we show later, corresponds to the ‘noiseless’ case with visibility
and noise parameters a = 1 and c = 1/2), they have therefore capacity N = 2, i.e. they are in
fact bits as the name suggests. If not all effects are allowed, then direction bits are noisy versions
of bits (formally they have capacity N = 1). Thus, in contrast to von Weizsäcker [1], we do not
assume from the beginning that our physical systems under consideration are two-level systems,
but we prove this from the postulates.
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Figure A.1. In d = 2 spatial dimensions, Alice and Bob may use a protocol that is
unavailable in other dimensions: they may agree that Bob decodes mixed states
with a purity-dependent rotation. That is, if Bob obtains many copies of some
state ω and determines r := |ω̂|, his output will be Rr x , where x is the direction
encoded in the pure state with Bloch vector ω̂/r , and Rr ∈ SO(d) is a rotation
depending on r . The figure shows possible level sets of states in the disc state
space that encode the same spatial direction. This strategy is impossible in higher
dimensions, because without any shared reference frame, Alice and Bob will
not be able to agree on a two-dimensional reference subspace which carries the
corresponding rotation. As a result, the level sets must be straight lines for d > 3,
as proven in lemma 10.

Corollary 1. Given the noise parameter 0< c < 1 of any direction bit, the intensity parameter
a satisfies 0< a 6 2 min{c, 1 − c}, and the spin measurements satisfy Mx(ω) ∈ [c − a/2, c +
a/2] for all |x | = 1 and ω ∈�A.

Proof. We know that a > 0 due to lemma 5. In Mx(ω)= c + (a/2)〈ω̂x , ω̂〉, the inner product
can attain any value in the interval [−1, 1] by choosing ω̂ in the unit ball appropriately. But
Mx(ω) is an outcome probability, hence in the interval [0,1]. Working out the corresponding
inequalities proves the claimed constraint on a.

ut

Now that we know that direction bit state spaces are unit balls, we can say a bit more on
the set of possible protocols satisfying postulates 1 and 2. Surprisingly, dimension d = 2 turns
out to be special, as illustrated in figure A.1 below.

Lemma 10. Consider any protocol satisfying postulates 1 and 2, under the additional
requirement that every state ω 6= µ may be used to encode some direction x(ω) ∈ Rd , |x(ω)| =

1, such that Bob’s decoding ω 7→ x(ω) is a continuous map. If d 6= 2 then there is an orthogonal
matrix O ∈ O(d) such that

x(ω)= O
ω̂

|ω̂|
,

that is, up to a fixed rotation (and possibly reflection), physical directions are encoded into Bloch
vectors that point into the corresponding direction in state space. In particular, for d 6= 2, if ω
and ϕ encode the same physical direction, then there is λ ∈ [0, 1] such that ω = λϕ + (1 − λ)µ

or vice versa (i.e. with ω and ϕ exchanged)—that is, one of the states is obtained from the other
by adding uniform noise.
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Proof. Suppose that d = 1. Then every state ω 6= µ has one-dimensional ‘Bloch vector’ ω̂ ∈

[−1, 1] \ {0}. There are two possible directions, +1 and −1, which have to be encoded in
accordance with postulate 1. If this is done in a continuous way, the only two possibilities
are

x(ω)=

{
±1 if ω̂ > 0,
∓1 if ω̂ < 0,

proving the claim. Now consider the cases d > 3. For every x ∈ Sd−1, define the stabilizer
subgroup Gx := {R ∈ SO(d) | Rx = x}. Let ω 6= µ be an arbitrary state. From the main text, we
know that R ∈ Gx(ω) implies that G Rω = ω, hence Ĝ Rω̂ = ω̂ = O−1 ROω̂ with some orthogonal
matrix O , so R ∈ GOω̂. We get Gx(ω) ⊆ GOω̂. Since both groups are isomorphic to SO(d − 1)
this implies equality. Since d > 3, this in turn implies that x(ω) is parallel to Oω̂; thus, there
is a sign σ(ω) ∈ {−1,+1} such that x(ω)= σ(ω)Oω̂/|ω̂|, and the sign (plus or minus) cannot
depend on ω due to continuity of ω 7→ x(ω). This proves the claim after possibly redefining
O 7→ (−O).

ut

We now prove a technical lemma which is related to the claim in the main text that the
angles inferred from state space must agree with those in physical space (discussed in more
detail in appendix C below). We show that the map x 7→ ω̂x which maps direction vectors
x ∈ Rd , |x | = 1, to pure states’ Bloch vectors ω̂x is linear: there is some orthogonal matrix
O ∈ O(d) such that ω̂x = Ox . This follows from the following lemma:

Lemma 11. Let R 7→ Ĝ R be a continuous group automorphism of SO(d), and suppose x 7→ ω̂x

is a continuous map of the unit sphere Sd−1 := {y ∈ Rd
| |y| = 1} to itself such that Ĝ Rω̂x =

ω̂Rx . Then there is an orthogonal matrix O ∈ O(d) such that ω̂x = Ox.

Proof. According to lemma 12, there is an orthogonal matrix O ∈ O(d) with Ĝ R = O RO−1 for
all R ∈ SO(d). The lemma will be proven by distinguishing several cases.

First, consider the case that d is odd. Let x ∈ Rd , |x | = 1 be arbitrary, then there is some
R ∈ SO(d) for which the multiples of x are the only eigenvectors of eigenvalue 1, i.e. Ry = y
with y ∈ Rd is equivalent to y = αx with α ∈ R. But then

O RO−1ω̂x = Ĝ Rω̂x = ω̂Rx = ω̂x ⇒ R(O−1ω̂x)= O−1ω̂x ,

and so O−1ω̂x ∈ {−x, x}. Since this is true for every direction x , and the map x 7→ ω̂x is
continuous, we either have ω̂x = Ox for all directions x (in which case the lemma is proven),
or ω̂x = −Ox for all directions x , in which case we can replace O by (−O) and obtain the
statement of the lemma as well.

Next, consider the case d = 2. For every x ∈ Rd with |x | = 1, define

Rx :=

(
x1 −x2

x2 x1

)
∈ SO(2).

We have ω̂x = Ĝ Rx ω̂(1,0)T = O Rx O−1ω̂(1,0)T . As a map x 7→ ω̂x , this is manifestly linear. Since
it preserves the Euclidean norm, it must be orthogonal.

Finally, consider the cases of even d > 4. Let S ⊂ Rd be any two-dimensional subspace.
Suppose that x ∈ S. Clearly, there is R ∈ SO(d) which acts as the identity on S (and nowhere
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else), i.e. y ∈ S ⇔ Ry = y. But x ∈ S, hence Rx = x which implies Ĝ Rω̂x = ω̂Rx = ω̂x , so
R(O−1ω̂x)= O−1ω̂x , and thus O−1ω̂x ∈ S.

Now let S, S′ be two two-dimensional subspaces with S ∩ S′
= span{x}. Since x ∈ S and

x ∈ S′, we have O−1ω̂x ∈ S ∩ S′, so O−1ω̂x ∈ {−x, x}. Similarly as above, we conclude that
either O−1ω̂x = x for all directions x , or O−1ω̂x = −x for all x , in which case we can redefine
O 7→ (−O).

ut

Lemma 12. All continuous automorphisms of the special orthogonal groups φ : SO(d)→

SO(d) are of the form φ : g 7→ Pg P−1 with P ∈ O(d).

Proof. Since every continuous homomorphism of Lie groups is analytic [66], φ induces an
automorphism on the Lie algebra so(d), uniquely determined by its action on the neighborhood
of the identity. But not every automorphism of a Lie algebra g necessarily induces an
automorphism on the corresponding group G. Fulton and Harris [67] contain the automorphisms
of the Lie algebras so(d), and in what follows, we figure out which of these correspond to
automorphisms of SO(d).

One particular type of automorphisms for both, G and g, are conjugations by group
elements, that is X 7→ gXg−1 where g ∈ G. These are called inner automorphisms. Proposition
D.40 from [67], p 498] tells us that all automorphisms of a Lie algebra g are generated by
the inner automorphisms times the symmetries of the associated Dynkin diagram. The Dynkin
diagram of so(2n + 1) has no symmetries, hence all the corresponding automorphisms are inner.
This proves the lemma for odd dimension.

Exercise 22.25 in [67, p 362 with answer on p 529] states that for n > 5, the symmetry of
the Dynkin diagram of so(2n) is implemented by a conjugation X 7→ P X P−1, with P ∈ O(2n).
This proves the lemma for even dimension d > 10. In what follows, we consider separately the
cases d = 2, 4, 6, 8.

Case d = 2. The Lie algebra so(2) is a one-dimensional real vector space with trivial
commutator. Hence, the automorphisms are X 7→ αX for any real α. It is easy to see that among
these, the only ones which induce an automorphism in SO(2) are the identity and α = −1. The
second one can be implemented as

g 7→

(
1 0
0 −1

)
g

(
1 0
0 −1

)−1

.

Case d = 4. In [67, p 274], it is shown that so(4)∼= su(2)⊕ su(2)∼= so(3)⊕ so(3). Hence,
all the automorphisms of so(4) are those of so(3), which as shown above are inner, together
with the exchange of the two summands in so(3)⊕ so(3), which can also be implemented by
conjugation.

Case d = 6. The standard representation of SO(6) is equivalent to the antisymmetric
product of two copies of the standard representation of SU (4) (see [67, p 284]), which is
irreducible. This also implies that this representation of SU (4) is real, and hence, equivalent
to its dual (or complex conjugated) representation (see [67], p 218]). Exercise 22.25 in [67,
p 362 with answer on p 529] shows that the symmetries of the Dynkin diagram of SU (4) are
implemented by complex conjugation X 7→ X∗. Since the representation of SU (4) equivalent
to the standard representation of SO(6) is real, complex conjugation leaves the algebra and the
group invariant. So, the only automorphisms of so(6) and SO(6) are inner.
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Case d = 8. In this case the Dynkin diagram has the larger symmetry called triality. Section
20.3 in [67] shows that this symmetry permutes the defining representation of so(8) and the
two fundamental spin representations S+, S−. This cannot be a symmetry of SO(8), since the
exponentiation of S+ or S− gives the group Spin(8), which is different from SO(8). So the only
non-trivial automorphisms of SO(8) are inner.

ut

We will now show that it is sufficient to consider ‘optimal’ direction bits, i.e. ones with visibility
parameter a = 1 and noise parameter c = 1/2. The idea is to take the state space A of a direction
bit with c 6= 1/2 and/or a < 1 and to modify it by allowing all effects A∗

+. The bipartite state
space of two modified direction bits is then defined as the orbit of GAB on the product states
and effects. However, it has to be shown that this results in a valid state space; in particular, all
probabilities must be positive. This is shown in the following lemma. It uses the definition of
Emax

A as given in equation (A.1).

Lemma 13. Suppose that A = (A, A+,U A, E A,GA) is a direction bit for spatial dimension d
with arbitrary visibility and noise parameters a and c, with joint state space for two direction
bits AB = (A ⊗ B, (AB)+,U A

⊗U B, E AB,GAB). Then

A′ := (A, A+,U A, Emax
A ,GA)

is a direction bit for spatial dimension d with visibility parameter a′
= 1 and noise parameter

c′
= 1/2, with a possible state space of two direction bits given by

A′B ′
= (A ⊗ B,GAB(A+ ⊗ B+),U A

⊗U B, (Emax
A ⊗ Emax

B ) ◦GAB,GAB),

where GAB(A+ ⊗ B+) is the convex hull of all unnormalized states of the form G(ωA
⊗ωB) with

G ∈ G AB and ωA
∈ A+, ωB

∈ B+, while (Emax
A ⊗ Emax

B ) ◦GAB is the convex hull of all effects of
the form (M⊗N ) ◦ G withM ∈ Emax

A , N ∈ Emax
B , and G ∈ GAB .

Proof. Throughout the proof, if d = 1, replace SO(d) by O(1). Clearly, A′ is a valid state
space. We know that to every direction x ∈ Rd , there is a state ωx ∈�A such that Mx(ω)=

c + (a/2)〈ω̂x , ω̂〉 for all ω ∈�A. The linear map M′

x(ω) := 1
2 + 1

2〈ω̂x , ω̂〉 is in [0,1] for all
ω ∈�A, hence contained in Emax

A = E A′ . It is easy to check that

M′

x =
1

a
Mx +

(
1

2
−

c

a

)
U A.

Let M be the effect from definition 6, and M′ the effect on A′ related to it by the previous
equation. Using the notation from definition 6, where R ∈ SO(d) is a rotation with y = Rx , we
have

M′
◦ G R−1 =

1

a
M ◦ G R−1 +

(
1

2
−

c

a

)
U A

◦ G R−1 =
1

a
My +

(
1

2
−

c

a

)
U A

=M′

y.

Thus, the prerequisites and assumptions 1 and 2 from definition 6 are satisfied for A′. In order
to show that assumption 3 holds true, we have to prove that A′B ′ is a valid composite of
A′ and B ′.

Clearly, (A′B ′)+ = GAB(A+ ⊗ B+) is a closed convex cone, and (A′B ′)+ ⊆ (AB)+ implies
that �A′ B ′ = {ω ∈ (A′B ′)+ | U AB(ω)= 1} ⊆�AB is closed. Since �AB is compact, so must be
�A′ B ′ . Since A+ ⊗ B+ spans the full space A ⊗ B, so does (A′B ′)+. This shows that (A′B ′)+ is a
proper cone.
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According to definition 5, all that remains to do is to show that (Emax
A ⊗ Emax

B ) ◦GAB is a
valid choice for E A′ B ′ . Clearly this is a closed convex set spanning A ⊗ B. It remains to show
that all its elements are non-negative and no larger than one on �A′ B ′; by convexity, we only
have to show this for the elements (M⊗N ) ◦ G, where M ∈ Emax

A , N ∈ Emax
B and G ∈ GAB .

Finally, convexity for the state cone additionally implies that it is sufficient to prove that

06M⊗N (G(ωA
⊗ωB))6 1 for allM ∈ Emax

A , N ∈ Emax
B , ωA

∈�A,

ωB
∈�B, G ∈ GAB . (A.7)

The set Emax
A is easy to characterize: for every effectM ∈ Emax

A , there are λ, κ ∈ R and x ∈ Rd

with |x | = 1 such thatM(ω)= λ(〈ω̂x , ω̂〉 + 1)+ κ for all ω ∈�A. A negative sign of λ can be
removed by the substitution ω̂x 7→ −ω̂x = ω̂−x , so we may assume λ> 0. SinceM(ω) ∈ [0, 1]
for all ω ∈�A, we get 06 κ 6 1 − 2λ and λ6 1/2. It follows that

M=
2λ

a
Mx +

[
λ

(
1 −

2c

a

)
+ κ

]
U A.

We can express N ∈ A∗

+ in an analogous form, replacing λ, κ, x by λ′, κ ′, y. Since conditional
states are included in the local state spaces by definition, equation (A.3) and corollary 1 imply
for every ωAB

∈�AB that

Mx ⊗My(ω
AB)=Mx(ω

A
cond)My(ω

B) ∈

[(
c −

a

2

)2
,
(

c +
a

2

)2
]
,

where ωA
cond is the conditional state on A after having obtainedMy on B and ωB is the marginal

on B. If ωA
∈�A, ωB

∈�B and G ∈ GAB , then by definition the vector ωAB := G(ωA
⊗ωB) is

a valid state in �AB . Using that U A
⊗My(ω

AB)=My(ω
B) with ωB the marginal of ωAB , the

expression in equation (A.7) can be lower bounded by

M⊗N (ωAB)>
4λλ′

a2

(
c −

a

2

)2
+

2λ

a

[
λ′

(
1 −

2c

a

)
+ κ ′

] (
c −

a

2

)
+

2λ′

a

[
λ

(
1 −

2c

a

)
+ κ

]
×

(
c −

a

2

)
+

[
λ

(
1 −

2c

a

)
+ κ

] [
λ′

(
1 −

2c

a

)
+ κ ′

]
= κκ ′ > 0. (A.8)

An analogous calculation yields the upper bound M⊗N (ωAB)6 (2λ+ κ)(2λ′ + κ ′)6 1. We
have proven that A′B ′ is, as given, a valid composite state space. Finally, we have b′

=

M′

x(ωx)−M′

−x(ωx)= 1 and c′
=M′

x(µ)= 1/2.
ut

We obtain an immediate consequence:

Corollary 2. There is no direction bit for spatial dimension d = 1.

Proof. Suppose A = (A, A+,U A, E A,GA) is a direction bit for spatial dimension d = 1, and A′

is its optimal modification from lemma 13, with A′B ′ the composite state space of two modified
direction bits. We know that �A′ B ′ contains at least all combinations of product states; that is,
8A′ B ′ ⊆�A′ B ′ , where

8A′ B ′ := conv

{(
1

±1

)
⊗

(
1

±1

)}
= conv




1
1
1
1

 ,


1
−1
1

−1

 ,


1
1

−1
−1

 ,


1
−1
−1
1


 .

New Journal of Physics 15 (2013) 053040 (http://www.njp.org/)

http://www.njp.org/


37

On the other hand, E A′ B ′ contains all product effects. That is, if ωA′ B ′

∈�A′ B ′ , then〈(
1/2

±1/2

)
⊗

(
1/2

±1/2

)
, ωA′ B ′

〉
> 0

for all possible choices of signs. It is easy to see that this is only possible of ωA′ B ′

∈8A′ B ′

: the
four inequalities give the half-space representation [68] of the tetrahedron 8A′ B ′ . It follows that
�A′ B ′ ⊆8A′ B ′ , and thus equality of these sets: the state space for two modified direction bits is
a tetrahedron, that is, a classical four-level system. It has only finitely many (four) pure states;
thus, GA′ B ′ = GAB must be a finite group. This contradicts assumption 3 on direction bits.

ut

All dimensions d > 2 for the ideal case a = 1 and c = 1/2 have been examined in [54]:
there it is shown that for d 6= 3, all possible composites of d-dimensional ball state spaces have
transformation groups that are non-interacting, therefore contradicting postulate 4, respectively,
assumption 3 in the definition of direction bits. (In appendix D, we give a simplification of a key
lemma in [54] for the special case of this paper.) Lemma 13 extends this result to noisy direction
bits with c 6= 1/2 and/or a < 1:

Theorem 5. There are no direction bits for spatial dimensions d 6= 3.

As mentioned in [54], we prove in [55] that the only possible composite of two noiseless
three-dimensional ball state spaces (up to equivalence), under the assumptions of definition 5, is
quantum theory on two qubits. Now we show that this extends to noisy three-dimensional balls,
with the only difference that the set of effects might get reduced:

Theorem 6. Every direction bit for spatial dimension d = 3 (regardless of visibility and noise
parameters a and c) can be represented as a ‘noisy qubit’ A = (A, A+,U A, E A,GA), where

• A is the real vector space of Hermitian 2 × 2 matrices,

• A+ is the set of positive semidefinite complex 2 × 2 matrices,

• the unit functional U A is the map ρ 7→ tr(ρ),

• E A is a subset of the quantum effects, containing all maps of the form ρ 7→ tr(ρM), with
M a positive semidefinite 2 × 2 matrix satisfying tr(M)= 2c and the operator inequality
M 6 (c + a/2) · 1,

• GA is the projective unitary group, ρ 7→ UρU † with U ∈ SU (2).

The joint state space of two direction bits is then by necessity AB = (A ⊗ B, (AB)+,U A
⊗

U B, E AB,GAB), where

• A ⊗ B is the real vector space of Hermitian 4 × 4 matrices,

• (AB)+ is the set of positive semidefinite 4 × 4 matrices,

• the unit functional U AB
= U A

⊗U B is the map ρ 7→ tr(ρ),

• E AB is some subset of the quantum effects ρ 7→ tr(ρM) with M a positive semidefinite
4 × 4 matrix, 06 M 6 1,

• GAB is the projective unitary group, ρ 7→ UρU † with U ∈ SU (4).
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Proof. The standard Bloch representation of a qubit shows that the vector space A as well as
A+ and U A can be chosen in the claimed form. In the ball representation, it is clear that the only
possibilities for GA are SO(3) and O(3). The noiseless version A′ from lemma 13 will have the
same transformation group. However, it is shown in [55] that O(3) is impossible if we want to
construct a global state space A′B ′ with interaction out of noiseless three-balls (in a nutshell, the
group O(3) would introduce partial transpositions on A′B ′ which yield negative probabilities).
Thus, the group must be SO(3), which (in the chosen representation) is the projective unitary
group.

It is easy to confirm that the special effectsMx , x ∈ R3, |x | = 1, can be represented in the
following way: for every x , there is a complex unit vector |ϕx〉 ∈ C2 with

Mx(ρ)= tr(ρM), where M = a|ϕx〉〈ϕx | +
(

c −
a

2

)
1.

These matrices have trace tr(M)= 2c. The convex hull of all these matrices is a subset of E A:{
M

∣∣∣ tr(M)= 2c,M 6
(

c +
a

2

)
· 1
}

⊂ E A.

As it has been shown in [55], the noiseless composite state space A′B ′ equals quantum
theory on two qubits. Since GA′ B ′ = GAB in the construction of lemma 13, it follows that GAB

must be the projective unitary group as claimed (that the vector space is AB = A ⊗ B and
U AB

= U A
⊗U B follows directly from the definition of a composite, definition 5). Since the

unitary group generates the set of all quantum states from a pure product state, it follows that
the quantum state space of two qubits, �Q := {ρ ∈ A ⊗ B | tr(ρ)= 1, ρ > 0}, is contained in
�AB . Suppose there was any σ ∈�AB\�Q , then this would be a Hermitian matrix with at
least one negative eigenvalue. Using an appropriate unitary U , this matrix can be diagonalized
and be brought into the form UσU †

=
∑1

i, j=0 λi, j |i〉〈i | ⊗ | j〉〈 j | with λ0,0 < 0, denoting by
{|0〉, |1〉} a basis of C2. Using the linear functionalM(ρ) :=N (ρ) := 〈0|ρ|0〉, we obtainM⊗

N (UσU †)= λ0,0 < 0. However, this contradicts inequality (A.8), which shows that all noiseless
product quantum measurementsM⊗N on all bipartite states ωAB

∈�AB must yield positive
probabilities. Therefore �AB =�Q , hence (AB)+ is the set of positive semidefinite (4 × 4)-
matrices.

We do not really know what E AB is: since all its elements must be non-negative on all
quantum states, it must be a subset of the quantum effects. Since there are no further conditions
on E AB in definition 5, it could possibly coincide with the set of quantum effects, or be a proper
subset. All we know is that it contains the unitary orbit of all allowed product effects.

ut

Appendix B. Proof of non-existence of frame bits (in a special case)

We now prove the claim made in section 4 in the main text. Recall the ‘frame bit’ setup as
explained in figure 6. We start by giving a formal definition of a frame bit, modifying and
specializing definition 6 for direction bits.

Definition 7 (Frame bits). For d>2, a dynamical state space (A,A+,U A,E A,GA) together with
a distinguished continuous representation of SO(d) as a subgroup of GA (denoted R 7→ G R),
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and a distinguished effect M ∈ E A, will be called a frame bit for spatial dimension d, if the
following conditions are satisfied:

• For all Y ∈ SO(d), defineMY :=M ◦ GY −1 .

• Assumption 1′. There exists ω ∈�A withM1(ω) >MY (ω) for all Y 6= 1.

• Assumption 2′. Suppose that ω 6= ω′
∈�A are states with the property that the maps

Y 7→MY (ω) and Y 7→MY (ω
′) both have a unique maximum for the same frame Y0. Then

there exist 0< λ j < 1,
∑

j λ j = 1, and pairwise distinct rotations R j ∈ SO(d) such that

MY (ω
′)=

∑
j

λ jMR j Y (ω) for all Y ∈ SO(d)

or vice versa (that is, with ω and ω′ interchanged).

Note that assumption 1′ implies that for every X ∈ SO(d) there exists ϕ ∈�A with
MX(ϕ) >MY (ϕ) for all Y 6= X . This follows by setting ϕ := G Xω and using MY ◦ G X−1 =

MXY .
In analogy to lemma 1 for direction bits, we can prove the following:

Lemma 14. Under the premises of assumption 2′ in definition 7, we obtain

ω′
=

∑
j

λ j G R−1
j
ω.

Proof. Let ϕ :=
∑

j λ j G R−1
j
ω. Direct calculation shows that MY (ϕ)=MY (ω

′) for all Y ∈

SO(d), hence Y 7→MY (ϕ) also has a unique maximum in orientation Y0. Denote the maximal
value by m :=MY0(ω

′)=MY0(ϕ). Suppose that ϕ 6= ω′. Then assumption 2′ implies that one
of the following two cases must be true:

1. We have MY (ω
′)=

∑
j µ jMS j Y (ϕ) for all Y , where 0< µ j < 1,

∑
j µ j = 1, and S j are

pairwise distinct rotations.
In this case, we obtain

m =MY0(ω
′)=

∑
j

µ jMS j Y0(ϕ)=

∑
j

µ jMS j Y0(ω
′)︸ ︷︷ ︸

6m

.

This is only possible ifMS j Y0(ω
′)= m for all j . By the unique maximum assumption, this

implies that S j Y0 = Y0 for all j , hence all S j = 1 are equal, which is a contradiction.
2. We have MY (ϕ)=

∑
j µ jMS j Y (ω

′) for all Y , where 0< µ j < 1,
∑

j µ j = 1 and S j are
pairwise distinct rotations. Then the argument is completely analogous to case 1.

This proves the claim.
ut

In the following, it will turn out to be useful to introduce some abbreviations. Call any state
ω with the propertyMX(ω) >MY (ω) for all Y 6= X a codeword for X . Furthermore, for every
state ω, define

1(ω) := max
Y∈SO(d)

MY (ω)− min
Y∈SO(d)

MY (ω)=:Mmax(ω)−Mmin(ω).

Note that1 is continuous, but in general nonlinear. Clearly1(G Rω)=1(ω) for all R ∈ SO(d).
Furthermore, we have
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Lemma 15. The map 1 is convex, i.e. if ωi ∈�A and 06 λi ,
∑

i λi = 1, then

1

(∑
i

λiωi

)
6
∑

i

λi1(ωi).

If 0< λi for all i , we have equality if and only if there exist orientations Y, Z ∈ SO(d) such that
Mmax(ωi)=MY (ωi) for all i , andMmin(ωi)=MZ(ωi) for all i .

Proof. Let ψ :=
∑

i λiωi , let Y be some frame with Mmax(ψ)=MY (ψ), and let Z be some
frame withMmin(ψ)=MZ(ψ). Then∑

i

λi1(ωi)=

∑
i

(
λiMmax(ωi)− λiMmin(ωi)

)
>
∑

i

(
λiMY (ωi)− λiMZ(ωi)

)
=MY

(∑
i

λiωi

)
−MZ

(∑
i

λiωi

)
=Mmax(ψ)−Mmin(ψ)=1(ψ).

Assume now λi > 0 for all i . Inspecting the single inequality in the chain above proves the
claimed condition for equality.

ut

Assumptions 1′ and 2′ imply the following:

Lemma 16. Suppose that ω and ω′ are both codewords for the same X ∈ SO(d), and 1(ω)=

1(ω′). Then ω = ω′.

Proof. Suppose that ω 6= ω′. Then assumption 2′ implies that ω′
=
∑

j λ j G R−1
j
ω for 0< λ j < 1,∑

j λ j = 1 and rotations R j ∈ SO(d) with R j 6= Rk for j 6= k (if vice versa, rename ω↔ ω′).
Using lemma 15 we obtain

1(ω′)6
∑

j

λ j1(G R−1
j
ω)=

∑
j

λ j1(ω)=1(ω),

with equality if and only if there exists Y ∈ SO(d) with Mmax(G R−1
j
ω)=MY (G R−1

j
ω) and

there exists Z ∈ SO(d) with Mmin(G R−1
j
ω)=MZ(G R−1

j
ω) for all j . Since we have equality

by assumption, it follows that

Mmax(ω)=Mmax(G R−1
j
ω)=MY (G R−1

j
ω)=MR j Y (ω) for all j.

But since ω by assumption has a unique maximizing direction, we must have R j Y = RkY for
all j, k and thus R j = Rk , which is a contradiction.

ut

Now we prove the existence of a unique maximally mixed state, and a bit more:

Lemma 17. There is a unique state µ such that c :=MY (µ) is constant in Y ∈ SO(d).
Moreover, if ω and ω′ are both codewords for X with 1(ω′) < 1(ω), then ω′

= λω + (1 − λ)µ

for λ :=1(ω′)/1(ω).
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Proof. Let ω be any X -codeword. There is at least one ‘uniform noise’ state µ for whichMY (µ)

is constant in Y : it is µ :=
∫

R∈SO(d) G Rω dR. Let ω′ be another X -codeword with1(ω′) < 1(ω)

(there exists at least one, for exampleω′
= αω + (1 −α)µ for 0< α < 1). Set λ :=1(ω′)/1(ω),

and define ω′′ := λω + (1 − λ)µ′, where µ′ is any ‘uniform noise’ state, i.e.MY (µ
′) is constant

in Y . It follows that ω′′ is a codeword for X , too, and we have 1(ω′′)= λ1(ω)=1(ω′). Thus,
lemma 16 implies that ω′′

= ω′, and so ω′
= λω + (1 − λ)µ′. Since this equation is true for all

uniform noise states µ′, they must all be equal—there is a unique state µ such thatMY (µ) is
constant in Y .

ut

The following lemma is the frame bit analogue of lemma 5:

Lemma 18. There is a constant 0< b 6 1 which we call intensity parameter such that for all
X ∈ SO(d)

b = max{1(ω) | ω is a codeword for X}.

Moreover, for every X ∈ SO(d), there is a unique codeword ωX for X such that 1(ωX)= b,
and we have ωY = GY X−1ωX for all X, Y ∈ SO(d).

Proof. Fix any X ∈ SO(d). Lemma 17 implies that all codewords for X lie on the line which
starts at the maximally mixed state µ, crosses the state ω(X), and extends to infinity. Since the
state space is compact and convex, there is a unique state ωX at which this line crosses the state
space’s boundary. By construction, it has the maximal value of 1(ω) among all codewords for
X . Set b :=1(ω).

For all Y ∈ SO(d), define ωY := GY X−1ωX . It is easy to check that ωY is a codeword for
Y , and 1(ωY )= b. If there was any other codeword ω′

Y 6= ωY for Y with 1(ω′

Y )> b, then
ω′

X := G XY −1ω′

Y would be a codeword for X with1(ω′

X)> b andω′

X 6= ωX , which is impossible.
ut

Now we obtain the key lemma:

Lemma 19. Every state ω can be written in the form ω = λωX + (1 − λ)µ, where λ ∈ [0, 1] and
X ∈ SO(d).

Proof. Let ω be any state. By continuity and compactness of SO(d), there is some X ∈ SO(d)
such that MX(ω)>MY (ω) for all Y ∈ SO(d) (in general, X is not unique—choose one
maximizer arbitrarily). For 0< ε < 1, set ωε := (1 − ε)ω + εωX , then ωε is a codeword for
X . If 1(ω)= b, then ω = ωX , and we are done due to lemma 18. Otherwise, 1(ω) < b,
and so 1(ωε) < b for all ε small enough since 1 is continuous, and lemma 17 implies that
ωε = λεωX + (1 − λε)µ with λε :=1(ωε)/b. We have limε→01(ωε)=1(ω), and the claim
follows for λ := limε→0λε =1(ω)/b by taking the limit ε→ 0.

ut

Exactly the same argumentation as in lemma 8—including the introduction of ‘Bloch vectors’
ω̂ for states ω—now proves the following:

Lemma 20. The frame bit state space is equivalent to a Euclidean D-dimensional unit ball,
and the map X 7→ ω̂X is a homeomorphism of SO(d) to the unit sphere SD−1.
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Since SO(d) is not simply connected for d > 2, but SD−1 is simply connected for D > 3,
this is only possible if D = 2 and thus (from dimension counting) d = 2. But in this case, frames
and directions coincide.

Theorem 7. ‘Frame bit’ state spaces allowing the protocol in figure 6, while at the same time
satisfying assumptions 1′ and 2′ above, do not exist—unless d = 2, where they coincide with
direction bits.

At first sight, this result may seem surprising, in particular lemma 20 which says that the
frame bit state space must be a Euclidean unit ball, exactly as the direction bit state space. The
first obvious guess, before doing any calculations, would have been that the pure normalized
frame states ωX with X ∈ SO(d) can simply be parametrized by the matrix X as their ‘Bloch
vector’, i.e. ω̂X = X , similarly as ω̂x = x for directions x up to an orthogonal transformation
(cf lemma 11).

We will now illustrate that this first guess does not work: it results in a state space that
satisfies assumption 1′, but not assumption 2′, confirming theorem 7. We only discuss the
simplest non-trivial case d = 3. Surprisingly, in this case, it turns out that our naive guess
reproduces four-level quantum theory over the real numbers.

Example 1. Suppose we define a state space � with the orthogonal matrices X ∈ SO(3) as
the pure states. As usual, we have to add a component for the normalization, such that �
becomes

� := conv{(1, X) | X ∈ SO(3)}.

The vector space that carries the cone of unnormalized states is ten-dimensional; by
construction, for every X ∈ SO(3), we have a pure state ωX = (1, X) ∈�. Every (mixed) state
ω ∈� is then of the form ω = (1,M) with M ∈ R3×3 some matrix which, according to [69,
corollary 5.2], has operator norm ‖ M ‖∞6 1. We denote this state by ωM .

According to [70, proposition 4.1], the full state space � is an orbitope which can be
parametrized in the following way. Denote the normalized state space of four-level quantum
theory over the reals by �4,R

QM; that is,

�
4,R
QM := {ρ ∈ R4×4

| ρ > 0, tr(ρ)= 1},

then the state space � can be written in the form

�=

ωM

∣∣∣∣∣∣M=

u11 + u22 − u33 − u44 2u23 − 2u14 2u13 + 2u24

2u23 + 2u14 u11 − u22 + u33 − u44 2u34 − 2u12

2u24 − 2u13 2u12 + 2u34 u11 − u22 − u33 + u44

 , U ∈�
4,R
QM

 .
It is easy to check that the map U 7→ M is affine and invertible—hence our candidate � of
‘frame bit’ state space for dimension d = 3 is equivalent to four-level real quantum theory,
given that we define effects and transformations accordingly (cf definition 3).

The obvious choice to set up the representation of the rotation group R 7→ G R, is via
G RωX = ωR X for all X ∈ SO(3). Every special orthogonal matrix X ∈ SO(3) has trace tr(X) ∈

[−1, 3]. Thus, the following analogue of direction bits’ noiseless spin measurements, describing
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the probability of the ‘yes’-outcome in figure 6, yields valid probabilities in the unit interval for
Z ∈ SO(3) (and then for all ωZ ∈� by convexity):

MY (ωZ)=
1

4

(
tr(Y T Z)+ 1

)
(Y ∈ SO(3), ωZ ∈�).

The expression tr(Y T Z)=: 〈Y, Z〉 is the Hilbert–Schmidt inner product between matrices; the
corresponding Cauchy–Schwarz inequality proves thatMY (ωZ)= 1 if and only if Z = Y . Thus,
the protocol given in the caption of figure 6 works for this state space—that is, the state space
satisfies assumption 1′.

However, we will now show that assumption 2′ is violated. Consider the 4 × 4 positive
semidefinite diagonal matrices U =

1
13diag(6, 4, 2, 1) and U ′

=
1

40diag(18, 3, 3, 16); they
satisfy tr(U )= tr(U ′)= 1. Thus, the corresponding matrices M =

1
13diag(7, 3, 1) and M ′

=
1

20diag(1, 1, 14) correspond to valid states ωM, ωM ′ ∈�. If Y ∈ SO(3), then tr(Y T M)=
1

13(7Y1,1 + 3Y2,2 + 1Y3,3). But for the standard orthonormal basis {|i〉}3
i=1, we have Yi,i =

〈i |Y |i〉6‖ |i〉 ‖ · ‖ Y |i〉 ‖= 1, with equality if and only if Y |i〉 = |i〉. This proves that the identity
matrix Y = 1 is the unique maximizer of the function M 7→ tr(Y T M), and thus ofMY (ωM).

However, the same calculation applies to M ′, and so we have two states ωM and ωM ′ that
are both valid codewords for the frame Y = 1. Thus, according to lemma 14, assumption 2′

implies that either ωM ′ =
∑

j λ j G R−1
j
ωM , or with ωM and ωM ′ exchanged. Thus, one of the two

following equations must be true:

M ′
=

∑
j

λ j R−1
j M or (B.1)

M =

∑
j

λ j R−1
j M ′. (B.2)

For real matrices X, define the norms ‖X‖1 := tr
√

XT X and ‖X‖2 :=
√

tr(XT X), then
‖ X ‖1=‖ R X ‖1 and ‖ X ‖2=‖ R X ‖2 if R is orthogonal. Now equation (B.1) implies that
‖ M ′

‖k6‖ M ‖k for k = 1 and 2, while equation (B.2) implies that ‖ M ‖k6‖ M ′
‖k for k = 1

and 2. However, it turns out that ‖ M ‖1>‖ M ′
‖1, while ‖ M ‖2<‖ M ′

‖2. Thus, none of the two
states is strictly noisier than the other, and assumption 2′ is violated.

Appendix C. Inferring spatial geometry from probability measurements

As mentioned in section 5 in the main text, we now describe an operational procedure that
allows observers to determine physical angles from probability measurements.

Imagine some observer (which we call Bob) in d-dimensional space who holds a direction
bit measurement device as in figure 4. Suppose that Bob does not know how to measure lengths
and angles in his local laboratory; say he does not have the necessary tools (rulers etc) to
accomplish this. In more detail, Bob may rotate his measurement device into some direction
x , but he does not know what the resulting direction x actually is, or what rotation he actually
performed. He lacks the tools to determine angles between possible settings of his device, or
between the orientations of several different devices that he might hold.

However, suppose that Bob has access to several direction bit preparation devices. They
might just lie around in his lab, or they might be physical systems arising in nature, preparing
systems in (generally mixed) direction bit states ω. Again, given any of these preparations, Bob
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has initially no idea what the prepared state (or its Bloch vector ω̂) is; still, he may operate any
of these devices as often as he likes, preparing many independent copies of the corresponding
unknown state ω. Moreover, we assume that Bob knows the intensity and noise parameters a and
c and the outcome i0, as defined before equation (2), in order to operate his measurement device
properly (otherwise we may imagine that Bob starts by testing his device on many different
states ω to identify a useful outcome i0, and to obtain estimates of the corresponding parameters
a and c).

We will now show that the ballness of �d allows Bob to perform a bootstrapped strategy
which establishes a spatial orthonormal coordinate frame. This allows him to determine the
angle between any two possible orientations of his measurement device. For simplicity, we first
discuss the case of dimension d = 2 here, and give the general protocol for d > 2 below. We
dismiss the trivial case d = 1.

Bob starts by choosing two arbitrary preparation devices at random, preparing two
unknown states ω1, ω2. Generically, the corresponding Bloch vectors ω̂1, ω̂2 will be linearly
independent (if, for some reason, ω̂1 and ω̂2 turn out to be (close to) linearly dependent, the
protocol will fail and Bob will have to start again).

Now Bob determines Mx(ω1)= c + (a/2)〈ω̂x , ω̂1〉 for many different directions x by
repeated measurements. He never knows which direction x he is currently actually measuring,
but by trying out many different directions, he can determine a good estimate of maxxMx(ω1)=

c + (a/2)|ω̂1| and thus of |ω̂1|, and he may rotate his device in a direction which is very close
to the actually maximizing direction x that satisfies ω̂x = ω̂1/|ω̂1| (still, without knowing any
coordinate description of x or ω̂x ).

Having done so, Bob leaves his device in direction x , and performs repeated measurements
on ω2 to obtain an estimate ofMx(ω2)= c + (a/2)〈ω̂x , ω̂2〉, and thus of 〈ω̂x , ω̂2〉|ω̂1| = 〈ω̂1, ω̂2〉.
Moreover, Bob can also estimate |ω̂2| by repeating the strategy that he used to determine
|ω̂1|. This is all the information he needs to determine the coordinates of ω̂1 and ω̂2 in
some orthonormal coordinate system. For example, he may choose the coordinates such that
ω̂1 = |ω̂1| · (1, 0)T, and ω̂2 = |ω̂2| · (cos x, sin x)T, where x must be chosen in accordance with
〈ω̂1, ω̂2〉 = |ω̂1| · |ω̂2| · cos x .

Now suppose Bob rotates his devices in some unknown direction y. By measuringMy(ω1)

andMy(ω2) to good accuracy, he may determine the overlaps 〈ω̂y, ω̂1〉 and 〈ω̂y, ω̂2〉 and thus,
since ω̂1, ω̂2 is a basis, the coordinates of ω̂y in the given orthonormal frame.

If Bob holds a second measurement device which points in another unknown direction
z, he may do the same thing, and altogether compute the angle 6 (ω̂y, ω̂z) between the two
direction’s Bloch vectors. While there was some freedom to assign an orthonormal frame to
establish coordinates for ω̂1 and ω̂2, this angle is independent of the specific choice of frame.

As shown in lemma 11 in appendix A, there exists some orthogonal transformation
O ∈ O(d) such that ω̂x = Ox for all directions x . Thus, if Bob’s space carries a metric, such
that there is an actual physical angle 6 (y, z) between the two devices’ directions, we have
6 (y, z)= 6 (ω̂y, ω̂z), and the angle that Bob determines by probability measurements must agree
with the actual physical angle.

Now we give a protocol which allows an observer to determine the angle between different
direction bit measurement devices (or different settings of the same device), by means of
probability measurements, in arbitrary dimensions d > 2. The protocol will yield more or
less accurate estimates of the corresponding angle, depending on the statistical effort that the
observer spends to obtain probability estimates. We assume that the observer knows the outcome
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i0 as defined in the main text, as well as the visibility and noise parameters a and c, and the
spatial dimension d.

Protocol 8. In d > 2 spatial dimensions, an observer (called Bob) can estimate the angle
6 (y, z) between two given measurement devices My and Mz (acting on systems according
to postulates 1 and 2) by the following protocol:

1. Bob randomly selects d direction bit preparation devices that he finds in his lab (or in
nature), preparing (unknown) direction bit states ω1, . . . , ωd .
The protocol will assume that the corresponding Bloch vectors ω̂1, . . . ω̂d are linearly
independent, which is generically the case. Otherwise, the protocol fails and has to be
repeated.

2. For every i = 1, . . . , d, Bob measures ωi in many different (unknown) directions x ∈ Rd ,
|x | = 1. This way, he determines maxxMx(ωi)= c + (a/2)|ω̂i |, and he can rotate his
device close to the (unknown) maximizing direction xi where ω̂xi = ω̂i/|ω̂i |, setting the
device up to perform the measurementMxi .

3. By measuring the probabilities Mxi (ω j)= c + (a/2)〈ω̂i , ω̂ j〉/|ω̂i | for all j 6= i , he can
determine the matrix X i j := 〈ω̂i , ω̂ j〉.

4. Bob computes any matrix S that solves the equation STS = X. A solution of this kind exists:
any matrix S with columns ω̂′

1, . . . , ω̂
′

d is a solution, if ω̂′

i is the coordinate representation
of ω̂i in any orthonormal basis. Conversely, it follows from the polar decomposition that
every solution is of this form.
Hence, in this step of the protocol, Bob obtains the coordinates of the ω̂1, . . . , ω̂d in some
orthonormal basis.

5. For any pair of measurement devices pointing in directions y and z, Bob can
determine the coordinates of ω̂y and ω̂z in the previously obtained orthonormal basis
by measuring My(ωi)= c + (a/2)〈ω̂y, ω̂i〉 and Mz(ωi) for i = 1, . . . , d, and therefore
compute 6 (ω̂x , ω̂y). But according to Lemma 11, there is some orthogonal matrix O such
that ω̂x = Ox and ω̂y = Oy, hence this angle equals 6 (x, y).

As announced in appendix C, we now give a modification of the direction bit setup, showing that
physical space can in some situations inherit its linear and Euclidean structure from state space.
The following example is not meant to describe actual physics in our universe; it is simply a
‘proof of principle’ demonstrating the mechanism under very specific conditions.

Example 2. Imagine an observer Bob in d-dimensional space, which is simply a topological
manifold M. Bob’s local laboratory is assumed to reside in a (small) part of this manifold, in
the vicinity of some point p ∈ M. We assume that there are systems C (say, internal degrees of
freedom of particles) described by a convex state space�C which is also d-dimensional, but not
necessarily a Euclidean ball.

We also assume that there is an analogue of a direction bit measurement device which can
‘point in different directions’ and can be ‘rotated’. However, since M does not carry a metric
tensor, Bob’s local laboratory space does not carry an inner product (there is not even the
notion of a tangent space to begin with). Thus, there is no literal notion of direction vectors or
rotations, and we have to define what we mean by these notions in a generalized sense.

We do this by assuming that there is a special (small) open neighborhood U of p
that is homeomorphic to a d-dimensional Euclidean ball, with a topological boundary ∂U
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Figure C.1. The topological manifold M and a neighborhood U of a point
p with a boundary that is homeomorphic to a (d − 1)-sphere. The different
‘directions’ x ∈ ∂U in which a measurement device may be oriented are sketched
as black arrows, illustrating the intuition that a measurement device ‘points’ in
the corresponding direction. However, the elements x ∈ ∂U are, in general, not
vectors in any mathematically well-defined sense; they are only meant to label
the different possible states of the macroscopic measurement device, leading to
different types of measurements.

homeomorphic to the (d − 1)-sphere Sd−1, such that for every x ∈ ∂U there is an effect Ex ∈ EC

which describes the first outcome of the ‘device pointing in direction x’. Formally, we only
assume that the measurement device can be in different macroscopic states indexed by x ∈ ∂U.
The concrete physical interpretation will be left completely open, with the wording ‘pointing in
direction x’ chosen only to supply a more concrete mental picture.

For simplicity, let us assume that we have a two-outcome device, with outcomes labeled
‘yes’ and ‘no’, such that Ex(ω) yields the probability of outcome ‘yes’ if the device ‘points in
direction x’ and is applied to the state ω ∈�C . For obvious physical reasons, Ex should be
continuous in x. A sketch is given in figure C.1. We make an additional important assumption,
namely that the effects determine the space points; that is, if x 6= y, then Ex 6= Ey .

The analogue of a ‘rotation’ is then any physical transformation which takes a
measurement device pointing in direction x ∈ ∂U to point in some other direction y = H(x) ∈

∂U. Which transformations with corresponding maps H are actually possible depends on the
physics in Bob’s universe. To comply with some of our intuition on rotations, we only consider
those transformations that are continuous and can be physically reversed by some inverse
transformation of this kind. We will assume that the relevant physical quantities (measurement
devices, particles, etc) are exactly as before if H and then H−1 is applied (however, there may
be parts of the universe that have changed in this process; for example, a distant observer may
have noticed the applications of H and then of H−1 and kept some memory of this).

Since these transformations map ∂U continuously onto itself, and ∂U is homeomorphic to
the (d − 1)-sphere Sd−1, we obtain a subgroupH of homeomorphisms of ∂U, which can also be
seen as a subgroup of homeomorphisms of the unit sphere Sd−1. So far, there is no reason why
the transformations H ∈H should act linearly; this notion does not even have any meaning
at this point. We assume that these transformations allow Bob to collimate his device in any
‘direction’ x ∈ ∂U that he likes; in other words, H acts transitively on ∂U.

But now suppose that some of the transformations H ∈H have impact on the measured
outcome probabilities: the probability to see the first outcome may change if the measurement
device is transformed via H. If it makes sense that Bob undergoes the transformation H together
with the measurement device such that the device has not changed from his perspective (i.e. a
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‘joint rotation’), he will model the net effect on the probabilities by some other transformation
H ′ that acts on the state ω instead. It must satisfy the equation

EH(x)(ω)= Ex(H
′(ω)) for all x ∈ ∂U, ω ∈�C . (C.1)

We will assume that this is possible. Due to the probabilistic interpretation of states, the map H ′

must be linear. Because of the assumed reversibility of H, it must be a reversible transformation,
i.e. H ′

∈ GC . We do not yet know whether this equation and linearity determine H ′ uniquely. Let
ω ∈�C be any pure state, and define µ :=

∫
GC

G(ω) dG (which may well depend on the choice
of ω). Then in particular H ′µ= µ for all possible H ′, since H ′

∈ GC . Thus, if x, y ∈ ∂U are
arbitrary, there is some H ∈H such that H(x)= y, and

Ey(µ)= EH(x)(µ)= Ex(H
′µ)= Ex(µ)=: m > 0.

Thus, all Ex lie in the d-dimensional affine subspace A := {E | E(µ)= m} of the (d + 1)-
dimensional dual space C∗. Let A′

⊆ A be the affine span of all Ex , and d ′ := dim A′. Let
h : ∂U → Sd−1 be a homeomorphism and j : A′

→ Rd ′

an invertible affine map. Then the map
s 7→ j (Eh−1(s)) is a continuous injective map from Sd−1 to Rd ′

. Due to lemma 21, we must have
d ′ > d = dim A, and so A′

= A. Suppose that m = 0; in this case, relabel the two outcomes
of the device ‘yes↔no’, such that the new Ex satisfy Ex(µ)= 1 for all x ∈ ∂U. Thus, we may
assume that m > 0, such that A is not a linear subspace. Consequently, the Ex linearly span C∗,
and so equation (C.1) determines H ′ uniquely.

If H does not alter the outcome probabilities, the corresponding map H ′ will be the identity
map; in particular, H 7→ H ′ need not be injective. Again, since the Ex span C∗, we obtain

Ex 7→ EH(x) = Ex ◦ H ′
=: L H (Ex)

extends to a linear invertible map L H from the dual space C∗ to itself.
Let H′ be the topological closure of the group of all H ′, where H ∈H. Since it is a

subset of the compact group of reversible transformations of C, it must itself be compact.
Let y1, . . . , yd+1 ∈ ∂U be any set of points such that Ey1, . . . , Eyd+1 is a basis of C∗. Define the
subspace S of C∗ by

S := { f ∈ C∗
| f (µ)= 0}.

Then the functionals Eyi − m UC span S, and we can find d of them which constitute a basis of
S. Call these functionals F1, . . . ,Fd (in some arbitrary order). Now we can define a coordinate
map 3 : S → Rd via

E = λ1F1 + · · · + λdFd ⇔ 3(E)= (λ1, . . . , λd)
T.

This allows us to define coordinates Eλ(x) of space points x ∈ ∂U via

Eλ(x) :=3(Ex − m UC).

What is the action of H in these coordinates? Since L H (UC)= UC , we have

Eλ(H(x))=3(EH(x) − m UC)=3 ◦ L H (Ex − m UC)=3 ◦ L H ◦3−1 Eλ(x). (C.2)

In other words, we have constructed a fictitious d-dimensional linear space such that all x ∈ ∂U
can be represented as elements of this linear space, and all transformations H ∈H act linearly
(represented by 3 ◦ L H ◦3−1). This vector space structure is inherited from the convexity of
probabilities.

Define the group L as the topological closure of {3 ◦ L H ◦3−1
| H ∈H}. Due to L H (E)=

E ◦ H ′, compactness of H′ implies compactness of L. Thus, there is an inner product on Rd
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such that 〈v,w〉 = 〈Lv, Lw〉 for all v,w ∈ Rd and L ∈ L. With respect to this inner product,
L is a subgroup of SO(d). Hence equation (C.2) implies that ‖Eλ(H(x))‖ = ‖Eλ(x)‖ for the
corresponding norm, and since H is transitive on ∂U, we obtain that

there exists r > 0 such that ‖Eλ(x)‖ = r for all x ∈ ∂U.

Let h : ∂U → Sd−1 be a homeomorphism, then (1/r) · Eλ ◦ h−1 is a continuous injective map from
the sphere Sd−1 into itself. According to lemma 22, it must be surjective—in other words, the set
{Eλ(x) | x ∈ ∂U } is the full sphere of radius r in Rd . Since L is transitive on this sphere, we see
that L acts irreducibly on Rd; hence the inner product 〈·, ·〉 is in fact unique.

In other words, we have obtained a unique Euclidean structure on our vector space
representation of ∂U, inherited from the group of reversible transformations on state space.

We can say more about the set of states �C . Let us introduce coordinates on the (d + 1)-
dimensional space C∗: for E ∈ C∗, set

Ē := (E(µ),3(E − E(µ)UC)) ∈ Rd+1.

Basically, this extends the coordinate map 3 from the subspace S to all of C∗. In particular, we
have ŪC

= (1, 0, . . . , 0). For H ∈H, set H̄ := 1 ⊕3 ◦ L H ◦3−1, where 1 acts as the identity on
the first entry of the vector to which it is applied. We introduce an inner product onRd+1: if a, b ∈

R and v,w ∈ Rd , set 〈(a, v), (b, w)〉 := ab + 〈v,w〉, where the inner product on the right-hand
side is the L-invariant inner product constructed above. It follows that 〈H̄ x, H̄ y〉 = 〈x, y〉 for
all x, y ∈ Rd+1. Now we can represent elements ω ∈ C (for example states) by vectors ω̄ ∈ Rd+1,
defined by the equation E(ω)= 〈Ē, ω̄〉. For ω ∈�C , we have 1 = UC(ω)= 〈ŪC , ω̄〉 = ω̄1, where
ω̄1 is the first component of the vector ω̄. Thus, we can represent every ω ∈�C via ω̄ = (1, ω̂).
We obtain

〈Ē, H̄−1ω̄〉 = 〈H̄ Ē, ω̄〉 = 〈(E(µ),3L H (E − E(µ)UC)), ω̄〉 = 〈(E(µ),3((E − E(µ)UC) ◦ H ′)), ω̄〉

= 〈E ◦ H ′, ω̄〉 = (E ◦ H ′)(ω)= E(H ′(ω))= 〈Ē, H ′(ω)〉.

Thus, we obtain H ′(ω)= H̄−1ω̄. In summary, for two states ϕ, ω ∈�C , we have

ϕ = H ′(ω)⇔ ϕ̄ = H̄−1ω̄⇔ ϕ̂ =3 ◦ L H−1 ◦3−1ω̂.

In other words, H acts on the subspace containing the ω̂ as the group L; since L is transitive
on the unit sphere, this implies that the set of ‘Bloch vectors’ {ω̂ | ω ∈�C} is a Euclidean ball
(of some radius), and equivalent to a d-dimensional Euclidean unit ball, exactly as direction
bits are. Thus, Bob may use protocol 8 to determine angles between different orientations of his
measurement device. In retrospect, we also see that the maximally mixed state µ is unique (it is
the center of the ball); hence the linear structure that we have constructed is unique as well.

The following lemmas have been used in Example 2.

Lemma 21. There is no continuous injective map f : Sd−1
→ Rn if n < d.

Proof. It is sufficient to consider the case n = d − 1; otherwise, we can compose f with
an embedding of Rn into Rd−1. The result for n = d − 1 follows from an application of the
invariance of domain theorem [71, Exercise 7.6].

ut

Lemma 22. Every continuous injective map from the sphere Sd−1 to itself is surjective.
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Proof. Suppose there was a non-surjective continuous injective map f from Sd−1 to itself. Let
s ∈ Sd−1 be any point which is not attained by f ; then f can be interpreted as a continuous
injective map from Sd−1 to the punctured sphere Sd−1

\{s}, which is well known [63] to be
homeomorphic to Rd−1. Let g : Sd−1

\ {s} → Rd−1 be a corresponding homeomorphism, then
g ◦ f is a continuous injective map from Sd−1 to Rd−1, contradicting lemma 21.

ut

Appendix D. Simplified proof of the result of section 4.3 in [54] for SO(d)

In [54], it has been shown that two noiseless d-dimensional Euclidean ball state spaces can
be combined into an interacting, joint state space if and only if d = 3. In that paper, we
have considered the general case of ball state spaces with any compact group of reversible
transformations which is transitive on the unit sphere. However, here, we are only interested in
the special case that the group of reversible transformations on a direction bit contains the full
orthogonal group SO(d), as established in lemma 8. It turns out that this simplifies the proof of
a key lemma in [54] significantly.

Here, we give the simplified proof, as a reference for readers who would like to follow the
argumentation in [54]. Therefore, we do not introduce the relevant notation here in the appendix,
but refer the reader to the introductory chapters of [54], and just use the notation that has been
introduced there.

Lemma 23 (Section 4.3 in [54], special case of SO(d), d> 2). If a generator W ∈ g̃ is of the
block-diagonal form

W =


0 0 0 0
0 Y 0 0
0 0 X 0
0 0 0 Z

 ,
then Z = X ⊗ 1 + 1 ⊗ Y , i.e. W generates non-interacting dynamics.

Proof. Since W is antisymmetric, so are X and Y , which are thus generators of rotations. By
assumption, we can perform the rotations exp(t X̂)⊗ exp(t Ŷ ) on the joint system, which are
generated by

W ′
=


0 0 0 0
0 Y 0 0
0 0 X 0
0 0 0 X ⊗ 1 + 1 ⊗ Y

 ∈ g̃.

Since g̃ is a Lie algebra, it also contains the element

W ′′ := W ′
− W = diag(0, 0, 0, V ), where V := X ⊗ 1 + 1 ⊗ Y − Z is antisymmetric.

Applying constraint (35) from [54] in the special case x = −a implies[
1

−a

]
⊗

[
1

−b

]
M(W ′′)2 M−1

[
1
a

]
⊗

[
1
b

]
> 0

for all a,b ∈ Rd with |a| = |b| = 1, which simplifies to (a ⊗ b) · N V 2 N−1(a ⊗ b)> 0.
Summing over all a and all b in an orthonormal basis yields 06 tr(N V 2 N−1)= tr(V 2).
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But V TV > 0, and since V T
= −V , we have V 2 6 0, hence tr(V 2)6 0. Both inequalities

together give tr(V 2)= 0, which is only possible if V 2
= 0, and thus V = 0. ut
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[69] Ziȩtak K 1988 On the characterization of the extremal points of the unit sphere of matrices Linear Algebra

Appl. 106 57–75
[70] Sanyal R, Sottile F and Sturmfels B 2011 Orbitopes Mathematika 57 275–314
[71] Dold A 1980 Lectures on Algebraic Topology (Heidelberg: Springer)

New Journal of Physics 15 (2013) 053040 (http://www.njp.org/)

http://arxiv.org/abs/1012.0535v1
http://dx.doi.org/10.1103/PhysRevD.81.104032
http://dx.doi.org/10.1016/j.physletb.2005.09.084
http://dx.doi.org/10.1103/PhysRevLett.110.040403
http://home.mathematik.uni-freiburg.de/soergel/Skripten/TOPOLOGIEmitBildern.pdf
http://home.mathematik.uni-freiburg.de/soergel/Skripten/TOPOLOGIEmitBildern.pdf
http://dx.doi.org/10.1016/0024-3795(88)90023-7
http://dx.doi.org/10.1112/S002557931100132X
http://www.njp.org/

	1. Introduction
	2. Setting the stage: convex state spaces
	3. Single systems: postulates 1 and 2
	4. Frame bits instead of direction bits?
	5. Spatial geometry from probability measurements
	6. Pairs of systems: postulates 3 and 4
	7. Conclusions
	Acknowledgments
	Appendix A.  Characterization of all direction bit state spaces 
	Appendix B.  Proof of non-existence of frame bits (in a special case) 
	Appendix C.  Inferring spatial geometry from probability measurements 
	Appendix D.  Simplified proof of the result of section 4.3 in [54] for SO(d)
	References

