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The recently proposed complexity-action conjecture allows one to calculate how fast one can produce a
quantum state from a reference state in terms of the on-shell action of the dual AdS black hole at the
Wheeler-DeWitt patch. We show that the action growth rate is given by the difference of the gener-
alized enthalpy between the two corresponding horizons. The proof relies on the second identity that
the surface-term contribution on a horizon is given by the product of the associated temperature and
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1. Introduction

Holographic principle [1,2], the AdS/CFT correspondence [3] in
particular, provides a powerful tool to study a strongly-coupled
quantum theory at the boundary using a highly classical theory in
the bulk. One area of research with widespread interest is relating
[4-7] the quantum computational complexity [8], the minimum
number of elementary operations needed to produce a state of
interest from a reference state, to black hole physics. The most
recent proposal is the complexity-action (CA) conjecture that the
quantum complexity C of a boundary state is related to the corre-
sponding bulk action A in the region called the Wheeler-DeWitt
patch [9,10], namely

A
C=—r. (1)
This implies that how fast information can be stored may be com-
puted by the growth rate of the on-shell action of the correspond-
ing black hole.

The action of the Wheeler-DeWitt patch for anti-de Sitter (AdS)
black holes is essentially evaluated over the spacetime volume be-
tween the outer and inner horizons [10]. (See [11,12] for further
discussion on the global structure of the Wheeler-DeWitt patch.)
The action growth for stationary AdS black holes with various
charge or rotation parameters was computed [10,13]. For a vari-
ety of single-charged and/or single-rotation black holes, the answer
takes the form [13]
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dA

= M=) —pQ)y ~(M—QJ — uQ)-. (2)
We have checked a great many further examples of AdS black holes
in literature, including the static and rotating black holes in gauged
STU models, and Kerr-AdS black holes with multiple rotations in
general dimensions [14-22]. The general formula takes the form

‘Z—f =M-QJ = pQ) —M-Q'J —p*Q_,  (3)
where the repeated indices imply summation. (In the appendix,
we present two explicit examples.) The large number of examples
we have checked indicate the formula is robust. The motivation of
this paper is to give a formal proof. To do so, we find that the
cumbersome formula (3) can be further abstracted to be

dA
E:(F+TS)+—(F+TS),:H+—’H7, (4)
where F is the free energy obtained from the Euclidean action via
the quantum statistic relation (QSR) [23], and H =F + TS is the
generalized enthalpy, whose terminology will be justified later.
Assuming that the QSR holds, the key to prove (4) is then the
identity that the surface contribution to the action growth at each
horizon is precisely the product of the associated Hawking temper-
ature and entropy, namely

d Asurf
dt
The paper is organized as follows. In section 2, we establish

the identities in two-derivative Einstein gravities. In section 3, we

establish them in general higher-derivative gravities. We conclude

the paper and give further discussions in section 4.

,=TaSs. (5)
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2. Action growth in Einstein gravity

We begin with Einstein gravity with minimally-coupled mat-
ter in general D =n + 1 dimensions. The action can be expressed
as [dtL, where the Lagrangian L consists of the bulk and bound-
ary terms. We are interested in stationary black holes for which
the on-shell Lagrangian L is time-independent. In other words, we

have ‘%‘ =L, with

1 1
Lbulk — /dn L= d" /—gR — £mat ,
167 X 16w X ( & )

M ./\/l

/d” TxJ/—hK. (6)
871

M

Lsurf LGH + Lct ,

Here K = h*VK,, is the trace of the second fundamental form
Kuv =h,”Vony, and hyy = guy — nyny, with n#* being the unit
vector normal to the surface [23]. (Note that the cosmological
constant A belongs to £™ in this paper.) For asymptotically
AdS backgrounds, it is also necessary to introduce the counter
terms [24]

w1 2n=3) ¢
1671 d [ b4 n—4)
oM
e n—
- (RW - " RYH 4.
T a—ea—a2 " R T gg st ] 2

where R¥VP9 and its contraction denote curvatures in the bound-
ary metric hy,y, and £ is the AdS radius.

The QSR states that for black holes, the on-shell Euclidean ac-
tion is Ig = F/T, where the temperature T is the inverse of the
period of the Euclidean time, and F is the thermodynamical free
energy of the black holes [23]. To be specific, the QSR implies

oo
1
—F=1— d'xC+ 1S 4+ 18 . (8)
+
For Euclideanized black holes, there is only one boundary, located
at the asymptotic infinity. The Euclidean Killing horizon is not a
boundary but the middle of the bulk.

In order to compute the action growth of a black hole, we need
to evaluate it in the original Minkowski signature. Since the event
horizon is not geodesically complete, we need to count also the
boundary contribution on the horizon. It is clear that all the poly-
nomial invariants of R*YP? in (7) are finite and hence L' vanishes
since +/—h vanishes on the horizon. Thus the on-shell action on
and out of the horizon is

o0
1 £ £ H
Ly = [ AL L3 = 13 = —F — LS. (9)
+
The most general near-horizon geometry up to the relevant order
takes the form

2
ity (
A T(r —rg)
+ gij(dy' — @'dt)(dy’ — widt),
V=V +0r—r0), gj=gy) +0—r0),
o' =(@% +0@ —rp). (10)

It is then straightforward to evaluate that

S=}—1/d“_1y1/det(g8.). (11)

—4nT(r— ro)dt2>

GH
ISH=Ts,

(The detail demonstration will be given in section 3 for the more
general higher-order gravity theories.) Here S, one-quarter of the
horizon area, is precisely the Bekenstein-Hawking entropy. It is
rather subtle to evaluate the boundary terms on the null surfaces
like horizons approaching from the inside, and new contributions
on the null surfaces were introduced in [11,12]. Analogous re-
sults of (11) involving the new contributions were also obtained
in [25,26]. We shall comment on our approach presently.

For black holes that have an “inner” as well as an “outer”
horizon, the first law of black hole “thermodynamics” is formally
valid for both horizons. To be specific, we assume that these black
hole solutions have the blackening factors of the form f(r) =
(r—ry)(r —r_)f(r), where ry > r_ are the two real roots and
f’(r) has no further real roots in r € (r—, co). The horizon condition
f(@ry+) =0 implies an algebraic relation between r; and the con-
served quantities including mass, angular momenta and charges.
The first law can then be established provided that this algebraic
relation is valid. The first law as a mathematical expression, a pri-
ori, does not “know” that r =ry is the larger root for f(r) and
we can thus extend the first law formula to the inner horizon as
well, provided that the thermodynamical quantities are now evalu-
ated at r =r_. The same can be said also for the QSR. The physical
meaning of the “thermodynamics” in the inner horizon is not clear,
but this is not important for the purpose of the paper. Introducing
inner horizon “thermodynamics” only serves us as an intermediate
step to calculate the action growth rate, whose final answer does
not rely on the concept of the inner horizon thermodynamics.

For a concrete example, the Kerr-Newman-(AdS) black hole has
two horizons, and we may label the quantities associated outer
and inner horizons with “+” and “—" subscripts. The first law at
each horizon takes the same form

dM =T1dS+ + pu+dQ +Q4dJ + VodP. (12)

Here the pressure P = —(D — 2)A/(167). For this reason, M is
more appropriately called the enthalpy instead of the energy of
AdS black holes [27,28]. The free energy associated with each hori-
zon for the Kerr-Newman-(AdS) black hole can be formally com-
puted using the QSR, giving rise to the Lagrangian in Minkowski
signature as

o0
1 £ £
Ly = 16 d"xl:+L5“r Li"
+
=—Fy L =-M—-puQ-Qs). (13)

In general the formulae (9) and (11) associated with the outer
horizon can be generalized to be valid for both horizons, yielding

Ly =—F4f —T4S+=—H4. (14)

We refer to H as generalized enthalpy, since it is related to the
enthalpy M by some Legendre transformation that does not in-
volve either (T, S) or (P, V). It follows that the Lagrangian of the
Wheeler-DeWitt patch is given by

+

1

M= — .
T - +

(15)

We thus prove the identity (4). We now comment on our approach
of evaluating the Gibbons-Hawking surface term. It follows from
(10) that on the inner and outer horizons, we have T_ < 0 and
T, > 0 respectively,’ we choose to approach the horizon surfaces

! One may also adopt the convention that T is always chosen to be positive by
modifying the first law, namely dM = £T.dS + - - -.
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by taking the limit r — r+ — +0 respectively, in which cases the
Gibbons-Hawking term is always evaluated on the time-like sur-
faces. It is clear that this is a smooth limit for both the bulk action
and the Gibbons-Hawking term.

The conclusion holds also for theories with non-minimally cou-
pled matter. As a concrete example, we consider the Brans-Dick
theory:

1
= /d”xJ—_g¢R+---,

1
J AL g/-d"’1x\/—h¢1<. (16)

It is then straightforward to see that on the horizon with the near-
horizon geometry (10) we have

L =T x @fd”_ly‘/det(g?j). (17)

This is precisely the product of the temperature and entropy,
which then leads directly to statement (4).

3. Higher derivative gravities

We now consider general classes of covariant gravities that
are constructed from polynomial invariants of Riemann and mat-
ter tensors. Assuming that the QSR holds for black holes in these
theories, it follows from the previous discussion that the key to
establish (4) is the identity (5). The proof of (5) may appear to be
difficult since the entropy in the general theory is expected to be
given by the Wald entropy formula [29]

) - L
S:_§ / d" ]X\/;IGabGCdTabcd, TabchaRW’ (18)

horizon

where [ is defined by the bulk Lagrangian as LPUk = fd”x\/—_glz,
and € is the binormal to the bifurcation surface. For spherically-
symmetric black holes in Einstein—-Gauss-Bonnet theory, we find
that the identity (5) can be shown using the results presented
in [13]. For general theories with minimally-coupled matter, the
surface term was obtained [30], given by

surf 1 n—1
L% = e / d xﬁ
oM
We expect this formula may also hold for theories with non-
derivative matter couplings to curvatures, since then the matter
fields can be treated as constants in the relevant terms. We now
substitute the near-horizon geometry (10) into the above. For sim-
plicity, we choose a coordinate gauge where (w%) =0, i.e. non-
rotating on the horizon. Approaching from the outside of the hori-

zon, the unit vector normal to the surface is

K% nbnd (19)

9 Rabcd

1 9

n=———. (20)
V& or

It follows that

Kig = In"dgu = —21TVn. (21)

Thus the surface term evaluating on the horizon gives

1
Lsurf=_/dn—1x /_hKMUnanTMPVU
8w
M

1 N
o d"2x y _gtt\/;Ktt (ny)*T"

:871

r=rg
‘1 ~ PR
=—§T /d"—zxﬁzr°1°1=rs. (22)
r=ro

Here (0, 1) are the tangent indices associated with the (t,r) coor-
dinates respectively. Note that the contributions from Ko; and Kj;
terms are subleading to O(r —rp) in the non-rotating frame of the
horizon. The identity (4) then follows directly. (It is interesting to
note that integrating over Euclidean time of Li‘”f gives precisely
the entropy, providing a new method of computing the entropy.)

4. Conclusions and discussions

In this paper, we showed for general covariant theories that the
bulk Lagrangian for stationary black holes within the inner and
outer horizons satisfied

+
(LPulky+ E/dnxcbulk =F —F_. (23)

Furthermore, we found that the surface contribution on each hori-
zon took the form

L =T.S, . (24)

(The identities are valid for both asymptotically AdS or flat black
holes.) Together, they give rise to the growth rate of the action of
Wheeler-DeWitt patch, given by (4). The validity of the identities
relies on the two assumptions. The first is that the QSR is valid and
the second is that the Wald entropy formula correctly computes
the entropy of the black hole. Both assumptions could become
problematic in higher-derivative theories with non-minimally cou-
pled derivative matters, such as Horndeski gravity [31,32]. It is of
great interest to investigate these theories in this context.

One test of the CA conjecture is to compare the bound for infor-
mation storage in computational science, with that of black holes,
since black holes are expected to be the fastest computers [9]. By
studying the thermofield double states, the bound was proposed
in [9]; it can be paraphrased for the general case as

dA
— =(F+TS)+ —(F4+TS)_<2(F+TS)y —2(F+TS%,

dt
(25)

where the superscript “gs” denotes some appropriate ground state.
In the limit of the neutral and static black holes with only sin-
gle horizon, the ground state is the AdS vacuum. The bound
is indeed saturated by the Schwarzschild-AdS black holes. For
charged or rotating black holes with two horizons, the ground
state is naturally the (zero-temperature) extremal black hole of
the same charge and/or angular momenta. For example, the ex-
tremal Reissner-Nordstrem-AdS black hole with horizon radius rg
has H*t = (F + TS)™t = —rg/ﬁz. The bound (25) however can be
violated for small black holes (rg < £). One explanation given in [9]
is that stringy effects may not be ignored for small black holes. We
find that in the asymptotically-flat limit (£ — oo), H®*' =0 and the
bound (25) is saturated precisely. In this limit, the black hole mass
M can be correctly interpreted as thermal internal energy. For AdS
black holes, on the other hand, M should be interpreted as en-
thalpy, since the cosmological constant acts as the pressure of the
system. The relation between complexity and black hole volume
was discussed in [12,25]. These leads to a tantalizing possibility
that the volume and pressure of the AdS black holes may play a
role in resolving puzzle of violation of the complexity bound.
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Appendix A. Two explicit examples

In the introduction, we mentioned that we have checked the
formula (3) for a variety of AdS black holes. In this appendix, we
present two explicit examples.

A.l. D =5 Kerr-AdS black holes

The D =5 Kerr-AdS black holes is an Einstein metric from the
action

A_—[J_ R +12g%) d5x+ /\/_Kd“ (26)

The solution is given by [17]. The relevant thermodynamlcal quan-
tities were obtained in [33], given by

TmQRE;+ 28 — EqEp) nmma mmb
M= a —2=2 = s ]a= —2= .’b= 2=
4uaub zﬁaﬁb zﬁbua
_a(l+g%r3) _ b1 +g%r%)
o rl +a2 N r2 +b2
s 722 +a®)(r2 +b?)
2r EqBp
1 1 K
k=ri(1+ 2rz) —+——]-—— T=—.
R r24+a® 2 4b2) 1y 27
(27)
The on-shell Einstein-Hilbert bulk action is
A= —— [ d°x/=g(-8g”). (28)
Thus we have
dApy  mgiri(@® +b*+1?) " 29)
ac 48,8 .

From the definition of the extrinsic curvature, its trace K can be
written as

1
= —du(V—gn"), (30)
/—g M
where the unit normal vector is given by (20). We can obtain the
growth rate of GH boundary term

K = v,n*

dAcn  m(g%%+ (1+ g2a® + g2b?)rt —a?b?) | 31)
ac 48,8,r? .

The growth rate of the total action is then

dA  w(*(+g%r?) —a®h?) [ (32)

da 48, Epr? .

After some algebra, we have

dA

s (20— — Qa4) Ja + (S2p— — 1) Jp - (33)

A.2. R-charged AdS black holein D =4

The bulk Lagrangian of the D = 4 gauged STU model is given
by

1

4
13,
-1, _ ar-¢ g2
L=——(R=7 3 e9F2 -
¢ 167 g 2.t

Vigi) ],

1 3
5 (060 —
i=1

(34)

where

a=(1,1,1), a=(1,-1,-1),

az=(-1,1,-1), as=(-1,-1,1), (35)

and

V(¢i)=—2¢") coshgy. (36)
i

The charged AdS black hole solution was constructed in [15,16].
The relevant thermodynamic quantities are given by

4
1 IV +2m
M=m+—zal, Q1 =-vqi(q; +2m), ¢I=M
41:1 r++4qr
f(r ) 1/2 :
e HH‘/ r). S=x[]J/r+a (37)
=1 =1

The action growth rate for bulk and surface terms is each very
complicated and not worth presenting here. The total action
growth however is relatively simple

dt

where

2
dA :(r+—r,)<1+gj(2a+3,3 +4y)), (38)

o =q192 +q193 + 4194 + 4293 + 4294 +q3q4
B=(q1+q2+q3+qa)(ry +1-)
y=ri4rr_+r2 (39)

It is then simple algebra to show that the action growth can be
expressed in terms of thermodynamics quantities as follows

4

dA
= Z«b,_ - ®1)Qr. (40)
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