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The recently proposed complexity-action conjecture allows one to calculate how fast one can produce a 
quantum state from a reference state in terms of the on-shell action of the dual AdS black hole at the 
Wheeler–DeWitt patch. We show that the action growth rate is given by the difference of the gener-
alized enthalpy between the two corresponding horizons. The proof relies on the second identity that 
the surface-term contribution on a horizon is given by the product of the associated temperature and 
entropy.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Holographic principle [1,2], the AdS/CFT correspondence [3] in 
particular, provides a powerful tool to study a strongly-coupled 
quantum theory at the boundary using a highly classical theory in 
the bulk. One area of research with widespread interest is relating 
[4–7] the quantum computational complexity [8], the minimum 
number of elementary operations needed to produce a state of 
interest from a reference state, to black hole physics. The most 
recent proposal is the complexity-action (CA) conjecture that the 
quantum complexity C of a boundary state is related to the corre-
sponding bulk action A in the region called the Wheeler–DeWitt 
patch [9,10], namely

C = A
π h̄

. (1)

This implies that how fast information can be stored may be com-
puted by the growth rate of the on-shell action of the correspond-
ing black hole.

The action of the Wheeler–DeWitt patch for anti-de Sitter (AdS) 
black holes is essentially evaluated over the spacetime volume be-
tween the outer and inner horizons [10]. (See [11,12] for further 
discussion on the global structure of the Wheeler–DeWitt patch.) 
The action growth for stationary AdS black holes with various 
charge or rotation parameters was computed [10,13]. For a vari-
ety of single-charged and/or single-rotation black holes, the answer 
takes the form [13]
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dA
dt

= (M − � J − μQ )+ − (M − � J − μ�)− . (2)

We have checked a great many further examples of AdS black holes 
in literature, including the static and rotating black holes in gauged 
STU models, and Kerr–AdS black holes with multiple rotations in 
general dimensions [14–22]. The general formula takes the form

dA
dt

= (M − �i J i − μα Q α)+ − (M − �i J i − μα�α)− , (3)

where the repeated indices imply summation. (In the appendix, 
we present two explicit examples.) The large number of examples 
we have checked indicate the formula is robust. The motivation of 
this paper is to give a formal proof. To do so, we find that the 
cumbersome formula (3) can be further abstracted to be

dA
dt

= (F + T S)+ − (F + T S)− = H+ −H− , (4)

where F is the free energy obtained from the Euclidean action via 
the quantum statistic relation (QSR) [23], and H ≡ F + T S is the 
generalized enthalpy, whose terminology will be justified later.

Assuming that the QSR holds, the key to prove (4) is then the 
identity that the surface contribution to the action growth at each 
horizon is precisely the product of the associated Hawking temper-
ature and entropy, namely

dAsurf

dt

∣∣∣± = T±S± . (5)

The paper is organized as follows. In section 2, we establish 
the identities in two-derivative Einstein gravities. In section 3, we 
establish them in general higher-derivative gravities. We conclude 
the paper and give further discussions in section 4.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Action growth in Einstein gravity

We begin with Einstein gravity with minimally-coupled mat-
ter in general D = n + 1 dimensions. The action can be expressed 
as 

∫
dt L, where the Lagrangian L consists of the bulk and bound-

ary terms. We are interested in stationary black holes for which 
the on-shell Lagrangian L is time-independent. In other words, we 
have dA

dt = L, with

Lbulk = 1

16π

∫
M

dnxL = 1

16π

∫
M

dnx
(√−g R −Lmat

)
,

Lsurf = LGH + Lct , LGH = 1

8π

∫
∂M

dn−1x
√

−hK . (6)

Here K = hμν Kμν is the trace of the second fundamental form 
Kμν = hμ

ρ∇ρnν and hμν = gμν − nμnν , with nμ being the unit 
vector normal to the surface [23]. (Note that the cosmological 
constant � belongs to Lmat in this paper.) For asymptotically 
AdS backgrounds, it is also necessary to introduce the counter 
terms [24]

Lct = 1

16π

∫
∂M

dn−1
√

−h
[
− 2(n − 3)

	
+ 	

(n − 4)
R

+ 	3

(n − 6)(n − 4)2
(RμνRμν − n − 2

4(n − 3)
R2) + · · ·

]
, (7)

where Rμνρσ and its contraction denote curvatures in the bound-
ary metric hμν , and 	 is the AdS radius.

The QSR states that for black holes, the on-shell Euclidean ac-
tion is IE = F/T , where the temperature T is the inverse of the 
period of the Euclidean time, and F is the thermodynamical free 
energy of the black holes [23]. To be specific, the QSR implies

−F = 1

16π

∞∫
+

dnxL+ LGH∞ + Lct∞ . (8)

For Euclideanized black holes, there is only one boundary, located 
at the asymptotic infinity. The Euclidean Killing horizon is not a 
boundary but the middle of the bulk.

In order to compute the action growth of a black hole, we need 
to evaluate it in the original Minkowski signature. Since the event 
horizon is not geodesically complete, we need to count also the 
boundary contribution on the horizon. It is clear that all the poly-
nomial invariants of Rμνρσ in (7) are finite and hence Lct vanishes 
since 

√−h vanishes on the horizon. Thus the on-shell action on 
and out of the horizon is

L+ = 1

16π

∞∫
+

dnxL+ Lsurf∞ − Lsurf+ = −F − LGH+ . (9)

The most general near-horizon geometry up to the relevant order 
takes the form

ds2 = V
( dr2

4π T (r − r0)
− 4π T (r − r0)dt2

)
+ gij(dyi − ωidt)(dy j − ω jdt) ,

V = V (y) +O(r − r0) , gij = g0
i j(y) +O(r − r0) ,

ωi = (ω0)i +O(r − r0) . (10)

It is then straightforward to evaluate that

LGH+ = T S , S = 1
4

∫
dn−1 y

√
det(g0

i j) . (11)
(The detail demonstration will be given in section 3 for the more 
general higher-order gravity theories.) Here S , one-quarter of the 
horizon area, is precisely the Bekenstein–Hawking entropy. It is 
rather subtle to evaluate the boundary terms on the null surfaces 
like horizons approaching from the inside, and new contributions 
on the null surfaces were introduced in [11,12]. Analogous re-
sults of (11) involving the new contributions were also obtained 
in [25,26]. We shall comment on our approach presently.

For black holes that have an “inner” as well as an “outer” 
horizon, the first law of black hole “thermodynamics” is formally 
valid for both horizons. To be specific, we assume that these black 
hole solutions have the blackening factors of the form f (r) =
(r − r+)(r − r−) f̃ (r), where r+ > r− are the two real roots and 
f̃ (r) has no further real roots in r ∈ (r−, ∞). The horizon condition 
f (r+) = 0 implies an algebraic relation between r+ and the con-
served quantities including mass, angular momenta and charges. 
The first law can then be established provided that this algebraic 
relation is valid. The first law as a mathematical expression, a pri-
ori, does not “know” that r = r+ is the larger root for f (r) and 
we can thus extend the first law formula to the inner horizon as 
well, provided that the thermodynamical quantities are now evalu-
ated at r = r− . The same can be said also for the QSR. The physical 
meaning of the “thermodynamics” in the inner horizon is not clear, 
but this is not important for the purpose of the paper. Introducing 
inner horizon “thermodynamics” only serves us as an intermediate 
step to calculate the action growth rate, whose final answer does 
not rely on the concept of the inner horizon thermodynamics.

For a concrete example, the Kerr–Newman–(AdS) black hole has 
two horizons, and we may label the quantities associated outer 
and inner horizons with “+” and “−” subscripts. The first law at 
each horizon takes the same form

dM = T±dS± + μ±dQ + �±d J + V±dP . (12)

Here the pressure P = −(D − 2)�/(16π). For this reason, M is 
more appropriately called the enthalpy instead of the energy of 
AdS black holes [27,28]. The free energy associated with each hori-
zon for the Kerr–Newman–(AdS) black hole can be formally com-
puted using the QSR, giving rise to the Lagrangian in Minkowski 
signature as

L± = 1

16π

∞∫
±

dnxL+ Lsurf∞ − Lsurf±

= −F± − LGH± = −(M − μ± Q − �± J ) . (13)

In general the formulae (9) and (11) associated with the outer 
horizon can be generalized to be valid for both horizons, yielding

L± = −F± − T±S± = −H± . (14)

We refer to H as generalized enthalpy, since it is related to the 
enthalpy M by some Legendre transformation that does not in-
volve either (T , S) or (P , V ). It follows that the Lagrangian of the 
Wheeler–DeWitt patch is given by

LWD = L− − L+ = 1

16π

+∫
−

dnxL+ LGH+ − LGH− = H+ −H− .

(15)

We thus prove the identity (4). We now comment on our approach 
of evaluating the Gibbons–Hawking surface term. It follows from 
(10) that on the inner and outer horizons, we have T− < 0 and 
T+ > 0 respectively,1 we choose to approach the horizon surfaces 

1 One may also adopt the convention that T is always chosen to be positive by 
modifying the first law, namely dM = ±T±dS + · · · .
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by taking the limit r − r± → ±0 respectively, in which cases the 
Gibbons–Hawking term is always evaluated on the time-like sur-
faces. It is clear that this is a smooth limit for both the bulk action 
and the Gibbons–Hawking term.

The conclusion holds also for theories with non-minimally cou-
pled matter. As a concrete example, we consider the Brans–Dick 
theory:

Lbulk = 1

16π

∫
dnx

√−g φR + · · · ,

Lsurf = 1

8π

∫
dn−1x

√
−h φK . (16)

It is then straightforward to see that on the horizon with the near-
horizon geometry (10) we have

Lsurf
r=r0

= T × φ(r0)

4

∫
dn−1 y

√
det(g0

i j) . (17)

This is precisely the product of the temperature and entropy, 
which then leads directly to statement (4).

3. Higher derivative gravities

We now consider general classes of covariant gravities that 
are constructed from polynomial invariants of Riemann and mat-
ter tensors. Assuming that the QSR holds for black holes in these 
theories, it follows from the previous discussion that the key to 
establish (4) is the identity (5). The proof of (5) may appear to be 
difficult since the entropy in the general theory is expected to be 
given by the Wald entropy formula [29]

S = −1

8

∫
horizon

dn−1x

√
ĥ εabεcd Tabcd , Tabcd ≡ ∂ L̂

∂ Rabcd
, (18)

where L̂ is defined by the bulk Lagrangian as Lbulk = ∫
dnx 

√−g L̂, 
and εab is the binormal to the bifurcation surface. For spherically-
symmetric black holes in Einstein–Gauss–Bonnet theory, we find 
that the identity (5) can be shown using the results presented 
in [13]. For general theories with minimally-coupled matter, the 
surface term was obtained [30], given by

Lsurf = 1

8π

∫
∂M

dn−1x
√

−h
∂ L̂

∂ Rabcd
K ac nbnd . (19)

We expect this formula may also hold for theories with non-
derivative matter couplings to curvatures, since then the matter 
fields can be treated as constants in the relevant terms. We now 
substitute the near-horizon geometry (10) into the above. For sim-
plicity, we choose a coordinate gauge where (ω0)i = 0, i.e. non-
rotating on the horizon. Approaching from the outside of the hori-
zon, the unit vector normal to the surface is

n = 1√
grr

∂

∂r
. (20)

It follows that

Ktt = 1
2 nr∂r gtt = −2π T V nr . (21)

Thus the surface term evaluating on the horizon gives

Lsurf = 1

8π

∫
M

dn−1x
√

−hKμνnρnσ T μρνσ

= 1

8π

∫
r=r0

dn−2x
√−gtt

√
ĥKtt(nr)

2T trtr

= −1

8
T

∫
dn−2x

√
ĥ 2T 0̄1̄0̄1̄ = T S . (22)
r=r0
Here (0̄, ̄1) are the tangent indices associated with the (t, r) coor-
dinates respectively. Note that the contributions from K0i and Kij
terms are subleading to O(r − r0) in the non-rotating frame of the 
horizon. The identity (4) then follows directly. (It is interesting to 
note that integrating over Euclidean time of Lsurf+ gives precisely 
the entropy, providing a new method of computing the entropy.)

4. Conclusions and discussions

In this paper, we showed for general covariant theories that the 
bulk Lagrangian for stationary black holes within the inner and 
outer horizons satisfied

(Lbulk)+− ≡
+∫

−
dnxLbulk = F+ − F− . (23)

Furthermore, we found that the surface contribution on each hori-
zon took the form

Lsurf± = T± S± . (24)

(The identities are valid for both asymptotically AdS or flat black 
holes.) Together, they give rise to the growth rate of the action of 
Wheeler–DeWitt patch, given by (4). The validity of the identities 
relies on the two assumptions. The first is that the QSR is valid and 
the second is that the Wald entropy formula correctly computes 
the entropy of the black hole. Both assumptions could become 
problematic in higher-derivative theories with non-minimally cou-
pled derivative matters, such as Horndeski gravity [31,32]. It is of 
great interest to investigate these theories in this context.

One test of the CA conjecture is to compare the bound for infor-
mation storage in computational science, with that of black holes, 
since black holes are expected to be the fastest computers [9]. By 
studying the thermofield double states, the bound was proposed 
in [9]; it can be paraphrased for the general case as

dA
dt

= (F + T S)+ − (F + T S)− ≤ 2(F + T S)+ − 2(F + T S)gs ,

(25)

where the superscript “gs” denotes some appropriate ground state. 
In the limit of the neutral and static black holes with only sin-
gle horizon, the ground state is the AdS vacuum. The bound 
is indeed saturated by the Schwarzschild–AdS black holes. For 
charged or rotating black holes with two horizons, the ground 
state is naturally the (zero-temperature) extremal black hole of 
the same charge and/or angular momenta. For example, the ex-
tremal Reissner–Nordstrøm–AdS black hole with horizon radius r0
has Hext = (F + T S)ext = −r3

0/	2. The bound (25) however can be 
violated for small black holes (r0 
 	). One explanation given in [9]
is that stringy effects may not be ignored for small black holes. We 
find that in the asymptotically-flat limit (	 → ∞), Hext = 0 and the 
bound (25) is saturated precisely. In this limit, the black hole mass 
M can be correctly interpreted as thermal internal energy. For AdS 
black holes, on the other hand, M should be interpreted as en-
thalpy, since the cosmological constant acts as the pressure of the 
system. The relation between complexity and black hole volume 
was discussed in [12,25]. These leads to a tantalizing possibility 
that the volume and pressure of the AdS black holes may play a 
role in resolving puzzle of violation of the complexity bound.
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Appendix A. Two explicit examples

In the introduction, we mentioned that we have checked the 
formula (3) for a variety of AdS black holes. In this appendix, we 
present two explicit examples.

A.1. D = 5 Kerr–AdS black holes

The D = 5 Kerr–AdS black holes is an Einstein metric from the 
action

A = 1

16π

∫ √−g
(

R + 12g2)d5x + 1

8π

∫
∂M

√
−hKd4x. (26)

The solution is given by [17]. The relevant thermodynamical quan-
tities were obtained in [33], given by

M = πm(2�a + 2�b − �a�b)

4�2
a�2

b

, Ja = πma

2�2
a�b

, Jb = πmb

2�2
b�a

,

�a = a(1 + g2r2+)

r2+ + a2
, �b = b(1 + g2r2+)

r2+ + b2
,

S = π2(r2+ + a2)(r2+ + b2)

2r+�a�b

κ = r+(1 + g2r2+)

(
1

r2+ + a2
+ 1

r2+ + b2

)
− 1

r+
, T = κ

2π
.

(27)

The on-shell Einstein–Hilbert bulk action is

AEH = 1

16π

∫
d5x

√−g(−8g2) . (28)

Thus we have

dAEH

dt
= − π g2r2(a2 + b2 + r2)

4�a�b

∣∣∣∣
r+

r−
. (29)

From the definition of the extrinsic curvature, its trace K can be 
written as

K = ∇μnμ = 1√−g
∂μ(

√−gnμ), (30)

where the unit normal vector is given by (20). We can obtain the 
growth rate of GH boundary term

dAGH

dt
= π(2g2r6 + (1 + g2a2 + g2b2)r4 − a2b2)

4�a�br2

∣∣∣∣
r+

r−
. (31)

The growth rate of the total action is then

dA
dt

= π(r4(1 + g2r2) − a2b2)

4�a�br2

∣∣∣∣
r+

r−
. (32)

After some algebra, we have

dA
dt

= (�a− − �a+) Ja + (�b− − �b+) Jb . (33)

A.2. R-charged AdS black hole in D = 4

The bulk Lagrangian of the D = 4 gauged STU model is given 
by

e−1L = 1

16π

(
R − 1

4

4∑
I=1

e �aI · �φ F 2
I − 1

2

3∑
i=1

(∂φi)
2 − V (φi)

)
,

(34)
where

a1 = (1,1,1), a2 = (1,−1,−1),

a3 = (−1,1,−1), a4 = (−1,−1,1) , (35)

and

V (φi) = −2g2
∑

i

cosh φi . (36)

The charged AdS black hole solution was constructed in [15,16]. 
The relevant thermodynamic quantities are given by

M = m + 1

4

4∑
I=1

aI , Q I = 1

4

√
qI (qI + 2m), �I =

√
qI (qI + 2m)

r+ + qI

T = f ′(r+)

4π

4∏
I=1

H−1/2
I (r+), S = π

4∏
I=1

√
r+ + qI (37)

The action growth rate for bulk and surface terms is each very 
complicated and not worth presenting here. The total action 
growth however is relatively simple

dA
dt

= (r+ − r−)

(
1 + g2

4
(2α + 3β + 4γ )

)
, (38)

where

α = q1q2 + q1q3 + q1q4 + q2q3 + q2q4 + q3q4

β = (q1 + q2 + q3 + q4)(r+ + r−)

γ = r2+ + r+r− + r2− (39)

It is then simple algebra to show that the action growth can be 
expressed in terms of thermodynamics quantities as follows

dA

dt
=

4∑
I=1

(�I− − �I+)Q I . (40)
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