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Abstract: The key objective of this paper is to study the cyclic codes over mixed alphabets on the
structure of §;PQ, where P = Sy[0] and Q = T Sylu0]

(03 —a3v) u2—a2,03—a3v)

in §,;/{0} for i € {1,2}, where g = p" with m > 1 is a positive integer and p is an odd prime.

are nonchain finite rings and «; is

Moreover,with the applications, we obtain better and new quantum error-correcting (QEC) codes.
For another application over the ring P, we obtain several optimal codes with the help of the Gray
image of cyclic codes.

Keywords: cyclic code; dual code; mixed alphabet code; QEC code

MSC: 94B05; 94B15; 94B60

1. Introduction

The most significant families of cyclic codes were first introduced and studied by
Prange [1] and Sloane-Thompson [2]. These codes are extensively used because of their
robust algebraic structure and simplicity of usage. In recent years, there has been a rapid
expansion of research on cyclic codes over finite rings, following the notable work of Ham-
mons et al. [3]. The literature extensively delves into the exploration of cyclic codes and
their constructions across various finite rings, such as applications in constructing minimal
codes in [4] and projective two-weight codes in [5]. Recently, Pereira and Mancini have
given a general method to construct EAQEC codes from cyclic codes in [6]. A particular area
of interest in recent years has been the study of codes over mixed alphabets. This research
direction was initiated by Brouwer et al. [7] in 1998, where they began investigating linear
codes over mixed alphabets. Specifically, the authors focused on describing Zj-submodules
over Z,»Zg for mixed alphabet codes. Borges et al. [8] made significant contributions to this
field by discovering Z,Z4-additive codes and their associated Z,Z,-linear codes. Notably,
extensive studies have been conducted on additive codes, with significant research contri-
butions in ([9-12]). Moreover, the additive codes, additive cyclic codes, and the additive
quasi-cyclic codes over different mixed alphabets have also been intensely studied, for
example, Z,Z;[u]-additive codes [13], Zprk—additive codes [14], ZyZ;[u]-cyclic and consta-
cyclic [15], Zy(Zy + uZy)-additive cyclic codes [16]. Borges et al. [8] explored double cyclic
codes over Zj. Recently, Gao et al. have studied hulls of double cyclic codes over Z,, and
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obtained some good quantumcodes from hulls in [17]. Gao et al. [18] generalized double
cyclic codes over Z,. The triple cyclic codes over Z; were introduced by Mostafanasab [19]
and extended this double cyclic code structure. Recently, Z,Z,Z4-additive cyclic codes and
ZoZsZg-cyclic codes were separately explored by Wu et al. [20], and Aydogdu-Gursoy [21],
respectively. Moreover, the P and Q used in this paper are finite nonchain rings actually.
As we know, there are many papers on quantum codes over finite nonchain rings [22-24].
Researchers primarily concentrated on investigating the structural properties of mixed
alphabet codes in all of the works, including generator matrices, parity check matrices,
generator polynomials, minimal generating sets, generator polynomials for dual codes,
etc. In 2020, Dinh et al. [25] delivered quantum and LCD code construction over mixed
alphabets. In 2022, Ashraf et al. [26] obtained quantum codes over mixed alphabets.

Motivated by the above study, in this paper, we describe cyclic codes, new quantum
error-correcting (QEC) codes and several optimal codes over mixed alphabets. Firstly,
we provide linear and cyclic codes over §;PQ, where §; are the finite fields with g ele-
ments, P = §,[v]/(v® — adv) and Q = F4[u, 0]/ (u?> — a3, 0* — a3v), where a; and a; are
the nonzero elements of ;. Section 2 presents some basic definitions, the construction of
cyclic codes over §;PQ, and some important structural properties over §,PQ. Section 3
describes Gray images and linear codes over P and Q. Further, we define a Gray map with
the help of a matrix. In Section 4, like Section 3, we define the Gray map and linear codes
over §,;PQ. Section 5 discusses the structural properties of cyclic codes over P, Q, §;PQ
and describes quantum error-correcting (QEC) codes and their construction over §,;PQ.
Finally, in Section 6, we discuss some applications of cyclic codes over mixed alphabets
and provide the conclusion of our results.

2. Preliminaries

Let m be a positive integer, p be an odd prime, and g be an odd prime power such
that g = p™. Next, let §; be a finite field with g elements having characteristic p. Our
construction depends on §; PQ, where P and Q are the commutative, nonchain, semi-local
ring. We begin with some key remarks and basic definitions as follows:

Remark 1. Let R be a local ring. Then, the following conditions are equivalent:

(i). R has a unique maximal left ideal.

(ii). R has a unique maximal right ideal.

(ii). The sum of any two nonunit elements of R is also a nonunit as well as 0 # 1.
(iv). If x is an arbitrary element of R, then x or 1 — x is unit as well as 0 # 1.

Remark 2. In the case of a commutative ring, R contains a unique maximal ideal if and only if it
is local.

Definition 1. Let x,y € 8’3, the Hamming distance between two vectors x = x1...x, and
Y = Y1 ... Yn be defined to be the number of places at which they differ and be denoted by d(x,y).

Definition 2. The Hamming weight of a vector x = x1x3 ... Xy is defined to be the number of
nonzero coordinates x; in x and is denoted by wy(x).

Definition 3. Each element of code € is referred to as a codeword, and a code of length n over R is
said to be linear if it is an R-submodule of R".

Definition 4. A code € is said to be self-orthogonal if € C &1, self-dual if € = ¢, and dual
containing if €+ C €.

Definition 5 ([27]). A code € is a cyclic code of length n over R if it is linear and every cyclic
shift of each codeword is also in €, i.e., o(c) = (€,_1, €, €1, ..., &,_2) € €&, whenever
c=(€,_1, €, ..., €,_2) € €. The operator ¢ is known as cyclic shift.
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By using the properties of cyclic code over the finite commutative nonchain ring, we
can define cyclic code over §,;PQ. Clearly, the ring P can be expressed as P = §; + 0§, +
02&1, where 3 = zx%v, the set {1, v, vz} is a set of basis elements of P, and we denote the
basis elements of P as follows: A; = 1,A, = v, A3 = v%, and every element of ring P is of
the form p, = a; +vay + v2as, for ay,ay,a3 € §4- Orthogonal idempotents of this ring is
given as follows:

Ei = (a3 — %),
(a0 + DC%ZJZ)

Ep=~—2 17277
2 > ’

and

(—a2v + a30?)

—

It is straightforward to see that Ei2 = Ej, EiEj = 0fori # j, and Eq + Ez + E3 = 1 where
i, j = 1,2,3. By using orthogonal idempotents E;, E; and E3, we can write the arbitrary
element p, of the ring P as p, = E1p, + E2pr, + E3pr,, Wwhere py, pr,, pry € - Similarly,
the ring Q can be expressed as Q = §, + uF, + 0§, + uoF, + 0V*F; + uv*F,, where u? = o,
03 = a3v, the set {1,u,v,uv,0?,uv?} is a set of basis elements of Q and we denote the
basis elements of Q as follows §; = 1,6, = w and &3 = v,05 = uv,d5 = v%, 66 = Uv>
and every element of ring Q is of the form g, = by + uby + vbs + uvby + v?bs + uv?bg, for
b1, b2, b3, by, bs, bg € ;. Orthogonal idempotents of the ring Q are given as follows:

Ej =

(a1 + u)(zx% —0?)

01= 2002 ,
[, (1= 1) =)
20103 ’
(g +u) (a0 + v?)
C3 - 40‘ 2 7
145
7= (a7 — u) (a0 + v?)
4 day03 ’
(s = (a1 + u)(—ag0 + v?)
> 4oy 03
and )
ls = (g — u)(—apv 4+ v7)

2
doqas

It is easy to see that @lz =i, Gij = 0and {1 + 02 + (3 + a4 + (5 + (6 = 1 where i, j =
1,2,3,4,5,6 and i # j. By using orthogonal idempotents {1, {3, (3, (4, {5 and (s, we can write

the arbitrary element g, of the ring Q as g, = {19r, + (297, + 03qr; + Caqr, + C5Grs + C6Gre,
where qr, qry, Grs, Grys Grs, Gre € Sq- Now, we define two ring homomorphisms 7 and ¢ as

1:Q— 3
such that 17(q,) = 17(31qr, + C28r, + $34rs + Caqr, + 05qrs + eqrg) = qr, and
r-Q—?"r

such that I'({19:, + 029r, + (3Gr; + Caqr, + 05Grs + C6qrs) = E1qr, + E2qr, + E3qy,. For
arbitrary q, € Q and (x,y,z) € 4 PQ, we define Q-scalar multiplication on §,;PQ by:

¢: 0 xFPQ— F,PQ
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such that
7-4(x,y,z) = (n(q,)(x), T(qr)(v), 9:2).

This multiplication is well defined and we can extend this multiplication over §; x PP x Q7
as
Q:Qx(sgxPﬁxQV)—)Sg‘xpﬂx(y

such that g, 41 = (17(qr)x0,7(qr)x1, - - ., 7(qr)Xa—1, T (@r)y0, T (9)y1, - - -, T (9r)yp-1,9r20, 9121,
.o, qrZy—1), where g, € Qand | = (xo,xl,...,x,x,l,yo,...,yﬁ_l,zo,zl,. o Zy-1) € 8’3‘ X
PP x Q.

In view of this scalar multiplication, Sg‘ x PP x Q7 forms a Q-module.

Definition 6. A nonempty subset € of §j x PP x QU is a §,PQ-linear code of length (a + B+ y)
if €is a Q-submodule of Fj x PP x Q.

Let! = (xo,xl,...,x,x,l,yo,...,yﬁ_l,zo,zl,...,zv,l) and l" = (xp, X}, ..., X001, Yo
y;gfl,zé,z’l, .. ,zir_l), where [, I’ € 35 X PP x Q7. After this, we also define inner product
of land I’ as

_ 1 _
l . l/ _ 0(21 al + ’B ] + = / c
- . XX} 2) vy kZO zzy € Q.
i= j= =

Here, the dual of &, ie., ¢+ = {I' € 34 X PPxQV|1-'=0,VYIc ¢}

Definition 7. A linear code € is a §,PQ-cyclic code of length (a4 B + 1) if every cyclic shift of

¢ is also in er i-e'r U(C) = (xtxfll X0, X1, Xp—2, Pﬁ—lz POI Plz ey Pﬁ—Zr ‘M—l/ ‘10/ ql/ oo /q’y—Z)
€ ¢ Ve € wherec = (x0,X1,..-,X4—1,P0, - - - ,PB-1,90,91, - - - qy—1) and o (c) is a cyclic
shift of €.

Proposition 1. Suppose € is a §;PQ-cyclic code of length (a + B + ). Then, the dual of € is a
also §4PQ-cyclic code of length (a + B + ).

Proof. Suppose € is a §;PQ-cyclic code of length (« 4 B + ), and next, let us consider that
I' e ¢tsuchthat!l’ = (x},x},..., X\ 1, Pb PLr---, p%il,q(’), qy - ‘7/7—1)/ and also, we take
lem(e, B,7y) = tand I = (x0,X1,. .-, X4—1,P0,P1, -, Pp-1,90,91,- - -, Gy—1) € €. Then, we
will show that o'(I") = (x_1, X0, X1, - X4 0/ Pg_1,P0s Plr -+ -+ Pp—2rGy—1,90: 91+ -1y —2) €
¢L. From above described inner product, we have

Lo(l') = (xoXy_q +X1X0 + .. +Xe1X4 o) + (Popp_1 + P1P0 + -+ Pp-1Pp_0) +
(90,1 + 10+ - - + 4710, 2)-

Since € is a §;PQ-cyclic code and lcm(a, B,y) = t.
Ut_l(l) = (X1,..+, X4—1, X0, Pi,---,Pg-1,P0, ql,.--,%q,%)-

Now, we take the inner product of ¢*~1(I) and I’, we have

where

TN = (21X xax] e+ X0X_q) + (P1pg + papt -+ pop_1) +
(9190 + 291 + - - - + qo0q5 1)
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(ag 4+ ax +apx? 4+ ...+ a,_1x* L by +bix +bpx® + ..+ bﬁ_lxﬁfl,co +c1x + oox
+oHoyx”h

(a(x),b(x), c(x)).

On comparing the coefficients of both sides, we have

X1X0) + XoX] + ...+ x0x,_4 = 0
pipo+papi +.- -+ popg_y = O
Q10 +q291 +---+q09y—1 = 0
we obtain
I-o(l')y=0.

Thus, 0(I') € €. This shows that ¢ is a §,PQ-cyclic code of length (x + + ). O

ket S0 P Qi
X X X
Qutpty = <xaq_ 1) X (xP — 1) X (x7 —1)

and f = (ao,al,...,aa,l,bo,bl,...,bﬁ_l,co,cl,...,cwq) € Sg‘ x PP x Q7. Let f be an
arbitrary element of Q1 p,, and then f can be identified as

2

This gives bijective mapping between §5 x PP x Q7and Q,: p+- Next, let us consider that
g(x) = qo+q1x +g2x* + ...+ g,x" € Q[x] and (a(x),b(x),c(x)) € Qu+ pt- With the help
of previously defined Q-scalar multiplication, we induce the multiplication © in Qu 4 g as
8(x) O(a(x),b(x),e(x)) = (n(g(x))a(x), L(g(x))b(x), g(x)e(x), where 1(g(x)) = 7(q0) +
n(q1)x + ... +n(gn)x" and T'(g(x)) = T'(q0) + I(q1)x + ... +T(gn)x". It is simple to
demonstrate that Q,, g1, makes an Q|x]-submodule with respect to multiplication ©.

Proposition 2 ([25]). A code € is a §,PQ-cyclic code of length (a4 B + ) if and only if € is a
Qlx|-submodule of Qu 1 g~

3. Linear Codes and Gray Images over P and Q

In this part, we study the linear codes over P and Q as well as Gray maps. We construct
Gray maps with the help of matrices. Gray maps are more intuitive and give better results.
We see that P is a semi-local, commutative, and nonchain ring. An element p, of P is of the
form pr = ay +vap + v?a3 such that 3 = a%v, where a1, 42,43 € §.

In view of Chinese Remainder Theorem, it is clear to observe that P = E;§,; ® E»§,; ®
E3§,, P is a semi-local, commutative, and nonchain ring, and each p, has representation
pr = % Aja; = ; E;py;, where a;, p;; € §g, fori = 1,2,3. We define the Gray map

i=1 =1

gp: P — 3§ 1)

by ¢p(pr) = @p(Expr, + Expr, + Espr;) = (P Pras Prs) A1 = eAy, where Ay € GL3(3y)
is a fixed matrix and GL3(§,) is the linear group of all 3 x 3 invertible matrices over the
field §; such that AlAlT = ¢€l3y3, where AlT is the transpose of A; and € € §;\{0}.
Here, we use e for the vector (pr,, pr,, Pr;). With the orthogonal idempotent, we have
P = E18; ® E2§; © EsSy. Every element p, € P can be uniquely expressed as p, =
E1pr, + E2pr, + E3pr,, where py, € §pand 1 <i < 3.

The above-described map (1) can be extended as

(pp:Pﬁ—>S“3ﬁ

component-wise as (POI pi,---y Pﬁ—l) — ((pfo,v Proas pfo,3)A1/ (Ph,v Prias p71,3)A11 s (pr[i—l,l’
p"ﬁ—l,Z’prﬁ—l,S)Al) = egA1, e1A1,e24A1,..., e 1A, here we take pr = (ro, p1,-- .,pﬁ,l)



Entropy 2023, 25, 1161 6 of 25

and p; = E1py,, + Eapy,, + Espr,; € P, wherei = 0,1,2,...,5 — 1.We define wr(p;) =
wr (@p(pi)), where wy (p;) denotes the Lee weight of p; and wyy stands for the Hamming
weight over §;. Let Bg be linear code of length § over P; we define

3
B,B] = {prl €S§| ZEipl’i EBﬂ/ pl‘z/pl‘3 Eggfor]- SlSB}/
i
By B
Bg, = {pr, €37 | ZEiPri € Bg; Pry, Prs € Fg for 1 <i <3},
i
B v B
Bg, = {pr €3y | EEipri € Bg; Pry/Pr, € g for1 <i <3}
1=

Then, Bg, isa linear code of length g over §,, fori =1,2,3.

Proposition 3. The Gray map @p is a linear, bijective and distance preserving map from (PP, dp)
to (Sgﬂ, dy), wheredp = dy.

Proof. Suppose pr, ps € PP. Then, we have

Pr - Elpr1 + EZPI‘Z + E3PT3
pr = Eipi, + Expy, + Espr,
Pr+Pr = EipPy + Eopr, + E3pry + E1py, + E2py, + E3pr,
¢p(pr+Pr) = (Pry+Pr,sPr2 + Phys Prs + Pry) Al

(Pris Pras Prs) A1+ (Prys Prys Pry) A1
@p(pr) + ¢r(py)

and we take € 3§,

¢p(ppr) = @p(E1py + E2pr, + Espry)
(1P, WPry, WPrs) A1

= W(Prys Pros Prs)A1
1ep(pr)-

So, ¢p is an §,-linear map. Now, we will prove that ¢p is a bijection.
Then, we have

er(pr) = or(pr)
(PP(iEiPri) = QDP(ilEiP/ri)
i= iz
(Pris Pras Prs)A1 = (Phys Pry Pry) A1
where py,, . € IFg for 1 <i < 3. This implies that
Pr; = Pry/-
Then pr = pj. Henceforth, ¢p is one-one. Take any (pr,, Pr,, Pr;)A1 € Fsﬂ ; then there

exists a corresponding element p; € P such that ¢p(pr) = (Pry, Pro, Prs)A1. Therefore, ¢p
is an onto function. Hence, ¢p is a bijective map.
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Moreover, we have

dr(pr, pr) = wi(pr—p})
wi(¢p(Pr — Pr))
wr(ep(pr) — ¢p(Pr))
dr(¢p(pr), ¢p(pr))-

Hence, @p is a distance preserving map. [

Proposition 4. Let Bg = @?ZlEiBﬂi be a linear code of length B over P. Then
(1). QDP(B/g) = B,Bl & B'32 & Blgs
(ii). By = ®3_E; BﬁL,further Bg is a self-orthogonal code over P if and only if each Bpg, is

self-orthogonal code over §q and Bg is a self-dual code over P if and only if each Bg, is self-dual code
over §q, fori=1,2,3.

Proof. 1. Lets = (y(l), y%, ,;4/1571, y%, ‘u%, ,y%fl, yg, y%, ,y%_l) € q)p(B/;) and

3
ti = 2 W i, for1 <j<pB—1.Sot= (ty ti, ... ,tg_1) € Bg. Since @p is a bijective

=
map, (.140/ Vl, ,yﬁ_l) € Bg, by definition of Bg, for i = 1,2,3, and this implies that
s € Bg, ® Bg, ® Bg,. Hence,l(pprﬁ) - Blﬁl ® legz @;Bﬁs‘ i L .

Conversely, let s = (yo, Pir e oBp_1s By B o BBt By BT - B S B,31
Bg, @ Bg, then (b, ut, ... ,;4;'3_1) € Bg, fori=1,2,3. We choose t; = E Wi iEifor1<j<
B—1,thent= (to, t1, ... ,tg_1) € Bgand ¢p(t) = s. Hence, s € ¢(Bg). Moreover, since
¢@p is a bijective map, |Bg| = [¢p(Bg)|., then |Bg| = |Bg, @ Bg, @ Bg,|.

3
2. Let D; = {t]- € 8’5 | El Eit; € Bé for some t; € Sg,i # jand 1 < i,j < 3}. Then,
Bé is uniquely represented as BﬁL = E1D1 ® E;Dy @ E3D3. Since D1 = {t1 € Sg such that

z Eit; € B, for some t; € §h,i # 1and 1 < i < 3}. Clearly, Bg, Dy = 0,50 D; C Bj..

/5/

4
Let & € Bﬁ ; then €1x; = 0 for any ¢ = Y. Eix; € Bg. So E1€;c = E;1€1x1 = 0 and this

i=1

implies that E1&; € Bé— We have &; € D; by the unique representation of Bé—, SO Bél C D;.
Similarly, we can show Bl = DJ- fori = 1,2,3. Thus B/S = 693 E; Bﬁ Moreover, BB is
a self-orthogonal code over P if and only if By C By B This shows that E1Bg, © ExBg, @
E3B/53 C ElBé1 D B,Bz (’32L D E3B§3, fori =1,2,3. Hence, B,g is self-orthogonal code over P if

and only if each Bpg, is self orthogonal code over §;. Similarly, By is self-dual code over P if
and only if each Bg, is self-dual code over §;, fori =1,2,3. O

Proposition 5. Let Bg be a linear code of length B over P. If By is a self-orthogonal, then ¢p(Bg)
is self-orthogonal.

Proof. Let pr, py € Bg. Now pr = (Pro, Priso s Prg 1) Pr = (ProsPryse o 2 Pry ), where
3 3

pi= L Eiprl./].,p]" =Y Eipjij,pr].].,p;_j €3g fori=1,23andj=0,1,2,---,8—1. Next,
i=1 i=1 S

let us consider that p, - p, = 0. Then, we obtain
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Lo =0

— Z ZE,pr,] ZEzpr” = 0.

j=0 i=1

Since (E;)? = E;, we have
2 Z ZPV,]P}’” Z Z lpr,]Pr” -
j=0i= i=0 j=0

Therefore,

wherei =1,2,3. Also,

3
wwmm:ZZwm

This implies that,

ep(Ct) C @p(C)*.

Since @p is a bijection, then |@p(C)| = |@p(C)*|. Hence, pp(CL) = ¢p(C)*. Now, C is
self-orthogonal if and only if C C C*+. Henceforth, ¢p(C) C ¢p(Ct) = ¢p(C)* if and only
if pp(C) is self-orthogonal. [

An element g, of Q is of the form q, = by + uby + vbs + uvby + v?bs + uv?bs, for
b1, b2, b3, by, bs, bs € ;. With the help of Chinese remainder theorem, it is clear to observe
that Q = {18, © 028y © (384 © (a8 © (589 D (684- Hence, Q is semi-local, commutative,

6 6
and nonchain ring. Moreover, each ¢, has a unique representation, g, = ) (5jbj =Y idrs
j=1 i=1

where bj, qr; € §q, for 1 < j < 6. We define the Gray map

P0:Q — &5 @)

by 9q(ar) = 9o(81dr, + C2dr, + 834rs + Cadry + C54rs + Cellrg) = (Gris ras Grss Gras Grss rg) A2
= sAp, where A € GL4(3,) is a fixed matrix and GL4(§) is the linear group of all 6 x 6
invertible matrices over the field §; such that AZAZT = Algxs, AZT is the transpose of Ap
and A € §;\{0} and we use s for the vector (qr,, qr, Grs, Gry, Grs, Grs)-

The above-described map (2) can be extended component-wise as

90 Q¥ — 5

(470/ i« ‘77—1) — ((qro,qufo,y Grozs GroarGross qro,s)AZI (qrur Gri2:9r13s Griar Gri 50 qu,6)A2/
., (‘7’7—1,1' G120 Gry 13 9ry 1,0 910157 ‘77«,—1,6)‘42) =80A2,81A2,52A2,...,8,_1Ar. Wewrite

Q= (90,91, ---,99-1) and q; = Caqry + Cofr;, + 8345 + Cafry + C5Gr;5 + Codrys € Q

where j = 0,1,2,...,7 — 1. We denote w(q;) = wy(pg(q;j)) to represent the Lee weight
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of g;, where wy stands for the Hamming weight over §,. Let €, be a linear code of length
v over Q; we define

6

€y = {an €371 Y59y € €y, drs Ara Ars, dre € 57, 1 <7 <6},
j=1
6

€p = {dn €87 | 1 Gay € €3 dn, drs dra drs, e, € 5y, 1 < j <6},
j=1
6

€ = {ds €87 | 1 Gay € €3 n, Any dr drs, e, € 5y, 1 < j <6},
j=1
6

6"/4 = {qr4 € S; | Zgjqr] € e’)// quz qrzl qr3/ qr5/ qr,g/6 175:3// 1 S] S 6}/
j=1
6

675 = {CIrs € S,J | Z g]qr] € 6’}" qur qrzr Qrg/ CIr4, qr6/ S '&'gr 1 S] S 6}/
j=1
6

e')/6 - {qr6 € S'J | Zgjqu € e’)’l ql‘ll ql‘zl Qrg,/ Qr4/ “’11‘5/e S;/ ]- S] S 6}
j=1

Then, Q‘SW is a linear code of length v over §, for j = 1,2,3,4,5,6.

We come to the following conclusions for Q using similar justifications to those used
in the case of P.

Proposition 6. The Gray map ¢q is a linear and distance preserving map from (Q7, dr) to
(327, dy), where d; = dy.

?roposition 7. Let &, = @?zl Cj€,, be a linear code of length -y over Q. Then,

(l). q)Q(@’)/) - G'Yl ® G'YZ ® 673 ® 674 ® 675 ® 676‘

(ii). QS# = @?:lg ]-QE#], ; further, € is self-orthogonal if and only if &, is self-orthogonal, and €. is
self-dual if and only if €, is self-dual, for j = 1,2,3,4,5,6.

Proposition 8. Let €, be a linear code of length y over Q. If €, is a self-orthogonal, then ¢ (&)
is self-orthogonal.

4. Gray Image over §,PQ

In the present section, we describe the Gray map over §,PQ and its related results. In
SqPQ, every element can be written as (a,pr,9r) = (a,E1 pr, + Expr, + E3prs, 0191, + C2gr, +
03qrs + Caqry + T59r5 + Coqrs ), Where a, py, g, are in §g, P, Q, respectively. With the help of
the above-described Gray maps (1) and (2), we define new Gary map over §,PQ by

¢:3PQ — 3§ ®)
such that

e(a,prar) = (4 (Pri, Prys Pr3) AL, @r1s Grys Grss Gras Grs, Grg ) A2) = (a,@Aq,84A2).

Gray map ¢ is an §j-linear and we can easily extend component-wise over §; PAQ7 in the
following manner:

¢ 3 x PP x Q — gy TR
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(ag,m, ..

is defined by

< By—1, PO/ p1/-~ -/pﬁ—lr QO/ Q1,~ . -rq’yfl) = (a()r at, .-, 051, (Prollr p?‘glz/ pi’olg,)Al/

(prl,l’ Prl,Z’ prl,S)Al’ cec (prﬁ—l,l’ pr;},—l,Z’
Prﬂ,m )Alr (qrollr ql’o’2/ qr[),:;/ qr0,4/ Qr0,5/
droe )AZ/ (qfl,l ’ q71,2/ driss q71,4' qri5/ qu,a )AZ/

Ry (‘77%1,1/ Qro10/9ry1379ry 14791157
1777,1,6)142)/
= (a, eoAl, e1A1, ey e/g,lAl, S()Az, SlAz,
ey S'yflAZ)r
wherea = (ag,a1,...,a4-1) €35, Pr= (Po,P1,---, Pp-1) € PPand qr = (90,91, -, 97-1)
€ Q7. Here, each p; = E1pr,1 + Eapr,2 + Espr 3, q; = G110 + C28r;2 + 03073 + Cadlrj o +

§5q,],,5 + @6%,6 arein P and Q respectively, wherei = 0,1,...,—1andj =0,1,2,...,7v— 1.
In the same manner as in [20], we define the Lee weight for the element as

w(a’,p}, qt) = wy(a') +wi (p)) + wi(qr), ¥ (2, ph q)) € 5% x PP x Q7,
where wp represents the Hamming weight and w; represents the Lee weight. Lee distance
between the elements X', y’ € 35 X PP x Q7 is defined as
di(xy') = w(X —y') = wu(p(X,y").

Next, we give the results on the Gray map over §,;PQ.

Proposition 9. Let ¢ be the above described Gray map. Then

(i). @ is an Fq-linear and distance preserving map from Sg‘Pﬁ Q7 to Sg%ﬁ%v_
(ii). If € is a linear code of length (« 4 B + ) over §;PQ, then Gray image ¢(€&) of € is also
a linear code with the parameters [a + 3B + 67, k, dy] over .

Proof. (i). We take two arbitrary elements x’ and y’ of &g‘Pﬁ Q7 such that x' = (a, p!, q})
and y’ = (a2, p2, q2). Here,

1 1 1 .1 1

a - ﬂo,al,ﬂz,...,ﬂlxil,
a? = adada3,...,a%
p} = Elpll + EZP}z + E3p}3’
p; = Eip: + E2pi, + Espi,,

1 _ 1 1 1 1 1 1
9 = gl 9r, + ngrz + €3qr3 + §4qr4 + §5qr5 + géqry
¢ = 09+ 09} + 39k + b, + (595 + eak,

and a',a?, pl, p2, and q!, g are in §%, PP, and Q7, respectively. Also, we have

1 1 1 1 1
Pri - (pr,-,Of pr,’,l’ pri,Zf e pl’,‘,ﬁ*l)’
2 2 2 2 2 p
pl‘i - (p’r‘,‘,O’ pi’,‘,l’ pr,-,Zf e pi’,‘,ﬁ*l) € Sq/
1 _ 1 1 1 1
qrj - (qrj,O' qr]-,ll qrj,Zf ces qr]-,'yfl)'
2 2 2 2 2 gt
ql‘]' - (qrj,O’ q}’]',].’ %,2/ tees q'r‘]',’)’—l) € 311 .
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wherel <i<3and1 <j < 6. We take

(X +y') = (a'+a%ps +P5, P, + Ph Pry + Phy dry + 45, A, + 95, dr; + 95, A1, + 95,/
dr, + a5, dr + 97,
= (', Pty Pry Ply rys Aty Oty Gty D Gtg) + (3% Py Prys Py Ays Gty Do Gy Do A )
= o(X)+e(y)

and also
/ _ 1 1 1 1 1 1 1 1 1 1
p(wx') = (wa’,wpy,, WPr, WPy, W, Wry, Wy, Wqr,, Wy, , WG, )
!
= we(x),

where w € §4. Hence, ¢ is an §;-linear map.
For the remaining part, we will use the fact that ¢ is a linear map, so we have

dL(X,y') =w (X' —y') =wy(x' —y') =du(x,y’).

Therefore, the result is follows.
(ii). This is directly by the definition of Gray map ¢. O

In the next step, we define the quasi cyclic code and generalized quasi cyclic code as
follows:

Definition 8. Suppose w € ”Sqm” such that w = (w1, wy, ..., wy), where w; € 531 fori =
1,2,...,n. Let ¢ be the cyclic shift from S;” to 331 and defined as

C(QO/ ay,..-, amfl) - (ﬂmfl,ﬂo, ey ﬂmfz)-
We define another map from §3™ to §y'" such that
Qwy,wy, ..., wy) = (§(w1),E(w2),..., ¢ (wn)),

where w € FM such that w = (w1, wWo, ..., wy). From here, a code € is known as a quasi-cyclic
code of index n if A(€) = €.

Definition 9. Let w' € Fg" x Fg? x Fg° x ... x Fg" such that ' = (w}, W), ..., w),), where
w) € §y" such thati =1,2,3,...,n. Now, again, let & be the cyclic shift from Fg"' to §g" as

é’ . 3311 — ggﬁ

and defined as
g(a()/ a, ... /ami—l) = (ami—lra()r oo /ﬂm,-—z)‘

Next, we define another map as
Qg T X Fy? X o X TP — Tt X Ty X X T

such that
Qg (Wi, @, -y wy) = (E(w)), E(@)), - -, E(w}y)).
A code € is called a generalized quasi-cyclic code if Qg (&) = €.

In view of the above definition, we prove the following result:

Theorem 1. Let ¢ be the cyclic shift over §,PQ, and let ¢ and Qg be the mappings described above.
Prove that gz = Qg .
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pz(c)

Ogp(€)

Proof. Letc = (ag,a1,...,80-1,P0,P1/---, Pp-1,90,91, - - -, dy—1) € {EZ‘P/BQ'V, where each

pi = E1py,1 + E2pr,2 + E3pr, 3 € P

and
i = C1qr,1 + 824r,2 + 03973 + Cadria + 054r,5 + Codri6 € Q
fori=0,1,2,...,—1andj=0,1,2,...,7 — 1. Now, we take

= 906(110/ Ay, e, 51, pO/ pll RN P}Sflx qO/ 5]1/ cee /q'y—l)
- q)(aol—l/ ap,a1,---,0—-2, Pﬁ—lz po,P1,-- -, Pﬁle lh—l/ q0,91,- - - /q’ny)

(aa—1,00,01, - -, Aa—2, (Prg 117 Prg 120 Pra13) A1 (Prots Pro2s Pros) Ars (Progs Pro2s Pri3) At
cey (prﬁfz,lr Prg_2p/Pre_s3 )All (qr%ml ro_1prGroy_13:Qry—1479rq—15/ 97116 )AZI (qro,lf qro2/
Arg,3+ ro4r qro,57 QV0,6)A2/ (er,lr ri,2:9r1,3: 9rq 4r 9rq 50 I]rl,6)A2/ ceey (‘777_2,1/ Gro—2prqry_23s
qry—24rqry o577 qr772,6)A2)-

After that, we will obtain

= ngo(ao, a1, .-, 8g—1,P0, Pl -+, Pp—1,90, 91, - -, q,y,l)

= Q(“O/ a1, -, 051, (prg,lr Pro,2/ prO,S)Alr (prl,l/ Pr,2s pr1,3>A1/ ceey (prﬁ,l,ll pr5,1,2/ pr5,1,3)A1/
(Fro,1 Gro2, Gro,3/ Gro4r Gro 5 9r0,6) A2s (i 10 Gy 20 Gy 30 Gy 40 Gr 50 Gr,6) A2 (Gry 300Gy ,20
roy 1,301y 1,40 Qro 1,50 Gry1,6) A2)

= (Aa-1,80,01, -, Au—2, (Pry_11s Prg_1,2: Prg 1,3) A1 (Pro,1s Pro2s Pro3) At (Pry1s Pry 20 Py 3) A,
oo (Prg oo Prg 020 Prg 23) A1 (Gry 110G, 12090y 130 Gry 1,40 1y 15097, 1,6) A2, (10,10 Gro 25
Tro3, Trodr Gro50 Gro,6) A2, (i 10 Gry,20 Gy 30 Gy 40 G150 Gr6) A2 o (Gry 010Gy 2,201y 230
Qro_o4rGry 5571 qr,y,z,6)A2)-

Hence, we conclude that, gz = Q. [

In view of Theorem 1, we obtain following result.

Theorem 2. Let & be a linear code of length (a + B + ) over §;PQ. Then, the Gray image of a
$qPQ-cyclic code of length (« + B + 7y) is a generalized quasi-cyclic code with an index of 10 over
Sq-

5. Main Results

In this section, we describe the structural properties of cyclic codes over §,, P, Q, and
§7PQ as well as obtain quantum error-correcting codes over §,;PQ.

5.1. Cyclic Codes over

Theorem 3 ([28], Theorem 12.9). Let A be a cyclic code of length a of over ;. Then there exists
<fﬁﬂ> such that Ay = (a(x)) and a(x) | (k* — 1). Moreover, the
dimension of Ay is r = a — deg(a) with {a(x),xa(x),...,x " ta(x)} as a basis.

a unique polynomial a(x) €

5.2. Cyclic Codes over P

Theorem 4. Let Bg = @?:1EiBlgi be a linear code of length B over P. Then Bg is a cyclic code of
length B over P if and only if each Bpg, is a cyclic code over §q, wherei =1,2,3.

Proof. For any pr = (po, p1, P2, -- -, pﬁ,l) € Bg. We can also have,

pi = E1pr;y + Eapriy + Esprys,
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where Priis Prigs Pris € §q and also

Pr, = (P71,0/p?1,1/p71,2""/pfl,ﬁﬂ) € Bg,,

Pr, = (prZ,O’p”Z,l’pVZ,Z""’prz,ﬁ—l) € Bﬂz'

Pr; = (pVS,O/pT'B,l’pVS,Z”"/pT’S,ﬁ—l) € Bg,.

Here, pr,, Pr,, Pr; are in Bl31' Bﬁz, Bﬁ3 respectively. Next, let us consider that Bﬁl/ Bﬁz, Blg3
are cyclic code over §;. It means that

C:.((Prl) = (p}’LIg_l/ Prm/ Prlrlr p’l,z/ ceey prl,ﬁ—Z) S B/gl’

g(Pl‘z) - (pi’zllg,ll p?’z/g/ przrl 7 pi’z,z/ ey prz,ﬁ72) S Bﬁz,
g(Prg.) = (p1’3’/3_1/ pr3,01 p7‘3,11 pr3,2/ ceey pr3,ﬁ—2) S B/g3

Hence, we have
C(pi) = Elg(prm) + EZg(pri,z) + E3§(pri,3) € Bﬁ-
This gives
E1¢(pry) + E28(pr,) + Esl(prs) = &(pr)-

Thus, we obtain, ¢(pr) € Bg. This implies that B is a cyclic code over P.
Conversely, we consider that Bg is a cyclic code over P. Suppose

pr; = E1 Pris + Ezpri,Z + E3p7’i,3’

where Privs Priys Pris € 8- Then, for any

Pr, = (Prl,O’prl,l’prl,Z""’prl,ﬁ—l) € Bﬂy

Pr, = (prz,()/pfz,vpfz,z""/pfz,ﬁfl) € Bﬁz'

Pr; = (Prs,ol p73,1/p73,2/"'/p73,;571) € Bﬁa'
Here, pr,, pr,, Pr; are in Bg,, Bg,, Bg,, respectively. Thus, pr = (po, p1,-- -, p/g_l) € Bg. By
the hypothesis, {(pr) € Bg because

E1¢(pry) + E28(pry) + Esl(prs) = G(Pr)

Then, we have
E18(pry) + E28(pr,) + E3(pr;) € Bg.
Therefore,
C(pﬁ) € Bﬁ,lr g(pl‘z) € Bﬁ,Z/ g(Prs) € B/S,3-

This shows that B B1s B Ba and B p; are cyclic codes over §;. [

Corollary 1. Let By = oF, E;Bg, be a cyclic code of length B over P. Then, By = EB?:lEiBé-

is also a cyclic code of length B over P if and only if Béj are cyclic codes of length B over §,, for
i=1,23

Theorem 5. Let By = @?:1Ei35i be a cyclic code of length B over P and h;(x) be the generator
polynomial of the cyclic code Bg,, where i =1,2,3. Then, Bg = (E1hy(x), Exha(x), Eshs(x)) and
|Bg| = qBBfZ?zl deg(hy).

Proof. Let By be a cyclic code of length  over P. Then, by Theorem 4,

Sqlx]
(P 1)’

Bg, = (h1(x)) C
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Sq [x]
e C —_—
B;BZ <h2(K)> = <Kﬁ o 1>/
Sq [x]
= C
B,B3 <h3(K)> = <K15—1>’
and also
Bﬁ = ElBﬁ1 D E2B‘Bz D E3353,
where
hl(K) € B/gl,hz(K) S B’gz,hg(K) € B/g3.
Therefore,
Bg C  (Eihi(x), Exha(x), Eshs(x))
P[x]
C .
- (kP -1)
We take any
Elkrl (K)h1 (K) + EZkr2 (K)hz (K) -+ E3kr3 (K)hg,(K) S <E1h1 (K), E>hy (K), E3h3(K)>
P[x]
= W
Here, ky, (), ky, (1), ky,y (x) € <K1;[f]1> and also 1y (x), ha(x), h3(x) € §,[x] such that
Eikr (k) = Eihy(x),
E2k72 (K) = EZhZ(K)/
E3ky3 (K) = E3h3(K).

This means that (E1h (x), Exha(x), Eshs(x)) C Bg. From the above discussion, we conclude
that <E1h1 (K), Ezhz(K), Eshs (K)> = B’B. But,

Bg = |Bg, ||Bg, || Bg,|-

This yields that
[Bg| = gP~des(m(x)) gp—deg(hy (x)) o p—deg (3 (x))
= PP~ (deg(n (i) +deg(hy (x))+deg (i3 (x)))
|B/S| _ qS,B—Z?:l deg(h;)
O

Theorem 6. Let By = @?ZlEiBﬁi be a cyclic code of length B over P and h;(x) be the generator
polynomial of the cyclic code Bg,, where i = 1,2,3. Suppose there exists a unique polynomial

h(x) € P(x) such that Bg = (h(x)) and h(x) divides kP — 1 and also h(x) = Ejhy(x) +
Exhy (k) + Eshs(x).

Proof. In view of Theorem 5, let C = (Eyhy(x), Exha(k), Eshs(x)) and hy(k), ha(x), h3(x) be
the monic generator polynomials of B B1s B B B Bs respectively. Next, let us consider that
h(x) = E1hy(x) + Exha(x) + Eshz(x). Obviously, (h(x)) C Bg. Now,

Eihi(x) = Eqh(x),
E2h2 (K) = Ezh(K),
E3h3(K) = E3h(K>.
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Also, it means that Bg C (h(x)). This is clear from above discussion that Bg = (h(x)). But
g lx]
<Kﬁq—1> :

h1(x), ha(x), h3(x) are the monic divisor of (kP — 1). There are t,, (k), tr, (), tr, (x) €
This implies that
[Eqty, (k) 4 Egty, (k) + Eatry ()] (x) = P — 1.

Therefore, h(x)/ (kP — 1). Hence, h(x) is unique by the uniqueness of h (x), hy(x), h3(x). O

Corollary 2. Let By = @?zlEiBﬁi be a cyclic code of length B over P, hi(x) be the generator
polynomial of the cyclic code Bg, and e; (k) is the reciprocal polynomials of e;(x) such that kP —1=

ei(x)h;(x) fori =1,2,3. Then, B;— = (Eqej (x), Exe; (x), Eze} (x)) and |Bé—| = qz?=1 deg(hi),

5.3. Cyclic Codes over Q

We arrive at the following conclusions for cyclic codes over Q using similar justifica-
tions to those used in the case of cyclic codes over P.

Theorem 7. Let &, = @leg &, be a linear code of length <y over Q. Then €, is a cyclic code of
length «y over Q if and only if each €, is a cyclic code over §q, where j = 1,2,3,4,5,6.

Corollary 3. Let &, = @?:lg j€y; be a cyclic code of length <y over Q. Then, &‘3# = 69]6:15 J'(G#j
is also a cyclic code of length «y over Q if and only if each G#j is a cyclic code of length <y over g, for
i=1,2,3,4,5,6.

Theorem 8. Let €, = @?zlg j€, be a cyclic code of length 1y over Q and (k) be the generator
polynomial of the cyclic code &, where j = 1,2,3,4,5,6. Then, &, = ({(x)) and |&,| =

q3772?:1 deg([f), where £(x) = {141(k) + (ol (x) 4+ C303(x) + Tala(x) + (55(x) + Cele(K).

Theorem 9. Let &, = @]6:147 €, be a cyclic code of length 1y over Q and (k) be the generator
polynomial of the cyclic code (‘Ely]., where j = 1,2,3,4,5,6. Suppose there exists a unique polynomial
£(x) € Q(x) such that €, = (£(x)) and £(x) divides k7 — 1 and also £(x) = {141 (x) + {olr (k) +
C3l3(x) + Cala(x) 4 C505(x) + Colo (i)

Corollary 4. Let &, = @]6:15 €, be a cyclic code of length vy over Q. Suppose {;(k) is the

generator polynomial of the cyclic code €, and k; (x) is the reciprocal polynomials of kj(x) such

that k7 — 1 = k;j(x)¢;(x) for j = 1,2,3,4,5,6. Then, QZ# = (01k3 (), 0ok (x), C3k5(x), Caky (x),
6 %

ks (), Lok (x), ) and |(&5] = g1,

5.4. Cyclic Codes over §5PQ

In the present section, we discuss the generator polynomial of € over §;PQ. We begin
with the following result:

Theorem 10. Let & be a cyclic code over §,PQ. Then,
€ = ((a(x)[0]0), (01 (x)[0), (1 (x) [r2 (x) [£(K))),

where a(x)|(x* — 1), h(x) | (< — 1), £(x)| (x — 1) and also 1y () € S8, ry () € Sl
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Proof. In view of Theorems 3, 5 and 8, we define

Av = (a(x)),
By = (h(x)),
¢ = (),

where a(x)|(k* — 1), h(x)|(xP — 1), £(x)|(x” — 1). Then, the proof is similar as in [20]. [

Definition 10 ([25]). A §,PQ-linear code € of length (« + B + ) is called a separable code if
¢ = Ay ® By ® €, while considering Ay, By and &, as punctured code of € by deleting the
coordinate outside the «, B and -y components, respectwely

Lemma 1. Let & = ((a(x)|0(0), (0| (x)|0), (r1(x)|r2(x)|¢(x))) be a F4PQ-cyclic code. Then,

(i) deg(r1(x)) < deg(a(x)), dEg( 2(k)) < deg(h(x)) and a(x) |[h(x)r1(x), h(x)[£(x)r2 (K)-
(ii) Ay = (ged(a(x),r1(x))), By = (ged(h(x), r2(x))) and &, = ({(x)).

Proof. The proof is parallel to that of Lemmas 3.2, 3.3 and 3.4 of [20]. [

Lemma 2. Let & = ((a(x)|0[0), (0| (x)|0), (r1(x)|r2(x)|¢(x))) be a F5PQ-cyclic code. Then,
(i) a(x)|r1(x) if and only if r1 (k) =
(ii) h(x)|ro(x) if and only if rp(x) = 0.

Proof. Proof is parallel to that of Lemmas 5.8 and 5.9 of [20]. O

The following Lemma is a direct consequence of Lemma 2.

Lemma 3. Let ¢ = ((a(x)|0[0), (0|k(x)|0), (r1(x)|r2(x)|£(x))) be a FqPQ-cyclic code. Then,
the following are equivalent:

(i) € is separable.

(ii) a () |r1 (x), h(x)|r2(x).
(iii) € = ((a(x)[0[0), (0] (x)[0), (0]0[£(x))).

Consequently, for a separable code, we have

A, = (ged(a
By = (ged(h
€ = ({(x) =&,
Theorem 11. Let € = Ay ® Bg ® €, be a §,PQ-linear code of length (a + B + vy), where
Ay, Bg and €, are linear code of a, p and y, respectively. Then, € is a §,PQ cyclic code of length

(& + B+ ) ifand only if Ay, Bg and €., are cyclic codes of length w, B and v over g, P and Q,
respectively.

Proof. First, we suppose that ¢ is a §;PQ-cyclic code of length (x + B+ ) and ¢ € €,
where

c= (aO/ A1,eee/0x—1, POI pll .. ~/P‘671/ ‘70/ lh/- . -z‘h—l)

and also

(a(),[ll,. . .,EZ,X71> S Aa,
(polplr'--/P‘Bfl) S Bﬁ/
(‘70, q1s-- -,%71) € 67.
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By the definition of cyclic code, we have

(aﬂl—l/a(]/ a1, ..., 04-2, Pﬁfll’O/ pll ey P‘B72/ ‘77—1/ 5]0/ 171/ e /‘7’)/72) ce¢

Now,

(aﬂt—l/ ap, a1, - .- ralez) S AD(/
(pﬁ—]l PO/ Pl/ ey pﬁ—Z) S Bﬁ/
(q')/—lr qo0,91,- -+, 6]772) S 67.
Hence, Ay, Bg and €&, are cyclic codes of length a, f and 7y over §;, P and Q, respec-
tively.
For the converse part, we consider that A,, B B and €, are cyclic codes of length &, 8 and «y

over §,, P and Q, respectively, and next, we will prove that € = A, ® B pR €&y isa cyclic
code over §;PQ. Hence,

(ﬂo,ﬂl, e razx—l) S A“,
(po,p1,---,Pp-1) € B,
(90,91, -+, q7-1) € €.

But, all are cyclic, and we have

(aafl/a(]/ ay, ... /alX—Z) S Ag(,
(p‘Bfll po,P1,--- /P‘sz) S B‘B,
(q’Y*l/ q0,91,- - -,lh_z) S @r)/.

Thus,
(aﬂ(—ll ag,a1,..., 52, Pﬁflz PO/ pll sy pﬁle ‘77—1/ ‘70/ 171/ sy 177—2) S AD{ & Bﬁ & e’y = ¢.
Consequently, € is a §;PQ-cyclic code of length (« ++ ). O

In view of Theorems 4, 7 and 11, we have the following result:

Corollary 5. Let € = A, ® Bg ® €, be a §,PQ-linear code of length (a + B + 7y) such that
Ay, Bg and €. are the linear codes of length a, B and <y over §q, P and Q, respectively. Then, € is a
8qPQ-cyclic code of length (« + B + 7y) if and only if Ay, Bg, and € are the cyclic codes of length
a, B and y over §g, Pand Q fori =1,2,3and j =1,2,3,4,5,6.

In Theorem 10, we studied the generator polynomial for a §; PQ-cyclic code of length
(a + B+ 7). Here, we examine the generator polynomial for a separable §;PQ-cyclic code

of length (« + B + ) in the manner described below.

Theorem 12. Let € = A, ® Bg @ €, be a F5PQ-cyclic code of length (a + B + ), where
A = (a(x)), Bg = (h(k)) and €, = (£(x)). Then, C = (a(x)) @ (h(k)) @ (¢(x))-

Proof. We have

A = (a(x)),

Then, the proof directly follows. [
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<;§1217[K1]> (KI;[K]1> % Qlx] | where

(k8-1)
P = Fo7[0]/ (v — adv) and Q = For[u,v]/(u? — a2, v® — a3v). We take Fo7 = #?(—H) It

can be easily seen that k> + 2k + 1 is a irreducible in §3 and w be a zero of polynomial in Fy7, then,

Example 1. Let « = 11,8 = 7,7 = 8 and Q14748 = X

n_q1= (K+2)(K5+2K3+K2+2K+2)(K5+K4+2K3+K2+2) € For[x].

Let a(x) = (k +2) (k> +2x3 + 2 + 2k + 2). Then, Ay = (a(x)) is a cyclic code of length 11 over
Fo7. Also, we have,

K = 1= (k+2) (% + @’x+ 1) (6 + 0x + 1) (6 + 0 x + 1) € Fr[x].

Let hy(x) = (k +2) (k% + w®k + 1), ha(k) = (k +2)(k? + w¥k + 1) and hz(x) = (x +2) (k% +
wx 4 1). Thus Bg; = (h;(x)) are cyclic codes of length 7 over Fay, for i = 1,2,3. Therefore,
Bg = (h(x)) is a cyclic code of length 7 over P.

Now, we have

K8 1= (k+1)(k+2) (k2 +x+2) (K2 + 2 +2) (k2 + 1) € Farlx].

Let ¢1(x) = la(x) = (x+1)(x + 2)(x? +K+2) 3(x ) = ly(x) = (k+1)(x +2) (x>

2k +2) and l5(x) = ls(x) = (k+1)(x +2)(x* +1). € = (¢;) are cyclic codes of Zength
8 over Fy7, where j = 1,2,3,4,5,6. Thus, €, = <£(K)> is a cyclic code of length 8 over
Q, where (k) = {141(x) + C2la(x) + C3ls(x) + Cala(x) + C5l5(K) + Celo(x). Hence, € =
(a()[0]0), (O11(x)[0), (r1 () Ir2 (k) £())) = {a(x)) @ (h(x)} @ (£(x)) is a separable FqPQ-
cyclic code of length (1147 + 8).

5.5. Quantum Error-Correcting Codes

In the present section, we will explore how to obtain quantum codes using the
Calderbank-Shor-Steane (CSS) construction from [29], which utilizes dual-containing
cyclic codes. The CSS construction is a powerful method for constructing quantum codes
with desirable properties. By employing this construction, we can create quantum codes
that outperform existing codes in terms of their parameters, such as dimension and mini-
mum distance. We use a necessary and sufficient condition over the finite fields to obtain
the condition for cyclic codes to contain their duals. It must be stated that the set of n-fold
tensor product (C1)*" = C1®@ C1® ... ® C1 (n-times) is a Hilbert space of dimension 4",
and also C1 is the Hilbert space of dimension g, where C is the complex field. A quantum
code is the subspace of Hilbert space (C7)“". A quantum code of length n over the field
T4 (9 is a power of a prime.) is denoted by [[1, k, d]];, where k is the dimension, and d is
the minimum distance. We know that each quantum code satisfies the singleton bound,
ie,n—k+2 > 2d. A quantum code is said to be MDS (maximum distance separable) if
n—k+2=2d.

To construct better quantum codes compared to existing ones, we focus on two main
conditions:

Higher Dimension (k): One way to improve a quantum code is by increasing its
dimension, denoted as k. The dimension represents the number of encoded qubits or logical
operators that can be stored in the code. By constructing a CSS code with a higher dimension
compared to existing codes, we can encode more information in the same number of
physical qubits, leading to increased storage capacity and computational capabilities.

Larger Minimum Distance (d): The minimum distance, denoted as d, of a quantum
code determines its error-correcting capability. A larger minimum distance implies better
error detection and correction properties. By constructing a CSS code with a larger mini-
mum distance compared to existing codes, we enhance its ability to protect against errors
and improve the overall reliability of the encoded information.

A quantum code [[n, k, d]], is better than the other quantum code [[r’, k', d']], if one or
both the following conditions hold:
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1. % > ﬁ—l/, where d = d’(larger code rate with same distance);
2. d>d where % = ﬁ—l, (larger distance with the same code rate).

In summary, the CSS construction, utilizing dual-containing cyclic codes, allows us to
construct quantum codes. By carefully selecting the parameters of the codes involved, we
can create better quantum codes compared to existing ones, with improved dimensions
and minimum distances.

Lemma 4 ([29]). [CSS Construction] If € is an [n, k, d] linear code with (GL C C over §,, then
there exists a QEC code with parameters [[n, 2k — n, d], over .

Lemma 5 ([30]). A cyclic code € of length n over §, with generator polynomial f(x) that contains
its dual if and only if

" —1 = 0mod(f(x)f*(x)),
where f*(x) is the reciprocal polynomial of f(x).

Proposition 10. Let € be a §,PQ-linear code of length (a + B + ). Then, the Gray image of €,
ie, p(€) = Ay ® Bg, ® Bp, ® B, @ €y @ €, ® €y @ &y, ® €qy @ &y is a linear code of
length (a + 3B + 67) over §q, where Ay, Bg, and &, are linear codes of length «, B and vy over
8q, P and Q, respectively, fori = 1,2,3and j = 1,2,3,4,5,6.

Proof. The proof directly follows from the definition of a Gray map ¢. [

Theorem 13. Let € be a §,PQ-linear code of length (a + B+ ). If Ay C A,, Béi C Bg, and
(QE% C QE%. fori=1,2,3,j=1,2,3,4,5,6. Then, there exists a quantum error-correcting code

having parameters [[a 4+ 3B 4 67,2k — (a + 3B + 67), dy]], where dy is the Hamming distance.

Proof. The proof is similar to that in [25]. [

6. Applications

In this section, we mainly focus on the applications of separable §; PQ-cyclic codes.
Using the Gray images of cyclic codes over P, we obtain a number of optimal linear
codes in Table 1. Additionally, we describe several quantum codes over §j, P, Q, §;P
and §,;PQ. In Tables 2-6, we obtain MDS quantum codes, better quantum codes than the
existing codes that appeared in some reference (see [25,31-35] for details) and new quantum
codes, respectively. The Magma computation system [36] is used to complete all of the
computations in these examples and tables, and we take ay = ap = 1 in the rings P and Q.

The invertible matrices A used to construct the quantum codes are as follows:

2 3 4 21 2
A =12 1 2| € GL3(Js5) Ap =15 2 1| € GL3(3F7)
1 2 3 1 2 5]
9 2 1] 2 1 2
A= (10 9 2| € GL3(3n11) A= |15 2 1| €GL3(%17)
2 1 2 1 2 15]
2 3 4 0 0 0 21 2 0 0 0
21 2 0 0 0 52 1 0 0 O
Aa=lg o 0 5 5 o €CLe(s) An=|5 o o 5 7 o €GCLe@)
00 0 2 1 2 00 05 21
0O 001 2 3 00 01 2 5

Example 2. B =4,ay = 1,9 =5,and P = F5[v]/(v® — v).
Then,
k=1 = (k+1)(k+2)(k+3)(k+4) € Fs[x].
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take hy(x) = k2 + 1, ha(x) = h3(x) = (x + 1). Also, we let

2 3 4
2 1 2
1 2 3

such that A1 AT = 4133, where I35 is an identity matrix of order 3. Then, Bg be a cyclic code of
length 4 over P and Gray image ¢p(Bg) having the parameters [12,8, 4|5 which is an optimal code
as per the database [37].

An =

Ssx]
=)

(Klljo['i]l) X %, where P = F5[v]/(v® —v) and Q = Fs[u,v]/ (u*> — 1,7 —v). Now, k!0 —

1= (k+1)°(x +4)° € Frolx]. We take a(x) = (x +1)?(x +4) € Fs[x] and Ay = (a(x)) bea
cyclic code of length 10 over Fs[x] with the parameters [10,7,3]s. Again, k10 —1 = (x +1)°(x +
4)5 € Fs[x]. We take hy(x) = (k +1)%(k +4), ha(x) = (x +1), ha(x) = 1. Let

2 3 4
2 1 2
1 2 3

such that Aq AlT = 433, where I3x3 is an identity matrix of order 3. Then, B is a cyclic code of
length 10 on P and its Gray image have the parameters [30,26, 3|5 over §s. Next, let us consider
that k10 —1 = (x +1)°(k +4)° € Fs[x]. We take (1(x) = ly(x) = (x +1)%(x +4) € Fs[x],
U3(x) = l5(x) = (k4 1) and = lp(x) = le(x) = 1. Take

Example 3. Let g =5, &y = ap = 1,a =10, p =10, v = 10 and Qu1py = X

An =

Ay =

S OO ~L, NN
S OO NP, W
S O O WN
— NN O OO
N = Wo oo
WIN O OO

such that AlAlT = 4l ¢, where Ig ¢ is an identity matrix of order 6. Then, G%. be the cyclic code of
length 10 over Q and its Gray image has the parameters [60,52, 3|5 over §s. Then, ¢(€) is a linear
code having the parameters [100,85, 3]s over §s. It is clear that, k!0 — 1 = 0 mod (h;(x)h} (x)),
wherei=1,2,3. Also, k0 =1 = 0 mod(ﬂj(K)EJ’f(K)), where j = 1,2,3,4,5,6. With the help of
Lemma 5, we have

Ai_ C A
1 .

Bﬁi C Bgy;
1

G“Yj - @7],.

By using the Theorem 13, there exists a quantum error-correcting code with the parameters
[[100, 70, 3]]5. This is a new quantum code according to the database [38].

In Table 1, we obtain the optimal linear codes. In Table 2, we obtain MDS quantum
error-correcting codes over §;, and in Tables 3 and 4, we obtain better quantum error-
correcting codes than previously known quantum error-correcting codes. In Tables 5 and 6,
we obtain new quantum error-correcting codes over §4P and §,;PQ.
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Table 1. Gray images of cyclic codes over P.

n hy(x) ha(x) hs(x) ¢p(C) Remarks
4 (k2 +1) k+1 K+1 [12,8,4]5  optimal
5 (k+4)3 K+4 K+4 [15,10,4]5  optimal
6 (K2 +x+1) K+1 K+1 [18,14,4]5  optimal
7 WP+t P+l +1 K+4 K+4 [21,13,4]5
8 (k +2) (k2 +2) K+2 K+1 [24,19,4]5  optimal
10 (k +1)(x + 4)? k+1 1 [30,26,3]5  optimal
12 (K +4) (k> + 2K +2) K+1 k+1 [36,31,4]5  optimal
Table 2. MDS Quantum codes over §g.
o u(x) Parameters of A, Quantum Codes Remarks
3 (k+2) 3,2,2]3 ([3,1,3]]3 MDS Code
4 (k+1)(k+2) 4,2,3]5 [[4,0,3]]5 MDS Code
5 (k +4)? 5,3,3]5 [[5,1,3]]5 MDS Code
6 (k+1) (K2 +x+1) [6,3,4]5 [[6,0,4]]5 MDS Code
7 (k+6)2 [7,5,3]7 [[7,3,3]]7 MDS Code
7 (k+6)3 [7,4,3]7 [[7,1,4])7 MDS Code
8 (k+1)(k*+3x+1) [8,5,4]7 [[8,2,4]]7 MDS Code

Table 3. Quantum codes over P.

B hq(%) ha (%) h3 (%) Iiraagye Quantum Codes Known Quantum Codes
over P
25 (k4 4)° (k +4) 1 [75,68,3] [[75,61,3]]5 New Quantum code
30 (K +4)2(k2 +4x + 1) k+1 1 [90, 85, 3] [[90,80,3]]5 [[90,72,2]]5 [32]
40 (k +1)2(x2 +3) k+1 1 [120,115,3]  [[120,110,3]]s [[120,104,2]]5 [31]
60 (K +1)%(k? + 3k +4) k+1 1 [180,175,3]  [[180,170,3]]s [[168,126,3]]5 [25]
7 (k +6)3 (k+6) K+6 [[21,16,4]] [21,11,4];
21 (k+3)3(x +5) K+6 1 [63,58,3] [[63,53,3]]7 New Quantum code
28 (k +1)2(k2 +1) Kk+1 1 [84,79,3] [[84,74,3]]7 [[84,72,3]]7 [33]
35 (k+6)3(k* + 63 +x2+x+1) K+6 K+1 (105,96, 4] [[105,87,4]]7 [[108,28,3]]7 [34]
77 (k+6)3 (k10 + % + 8+ Kk+1 1 [231,216,4]  [[231,201,4]]7 [[228,196,3]]7 [35]
k7 + k8 + %+«
+3+ x> +x+1)
11 (k +10)3 (k+10)  (x+10)  [33,28,4] ([33,23,4]]11 New Quantum code
11 (k +10)° (k+10)3  (x+10)  [[33,24,6]] ([33,15,6]]11 New Quantum code
17 (x +16)3 (k+16)  (x+16)  [51,46,4] [[51,41,4]]17 New Quantum code
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Table 4. Quantum codes over Q.
¥ l1(x) = £L4(x) 03(x) = £5(x) £y (k) = £L6(x) Gray Image over P Quantum Codes Known Quantum Codes
5 (k4 4)? kK+4 1 (30,24, 3] [[30,18,3]]5 New Quantum code
8 (k+2)(x2 +2) K+2 1 [48,40,3] [[48,32,3]]5
10 (k4+1)%(x +4) K41 1 [60,52,3] [[60, 44, 3]s New Quantum code
14 (k+1)3(k +6) K+1 Kk+1 (84,72, 4] [[84, 60, 4]]7 [[84,60,4]]7 [34]
18 (k+3) (k> +2) (x> +3) K+3 k+3 (108,90, 4] [[108,72,4]]; [[108,28,3]]; [34]
30 (k +4)2(k2 + 4K+ 1) K+4 1 180,170, 3] [[180,160,3]]5 [[180,156,2]]5 [32]
35 (k+4)2(kC + 10+ + 3+ k2 +x+1) K44 1 [210,192,3] [[210,174,3]]5 [[210, 150, 2]]5 [32]
38 (k3 4+ 3x% + 4 + 1) K +2K+6 1 [228,216,3] [[228,204, 3]], [[228,196, 3]]7 [34]
42 (k +1)(k + 3)2 K+1 1 252,244, 3] [[252,236,3]]7 [[252,212,3]7] [34]
Table 5. Quantum codes over §4P.
o B a(x) h1(x) ha () h3(x) Gray Image over ;P New Quantum Codes
10 5 (k+1)%(x +4) (k +4)2 K +4 1 [25,19,3] [[25,13,3]]5
15 10 (12 + &+ 1) (x +4)? (k+1)2(k +4) Kk+1 1 45,37, 3] [[45,29,3]]5
20 20 (k+1)2(k 4+ 2) (k4+1)%(k +2) x+1 1 [80,73,3] [[80,66,3]]5
30 20 (k+1)2(k* +x+1) (k4 1)%(x +2) K+1 1 [90, 82, 3] [[90,74,3]]5
7 7 (k+6)3 (k+6)3 K+6 K+6 [28,20,4] [[28,12,4]];
14 7 (k+6)3(x+1) (k+6)3 K+6 K+6 35,26, 4] [[35,17,4]]7
28 28 (k+1)3(x2+1) (k+1)3 (k%2 +1) k+1 k+1 [112,100,4] [[112,88,4]];
42 56 (k+1)B3(k+2)(xk+3) (k+1)3(x+2)(x+3) Kk+1 Kk+1 [210,198, 4] [[210, 186,4]],
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Table 6. Quantum codes over S PQ.
o B Y (%) h1(x) ha(x)  hs(x) b1 () = £4(x) £3(x) =€5(x) £2(x) = €e(x) Gray Image over F,PQ New Quantum Codes
5 5 5 (x+4)? (x +4)? K+4 1 (x+4)? K+4 1 [50,39,3] [[50,28, 3]s
10 10 10 (k4+1)%(x +4) (k4+1)2(k +4) Kk+1 1 (k4+1)2(k +4) x+1 1 [100, 85, 3] [[100,70,3]]5
10 20 30 (k4+1)%(x +4) (k4+1)2(k+2) Kk+1 1 (k+1)2(k2 +x+1) K41 1 (250,233, 3] [[250,216,3]]5
30 20 40 (k+1)2(k2 +x+1) (k +1)2(x+2) k+1 1 (k +1)2(x% +2) k+1 1 (330,312, 3] (330,294, 3]]5
7 21 14 (k+6)3 (k+3)3(x +5)(x+6) x+3 1 (c +1)3(x +6) x+1 x+1 [154,132,4] [[154,110,4]]7
14 28 35 (k+1)3(k +6) (k+1)3(k2 +1) k+1  x+1  (x+6)°3x*+x>+x2+x+6) K+6 K+6 (308,279, 4] [[308,250,4]]7
48 84 70 (k+3)(x® +x+3) (k+1)2(x> +2) k+1 1 (k+1)2(x* + 3+ 12 +x+1) Kk+1 1 (720,697, 3] [[720, 674, 3]]7
63 56 98 (x4 3)2(x3 +3) (k+1)2(k2+3c+1)  x+1 1 (k4+1)8(k +6) x+1 1 (819,789, 3] (819,759, 3]]7
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7. Conclusions

In this work, cyclic codes over §;PQ are introduced, where P = <v§j[:%v> and Q =
qlu,0]
(u2—a2,v3—a30)
m > 1 a positive integer and p is an odd prime. We reviewed some characteristics of
§4PQ-cyclic codes and defined a Gray map over §;PQ. As an application, we constructed
quantum error-correcting (QEC) codes using §;PQ-cyclic codes. This analysis can be
applied to the product of finite rings in general.

are nonchain finite rings and &; are in §,;/{0} fori € {1,2}, g = p™ with
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