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Abstract: The key objective of this paper is to study the cyclic codes over mixed alphabets on the

structure of FqPQ, where P =
Fq [v]

〈v3−α2
2v〉

and Q =
Fq [u,v]

〈u2−α2
1,v3−α2

2v〉
are nonchain finite rings and αi is

in Fq/{0} for i ∈ {1, 2}, where q = pm with m ≥ 1 is a positive integer and p is an odd prime.

Moreover,with the applications, we obtain better and new quantum error-correcting (QEC) codes.

For another application over the ring P, we obtain several optimal codes with the help of the Gray

image of cyclic codes.

Keywords: cyclic code; dual code; mixed alphabet code; QEC code

MSC: 94B05; 94B15; 94B60

1. Introduction

The most significant families of cyclic codes were first introduced and studied by
Prange [1] and Sloane-Thompson [2]. These codes are extensively used because of their
robust algebraic structure and simplicity of usage. In recent years, there has been a rapid
expansion of research on cyclic codes over finite rings, following the notable work of Ham-
mons et al. [3]. The literature extensively delves into the exploration of cyclic codes and
their constructions across various finite rings, such as applications in constructing minimal
codes in [4] and projective two-weight codes in [5]. Recently, Pereira and Mancini have
given a general method to construct EAQEC codes from cyclic codes in [6]. A particular area
of interest in recent years has been the study of codes over mixed alphabets. This research
direction was initiated by Brouwer et al. [7] in 1998, where they began investigating linear
codes over mixed alphabets. Specifically, the authors focused on describing Z2-submodules
over Zr2Zs3 for mixed alphabet codes. Borges et al. [8] made significant contributions to this
field by discovering Z2Z4-additive codes and their associated Z2Z4-linear codes. Notably,
extensive studies have been conducted on additive codes, with significant research contri-
butions in ([9–12]). Moreover, the additive codes, additive cyclic codes, and the additive
quasi-cyclic codes over different mixed alphabets have also been intensely studied, for
example, Z2Z2[u]-additive codes [13], ZpZpk -additive codes [14], Z2Z2[u]-cyclic and consta-
cyclic [15], Z2(Z2 + uZ2)-additive cyclic codes [16]. Borges et al. [8] explored double cyclic
codes over Z2. Recently, Gao et al. have studied hulls of double cyclic codes over Z2, and
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obtained some good quantumcodes from hulls in [17]. Gao et al. [18] generalized double
cyclic codes over Z4. The triple cyclic codes over Z2 were introduced by Mostafanasab [19]
and extended this double cyclic code structure. Recently, Z2Z2Z4-additive cyclic codes and
Z2Z4Z8-cyclic codes were separately explored by Wu et al. [20], and Aydogdu-Gursoy [21],
respectively. Moreover, the P and Q used in this paper are finite nonchain rings actually.
As we know, there are many papers on quantum codes over finite nonchain rings [22–24].
Researchers primarily concentrated on investigating the structural properties of mixed
alphabet codes in all of the works, including generator matrices, parity check matrices,
generator polynomials, minimal generating sets, generator polynomials for dual codes,
etc. In 2020, Dinh et al. [25] delivered quantum and LCD code construction over mixed
alphabets. In 2022, Ashraf et al. [26] obtained quantum codes over mixed alphabets.

Motivated by the above study, in this paper, we describe cyclic codes, new quantum
error-correcting (QEC) codes and several optimal codes over mixed alphabets. Firstly,
we provide linear and cyclic codes over FqPQ, where Fq are the finite fields with q ele-
ments, P = Fq[v]/〈v3 − α2

2v〉 and Q = Fq[u, v]/〈u2 − α2
1, v3 − α2

2v〉, where α1 and α2 are
the nonzero elements of Fq. Section 2 presents some basic definitions, the construction of
cyclic codes over FqPQ, and some important structural properties over FqPQ. Section 3
describes Gray images and linear codes over P and Q. Further, we define a Gray map with
the help of a matrix. In Section 4, like Section 3, we define the Gray map and linear codes
over FqPQ. Section 5 discusses the structural properties of cyclic codes over P, Q, FqPQ
and describes quantum error-correcting (QEC) codes and their construction over FqPQ.
Finally, in Section 6, we discuss some applications of cyclic codes over mixed alphabets
and provide the conclusion of our results.

2. Preliminaries

Let m be a positive integer, p be an odd prime, and q be an odd prime power such
that q = pm. Next, let Fq be a finite field with q elements having characteristic p. Our
construction depends on FqPQ, where P and Q are the commutative, nonchain, semi-local
ring. We begin with some key remarks and basic definitions as follows:

Remark 1. Let R be a local ring. Then, the following conditions are equivalent:

(i). R has a unique maximal left ideal.
(ii). R has a unique maximal right ideal.
(iii). The sum of any two nonunit elements of R is also a nonunit as well as 0 6= 1.
(iv). If x is an arbitrary element of R, then x or 1 − x is unit as well as 0 6= 1.

Remark 2. In the case of a commutative ring, R contains a unique maximal ideal if and only if it
is local.

Definition 1. Let x, y ∈ Fn
q , the Hamming distance between two vectors x = x1 . . . xn and

y = y1 . . . yn be defined to be the number of places at which they differ and be denoted by d(x, y).

Definition 2. The Hamming weight of a vector x = x1x2 . . . xn is defined to be the number of
nonzero coordinates xi in x and is denoted by wH(x).

Definition 3. Each element of code E is referred to as a codeword, and a code of length n over R is
said to be linear if it is an R-submodule of Rn.

Definition 4. A code E is said to be self-orthogonal if E ⊆ E⊥, self-dual if E = E⊥, and dual
containing if E⊥ ⊆ E.

Definition 5 ([27]). A code E is a cyclic code of length n over R if it is linear and every cyclic
shift of each codeword is also in E, i.e., σ(c) = (En−1, E0, E1, . . . , En−2) ∈ E, whenever
c = (En−1, E0, . . . , En−2) ∈ E. The operator σ is known as cyclic shift.
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By using the properties of cyclic code over the finite commutative nonchain ring, we
can define cyclic code over FqPQ. Clearly, the ring P can be expressed as P = Fq + vFq +
v2Fq, where v3 = α2

2v, the set {1, v, v2} is a set of basis elements of P, and we denote the
basis elements of P as follows: ∆1 = 1, ∆2 = v, ∆3 = v2, and every element of ring P is of
the form pr = a1 + va2 + v2a3, for a1, a2, a3 ∈ Fq. Orthogonal idempotents of this ring is
given as follows:

E1 = (α2
2 − v2),

E2 =
(α2v + α2

2v2)

2
,

and

E3 =
(−α2v + α2

2v2)

2
.

It is straightforward to see that E2
i = Ei, EiEj = 0 for i 6= j, and E1 + E2 + E3 = 1 where

i, j = 1, 2, 3. By using orthogonal idempotents E1, E2 and E3, we can write the arbitrary
element pr of the ring P as pr = E1 pr1 + E2 pr2 + E3 pr3 , where pr1 , pr2 , pr3 ∈ Fq. Similarly,
the ring Q can be expressed as Q = Fq + uFq + vFq + uvFq + v2Fq + uv2Fq, where u2 = α2

1,
v3 = α2

2v, the set {1, u, v, uv, v2, uv2} is a set of basis elements of Q and we denote the
basis elements of Q as follows δ1 = 1, δ2 = u and δ3 = v, δ4 = uv, δ5 = v2, δ6 = uv2

and every element of ring Q is of the form qr = b1 + ub2 + vb3 + uvb4 + v2b5 + uv2b6, for
b1, b2, b3, b4, b5, b6 ∈ Fq. Orthogonal idempotents of the ring Q are given as follows:

ζ1 =
(α1 + u)(α2

2 − v2)

2α1α2
2

,

ζ2 =
(α1 − u)(α2

2 − v2)

2α1α2
2

,

ζ3 =
(α1 + u)(α2v + v2)

4α1α2
2

,

ζ4 =
(α1 − u)(α2v + v2)

4α1α2
2

,

ζ5 =
(α1 + u)(−α2v + v2)

4α1α2
2

and

ζ6 =
(α1 − u)(−α2v + v2)

4α1α2
2

.

It is easy to see that ζ2
i = ζi, ζiζ j = 0 and ζ1 + ζ2 + ζ3 + ζ4 + ζ5 + ζ6 = 1 where i, j =

1, 2, 3, 4, 5, 6 and i 6= j. By using orthogonal idempotents ζ1, ζ2, ζ3, ζ4, ζ5 and ζ6, we can write
the arbitrary element qr of the ring Q as qr = ζ1qr1 + ζ2qr2 + ζ3qr3 + ζ4qr4 + ζ5qr5 + ζ6qr6 ,
where qr1 , qr2 , qr3 , qr4 , qr5 , qr6 ∈ Fq. Now, we define two ring homomorphisms η and ζ as

η : Q −→ Fq

such that η(qr) = η(ζ1qr1 + ζ2qr2 + ζ3qr3 + ζ4qr4 + ζ5qr5 + ζ6qr6) = qr1 and

Γ : Q −→ P

such that Γ(ζ1qr1 + ζ2qr2 + ζ3qr3 + ζ4qr4 + ζ5qr5 + ζ6qr6) = E1qr1 + E2qr2 + E3qr3 . For
arbitrary qr ∈ Q and (x, y, z) ∈ FqPQ, we define Q-scalar multiplication on FqPQ by:

� : Q × FqPQ −→ FqPQ
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such that
qr�(x, y, z) = (η(qr)(x), Γ(qr)(y), qrz).

This multiplication is well defined and we can extend this multiplication over Fα
q × Pβ × Qγ

as
� : Q × (Fα

q × Pβ × Qγ) −→ Fα
q × Pβ × Qγ

such that qr�l = (η(qr)x0, η(qr)x1, . . . , η(qr)xα−1, Γ(qr)y0, Γ(qr)y1, . . . , Γ(qr)yβ−1, qrz0, qrz1,
. . . , qrzγ−1), where qr ∈ Q and l = (x0, x1, . . . , xα−1, y0, . . . , yβ−1, z0, z1, . . . , zγ−1) ∈ Fα

q ×

Pβ × Qγ.
In view of this scalar multiplication, Fα

q × Pβ × Qγ forms a Q-module.

Definition 6. A nonempty subset E of Fα
q × Pβ × Qγ is a FqPQ-linear code of length (α + β + γ)

if E is a Q-submodule of Fα
q × Pβ × Qγ.

Let l = (x0, x1, . . . , xα−1, y0, . . . , yβ−1, z0, z1, . . . , zγ−1) and l′ = (x′0, x′1, . . . , x′α−1, y′0, . . . ,
y′β−1, z′0, z′1, . . . , z′γ−1), where l, l′ ∈ Fα

q × Pβ × Qγ. After this, we also define inner product

of l and l′ as

l · l′ =
α−1

∑
i=0

xix
′
i +

β−1

∑
j=0

yjy
′
j +

γ−1

∑
k=0

zkz′k ∈ Q.

Here, the dual of E, i.e., E⊥ = {l′ ∈ Fα
q × Pβ × Qγ | l · l′ = 0, ∀ l ∈ E}.

Definition 7. A linear code E is a FqPQ-cyclic code of length (α + β + γ) if every cyclic shift of
E is also in E, i.e., σ(c) = (xα−1, x0, x1, . . . , xα−2, pβ−1, p0, p1, . . . , pβ−2, qγ−1, q0, q1, . . . , qγ−2)
∈ E, ∀ c ∈ E, where c = (x0, x1, . . . , xα−1, p0, . . . , pβ−1, q0, q1, . . . , qγ−1) and σ(c) is a cyclic
shift of E.

Proposition 1. Suppose E is a FqPQ-cyclic code of length (α + β + γ). Then, the dual of E is a
also FqPQ-cyclic code of length (α + β + γ).

Proof. Suppose E is a FqPQ-cyclic code of length (α + β + γ), and next, let us consider that
l′ ∈ E⊥ such that l′ = (x′0, x′1, . . . , x′α−1, p′0, p′1, . . . , p′β−1, q′0, q′1, . . . , q′γ−1), and also, we take
lcm(α, β, γ) = t and l = (x0, x1, . . . , xα−1, p0, p1, . . . , pβ−1, q0, q1, . . . , qγ−1) ∈ E. Then, we
will show that σ(l′) = (x′α−1, x′0, x′1, . . . , x′α−2, p′β−1, p′0, p′1, . . . , p′β−2, q′γ−1, q′0, q′1, . . . , q′γ−2) ∈

E⊥. From above described inner product, we have

l.σ(l′) = (x0x′α−1 + x1x′0 + . . . + xα−1x′α−2) + (p0 p′β−1 + p1 p′0 + . . . + pβ−1 p′β−2) +

(q0q′γ−1 + q1q′0 + . . . + qγ−1q′γ−2).

Since E is a FqPQ-cyclic code and lcm(α, β, γ) = t.

σt−1(l) = (x1, . . . , xα−1, x0, p1, . . . , pβ−1, p0, q1, . . . , qγ−1, q0).

Now, we take the inner product of σt−1(l) and l′, we have

σt−1(l) · l′ = 0,

where

σt−1(l).l′ = (x1x′0 + x2x′1 + . . . + x0x′α−1) + (p1 p′0 + p2 p′1 + . . . + p0 p′β−1) +

(q1q′0 + q2q′1 + . . . + q0q′γ−1)
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On comparing the coefficients of both sides, we have

x1x′0 + x2x′1 + . . . + x0x′α−1 = 0

p1 p′0 + p2 p′1 + . . . + p0 p′β−1 = 0

q1q′0 + q2q′1 + . . . + q0q′γ−1 = 0

we obtain
l · σ(l′) = 0.

Thus, σ(l′) ∈ E⊥. This shows that E⊥ is a FqPQ-cyclic code of length (α + β + γ).

Let

Qα+β+γ =
Fq[x]

〈xα − 1〉
×

P[x]

〈xβ − 1〉
×

Q[x]

〈xγ − 1〉

and f = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1, c0, c1, . . . , cγ−1) ∈ Fα
q × Pβ × Qγ. Let f be an

arbitrary element of Qα+β+γ, and then f can be identified as

f (x) = (a0 + a1x + a2x2 + . . . + aα−1xα−1, b0 + b1x + b2x2 + . . . + bβ−1xβ−1, c0 + c1x + c2x2

+ . . . + cγ−1xγ−1)

= (a(x), b(x), c(x)).

This gives bijective mapping between Fα
q × Pβ × Qγ and Qα+β+γ. Next, let us consider that

g(x) = q0 + q1x + q2x2 + . . . + qnxn ∈ Q[x] and (a(x), b(x), c(x)) ∈ Qα+β+γ. With the help
of previously defined Q-scalar multiplication, we induce the multiplication

⊙

in Qα+β+γ as
g(x)

⊙

(a(x), b(x), c(x)) = (η(g(x))a(x), Γ(g(x))b(x), g(x)c(x), where η(g(x)) = η(q0) +
η(q1)x + . . . + η(qn)xn and Γ(g(x)) = Γ(q0) + Γ(q1)x + . . . + Γ(qn)xn. It is simple to
demonstrate that Qα+β+γ makes an Q[x]-submodule with respect to multiplication

⊙

.

Proposition 2 ([25]). A code E is a FqPQ-cyclic code of length (α + β + γ) if and only if E is a
Q[x]-submodule of Qα+β+γ.

3. Linear Codes and Gray Images over P and Q

In this part, we study the linear codes over P and Q as well as Gray maps. We construct
Gray maps with the help of matrices. Gray maps are more intuitive and give better results.
We see that P is a semi-local, commutative, and nonchain ring. An element pr of P is of the
form pr = a1 + va2 + v2a3 such that v3 = α2

2v, where a1, a2, a3 ∈ Fq.
In view of Chinese Remainder Theorem, it is clear to observe that P = E1Fq ⊕ E2Fq ⊕

E3Fq, P is a semi-local, commutative, and nonchain ring, and each pr has representation

pr =
3
∑

i=1
∆iai =

3
∑

i=1
Ei pri

, where ai, pri
∈ Fq, for i = 1, 2, 3. We define the Gray map

ϕP : P −→ F3
q (1)

by ϕP(pr) = ϕP(E1 pr1 + E2 pr2 + E3 pr3) = (pr1 , pr2 , pr3)A1 = eA1, where A1 ∈ GL3(Fq)
is a fixed matrix and GL3(Fq) is the linear group of all 3 × 3 invertible matrices over the
field Fq such that A1 AT

1 = ǫI3×3, where AT
1 is the transpose of A1 and ǫ ∈ Fq\{0}.

Here, we use e for the vector (pr1 , pr2 , pr3). With the orthogonal idempotent, we have
P = E1Fq ⊕ E2Fq ⊕ E3Fq. Every element pr ∈ P can be uniquely expressed as pr =
E1 pr1 + E2 pr2 + E3 pr3 , where pri

∈ Fq and 1 ≤ i ≤ 3.
The above-described map (1) can be extended as

ϕP : Pβ −→ F
3β
q

component-wiseas (p0, p1, . . . , pβ−1) −→ ((pr0,1 , pr0,2 , pr0,3)A1, (pr1,1 , pr1,2 , pr1,3)A1, . . . , (prβ−1,1 ,
prβ−1,2 , prβ−1,3)A1) = e0 A1, e1 A1, e2 A1, . . . , eβ−1 A1, here we take pr = (p0, p1, . . . , pβ−1)
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and pi = E1 pri,1 + E2 pri,2 + E3 pri,3 ∈ P , where i = 0, 1, 2, . . . , β − 1.We define wL(pi) =
wH(ϕP(pi)), where wL(pi) denotes the Lee weight of pi and wH stands for the Hamming
weight over Fq. Let Bβ be linear code of length β over P; we define

Bβ1
= {pr1 ∈ F

β
q |

3

∑
i=1

Eipri ∈ Bβ; pr2 , pr3 ∈ F
β
q f or 1 ≤ i ≤ 3},

Bβ2 = {pr2 ∈ F
β
q |

3

∑
i=1

Eipri ∈ Bβ; pr1 , pr3 ∈ F
β
q f or 1 ≤ i ≤ 3},

Bβ3 = {pr3 ∈ F
β
q |

3

∑
i=1

Eipri ∈ Bβ; pr1 , pr2 ∈ F
β
q f or 1 ≤ i ≤ 3}.

Then, Bβi
is a linear code of length β over Fq, for i = 1, 2, 3.

Proposition 3. The Gray map ϕP is a linear, bijective and distance preserving map from (Pβ, dL)

to (F
3β
q , dH), where dL = dH .

Proof. Suppose pr, p′
r ∈ Pβ. Then, we have

pr = E1pr1 + E2pr2 + E3pr3

p′
r = E1p′

r1
+ E2p′

r2
+ E3p′

r3

pr + p′
r = E1pr1 + E2pr2 + E3pr3 + E1p′

r1
+ E2p′

r2
+ E3p′

r3

ϕP(pr + p′
r) = (pr1 + p′

r1
, pr2 + p′

r2
, pr3 + p′

r3
)A1

= (pr1 , pr2 , pr3)A1 + (p′
r1

, p′
r2

, p′
r3
)A1

= ϕP(pr) + ϕP(p
′
r)

and we take µ ∈ Fq

ϕP(µpr) = ϕP(E1pr1 + E2pr2 + E3pr3)

= (µpr1 , µpr2 , µpr3)A1

= µ(pr1 , pr2 , pr3)A1

= µϕP(pr).

So, ϕP is an Fq-linear map. Now, we will prove that ϕP is a bijection.
Then, we have

ϕP(pr) = ϕP(p
′
r)

ϕP(
3

∑
i=1

Eipri) = ϕP(
3

∑
i=1

Eip
′
ri
)

(pr1 , pr2 , pr3)A1 = (p′
r1

, p′
r2

, p′
r3
)A1

where pri , p′
ri
∈ F

β
q for 1 ≤ i ≤ 3. This implies that

pri = p′
ri

, .

Then pr = p′
r. Henceforth, ϕP is one-one. Take any (pr1 , pr2 , pr3)A1 ∈ F

3β
q ; then there

exists a corresponding element pr ∈ P such that ϕP(pr) = (pr1 , pr2 , pr3)A1. Therefore, ϕP

is an onto function. Hence, ϕP is a bijective map.
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Moreover, we have

dL(pr, p′
r) = wL(pr − p′

r)

= wH(ϕP(pr − p′
r))

= wH(ϕP(pr)− ϕP(p
′
r))

= dH(ϕP(pr), ϕP(p
′
r)).

Hence, ϕP is a distance preserving map.

Proposition 4. Let Bβ = ⊕3
i=1EiBβi

be a linear code of length β over P. Then
(i). ϕP(Bβ) = Bβ1

⊗ Bβ2 ⊗ Bβ3 .
(ii). Bβ⊥ = ⊕3

i=1EiBβ⊥i
, further, Bβ is a self-orthogonal code over P if and only if each Bβi

is

self-orthogonal code over Fq and Bβ is a self-dual code over P if and only if each Bβi
is self-dual code

over Fq, for i = 1, 2, 3.

Proof. 1. Let s = (µ1
0, µ1

1, . . . , µ1
β−1, µ2

0, µ2
1, . . . , µ2

β−1, µ3
0, µ3

1, . . . , µ3
β−1) ∈ ϕP(Bβ) and

tj =
3
∑

i=1
µi

jEi, for 1 ≤ j ≤ β − 1. So t = (t0, t1, . . . , tβ−1) ∈ Bβ. Since ϕP is a bijective

map, (µi
0, µi

1, . . . , µi
β−1) ∈ Bβi

by definition of Bβi
for i = 1, 2, 3, and this implies that

s ∈ Bβ1
⊗ Bβ2 ⊗ Bβ3 . Hence, ϕP(Bβ) ⊆ Bβ1

⊗ Bβ2 ⊗ Bβ3 .
Conversely, let s = (µ1

0, µ1
1, . . . , µ1

β−1, µ2
0, µ2

1, . . . , µ2
β−1, µ3

0, µ3
1, . . . , µ3

β−1 ∈ Bβ1
⊗

Bβ2 ⊗ Bβ3 then (µi
0, µi

1, . . . , µi
β−1) ∈ Bβi

for i = 1, 2, 3. We choose tj =
3
∑

i=1
µi

jEi for 1 ≤ j ≤

β − 1, then t = (t0, t1, . . . , tβ−1) ∈ Bβ and ϕP(t) = s. Hence, s ∈ ϕ(Bβ). Moreover, since
ϕP is a bijective map, |Bβ| = |ϕP(Bβ)|., then |Bβ| = |Bβ1

⊗ Bβ2 ⊗ Bβ3 |.

2. Let Dj = {tj ∈ F
β
q |

3
∑

i=1
Eiti ∈ B⊥

β for some tj ∈ Fn
q , i 6= j and 1 ≤ i, j ≤ 3}. Then,

B⊥
β is uniquely represented as B⊥

β = E1D1 ⊕ E2D2 ⊕ E3D3. Since D1 = {t1 ∈ F
β
q such that

3
∑

i=1
Eiti ∈ B⊥

β , for some ti ∈ F
β
q , i 6= 1 and 1 ≤ i ≤ 3}. Clearly, Bβ1

D1 = 0, so D1 ⊆ B⊥
β1

.

Let E1 ∈ B⊥
β1

; then E1x1 = 0 for any c =
4
∑

i=1
Eixi ∈ Bβ. So E1E1c = E1E1x1 = 0 and this

implies that E1E1 ∈ B⊥
β1

. We have E1 ∈ D1 by the unique representation of B⊥
β , so B⊥

β1
⊆ D1.

Similarly, we can show B⊥
β j

= D⊥
j for i = 1, 2, 3. Thus B⊥

β = ⊕3
i=1EiB

⊥
βi

. Moreover, Bβ is

a self-orthogonal code over P if and only if Bβ ⊆ B⊥
β . This shows that E1Bβ1

⊕ E2Bβ2 ⊕

E3Bβ3 ⊆ E1B⊥
β1

⊕ Bβ2E
⊥
2 ⊕ E3B⊥

β3
, for i = 1, 2, 3. Hence, Bβ is self-orthogonal code over P if

and only if each Bβi
is self orthogonal code over Fq. Similarly, Bβ is self-dual code over P if

and only if each Bβi
is self-dual code over Fq, for i = 1, 2, 3.

Proposition 5. Let Bβ be a linear code of length β over P. If Bβ is a self-orthogonal, then ϕP(Bβ)
is self-orthogonal.

Proof. Let pr, p′
r ∈ Bβ. Now pr = (pr0 , pr1 , · · · , prβ−1), p′

r = (p′r0
, p′r1

, · · · , p′rβ−1
), where

pj =
3
∑

i=1
Ei pri,j , p′j =

3
∑

i=1
Ei p

′
ri,j

, pri,j , p′ri,j
∈ Fq, for i = 1, 2, 3 and j = 0, 1, 2, · · · , β − 1. Next,

let us consider that pr · p′
r = 0. Then, we obtain
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β−1

∑
i=1

pj p
′
j = 0

=⇒
β−1

∑
j=0

(
3

∑
i=1

Ei pri,j)(
3

∑
i=1

Ei p
′
ri,j
) = 0.

Since (Ei)
2 = Ei, we have

β−1

∑
j=0

3

∑
i=0

Ei pri,j p
′
ri,j

=
3

∑
i=0

β−1

∑
j=0

Ei pri,j p
′
ri,j

= 0.

Therefore,

n−1

∑
j=0

pri,j p
′
ri,j

= 0,

where i = 1, 2, 3. Also,

ϕP(pr)ϕP(p
′
r) =

β−1

∑
j=0

3

∑
i=0

pri,j p
′
ri,j

=
3

∑
i=0

β−1

∑
j=0

pri,j p
′
ri,j

= 0.

This implies that,

ϕP(C
⊥) ⊆ ϕP(C)

⊥.

Since ϕP is a bijection, then |ϕP(C
⊥)| = |ϕP(C)

⊥|. Hence, ϕP(C
⊥) = ϕP(C)

⊥. Now, C is
self-orthogonal if and only if C ⊆ C⊥. Henceforth, ϕP(C) ⊆ ϕP(C

⊥) = ϕP(C)
⊥ if and only

if ϕP(C) is self-orthogonal.

An element qr of Q is of the form qr = b1 + ub2 + vb3 + uvb4 + v2b5 + uv2b6, for
b1, b2, b3, b4, b5, b6 ∈ Fq. With the help of Chinese remainder theorem, it is clear to observe
that Q = ζ1Fq ⊕ ζ2Fq ⊕ ζ3Fq ⊕ ζ4Fq ⊕ ζ5Fq ⊕ ζ6Fq. Hence, Q is semi-local, commutative,

and nonchain ring. Moreover, each qr has a unique representation, qr =
6
∑

j=1
δjbj =

6
∑

j=1
ζ jqrj

,

where bj, qrj
∈ Fq, for 1 ≤ j ≤ 6. We define the Gray map

ϕQ : Q −→ F6
q (2)

by ϕQ(qr) = ϕQ(ζ1qr1 + ζ2qr1 + ζ3qr3 + ζ4qr4 + ζ5qr5 + ζ6qr6) = (qr1 , qr2 , qr3 , qr4 , qr5 , qr6)A2
= sA2, where A2 ∈ GL6(Fq) is a fixed matrix and GL6(Fq) is the linear group of all 6 × 6
invertible matrices over the field Fq such that A2 AT

2 = λI6×6, AT
2 is the transpose of A2

and λ ∈ Fq\{0} and we use s for the vector (qr1 , qr2 , qr3 , qr4 , qr5 , qr6).
The above-described map (2) can be extended component-wise as

ϕQ : Qβ −→ F
6γ
q

(q0, q1, . . . , qγ−1) −→ ((qr0,1 , qr0,2 , qr0,3 , qr0,4 , qr0,5 , qr0,6)A2, (qr1,1 , qr1,2 , qr1,3 , qr1,4 , qr1,5 , qr1,6)A2,
. . . , (qrγ−1,1 , qrγ−1,2 , qrγ−1,3 , qrγ−1,4 , qrγ−1,5 , qrγ−1,6)A2) = s0 A2, s1 A2, s2 A2, . . . , sγ−1 A2. We write
qr = (q0, q1, . . . , qγ−1) and qj = ζ1qrj,1 + ζ2qrj,2 + ζ3qrj,3 + ζ4qrj4 + ζ5qrj,5 + ζ6qrj,6 ∈ Q ,
where j = 0, 1, 2, . . . , γ − 1. We denote wL(qj) = wH(ϕQ(qj)) to represent the Lee weight
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of qj, where wH stands for the Hamming weight over Fq. Let Eγ be a linear code of length
γ over Q; we define

Eγ1 = {qr1 ∈ F
γ
q |

6

∑
j=1

ζ jqrj ∈ Eγ; qr2 , qr3 , qr4 , qr5 , qr6 ,∈ F
γ
q , 1 ≤ j ≤ 6},

Eγ2 = {qr2 ∈ F
γ
q |

6

∑
j=1

ζ jqrj ∈ Eγ; qr1 , qr3 , qr4 , qr5 , qr6 ,∈ F
γ
q , 1 ≤ j ≤ 6},

Eγ3 = {qr3 ∈ F
γ
q |

6

∑
j=1

ζ jqrj ∈ Eγ; qr1 , qr2 , qr4 , qr5 , qr6 ,∈ F
γ
q , 1 ≤ j ≤ 6},

Eγ4 = {qr4 ∈ F
γ
q |

6

∑
j=1

ζ jqrj ∈ Eγ; qr1 , qr2 , qr3 , qr5 , qr6 ,∈ F
γ
q , 1 ≤ j ≤ 6},

Eγ5 = {qr5 ∈ F
γ
q |

6

∑
j=1

ζ jqrj ∈ Eγ; qr1 , qr2 , qr3 , qr4 , qr6 ,∈ F
γ
q , 1 ≤ j ≤ 6},

Eγ6 = {qr6 ∈ F
γ
q |

6

∑
j=1

ζ jqrj ∈ Eγ; qr1 , qr2 , qr3 , qr4 , qr5 ,∈ F
γ
q , 1 ≤ j ≤ 6}.

Then, Eγj
is a linear code of length γ over Fq, for j = 1, 2, 3, 4, 5, 6.

We come to the following conclusions for Q using similar justifications to those used
in the case of P.

Proposition 6. The Gray map ϕQ is a linear and distance preserving map from (Qγ, dL) to

(F6γ
q , dH), where dL = dH .

Proposition 7. Let Eγ = ⊕6
j=1ζ jEγj

be a linear code of length γ over Q. Then,

(i). ϕQ(Eγ) = Eγ1 ⊗ Eγ2 ⊗ Eγ3 ⊗ Eγ4 ⊗ Eγ5 ⊗ Eγ6 .
(ii). E⊥

γ = ⊕6
j=1ζ jE

⊥
γj

; further, Eγ is self-orthogonal if and only if Eγj
is self-orthogonal, and Eγ is

self-dual if and only if Eγj
is self-dual, for j = 1, 2, 3, 4, 5, 6.

Proposition 8. Let Eγ be a linear code of length γ over Q. If Eγ is a self-orthogonal, then ϕQ(Eγ)
is self-orthogonal.

4. Gray Image over FqPQ

In the present section, we describe the Gray map over FqPQ and its related results. In
FqPQ, every element can be written as (a, pr, qr) = (a, E1 pr1 + E2 pr2 + E3 pr3 , ζ1qr1 + ζ2qr2 +
ζ3qr3 + ζ4qr4 + ζ5qr5 + ζ6qr6), where a, pr, qr are in Fq, P, Q, respectively. With the help of
the above-described Gray maps (1) and (2), we define new Gary map over FqPQ by

ϕ : FqPQ −→ F10
q (3)

such that

ϕ(a, pr, qr) = (a, (pr1 , pr2 , pr3)A1, (qr1 , qr2 , qr3 , qr4 , qr5 , qr6)A2) = (a, eA1, sA2).

Gray map ϕ is an Fq-linear and we can easily extend component-wise over Fα
q PβQγ in the

following manner:

ϕ : Fα
q × Pβ × Qγ −→ F

α+3β+6γ
q
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is defined by

(a0, a1, . . . , aα−1, p0, p1, . . . , pβ−1, q0, q1, . . . , qγ−1) = (a0, a1, . . . , aα−1, (pr0,1 , pr0,2 , pr0,3)A1,

(pr1,1 , pr1,2 , pr1,3)A1, . . . , (prβ−1,1 , prβ−1,2 ,

prβ−1,3)A1, (qr0,1 , qr0,2 , qr0,3 , qr0,4 , qr0,5 ,

qr0,6)A2, (qr1,1 , qr1,2 , qr1,3 , qr1,4 , qr1,5 , qr1,6)A2,

. . . , (qrγ−1,1 , qrγ−1,2 , qrγ−1,3 , qrγ−1,4 , qrγ−1,5 ,

qrγ−1,6)A2),

= (a, e0 A1, e1 A1, . . . , eβ−1 A1, s0 A2, s1 A2,

. . . , sγ−1 A2),

where a = (a0, a1, . . . , aα−1) ∈ Fα
q , pr = (p0, p1, . . . , pβ−1) ∈ Pβ and qr = (q0, q1, . . . , qγ−1)

∈ Qγ. Here, each pi = E1 pri ,1 + E2 pri ,2 + E3 pri ,3, qj = ζ1qrj ,1 + ζ2qrj ,2 + ζ3qrj ,3 + ζ4qrj ,4 +
ζ5qrj ,5 + ζ6qrj ,6 are in P and Q respectively, where i = 0, 1, . . . , β− 1 and j = 0, 1, 2, . . . , γ− 1.
In the same manner as in [20], we define the Lee weight for the element as

wL(a
′, p′

r, q′
r) = wH(a

′) + wL(p
′
r) + wL(q

′
r), ∀ (a′, p′

r, q′
r) ∈ Fα

q × Pβ × Qγ,

where wH represents the Hamming weight and wL represents the Lee weight. Lee distance
between the elements x′, y′ ∈ Fα

q × Pβ × Qγ is defined as

dL(x
′, y′) = wL(x

′ − y′) = wH(ϕ(x′, y′)).

Next, we give the results on the Gray map over FqPQ.

Proposition 9. Let ϕ be the above described Gray map. Then

(i). ϕ is an Fq-linear and distance preserving map from Fα
q PβQγ to F

α+3β+6γ
q .

(ii). If E is a linear code of length (α + β + γ) over FqPQ, then Gray image ϕ(E) of E is also
a linear code with the parameters [α + 3β + 6γ, k, dH] over Fq.

Proof. (i). We take two arbitrary elements x′ and y′ of Fα
q PβQγ such that x′ = (a1, p1

r , q1
r )

and y′ = (a2, p2
r , q2

r ). Here,

a1 = a1
0, a1

1, a1
2, . . . , a1

α−1,

a2 = a2
0, a2

1, a2
2, . . . , a2

α−1,

p1
r = E1p1

r1
+ E2p1

r2
+ E3p1

r3
,

p2
r = E1p2

r1
+ E2p2

r2
+ E3p2

r3
,

q1
r = ζ1q1

r1
+ ζ2q1

r2
+ ζ3q1

r3
+ ζ4q1

r4
+ ζ5q1

r5
+ ζ6q1

r6
,

q2
r = ζ1q2

r1
+ ζ2q2

r2
+ ζ3q2

r3
+ ζ4q2

r4
+ ζ5q2

r5
+ ζ6q2

r6
,

and a1, a2, p1
r , p2

r , and q1
r , q2

r are in Fα
q , Pβ, and Qγ, respectively. Also, we have

p1
ri

= (p1
ri ,0, p1

ri ,1
, p1

ri ,2, . . . , p1
ri ,β−1),

p2
ri

= (p2
ri ,0, p2

ri ,1
, p2

ri ,2, . . . , p2
ri ,β−1) ∈ F

β
q ,

q1
rj

= (q1
rj ,0, q1

rj ,1
, q1

rj ,2, . . . , q1
rj ,γ−1),

q2
rj

= (q2
rj ,0, q2

rj ,1
, q2

rj ,2, . . . , q2
rj ,γ−1) ∈ F

γ
q .
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where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 6. We take

ϕ(x′ + y′) = (a1 + a2, p1
r1
+ p2

r1
, p1

r2
+ p2

r2
, p1

r3
+ p2

r3
, q1

r1
+ q2

r1
, q1

r2
+ q2

r2
, q1

r3
+ q2

r3
, q1

r4
+ q2

r4
,

q1
r5
+ q2

r5
, q1

r6
+ q2

r6
)

= (a1, p1
r1

, p1
r2

, p1
r3

, q1
r1

, q1
r2

, q1
r3

, q1
r4

, q1
r5

, q1
r6
) + (a2, p2

r1
, p2

r2
, p2

r3
, q2

r1
, q2

r2
, q2

r3
, q2

r4
, q2

r5
, q2

r6
)

= ϕ(x′) + ϕ(y′)

and also

ϕ(ωx′) = (ωa1, ωp1
r1

, ωp1
r2

, ωp1
r3

, ωq1
r1

, ωq1
r2

, ωq1
r3

, ωq1
r4

, ωq1
r5

, ωq1
r6
)

= ωϕ(x′),

where ω ∈ Fq. Hence, ϕ is an Fq-linear map.
For the remaining part, we will use the fact that ϕ is a linear map, so we have

dL(x
′, y′) = wL(x

′ − y′) = wH(x
′ − y′) = dH(x

′, y′).

Therefore, the result is follows.
(ii). This is directly by the definition of Gray map ϕ.

In the next step, we define the quasi cyclic code and generalized quasi cyclic code as
follows:

Definition 8. Suppose ω ∈ Fmn
q such that ω = (ω1, ω2, . . . , ωn), where ωi ∈ Fm

q for i =
1, 2, . . . , n. Let ξ be the cyclic shift from Fm

q to Fm
q and defined as

ξ(a0, a1, . . . , am−1) = (am−1, a0, . . . , am−2).

We define another map from Fmn
q to Fmn

q such that

Ω(ω1, ω2, . . . , ωn) = (ξ(ω1), ξ(ω2), . . . , ξ(ωn)),

where ω ∈ Fmn
q such that ω = (ω1, ω2, . . . , ωn). From here, a code E is known as a quasi-cyclic

code of index n if Ω(E) = E.

Definition 9. Let ω′ ∈ F
m1
q × F

m2
q × F

m3
q × . . . × F

mn
q such that ω′ = (ω′

1, ω′
2, . . . , ω′

n), where

ω′
i ∈ F

mi
q such that i = 1, 2, 3, . . . , n. Now, again, let ξ be the cyclic shift from F

mi
q to F

mi
q as

ξ : Fmi
q −→ F

mi
q

and defined as
ξ(a0, a1, . . . , ami−1) = (ami−1, a0, . . . , ami−2).

Next, we define another map as

Ωg : Fm1
q × F

m2
q × . . . × Fmn

q −→ F
m1
q × F

m2
q × . . . × Fmn

q

such that
Ωg(ω

′
1, ω′

2, . . . , ω′
n) = (ξ(ω′

1), ξ(ω′
2), . . . , ξ(ω′

n)).

A code E is called a generalized quasi-cyclic code if Ωg(E) = E.

In view of the above definition, we prove the following result:

Theorem 1. Let ξ be the cyclic shift over FqPQ, and let ϕ and Ωg be the mappings described above.
Prove that ϕξ = Ωg ϕ.



Entropy 2023, 25, 1161 12 of 25

Proof. Let c = (a0, a1, . . . , aα−1, p0, p1, . . . , pβ−1, q0, q1, . . . , qγ−1) ∈ Fα
q PβQγ, where each

pi = E1 pri ,1 + E2 pri ,2 + E3 pri ,3 ∈ P

and
qj = ζ1qrj ,1 + ζ2qrj ,2 + ζ3qrj ,3 + ζ4qrj ,4 + ζ5qrj ,5 + ζ6qrj ,6 ∈ Q

for i = 0, 1, 2, . . . , β − 1 and j = 0, 1, 2, . . . , γ − 1. Now, we take

ϕξ(c) = ϕξ(a0, a1, . . . , aα−1, p0, p1, . . . , pβ−1, q0, q1, . . . , qγ−1)

= ϕ(aα−1, a0, a1, . . . , aα−2, pβ−1, p0, p1, . . . , pβ−2, qγ−1, q0, q1, . . . , qγ−2)

= (aα−1, a0, a1, . . . , aα−2, (prβ−1,1 , prβ−1,2 , prβ−1,3)A1, (pr0,1, pr0,2, pr0,3)A1, (pr1,1, pr1,2, pr1,3)A1,

. . . , (prβ−2,1, prβ−2,2 , prβ−2,3)A1, (qrγ−1,1 , qrγ−1,2 , qrγ−1,3 , qrγ−1,4 , qrγ−1,5 , qrγ−1,6)A2, (qr0,1, qr0,2,

qr0,3, qr0,4, qr0,5, qr0,6)A2, (qr1,1, qr1,2, qr1,3, qr1,4, qr1,5, qr1,6)A2, . . . , (qrγ−2,1 , qrγ−2,2 , qrγ−2,3 ,

qrγ−2,4, qrγ−2,5 , . . . , qrγ−2,6)A2).

After that, we will obtain

Ωg ϕ(E) = Ωg ϕ(a0, a1, . . . , aα−1, p0, p1, . . . , pβ−1, q0, q1, . . . , qγ−1)

= Ω(a0, a1, . . . , aα−1, (pr0,1, pr0,2, pr0,3)A1, (pr1,1, pr1,2, pr1,3)A1, . . . , (prβ−1,1, prβ−1,2, prβ−1,3)A1,

(qr0,1, qr0,2, qr0,3, qr0,4, qr0,5, qr0,6)A2, (qr1,1, qr1,2, qr1,3, qr1,4, qr1,5, qr1,6)A2, . . . , (qrγ−1,1, qrγ−1,2,

qrγ−1,3, qrγ−1,4, qrγ−1,5, qrγ−1,6)A2)

= (aα−1, a0, a1, . . . , aα−2, (prβ−1,1, prβ−1,2, prβ−1,3)A1, (pr0,1, pr0,2, pr0,3)A1, (pr1,1, pr1,2, pr1,3)A1,

. . . , (prβ−2,1, prβ−2,2, prβ−2,3)A1, (qrγ−1,1, qrγ−1,2, qrγ−1,3, qrγ−1,4, qrγ−1,5, qrγ−1,6)A2, (qr0,1, qr0,2,

qr0,3, qr0,4, qr0,5, qr0,6)A2, (qr1,1, qr1,2, qr1,3, qr1,4, qr1,5, qr1,6)A2, . . . , (qrγ−2,1, qrγ−2,2, qrγ−2,3,

qrγ−2,4, qrγ−2,5, . . . , qrγ−2,6)A2).

Hence, we conclude that, ϕξ = Ωg ϕ.

In view of Theorem 1, we obtain following result.

Theorem 2. Let E be a linear code of length (α + β + γ) over FqPQ. Then, the Gray image of a
FqPQ-cyclic code of length (α + β + γ) is a generalized quasi-cyclic code with an index of 10 over
Fq.

5. Main Results

In this section, we describe the structural properties of cyclic codes over Fq, P, Q, and
FqPQ as well as obtain quantum error-correcting codes over FqPQ.

5.1. Cyclic Codes over Fq

Theorem 3 ([28], Theorem 12.9). Let A be a cyclic code of length α of over Fq. Then there exists

a unique polynomial a(κ) ∈
Fq [κ]

〈κα−1〉 such that Aα = 〈a(κ)〉 and a(κ) | (κα − 1). Moreover, the

dimension of Aα is r = α − deg(a) with {a(κ), κa(κ), . . . , κr−1a(κ)} as a basis.

5.2. Cyclic Codes over P

Theorem 4. Let Bβ = ⊕3
i=1EiBβi

be a linear code of length β over P. Then Bβ is a cyclic code of
length β over P if and only if each Bβi

is a cyclic code over Fq, where i = 1, 2, 3.

Proof. For any pr = (p0, p1, p2, . . . , pβ−1) ∈ Bβ. We can also have,

pi = E1 pri,1 + E2 pri,2 + E3 pri,3 ,
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where pri,1 , pri,2 , pri,3 ∈ Fq and also

pr1 = (pr1,0 , pr1,1 , pr1,2 , . . . , pr1,β−1) ∈ Bβ1
,

pr2 = (pr2,0 , pr2,1 , pr2,2 , . . . , pr2,β−1) ∈ Bβ2 ,

pr3 = (pr3,0 , pr3,1 , pr3,2 , . . . , pr3,β−1) ∈ Bβ2 .

Here, pr1 , pr2 , pr3 are in Bβ1
, Bβ2 , Bβ3 respectively. Next, let us consider that Bβ1

, Bβ2 , Bβ3

are cyclic code over Fq. It means that

ξ(pr1) = (pr1,β−1 , pr1,0 , pr1,1 , pr1,2 , . . . , pr1,β−2) ∈ Bβ1
,

ξ(pr2) = (pr2,β−1 , pr2,0 , pr2,1 , pr2,2 , . . . , pr2,β−2) ∈ Bβ2 ,

ξ(pr3) = (pr3,β−1 , pr3,0 , pr3,1 , pr3,2 , . . . , pr3,β−2) ∈ Bβ3 .

Hence, we have
ξ(pi) = E1ξ(pri,1) + E2ξ(pri,2) + E3ξ(pri,3) ∈ Bβ.

This gives
E1ξ(pr1) + E2ξ(pr2) + E3ξ(pr3) = ξ(pr).

Thus, we obtain, ξ(pr) ∈ Bβ. This implies that Bβ is a cyclic code over P.
Conversely, we consider that Bβ is a cyclic code over P. Suppose

pri
= E1 pri,1 + E2 pri,2 + E3 pri,3 ,

where pri,1 , pri,2 , pri,3 ∈ Fq. Then, for any

pr1 = (pr1,0 , pr1,1 , pr1,2 , . . . , pr1,β−1) ∈ Bβ1
,

pr2 = (pr2,0 , pr2,1 , pr2,2 , . . . , pr2,β−1) ∈ Bβ2 ,

pr3 = (pr3,0 , pr3,1 , pr3,2 , . . . , pr3,β−1) ∈ Bβ3 .

Here, pr1 , pr2 , pr3 are in Bβ1
, Bβ2 , Bβ3 , respectively. Thus, pr = (p0, p1, . . . , pβ−1) ∈ Bβ. By

the hypothesis, ξ(pr) ∈ Bβ because

E1ξ(pr1) + E2ξ(pr2) + E3ξ(pr3) = ξ(pr)

Then, we have
E1ξ(pr1) + E2ξ(pr2) + E3ξ(pr3) ∈ Bβ.

Therefore,
ξ(pr1) ∈ Bβ,1, ξ(pr2) ∈ Bβ,2, ξ(pr3) ∈ Bβ,3.

This shows that Bβ1
, Bβ2 and Bβ3 are cyclic codes over Fq.

Corollary 1. Let Bβ = ⊕3
i=1EiBβi

be a cyclic code of length β over P. Then, B⊥
β = ⊕3

i=1EiB
⊥
βi

is also a cyclic code of length β over P if and only if B⊥
βi

are cyclic codes of length β over Fq, for
i = 1, 2, 3.

Theorem 5. Let Bβ = ⊕3
i=1EiBβi

be a cyclic code of length β over P and hi(κ) be the generator
polynomial of the cyclic code Bβi

, where i = 1, 2, 3. Then, Bβ = 〈E1h1(κ), E2h2(κ), E3h3(κ)〉 and

|Bβ| = q3β−∑
3
i=1 deg(hi).

Proof. Let Bβ be a cyclic code of length β over P. Then, by Theorem 4,

Bβ1
= 〈h1(κ)〉 ⊆

Fq[κ]

〈κβ − 1〉
,
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Bβ2 = 〈h2(κ)〉 ⊆
Fq[κ]

〈κβ − 1〉
,

Bβ3 = 〈h3(κ)〉 ⊆
Fq[κ]

〈κβ − 1〉
,

and also
Bβ = E1Bβ1

⊕ E2Bβ2 ⊕ E3Bβ3 ,

where
h1(κ) ∈ Bβ1

, h2(κ) ∈ Bβ2 , h3(κ) ∈ Bβ3 .

Therefore,

Bβ ⊆ 〈E1h1(κ), E2h2(κ), E3h3(κ)〉

⊆
P[κ]

〈κβ − 1〉
.

We take any

E1kr1(κ)h1(κ) + E2kr2(κ)h2(κ) + E3kr3(κ)h3(κ) ∈ 〈E1h1(κ), E2h2(κ), E3h3(κ)〉

⊆
P[κ]

〈κβ − 1〉
.

Here, kr1(κ), kr2(κ), kr3(κ) ∈
P[κ]

〈κβ−1〉
and also h1(κ), h2(κ), h3(κ) ∈ Fq[κ] such that

E1kr1(κ) = E1h1(κ),

E2kr2(κ) = E2h2(κ),

E3kr3(κ) = E3h3(κ).

This means that 〈E1h1(κ), E2h2(κ), E3h3(κ)〉 ⊆ Bβ. From the above discussion, we conclude
that 〈E1h1(κ), E2h2(κ), E3h3(κ)〉 = Bβ. But,

Bβ = |Bβ1
||Bβ2 ||Bβ3 |.

This yields that

|Bβ| = qβ−deg(h1(κ))qβ−deg(h2(κ))qβ−deg(h3(κ))

= q3β−(deg(h1(κ))+deg(h2(κ))+deg(h3(κ)))

|Bβ| = q3β−∑
3
i=1 deg(hi).

Theorem 6. Let Bβ = ⊕3
i=1EiBβi

be a cyclic code of length β over P and hi(κ) be the generator
polynomial of the cyclic code Bβi

, where i = 1, 2, 3. Suppose there exists a unique polynomial

h(κ) ∈ P(κ) such that Bβ = 〈h(κ)〉 and h(κ) divides κβ − 1 and also h(κ) = E1h1(κ) +
E2h2(κ) + E3h3(κ).

Proof. In view of Theorem 5, let C = 〈E1h1(κ), E2h2(κ), E3h3(κ)〉 and h1(κ), h2(κ), h3(κ) be
the monic generator polynomials of Bβ1

, Bβ2 , Bβ3 , respectively. Next, let us consider that
h(κ) = E1h1(κ) + E2h2(κ) + E3h3(κ). Obviously, 〈h(κ)〉 ⊆ Bβ. Now,

E1h1(κ) = E1h(κ),

E2h2(κ) = E2h(κ),

E3h3(κ) = E3h(κ).
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Also, it means that Bβ ⊆ 〈h(κ)〉. This is clear from above discussion that Bβ = 〈h(κ)〉. But

h1(κ), h2(κ), h3(κ) are the monic divisor of (κβ − 1). There are tr1(κ), tr2(κ), tr3(κ) ∈
Fq [κ]

〈κβ−1〉
.

This implies that
[E1tr1(κ) + E2tr2(κ) + E3tr3(κ)]h(κ) = κβ − 1.

Therefore, h(κ)/(κβ − 1). Hence, h(κ) is unique by the uniqueness of h1(κ), h2(κ), h3(κ).

Corollary 2. Let Bβ = ⊕3
i=1EiBβi

be a cyclic code of length β over P, hi(κ) be the generator

polynomial of the cyclic code Bβi
and e∗i (κ) is the reciprocal polynomials of ei(κ) such that κβ − 1 =

ei(κ)hi(κ) for i = 1, 2, 3. Then, B⊥
β = 〈E1e∗1(κ), E2e∗2(κ), E3e∗3(κ)〉 and |B⊥

β | = q∑
3
i=1 deg(hi).

5.3. Cyclic Codes over Q

We arrive at the following conclusions for cyclic codes over Q using similar justifica-
tions to those used in the case of cyclic codes over P.

Theorem 7. Let Eγ = ⊕6
j=1ζ jEγj

be a linear code of length γ over Q. Then Eγ is a cyclic code of

length γ over Q if and only if each Eγj
is a cyclic code over Fq, where j = 1, 2, 3, 4, 5, 6.

Corollary 3. Let Eγ = ⊕6
j=1ζ jEγj

be a cyclic code of length γ over Q. Then, E⊥
γ = ⊕6

j=1ζ j(E
⊥
γj

is also a cyclic code of length γ over Q if and only if each E⊥
γj

is a cyclic code of length γ over Fq, for

i = 1, 2, 3, 4, 5, 6.

Theorem 8. Let Eγ = ⊕6
j=1ζ jEγj

be a cyclic code of length γ over Q and ℓj(κ) be the generator

polynomial of the cyclic code Eγj
, where j = 1, 2, 3, 4, 5, 6. Then, Eγ = 〈ℓ(κ)〉 and |Eγ| =

q
3γ−∑

6
j=1 deg(ℓj), where ℓ(κ) = ζ1ℓ1(κ) + ζ2ℓ2(κ) + ζ3ℓ3(κ) + ζ4ℓ4(κ) + ζ5ℓ5(κ) + ζ6ℓ6(κ).

Theorem 9. Let Eγ = ⊕6
j=1ζ jEγj

be a cyclic code of length γ over Q and ℓj(κ) be the generator

polynomial of the cyclic code Eγj
, where j = 1, 2, 3, 4, 5, 6. Suppose there exists a unique polynomial

ℓ(κ) ∈ Q(κ) such that Eγ = 〈ℓ(κ)〉 and ℓ(κ) divides κγ − 1 and also ℓ(κ) = ζ1ℓ1(κ) + ζ2ℓ2(κ) +
ζ3ℓ3(κ) + ζ4ℓ4(κ) + ζ5ℓ5(κ) + ζ6ℓ6(κ).

Corollary 4. Let Eγ = ⊕6
j=1ζ jEγj

be a cyclic code of length γ over Q. Suppose ℓj(κ) is the

generator polynomial of the cyclic code Eγj
and k∗j (κ) is the reciprocal polynomials of k j(κ) such

that κγ − 1 = k j(κ)ℓj(κ) for j = 1, 2, 3, 4, 5, 6. Then, E⊥
γ = 〈ζ1k∗1(κ), ζ2k∗2(κ), ζ3k∗3(κ), ζ4k∗4(κ),

ζ5k∗5(κ), ζ6k∗6(κ), 〉 and |(E⊥
γ | = q∑

6
j=1 deg(ℓ∗j ).

5.4. Cyclic Codes over FqPQ

In the present section, we discuss the generator polynomial of E over FqPQ. We begin
with the following result:

Theorem 10. Let E be a cyclic code over FqPQ. Then,

E = 〈(a(κ)|0|0), (0|h(κ)|0), (r1(κ)|r2(κ)|ℓ(κ))〉,

where a(κ)|(κα − 1), h(κ)|(κβ − 1), ℓ(κ)|(κγ − 1) and also r1(κ) ∈
Fq [κ]

〈κα−1〉 , r2(κ) ∈
Fq [κ]

〈κβ−1〉
.
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Proof. In view of Theorems 3, 5 and 8, we define

Aα = 〈a(κ)〉,

Bβ = 〈h(κ)〉,

Eγ = 〈ℓ(κ)〉,

where a(κ)|(κα − 1), h(κ)|(κβ − 1), ℓ(κ)|(κγ − 1). Then, the proof is similar as in [20].

Definition 10 ([25]). A FqPQ-linear code E of length (α + β + γ) is called a separable code if
E = A′

α ⊗ B′
β ⊗ E′

γ while considering A′
α, B′

β and E′
γ as punctured code of E by deleting the

coordinate outside the α, β and γ components, respectively.

Lemma 1. Let E = 〈(a(κ)|0|0), (0|h(κ)|0), (r1(κ)|r2(κ)|ℓ(κ))〉 be a FqPQ-cyclic code. Then,

(i) deg(r1(κ)) ≤ deg(a(κ)), deg(r2(κ)) ≤ deg(h(κ)) and a(κ)|h(κ)r1(κ), h(κ)|ℓ(κ)r2(κ).
(ii) A′

α = 〈gcd(a(κ), r1(κ))〉, B′
β = 〈gcd(h(κ), r2(κ))〉 and E′

γ = 〈ℓ(κ)〉.

Proof. The proof is parallel to that of Lemmas 3.2, 3.3 and 3.4 of [20].

Lemma 2. Let E = 〈(a(κ)|0|0), (0|h(κ)|0), (r1(κ)|r2(κ)|ℓ(κ))〉 be a FqPQ-cyclic code. Then,

(i) a(κ)|r1(κ) if and only if r1(κ) = 0.
(ii) h(κ)|r2(κ) if and only if r2(κ) = 0.

Proof. Proof is parallel to that of Lemmas 5.8 and 5.9 of [20].

The following Lemma is a direct consequence of Lemma 2.

Lemma 3. Let E = 〈(a(κ)|0|0), (0|h(κ)|0), (r1(κ)|r2(κ)|ℓ(κ))〉 be a FqPQ-cyclic code. Then,
the following are equivalent:

(i) E is separable.
(ii) a(κ)|r1(κ), h(κ)|r2(κ).
(iii) E = 〈(a(κ)|0|0), (0|h(κ)|0), (0|0|ℓ(κ))〉.

Consequently, for a separable code, we have

A′
α = 〈gcd(a(κ), r1(κ))〉 = 〈a(κ)〉 = Aα,

B′
β = 〈gcd(h(κ), r2(κ))〉 = 〈h(κ)〉 = Bβ,

E′
γ = 〈ℓ(κ)〉 = Eγ.

Theorem 11. Let E = Aα ⊗ Bβ ⊗ Eγ be a FqPQ-linear code of length (α + β + γ), where
Aα, Bβ and Eγ are linear code of α, β and γ, respectively. Then, E is a FqPQ cyclic code of length
(α + β + γ) if and only if Aα, Bβ and Eγ are cyclic codes of length α, β and γ over Fq, P and Q,
respectively.

Proof. First, we suppose that E is a FqPQ-cyclic code of length (α + β + γ) and c ∈ E,
where

c = (a0, a1, . . . , aα−1, p0, p1, . . . , pβ−1, q0, q1, . . . , qγ−1)

and also

(a0, a1, . . . , aα−1) ∈ Aα,

(p0, p1, . . . , pβ−1) ∈ Bβ,

(q0, q1, . . . , qγ−1) ∈ Eγ.



Entropy 2023, 25, 1161 17 of 25

By the definition of cyclic code, we have

(aα−1, a0, a1, . . . , aα−2, pβ−1 p0, p1, . . . , pβ−2, qγ−1, q0, q1, . . . , qγ−2) ∈ E

Now,

(aα−1, a0, a1, . . . , aα−2) ∈ Aα,

(pβ−1, p0, p1, . . . , pβ−2) ∈ Bβ,

(qγ−1, q0, q1, . . . , qγ−2) ∈ Eγ.

Hence, Aα, Bβ and Eγ are cyclic codes of length α, β and γ over Fq, P and Q, respec-
tively.
For the converse part, we consider that Aα, Bβ and Eγ are cyclic codes of length α, β and γ

over Fq, P and Q, respectively, and next, we will prove that E = Aα ⊗ Bβ ⊗ Eγ is a cyclic
code over FqPQ. Hence,

(a0, a1, . . . , aα−1) ∈ Aα,

(p0, p1, . . . , pβ−1) ∈ Bβ,

(q0, q1, . . . , qγ−1) ∈ Eγ.

But, all are cyclic, and we have

(aα−1, a0, a1, . . . , aα−2) ∈ Aα,

(pβ−1, p0, p1, . . . , pβ−2) ∈ Bβ,

(qγ−1, q0, q1, . . . , qγ−2) ∈ Eγ.

Thus,

(aα−1, a0, a1, . . . , aα−2, pβ−1, p0, p1, . . . , pβ−2, qγ−1, q0, q1, . . . , qγ−2) ∈ Aα ⊗ Bβ ⊗ Eγ = E.

Consequently, E is a FqPQ-cyclic code of length (α + β + γ).

In view of Theorems 4, 7 and 11, we have the following result:

Corollary 5. Let E = Aα ⊗ Bβ ⊗ Eγ be a FqPQ-linear code of length (α + β + γ) such that
Aα, Bβ and Eγ are the linear codes of length α, β and γ over Fq, P and Q, respectively. Then, E is a
FqPQ-cyclic code of length (α + β + γ) if and only if Aα, Bβi

and Eγj
are the cyclic codes of length

α, β and γ over Fq, P and Q for i = 1, 2, 3 and j = 1, 2, 3, 4, 5, 6.

In Theorem 10, we studied the generator polynomial for a FqPQ-cyclic code of length
(α + β + γ). Here, we examine the generator polynomial for a separable FqPQ-cyclic code
of length (α + β + γ) in the manner described below.

Theorem 12. Let E = Aα ⊗ Bβ ⊗ Eγ be a FqPQ-cyclic code of length (α + β + γ), where
Aα = 〈a(κ)〉, Bβ = 〈h(κ)〉 and Eγ = 〈ℓ(κ)〉. Then, C = 〈a(κ)〉 ⊗ 〈h(κ)〉 ⊗ 〈ℓ(κ)〉.

Proof. We have

Aα = 〈a(κ)〉,

Bβ = 〈h(κ)〉,

Eγ = 〈ℓ(κ)〉.

Then, the proof directly follows.
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Example 1. Let α = 11, β = 7, γ = 8 and Q11+7+8 = F27[κ]
〈κ11−1〉

× P[κ]
〈κ7−1〉

× Q[κ]
〈κ8−1〉

, where

P = F27[v]/〈v3 − α2
2v〉 and Q = F27[u, v]/〈u2 − α2

1, v3 − α2
2v〉. We take F27 = F3

〈κ3+2κ+1〉
. It

can be easily seen that κ3 + 2κ + 1 is a irreducible in F3 and ω be a zero of polynomial in F27, then,

κ11 − 1 = (κ + 2)(κ5 + 2κ3 + κ2 + 2κ + 2)(κ5 + κ4 + 2κ3 + κ2 + 2) ∈ F27[κ].

Let a(κ) = (κ + 2)(κ5 + 2κ3 + κ2 + 2κ + 2). Then, Aα = 〈a(κ)〉 is a cyclic code of length 11 over
F27. Also, we have,

κ7 − 1 = (κ + 2)(κ2 + ω5κ + 1)(κ2 + ω15κ + 1)(κ2 + ω19κ + 1) ∈ F27[κ].

Let h1(κ) = (κ + 2)(κ2 + ω5κ + 1), h2(κ) = (κ + 2)(κ2 + ω15κ + 1) and h3(κ) = (κ + 2)(κ2 +
ω19κ + 1). Thus Bβ,i = 〈hi(κ)〉 are cyclic codes of length 7 over F27, for i = 1, 2, 3. Therefore,
Bβ = 〈h(κ)〉 is a cyclic code of length 7 over P.
Now, we have

κ8 − 1 = (κ + 1)(κ + 2)(κ2 + κ + 2)(κ2 + 2κ + 2)(κ2 + 1) ∈ F27[κ].

Let ℓ1(κ) = ℓ2(κ) = (κ + 1)(κ + 2)(κ2 + κ + 2), ℓ3(κ) = ℓ4(κ) = (κ + 1)(κ + 2)(κ2 +
2κ + 2) and ℓ5(κ) = ℓ6(κ) = (κ + 1)(κ + 2)(κ2 + 1). Eγ,j = 〈ℓj〉 are cyclic codes of length
8 over F27, where j = 1, 2, 3, 4, 5, 6. Thus, Eγ = 〈ℓ(κ)〉 is a cyclic code of length 8 over
Q, where ℓ(κ) = ζ1ℓ1(κ) + ζ2ℓ2(κ) + ζ3ℓ3(κ) + ζ4ℓ4(κ) + ζ5ℓ5(κ) + ζ6ℓ6(κ). Hence, E =
〈(a(κ)|0|0), (0|h(κ)|0), (r1(κ)|r2(κ)|ℓ(κ))〉 = 〈a(κ)〉 ⊗ 〈h(κ)〉 ⊗ 〈ℓ(κ)〉 is a separable FqPQ-
cyclic code of length (11 + 7 + 8).

5.5. Quantum Error-Correcting Codes

In the present section, we will explore how to obtain quantum codes using the
Calderbank–Shor–Steane (CSS) construction from [29], which utilizes dual-containing
cyclic codes. The CSS construction is a powerful method for constructing quantum codes
with desirable properties. By employing this construction, we can create quantum codes
that outperform existing codes in terms of their parameters, such as dimension and mini-
mum distance. We use a necessary and sufficient condition over the finite fields to obtain
the condition for cyclic codes to contain their duals. It must be stated that the set of n-fold
tensor product (Cq)⊗n = Cq ⊗ Cq ⊗ . . . ⊗ Cq (n-times) is a Hilbert space of dimension qn,
and also Cq is the Hilbert space of dimension q, where C is the complex field. A quantum
code is the subspace of Hilbert space (Cq)⊗n. A quantum code of length n over the field
Fq (q is a power of a prime.) is denoted by [[n, k, d]]q, where k is the dimension, and d is
the minimum distance. We know that each quantum code satisfies the singleton bound,
i.e., n − k + 2 ≥ 2d. A quantum code is said to be MDS (maximum distance separable) if
n − k + 2 = 2d.

To construct better quantum codes compared to existing ones, we focus on two main
conditions:

Higher Dimension (k): One way to improve a quantum code is by increasing its
dimension, denoted as k. The dimension represents the number of encoded qubits or logical
operators that can be stored in the code. By constructing a CSS code with a higher dimension
compared to existing codes, we can encode more information in the same number of
physical qubits, leading to increased storage capacity and computational capabilities.

Larger Minimum Distance (d): The minimum distance, denoted as d, of a quantum
code determines its error-correcting capability. A larger minimum distance implies better
error detection and correction properties. By constructing a CSS code with a larger mini-
mum distance compared to existing codes, we enhance its ability to protect against errors
and improve the overall reliability of the encoded information.

A quantum code [[n, k, d]]q is better than the other quantum code [[n′, k′, d′]]q if one or
both the following conditions hold:
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1. k
n >

k′

n′ , where d = d′(larger code rate with same distance);

2. d > d′ where k
n = k′

n′ (larger distance with the same code rate).

In summary, the CSS construction, utilizing dual-containing cyclic codes, allows us to
construct quantum codes. By carefully selecting the parameters of the codes involved, we
can create better quantum codes compared to existing ones, with improved dimensions
and minimum distances.

Lemma 4 ([29]). [CSS Construction] If E is an [n, k, d] linear code with (E⊥ ⊆ C over Fq, then
there exists a QEC code with parameters [[n, 2k − n, d]]q over Fq.

Lemma 5 ([30]). A cyclic code E of length n over Fq with generator polynomial f (κ) that contains
its dual if and only if

κn − 1 ≡ 0 mod( f (κ) f ∗(κ)),

where f ∗(κ) is the reciprocal polynomial of f (κ).

Proposition 10. Let E be a FqPQ-linear code of length (α + β + γ). Then, the Gray image of E,
i.e., ϕ(E) = Aα ⊗ Bβ1

⊗ Bβ2 ⊗ Bβ3 ⊗ Eγ1 ⊗ Eγ2 ⊗ Eγ3 ⊗ Eγ4 ⊗ Eγ5 ⊗ Eγ6 is a linear code of
length (α + 3β + 6γ) over Fq, where Aα, Bβi

and Eγj
are linear codes of length α, β and γ over

Fq, P and Q, respectively, for i = 1, 2, 3 and j = 1, 2, 3, 4, 5, 6.

Proof. The proof directly follows from the definition of a Gray map ϕ.

Theorem 13. Let E be a FqPQ-linear code of length (α + β + γ). If A⊥
α ⊆ Aα, B⊥

βi
⊆ Bβi

and

(E⊥
γj

⊆ Eγj
for i = 1, 2, 3, j = 1, 2, 3, 4, 5, 6. Then, there exists a quantum error-correcting code

having parameters [[α + 3β + 6γ, 2k − (α + 3β + 6γ), dH ]], where dH is the Hamming distance.

Proof. The proof is similar to that in [25].

6. Applications

In this section, we mainly focus on the applications of separable FqPQ-cyclic codes.
Using the Gray images of cyclic codes over P, we obtain a number of optimal linear
codes in Table 1. Additionally, we describe several quantum codes over Fq, P, Q, FqP
and FqPQ. In Tables 2–6, we obtain MDS quantum codes, better quantum codes than the
existing codes that appeared in some reference (see [25,31–35] for details) and new quantum
codes, respectively. The Magma computation system [36] is used to complete all of the
computations in these examples and tables, and we take α1 = α2 = 1 in the rings P and Q.

The invertible matrices A used to construct the quantum codes are as follows:

A11 =





2 3 4
2 1 2
1 2 3



 ∈ GL3(F5) A12 =





2 1 2
5 2 1
1 2 5



 ∈ GL3(F7)

A13 =





9 2 1
10 9 2
2 1 2



 ∈ GL3(F11) A14 =





2 1 2
15 2 1
1 2 15



 ∈ GL3(F17)

A21 =

















2 3 4 0 0 0
2 1 2 0 0 0
1 2 3 0 0 0
0 0 0 2 3 4
0 0 0 2 1 2
0 0 0 1 2 3

















∈ GL6(F5) A22 =

















2 1 2 0 0 0
5 2 1 0 0 0
1 2 5 0 0 0
0 0 0 2 1 2
0 0 0 5 2 1
0 0 0 1 2 5

















∈ GL6(F7)

Example 2. β = 4, α2 = 1, q = 5, and P = F5[v]/〈v3 − v〉.
Then,

κ4 − 1 = (κ + 1)(κ + 2)(κ + 3)(κ + 4) ∈ F5[κ].
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take h1(κ) = κ2 + 1, h2(κ) = h3(κ) = (κ + 1). Also, we let

A11 =





2 3 4
2 1 2
1 2 3





such that A1 AT
1 = 4I3×3, where I3×3 is an identity matrix of order 3. Then, Bβ be a cyclic code of

length 4 over P and Gray image ϕP(Bβ) having the parameters [12, 8, 4]5 which is an optimal code
as per the database [37].

Example 3. Let q = 5, α1 = α2 = 1, α = 10, β = 10, γ = 10 and Qα+β+γ = F5[κ]
(κ10−1)

×

P[κ]
(κ10−1)

× Q[κ]
(κ10−1)

, where P = F5[v]/〈v3 − v〉 and Q = F5[u, v]/〈u2 − 1, v3 − v〉. Now, κ10 −

1 = (κ + 1)5(κ + 4)5 ∈ F10[κ]. We take a(κ) = (κ + 1)2(κ + 4) ∈ F5[κ] and Aα = 〈a(κ)〉 be a
cyclic code of length 10 over F5[κ] with the parameters [10, 7, 3]5. Again, κ10 − 1 = (κ + 1)5(κ +
4)5 ∈ F5[κ]. We take h1(κ) = (κ + 1)2(κ + 4), h2(κ) = (κ + 1), h3(κ) = 1. Let

A11 =





2 3 4
2 1 2
1 2 3





such that A1 AT
1 = 4I3×3, where I3×3 is an identity matrix of order 3. Then, Bβ is a cyclic code of

length 10 on P and its Gray image have the parameters [30, 26, 3]5 over F5. Next, let us consider
that κ10 − 1 = (κ + 1)5(κ + 4)5 ∈ F5[κ]. We take ℓ1(κ) = ℓ4(κ) = (κ + 1)2(κ + 4) ∈ F5[κ],
ℓ3(κ) = ℓ5(κ) = (κ + 1) and = ℓ2(κ) = ℓ6(κ) = 1. Take

A21 =

















2 3 4 0 0 0
2 1 2 0 0 0
1 2 3 0 0 0
0 0 0 2 3 4
0 0 0 2 1 2
0 0 0 1 2 3

















such that A1 AT
1 = 4I6×6, where I6×6 is an identity matrix of order 6. Then, Eγj

be the cyclic code of

length 10 over Q and its Gray image has the parameters [60, 52, 3]5 over F5. Then, ϕ(E) is a linear
code having the parameters [100, 85, 3]5 over F5. It is clear that, κ10 − 1 ≡ 0 mod(hi(κ)h

∗
i (κ)),

where i = 1, 2, 3. Also, κ10 − 1 ≡ 0 mod(ℓj(κ)ℓ
∗
j (κ)), where j = 1, 2, 3, 4, 5, 6. With the help of

Lemma 5, we have

A⊥
α ⊆ Aα;

B⊥
βi

⊆ Bβi
;

E⊥
γj

⊆ Eγj
.

By using the Theorem 13, there exists a quantum error-correcting code with the parameters
[[100, 70, 3]]5. This is a new quantum code according to the database [38].

In Table 1, we obtain the optimal linear codes. In Table 2, we obtain MDS quantum
error-correcting codes over Fq, and in Tables 3 and 4, we obtain better quantum error-
correcting codes than previously known quantum error-correcting codes. In Tables 5 and 6,
we obtain new quantum error-correcting codes over FqP and FqPQ.
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Table 1. Gray images of cyclic codes over P.

n h1(κ) h2(κ) h3(κ) ϕP(C) Remarks

4 (κ2 + 1) κ + 1 κ + 1 [12, 8, 4]5 optimal

5 (κ + 4)3 κ + 4 κ + 4 [15, 10, 4]5 optimal

6 (κ2 + κ + 1) κ + 1 κ + 1 [18, 14, 4]5 optimal

7 κ6 + κ5 + κ4 + κ3 + κ2 + κ + 1 κ + 4 κ + 4 [21, 13, 4]5 . . .

8 (κ + 2)(κ2 + 2) κ + 2 κ + 1 [24, 19, 4]5 optimal

10 (κ + 1)(κ + 4)2 κ + 1 1 [30, 26, 3]5 optimal

12 (κ + 4)(κ2 + 2κ + 2) κ + 1 κ + 1 [36, 31, 4]5 optimal

Table 2. MDS Quantum codes over Fq.

α α(κ) Parameters of Aα Quantum Codes Remarks

3 (κ + 2) [3, 2, 2]3 [[3, 1, 3]]3 MDS Code

4 (κ + 1)(κ + 2) [4, 2, 3]5 [[4, 0, 3]]5 MDS Code

5 (κ + 4)2 [5, 3, 3]5 [[5, 1, 3]]5 MDS Code

6 (κ + 1)(κ2 + κ + 1) [6, 3, 4]5 [[6, 0, 4]]5 MDS Code

7 (κ + 6)2 [7, 5, 3]7 [[7, 3, 3]]7 MDS Code

7 (κ + 6)3 [7, 4, 3]7 [[7, 1, 4]]7 MDS Code

8 (κ + 1)(κ2 + 3κ + 1) [8, 5, 4]7 [[8, 2, 4]]7 MDS Code

Table 3. Quantum codes over P.

β h1(κ) h2(κ) h3(κ)
Gray

Image
over P

Quantum Codes Known Quantum Codes

25 (κ + 4)6 (κ + 4) 1 [75, 68, 3] [[75, 61, 3]]5 New Quantum code

30 (κ + 4)2(κ2 + 4κ + 1) κ + 1 1 [90, 85, 3] [[90, 80, 3]]5 [[90, 72, 2]]5 [32]

40 (κ + 1)2(κ2 + 3) κ + 1 1 [120, 115, 3] [[120, 110, 3]]5 [[120, 104, 2]]5 [31]

60 (κ + 1)2(κ2 + 3κ + 4) κ + 1 1 [180, 175, 3] [[180, 170, 3]]5 [[168, 126, 3]]5 [25]

7 (κ + 6)3 (κ + 6) κ + 6 [[21, 16, 4]] [21, 11, 4]7 . . .

21 (κ + 3)3(κ + 5) κ + 6 1 [63, 58, 3] [[63, 53, 3]]7 New Quantum code

28 (κ + 1)2(κ2 + 1) κ + 1 1 [84, 79, 3] [[84, 74, 3]]7 [[84, 72, 3]]7 [33]

35 (κ + 6)3(κ4 + κ3 + κ2 + κ + 1) κ + 6 κ + 1 [105, 96, 4] [[105, 87, 4]]7 [[108, 28, 3]]7 [34]

77 (κ + 6)3(κ10 + κ9 + κ8+ κ + 1 1 [231, 216, 4] [[231, 201, 4]]7 [[228, 196, 3]]7 [35]
κ7 + κ6 + κ5 + κ4

+κ3 + κ2 + κ + 1)

11 (κ + 10)3 (κ + 10) (κ + 10) [33, 28, 4] [[33, 23, 4]]11 New Quantum code

11 (κ + 10)5 (κ + 10)3 (κ + 10) [[33, 24, 6]] [[33, 15, 6]]11 New Quantum code

17 (κ + 16)3 (κ + 16) (κ + 16) [51, 46, 4] [[51, 41, 4]]17 New Quantum code
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Table 4. Quantum codes over Q.

γ ℓ1(κ) = ℓ4(κ) ℓ3(κ) = ℓ5(κ) ℓ2(κ) = ℓ6(κ) Gray Image over P Quantum Codes Known Quantum Codes

5 (κ + 4)2 κ + 4 1 [30, 24, 3] [[30, 18, 3]]5 New Quantum code

8 (κ + 2)(κ2 + 2) κ + 2 1 [48, 40, 3] [[48, 32, 3]]5 . . .

10 (κ + 1)2(κ + 4) κ + 1 1 [60, 52, 3] [[60, 44, 3]]5 New Quantum code

14 (κ + 1)3(κ + 6) κ + 1 κ + 1 [84, 72, 4] [[84, 60, 4]]7 [[84, 60, 4]]7 [34]

18 (κ + 3)(κ3 + 2)(κ3 + 3) κ + 3 κ + 3 [108, 90, 4] [[108, 72, 4]]7 [[108, 28, 3]]7 [34]

30 (κ + 4)2(κ2 + 4κ + 1) κ + 4 1 [180, 170, 3] [[180, 160, 3]]5 [[180, 156, 2]]5 [32]

35 (κ + 4)2(κ6 + κ5 + κ4 + κ3 + κ2 + κ + 1) κ + 4 1 [210, 192, 3] [[210, 174, 3]]5 [[210, 150, 2]]5 [32]

38 (κ3 + 3κ2 + 4κ + 1) κ3 + 2κ + 6 1 [228, 216, 3] [[228, 204, 3]]7 [[228, 196, 3]]7 [34]

42 (κ + 1)(κ + 3)2 κ + 1 1 [252, 244, 3] [[252, 236, 3]]7 [[252, 212, 3]7] [34]

Table 5. Quantum codes over FqP.

α β α(κ) h1(κ) h2(κ) h3(κ) Gray Image over FqP New Quantum Codes

10 5 (κ + 1)2(κ + 4) (κ + 4)2 κ + 4 1 [25, 19, 3] [[25, 13, 3]]5

15 10 (κ2 + κ + 1)(κ + 4)2 (κ + 1)2(κ + 4) κ + 1 1 [45, 37, 3] [[45, 29, 3]]5

20 20 (κ + 1)2(κ + 2) (κ + 1)2(κ + 2) κ + 1 1 [80, 73, 3] [[80, 66, 3]]5

30 20 (κ + 1)2(κ2 + κ + 1) (κ + 1)2(κ + 2) κ + 1 1 [90, 82, 3] [[90, 74, 3]]5

7 7 (κ + 6)3 (κ + 6)3 κ + 6 κ + 6 [28, 20, 4] [[28, 12, 4]]7

14 7 (κ + 6)3(κ + 1) (κ + 6)3 κ + 6 κ + 6 [35, 26, 4] [[35, 17, 4]]7

28 28 (κ + 1)3(κ2 + 1) (κ + 1)3(κ2 + 1) κ + 1 κ + 1 [112, 100, 4] [[112, 88, 4]]7

42 56 (κ + 1)3(κ + 2)(κ + 3) (κ + 1)3(κ + 2)(κ + 3) κ + 1 κ + 1 [210, 198, 4] [[210, 186, 4]]7
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Table 6. Quantum codes over FqPQ.

α β γ α(κ) h1(κ) h2(κ) h3(κ) ℓ1(κ) = ℓ4(κ) ℓ3(κ) = ℓ5(κ) ℓ2(κ) = ℓ6(κ) Gray Image over FqPQ New Quantum Codes

5 5 5 (κ + 4)2 (κ + 4)2 κ + 4 1 (κ + 4)2 κ + 4 1 [50, 39, 3] [[50, 28, 3]]5

10 10 10 (κ + 1)2(κ + 4) (κ + 1)2(κ + 4) κ + 1 1 (κ + 1)2(κ + 4) κ + 1 1 [100, 85, 3] [[100, 70, 3]]5

10 20 30 (κ + 1)2(κ + 4) (κ + 1)2(κ + 2) κ + 1 1 (κ + 1)2(κ2 + κ + 1) κ + 1 1 [250, 233, 3] [[250, 216, 3]]5

30 20 40 (κ + 1)2(κ2 + κ + 1) (κ + 1)2(κ + 2) κ + 1 1 (κ + 1)2(κ2 + 2) κ + 1 1 [330, 312, 3] [[330, 294, 3]]5

7 21 14 (κ + 6)3 (κ + 3)3(κ + 5)(κ + 6) κ + 3 1 (κ + 1)3(κ + 6) κ + 1 κ + 1 [154, 132, 4] [[154, 110, 4]]7

14 28 35 (κ + 1)3(κ + 6) (κ + 1)3(κ2 + 1) κ + 1 κ + 1 (κ + 6)3(κ4 + κ3 + κ2 + κ + 6) κ + 6 κ + 6 [308, 279, 4] [[308, 250, 4]]7

48 84 70 (κ + 3)(κ3 + κ + 3) (κ + 1)2(κ2 + 2) κ + 1 1 (κ + 1)2(κ4 + κ3 + κ2 + κ + 1) κ + 1 1 [720, 697, 3] [[720, 674, 3]]7

63 56 98 (κ + 3)2(κ3 + 3) (κ + 1)2(κ2 + 3κ + 1) κ + 1 1 (κ + 1)8(κ + 6) κ + 1 1 [819, 789, 3] [[819, 759, 3]]7
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7. Conclusions

In this work, cyclic codes over FqPQ are introduced, where P =
Fq [v]

〈v3−α2
2v〉

and Q =

Fq [u,v]
〈u2−α2

1,v3−α2
2v〉

are nonchain finite rings and αi are in Fq/{0} for i ∈ {1, 2}, q = pm with

m ≥ 1 a positive integer and p is an odd prime. We reviewed some characteristics of
FqPQ-cyclic codes and defined a Gray map over FqPQ. As an application, we constructed
quantum error-correcting (QEC) codes using FqPQ-cyclic codes. This analysis can be
applied to the product of finite rings in general.
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