
Eur. Phys. J. C          (2024) 84:971 
https://doi.org/10.1140/epjc/s10052-024-13342-z

Regular Article - Theoretical Physics

The lensing effect of quantum-corrected black hole and parameter
constraints from EHT observations

Lai Zhao, Meirong Tang, Zhaoyi Xua

College of Physics, Guizhou University, Guiyang 550025, China

Received: 30 July 2024 / Accepted: 4 September 2024
© The Author(s) 2024

Abstract The quantum-corrected black hole model demon-
strates significant potential in the study of gravitational lens-
ing effects. By incorporating quantum effects, this model
addresses the singularity problem in classical black holes. In
this paper, we investigate the impact of the quantum correc-
tion parameter on the lensing effect based on the quantum-
corrected black hole model. Using the black holes M87∗
and Sgr A∗ as our subjects, we explore the influence of the
quantum correction parameter on angular position, Einstein
ring, and time delay. Additionally, we use data from the
Event Horizon Telescope observations of black hole shadows
to constrain the quantum correction parameter. Our results
indicate that the quantum correction parameter significantly
affects the lensing coefficients ā and b̄, as well as the Einstein
ring. The position θ∞ and brightness ratio S of the relativis-
tic image exhibit significant changes,with deviations on the
order of magnitude of ∼ 1µas and ∼ 0.01µas, respectively.
The impact of the quantum correction parameter on the time
delay �T21 is particularly significant in the M87∗ black hole,
with deviations reaching up to several tens of hours. Using
observational data from the Event Horizon Telescope(EHT)
of black hole shadows to constrain the quantum correction
parameter, the constraint range under the M87∗ black hole is
0 ≤ α

M2 ≤ 1.4087 and the constraint range under the Sgr A∗
black hole is 0.9713 ≤ α

M2 ≤ 1.6715. Although the current
resolution of the EHT limits the observation of subtle differ-
ences, future high-resolution telescopes are expected to fur-
ther distinguish between the quantum-corrected black hole
and the Schwarzschild black hole, providing new avenues for
exploring quantum gravitational effects.

a e-mail: zyxu@gzu.edu.cn (corresponding author)

1 Introduction

General relativity(GR) theoretically predicts the existence of
black holes. In 2015–2016, LIGO’s first detection of gravita-
tional waves from the merger of binary black holes provided
the first direct evidence of black holes in the universe, offering
solid observational support for general relativity [1]. More-
over, GR has been extensively validated in other areas, such
as through a series of tests in cosmology and pulsars [2–4], as
well as through observations by the EHT [5,6]. However, GR
also has its limitations, particularly under certain conditions
of matter and energy, where gravitational collapse inevitably
leads to the formation of spacetime singularities. This phe-
nomenon is encapsulated in the famous singularity theorems
proposed by Hawking and Penrose [7,8]. Near these singular-
ities, it is widely recognized that all physical measurements
become divergent. To address these “singularities,” Penrose
proposed the cosmic censorship conjecture. Many scholars
have tested this conjecture, as evidenced by numerous stud-
ies [9–16]. However, some researchers argue that consider-
ing quantum effects could avoid singularities [17]. Within
this theoretical framework, loop quantum gravity stands out
as one of the primary candidates.

Loop quantum gravity(LQG) is a highly regarded quan-
tum gravity theory, characterized by its background inde-
pendence and non-perturbative nature [18–21]. As a result,
it has garnered significant attention and has been extensively
studied [19,21–23]. In response to the problem in GR where
gravitational collapse inevitably leads to the formation of
spacetime singularities, research in LQG theory is expected
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to solve this issue. For example, in loop quantum cosmology,
many studies have successfully avoided these singularities,
specifically referencing [17,24–31]. In the context of quan-
tum cosmology, many black hole solutions have been devel-
oped [32–35]. Recently, in the study of spherically symmetric
matter collapse, scholars Lewandowski, Ma, and Yang suc-
cessfully derived a quantum corrected-black hole (QCBH)
model in LQG theory [36]. This model is a modification of
the Schwarzschild black hole (SBH) and also resolves the sin-
gularity problem of matter collapse. This is because, when
the density of the collapsing matter reaches the Planck scale,
the collapse process does not continue but instead halts and
enters a bounce expansion phase [36]. Some scholars have
studied the properties of QCBH, such as the shadow, photon
ring, and quasinormal modes [18,37–39]. Additionally, other
aspects of QCBH have been explored in the literature [40–
42]. These studies have investigated different characteristics
of QCBH, and further exploration of the lensing effects of
QCBH would be an interesting research direction.

Gravitational lensing, used as an astronomical observation
tool, occurs when massive objects such as galaxies or black
holes distort the surrounding spacetime, causing the path of
light to bend. This phenomenon was first confirmed through
the deflection of sunlight observed by Eddington and others
during the 1919 solar eclipse [43]. This phenomenon was
later further theorized and proposed for astronomical obser-
vation applications by researchers such as Refsdal and Liebes
[44,45]. Subsequently, the application of gravitational lens-
ing has extended to black hole research, providing a novel
means of integrating theoretical analysis with astronomical
observational data. Regarding strong gravitational lensing,
Virbhadra et al. were the first to derive the lens equation for a
SBH in the strong-field limit through numerical analysis [46].
In 2001, Bozza et al. derived the theoretical lensing formula
for SBH in the strong-field limit and subsequently extended
it to general static spherically symmetric spacetimes the fol-
lowing year [47,48]. Finally, this method was refined and
extended to general asymptotically flat spacetimes [49] and
axially symmetric spacetimes [50–57]. Based on the method
proposed by Bozza, this method has been applied to Reissner-
Nordström black hole and braneworld black hole [58–61].
Additionally, corresponding studies have been conducted on
black holes in other spacetime backgrounds [62–71].

In fact, strong gravitational lensing, as an essential tool
for studying black holes and cosmology, has been exten-
sively researched and applied in cosmology, astronomy, and
physics [61]. Particularly, the breakthroughs made by the
EHT have opened the door to directly observing strong grav-
itational fields [6,72], providing an unprecedented perspec-
tive for studying astronomical objects such as black holes.
This achievement has made the strong gravitational lensing
effect a research hotspot because it allows direct observa-
tion of celestial bodies in strong gravitational environments,

reveals the characteristics of black holes under different grav-
itational theories, and enables comparison with the predic-
tions of GR [66]. Therefore, exploring the impact of quan-
tum correction parameter on the lensing effect in a QCBH
model can further our understanding of quantum effects.
In LQG theory, researchers Lewandowski, Ma, and Yang
have recently proposed an innovative QCBH model (quan-
tum corrected-black hole) [36]. This black hole model pro-
vides a new theoretical framework for studying gravitational
lensing effects, particularly in exploring the impact of quan-
tum correction parameter on the lensing effect.

The structure of this paper is as follows: In Sect. 2, we pri-
marily review QCBH. In Sect. 3,we use the method proposed
by Bozza et al. to handle the deflection angle of gravitational
lensing in the strong-field limit. We calculate the deflection
angle and the corresponding deflection angle coefficients
(ā and b̄) in QCBH, analyzing the impact of the quantum
correction coefficient α on these deflection angles and lens-
ing coefficients. In Sect. 4, we focus on supermassive black
holes (M87∗ and Sgr A∗) to analyze lensing observations,
Einstein rings, and time delays. Additionally, we constrain
the quantum correction parameter using the EHT observa-
tions of the shadows of supermassive black holes M87∗ and
Sgr A∗. The final section of the paper provides a summary
and prospect. Throughout the entire paper, we use natural
units, i.e., c = h̄ = G = 1.

2 Quantum-corrected black hole

Regarding the QCBH derived by Lewandowski, Ma, and
Yang [36], its metric is as follows:

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2θdφ2), (1)

where

f (r) = 1 − 2M

r
+ αM2

r4 . (2)

Here, α = 16
√

3γ 3�2
p is the quantum correction parame-

ter, �2
p = 1, and Mrepresents the mass of the QCBH. It is

worth noting that when the quantum correction parameter
α vanishes (α = 0), the QCBH degenerates into the SBH
( f (r) = 1 − 2M

r ). Analyzing the metric (2), it is easy to
see that lim

x→∞ f (r) → 1, indicating that the spacetime is

asymptotically flat. For convenience in discussing gravita-
tional lensing, the line element (1) can be rewritten using
dimensionless parameter transformations as:

ds̃2=−A(x)dT 2+
(

1

B(x)

)
dx2+C(x)

(
dθ2 + sin2 θdφ2

)
,

(3)
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where

A(x) = 1

B(x)
= 1 − 1

x
+ α̃

16x4 , (4)

and

C(x) = x2. (5)

The dimensionless parameters are defined as:

r = 2Mx, t = 2MT, α = α̃M2. (6)

The analytical expression for the event horizon of the black
hole can be obtained from the condition grr = 0, that is,

A(x) = 1− 1
x
+ α̃

16x4
= 0. (7)

Clearly, when the quantum correction parameter takes dif-
ferent values, the number of roots can be zero, one, or two,
corresponding physically to the non-existence of a black hole
event horizon, the existence of one event horizon, and the
existence of two event horizons, respectively. In this article,
the primary discussion is on the case where an event horizon
exists. Therefore, the quantum correction parameter is con-
strained within the range 27

16 ≥ α̃ ≥ 0, which aligns with the
discussion of black hole existence (at least one event hori-
zon).

As shown in Fig. 1, when the quantum correction param-
eter α̃ gradually increases, the number of event horizons
also changes significantly. This indicates that the quantum
correction parameter has a significant impact on the proper-
ties of QCBH. When the quantum correction parameter
increases to a value exceeding the critical threshold, A(x)
has no real roots, which physically means that there is no
black hole in this spacetime. By analyzing Fig. 1, it is evi-
dent that when the quantum correction parameter is absent
(α̃ = 0), metric (4) represents a standard SBH. It is clear that
the event horizon radius of the QCBH is smaller than that of
the SBH (the black dashed line in the figure represents the
SBH).

3 Strong gravitational lensing effect

In this section, we use the strong field limit method by V.
Bozza et al. to calculate the deflection angle near the unstable
photon sphere [48]. This method is an extension of the work
presented in [47] and provides a general approach for extend-
ing the strong field limit to arbitrary static spherically sym-
metric spacetimes. In the second section, we analyzed QCBH
and found that it is asymptotically flat, thus this method is
applicable in the spacetime of QCBH. In QCBH, considering

Fig. 1 Different quantum correction parameters affect the existence of
the event horizon of QCBH, with the black dashed line representing the
event horizon of a SBH

it is static and spherically symmetric, for the convenience of
analysis, photons can be restricted to the equatorial plane,
i.e.,θ = π

2 . In this case, metric (3) becomes

ds̃2 = −A(x)dT 2 + 1

B(x)
dx2 + C(x)dφ2. (8)

In stable and spherically symmetric spacetime structures,
the four-momentum of photons along directions that pre-
serve time and spatial symmetries (Killing vector fields) is
conserved. Therefore, the energy E and angular momen-
tum L of a photon are related to the Killing vector fields
ξ

μ
t and ξ

μ
φ , which are associated with time translation sym-

metry and axial rotational symmetry, respectively. That is,
the energy of the photon is defined as E = −pμξ

μ
t , and

the angular momentum of the photon is defined as L =
pμξ

μ
φ , where pμ are the components of the photon’s four-

momentum.Therefore, we obtain

dφ

dλ
= L

C(x)
, (9)

dt

dλ
= − E

A(x)
. (10)

Here, λ is an affine parameter. We are primarily concerned
with the deflection of light rays as they approach the sur-
face of the photon sphere. During this process, the geodesic
motion of the light rays satisfies the null geodesic condition,
i.e., ds̃2 = 0. Combining the metric (8) with Eqs. (9) and
(10), we get

−A(x)
E2

A(x)2 + 1

A(x)
(
dx

dλ
)
2

+ C(x)
L2

C(x)2 = 0. (11)
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Rearranging the above equation, we obtain

(
dx

dλ

)2

= E2 − L2A(x)

C(x)
. (12)

The path of a photon moving around a black hole can be
described using an effective potential [73–76]. The radial
effective potential can be given by the following expression

Vef f (x) = L2A(x)

C(x)
= L2

x2

(
1 − 1

x
+ α̃

16x4

)
. (13)

According to the radial effective potential, for light rays
coming from infinity and incident on the black hole, when
the light rays reach the vicinity of the black hole, due to
the presence of the effective potential, the light rays can be
deflected at a specific radius x0 (this distance is the closest
approach of the photon to the black hole). At this position,
the photon will not fall into the black hole but will escape
from the black hole and symmetrically return to infinity to be
observed by an observer. These orbital radii can be derived
from the expression of the effective potential, mathematically
described as

dVef f (x)

dx
= 0 photon sphere, (14)

dVef f (x)

dx
= 0 and

d2Vef f (x)

dx2 < 0

unstable photon sphere, (15)

dVef f (x)

dx
= 0 and

d2Vef f (x)

dx2 > 0

stable photon sphere. (16)

The solutions of the above equation correspond to the radii
of stable photon spheres or unstable photon spheres. Obvi-
ously, without loss of generality, we are more interested in the
unstable photon sphere and, on this basis, study the behavior
of light deflection in the strong field limit. Therefore, when
considering only the orbital radius of the unstable photon
sphere, according to Eq. (15), we obtain

A(x)
′

A(x)
= C(x)

′

C(x)
. (17)

Substituting Eqs. (4) and (5) into the above equation, we
obtain

16x4 − 24x3 + 3α̃ = 0. (18)

The roots of Eq. (18) represent the radius of the photon
sphere. Obviously, since Eq. (18) is a quartic equation, there
will be two roots regardless of the value of the quantum cor-
rection parameter. However, carefully analyzing the other

Fig. 2 The trend of the effective potential graph. From the graph, it can
be intuitively seen that there exist two photon spheres. The one with the
smaller radial distance represents the stable photon sphere, while the
one with the larger radial distance represents the unstable photon sphere

condition of Eq. (15), it is evident that the radius of the unsta-
ble photon sphere corresponds to the largest root. This is
because at the largest root, the motion of the photon satisfies
condition (15). This can be visually observed from the effec-
tive potential (as shown in Fig. 2). According to the trend of
the effective potential, the unstable photon sphere is located
at a larger radial distance. Therefore, for Eq. (18), taking
the largest root as the unstable orbital radius of the photon
x = xm is most appropriate. In the following discussion, xm
will represent only the orbital radius of the unstable photon
sphere.

When a light ray travels from infinity to the vicinity of a
black hole, it carries a certain impact parameter b. During
this process, the light ray approaches the black hole at a min-
imum distance x0 and is then symmetrically deflected back
to infinity. The relationship between the impact parameter
b and the minimum distance x0 the light ray reaches near
the black hole can be obtained from Vef f (x) = E2 (where
the radial motion is zero). Combining Eq. (13), the impact
parameter can be expressed as:

b = L

E
=

√
C(x0)

A(x0)
= 4x3

√
α̃ + 16x4 − 16x3

. (19)

For the radius xm of the unstable photon sphere, choosing
x0 = xm , the corresponding impact parameter is bm . In the
strong field limit, the deflection angle of light can be given
by the definition in the literature [46],that is,

αD(x0) = I (x0) − π, (20)
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where

I (x0)=2
∫ ∞

x0

dφ

dx
=2

∫ ∞

x0

1
√
A(x)C(x)

√
A(x0)C(x)
C(x0)A(x) − 1

dx .

(21)

The detailed derivation of the above expression can be found
in the literature [77].

To calculate the above expression, we use the approxima-
tion method from the literature [48], expanding the deflection
angle near the photon sphere. For this purpose, a new variable
is redefined [49,54,78,79]:

z = 1 − x0

x
. (22)

Using this variable, the integral (21) can be rewritten as

I (x0) =
∫ 1

0
R(z, x0) f (z, x0)dz, (23)

where R(z, x0) can be expressed as

R(z, x0) = 2x0
√
C(x0)

C(x)(1 − z)2 , (24)

and f (z, x0) can be expressed as

f (z, x0) = 1√
A(x0) − A(x)C(x0)

C(x)

. (25)

It is easy to see that the integrals for all values of the function
R(z, x0) are regular, but the function f (z, x0) diverges at z =
0. Therefore, to avoid the divergence at z = 0, the function
f (z, x0) can be expanded in a series at z = 0, retaining the
first and second-order approximations as

f (z, x0) ≈ f0(z, x0) = 1√
γ1(x0)z + γ2(x0)z2

, (26)

where the parameters γ can be read as

γ1 (x0) = x0

C (x0)

[
C

′
(x0) A (x0) − A

′
(x0)C (x0)

]
, (27)

and

γ2(x0) = 1

2

[2x2
0C

′
(x0)

(
A

′
(x0)C(x0) − C

′
(x0)A(x0)

)
C(x))2

+ x0

C (x0)
(C

′′
(x0) A (x0) − A

′′
(x0)C (x0))

]
.

(28)

According to the method used in the reference [48], the inte-
gral can be divided into two parts: one part is divergent, and
the other part is regular. Therefore, it can be written as

I (x0) = ID(x0) + IR(x0), (29)

the divergent part ID(x0) is expressed as

ID(x0) =
∫ 1

0
R(0, xm) f0((z, x0)dz, (30)

the regular part IR(x0) is expressed as

IR(x0) =
∫ 1

0
(R(z, x0) f ((z, x0) − R(0, xm) f0((z, x0)) dz.

(31)

ID(x0) represents the regular part after subtracting the diver-
gent part of the integral. Therefore, solve the above two inte-
grals (30) and (31). Near xm the deflection angle of light in
the strong field limit can be expressed as [48,63]

αD(b) = −ālog

(
b

bm
− 1

)
+ b̄ + O(b − bm). (32)

The corresponding coefficients can be written as

ā = R(0, xm)

2
√

γ2 (xm)
, (33)

b̄ = −π + IR(xm) + ālog

(
2γ2 (xm)

G(xm)

)
. (34)

Here, we numerically solve to characterize the relation-
ship between the strong gravitational lensing coefficients and
the quantum correction parameter. As shown in Fig. 3, it is
evident that the deflection coefficient ā gradually increases
with the increase of the quantum correction parameter, while
the deflection coefficient b̄ gradually decreases with the
decrease of the quantum correction parameter α̃. It is worth
mentioning that when the quantum correction parameter van-
ishes (α̃ = 0), the QCBH becomes a SBH. Our results match
the values for the SBH [48], i.e., ā = 1, b̄ = − 0.40023 (see
Table 1). In Fig. 4, under different quantum correction param-
eters, the deflection angle diverges at certain values (b = bm).
As the quantum correction parameter increases, the corre-
sponding divergent impact parameter gradually decreases,
and the deflection angle also significantly decreases (see the
left panel of Fig. 4). Naturally, for the same impact param-
eter, the deflection angle of the SBH is significantly greater
than that of the QCBH and decreases with the increase of the
quantum correction parameter (see the right panel of Fig. 4).
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Fig. 3 Left image: the variation of the deflection coefficient ā with the quantum correction parameter α̃ in a strong field. Right image: The variation
of the deflection angle coefficient b̄ with the quantum correction parameter α̃

Table 1 Values of the lensing coefficient under different quantum cor-
rection parameters and the angular distance of the Einstein ring for the
black holes M87∗ and Sgr A∗ are shown. In the table, the expression

δ(X) is defined as δ(X) = X (QCBH)−X (SBH). This means that δ(X)

represents the deviation of the Einstein ring between the QCBH and the
SBH

Lensing coefficients M87∗ SgrA* δα̃ M87∗ SgrA*

α̃ ā b̄ θ E
1 (µas) θ E

1 (µas) δθ E
1 (µas) δθ E

1 (µas)

0 1.0000 − 0.4002 20.1293 25.5345 0

0.3 1.0179 − 0.4195 20.0172 25.3922 0.3 − 0.1121 − 0.1423

0.6 1.0389 − 0.4447 19.7741 25.2424 0.6 − 0.2302 − 0.2921

0.9 1.0639 − 0.4782 19.7741 25.0839 0.9 − 0.3552 − 0.4506

1.2 1.0945 − 0.5244 19.6412 24.9153 1.2 − 0.4881 − 0.6192

1.5 1.1335 − 0.5913 19.4986 24.7344 1.5 − 0.6307 − 0.8001

1.6875 1.1642 − 0.6500 19.4037 24.6140 1.6875 − 0.7256 − 0.9205

Fig. 4 Left image: the variation of the deflection angle with the impact
parameter under different quantum correction parameters. The black
dashed line represents the deflection angle for the SBH. Right image:

the variation of the deflection angle with the quantum correction param-
eter at the impact parameter b = 2.62
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4 Gravitational lensing effects of supermassive black
holes and constraints from the EHT

4.1 Characteristic observables in strong lensing effect

In Sect. 3, the deflection angle for strong gravitational lensing
was calculated. Therefore, the position of the image can be
easily determined using the lens equation here. According to
the definition of the lens equation in the literature [46,47,80],
the lens equation can be easily obtained as

β = θ − DLS

DOS
�αn . (35)

Here, DLS is the distance between the lens and the light
source, and DOS is the distance between the observer and
the light source (DOS = DOL + DLS), β and θ represent
the angular positions of the source and image relative to the
optical axis, and �αn = α(θ) − 2nπ denotes the deflection
of light after orbiting the black hole n times. To approximate
the deflection �αn , we need to find the angle θ0

n , which is
obtained by solving α(θ) = 2nπ . Our adopted solution is
given by the following equations

θ0
n = bm(1 + en)

DOL
, (36)

where

en = exp

(
b̄ − 2nπ

ā

)
. (37)

Next, by combining the deflection angle formula (36) in
the strong field limit and the gravitational lens equation (35),
while neglecting higher-order terms, we can approximate the
position of the nth image [48]

θn = θ0
n + bmen(β − θ0

n )DOS

āDLSDOL
. (38)

From the above equation, it can be seen that when β − θ0
n =

0, the image position coincides with the source position.
Clearly, at this moment, the image position is θn = θ0

n , which
means that the position of the n-th image has not been cor-
rected (indicating that the source and the image are on the
same side). To obtain the position of the image on the oppo-
site side of the source, an extension is made by replacing β

with −β. This way, the position of the n-th image on the
opposite side of the source is obtained. It is worth noting that
when the light, the lens (black hole), and the observer are
aligned, i.e., β = 0, solving Eq. (38) can yield

θ E
n =

(
1 − bmenDOS

āDLSDOL

)
θ0
n . (39)

This is known as the Einstein ring [81]. For the relativistic
image with n = 1 (θ E

1 ) and when the black hole is located
between the observer and the source (with DOS = DLS =
2DOL ). Considering the case where DOL is much larger than
the impact parameter bm (DOL � bm), and combining with
Eq. (36), we obtain

θ E
1 = (1 + e1)bm

DOL
, (40)

here

e1 = exp

(
b̄ − 2π

ā

)
. (41)

Apart from the position of the source image, its magnifica-
tion is also an important piece of information. Therefore, the
magnification of the n-th image can be defined as [48,77,82]

μn =
(

β

θ

dβ

dθ

)−1
∣∣∣∣∣
θ0
n

= bm2(1 + en)DOS

āβDLSDOL
2 en . (42)

From the above equation, it is clear that the magnification
factor decreases with the increase in image layer number n
and decays exponentially. When the parameter β approaches
zero, the magnification factor reaches its maximum, making
the relativistic images the brightest and thus the easiest to
observe. To simplify observations, typically only two layers
of images are analyzed: the outermost image θ1 and all inner
images considered as a whole θ∞. Through this simplifica-
tion, some interesting observational results can be obtained.

The position of all inner images considered as a whole,
denoted as θ∞, is

θ∞ = bm
DOL

, (43)

the separation s between the first image and the other images
is

s = θ1 − θ∞ = θ∞exp

(
b̄ − 2π

ā

)
, (44)

the flux ratio of the brightness between the first image and
the other images is

r = μ1∑∞
n=2 μn

= exp

(
2π

ā

)
,

rmag ≈ 2.5log(r) = 5π

āln(10)
. (45)

From Eq. (45), it can be seen that, in this case, the flux
ratio is independent of the distance between the lens and
the observer.
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Using the above Eqs. (43)–(45), as long as the lensing
coefficients ā and b̄, as well as the critical impact parame-
ter bm , can be determined, the observational values of the
QCBH under strong gravitational lensing can be theoreti-
cally calculated. Conversely, astronomical observations can
enhance our understanding of QCBH properties.

Of course, in the study of strong gravitational lensing
effects, time delay is also an important observable. Time
delay mainly reflects the time difference experienced by pho-
tons traveling along different paths around a black hole (con-
sidering that light rays near the photon sphere may orbit the
black hole several times). Since the path lengths and travel
times of these light rays are different, this results in time
delays between the formed relativistic images. This phe-
nomenon of time delay can be obtained through astronomical
observations and has been widely studied in the field of astro-
physics. For example, it can be used to estimate the Hubble
constant parameter [83–87].

For relativistic images located on the same side of the
lens (black hole), the time delay can be obtained from the
literature [63]. In this case, the time delay between relativistic
images can be written as

�Tn,l = 2π(n − l)

(
ã

ā

)
+ 2

√
Ambm
Bm

√
bm

×
(
e− b̄−2nπ

2ā − e− b̄−2lπ
2ā

)
. (46)

Here, the first term reflects the time delay caused by photons
orbiting the black hole different numbers of times. The sec-
ond term is mainly a correction term for the time delay (due
to the time dilation effect of light in the gravitational field).
In exploring the impact of time delay, it is evident that the
first term dominates. Since the QCBH discussed in this paper
is static and spherically symmetric, the above equation can
be rewritten as

�Tn,l ≈ 2π(n − l)
ã

ā
= 2π(n − l)um = 2π(n − l)θ∞DOL .

(47)

Based on Eq. (47), the time delay between two relativistic
images can be calculated precisely. If future observational
technology can accurately distinguish these images, precise
time delay data can be obtained in astrophysical observations.
This is crucial for a deeper understanding of black holes
and their quantum effects. Additionally, by further analyz-
ing multiple relativistic images, the properties of the QCBH
can be better understood. With the development of high-
resolution astronomical observation technology, achieving
such precision is only a matter of time.

4.2 Lensing effects of the supermassive black holes M87*
and SgrA*

To evaluate several interesting observational values calcu-
lated in the previous section, in this section, the QCBH will
be considered as the supermassive black holes M87∗ and
Sgr A∗. This will be used to study these observable values,
and the simulated data will be compared with those of the
SBH (when the quantum correction parameter vanishes, the
QCBH degenerates into a SBH).

According to the latest astronomical observational data,
we know that the mass of M87* is (6.5±0.7)×109M�, and
its distance from Earth is (16.8 ± 0.8) Mpc [88]. The mass
of SgrA* is 4+1.1

−0.6 × 106M�, and its distance from Earth is
8.15±0.15 kpc [89,90]. Through these observational data, it
is easy to see how the quantum correction parameter α̃ affects
the SBH, and further explore the properties of the quantum
correction parameter.

Considering the QCBH as representative of the supermas-
sive black holes M87∗ and Sgr A∗, and studying their Ein-
stein rings accordingly. As shown in Fig. 5 and Table 1, the
quantum correction parameter does not significantly affect
the size of the Einstein ring. The black dashed line in the
figure represents the situation where the quantum correc-
tion parameter is absent, at which point the QCBH degen-
erates into SBH (α̃ = 0). For both the M87∗ black hole
and the Sgr A∗ black hole, the effect of the quantum cor-
rection parameter on the Einstein ring is to reduce its size
(see Fig. 5a, b). In Fig. 5c, it is evident that the size of the
Einstein ring in the context of the Sgr A∗ black hole is sig-
nificantly larger than that in the context of the M87∗ black
hole. This phenomenon persists even when considering the
quantum correction parameter and does not disappear. This
can be well explained physically. Firstly, the effect of the
quantum correction parameter is not very sensitive, so its
presence does not cause significant changes in the size of
the Einstein ring. Secondly, astronomical observation data
show that the Sgr A∗ black hole is closer to Earth, making its
Einstein ring appear larger from our perspective, while the
Einstein ring of the M87∗ black hole appears smaller due to
its greater distance.

Furthermore, in the studies using M87∗ and Sgr A∗ black
holes as backgrounds, for the M87∗ black hole, the quantum
correction parameter causes the deviation in the Einstein ring
between the QCBH and the SBH to be below 0.7256µas. For
the Sgr A∗ black hole, this deviation is below 0.9205µas
(see Table 1). Clearly, with future upgrades in observational
equipment, these differences will be detectable. This is cru-
cial for further understanding the properties of the quantum
correction parameter.

Using the black holes M87∗ and Sgr A∗ as the research
background, simulate the observed values from the previ-
ous section (expressions (43)–(45)) respectively. As shown
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Fig. 5 For n = 1, considering the QCBH as the supermassive M87∗
and Sgr A∗ black holes’ Einstein rings. Figure a represents the Einstein
ring in the context of the M87∗ black hole, Figure b represents the Ein-
stein ring in the context of the Sgr A∗ black hole, and Figure c shows the
Einstein rings for both M87∗ and Sgr A∗ black holes. The black dashed

line in the figures represents the case where the QCBH degenerates into
a SBH. The Einstein ring outside the red dashed line corresponds to the
Sgr A∗ black hole, while the Einstein ring inside the red dashed line
corresponds to the M87∗ black hole

in Fig. 6 and Table 2, due to the presence of the quan-
tum correction parameter, the image position θ∞ decreases
as the quantum correction parameter increases. The image
interval S increases with the quantum correction parame-
ter, and the brightness ratio rmag between relativistic images
decreases as the quantum correction parameter increases. It
is worth noting that, in the black holes M87∗ and Sgr A∗,
the range of the angular position of relativistic images for
the former, as the quantum correction parameter changes, is
20.1042µas ≥ θ∞(M87∗) ≥ 19.3535µas, and for the lat-
ter, the range is 25.5026µas ≥ θ∞(Sgr A∗) ≥ 24.5504µas.
These ranges respectively match the observational ranges of
the supermassive black holes M87∗ and Sgr A∗ by the EHT
[5,6]. For the deviation between the QCBH and the SBH
(δ(X) = X (QCBH) − X (SBH)), using the M87∗ black
hole to simulate the QCBH as the background, the deviation
in the angular position reaches |δ(θ∞)| = 0.7507µas and the
deviation in the image interval reaches |δ(S)| = 0.025µas
(see Table 3). Using the Sgr A∗ black hole to simulate the
QCBH as the background, the deviation in the angular posi-
tion reaches |δ(θ∞)| = 0.9522µas and the deviation in the
image interval reaches |δ(S)| = 0.0317µas (see Table 3).
These ranges all match the observational ranges of super-
massive black holes by the EHT. However, due to the resolu-
tion limitations of the EHT, which is approximately 20µas
[91], these differences cannot be accurately resolved with
existing equipment. Nevertheless, the next-generation EHT
is expected to distinguish these differences. Once the two rel-
ativistic images can be resolved, it will be possible to differ-
entiate between the SBH and the QCBH, allowing for further
investigation into the properties of QCBH.

When considering QCBH as the supermassive M87∗ and
Sgr A∗ black holes, for the first and second relativistic images
on the same side (n = 2 and l = 1), the time delay for
the former can be as high as 293.9829 hours, with the time

delay deviation between the QCBH and the SBH reaching
up to 10.9766 hours. Such a time difference is sufficient to
be observed by astronomical means (see Tables 2, 3). For the
latter, the time delay reaches 10.8548 minutes, with a maxi-
mum relative deviation of 0.4393 minutes, which is evidently
too short to be observed (see Tables 2, 3). Overall, it is evi-
dent that in order to further explore the properties of QCBH,
it is indeed possible to investigate the properties of QCBH
in the context of the supermassive M87∗ black hole. This
is because the time delay in its background can reach up to
several hundred hours. However, this requires observational
equipment capable of accurately resolving the two relativis-
tic images. With the continuous upgrading of observational
equipment, meeting such requirements is only a matter of
time.

4.3 Constraints on quantum correction parameter from
EHT observations of M87∗ and Sgr A∗ black hole
shadows

As discussed in Sect. 3, the radius of the photon sphere
depends on the quantum correction parameters, meaning dif-
ferent parameters result in different photon rings. This pro-
vides an opportunity to constrain the quantum correction
parameters using the EHT observations of the shadows of
the supermassive black holes M87∗ and Sgr A∗. In this sec-
tion, we use the EHT data from the M87∗ and Sgr A∗ black
hole shadows to constrain the range of the quantum correc-
tion parameter.

For the supermassive black hole M87∗, in 2019, the EHT
collaboration obtained the first-ever image of the supermas-
sive black hole M87∗. Their data indicated that the diam-
eter of the black hole’s ring structure (i.e., the shadow) is

sh = 2θ = 42 ± 3µas [5,88]. Therefore, the next step is
to apply the QCBH to the M87∗ black hole and constrain the
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Fig. 6 The variation of θ∞, S, and rmag with the change in the quantum correction parameter in the context of the M87∗ and Sgr A∗ black holes.
The left column represents the M87∗ black hole, and the right column represents the Sgr A∗ black hole
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Table 2 Using the supermassive black holes M87∗ and Sgr A∗ as the
background, we analyze the observational values under different quan-
tum correction parameters. Specifically, we focus on the time delay

�T21 between the second relativistic image and the first relativistic
image on the same side

M87∗ Sgr A∗

α̃ θ∞ (µas) S (µas) rmag �T21(h) θ∞ (µas) S (µas) rmag �T21(min)

0 20.1042 0.0252 6.8219 293.9829 25.5026 0.0319 6.8219 10.8548

0.3 19.9895 0.0276 6.7017 292.3069 25.3572 0.0350 6.7017 10.7929

0.6 19.8685 0.0306 6.5666 290.5365 25.2036 0.0388 6.5666 10.7259

0.9 19.7398 0.0343 6.4124 288.6555 25.0404 0.0435 6.4124 10.6580

1.2 19.6022 0.0390 6.2329 286.6423 24.8658 0.0495 6.2329 10.5837

1.5 19.4534 0.0452 6.0185 284.4669 24.6771 0.0573 6.0185 10.5034

1.6875 19.3535 0.0502 5.8599 283.0063 24.5504 0.0636 5.8599 10.4495

1.8 19.2905 0.0537 5.7527 282.0854 24.4705 0.0681 5.7527 10.4155

Table 3 The deviation between the QCBH and the SBH is analyzed under different quantum correction parameters. When the quantum correction
parameter α̃ = 0, the QCBH degenerates into a SBH. The deviation is uniformly expressed as δ(X) = X (QCBH) − X (SBH)

M87∗ Sgr A∗

δα̃ δθ∞(µas) δS (µas) δrmag δ�T21(h) δθ∞ (µas) δS (µas) δrmag δ�T21(min)

0 0 0 0 0 0 0 0 0

0.3 − 0.1147 0.0024 − 0.1202 − 1.6760 − 0.1454 0.0031 − 0.1202 − 0.0619

0.6 − 0.2357 0.0054 − 0.2553 − 3.4464 − 0.2990 0.0069 − 0.2553 − 0.1289

0.9 − 0.3644 0.0091 − 0.4095 − 5.3274 − 0.4622 0.0116 − 0.4095 − 0.1968

1.2 − 0.502 0.0138 − 0.589 − 7.3406 − 0.6368 0.0176 − 0.5890 − 0.2711

1.5 − 0.6508 0.0200 − 0.8034 − 9.5160 − 0.8255 0.0254 − 0.8034 − 0.3514

1.6875 − 0.7507 0.02500 − 0.9620 − 10.9766 − 0.9522 0.0317 − 0.9620 − 0.4053

1.8 − 0.8137 0.0285 − 1.0692 − 11.8975 − 1.0321 0.0362 − 1.0692 − 0.4393

quantum correction parameters using the observational data
to ensure that the diameter of its ring structure falls within the
first confidence interval σ . As shown in Fig. 7, the confidence
interval for the Event Horizon Telescope’s observation of the
M87* black hole shadow is represented by the light red area,
while the blue area represents the constraint region of the
black hole event horizon. Clearly, the intersection of these
two regions indicates where the quantum correction parame-
ter is constrained, i.e., the constrained range. From the figure,
it is easy to see that the range of values for the quantum correc-
tion parameter, constrained by the black hole event horizon
and the EHT, is 0 ≤ α̃ ≤ 1.4087, which translates back to the
original parameter space as 0 ≤ α

M2 ≤ 1.4087. Within this
constraint, the QCBH always possesses event horizons and
does not exceed its limit (the limit for the existence of event
horizons is α̃ = 1.6875). This indicates that the QCBH can
well match the shadow characteristics of astrophysical black
holes, providing a basis for distinguishing QCBH from SBH
in the near future.

For the supermassive Sgr A∗ black hole, in 2022, the EHT
team conducted observations of the Sgr A∗ black hole at the
center of the Milky Way. In the literature [90], they obtained

the average shadow diameter of the supermassive Sgr A∗
black hole using three independent algorithms (eht-imaging,
SMILI, and DIFMAP), with 
sh ∈ (46.9, 50.0)µas and a
68% confidence interval of θsh ∈ (41.7, 55.6)µas. Clearly,
the quantum correction parameter is strongly constrained by
the average shadow diameter 
sh . As shown in Fig. 8, sim-
ilarly, the light red area represents the range of the Sgr A∗
black hole shadow observed by the EHT that falls within
the first confidence interval, while the blue area represents
the constraint range for the event horizon of the QCBH. The
intersection of these two areas indicates the constraint inter-
val for the quantum correction parameter imposed by the
EHT. From the figure, it is easy to see that the range of val-
ues for the quantum correction parameter is constrained to
0.9713 ≤ α̃ ≤ 1.6715, which translates back to the original
parameter space as 0.9713 ≤ α

M2 ≤ 1.6715. This means that
if the value of the quantum correction parameter falls within
this constrained range, the shadow of the QCBH will be con-
sistent with the shadow of the Sgr A∗ black hole observed by
the EHT.
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Fig. 7 Using the M87∗ black hole as the research background, the blue
dots represent the influence of the quantum correction parameter on the
shadow ring when using a QCBH to simulate the supermassive M87∗
black hole. Here, the shadow ring diameter 
sh is twice the angular
position θ∞. The red dots represent the values within the first confidence
interval for the M87∗ black hole shadow observed by the EHT. The blue
area indicates the range of quantum correction parameter values for the
existence of QCBH. The light red area represents the constraint range
imposed by the EHT. The red dashed line marks the maximum value
for the existence of an event horizon, and other corresponding dashed
lines denote boundary values. The unit of the shadow ring diameter is
µas

Fig. 8 Using the Sgr A∗ black hole as the research background, the
blue dots represent the influence of the quantum correction parameter
on the shadow ring when using a QCBH to simulate the supermassive
Sgr A∗ black hole. Here, the shadow ring diameter 
sh is twice the
angular position θ∞. The red dots represent the values within the first
confidence interval for the Sgr A∗ black hole shadow observed by the
EHT. The blue area indicates the range of quantum correction parameter
values for the existence of QCBH, which is the constrained region. The
light red area represents the constraint range imposed by the EHT. The
red dashed line marks the maximum value for the existence of an event
horizon, and other corresponding dashed lines denote boundary values.
The unit of the shadow ring diameter is µas

5 Discussion and conclusions

Gravitational lensing provides an important window for
exploring extreme celestial bodies and physical phenomena
in the universe. In recent years, LQG theory has become
a prominent area of research. The QCBH model introduces
quantum effects to modify the structure and behavior of black
holes beyond the framework of classical general relativity.

These modifications not only resolve the singularity prob-
lem in classical black hole models but also potentially offer
new predictions regarding the properties of event horizons,
the evolution of black holes, and their radiation characteris-
tics [36,92–95]. These quantum effects may lead to changes
in the horizon radius and the unstable photon sphere radius of
QCBH, thereby affecting their gravitational lensing effects.
This makes them an important avenue for exploring black
hole properties and quantum gravity effects.

Based on these considerations, we investigated the impact
of the quantum correction parameter on lensing coefficients
and assumed a QCBH as a candidate for the supermassive
black holes M87∗ and Sgr A∗. We explored the influence of
the quantum correction parameter α̃ on image positions and
the Einstein ring. Additionally, we used the EHT observa-
tions of the shadows of the supermassive black holes M87∗
and Sgr A∗ to constrain the value of the quantum correc-
tion parameter. Specifically, we studied how gravitational
lensing images under QCBH change with varying quantum
correction parameter α̃, including shifts in image positions,
changes in the Einstein ring radius, and the constraint range
of the quantum correction parameter. These findings will help
us better understand the manifestation of quantum effects in
actual astrophysical environments and provide guidance for
future observations. The specific results are as follows:

In the strong-field limit, the gravitational lensing deflec-
tion angle and the corresponding coefficients for QCBH were
calculated using the method of Bozza et al. Numerical com-
putations show that the lensing coefficient ā increases with
the quantum correction parameter α̃, while the deflection
angleαD and the lensing coefficient b̄ decrease as α̃ increases.
Furthermore, when the QCBH degenerates into a SBH, our
results are ā = 1 and b̄ = −0.40023, which are in complete
agreement with the SBH lensing coefficient values [48].

Using M87∗ and Sgr A∗ black holes as models for QCBH,
we study their Einstein rings, relativistic images, and same-
side time delays. The results indicate that the quantum cor-
rection parameter has a significant impact on the Einstein
rings (see Fig. 5 and Table 1). The deviation of the Ein-
stein ring for M87∗ is below 0.7256µas, and for Sgr A∗
it is below 0.9205µas (compared to the SBH). As the quan-
tum correction parameter increases, both the angular posi-
tion θ∞ of the relativistic images and the brightness ratio
rmag between the images decrease, while the image sep-
aration S increases. The angular position θ∞ of the rela-
tivistic images ranges from 20.1042µas to 19.3535µas for
M87∗, and from 25.5026µas to 24.5504µas for Sgr A∗ as
the quantum correction parameter varies. We also calculated
the deviation and time delay between the QCBH and the
SBH. For the M87∗ black hole, the deviation in the angular
position reaches |δ(θ∞)| = 0.7507µas, and the deviation in
the image separation reaches |δ(S)| = 0.025µas (see Table
3). The time delay can be as high as 293.9829 hours, with

123



Eur. Phys. J. C           (2024) 84:971 Page 13 of 15   971 

the deviation in time delay between the QCBH and the SBH
reaching 10.9766 hours, which is sufficient for astronomical
observation (see Tables 2, 3). In the case of the Sgr A∗ black
hole, simulating the QCBH, the deviation in the angular posi-
tion reaches |δ(θ∞)| = 0.9522µas, and the deviation in the
image separation reaches |δ(S)| = 0.0317µas (see Table
3). The time delay reaches 10.8548 minutes, with a relative
deviation of 0.4393 minutes, which is evidently too short for
observational purposes (see Tables 2, 3). In other words, these
ranges are consistent with the existing observational range of
the EHT for supermassive black holes. However, due to the
current resolution of the EHT being approximately 20µas,
the existing equipment cannot accurately distinguish these
differences. The next generation EHT is expected to resolve
this issue. Once we can distinguish two relativistic images,
we will be able to differentiate between the SBH and the
QCBH, thereby further deepening our understanding of the
properties of quantum correction parameter.

Based on the observational data from the EHT of the super-
massive black holes M87∗ and Sgr A∗, we can effectively
constrain the range of the quantum correction parameter. By
analyzing the observed range of the black hole shadow diam-
eter within the first confidence interval, the QCBH model
shows results that are highly consistent with the actual obser-
vational data. Specifically, with M87∗ as the study back-
ground, the quantum correction parameter is constrained
within the range 0 ≤ α

M2 ≤ 1.4087, which completely avoids
the scenario of no event horizon. In the case of Sgr A∗, the
quantum correction parameter is constrained within the range
0.9713 ≤ α

M2 ≤ 1.6715. These results indicate that the
QCBH model is not only theoretically reasonable but also
shows a high degree of agreement with actual observations,
providing a solid foundation and direction for future studies
on the differences between QCBH and classical black holes.

In conclusion, the QCBH is not merely a theoretical con-
struct but has the potential to become a viable candidate for
astrophysical black holes. This is because, on the one hand,
the QCBH exhibits a high degree of consistency with actual
astronomical observations. On the other hand, the QCBH
model avoids spacetime singularities, making it more aligned
with the conditions of the real universe. At the same time,
our numerical simulations also indicate that the QCBH has
reached the observational range of the current EHT (e.g.,
deviations in angular position on the order of ∼ 1µas, devi-
ations in brightness ratio on the order of ∼ 0.01µas, time
delay deviations of several tens of hours, and the black hole
shadow highly matching observational data). Unfortunately,
due to the resolution limits of current equipment, it is cur-
rently impossible to distinguish these differences. However,
achieving this level of precision is only a matter of time, and
the next generation of the EHT is expected to reach such
precision. Therefore, it is hoped that in the near future, we
will be able to accurately distinguish between two relativistic

images to explore the properties of QCBH and differentiate
them from SBH. Furthermore, if the rotational solution of
the QCBH model can be found, exploring the lensing effects
based on this will be very meaningful, marking a significant
direction for future research.
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