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Top Mass Analysis Method for Dilepton Channel

- M. Strovink
Univ. of Calif., Berkeley

October 13, 1993 at Indiana U.

e Motivation

Implementation

e Monte Carlo verification
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o Jet combmatorlcs_v' | g - 1906

e Result for DO Event 417
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Mass analysis of dilepton top candidates

Given a top mass m;, one needs 14 additional variables to spec-
ify an event of the form

p+p—t+t+ X
t—‘*W++bjetl
t— W™ + bieso

W+ —et +u,

These variables (vy + - -v14) may be chosen to be:

p.L(t?)
z,T

* )k * * *
Qty W+ W—:QeaQ/,L )

where the Q* are evaluated in the parent rest frames. z and
T are the momentum fractions of the partons in the p and p
which participate in producing the tf pair; they specify both
the mass and the longitudinal momentum of that pair.

For events of this type it is straightforward to write the LO
cross section differential in dvy - - - dvig.

There are also 14 experimental observables (o7 - - - 014), neglect-
ing jet masses. These may be chosen to be (rapidity) y, ¢, and
Inp, for each of the 4 leptons or jets, in addition to pj (¢%).
(The latter is deduced from transverse momentum balance in
the calorimeter.)

Given my, a 0C fit is possible.

29



0C fits
Consider the two neutrino momenta as unknowns.

Following Dalitz and Goldstein (PL B287, 225 (1992)), requir-
ing v, to combine with the e to form a W produces a paraboloid

in neutrino momentum space. Requiring the appropriate jet
and e to combine with the v, to form a ¢ produces an ellipsoid.

The two intersect in an ellipse, which is projected onto the
transverse plane. A similar ellipse is obtained for the muon

sector.

In DO we extend the Dalitz-Goldstein technique by using the
measured missing p1 to impose transverse momentum conser-
vation. We rotate one ellipse by 180°, displace the other by
the missing p.. and find the intersections (up to 4 solutions
are possible).

We include the effects of measurement error by smearing the
events and repeating the 0C fits. To gain speed and accuracy,
we bypass the analytic geometry and solve directly the quartic
equations which yield these intersections.

/O



- py(nuel)-py(nu)/2, -py(numu)+py(nu)/2

100

Neutrino transverse momenta for M(top)=156

= nu_el
- nu_el
* nu_mu

® nu_mu

S
¢
 J

SN

0

px(nuel)-px(nu)/2, -px(numu)+px(nu)/2

100
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nsoln = 2 ierr = 0
solution # 1
lepton # 1
ptop = 277.7685319002619 3.670244195243855 -164.3439313760620
133.1651562588139 _ '
tmc = 180.0000000000000 Wme = 80.22000000000006
lepton # : 2
ptop = 293.5449553706527 11.42975580475614 157.0439313760620
170.2210478282661
tme = 180.0000000000000 Wme = 80.22000000000005
solution # 2
lepton # 1
ptop = 275.1617582294765 77.58016162983438 -184.4308298227737
57.27635397185081
tmec = 180.0000000000000 Wmc = 80.22000000000002
lepton # 2
ptop = 348.9537088808154 -62.48016162983438 177.1308298227737
232.5716867348264

tmc = 180.0000000000000 Wmec =  80.22000000000001

o



Example of likelihood analysis

Consider a gedanken measurement. It is known that a parallel
beam of K%’s all decay to mm. The K° momenta are known
to be uniformly distributed between zero and some high value.
There is no background.

Our apparatus is able to measure only the angle cos @, relative
to the beam, of only one of the two 7’s.

Our experiment consists of only one such measurement.

What is the likelihood that the K® which decayed had momen-
tum K7

Kinematics: if 3(K°) > 8*(7 in KY rest frame), we expect a
Jacobian peak in cos@:

cot 8 = y(cot 8* + (B/B") csc 9*)
1 B cos@*

do*

sin? 6* * B* sin? 9*) |

=0 when 8 = (*/(— cos8*)

d cotf = —7(

At that peak (in d cos §*(K)/d cos8), cos 8 is a unique function
of K, and vice versa.

43



Method of analysis: Use Bayes’ th™:

P(K,,) P(cos8|Kn,)

P(K,,|cos8) = SV P(K,) P(cos6|Ky)

where K, is a particular beam momentum (increasing linearly
with m), and cos § denotes observation of the pion angle 6.

The denominator is obviously independent of m. Since we are
told that the a priori probability of any K, is independent of
m, so is the first term in the numerator. Then

P(Kn|cos8) < P(cos0|Kn,) -

For each K, in an array of possible values, we calculate the
“density of states” factor |

d(cos 0*(Kn,))
9(cos 0)

The resulting histogram is our likelihood distribution for K.

If cos @ is measured with error §, we smear it and average the
histograms that are obtained.

Note—‘ ﬁw.t 56;5 6>¥I Pmduces ﬂle. fdent’fcaé
o (o,

result ¥V f(o) , because

JcosS 8

218

1S ;ndeP~ of Ko -

11



cpse— (= ces (R angle w K, cu))

i

o ?%/////

‘ 2

um orm

Po')ula.tion of
decays

Apperatus detects B's with 6,<6<e, (yellow baund)
What 1s the K detrbution of these x's ?

d*N
decoso*d K

= [au< P (c.,se*(az ,K) —cos0*(0,, K))

= enst =p # detected events = n

. . 0
take limit AB— 0O
00

ne [dkp “’”6*' i
0
4_{1_ - phe J¢cos O
w - 26
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Ignoring production rate in dilepton top mass analysis

When one has a number N + §N of candidates above back-
ground, comparison of N to ovis [ L dt usefully constrains the
top mass. How best to apply this constraint?

In D@ we choose to make the dilepton top mass likelihood
analyses independent of the production rate, because

e Information from several channels can be combined to
sharpen the mass constraint obtained from the combined

production rate.

e Production rate information may be left for inclusion late
in the analysis chain when final efficiency corrections, cross
sections etc. are available.

e Mass information from the production rate may be used as
a cross-check on that from the dilepton top mass analysis.

Therefore, the D@ top mass likelihood analysis is designed to
be completely independent of any production rate information.

4



What remains as a basis for dilepton top mass analysis?

As a direct corollary of the preceding, D@ cannot use a differ-
ential cross section to weight the solutions found in dilepton top
mass analysis, unless that weight is divided by an appropriate
total cross section: |

o A priori we do not consider top masses produced with high
cross section to be more probable than those produced
with low cross section. This bias would imply that we
know the relation between the number of events expected
and the number observed.

o Instead we merely ask “given a particular top mass, and
given that one event is detected, what is the probability

. density that the event would have appeared in our appa-
ratus possessing the observed kinematic configuration?”
This question is appropriately independent of production
rate. |
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Weights for solutions must be accepltance-dependent

Consider the limiting case of zero detector acceptance, in which
only a single kinematic configuration can be observed. Then
the only experimental information available is the number of
events collected: all events which possibly could be detected

appear to be identical.

| n thas Icmctlns case
But DO dilepto;?z{ ass analyses cannot use production rate

information. Sogtheir only possible basis for weighting the so-
- lutions at various dilepton top masses is the multiplicity of
- solutions (0, 2, or 4). The dilepton top mass likelihood reduces
to a sum of 6 functions.

The ad hoc weights in current D@ use fail this condition. Even
in the limit of zero acceptance,

" . 1 do

C or dLIPS P(E:)P(E;) (metuod "L )
and |
“AT f()f f(z)P(EZ)P(E) (method “TII17)

yield the same top mass likelihood as they do for finite accep-
tance.



However, the weight used in the top ma.és' analysis described
~ here does satisfy this boundary condition. This weight is

12

w e 1 d140“ »

b

.. “Meﬂwi 11 v

Ovig doy ---dorg

where the {o;} are the experimentally observed variables. In
the limit of zero acceptance

AOl e A014 _— 0,
ovis reduces to

do
Ovis =
Vi doy - --do14

Aoq - -+ Aoy 4,
and this weight is equal to the same constant

for every solution, as is required.
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Faradoxes continued ...

d'4e
T e do,-- 40,4

as a Wetjkt makes

USm:j

awh{s«’; "depudut on an arbti:ruy choice
of observables {0} " .

Let {0‘-’,1 be aun alternate chowce of
observables.

d"r _ A" ] la{o;g
q,. do/ do,; | g, 40, ---do,, 210}

ths f—acf'o( S wt;'efude«.t' 4 top mass
no effect on top mass likelihood .
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FPavradoxes continuwed ...

4. (”Theri_ot Pa,ﬂ.dox”>. CDF has Z fop
cavdidates | 1deatcal except PeA = ZPeB .

P(M(scéasf 1 uses O, = P?:l , Plu.,siécsf 2

uses 0, = Ee - Physicist 1 assigns
' B
(MG f_l_QeA - l’_gA .2

whie plysi€ist 2 qets 3 . CbF 's

fracker awd calornwmeler are so 3,“4
that 1t can't matter which (s used .

d'4c

g - do . d04 S)tou.ld be
ws | "~ )
used to assi3n Pmbabchtles +o ahferwt
top masses Swén the same evert , nol
o aSSt.gn reletwe Probaba-lx'ta'as fu-f toP
n'\,tcrpretatwvi of differenl events.



sigma(ppbar -> ttbar) (pb)
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DOGEANT calculated ttbar -> e mu efficiency
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Parametrization-of DO ttbar -> e mu efficiency
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Tra.usfarmu'tj ~’{O¢' } — 5"1} — {oii

Running EXTH for solution # 1

pl( ,1) = 105.1905413998806 12.20000000000000

-96.10000000000000 41.00000000000000

pl( ,2) = 107.0071960197070 -24.30000000000000
98.30000000000000 34.60000000000000

pi( ,1) = 37.58230966824684 - =27.30000000000000

-10.30000000000000 -22.40000000000000

pi( ,2) = 46.09696302360927 -16.00000000000000

-22.10000000000000 36.60000000000000

ptop( ,1, ) = 185.5009220115914 20.12306678027462

-109.4733807035237 57.71699583381226

ptop( ,2, ) = 196.8937851334532 ~-3.323066780274619
95.67338070352373 84.27766059941914

Returning from EXTH with ierr = 0

oml = 0.3856800697725314 ~-0.9664082794707615 0.4950909016223313
1.472362296408078

omj = -0.7302356009572952 -0.9109457571723081 -0.5377500198469648
2.759473932153241 ’

omt = -1.7007697731253292E-02 -0.7616049274923951

x, xbar = 0.2965481105096151 0.1387762700282468

Calling THEX with

rootS, tm, Wm =  1800.000000000000 150.0000000000000
80.22000000000000

jmex, ptt(2), ptt(3) = 7.700000000000000 6.400000000000000
16.80000000000000 -13.80000000000000

Returning from THEX with ierr = 0 S

pl( ,1) = 105.1905413998806 - 12.20000000000000
-96.10000000000000 41.00000000000000

pl( ,2) = 107.0071960197070 -24.30000000000000
98.30000000000000 34.60000000000000

pi( ,1) = 37.58230966824684 -27.30000000000000

-10.30000000000000 -22.,40000000000000 ‘

pi( ,2) = 46.09696302360926 -16.00000000000000

-22.09999999999999 36.60000000000000

ptop( ,1, ) = 195.5009220115914 20.12306678027462

-109.4733807035237 57.71699583381226

ptop( ,2, ) = 196.8937851334532 -3.323066780274615
95.67338070352373 84.27766059941914

(highlighted digits are app rox cmate )

. oS
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Fig. 4. The likelihood funcuon for the top-quark mass m,, based
on the interpretation of the CDF candidate event as due to t—t
pair production, followed by W* and W~ leptonic decays.
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1. We varied the choice of function f(m;) which a prior: is
taken to have uniform probability. We considered (a) f(m;) =
my and () f(my) = lnmg. [These correspond to (a) P(100 <
ms < 101) = P(200 < my < 201) and (b) P(100 < my; <
101) = P(200 < m; < 202)]. For Monte Carlo events, function
(b) yields the more symretric probability distribution.

3. When observed energies are smeared, we adopted a more re-
fined method in which the standard deviation used corresponds
to the smeared (parent) rather than the observed (daughter)
energy, and the probability for smearing reflects the distribu-
tion of parent energies.
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. Strovink 6/1/93.



Monte Carlo verification of mass fitting method

We use an « = o, = 0 Monte Carlo that is aware of the same
physics known to the mass analysis. tt events are generated at
fixed top mass. The plots are of three types:

1. d(Probability)/d In m;, average for many events. Expect a
symmetric distribution peaking at the generated my. Gives a
good overview of the mass analyzer’s performance.

9. No. of events vs. median In m; from the probability distribu-
tion for each event. Expect a symmetric distribution peaking
at the generated m;. Checks reliability of best fit m;.

3. No. of events vs. “confidence” (fraction of the probability
distribution lying above the generated m;). Expect a uniform
distribution. Checks reliability of error on best fit my.

Results are available for the following types of Monte Carlo
sample:

e Unsmeared, lepton-jet pairing forced to be correct.
e Unsmeared, all lepton-jet pairings allowed.

e cu smeared, all pairings.

o ce smeared, all pairings.

The unsmeared studies, although not realistic, provide an in-
cisive test of the extent to which the mass analysis method is
optimized.
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Correct pairs. 1/8igT(vis). ldeal measurements.

150 GeV Monte Carlo, events averaged with equal weight. Median 150.3.
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Ideal measurements.

All pairs. 1/sigT(vis).
150 GeV Monte Carlo, events averaged with equal weight. Median 150.3.
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All pairs. 1/8igT(vis). Ideal measurements.

150 GeV Monte Carlo, events averaged with equal weight. Median 154.1,

100 125 150 175 - 200 225
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d(ProbabiIity)/d(Log10(top mass))
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Log10(top mass)

Variables o_smearing. Dalitz-Goldstein weight. M. Strovink 6/1/93.



All pairs. 1/sigT(vis). ’ ldeal measurements.

125 GeV Monte Carlo, events averaged with equal weight. Median 125.6.
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All pairs. 1/8igT(vis). Ideal measurements.

175 GeV Monte Carlo, events averaged with equal weight. Median 174.9,
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All pairs. 1/sigT(vis). Bayesian smearing (ee+emu).
150 GeV Monte Carlo, events averaged with equal weight. Median 149.3.
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All pairs.

d(Probability)/d(Log10(top mass))

20

15

10

Bayesian smearing (ee+emu).

150 GeV Monte Carlo, events averaged with equal weight. Median 154.7.
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M. Strovink 6/11/93.



All pairs. 1/sigT(vis). ldeal measurements.

150 GeV Monte Carlo, distribution of medians. Median 150.4.
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All pairs. 1/sigT(vis). Ideal measurements.
150 GeV Monte Carlo, distribution of modes. Median 151.0.
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All pairs. 1/sigT(vis). Bayesian smearing (ee+emu).

150 GeV Monte Carlo, distribution of medians. Median 149.7.
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All pairs. Bayesian smearing (ee+emu).

150 GeV Monte Carlo, distribution of modes. Median 151.0.
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All pairs. Log(Mt), 1/sigT(vis). . Ideal measurements.

150 GeV Monte Carlo
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All pairs.

Events per bin
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All pairs. Log(Mt), 1/sigT(vis). Bayesian smearing (ee+emu).
150 GeV Monte Carlo
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All pairs. Log(Mt). Bayesian smearing (ee+emu).

150 GeV Monte Carlo

100

80

C 60 |

2 /v/'
| r —

)

a i -

[4] - -—
c u -

) L _ Z

> /

L =

40 - / ]

20

0 0.2 0.4 0.6 0.8 1

Fraction of integrated weight above generated top mass

Dalitz-Goldstein weight. M. Strovink 6/11/93.



All pairs. » Log(Mt),1/sigT(vis). Bayesian smearing(ee+emu).

150 GeV Monte Carlo. Median = 0.82.
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Correct lepton-jet pairings.

Ideal measurements.

150 GeV MC within DO acceptance. Median integrated weight = 0.469.
16%-50%-84% of median top masses below 142.8-151.8-160.6 GeV.
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WRONG lepton-jet pairings.

Weight integrated over top mass

Ideal measurements.

150 GeV MC within DO acceptance. 46% have no solution. 54% have
median integrated weight = 0.282, with 16%-50%-84% of median top
masses below 134-159-177 GeV.
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Conclusions from Monte Carlo studies

o Well-measured tt — dilepton events possess surprisingly
precise top mass information despite two missing neutri-
nos.

o The DO top mass analysis extracts this information re-
markably well. The best fit m; tracks the generated m; to
within 1 GeV. The breadth of the mass probability distri-
bution is also reliable, as checked by the uniform “confi-
dence” distribution.

e Resolution smearing causes broadening of the top mass
determination that is only about 20% more severe for ey
than for ee events.
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RECO 11.17 jet energies "RECO 11.17" jet combination probabilities

m(t)
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relative likelihood (arbitrary units)

naive Monte Carlo (IMJ,DP =({50 @'QV)
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Sowme Defiibows

naive Monte Carlo
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