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ABSTRACT

Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous
experimental efforts in the study of quantum error correction, to date, there has been no demonstration in
the realisation of universal quantum error-correcting code, with the subsequent verification of all key
teatures including the identification of an arbitrary physical error, the capability for transversal manipulation
of the logical state and state decoding. To address this challenge, we experimentally realise the [S, 1, 3]
code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the
experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise
the [5, 1, 3] code for several typical logical states including the magic state, an indispensable resource for
realising non-Clifford gates. The encoded states are prepared with an average fidelity of 57.1(3)% while
with a high fidelity of 98.6(1)% in the code space. Then, the arbitrary single-qubit errors introduced
manually are identified by measuring the stabilisers. We further implement logical Pauli operations with a
fidelity of 97.2(2)% within the code space. Finally, we realise the decoding circuit and recover the input
state with an overall fidelity of 74.5(6)%, in total with 92 gates. Our work demonstrates each key aspect of
the [5, 1, 3] code and verifies the viability of experimental realisation of quantum error-correcting codes
with superconducting qubits.

Keywords: quantum error-correcting code, superconducting qubit, five-qubit code, error detection,
logical operation

INTRODUCTION

Quantum computers can tackle classically in-

larger number of flawed physical qubits. Providing
that the machine is sufficiently large (high qubit
count), and that physical errors happen with a
probability below a certain threshold, then such
errors can be systematically detected and cor-
rected [8,9]. In experiment, several small quantum
error-correcting codes (QECCs), including the rep-
etition code [10-16], the four-qubit error-detecting
code [17-19], the seven-qubit color code [20], the
bosonic quantum error-correcting code [21,22] and
others [23-26], have been realised with different
hardware platforms. These works have shown the
success of realising error-correcting codes with

tractable problems [1] and efficiently simulate
many-body quantum systems [2]. However,
quantum computers are notoriously difficult to
control, due to their ubiquitous yet inevitable
interaction with their environment, together with
imperfect manipulations that constitute the al-
gorithm. The theory of fault tolerance has been
developed as the long-term solution to this issue,
enabling universal error-free quantum computing
with noisy quantum hardware [3-7]. The logical
qubits of an algorithm can be represented using a
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Figure 1. (a) Encoding quantum circuit of the five-qubit code. Here, the qubit labels Q; ~ Qs are arranged to correspond
with Equation (1); Gy and G, are single-qubit gates to prepare the input state a |0) + b |1) for encoding; Y,, and Z, are the
rotation gates around the Yand Zaxes for an angle a7, respectively. In total, there are 27 layers of gate operations, including
54 single-qubit gates and eight nearest-neighbour controlled-phase gates. The single-qubit gates on different qubits can be
applied in parallel, while the two-qubit gates can only be applied individually owing to the Zcrosstalk. (b) Expectation values
of 31 stabilisers for the encoded logical state | T), . Error bars representing a 95% confidence interval are estimated via
bootstrapping. (c) Expectation values of logical Pauli operators and state fidelity of the encoded magic state.

non-destructive stabiliser measurements and their
application in extending the system lifetime [19,25].
Nevertheless, previous experiments are limited to
restricted codes for correcting certain types of errors
or the preparation of specific logical states. It re-
mains an open challenge to realise a fully-functional
QECC.

Here, we focus on the five-qubit [S, 1, 3] code,
the ‘perfect’ code that can protect a logical qubit
from an arbitrary single physical error using the
smallest number of qubits [6,7]. While proof-of-
principle experimental demonstrations of the [5,
1, 3] code have been conducted on NMR sys-
tems [27], whether it could be incorporated in
more scalable quantum computing systems and
protect errors presented in these systems remain
open. Here, we focus on the realisation of the
five-qubit code with superconducting qubit sys-
tems. As a preparatory theoretical step, we recom-
pile the universal encoding circuit that prepares
an arbitrary logical state in order to realise it with
the fewest possible number of nearest-neighbour
two-qubit gates. In experiment, we implement ba-
sic functions of the code by realising logical state
preparation, transversal logical operations and state

decoding.
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THEORY

The five-qubit [S, 1, 3] code is a type of stabiliser
code that is defined by a set of independent opera-
tors from the Pauli group, called stabilisers, such that
the code space only has eigenvalue 4-1. The four sta-
bilisers of the five-qubit code are

81 = X12,723X,15, gy =1X,72374Xs,

83 = X1bX3Z24Zs, g4s=7Z1X2I3X4Zs,

(1)

with I, X, Y;, Z; being the Pauli matrices act-
ing on the ith qubit. The logical state space
is defined by states |¥);, =al0), +b]1),
that are simultaneously stabilised by the four
stabilisers with g; |W); = +|¥); for all i =
1, 2, 3, 4. Here, the logical states |0); and |1);
are the basis states that are eigenstates of the
logical Z; operator. Any logical state |W); can
be uniquely determined by the four stabilisers
defined in Equation (1) together with the fifth sta-
biliser g5 = |W) (V] — [¥4) (U], = (aa* —
bb*)Z, + (a*b + b*a)Xy, — i(a*b — b*a)Yy,
with |W1) =b*|0) —a*|1.). That is, any

logical state |W); can be decomposed as
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Figure 2. Destructive syndrome detection on the logic magic state |T),. A single-
qubit X-, Z- or Y-type error, which corresponds to a bit-flip, phase-flip or combined error,
respectively, is applied to one of the five qubits Qs to Qs. We destructively measure
the four stabilisers and find consistent syndrome correlations that identify the quantum
error.

W), (W], =27TT7_ (g0 +g:), where g =
I L 151,415 is the trivial stabiliser of all pure quantum
states. Logical Pauli operators are transversely
realised by applying the corresponding single-qubit
gates on each physical qubit, o) = 010,030,405
for 0 = X, Y, Z. General logical operators, such as
the T; = ¢ '%17/% gate, may not be transversely
realised.

The five-qubit code has distance three and there-
fore all single-qubit errors can be identified (and thus
corrected) while all double-qubit errors can be de-
tected. When there is no error, all stabiliser measure-
ments should yield 41 for the encoded state |W); .
When an error happens, one or more stabiliser mea-
surements may yield —1. As there are four stabilis-
ers whose measurement may take either 41 or —1
values, there are in total 15 syndrome measurement
results with at least one outcome being —1. If we
consider the ways in which a single Pauli error can
afflict one of the five qubits, we note that there are
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15 possibilities (three error types and five locations),
with each mapping to a specific one of the 15 syn-
dromes. When a two-qubit error happens, we again
find that at least one of the stabiliser measurements
takes —1. This heralds the fact that some error has
occurred. However, since different double-qubit er-
rors may have the same syndrome, we can only de-
tect double-qubit errors without the capability of
identifying or correcting them. Nevertheless, thislat-
ter property can be useful in some situations, such
as state preparation, where we can simply discard a
faulty realisation and restart.

Without using ancillary qubits, the original cir-
cuit for encoding the logical state |¥); requires a
number of two-qubit gates that are non-local with
respect to a linear architecture [6,7]. To tailor the
circuit for superconducting systems that only in-
volve nearest-neighbour controlled-phase gates, we
recompile the encoding circuit to have the mini-
mal possible number (eight) of nearest-neighbour
control-phase gates as shown in Fig. 1(a). We pro-
vide the details of circuit compilation in the online
supplementary material.

EXPERIMENTAL SETUP

The device for the implementation of the five-qubit
error-correcting code is a 12-qubit superconducting
quantum processor [28]. Among these 12 qubits,
we chose five adjacent qubits to perform the exper-
iment. The qubits are capacitively coupled to their
nearest neighbours. The capacitively coupled XY
control lines enable the application of single-qubit
rotation gates by applying microwave pulses, and
the inductively coupled Z control lines enable the
double-qubit controlled-phase gates by adiabatically
tuning the two-qubit state |11) close to the avoid
level crossing of |11) and |02) [28]. After careful cali-
brations and gate optimisations, we have the average
gate fidelities as high as 0.9993 for single-qubit gates
and 0.986 for two-qubit gates. With the implementa-
tion of only single-qubit rotation gates and double-
qubit controlled-phase gates, we realised the circuit
for encoding and decoding of the logical state. More
details about the experimental setup are given in the
online supplementary material.

RESULTS

On a superconducting quantum processor [28],
we experimentally realised the logical states |0);,
|1);, |E£); and |£i), that are eigenstates of the
logical Pauli operators X;, Yy, Z; and the magic
state |T); = (|0}, + i/ |1)L)/\/E that cannot
be realised by applying Clifford operations on any

220z Aieniga4 Zz uo Jasn AS3 U0J104YoUAS usuoelg sayosined Agq LOES0L9/L L 0GeMU/|/6/31011e/ISU/Wwod dno"olWwapeoe//:sdiy WoJll papeojumoq



Natl Sci Rev, 2022, Vol. 9, nwab011

@ 0 ®© 0

L

i),
In,
d
(© o), (d)
b i), i),
),
1
2 0
£

-1

Figure 3. Logical operation within the code space. (a) Encoded logical state | T); illus-
trated on the logical Bloch sphere. (b}-(d) Single logical-qubit operation X;, ¥; and 2,
appliedon | T), . The blue squares and vector are the initial states. The red circles and
vectors are the final states. The states are projected into the code space. The fidelities
of the state after gate operation are 98.6(1)%, 98.0(1)% and 98.7(1)% for (b), (c) and
(d), respectively. The white arrow illustrates the dynamics under the gate operation.
(e) The x, matrix of the logical X; operation determined via quantum process tomog-
raphy in the code space. The gate fidelity of logical X; operation is determined to be
97.2(2)%. The black-outlined hollow bars correspond to the ideal X gate. We refer the
reader to the online supplementary material for the definition of the x; matrix and
details.

eigenstate of the logical Pauli operators. The ex-
pectation values of the stabiliser operators of |T')
are shown in Fig. 1(b). The fidelity between the
experimentally prepared state and the ideal state
W), (V] is determined by the measurement of the
32 stabiliser operators in Hle (g0 + gi)- We omit
the go one as it is constantly 1. In this way, we ob-
tained the state fidelity as the average of the 32 sta-
bilisers by picking up corresponding measurement
results among the state tomography results. Finally,
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the state fidelity of |T); reaches 54.5(4)%. The fi-
delities of other prepared states are shown in the on-
line supplementary material, with an average fidelity
of §7.1(3)%. The main error in preparing the en-
coded state is from decoherence, especially the rel-
atively short dephasing time. In a numerical simu-
lation of the experiment with decoherence (see the
online supplementary material for details), the state
fidelity of | T'); is 58.9%. After numerically increas-
ing the dephasing time to be the same as the energy
relaxation time, the state fidelity can be increased
to 92.1%, indicating a potential direction for future
improvements.

The quality of the prepared logical states can also
be divided into its overlap with the logical code space
and its agreement with the target logical state af-
ter projecting it into the code space. Given the logi-
cal Pauli operators Xy, Y7, Z; and I = |0); (0|, +
[1); (1];, the normalised density matrix py, is de-
fined by projecting the experimentally prepared state
P4 into the code space

I+ PyxX; + PyY; + P, Z;

oL = 5 ) (2)

with normalised probability P j=P;/P; and
b = Tr(,quL) for all 0 = I, X, Y, Z, where
pq is the density matrix of the five-qubit state.
We define the fidelity within the code space by
Fr =(¥| pr |¥);, as shown in Fig. 1(c), with
the average value being as high as 98.6(1)%.
Since projecting to the code space is equivalent to
post-selecting all +1 stabiliser measurements, our
result also indicates the possibility of high-fidelity
logical state preparation with future non-destructive
stabiliser measurements. This relies on whether
we can achieve accurate non-destructive stabiliser
measurements, especially whether errors from the
ancillary qubits and additional gates are sufficiently
low.

Given the realisation of the logical state, one
can proceed to verification of the error correc-
tion/detection ability of the five-qubit code. Act-
ing on the logical encoded state | T'); , we systemat-
ically introduce every type of single-qubit error by
artificially applying the corresponding single-qubit
gate on one of the five qubits. Then, by measuring
the four stabilisers g1, g, g3 and g4, we aim to ver-
ify that each error would be properly identified. As
shown in Fig. 2(a), for each case, we do indeed find
the corresponding syndrome pattern that identifies
the location of the single-qubit error. Suppose that
the expectation value of ith stabiliser is p;; then the
probability that the syndrome measurement works is
[T:(lp:l + 1)/2, which is 0.413 on average in exper-
iment. We also apply double-qubit errors on |T);
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Figure 4. Decoding of the five-qubit code. (a) Decoding quantum circuit. After the logical state prepared with the encoding
circuit shown in Fig. 1(b), we apply the decoding circuit to map the state back to a single-qubit state. The decoding circuit is
essentially a reverse encoding circuit, except the gates applied on Q3 and Q, are omitted because they do not affect the final
decoded qubit. (b) The x, matrix of the encoding and decoding circuits. The color bars are the experimental x; matrix and
the black-outlined hollow bars correspond to the identical process. The process fidelity reaches 74.5(6)%.

and find the same syndrome correlation that can al-
ways detect the existence of errors (see the online
supplementary material for details). Notably, the
(single-qubit or double-qubit) error-afflicted states
have probabilities projecting onto the code space
(around 3.3%), verifying the power of the error-
correcting code.

In a functioning fault-tolerant quantum com-
puter, operations on logical qubits are realised
through a series of operations on the component
physical qubits. We implement and verify three
such transversallogical operations. Starting from the
magic state | T); presented in Fig. 3(a), we demon-
strate the single logical-qubit operations X, Y1, and
Z;, and plot the rotated states within the code space,
as shown in Fig. 3(b), (c) and (d), respectively. To
characterise these logical operations, we performed
the quantum process tomography within the code
space as shown in Fig. 3(e), which reflects how well
logical operations manipulate logical states. We de-
termine gate fidelities of the logical X;, Y; and Z;, op-
erations to be 97.2(2)%, 97.8(2)% and 97.3(2)%,
respectively.

Finally, after encoding the single-qubit input
state into the logical state, we apply the decod-
ing circuit, see Fig. 4(a), to map it back to the in-
put state. With input states |0), |1), |[+), and |[4i),
we determine the state fidelity after decoding as
87.4(5)%, 91.6(4)%, 76.7(6)%, and 77.1(6)%, re-
spectively. The relatively lower fidelities for |4-) and
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|+i) states are also caused by the short dephasing
time. After quantum process tomography from the
four output states, the process fidelity is determined
as 74.5(6)%, as shown in Fig. 4(b). The decoding
circuit only applies operations on three qubits, high-
lighting the ability of quantum secret sharing with
the five-qubit code [29]. This simplification is due to
a consequence of locality: no observable on Q; can
be affected by the omitted independent gate opera-
tions of the other qubits.

DISCUSSION

An essential milestone on the road to fault-tolerant
quantum computing is the achievement of error-
corrected logical qubits that genuinely benefit from
error correction, outperforming simple physical
qubits. There are three steps for achieving this goal:
(1) realising encoded logical qubits in a code capable
of detecting and correcting errors, (2) realising oper-
ations on encoded qubits and error-correction cycles
and (3) adding more ancillary qubits and improving
the operation fidelity to achieve fault tolerance. Our
experiment completes step (1) by realising the ba-
sic ingredients of the full functional five-qubit error-
correcting code. Our work partially achieves step
(2) as we indeed perform logical operations and ver-
ify error detection; however, because we are only
able to evaluate stabilisers destructively, we cannot
perform full error correction. Directions for future
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works include the realisation of non-destructive er-
ror detection [25,26,30] and error correction, and
the implementation of logical operations on multi-
ple logical qubits for the five-qubit code. Our work
also has applications in error mitigation for near-
term quantum computing [31].
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