
Hydrodynamics: from e↵ective field
theory to holography
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Abstract

Hydrodynamics is an e↵ective theory that is extremely successful in describing a wide

range of physical phenomena in liquids, gases and plasmas. However, our understanding of

the structure of the theory, its microscopic origins and its behaviour at strong coupling is

far from complete.

To understand how an e↵ective theory of dissipative hydrodynamics could emerge from a

closed microscopic system, we analyse the structure of e↵ective Schwinger-Keldysh Closed-

Time-Path theories. We use this structure and the action principle for open systems to

derive the energy-momentum balance equation for a dissipative fluid from an e↵ective

CTP Goldstone action. Near hydrodynamical equilibrium, we construct the first-order

dissipative stress-energy tensor and derive the Navier-Stokes equations. Shear viscosity is

shown to vanish, while bulk viscosity and thermodynamical quantities are determined by

the form of the e↵ective action.

The exploration of strongly interacting states of matter, particularly in the hydrody-

namic regime, has been a major recent application of gauge/string duality. The strongly

coupled theories involved are typically deformations of large-N SUSY gauge theories with

exotic matter that are unusual from a low-energy point of view. In order to better interpret

holographic results, an understanding of the weak-coupling behaviour of such gauge theories

is essential. We study the exact and SUSY-brokenN = 1 andN = 2 super-QED with finite

densities of electron number and R-charge, respectively. Despite the fact that fermionic

fields couple to the chemical potentials, the strength of scalar-fermion interactions, fixed

by SUSY, prevents a Fermi surface from forming. This is important for hydrodynamical

excitations such as zero sound. Intriguingly, in the absence of a Fermi surface, the total

charge need not be stored in the scalar condensates alone and fermions may contribute.

Gauss-Bonnet gravity is a useful laboratory for non-perturbative studies of the higher

derivative curvature e↵ects on transport coe�cients of conformal fluids with holographic

duals. It was previously known that shear viscosity can be tuned to zero by adjusting the

Gauss-Bonnet coupling, �GB, to its maximal critical value. To understand the behaviour of

the fluid in this limit, we compute the second-order transport coe�cients non-perturbatively

in �GB and show that the fluid still produces entropy, while di↵usion and sound attenu-

ation are suppressed at all order in the hydrodynamic expansion. We also show that the

theory violates a previously proposed universal relation between three of the second order

transport coe�cients. We further compute the only second-order coe�cient thus far un-

known, �2, in the N = 4 super Yang-Mills theory with the leading-order ’t Hooft coupling

correction. Intriguingly, the universal relation is not violated by these leading-order per-

turbative corrections. Finally, by adding higher-derivative photon field terms to the action,

we study charge di↵usion and non-perturbative parameter regimes in which the charge

di↵usion constant vanishes.
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Chapter 1

Introduction

Hydrodynamics is an enormously successful theory that describes the collective dynamics

of gases, liquids and plasmas. Its applicability to physical systems extends through vast

ranges of energy scales, from low-energy dynamics of fluids seen in nature every day, to a

successful description of quark-gluon plasmas in the early universe and heavy-ion collision

experiments at RHIC and the LHC.

From a microscopic quantum field theory (QFT) point of view, hydrodynamics should

be understood as an e↵ective theory of low-energy degrees of freedom, valid up to some

energy scale ⇤hydro.1 However, the relevant degrees of freedom that such an e↵ective theory

must describe can often be complicated bound states of various interacting nucleons and

electrons; think of, for example, water molecules made of two hydrogen atoms covalently

bonded to an oxygen atom. Given that the standard model of particle physics, phrased in

terms of a local microscopic QFT, is in excellent agreement with almost all experiments

done on Earth, one should, in principle, be able to derive and classify di↵erent types of

hydrodynamics from first principles, i.e. from QFT.

This thesis is aimed at presenting a few small steps in that direction. It will present

an e↵ective field theory approach to dissipative hydrodynamics, as well as a stringy, su-

persymmetric point of view on hydrodynamics. We will further outline and study some

issues, which generically arise in attempts to draw analogies between supersymmetric and

non-supersymmetric low-energy systems.

Given enormous di�culties in treating realistic non-perturbative objects and strong

coupling in QFT, it is not surprising that a systematic derivation of hydrodynamics from

QFT is destined to be extremely complicated. Rather than deriving an e↵ective field the-

1The exact scale of applicability of hydrodynamics, the hydrodynamisation scale, is not known and
is a question of active research. It is believed to be somewhat higher, but comparable to the scale of
thermalisation and often significantly higher than the scale one would näıvely expect. Models of the
dynamics of quark-gluon plasma at RHIC and the LHC show its thermalisation length scale to be on the
order of one Fermi, i.e. 10�15 m [1, 2]. Hence, ⇤

hydro

could in some cases be comparable to the inverse
proton size.
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ory, standard approaches to hydrodynamics combine phenomenological and microscopic

inputs. One uses the notion of local thermodynamic equilibrium and the existence of

conserved quantities to write down a gradient expanded stress-energy tensor and other

relevant currents in terms of near-equilibrium fields, i.e. the generalisations of velocity,

uµ(x), temperature, T (x), and chemical potential, µ(x). The procedure leaves hydrody-

namic coe�cients, e.g. shear and bulk viscosity, of various tensor structures undetermined.

They must be computed using microscopic techniques, such as kinetic theory or lattice

computations.

Beyond microscopic derivation, a problem concerning phenomenological hydrodynamics

is that the most general gradient expansion is not known beyond second order in derivatives

of hydrodynamics variables. Hence, the convergence properties of the hydrodynamic ex-

pansion, as well as higher-order dispersion relations are not known. In order to study these

problems and to have a systematic view of di↵erent hydrodynamic models, it would be ex-

tremely beneficial to have a Lagrangian approach to hydrodynamics, where well-understood

techniques of e↵ective field theory could be employed.

Recently, work has been done showing that long-range Goldstone modes can be success-

fully used to encode hydrodynamic excitations in an e↵ective theory [3–5], analogously with

the ideas behind the extremely successful phenomenological chiral pion Lagrangian [6, 7].

The benefit of this approach is clear; if one could write down a hydrodynamic Lagrangian,

then all conserved tensors and equations of motion would follow from variational principle,

including all hydrodynamic coe�cients. However, problems arise when one tries to include

dissipative terms, which could encode viscosity. Standard variational methods are unable

to describe dissipation in the absence of an explicit environment. For example, a harmonic

oscillator must be explicitly coupled to an external system, which can serve as a forcing

term and cause damping. This appears to be incompatible with the philosophy of e↵ective

field theory, where one would desire a theory of only the relevant, macroscopic degrees of

freedom in the system.

If one adopts the view that dissipation is the energy loss of macroscopic hydrodynamic

degrees of freedom to the integrated-out, microscopic degrees of freedom, then an e↵ective

field theory of only long-range Goldstone modes can be constructed using the Schwinger-

Keldysh Closed-Time-Path (CTP) formalism [8, 9]. This approach to hydrodynamics will

be discussed in Chapter 3. The CTP formalism was initially designed for the computation

of expectation values in out-of-equilibrium QFT involving mixed states, but it can also be

used to formulate an e↵ective field theory of an open system. By analysing the possible

structures of e↵ective CTP Lagrangians, we will construct a classical e↵ective theory with

dissipation and non-zero bulk viscosity. We will also study its thermodynamic properties.
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The second approach to hydrodynamics to be addressed in this thesis is through the

gauge/string duality, also known as the AdS/CFT correspondence or simply, holography

[10–12]. By duality we mean that all information about the physics in one theory is encoded

in the dual theory, and vice versa. AdS/CFT is a holographic duality between gauge

field theories and higher-dimensional string theory that reduces to an e↵ective theory of

supergravity in the low-energy limit. Computational control over the gravity side of the

duality demands that we suppress stringy and quantum gravity corrections by taking the

two limits, N ! 1, as well as the ’t Hooft coupling � = g2YMN ! 1.2 Gravity calculations

can then provide a window into the low-energy, hydrodynamical limit of certain strongly

coupled field theories.

The problem is that so far AdS/CFT has only given us computational access to strongly

coupled theories, which are not directly observable in nature. They are usually conformal

supersymmetric (SUSY) theories with a large number of colours. It is therefore important

to understand similarities and di↵erences between field theories with known gravity duals

and reality. Many AdS/CFT calculations, for example, give thermodynamical scalings and

transport properties that have never been observed. One would therefore like to understand

whether those predictions are a result of strong coupling, unusual matter content or other

reasons.

Deriving from this motivation, Chapter 4 will study perturbative low-energy behaviour

of supersymmetric QED at finite density. This theory, which is a SUSY extension of quan-

tum electrodynamics, is the minimal SUSY theory containing many of the features of more

complicated theories with known duals. It is therefore a physically rich and natural start-

ing point for investigations of thermal and hydrodynamic properties in SUSY, previously

rarely investigated, yet essential for the understanding of AdS/CFT.

A ubiquitous feature of condensed matter systems at finite density are Fermi surfaces.

For example, Landau’s Fermi liquid theory is derived by considering quasiparticle exci-

tations around a Fermi surface, giving rise to hydrodynamic transport properties of the

system, such as zero sound. However, in a SUSY counterpart of such a theory, there are

always extra Majorana fermions and, most importantly, scalar fields with a non-trivial

moduli space of flat directions in the field space, which minimise the potential. In the

high-density regime with T/µ ⌧ 1, this may easily lead to instabilities.3 In Chapter 4,

we will discuss the moduli space stabilisation in super QED. This will lead to non-trivial

scalar vevs breaking the symmetries and a complicated fermion mass matrix due to Yukawa

2The ’t Hooft coupling �, rather than just the Yang-Mills coupling g
YM

, turns out to be an important
expansion parameter in field theories with a large number of colours N . More details on Yang-Mills theories
and the AdS/CFT correspondence will be presented in Chapter 2.

3T is the temperature and µ the chemical potential of the system.
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interactions with a schematic form of h�i⇥ fermion2. We will see that scalar-fermion inter-

actions cause the fermions to not form a Fermi surface while scalars undergo condensation.

This is thus in sharp contrast with the behaviour of a realistic Fermi gas in the absence

of fundamental scalars. To approach reality, we will tune the SUSY Yukawa interaction

and show that at weaker coupling, compared to the scalar self-interaction, a Fermi surface

begins to form. We will also analyse fermionic contributions to the total charge density,

finding that fermionic modes can contribute even in the absence of a Fermi surface, which

di↵ers from the usual systems protected by Luttinger’s theorem.

In Chapter 5, we will turn our attention to a holographic, gravitational analysis of

hydrodynamic properties of a field theory dual to the Einstein-Gauss-Bonnet gravity in

five space-time dimensions. Even though a string theoretic construction of this duality

is not known, and hence we do not know the details of the CFT, this theory serves as

a great laboratory for explorations of higher curvature e↵ects on dual hydrodynamics.4

The reason for this investigation is that holography can provide us with information about

di↵erent classes of fluids based on the behaviour of their transport coe�cients. The power

of holography is precisely in its ability to determine them microscopically at all orders in

the hydrodynamic derivative expansion.

We will be particularly interested in non-dissipative fluids with non-trivial second-order

hydrodynamic transport properties.5 To study such fluids, we will make use of large, non-

perturbative corrections of the Gauss-Bonnet coupling to results that follow from pure

Einstein theory.6 They will allow us to analyse the conformal theory near a point where

shear viscosity ⌘ vanishes, i.e. as �GB ! 1/4. Analytical and numerical studies of hy-

drodynamic dispersion relations will point towards the suppression of dissipation at all

hydrodynamic orders. In spite of that, we will analytically compute second-order confor-

mal hydrodynamic coe�cients, which will remain non-trivial and produce entropy. The

fluid will thus still be dissipative. Using the values of the second-order transport coef-

ficients, we will show that a previously proposed universal holographic relation between

three of the coe�cients is violated. Furthermore, we will compute the leading ’t Hooft

correction to the last unknown coe�cients in the N = 4 theory to show another example

4While the Einstein-Hilbert action includes two derivatives of the metric tensor, the Gauss-Bonnet term
includes four. However, its structure is such that it only gives non-trivial contributions with at most two
derivatives of the metric to the gravitational equations of motion. The absence of higher derivatives in the
equations of motion allows for convenient calculations with a non-perturbative value of the Gauss-Bonnet
coupling �

GB

.
5Note that viscosity is a first-order transport coe�cient as it multiplies single derivatives of hydrody-

namic fields, uµ, T and µ, in the stress-energy tensor as well as the Navier-Stokes equations. Similarly,
second-order coe�cients accompany terms with two derivatives.

6Pure Einstein theory on AdS
5

⇥ S5 is itself a limit of Type IIB supergravity and is dual to the
stress-energy tensor sector of the N = 4 superconformal Yang-Mills theory. The CFT dual of the Einstein-
Gauss-Bonnet theory is presently unknown.
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of a holographic fluid, which violates the proposed relation. Finally, we will analyse charge

di↵usion properties by adding the most general four-derivative photon and photon-graviton

terms to the Lagrangian that again only produce second-order di↵erential equations.

The thesis is divided into four chapters. In Chapter 2, background material will be

presented, which is required to make the ideas in this work self-contained. We will begin

by discussing the concept of renormalisation group and e↵ective field theory. This will

be followed by the construction of phenomenological hydrodynamics and the motivation

for the necessity of the Schwinger-Keldysh CTP formalism in out-of-equilibrium quantum

field theory. We will then move on to the discussion of supersymmetry and its power

in enabling strong/weak dualities in four-dimensional theories. A presentation of string

theory and gauge/string duality will follow. In particular, we will focus on the usefulness

of the AdS/CFT correspondence in computing transport properties of strongly coupled

hydrodynamical and condensed matter systems.

In Chapter 3, we will discuss in detail the CTP formalism and its applications to an

e↵ective theory of hydrodynamics. In Chapter 4, we will analyse N = 1 and N = 2

supersymmetric QED at finite density, focusing on the issues of stability of the moduli

space and the existence, or rather, the lack of Fermi surfaces. Chapter 5 will be devoted to

a holographic analysis of second-order hydrodynamics in a field theory dual to the Einstein-

Gauss-Bonnet gravity. Although each chapter will contain a discussion of results and an

outline of interesting future research directions, we will use Chapter 6 to present a summary

of the thesis’s main contributions to the field of study.7

7The thesis’s main body chapters will be using di↵erent sign conventions for the metric tensor in order
to remain consistent with the majority of the modern literature related to the subjects of study. Thus,
QFT calculations in Chapter 4 and the first part of Chapter 3, where we present the CTP formalism in
QFT, will use the signature ⌘

µ⌫

= diag (+1,�1,�1,�1). Topics related to general relativity and string
theory in Chapter 2 as well as the entire Chapter 5 will use ⌘

µ⌫

= diag (�1,+1,+1,+1). Same metric
conventions will be used in classical theory of hydrodynamics in Chapter 3.

5



Chapter 2

E↵ective field theory and the
gauge/string duality

2.1 E↵ective field theory

2.1.1 Quantum field theory and renormalisation group

Field theory is a language used in physics to describe a variety of subjects ranging across all

energy scales: from hydrodynamics and condensed matter, to cosmology, particle physics

and string field theory. Quantum field theory (QFT) [13–15] is the relativistic, second-

quantised theory, which can describe processes that occur in particle physics. It provides

a consistent, predictive quantum description of all observed forces, with the exception of

gravity. Some of its fundamental concepts that will be used throughout this work are

introduced in this chapter.

The main ingredients for specifying a QFT are its particle content, i.e. fields, and

symmetries, which leave the theory invariant. A theory can then be used to compute

correlation functions from a generating functional Z[J ], which is a path integral over an

action defined on a d+ 1-dimensional space-time manifold M as

Z [Jn] =

Z

D� exp

(

iS[�] + i
X

n

Z

M
Jn�n

)

. (2.1)

The symbol � denotes an arbitrary set of quantum fields {�1, . . . ,�n} and Jn are sources

with respect to which functional derivatives are taken.

Bare correlation functions, which näıvely follow from (2.1) are normally divergent and

thus un-physical. In renormalisable theories, e.g. QED and QCD, these divergences can be

successfully removed at an expense of introducing a new scale µ into the problem. This is

done by regulating the bare quantities through an introduction of a cut-o↵ ⇤, or by using

some other regulator such as dimensional regularisation or the Pauli-Villars procedure.

Renormalisation conditions fixing values of certain vertices, mass poles and propagator

residues are then specified an at arbitrary scale µ. The momentum scale p2 = µ2 can be

6



either time-like or space-like, noting that in the time-like cases, additional singularities may

appear. Divergences can be absorbed into counter-terms, which yields finite renormalised

correlation functions that depend on µ and obey the RG conditions.

Coupling constants in a renormalised theory, for example the Yang-Mills coupling,

become scale-dependent, g(µ), and their running is described by a beta function �g ⌘
dg/d log µ. By introducing the wave-function renormalisation Z, the bare and renormalised

correlation functions become related by

h⌦ |�1(x1) . . .�n(xn)|⌦ibare = (Z1 . . . Zn)
1/2 h⌦ |�1(x1) . . .�n(xn)|⌦iren . (2.2)

Great physical insight can be gained by noting that bare correlators that depend on ⇤

cannot depend on µ, hence

d

dµ
h⌦ |�1(x1) . . .�n(xn)|⌦ibare = 0. (2.3)

The right-hand side of Eq. (2.2) then leads to the Callan-Symanzik equation [16–18],
"

@

@µ
+
X

m

�gm
@

@gm
+
X

n

�n

#

h⌦ |�1(x1) . . .�n(xn)|⌦iren = 0, (2.4)

where gm are the couplings in the theory and �n are the anomalous dimensions �n ⌘
(1/2)(d logZn/d log µ). The same considerations apply to correlators of composite opera-

tors, Ok, made of the fundamental fields �. Each one of them acquires a �n-independent

anomalous dimension �(O)
k . Furthermore, the inclusion of composite operators requires us

to introduce further counter-terms into the theory.

Let us for simplicity focus on a theory with a single coupling g, e.g. the Yang-Mills

theory. The Callan-Symanzik equation can most easily be solved at a fixed point, which is

a point in the space of couplings where the beta function vanishes, �(g⇤) = 0. Eq. (2.3)

implies that a two-point correlator of an operator O scales as

hO(x1)O(x2)i /
1

|x1 � x2|2�
, (2.5)

at the scale-invariant fixed point, where � is the dimension of O. The dimension � is the

sum of the operator’s “engineering” dimension and the anomalous dimension �O.

As an example, a two-loop beta function in a Yang-Mills theory with Nc colours and

Nf massless flavours is given by �(g) = �b1g3 + b2g5, where

b1 =
1

(4⇡)2



11

3
Nc �

2

3
Nf

�

, b2 = � 1

(4⇡)4



34

3
N2

c �Nf

✓

N2
c � 1

Nc

+
10

3
Nc

◆�

. (2.6)

For a well-defined perturbation expansion, the two-loop contribution must be sub-leading,

i.e. |b2g2| ⌧ |b1|. The theory has �(g) < 0 and is said to be asymptotically free if b1 > 0,
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which enforces the condition Nf < 11Nc/2. In such theories, the coupling g(p) runs to zero

in the UV, i.e. at large momenta p. If b2 > 0 is also satisfied, then there exists an IR fixed

point g2⇤ = b1/b2 ⌧ 1, known as the Caswell-Banks-Zaks fixed point for asymptotically free

theories in the conformal window,

68N2
c

16 + 20Nc

< Nf <
11

2
Nc. (2.7)

In theories with a positive beta function, e.g. QED, �4 theory, the coupling diverges

at a Landau pole in the UV [19]. Such theories are called trivial because it is formally

impossible to remove the UV cut-o↵ without tuning the coupling to zero. This occurs

in the standard model within the Higgs and the U(1) hypercharge sectors. Although the

Landau pole could signal the breakdown of perturbative expansion, it is believed that QED

and �4 theory are also trivial non-perturbatively.

Another important scenario that will be of relevance in later chapters, are theories with

strongly coupled UV fixed points. For example, this may occur in theories, which run into

the N = 4 supersymmetric Yang-Mills theory in the UV. This super-conformal theory is

known to have a vanishing beta function at all energy scales and will be widely discussed

in the context of the AdS/CFT correspondence.

The trace of the stress-energy tensor T µ⌫ vanishes in a scale-invariant theory, such as

in massless QED. However, a theory may possess a trace anomaly, which makes T µ
µ 6=

0. Generically, the trace becomes proportional to the beta functions of the couplings.

Although the proofs of the following fact have not been fully accepted, it is believed that a

scale-invariant, unitary theory is also conformally invariant [20–22]. The conformal group in

four space-time dimensions has an SO(4, 2) algebra and is generated by dilatationsD, which

correspond to scaling transformations, the special conformal transformations Kµ, as well as

the Poincaré group generators Mµ⌫ and Pµ, which correspond to Lorentz transformations

and translations, respectively. The full algebra is

[D,Kµ] = �iKµ, [D,Pµ] = iPµ, (2.8)

[Kµ, P⌫ ] = 2i⌘µ⌫D � 2iMµ⌫ , [Kµ,M⌫⇢] = i [⌘µ⌫K⇢ � ⌘µ⇢K⌫ ] , (2.9)

[P⇢,Mµ⌫ ] = i [⌘⇢µP⌫ � ⌘⇢⌫Pµ] , [Mµ⌫ ,M⇢�] = i [⌘⌫⇢Mµ� + ⌘µ�M⌫⇢ � (µ $ ⌫)] . (2.10)

The algebra of conformal field theories will play an important role in the identification of

the duality between conformal gauge theories and theories of gravity.

2.1.2 E↵ective field theory

In the 1970s, Wilson developed a new view of quantum field theory, by which theories

without a UV completion should necessarily be viewed as e↵ective theories with a finite

8



range of scales over which they are applicable [23,24]. The idea can be seen by considering

the path integral (2.1), setting Jn = 0 and splitting the fields into low- and high-momentum

parts, �(k) = �<(k < ⇤) + �>(k > ⇤), with respect to some scale ⇤. The measure

factorises, allowing us to define the Wilsonian e↵ective action Se↵. It is the action that only

depends on the low-energy fields �<, after all high-energy modes �> have been integrated

out,

Z [J = 0] =

Z

D�< exp {iSe↵[�<]} ⌘
Z

D�<



Z

D�> exp {iS[�<,�>]}
�

. (2.11)

Since this procedure keeps the partition function Z0 ⌘ Z [J = 0] invariant, Se↵ fully de-

scribes all physics below the scale ⇤, which is the new UV cut-o↵ of the theory. It should

be noted that in gauge theories, a hard cut-o↵ ⇤ breaks gauge invariance and one usually

uses a gauge-invariant smooth cut-o↵ to avoid inconsistencies.

The e↵ective action includes an infinite series of all possible operators Om, built out

of the original fields �n. All Om must be consistent with the symmetries of the original

theory. If we further integrate out fields between ⇤ and ⇤0 = ⇤ � �⇤, defining � ⌘ ⇤0/⇤,

the operators Om evolve under the RG transformations. Consider an operator O� with

dimension � and a coupling � in Se↵[⇤], made of a scalar � with a kinetic term (@µ�)2.

The e↵ective action Se↵[⇤0] with a cut-o↵ ⇤0 then becomes

Se↵ [⇤
0] =

Z

ddx

⇢

1

2
(1 +�Z) @µ�@

µ�+ . . .+ (�+��)O� + . . .

�

. (2.12)

We can best compare Se↵[⇤0] with Se↵[⇤] by rescaling x0 = x� and k0 = k/�, so that k0 < ⇤.

Using ddx = ��dddx0, �0 = �
p

�2�d (1 +�Z) and the operator scaling O�(x) = ��O0
�(x

0),

the e↵ective action becomes

Se↵ [⇤] =

Z

ddx0
⇢

1

2
@µ�

0@µ�0 + . . .+ ��d+��0O0
� + . . .

�

. (2.13)

This analysis implies that only a finite subset of all operators remains important in

the deep IR, where � ! 0. The operators with dimension � < d are thus known as (IR)

relevant, and those with� > d as irrelevant. Operators with� = d are calledmarginal, and

a quantum analysis is required to determine whether they are exactly marginal, i.e. do not

scale, or whether they are marginally relevant or marginally irrelevant. Another striking

result is the equivalence between irrelevant and non-renormalisable operators. This view

further allows us to understand various QFTs, potentially with a Landau pole, as theories

with a finite range of applicability and some unknown UV completion.

The e↵ective reduction in the number of relevant operators in the IR implies universality

of low-energy phenomena that are insensitive to the details of short-distance UV physics. As

long as the right degrees of freedom are identified, the limited choice of relevant operators
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should give the correct long-distance physics. Indeed, scalar �4 theory can be used to

predict critical exponents in a wide variety of physical systems at their IR critical points.

The Wilsonian approach generates a quantum theory for energies with k  ⇤. However,
there is another type of e↵ective theory, the 1PI e↵ective action, which gives a classical

action with included quantum corrections. Consider a single scalar field theory

Z [J ] =

Z

D� exp

⇢

iS[�] + i

Z

ddxJ�

�

⌘ exp {�iW [J ]} , (2.14)

where we have used the expression to define W [J ]. We further define a classical field ,

�cl(x) ⌘ h⌦ |�(x)|⌦i = � �

�J(x)
W [J ] . (2.15)

The e↵ective action for the classical field is then the Legendre transform,

� [�cl] = �W [J ]�
Z

ddx0J (x0)�cl (x
0) . (2.16)

The variation ��/��cl = 0 generates the quantum-corrected equation of motion, after the

source J is set to zero. It turns out that as Z[J ] generates correlation functions, W [J ]

is the generator functional of connected correlation functions. Furthermore, �[�cl] is the

generator functional of one-particle-irreducible correlation functions.

2.1.3 Hydrodynamics

One of the core questions this thesis addresses is how hydrodynamics can arise from UV

physics in a systematic language of e↵ective field theory. We know that gases, liquids,

plasmas, etc. exhibit collective behaviour that universally follows a hydrodynamical de-

scription. Hydrodynamics with its dissipative IR e↵ects should thus arise naturally from

most QFTs. The theory of hydrodynamics is usually phrased as a phenomenological theory

using gradient expansion in the relevant variables [25, 26]. It is certainly one of the most

widely used examples of an e↵ective theory. Its phenomenological construction is presented

in this section.

Phenomenological hydrodynamics with a single conserved charge can be constructed as

the gradient expansion of conserved operators, i.e. the stress-energy tensor and the con-

served current, in terms of the metric tensor, velocity, temperature and chemical potential

fields.1 The three fields, uµ(x), T (x) and µ(x), should be seen as near-equilibrium gen-

eralisations of their equilibrium thermodynamical counterparts. The assumption of local

equilibrium is necessary because the conservation laws in d dimensions, @µT µ⌫ = 0 and

@µJµ = 0, provide d + 1 equations. However, a symmetric stress-energy tensor T µ⌫ and a

1For theories with more conserved charges, one can follow exactly the same line of reasoning as the one
presented in the section.
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vector Noether current Jµ have d(d + 1)/2 and d independent components, respectively,

giving more unknowns than variables. The assumption of local equilibrium thus restricts

the problem to solvable d+ 1 variables.

The gradient expansion in a curved space with a metric gµ⌫ takes the form

T µ⌫ = T µ⌫
(0) (u, T, µ, g) + T µ⌫

(1) (@u, @T, @µ, @g) + . . .+ T µ⌫
(n) (@

nu, . . .) , (2.17)

Jµ = Jµ
(0) (u, T, µ, g) + Jµ

(1) (@u, @T, @µ, @g) + . . .+ Jµ
(n) (@

nu, . . .) . (2.18)

It is important to note that because the hydrodynamic fields, uµ, T and µ, have no micro-

scopic definition, they can be re-defined by a choice of frame,

(uµ, T, µ) !
 

ũµ = uµ +
X

n

�nuµ, T̃ = T +
X

n

�nT, µ̃ = µ+
X

n

�nµ

!

, (2.19)

where �nuµ, �nT and �nµ can be arbitrary functions of n-th order derivatives of the three

fields. The metric tensor cannot be used in this sense, as metric variations, i.e. coordinate

changes, leave tensorial equations invariant. The simplest tensorial quantity, the Riemann

tensor, Rµ⌫⇢�, will enter into the equations of second- and higher-order hydrodynamics.

T µ⌫ and Jµ can be decomposed in terms of di↵erent tensor structures as

T µ⌫ = Euµu⌫ + P�µ⌫ + (qµu⌫ + uµq⌫) + tµ⌫ , (2.20)

Jµ = Nuµ + jµ, (2.21)

where E , P and N are scalars, qµ and jµ transverse vector and tµ⌫ a transverse, traceless

and symmetric tensor. Each one of these is then gradient expanded as in (2.17) and (2.18).

Note that we define the projector �µ⌫ as �µ⌫ ⌘ gµ⌫ + uµu⌫ . These properties allow us to

find the constitutive relations,

E = uµu⌫T
µ⌫ , P =

1

d
�µ⌫T

µ⌫ , N = �uµJ
µ, qµ = ��µ⇢u�T

⇢�, (2.22)

jµ = �µ⌫J
⌫ , tµ⌫ =

1

2

✓

�µ⇢�⌫� +�⌫⇢�µ� �
2

d� 1
�µ⌫

◆

T ⇢�. (2.23)

At zeroth order in the gradient expansion we find that

T µ⌫
(0) = ✏uµu⌫ + P�µ⌫ , Jµ

(0) = nuµ, (2.24)

where E(0) = ✏, P(0) = P and N(0) = n are the energy density, pressure and the charge

density, respectively. The two vectors and the tensor, qµ(0) = jµ(0) = tµ⌫(0) = 0, at zeroth order.

At higher orders, frame dependence can be used to eliminate some terms from the

expansion. Imposing that under the frame re-definitions (2.19), �T µ⌫ = 0 and �Jµ = 0,

using the fact that uµ�uµ = 0, as well as Eqs. (2.20), (2.21), (2.22) and (2.23), we see that
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�E = �P = �N = �tµ⌫ = 0. However, �qµ = � (E + P) �uµ and �jµ = �N �uµ up to higher

orders. A choice of �uµ to any order that sets qµ = 0 is known as the Landau frame and

jµ = 0 as the Eckart frame. Furthermore, it is conventional to use �E = 0, which enables

us to write

E0 (T, µ) + . . .+ En (@nu, . . .) = E0
⇣

T̃ , µ̃
⌘

+ . . .+ Ẽn (@nũ, . . .) . (2.25)

Expanding the re-defined fields, ũµ, T̃ and µ̃, allows us to order-by-order adjust the frame

choices so that E = E0 = ✏. Having already used �nuµ, we have two remaining freedoms,

which allows us to also set N = n.

Working in the Landau frame, we are left with a scalar P , a vector jµ and a tensor

tµ⌫ , which need to be gradient expanded in full generality. The only remaining source

of the reduction of terms are conservation equations at lower orders. In particular, we

can use the scalars, uµ@⌫T
µ⌫
(0) = 0 and @µJ

µ
(0) = 0, to eliminate two terms from first-order

hydrodynamics. At other orders in derivative expansion, we can similarly form higher-

derivative scalars. Finally, each independent tensor structure is given an undetermined

transport coe�cient, which can only be computed microscopically.

With these steps in mind, the first-order hydrodynamic terms are

T µ⌫
(1) = �⌘�µ⌫ � ⇣�µ⌫r�u

�, Jµ
(1) = ��T�µ⌫@⌫

⇣µ

T

⌘

+ �T�
µ⌫@⌫T, (2.26)

with four transport coe�cients, ⌘, ⇣, � and �T . Coe�cient ⌘ is the shear viscosity and ⇣

the bulk viscosity. The tensor

�µ⌫ ⌘ �µ↵�⌫�

✓

r↵u� +r�u↵ �
2

d� 1
g↵�r�u

�

◆

, (2.27)

is the only one-derivative transverse, traceless and symmetric tensor.

This classification can be continued at higher orders in derivative expansion, exactly

following the procedure above. We will discuss second-order hydrodynamics in Chapter 5,

where we will compute second-order transport coe�cients in a type of a conformal fluid,

using string theory techniques. Furthermore, it should be pointed out that as of third

order, the full classification of hydrodynamic coe�cients is presently not known.

The above description of hydrodynamics can also be extended to include parity-violating

and anomalous e↵ects [27, 28], which will not be considered in detail here.

Beyond its conserved tensor structure, phenomenological hydrodynamics has an as-

sociated entropy current, Sµ [29], which is conserved for an ideal fluid and must satisfy

the positive entropy production condition, rµSµ � 0, in the presence of dissipation. A

covariant expression for Sµ, which is su�cient in first-order hydrodynamics is given by

TSµ = Puµ � T µ⌫u⌫ � µJµ. (2.28)
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An important class of fluids, relevant for AdS/CFT calculations, are conformal fluids

in which the trace of the stress-energy tensor vanishes, T µ
µ = 0. This implies the relation

✏ = (d � 1)P at zeroth order. Furthermore, conformality implies that the scalar P has to

vanish beyond zeroth order, therefore bulk viscosity ⇣ must also vanish in any conformal

fluid.

We conclude this section by noting that the conservation laws, @µT µ⌫ = 0 and @µJµ = 0,

provide di↵erential equations which govern the dynamics of fluids. For example, if we

consider an uncharged fist-order fluid, then the non-relativistic Navier-Stokes equations

follow from equation @µT µ⌫ = 0, followed by a non-relativistic scaling limit. We will

further analyse these issues in Chapter 3.

2.1.4 Out-of-equilibrium and thermal field theory

In many-body physics of collective phenomena, QFT built for the analysis of transition

amplitudes between pure states is insu�cient for the computation of expectation values

of quantum operators [8]. Furthermore, quantum processes are not the only types of

fluctuations that play an important role. In fact, to make any contact between quantum

field theory and hydrodynamics, it is essential to introduce the concept of temperature

and density into field theory. To bridge the gap between standard QFT and non-equibrium

physics, we will introduce the QFT techniques, which can successfully describe the evolution

of mixed states [8, 9, 30–33].

Consider an initial state density matrix ⇢(ti) in the Schrödinger picture, specified at

time ti. The initial ⇢(ti) can be evolved to ⇢(t) = Ut,ti ⇢(ti)Uti,t by a unitary evolution

operator,

Ut,t0 = T exp

⇢

�i

Z t

t0
H(t)dt

�

, (2.29)

where H(t) is the time-dependent Hamiltonian of the system and T denotes time-ordering.

An expectation value of a quantum operator O(t) at time t, is given by

hO(t)i ⌘ Tr [O⇢(t)]
Tr [⇢(t)]

=
Tr [Uti,t OUt,ti ⇢(ti)]

Tr [⇢(t)]
, (2.30)

where the cyclic property of Tr was used. Eq. (2.30) can be interpreted as time evolution

from ti to t, where the expectation value is calculated, followed by a backwards time

evolution from t to ti. This doubling of time axes and associated doubling of degrees

of freedom is the central idea behind the Schwinger-Keldysh Closed-Time-Path (CTP)

formalism [8, 9], which allows for out-of-equilibrium QFT computations. More details on

this formalism will be presented in Chapter 3, where CTP will be used to study IR e↵ective

theories with hydrodynamic properties.
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To connect these ideas with the usual single time axis QFT, let us consider an equi-

librium QFT at zero temperature. In that case, one is usually interested in computing

h⌦|O|⌦i, where |⌦i is the interacting ground state, which follows by time-evolution from

a non-interacting vacuum state at asymptotic infinity, |⌦i = Ut,�1|0i, with h0|0i = 1.

The assumption at work is that interactions only turn on adiabatically when the evolution

reaches the state |⌦i at t. After that point, the interaction is again switched o↵ adiabati-

cally, giving us only a phase shift factor,

U+1,�1|0i = ei↵|0i, h0|U+1,�1 = h0|ei↵. (2.31)

Throughout this procedure, it is necessary to assume that interacting adiabatic time evo-

lution keeps the system in its ground state. The CTP expression for an expectation value

h⌦|O|⌦i = h0|U�1,tOUt,�1|0i, having used two time axes, can now be written as

h⌦|O|⌦i = e�i↵ h0|U+1,�1 U�1,t OUt,�1|0i = h0|U+1,t OUt,�1|0i
h0|U+1,�1|0i , (2.32)

which implies that only forward time evolution is required for such computations.

At finite temperature and in equilibrium, the same reasoning implies that adiabatic

interactions only change the ground state up to a phase. Temperature is then encoded into

the length 0  ⌧ < � = 1/T of the Euclidean time interval of a Wick-rotated theory on

a compactified ⌧ -circle. This comes at the expense of eliminating time from the theory,

which is anyhow irrelevant in equilibrium. As in Eq. (2.32), only forward ⌧ evolution is

required.

The equilibrium partition function, Z = e��H , in a canonical ensemble, can be promoted

to a grand-canonical, or a generalised Gibbs ensemble. This is done by identifying all

mutually commuting conserved charges in the theory, Qi, and adding them to the partition

function,

Z = e��H+
P

i µiQi , (2.33)

where µi are the chemical potentials associated with conserved quantities. In a perturbative

expansion, Z can be computed by summing all vacuum bubble diagrams without external

legs. A theory with a chemical potential, and thus a finite density of a charge Q, can lead

to a Bose-Einstein condensate in a system of bosons and a Fermi surface in a system of

fermions.

The concepts of temperature and density play a very important role in the theory

of hydrodynamics, as seen in Section 2.1.3, where T (x) and µ(x) were treated as near-

equilibrium functions, i.e. generalisations of the equilibrium T and µ considered in this

section. We will thus be forced to use the concepts presented in this section when discussing
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a QFT approach to hydrodynamics in Chapter 3. Furthermore, we will devote Chapter 4

to the analysis of Fermi surfaces in supersymmetric field theories.

2.1.5 Supersymmetry

Symmetries play an integral role in quantum field theory. It is therefore natural to ask

what are all possible symmetries a quantum field theory can possess. In 1967 Coleman and

Mandula [34] proved a powerful theorem of fundamental importance to QFT, stating that

the only possible Lie algebras of symmetries are those of the Poincaré group generators, Pµ

and Mµ⌫ , along with internal Hermitian symmetry generators, which must commute with

the Poincaré generators. The Poincaré algebra may be enlarged to the conformal algebra

of Eqs. (2.8) - (2.10) when theories contain only massless particles.

A way to avoid this theorem is to generalise Lie algebras to graded Lie algebras,

[ta, tb} ⌘ tatb � (�1)⌘a⌘btbta = i
X

c

Cc
abtc, (2.34)

where ⌘’s equal either 1 or 0. The generators now obey the super-Jacobi identity,

(�1)⌘a⌘c [[ta, tb} , tc}+ (�1)⌘a⌘b [[tb, tc} , ta}+ (�1)⌘b⌘c [[tc, ta} , tb} = 0. (2.35)

This algebra is used in introducing a new type of symmetry into quantum field theory, which

transforms bosonic states into fermionic states and vice versa, i.e. supersymmetry [35–37].

The supersymmetry transformations are generated by complex anti-commuting spinors,

which obey the algebra

{Q↵, Q�} = {Q†
↵, Q

†
�} = 0, {Q↵, Q

†
↵̇} = 2�µ

↵↵̇Pµ, (2.36)

where �µ
↵↵̇ = (1, �i) and �i are the Pauli matrices. SUSY generators commute with trans-

lations, Pµ. An important property is that Qa annihilates the vacuum. Furthermore, in

SUSY theories the energy of the ground state vanishes, h0|H|0i = 0.

Superspace, yµ = xµ � i✓�µ✓̄, is a generalisation of coordinate space, xµ, which includes

non-commuting Grassmannian coordinates, ✓. It is convenient to assemble SUSY fields into

various superfield multiplets. The chiral multiplet with a complex scalar, �, and a Weyl

fermion, ✓, is given by �(y) ⌘ �(y) +
p
2✓ (y) + ✓2F(y). A gauge theory further requires

a vector multiplet, V a, with a vector field Aa
µ transforming under a representation ta, a

gaugino, �a, and a field D. F and D are convenient auxiliary fields and D ensures the

o↵-shell SUSY within the vector multiplet. A SUSY Lagrangian can in general be written

as a sum of two terms,

SSUSY =

Z

d4x d2✓̄ d2✓K
�

�†, egt
aV a
�
�

+

Z

d4x d2✓W (�) , (2.37)
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where K is the real Kähler potential that encodes kinetic terms and non-renormalisable

interactions. The holomorphic functionW is the superpotential, which encodes the standard

interactions. Its holomorphic property is the reason for the non-renormalisation theorems,

which simplify SUSY theories and constrain their quantum fluctuations.

Another important and generic property of SUSY theories is the classical moduli space

manifold of flat directions along the scalar (squark) potential. This can be most easily seen

from a typical D-term potential given by

V =
1

2

X

a

DaDa =
1

2g2
Tr[�,�†]2, (2.38)

which has V = 0 for any � = �ataC , where t
a
C are the commuting Cartan sub-group genera-

tors of the full Lie gauge group. Hence, the scalar vev and the vacuum state are not fixed

by the classical potential and there exist flat directions in the field space. SUSY-breaking

and thermal corrections can easily stabilise or de-stabilise the theory.

In supersymmetric theories, there exists a new type of charge, the R-charge, with a

generator R, which obeys

[Qa, R] = Qa, [Q†
↵̇, R] = �Q†

↵̇. (2.39)

In theories with only one SUSY generator, the R-symmetry group is U(1)R. We can also

consider theories with extended SUSY, which have N independent supercharges. Their

algebra generalises to {Qa
↵, Q

†
↵̇b} = 2�µ

↵↵̇Pµ�ab , and the R-symmetry group is enlarged to

U(N )R. Particle states with di↵erent spins form representations of the SUSY algebra and

the largest number of generators in a four-dimensional theory with particles of at most spin-

one is N = 4. The N = 4 supersymmetric Yang-Mills theory will receive much attention

in the following sections as it is the gauge theory side of the best understood AdS/CFT

example.

For higher spins, theories with local supersymmetry can be constructed, i.e. supergravity

[37,38]. In four dimensions, the highest number of supercharges is N = 8, which produces

multiplets with spins of s  2. This bound is set by the fact that no consistent theories with

higher spins are known in Minkowski space. N = 8 independent Qa
↵’s in four dimensions

give in total 32 real supersymmetries. This is considered to be the highest number of

SUSYs of any higher dimensional theory, since a theory with more SUSY would produce

spins with s > 2 in R3,1, after a compactification to R3,1 ⇥Mint.

By counting supersymmetries, an N = 1 supergravity can be formulated in at most

D = 11 dimensions. Remarkably, this theory is the low-energy e↵ective action of theD = 11

M-theory with solutions describing M2 and M5 branes. In supergravity, all multiplets

contain a graviton and the number N also equals to the number of gravitinos with s = 3/2
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in the supergravity multiplet. Supergravities in D = 10 with either N = 1 or N = 2 can

describe low-energy limits of closed string theories and will be discussed in Chapter 2.2.1.

2.1.6 Duality

The concept of duality has fundamental importance both in QFT and string theory. It

enables us to understand the physics of one theory, by translating the problems to a di↵erent

theory. We define a strong version of duality to mean the following: given two theories, T1

and T2, with generator functionals Z1 and Z2, there exists a transformation, which maps

the degrees of freedom from T1 to T2, and vice-versa, so that Z1 = Z2. We define a weak

form of duality to mean that there exists a sector of each theory, T1 and T2, in which the

degrees of freedom and observables are dual to each other, but Z1 6= Z2.

A simple example of a strong duality is the equivalence between the Thirring model of

massive fermions and a sine-Gordon theory of bosons, both in 1 + 1 dimensions [39–42].

The generator functional ZT of the Thirring model in Euclidean space is

ZT =

Z

D ̄D exp

⇢

�
Z

d2x



�i ̄/@ � g2

2

�

 ̄�µ 
�2

+ izm ̄ 

��

, (2.40)

where z is a cut-o↵ dependent constant, �µ are the Dirac matrices in two dimensions and

�5 = i�0�1. By using the bosonisation relations, along with field re-scalings,

�i ̄/@ =
1

2
(@µ')

2 ,  ̄�µ = i
�

2⇡
✏µ⌫@⌫', imz ̄ = �↵0

�2
cos �', (2.41)

the Thirring Lagrangian LT can be transformed into the sine-Gordon Lagrangian,

LSG =
1

2
(@µ')

2 � ↵0

�2
(cos (�')� 1) . (2.42)

The two coupling constants g and � are related by the expression

4⇡

�2
= 1 +

g2

⇡
. (2.43)

However, the identification of the degrees of freedom in Eq. (2.41) is not su�cient to

establish the duality on a quantum level. It is necessary to show that ZT = ZSG ⌘
R

D' exp{�
R

d2xLSG}, a result, which was proven in [39–41]. The relation (2.43) implies

that this duality is a weak-strong (coupling) duality. To understand the power of such

dualities, suppose we only had perturbative control over ZT and ZSG, i.e. when g, � ⌧ 1,

but were interested in a strongly-coupled phenomenon at g � 1. We could then use the

duality transformation (2.41) with (2.43), perform the calculation at � ⌧ 1 in ZSG, and

translate the result back to a prediction in ZT at strong coupling.

The holomorphic structure of the SUSY superpotential and the enlarged SUSY algebra

heavily constrain quantum corrections and gives rise to dualities in higher-dimensional
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theories that are absent in “realistic” non-supersymmetric theories, like QCD. A beautiful

example of this is the Seiberg-Witten theory, which provides a solution to the quantum

moduli space of the N = 2 super Yang-Mills theory with the SU(2) gauge group [43].

Analogous approaches were later used to solve theories with flavour [44], with di↵erent

gauge groups and with various other extensions, see e.g. [45–47].

The field content of the original SU(2) example is an N = 2 vector supermultiplet,

which contains N = 1 chiral and N = 1 vector multiplets in the adjoint representation.

The theory is asymptotically free and has an SU(2)R ⇥ U(1)R R-symmetry, where the

U(1)R is anomalous and broken by instanton e↵ects. In a theory with Nc colours and Nf

flavours, the resulting R-symmetry group is (SU(2)R ⇥ Z4Nc�2Nf
)/Z2, where the division

by Z2 arises because the centre of SU(2)R is contained in Z4Nc�2Nf
. The classical moduli

space of (2.1.7) with an SU(2) gauge symmetry can be parametrised by u = 1
2
a2, where

� = 1
2
a�3. It possesses a Z2 symmetry, u ! �u. The interactions are controlled by the

holomorphic coupling,

⌧ =
✓

2⇡
+

4⇡i

g2
. (2.44)

Because of the extended N = 2 SUSY, the entire low-energy e↵ective action, up to two

derivatives and four fermions, can be described by a single holomorphic function, i.e. the

prepotential P (A). A is used to denote a chiral multiplet with a scalar field a. Seiberg and

Witten were able to identify two non-perturbative singularities on the moduli space (due

to Z2), the BPS monopole (or dyon) states with the mass, M2 = 2|Z|2. In this equation,

Z is the central charge of the SUSY algebra, given by Z = ane + aDnm, where ne and nm

are the electric and magnetic charges of the relevant non-perturbative state. Again, a is

related to the scalar vev at the dyon point on the moduli space and aD is its dual value.

They are related to the holomorphic coupling by ⌧ = @aD/@a.

The duality at work here is the electric-magnetic duality, a version of the S-duality.

S-duality is fundamental in string theory and is a strong-weak duality generated by S and

T transformations, together forming the SL(2,Z) symmetry group,

S : ⌧ ! �1

⌧
, T : ⌧ ! ⌧ + 1 =) SL(2,Z) : ⌧ ! a⌧ + b

c⌧ + d
^ ad� bc = 1. (2.45)

The e↵ective theory near the non-perturbative points on the moduli space that behave

similarly to electrons is supersymmetric QED. The electric-magnetic duality (E ! B and

B ! �E) then provides a dual, perturbative theory (⌧D = �1/⌧) with mixed electric and

magnetic degrees of freedom. Because of this duality, one is able to find a perturbative

description everywhere on the moduli space. The prepotential, and thus the full non-

perturbative quantum low-energy e↵ective theory can then be calculated. This is done
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usingmonodromy techniques, by a contour encircling the three singular points on the moduli

space, i.e. M±u at the non-perturbative BPS states and M1 at the asymptotically-free

infinity, with M built out of the S and T transformations. Furthermore, we can find the

full running coupling by using ⌧ = @2P/@A2. The quantum moduli space is identified with

an elliptic curve and is thus a Riemann surface.

The same theory was analysed in [48] at finite temperature. It was found that the

strongly coupled monopole and dyon points on the moduli space minimise the free energy.

The moduli space lifts at large �, i.e. in the perturbative asymptotically-free regime.

To conclude this section, we present the Seiberg duality in N = 1 theories [49,50]. This

is another example of an electric-magnetic S-duality in a weak sense, as it only relates the

IR fixed points of two di↵erent theories, T1 and T2. The duality addresses the chiral N = 1

super QCD with Nc and Nf flavours, which we call T1. The gauge group is SU(Nc) and the

internal global symmetries are SU(Nf )L ⇥ SU(Nf )R ⇥U(1)B ⇥U(1)R, where U(1)B is the

baryon number and U(1)R the R-charge. The matter content is, beyond a vector multiplet,

described by two chiral multiplets Q and Qc. The phases of this theory can be classified by

the ranges of numbers Nc and Nf . For Nf < Nc, the theory has no vacuum. For Nf = Nc,

the vacuum degeneracy is lifted by quantum corrections and the theory has confinement

and chiral symmetry breaking. Similarly, for Nf = Nc + 1, there is confinement but no

chiral symmetry breaking.

From here on, we will focus on the regime of Nf > Nc + 1, which is relevant for the

duality. The theory T1 is asymptotically free when Nf < 3Nc. Thus, when Nf � 3Nc,

the spectrum of quarks and gluons can be understood from a weakly coupled Lagrangian.

In the regime of 3
2
Nc < Nf < 3Nc, the theory flows to a non-trivial, strongly coupled

superconformal IR fixed point in a non-Abelian Coulomb phase. For Nf  3
2
Nc, the

IR fixed point is trivial. Note that the identification of fixed points is exact because of

the holomorphicity of the superpotential. The analytic structure makes all two-loop and

higher-loop contributions to the beta function vanish, up to non-perturbative instanton

e↵ects.

The dual theory, T2, is an N = 1 theory with the SU(Nf � Nc) gauge group and the

same internal global symmetries as T1. However, its matter content includes three, instead

of two, chiral multiplets, Q̃, Q̃c and M , where M is a neutral meson superfield.

The conjecture, for which much evidence has been gathered, states that the strongly

coupled IR fixed point of T1, in the regime of 3
2
Nc < Nf < 3Nc, is related by electric-

magnetic duality to the weakly coupled IR fixed point of T2. Furthermore, the RG flows

into the two IR fixed points, including all deformations of T1 and T2, are also believed to

be dual to each other.
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2.1.7 N = 4 supersymmetric Yang-Mills theory and S-duality

As an extension of the discussion on dualities, and in preparation for introducing the

AdS/CFT duality, we devote this section to the properties of the maximally supersymmetric

N = 4 Yang-Mills theory. The easiest way to obtain the Lagrangian is to dimensionally

reduce a D = 10, N = 1 Yang-Mills theory to four dimensions. The D = 10 vector field,

from the vector multiplet, becomes a D = 4 vector field and the remaining six components

become six real scalars, �I . The fermionic content, which accounts for the eight real on-

shell degrees of freedom, are four Weyl gauginos, �i. All of the fields transform under the

adjoint representation of the same Lie Group G. The non-anomalous global R-symmetry

is SU(4)R ' SO(6)R, under which the fermions transform as a 4, and scalars as a 6.

The latter is a clear manifestation of rotations in the six internal dimensions in D = 10,

transverse to the remaining four.

The Lagrangian has standard kinetic terms, scalar potential and Yukawa couplings with

the form gYM�[�,�]. Furthermore, we can again introduce the topological Fµ⌫F̃ µ⌫ term and

define the holomorphic coupling ⌧ , as in (2.44). The full N = 4 theory is conjectured to

possess the S-duality (2.45), known historically as the Montonen-Olive duality [51]. Beyond

the strong/weak coupling transformation, the gauge group of the dual is the Langlands’

dual group LG, for example

LU(N) = U(N), LSU(N) = SU(N)/ZN ,
LSO(2N) = Sp(N). (2.46)

The theory has an exactly vanishing beta function �(gYM) = 0 to all order in per-

turbation theory. Furthermore, it is believed that the theory is superconformal non-

perturbatively [52].

2.2 Gauge/string duality

2.2.1 Strings, branes and e↵ective actions

Perturbative string theory involves two types of objects: open and closed strings [53–57].

Both types are described by a two-dimensional world-sheet action with di↵erent boundary

conditions. The only fundamental parameter is their tension, T = 1/(2⇡↵0), where ↵0 = `2s

and `s is the length scale of the fundamental strings. Strings with only bosonic excitations,

Xµ(⌧, �), must be embedded into D = 26 critical dimensions in order to avoid the Weyl

anomaly. However, their spectrum contains a tachyon, which is believed to signal an

instability.

Supersymmetric strings with both bosonic, Xµ, and fermionic,  µ and  ̃µ, excitations,

can have the tachyon eliminated from the spectrum by the space-time supersymmetry-
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preserving GSO projection. Their critical dimension is D = 10. There are five self-

consistent types of superstring theory: Type I (open strings), Type IIA and Type IIB

(closed strings), and two heterotic hybrids of bosonic and supersymmetric theories with

gauge groups SO(32) and E8 ⇥ E8. Through the use of non-perturbative string dualities,

all five types can be obtained as limits of M-theory in D = 11. We will mostly focus on

Type IIB theory, which originally gave rise to the gauge/string duality.

2.2.1.1 Closed strings and p-branes

The world-sheet fermions on closed strings can either have Ramond (R) boundary condition

or satisfy the Neveu-Schwarz (NS) condition:

(R) :  µ(0, ⌧) =  ̃µ(0, ⌧),  µ(⇡, ⌧) =  ̃µ(⇡, ⌧), (2.47)

(NS) :  µ(0, ⌧) = � ̃µ(0, ⌧),  µ(⇡, ⌧) =  ̃µ(⇡, ⌧). (2.48)

Massless bosonic excitations of all closed superstrings have the same NS sector with the

graviton gµ⌫ , the anti-symmetric Bµ⌫ field and the dilaton �. The vev of the dilaton

introduces a coupling parameter, gs = e�, for the perturbative world-sheet genus expansion.

We also define H = dB. In Type II theories, the massless Ramond-Ramond fields are form

fields, C, with an associated field strength, F = dC. In Type IIA, we have the one- and the

three-form, C1 and C3. In Type IIB, the spectrum includes the scalar axion, C0, and form

fields, C2 and C4. Massless fermions in Type IIB are two Majorana-Weyl gravitini,  µ,↵

and two Weyl dilatini, �↵. The five-form, F5 = dC4 is Hodge self-dual, i.e. F5 = ?F5. It is

important to note that the field content of Type I strings is an N = 2, D = 10 supergravity.

The spectrum of Type IIB theory is chiral, whereas the spectrum of type IIA is not chiral.

To understand how supergravity arises from the closed Type II string, its low-energy

e↵ective action must be constructed. This is done by including the massless fields as

generalised couplings into the Polyakov action, which takes the form,

SPoly = � 1

4⇡↵0

Z

d2�
p
�g

�

Gµ⌫(X)@aX
µ@aX⌫+ iBµ⌫(X)✏ab@aX

µ@bX
⌫+ . . .

 

, (2.49)

where gab is the D = 2 world-sheet metric and µ label bosonic fields, Xµ, for which the

criticality of the string demands that µ = 0, 1, ..., 9. Beta functions of the new “couplings”,

�(G), �(B), �(�), �(Cn), etc., can then be computed on the world-sheet in a perturbative

↵0-expansion, for which the Weyl invariance of the path integrals demands that �(G) =

�(B) = . . . = 0. However, these equations, coming from the consistency-condition of

the world-sheet theory, also have an alternative interpretation. They can be derived as

the Euler-Lagrange equations of motion from an N = 2, D = 10 space-time e↵ective
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supergravity action in the string frame,

SIIB =
1

(2⇡)7↵04

Z

d10x
p
�G



e�2�
�

R + 4 (@µ�)
2�� 2

5!
F 2
5

�

+ SB + SF, (2.50)

where SB and SF stand for other bosonic, including Chern-Simons, and fermionic terms in

the e↵ective supergravity action. Newton’s constant GN in ten dimensions can be found

by transforming (2.50) into the Einstein frame, giving 16⇡GN = (2⇡)7↵04g2s . Furthermore,

note that the self-dual nature of F5 cannot be incorporated into the action, but has to be

added as a condition at the level of equations of motion.

We can consistently set all fields but G, � and C4 to zero in the equations of motion at

the lowest order in ↵0. Thus, it is su�cient to analyse the action (2.50) with SB = SF = 0.

An important family of gravitational objects solves the equations arising form (2.50), also

with a p-form term, 2
(8�p)!

F 2
p+2, instead of F5. These extended objects are known as p-branes

because they possess translationally-invariant horizons. For our purposes, it will su�ce to

consider branes with p = 3. The solution of an extremal 3-brane is

ds2 = H�1/2
3 ⌘µ⌫dx

µdx⌫ +H1/2
3 dxmdxm, µ, ⌫ 2 {0, . . . , 3}, m 2 {4, . . . , 9},

H3 = 1 +
L4

r4
, L4 = 4⇡gsN↵

02, r2 = xmxm, (2.51)

with the dilaton and the R-R field given by

e2� = g2s , C4 =
�

H�1
3 � 1

�

g�1
s dx0 ^ dx1 ^ dx2 ^ dx3. (2.52)

This is a conformal brane as the value of the dilaton is constant throughout the D = 10

space-time. The space with coordinates {x5, x6, . . . , x9} is a 5-sphere, S5, with the line

element d⌦5. The integer N arises from the Dirac quantisation of the R-R five-form flux

through the 5-sphere,
Z

S5

?F5 = N. (2.53)

The brane is thus magnetically charged under the R-R field.

Branes with p+1 flat space-time dimensions, instead of four, can easily be generated in

Type IIA and Type IIB supergravity by using the Fp+2 R-R flux mentioned above. In Type

IIA, these are F2 and F4, while Type IIB supports F1, F3 and F5. Furthermore, branes can

be electrically charged under the Hodge-dual dA7�p = ?dAp+1. To summarise, we see that

Type IIA (IIB) theory supports p-branes with p even (odd). The dilaton is r-dependent

for all non-conformal branes, i.e. for all p 6= 3.

2.2.1.2 Open strings and D-branes

As supergravity is the low-energy e↵ective theory of closed strings, open strings give rise

to (non-Abelian) gauge theories on hypersurfaces known as D-branes [58–60]. A variation
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of the world-sheet string action for an open string demands that the boundary condition,

@�Xµ�Xµ = 0, be satisfied at the two ends, � = 0 and � = ⇡. We can thus select the von

Neumann boundary conditions, @�Xµ = 0, for µ = {0, . . . , p}, and the Dirichlet boundary

conditions, Xµ = Cµ, for µ = {p+1, . . . , D�1}. Cµ is a constant vector. Open strings can

thus be thought of as attached to a p+1-dimensional hypersurface, the Dirichlet (D)-brane,

on which they can move freely. The two types of boundary conditions are interchanged by

the T-duality, which is a duality between string spectra when a compactified dimension with

radius R is exchanged for radius 1/R. Many properties of D-branes follow from imposing

this duality, which is furthermore a duality within the M-theory relating Type IIA and IIB

theories, as well as the two heterotic theories.

The massless excitation of the open bosonic string is the vector field, Aµ, and supersym-

metric open strings include additional fermionic partners. The boundary conditions break

half of the 32 supersymmetries of the Type II theory, hence D-branes are BPS states in the

non-perturbative theory with 16 supersymmetries. The e↵ective action of D-branes can be

derived in a similar manner as the supergravity action in Section 2.2.1.1: by coupling the

string to massless background fields and computing the world-sheet beta functions [61]. It

is important to note that D-branes interact with closed strings in the bulk. The e↵ective

action is then a sum of the Dirac-Born-Infeld, Wess-Zumino and fermionic contributions,

i.e. SD-brane = SDBI + SWZ + SF + anomalous curvature, where

SDBI = �⌧p
Z

Mp+1

dp+1⇠ e��
p

� det [Gab +Bab + 2⇡↵0Fab], (2.54)

SWZ = µp

Z

Mp+1

Cp+1. (2.55)

Tensor Gab = @Xµ

@⇠a
@X⌫

@⇠b
Gµ⌫ is the metric pull-back onto the hypersurface. Similarly, Bab

is the pull-back of the NS closed string spectrum 2-form field Bµ⌫ . The action has re-

parametrisation invariance of its world-volume coordinates ⇠a. It is convenient to choose

the static gauge, Xµ = ⇠µ, for µ = {0, . . . , p}, which removes longitudinal fluctuations of

the brane from Gab.

The ends of open strings can further be equipped with Chan-Patton factors, so that

Fab = @aAb � @bAa + i[Aa, Ab] becomes the field strength of the non-Abelian vector field

transforming under the U(N) group. From the string theory point of view, this means

that we are describing the world-volume theory of N coincident D-branes. D-branes can be

further interpreted as sources of N units of the R-R charge flux in Type II theory [62], which

establishes the connection between p-branes and D-branes. A p-brane should be thought

of as a classical supergravity description of the gravitational field sourced by a heavy non-

perturbative D-brane with p + 1 extended dimensions. Similarly as with p-branes, Dp

23



branes with even (odd) p exist in Type IIA (B) theory.

Let us now focus on the D3 brane. According to the above analysis, the world-volume

e↵ective theory has 16 supersymmetries in four dimensions, which implies that the low-

energy limit of SD3 should be the maximally supersymmetric N = 4 Yang-Mills theory

with the gauge group U(N), presented in 2.1.7. Indeed, this can be seen by expanding

SDBI, as well as the supersymmetric fermion contributions, SF in powers of the massless

world-volume fields. The terms with real scalars �I , with I 2 {1, . . . , 6}, follow from the

expansion of the pull-back metric Gab around a flat metric ⌘ab in the static gauge,

Gab = ⌘ab +
@XI

@⇠a
@XJ

@⇠b
�ab, (2.56)

where �I ⌘ X i/(2⇡↵0). Each of the six scalars describes a transverse fluctuation of the

brane. The Yang-Mills coupling gYM and the ’t Hooft coupling � for the D3 brane are

given in terms of the string parameters

gYM =
p

4⇡gs, � = g2YMN = 4⇡gsN. (2.57)

2.2.2 AdS/CFT correspondence

The AdS/CFT correspondence is a holographic gauge/string duality formulated by Mal-

dacena in [10], where he considered the 3-brane solution (2.51) in the limit of ↵0 ! 0,

while holding the quantity u = r/↵0 fixed.2 This is the near-horizon (r ! 0) limit of

an asymptotically-flat brane background in which the metric becomes that of AdS5 ⇥ S5,

where AdS5 stands for the anti-de Sitter space, given in Poincaré coordinates by

ds2 =
r2

L2
⌘µ⌫dx

µdx⌫ + L2dr
2

r2
+ L2d⌦2

5. (2.58)

The scale L = (4⇡gsN↵02)1/4, known as the AdS radius, characterises the scale of curvature

of the gravitational p-brane solution.

In Sections 2.2.1.1 and 2.2.1.2, we established two di↵erent descriptions of the same

extended object, i.e. the D = 10 supergravity description and the D = 4, D-brane e↵ective

world-volume theory. In order for supergravity to be a good e↵ective description of the

underlying string dynamics, L � `s must be true. This implies that L4/↵02 = 4⇡gsN =

�� 1. Hence, the ’t Hooft coupling, as defined in (2.57), must be large for the supergravity

limit of closed string theory to be a suitable description of N D3-branes.

Alternatively, when N D-branes coincide, the relevant parameter in the open string

perturbative expansion is gsN . The D-brane e↵ective world-volume description, i.e. N = 4

SYM gauge theory, is thus a good description of the string spectrum when gsN ⌧ 1. This

2See references [52, 63–70] for various summaries and lectures on AdS/CFT.
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implies that the ’t Hooft coupling must be small, � ⌧ 1. The two di↵erent descriptions

are thus applicable in exactly the opposite limits of the ’t Hooft coupling.

Before stating the duality, let us consider more carefully the low-energy Wilsonian

e↵ective action, SIIB-IR = Sbrane + Sbulk + Sint, of massless excitation of the full Type IIB

theory in the “open string picture” (gsN ⌧ 1). The key observation is that in the low

energy limit, the interaction term Sint ⇠ O(!8GN) ! 0, hence the bulk (closed string) and

brane (open string) excitations decouple. Furthermore, since gravitational interactions are

irrelevant, the open string gauge theory with a marginal coupling in D = 4 dominates the

low-energy spectrum. Sbulk is simply classical gravity in D = 10 Minkowski space.

Similarly, in the “closed string picture” (gsN � 1), the near-horizon and far from hori-

zon gravitational theories decouple. The region far away is again D = 10 Minkowski space

gravity, while the near-horizon spectrum includes higher energy closed-string excitations in

AdS5 ⇥ S5, because all energies are red-shifted by the warp factor g00 ! 0. See figure 2.1

for a graphical representation of the geometry of the bulk.

Figure 2.1: A representation of the bulk geometry in the closed string picture. The near-horizon
anti de-Sitter throat extends towards the asymptotically flat far region.

The two near-horizon descriptions are then identified via the AdS/CFT duality con-

jecture, stating that the N = 4, U(N) superconformal Yang-Mills theory in D = 4 is

dual to the Type IIB string theory on AdS5 ⇥ S5 [10]. Although this statement has not

been proven or explicitly constructed, there is much evidence supporting it. The simplest

check is the comparison of symmetries, namely the isometry group of AdS5 ⇥ S5, which is

SO(4, 2) ⇥ SO(6), matches the conformal and R-symmetry groups in the N = 4 theory.

Among other evidence, it has been shown that the spectra of supersymmetric states, as

well as many scattering amplitudes, match.

The strong/weak duality is holographic in the sense that all information about a theory

with gravity is encoded in a lower-dimensional field theory. Usually, one only considers
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the five-dimensional, asymptotically-AdS part of the bulk, which is a dimensionally re-

duced solution of Einstein’s equations with a negative cosmological constant. In this sense,

AdS/CFT is an explicit example of the holographic principle in gravity [71,72], which stems

from Bekenstein’s observation that the entropy of a black hole that scales as the area of its

event horizon, should be the maximal entropy in a volume of space-time [73].

AdS/CFT has been extended to numerous other examples of string theory and M-theory

brane constructions, including probe branes [74]. The brane-bulk decoupling can also be

achieved by a large density of smeared brane defects, as opposed to a large number of

colour branes [75]. The duality can be extended to bulks, which include a gravitational

object with an event horizon, such as a black hole or a black non-extremal brane. The

dual theory then has non-zero temperature. Its temperature is identified with the Hawking

temperature TH of the black hole by resolving the conical space-time singularity at the

horizon. Furthermore, we can include finite density with a chemical potential through an

introduction of charge into the bulk [52,63–70].

In Euclidean space, the duality can be made precise by the GKPW formula [11,12],

Zstring

h

�(x, r)
�

�

r!1 = �0(x)
i

=

⌧

exp

⇢

Z

d4x�0(x)O(x)

��

CFT

. (2.59)

The formula states that a generic supergravity field � (dilaton, graviton, etc.), which

propagates in AdS5, sources a dual operator on the CFT side. By matching quantum

numbers, a scalar is dual to a scalar operator O, a graviton to the conserved stress-energy

tensor Tµ⌫ , a vector field to a conserved current Jµ, etc.

In order to make calculations possible, a further limit needs to be taken. This is the

limit of classical gravity in which all graviton loops are suppressed, L � `P , where `P is

the Planck length in D = 10, i.e. `P ⇠ G1/8
N . Hence, L4/`4P ⇠ (gs↵02N)/(gs↵02) = N � 1.

Eq. (2.59) then implies that classical gravity in AdS space gives us access to the strongly

coupled QFT with a large number of colours, Nc � 1,

lim
�,N!1

Zstring [�(x, r)|r!1 = �0(x)] = exp {�Sgrav[�0]} . (2.60)

We conclude this section by noting that there exists a direct connection between e↵ective

field theory, as interpreted in the Wilsonian renormalisation group picture, and AdS/CFT

correspondence. A fundamental feature of AdS/CFT is the IR/UV duality [76, 77]. More

precisely, the extra radial dimension r is related to the energy scale of the field theory; the

near-boundary and the deep bulk regions correspond to the UV and IR regimes of the dual

field theory, respectively. This statement can be motivated from various points of view. The

divergence of the metric tensor near AdS infinity corresponds to the UV divergence of the

field theory, whereas the IR is controlled by the black hole thermodynamics. Furthermore,
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the longer the distance between two boundary points, the deeper the geodesic between

them extends into the bulk. We also know that, for example, the radial dependence of

the dilaton �(r), in non-conformal scenarios, can be interpreted as the beta function of

the gauge theory coupling [63]. Lastly, if we slice the bulk along the radial direction and

integrate the slices out by starting from the boundary, we can show that this corresponds

to the Wilsonian integration of high-momentum modes in the boundary field theory.3

2.2.3 Hydrodynamics from AdS/CFT

The GKPW prescription (2.59) enables us to compute Euclidean correlation functions

by taking functional derivatives of the supergravity action with respect to the boundary

(r ! 1) values of the bulk fields, �/��0. It is easiest to compute a connected two-point

function, hO(x)O(y)i, by using the generator functional of connected correlation functions,

W [�0], where Z = exp {�W}, as discussed in Section 2.1.2. Using Eq. (2.60), we see that

W = Sgrav. Hence, the on-shell classical gravity action evaluated at the boundary of the

asymptotically AdS space gives the holographic connected two-point function.

Consider, for example, a probe scalar field � in a d+ 1 dimensional Euclideanised AdS

background with a Poincaré-patch metric and the AdS-radius set to L = 1,

ds2 = r2
�

dt2 + dx2
d�1

�

+
dr2

r2
. (2.61)

The action can be written purely in terms of space-time boundary contributions,

Sgrav =
1

2

Z

dd+1x
p
g



1

2
(@µ�)

2 + . . .

�

=

Z

ddkddk0

(2⇡)2d
�0(k)�0(k

0)F(r, k, k0)
�

�

1/✏

0
, (2.62)

where �(r, x) =
R

ddk
(2⇡)d

eikxfk(r)�0(k) and we are using the Dirichlet boundary conditions.

All other bulk terms vanish when Sgrav is evaluated on �, which satisfies the equation of

motion. We have cut o↵ the bulk near the AdS infinity by introducing a cut-o↵ surface

at r = 1/✏, for ✏ ⌧ 1. This regularisation scheme is required because the boundary

action diverges as r ! 1. A procedure of holographic renormalisation [81–83] can then

be employed, which precisely cancels o↵ divergent terms in (2.62). The scheme it employs

is the minimal subtraction scheme, which only subtracts the purely divergent terms. All

holographic counter-terms can be written in a covariant form, which manifestly preserves

the bulk di↵eomorphisms.

Beyond imposing the Dirichlet boundary condition at r = 1/✏, we demand that �

vanishes deep in the bulk, which makes F(0, k, k0) = 0. The Euclidean two-point function

3For details on the correspondence between Wilsonian RG and holography, the discussion of the IR/UV
correspondence and the issues related to the identification of the momentum cut-o↵ ⇤(r) in terms of the
radial coordinate, see [78–80] and references therein.
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is then given by expression

hO(k)O(k0)i = lim
✏!0

[ 2F (1/✏, k, k0) + counter-terms ] . (2.63)

It can be shown that hO(k)O(k0)i has exactly the right position-space scaling of a CFT,

as in the fixed-point Eq. (2.5), i.e. hO(x)O(y)i ⇠ |x � y|�2�O . The operator dimension

�O is given in terms of the scalar field’s mass, �O = d/2 +
p

(d/2)2 +m2. Furthermore,

expression (2.63) may include contact terms that can also be eliminated.4

If we consider a general asymptotically AdS background, it is very instructive to study

the solution of the massive scalar bulk equation of motion in a near-boundary expansion.

Using the Fourier decomposition of �(x, r), as before, and introducing a new radial variable

z = 1/r, we find that fk(z) scales as fk(z) = z�, as z ! 0. The two solutions of � are

�± = d/2±
q

(d/2)2 +m2. (2.64)

The full Frobenius series solution of the second-order can then be written as

�(x, z) = z���0(x)
�

1 +O(z2)
�

+ z�+�1(x)
�

1 +O(z2)
�

. (2.65)

In the standard quantisation with the Dirichlet boundary conditions, �0 is the source of

the dual operator O, and �1 is proportional to the vev, hOi. Notice that �+ is precisely

the dimension of O, i.e. �O. In the alternative quantisation, von Neumann boundary

conditions are used and �0 and �1 reverse their roles in relation to the source and the vev

of O. It is clear from the form of Eq. (2.64) that m2 � �(d/2)2, which is known as the

“Breitenlohner-Freedman” bound on the allowed range of tachyon masses in AdS [84, 85].

There exists a further, lower unitarity bound on the operator dimension, �O � (d � 2)/2,

which is relevant for the alternative quantisation where �O = ��.

Similarly to the above procedure, we can find the current Jµ correlators by considering

vector fields Aµ in the bulk, and the stress-energy tensor T µ⌫ correlators by perturbing

the background metric with a spin-two hµ⌫ . The dimensions of the dual Jµ and T µ⌫ are

�J = d � 1 and �T = d, respectively. Furthermore, fermionic boundary operators are

sourced by bulk fermions,  . In gravity, the z ⌧ 1 expansion of the metric is known

as the Fe↵erman-Graham expansion [86]. For each of the bulk fields, there is an associ-

ated holographic renormalisation procedure, which renders n-point functions finite. It is

important to note that for dynamical graviton fields, one must add the Gibbons-Hawking

counter-term, which renders the variational principle well-defined and allows for the Dirich-

let boundary conditions. The term is proportional to the trace of the extrinsic curvature

K of the boundary hyper-surface with the induced metric �, SGH = �2
R

ddx
p
�K.

4Contact terms are terms analytic in momentum. Therefore, contact terms can only give contributions
proportional to derivatives of the Dirac delta function, after hOOi is Fourier transformed to position space.
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In order to facilitate the computation of higher connected n-point correlation functions,

we must add interaction terms into the Sgrav action, e.g.
R

dd+1x
p
g��3. The correlation

functions can then be computed using standard diagrammatic techniques with external legs

fixed to the boundary of the bulk space-time. Such diagrams are often referred to as the

Witten diagrams [11].

In order to be able to use AdS/CFT for computations in the hydrodynamic limit of

strongly-coupled field theories with holographic duals, one must first understand how cor-

relation functions with Lorentzian signature can be recovered from gravity. A prescription

for the calculation of retarded and advanced two-point Green’s function was given in [87]

and will be summarised here. Consider for example a five dimensional asymptotically AdS

black brane metric with a horizon at z = zh,

ds2 =
L2

z2

✓

�

1� z4/z4h
�

dt2 + dx2 +
dz2

(1� z4/z4h)

◆

. (2.66)

The dual field theory now has finite temperature, T = ⇡/zh.

If we consider a scalar momentum space mode, �k(z), propagating in Lorentzian back-

ground (2.66), we can no longer demand for �k to vanish in the interior of the geometry,

as we did in the Euclidean case. We find that the two solutions at the horizon corre-

spond to in-going and out-going modes, �k(z) = (1� z/zh)±iw/2Fk(z), where we have used

dimensionless frequency and momentum, w ⌘ !/(2⇡T ) and q ⌘ |k|/(2⇡T ).
Since a black hole should absorb all information, the authors of [87] proposed the pre-

scription whereby a holographic retarded two-point Green’s function can be computed by

imposing the in-going boundary condition on �k(z) and using the expression GR(k, k0) =

lim✏!0 [2F(✏, k, k0) + c.t.], in analogy with (2.63). The non-vanishing F(zh, k, k0) does not

enter into the two-point function, hence this prescription cannot be derived from the

Lorentzian version of the GKPW formula (2.59). Similarly, the advanced Green’s func-

tion GA requires us to impose the out-going boundary condition on �k(z), or a mode of

any other spin.

The prescription for the calculation of higher Lorentzian n-point functions was es-

tablished in [88], where the authors promoted the holographic bulk calculation to the

Schwinger-Keldysh formalism5, which allows one to have control over all real-time corre-

lation functions. The doubling of the time axes was shown to correspond to the maximal

extension of the black brane’s (hole’s) Penrose diagram in Kruskal-Szekeres coordinates.

This naturally mixes black and white hole regions, giving access to mixed retarded and

advanced correlation functions.
5See Section 2.1.4 and Chapter 3 for a detailed discussion of the Schwinger-Keldysh Closed-Time-Path

formalism in QFT.
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We are now ready to study the w ! 0 and q ! 0 limit of strongly coupled thermal and

dense systems, i.e. hydrodynamics of holographic gases, fluids and plasmas [89–91]. As

discussed in Section 2.1.3, hydrodynamic properties of a system can be understood from

the gradient expansion (w, q ⌧ 1) of the stress-energy tensor T µ⌫ and the conserved current

Jµ. To understand the hydrodynamic behaviour of the N = 4 theory, or other theories

with holographic duals, we must perturb the background, gµ⌫ ! gµ⌫ + hµ⌫ , as well as the

vector field Aµ, when the fluid is charged [90,92]. Here, we will only consider the simplest

case of an uncharged N = 4 fluid at finite temperature, and hence only perturb the metric

gµ⌫ , which was stated in Eq. (2.66).

Following [90, 91, 93], it is convenient to pick momentum to flow in the z-direction and

write the rotationally invariant metric perturbations as hµ⌫(r)ei!t�ikz. Note that r is the

radial coordinate (as in (2.61), where r = 1/z of (2.66)) and that z is one of the three

flat spatial boundary coordinates, x = (x, y, z). The metric perturbations decompose into

three independent sectors according to the remaining SO(2) symmetry,

Spin 0 (sound channel) : htt, htz, hzz, h, hrr, htr, hzr (2.67)

Spin 1 (shear channel) : htx, hty, hzx, hzy, hrx, hry (2.68)

Spin 2 (scalar channel) : hxy (2.69)

The scalar channel transforms as a rank 2 tensor and we have defined h ⌘ hxx + hyy.

Beyond the fact that the equations of motion in each of the sectors are decoupled from

the remaining two sectors, the fields can be assembled into three gauge invariant variables,

Z1,2,3. We thus end up with the total of three independent scalar second order di↵erential

equations. Furthermore, the on-shell action Sgrav can be written solely in terms of Zi. As

a result of this decomposition, there are three independent two-point Green’s functions of

T µ⌫ , of which the poles give the gradient expanded hydrodynamic dispersion relations for

the shear and the sound modes. They have the form

Shear: ! = �i
⌘

"+ T
k2 �O(k4), (2.70)

Sound: ! = ±csk � 2

3

⌘

"+ P
k2 ±O(k3), (2.71)

where cs is the speed of sound fixed by conformal invariance to cs = 1/
p
3. The retarded

Green’s function in the scalar sector is

hT xy(�!, k)T xy(!, k)iR = P � i⌘! +O(!2) +O(k2), (2.72)

and has no hydrodynamic poles. It is easy to see from this expression that shear viscosity
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can be computed using the Kubo formula6,

⌘ = lim
!!0



i

!
lim
k!0

hT xy(�!, k)T xy(!, k)iR
�

. (2.73)

Holography thus enables us to determine the transport coe�cients ⌘, and others, as a

function of the microscopic parameters of a strongly coupled field theory.

These and similar gravitational methods were first used to show the universality of

⌘/s = ~/(4⇡kB) in strongly coupled holographic theories with two-derivative bulk ac-

tions [94]. This value gives the correct order-of-magnitude prediction for ⌘/s in strongly

coupled theories, consistent with various experimental measurements [95]. The authors

of [94] further conjectured the ⌘/s � 1/(4⇡) inequality for realistic fluids. Although no

experimental fluid has been found that would violate this bound, there exist phenomeno-

logical holographic, as well as top-down string theoretic constructions that do violate the

inequality [96, 97]. These issues will be discussed in detail in Chapter 5.

As a final comment on AdS/CFT in this chapter, we would like to stress that holography

is deeply connected with the details of black hole physics. Thermodynamic properties of the

bulk black hole are those of the dual field theory. Beyond thermodynamics, hydrodynamic

transport can be understood in terms of the black hole’s quasi-normal modes [93]. To

better understand this fact, let us write a gauge-invariant Z(r) as in Eq. (2.65), i.e.

Z(r) = Ar��� +Br��+ + . . .. Imposing the Dirichlet boundary conditions, whereby Z = 1

at the boundary, the retarded two-point function becomes

hOOiR ⇠ B
A + contact terms. (2.74)

The poles of the Green’s function correspond to zeros of A, subject to in-going boundary

conditions at the horizon. Setting A = 0 (�0 in our previous notation) as the second

boundary condition therefore precisely corresponds to the way the quasi-normal modes are

computed in a black hole background. The quasi-normal modes are seen to equal dispersion

relations, !(k), which solve the limr!1 Z(r) = 0 equation for in-going Z(r) solutions of the

background fluctuation equations. Taylor expanded lowest quasi-normal modes in terms

of k precisely reproduce the forms of the hydrodynamic dispersion relations (2.70) and

(2.71). Furthermore, the explicit coe�cients of k determine the transport properties of the

strongly coupled field theory, dual to the gravitational setup.

All of these methods will be used in Chapter 5, where we will analyse transport in theo-

ries with higher derivative gravity. An alternative approach to holographic hydrodynamics,

i.e. the fluid/gravity correspondence [98, 99], which relies on a direct computation of the

holographic stress-energy tensor [100] will also be presented and employed in Chapter 5.

6See the end of Section 3.2 of Chapter 3 for a discussion on how Kubo formulas can be derived from
the CTP formalism of QFT.
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Chapter 3

Hydrodynamics from quantum field
theory

3.1 Motivation

E↵ective field theories combine a set of tools, which are extremely useful in describing

physical systems of which the full microscopic details are either too complicated, or simply

irrelevant for questions under consideration. Since this thesis is motivated by a desire to

pursue a systematic understanding of hydrodynamics, we will devote this chapter to the

use of powerful e↵ective field theory techniques to discuss hydrodynamics. Our main focus

will be the inclusion of dissipation into classical e↵ective field theory of hydrodynamics,

which is a longstanding and di�cult problem.

E↵ective theories of Goldstone modes have recently been shown to be the appropriate

framework to systematically derive hydrodynamics [3–5]. The equations of non-dissipative

hydrodynamics have previously been generated using this description at the zeroth order in

the gradient expansion for relativistic fluids that are insensitive to static, non-compressional

deformations [3, 4] and at second order by [101]. This was achieved by constructing a

gradient-expanded action describing the long-range scalar modes that correspond to spatial

excitations around the equilibrium state of a fluid. The form of the action was restricted by

the identification of appropriate symmetries, with the volume-preserving di↵eomorphisms

playing the central role in the reduction of potential Lagrangian terms.

A serious limitation of this scheme is that dissipative forces cannot be derived from

the variational principle. Our goal is, however, to develop a systematic scheme for the

construction of hydrodynamics at all orders - including dissipation. One approach to this

problem is to rely on linear response theory [102]. A di↵erent approach aimed at computing

hydrodynamic correlation functions from an e↵ective action was recently proposed in [103].

In this chapter, we will present another method, which will enable us to describe dissipative

fluids using the variational principle. This will be done by considering a classical e↵ective
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action with the characteristics of open-system e↵ective field theories, which emerge in the

Schwinger-Keldysh Closed-Time-Path (CTP) formalism [8,9], first introduced by Schwinger

[8]. The formalism was invented to describe retarded time-evolution of operator expectation

values acting on mixed states, which are specified by density matrices.

We will begin this chapter by presenting the details of the CTP formalism as an ex-

tension of the usual quantum field theory used to compute scattering amplitudes between

asymptotic pure states. We will discuss CTP in quantum field theory as well as its im-

portance to low-energy classical field theory, which will be of direct relevance to hydro-

dynamics. We will focus on the matrix structure of the CTP propagators, which arises

from the doubling of the degrees of freedom and the introduction of two time axes; one

evolving from past to future and the other evolving backwards in time. E↵ective theories

emerge when the unobserved degrees of freedom, called the environment, are eliminated.

The remaining degrees of freedom, called the system, follow more involved e↵ective dynam-

ics than in a theory of pure states. This requires the use of the CTP formalism, which is

able to incorporate the entanglement between the system and the environment. We will

argue that, generically, e↵ective field theories can include couplings between the two time

axes, expressed within the influence functional considered first by Feynman and Vernon

in [104], which includes all e↵ective interactions. The coupling of the two time axes corre-

sponds to system-environment interactions that make the state of the system mixed. This

in turn leads to a theory with excited environment states at asymptotically long time. If

the spectrum of these states has no gap, then the system experiences dissipative dynamics.

The double axes structure of e↵ective CTP theory descends into a classical low-energy

theory, which we will use to derive dissipative hydrodynamical equations of motion from

the variational principle. This will be done at a phenomenological level, directly in terms

of an e↵ective classical CTP field theory without a microscopic derivation, in accordance

with the logic used in [3, 4]. By varying the fields on only one of the two CTP time

axes, we will obtain the energy-momentum balance equation containing a two-tensor that

will not be conserved because of interactions between the fluid and the environment. Near

hydrodynamical equilibrium, however, we will show that this tensor becomes approximately

conserved. We will, therefore, identify it as the fluid’s stress-energy tensor. Using the

energy-momentum balance equation, we will also derive the Navier-Stokes equations. Shear

viscosity will be shown to vanish and a possible cause of this restriction will be discussed,

i.e. the theory’s invariance under volume-preserving di↵eomorphisms. Thermodynamical

quantities and bulk viscosity will be identified in terms coe�cient functions of the e↵ective

Lagrangian. Finally, we will discuss entropy production and conclude this chapter by

summarising our results.
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3.2 Schwinger-Keldysh CTP formalism

In Section 2.1.4, we motivated the necessity for the Schwinger-Keldysh Closed-Time-Path

(CTP) formalism for understanding a variety of di↵erent physical systems, which evolve

from either a pure or a mixed state to a non-vacuum state at some later time. In fact,

the CTP formalism is generically required for all types of QFT computations with the

exception of transition amplitudes between two asymptotic vacua. We will devote this

section to introducing the formalism in more detail, of which the first part will follow the

presentation of reference [30].

To simplify the discussion, let us consider a simple many-body system of bosons de-

scribed by the free Hamiltonian,

H(a†, a) = ! a†a, (3.1)

where a† and a are the creation and annihilation operators satisfying [a, a†] = 1. We can

further introduce the concept of coherent states |�i, which are defined by

a|�i = �|�i, h�|a† = �⇤h�|. (3.2)

This over-complete set of states, with h�|�0i = exp{�⇤�0}, provides a convenient resolution

of the unity operator,

1 =

Z

D�⇤D� e�|�|2 |�ih�|, (3.3)

similarly to the usual 1 =
P1

n=0 |nihn|. We can use Eq. (3.3) to write

Tr [O] ⌘
1
X

n=0

hn|O|ni =
Z

D�⇤D� e�|�|2h�|O|�i. (3.4)

Let us now consider evaluating the partition function,

Z =
Tr [UC⇢]
Tr[⇢]

, (3.5)

where UC is the operator, which takes the state around the entire discretised time contour,

introduced in 2.1.4. We will evolve the state |�1i from t1 = �1 to |�Ni at tN = +1, where

the state |�Ni will be identified with |�N+1i = |�Ni at tN+1 = tN and taken backwards in

time to |�2Ni at t2N = t1 = �1. We will assume the physics to be the same on both time

axes, which trivially implies Z = 1, and evolve the equilibrium bosonic density matrix,

⇢0 =
⇥

1� e��(!�µ)
⇤�1

. The expectation value h�2N |⇢0|�2Ni takes the form

h�2N |U��t|�2N�1i . . . h�N+1|1|�Nih�N |U+�t|�N�1i . . . h�1|⇢0|�2Ni, (3.6)
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which has to be integrated over each discrete time site with the weight exp{�|�i|2}. For

infinitesimal time steps ±�t, we can show that U±�t = exp{⌥iH(a†, a)�t} gives

h�i|U±�t|�j�1i ⇡ e�
⇤
i �i�1e⌥i!�⇤i �i�1�t. (3.7)

Furthermore, h�1|⇢0|�2Ni = exp
�

�⇤
1�2N · exp{��(! � µ)a†a}

 

, which allows us to write

Z =
1

Tr[⇢0]

2N
Y

k=1

Z

D�⇤
kD�k exp

(

i
2N
X

i,j

�⇤
iG

�1
ij �j

)

, (3.8)

where iG�1
ij is a 2N⇥2N CTPmatrix. Its non-zero components are iG�1

ii = �1, iG�1
1,2N = ⇢0,

iG�1
21 = iG�1

32 = . . . = iG�1
N,N�1 = h�, iG�1

N+1,N = 1 and iG�1
N+2,N+1 = iG�1

N+3,N+2 = . . . =

iG�1
2N,2N�1 = h+, where h± = 1 ± i!�t. Because the inverse propagator G�1 includes

o↵-diagonal entries, the propagator h�i�⇤
i i has a matrix CTP structure as well.

We are interested in the continuum limit of the CTP partition function (3.8) with an

arbitrary initial density matrix, ⇢i(ti), in four space-time dimensions. The integrand inside

the path integral for Z always takes the form of an exponentiated action, exp{iS}, as in

Eq. (3.8). The main feature of this expression are the doubled microscopic physical degrees

of freedom, '(t,x). It is therefore convenient to introduce the doubling notation,

'! '̂ = ('+,'�), (3.9)

where '+ is thought of as propagating on the positive time axis, from initial time ti to

the final tf , and '� propagating on the backwards time axis. Note that the length of the

axes may be finite depending on the details of the problem. The matching of the two axes

demands that we set '+(tf ) = '�(tf ). The CTP action can now be written in terms of a

single time integral,

SCTP [�̂] = S['+]� S⇤['�] =
Z tf

ti

dt

Z

d3x
⇥

L('+)� L⇤('�)
⇤

, (3.10)

where the Lagrangian could be complex. There always exists the CTP symmetry,

SCTP ['
+,'�] = �S⇤

CTP ['
�,'+], (3.11)

which plays an important role in restricting the structure of the Green’s functions and

e↵ective actions.

By introducing two sources, j±(x), we can generate n-point correlation functions and

facilitate the perturbation expansion. To develop the necessary tools for the evaluation

of expectation values at the final time tf , given some initial ⇢i, it is useful to write the

generator functional in the Heisenberg representation,

eiW [j+,j�] = Tr
h

T
n

e�i
R
dx[H(x)�j+(x)'(x)]

o

⇢i T ⇤
n

ei
R
dx[H(x)+j�(x)'(x)]

oi

, (3.12)
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where T and T ⇤ denotes the time ordering and anti-time ordering, respectively. The sources

j±(x) then generate observables through functional di↵erentiation �/�j±(x). At the end

of the calculation, both sources are set to the same physical value, j+(x) = �j�(x) =

j(x). As in standard QFT, however, it is most convenient to write down the path integral

representation of Eq. (3.12), which gives the generator functional

eiW [j+,j�] =

Z

'+(tf ,x)='�(tf ,x)

D'+D'�⇢i
⇥

'+(ti,x),'
�(ti,x)

⇤

ei{S['+]+
R
j+'+�S⇤['�]+

R
j�'�}. (3.13)

On the level of the whole system, unitarity of the time evolution is expressed by the

preservation of total probability. The trace of the density matrix, (3.12), calculated for a

physical source, j+ = �j� = j, gives exp{ iW} = 1, as W [j,�j] = 0. This is completely

equivalent to finding that Z = 1 in the case of free bosons, which we discussed above.

We should note that the continuum notation of Eq. (3.10) is misleading as it would

seem to imply that '+ and '� are uncorrelated. This is not true, as we saw in the discrete

CTP analysis above. From a continuum point of view, there exists a zero mode that is

sensitive to the boundaries of the two time axes.

One of the powers of the CTP formalism is that it allows us to set up perturbation ex-

pansion for retarded Green’s functions. They are completely encoded by the full continuum

CTP propagator,

iD��0
(x, x0) = Tr

h

T̄
n

'�(x)'�
0
(x0)

o

⇢i
i

, (3.14)

where � and �0 indices can be either + or �. The generalised time ordering, T̄ , corresponds

to T on the positive time axis and T ⇤ on the negative time axes. In vacuum, D++ is the

Feynman propagator,

Tr
⇥

T
�

'+(x)'+(x0)
 

|0ih0|
⇤

= h0|T {'(x)'(x0)}|0i. (3.15)

The action of T̄ is trivial if the two operators belong to di↵erent time axes,

Tr
⇥

T̄
�

'�(x)'+(x0)
 

|0ih0|
⇤

= Tr ['(x)'(y)|0ih0|] = h0|'(x)'(y)|0i, (3.16)

hence the o↵-diagonal components of the propagator give the Wightman function without

time ordering. The other components of the CTP propagator can be found by complex

conjugation, leading to the block matrix form,

iD̂(x, y) =

✓

hT ['(x)'(y)]i h'(y)'(x)i
h'(x)'(y)i hT ['(y)'(x)]i⇤

◆

. (3.17)

The CTP propagators for free bosons in momentum space is given by

D̂(k) =

✓

1
k2�m2+i✏

�2⇡i �(k2 �m2)⇥(�k0)
�2⇡i �(k2 �m2)⇥(k0) � 1

k2�m2�i✏

◆

� i2⇡�
�

k2 �m2
�

nB(k)

✓

1 1
1 1

◆

, (3.18)
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where nB is the Bose-Einstein distribution function,

nB(k) =
⇥(�k0)

e�(✏k+µ) � 1
+

⇥(k0)

e�(✏k�µ) � 1
. (3.19)

The inversion of the propagator yields for �̂ = D̂�1 the structure

�n(k) = k2 �m2, �i(k) = ✏, �f (k) = isign(k0)✏. (3.20)

The free fermionic propagator, defined by the generator functional

e
i
~W [ĵ,¯̂j] =

Z

D[ ̂]D[ ˆ̄ ]e
i
~
ˆ̄ Ĝ�1 ̂+ i

~
¯̂j ̂+ i

~
ˆ̄ ĵ, (3.21)

can be written as

Ĝ↵�(x, y) =

✓

h0|T [ ↵(x) ̄�(y)]|0i �h0| ̄�(y) ↵(x)|0i
h0| ↵(x) ̄�(y)|0i h0|T [(�0 (y))�( ̄(x)�0)↵]|0i⇤

◆

, (3.22)

which gives the momentum space expression Ĝ(k) = (k/+m) D̂k, written here in terms of

the scalar propagator D̂k. In case of finite temperature and density,

Ĝ(k) = (k/+m)



D̂(k) + 2⇡i �(k2 �m2)nF (k)

✓

1 1
1 1

◆�

. (3.23)

where nF is the Fermi-Dirac distribution,

nF (k) =
⇥(k0)

e�(✏k�µ) + 1
+

⇥(�k0)

e�(✏k+µ) + 1
. (3.24)

The CTP identity,

T {A(tA)B(tB)}+ T ⇤ {A(tA)B(tB)} = A(tA)B(tB) + B(tB)A(tA), (3.25)

valid for bosonic operators, restricts the propagator to the standard CTP form,

D̂ =

✓

Dn + iDi �Df + iDi

Df + iDi �Dn + iDi

◆

, (3.26)

where the functions Dn, Df and Di appearing in the matrix elements are real. The ex-

change symmetry (�, x) $ (�0, x0) imposes Dn(x, y) = Dn(y, x), Df (x, y) = �Df (y, x),

and Di(x, y) = Di(y, x) in the bosonic case.

The Fourier transform of the Wightman function,

iD�+(p) = ⇥(p0)S(p), (3.27)

is the spectral function of excitations, which are generated by '(p) in a translationaly

invariant system with S(p) � 0. The relation allows us to express both Df and Di in terms
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of the spectral function, which leads to the spectral condition, Df (p) = sign(p0)iDi(p), and

the CTP propagator can thus be specified by only two real functions,

D̂(p) =

✓

Dn(p) + sign(p0)Df (p) �2⇥(�p0)Df (p)
2⇥(p0)Df (p) �Dn(p) + sign(p0)Df (p)

◆

, (3.28)

where the positive definiteness of the norm imposes the bound, i⇥(p0)Df (p) > 0.

The inverse of the propagator (3.26) is given by

D̂�1 = �̂

✓

�n + i�i ��f + i�i

�f + i�i ��n + i�i

◆

�̂, (3.29)

where �̂ is a diagonal “metric tensor” of the form �̂ = diag (1,�1). Furthermore,

�r,a = 1/Dr,a, �i = ��rDi�a, (3.30)

where �n(x, y) = �n(y, x), �f (x, y) = ��f (y, x), �i(x, y) = �i(y, x), �r = �n +�f and

�a = �n ��f . We also note that the spectral condition yields �f (p) = sign(p0)i�i(p).

Even though the preceding discussion applies to interacting fields, it is instructive to

consider free fields in a harmonic model. The action is given by

Sharm[�̂] =
1

2
('+,'�)

✓

�n + i�i �f � i�i

��f � i�i ��n + i�i

◆✓

'+

'�

◆

. (3.31)

The external source generates a non-trivial expectation value, which can be obtained from

either time axes,

h'(x)i
✓

1
1

◆

= �
Z

dy D̂(x, y)

✓

j(y)
�j(y)

◆

, (3.32)

showing that Dr = Dn + Df and Da = Dn � Df are the retarded and advanced Green’s

function, respectively. Since these Green’s functions are real in position space and complex

in momentum space, Dn(p) = <Dr(p) and Df (p) = i=Dr(p).

In terms of the generator functional, the expectation value of the field ' can be expressed

as

h'(x)i =
X

�

�

Z

dy
�2W [ĵ]

�j±(x)�j�(y)
j(y), (3.33)

which follows from Eq. (3.32). The quadratic approximation of the generator functional

(3.12) then reproduces the linear response formalism [105], including Kubo formulae, be-

cause

Dr(x, y) =
X

�

�
�2W [ĵ]

�j±(x)�j�(y)
, (3.34)

is the retarded Green’s function.

Hydrodynamics addresses the inverse problem. There, we are interested in the equations

(of motion), satisfied by the expectation values, where the external sources appear linearly.

It is easy to find the equation in question for the linear response,

j(x) =

Z

dy (Dr)�1 (x, y) h'(y)i . (3.35)
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The only subtlety is the necessity to exclude the null-space from the domain of the inverse

Green’s function, when necessary.

The generalisation of such an inverse linear response formula is provided by the func-

tional Legendre transform of W [ĵ], the e↵ective action,

�[�̂] = W [ĵ]� ĵ'̂, (3.36)

where

'̂ =
�W [ĵ]

�ĵ
. (3.37)

In fact, the inverse Legendre transform is given by Eq. (3.36) and

ĵ = ���['̂]
�'̂

. (3.38)

This expression plays the role of the equation of motion and produces a non-linear ex-

tension of the hydrodynamical equations. The inverse Legendre transform generates the

non-linearity necessary to close the equation without auxiliary variables, such as thermo-

dynamical functions.

3.3 CTP Wilsonian e↵ective action

In this section, we will analyse the characteristic behaviour of a Wilsonian e↵ective action

in the framework of the CTP formalism. Let us consider a microscopic real scalar field ',

with the single time axis action Ss[']. The doubling of the degrees of freedom leads to the

quantum generator functional,

ZCTP =

Z

D'̂ exp

⇢

iSs['
+]� iSs['

�] + i

Z

Ĵ'̂

�

. (3.39)

The full CTP action of '̂, SCTP ['+,'�] = Ss['+]� S⇤
s ['

�], possesses the CTP symmetry

(3.11). The generator functional with two sources, Ĵ = (J+, J�), leads to the free 2⇥2 ma-

trix propagator D̂, discussed in detail in Section 3.2. D̂ contains the Feynman propagator

as the diagonal block, D++, and the o↵-diagonal Wightman function,

h'(y)'(x)i = �2⇡i�(k2 �m2)⇥(�k0). (3.40)

The o↵-diagonal pieces of D̂ induce interactions between '+ and '�. Finite temperature,

T = 1/�, and density with a chemical potential µ, in cases when ' is complex, further

modify the free propagator to give the full expression of Eq. (3.18).

Let us now consider a scalar �'4 theory in which we follow the Wilsonian approach

to e↵ective field theory and integrate out UV-degrees of freedom. We introduce a scheme
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with two cut-o↵s in the original bare theory, one for frequency, |k0| < ⇤0, and one for

momentum,
p
k

2 +m2 = "
k

< ⇤". We then split the fields, '̂ = '̂< + '̂>, and integrate

out '̂>, with frequency and energy intervals, given by

⇠⇤0  |k0| < ⇤0, ⇣⇤"  "
k

< ⇤". (3.41)

The UV-mode integrals must therefore run over three regions,

I1 : {⇠⇤0  k0 < ⇤0, 0  "
k

< ⇤"} , (3.42)

I2 : {�⇤0 < k0  �⇠⇤0, 0  "
k

< ⇤"} , (3.43)

I3 : {�⇤0 < k0 < ⇤0, ⇣⇤"  "
k

< ⇤"} . (3.44)

In a perturbative expansion of (3.39), we find various couplings between the two axes,

for example �2 ('+
<)

2 ('+
>)

2 ('�
<)

2 ('�
>)

2. In the process of integrating out '+
> and '�

>, the

on-shell Wightman functions can connect vertices on di↵erent time axes, and give rise to

non-trivial '+
<'

�
< couplings in the e↵ective theory, Seff [�̂<]. We find that the e↵ective

action includes the following type of terms,

Seff [�̂<] = SCTP [�
+
<,�

�
<] +

Z

d4x
⇥

µ1 '
+2
< '�2

< + µ2 '
+3
< '�

> � µ⇤
2 '

�3
< '+

>

⇤

. (3.45)

Due to the CTP symmetry, µ1 has to be purely imaginary, whereas µ2 will be complex.

The equations of motion for �̂ derived from a CTP e↵ective action will thus also in general

be complex. The real part of the equations of motion, coming from <Seff , has the property

that �+ = �� is the solution, which is always true in real CTP actions. The imaginary

terms from =Seff will be complex conjugates of each other in the equations for �+ and

��. We should note that the same structure as in the Wilsonian e↵ective action arises in

a 1PI e↵ective action, which we introduced in Section 2.1.2. In both e↵ective actions the

real part of the action is important for physical Hermitian expectation values, whereas the

imaginary part controls decoherence.

Beyond this proof of principle, which shows that coupling between �+ and �� generically

arise in e↵ective actions, we will discus the significance of such e↵ective coupling in the

following section. Furthermore, note that this type of e↵ective theory, which is constructed

with the full CTP machinery, is able to account for the time-evolution of any pure or mixed

state in a closed or open field theory system. The details of the system we are describing are

determined by the degrees of freedom that were integrated out, i.e the environment. The

remaining reduced density matrix of the sub-system encodes all of the information about the

entanglement with the environment and dissipation of energy from the sub-system. The

sub-system can thus either preserve or break various symmetries of the full closed system.

This fact will play an important role in our construction of dissipative hydrodynamics.
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3.4 CTP formalism in classical field theory

3.4.1 Closed system

To see how all of the features presented in section (3.3) apply to classical e↵ective theory, let

us consider a classical field theory for an isolated system, described by the field  (x), which

is invariant under time inversion. Instead of deriving the e↵ective theory from microscopic

dynamics, we can directly use the CTP formalism in classical physics [106, 107]. This

is necessary when considering any physical problem in which we wish to specify initial

conditions for the equations of motion and to have the possibility of introducing e↵ective

interactions with dissipative forces into the Lagrangian formalism. From the microscopic

point of view, the theory can be understood as an e↵ective field theory; a special case of

those considered in Section 3.3, which keep the IR dynamics closed. All of the considerations

below would follow directly form such a derivation.

The procedure again begins by doubling the degrees of freedom [108],

 !  ̂ = ( +, �), (3.46)

in a way that both members of the CTP doublet satisfy the same equation of motion, initial

conditions and the relation  +(tf ,x) =  �(tf ,x) at the final time. The action describing

the dynamics of  ̂ is defined as in Eq. (3.39),

SCTP [ ̂] =

Z tf

ti

dd+1x
�

Ls

⇥

 +
⇤

� L⇤
s

⇥

 �⇤ , (3.47)

where Ls [ ] = L [ , @ ]+ i✏ 2 now di↵ers from the original Lagrangian in that it splits the

degeneracy of the CTP action for  +(x) =  �(x). The action (3.47) possesses the CTP

symmetry (3.11), related to the exchange of the two time axes,  + $  �,

SCTP [ 
+, �] = �S⇤

CTP [ 
�, +], (3.48)

which must be obeyed by any classical CTP action.

3.4.2 Open systems

In order to describe an open system of IR hydrodynamical degrees of freedom in the language

of classical field theory, we first need to consider a question of how to construct a general

classical field theory of a subset � of the degrees of freedom  . The e↵ective dynamics of �

can be obtained by eliminating the environment degrees of freedom by using their equations

of motion. Similarly, from the point of view of QFT presented in 3.3, the environment could

be seen as the degrees of freedom that are integrated out. This view is consistent with what
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dissipation in hydrodynamics really means; it is the energy loss of the fluid’s IR degrees of

freedom to the UV degrees of freedom of the environment. Only the total closed system,

combining all degrees of freedom, conserves energy.

In classical CTP theory, as in Section 3.3, the e↵ective action again has a more involved

structure than (3.47), namely

Seff [�̂] = S1[�
+]� S⇤

1 [�
�] + S2[�̂], (3.49)

where the indices 1 and 2 reflect the number of time axes entering the term in the action.

S1 and S2 can be uniquely distinguished by imposing

�2S2

��+��� 6= 0. (3.50)

Elimination of the environment generates contributions both to S1 and S2. We would like

to point out that in the original terminology of Feynman and Vernon [104], all e↵ective

contributions to Seff were collected into the influence functional Si,

Seff = S0[�
+]� S⇤

0 [�
�] + Si[�̂]. (3.51)

In Eq. (3.51), S0 stands for the original single time-axis action preceding the elimination

of the environment. We find it is more convenient to separate the influence functional into

terms entering S1 and S2. In this language, S0 will be included in S1. This separation is

useful because the terms in S1 preserve energy and momentum, while terms in S2 represent

dissipative forces. The inclusion of S2 into the classical action for hydrodynamics, discussed

in Section 3.6, will thus be our addition to the previous works on deriving hydrodynamics

from an action principle [3, 4, 101].

In the classical picture, the couplings between �+ and �� appear due to the boundary

conditions for the environment coordinates at the final time. These contributions arise

from asymptotic long-time excitations of the environment and are usually approximated by

gradient expansion. We will assume that the imaginary part of the e↵ective action obtained

by eliminating the environment remains small, as in the case of an isolated system. It will

be ignored below.

Let us assume that the gradient expansion in terms of space-time derivatives is ap-

plicable in the e↵ective action (3.49). We impose identical initial conditions on the two

time axes, @nt �
+(ti,x) = @nt �

�(ti,x), together with the auxiliary conditions @nt �
+(tf ,x) =

@nt �
�(tf ,x), for all orders of derivatives labeled by n � 0.

Variational equations can thus still be derived in the CTP theory because the boundary

contributions arising from partial integration cancel, due to the above conditions. Further-

more, the solutions of the open system’s Euler-Lagrange equations of motion give

�+(x) = ��(x). (3.52)
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The classical e↵ective action must again obey the CTP symmetry,

Seff [�
+,��] = �S⇤

eff [�
�,�+]. (3.53)

From the point of view of e↵ective field theory, relation (3.53) can be seen as a constraint

on the form of terms one can write down in the e↵ective action.

As an example of this formalism, it is instructive to consider a non-relativistic one-

dimensional particle whose e↵ective theory is defined by the Lagrangians

L1 =
1

2

�

mẋ2 �m!2x2
�

, (3.54)

L2 =
�

2

�

x�ẋ+ � x+ẋ�� . (3.55)

The corresponding equations of motion describe a damped harmonic oscillator,

mẍ± + �ẋ⌥ +m!2x± = 0 =) x+ = x�. (3.56)

The conservation of energy is obviously violated by Li.

In CTP, the näıve application of the Noether theorem to the action (3.49) gives, due

to the CTP symmetry, an identically vanishing stress-energy tensor for fields that satisfy

the equations of motion. However, the trivial cancellation between the time axes can be

avoided and the energy-momentum balance equation can be derived by varying only one

of the CTP doublet fields,

�+(x) ! �+(x+ a(x)),

��(x) ! ��(x).
(3.57)

The equation of motion for a(x), the balance equation, can then be written in the form of

a tensor divergence as

@µT
µ⌫ = R⌫ . (3.58)

Note that the dynamics of �+ and dynamics of the �� degrees of freedom on the two time

axes are related to each other by the CTP symmetry, (3.53). Either time axis could thus

have been used for the variation. In this work, we will always choose to treat the positive

axis with �+ fields as the one directly relevant to physical observations.

3.5 Hydrodynamics as e↵ective field theory

An e↵ective field theory describing hydrodynamics has recently been developed in terms of

a gradient expansion of Goldstone modes arising from the broken spatial boost invariance

[3, 4]. Reference [109] used the coset construction of a space-time symmetry breaking
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pattern to show that three scalar modes were su�cient in parametrising the low energy

e↵ective theory. The dynamics of the scalar modes �I , with I = {1, 2, 3}, in flat 3 + 1

dimensional space-time with the metric ⌘µ⌫ = diag (�1, 1, 1, 1)1, is chosen to display internal

symmetries under rigid translations,

�I ! �I + ↵I , with ↵I = const., (3.59)

rotations,

�I ! RI
J�

J , with RI
J 2 SO(3), (3.60)

and volume-preserving di↵eomorphisms (reparametrisations), abbreviated by SDi↵ (R1,3),

�I ! ⇠I(�), with det

✓

@⇠I

@�J

◆

= 1. (3.61)

The SDi↵ symmetry, which is imposed here, deserves special attention. Arnold showed

that non-dissipative ideal hydrodynamical equation on a manifold M, i.e. the Euler equa-

tion, can be generated as the co-adjoint orbit on the Lie group manifold of SDi↵(M)

[110, 111]. This symmetry should broken by dissipation, but this mechanism has not been

understood. We will proceed by making use of it and comment at the end on why this

symmetry is most likely too restrictive to construct the full equations of viscous fluids.

Returning to the setup of [3, 4], we note that in equilibrium, the fields equal spatial

coordinates, �I = const. · xI . Furthermore, relativistic hydrodynamics also requires the

Poincaré symmetry. The gradient expansion is constructed by counting the number of

derivatives acting on the vector field,

Kµ =
1

6
✏µ↵1↵2↵3✏IJK@↵1�

I@↵2�
J@↵3�

K ⌘ P µ↵
K @↵�

K , (3.62)

which is a combination of gradients of the Goldstone modes allowed by the symmetries

in three spatial dimensions. The vector field is conserved because of its anti-symmetric

structure,

@µK
µ = 0, (3.63)

and keeps the comoving coordinates constant along its direction, Kµ@µ�I = 0. We can

introduce a scalar field b, such that

Kµ ⌘ buµ. (3.64)

The norm of the velocity vector, uµuµ = �1, then implies that b2 = �KµKµ.

1This metric signature is normally used in string theory-motivated texts on hydrodynamics.
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Two useful projector identities can be derived for P µ↵
K , as defined in (3.62), by using

the properties of Kµ,

P µ⌫
K @��K =

1

3

�

Kµ�⌫� �K⌫�µ�
�

, (3.65)

P µ⌫
K @�@⌫�

K =
1

3
@�Kµ, (3.66)

with �µ⌫ = ⌘µ⌫ +uµu⌫ . The zeroth and first-order Lagrangians for the uncharged fluid are

then

L(0) + L(1) = F (b) + g(b)KµK⌫@µK⌫ . (3.67)

At zeroth order [4], the conserved stress-energy tensor of the closed system takes the form

of an ideal fluid,

T µ⌫
(0) = ✏uµu⌫ + p�µ⌫ , (3.68)

where the energy density ✏ and pressure p are

✏ = �F, p = F � b@bF. (3.69)

Further thermodynamic analysis reveals that the temperature is given by

T = �@bF. (3.70)

Finally, vector field Kµ can be interpreted at this order as the conserved entropy current

Kµ = buµ ⌘ Sµ = suµ, (3.71)

with

s = b, (3.72)

playing the role of the entropy density. This identification was performed in [4] because

Kµ is parallel to uµ and is by construction conserved, which is consistent with the entropy

conservation in an ideal fluid, i.e. in zeroth-order hydrodynamics. In reference [101], the

authors considered non-dissipative second-order hydrodynamics using the same identifica-

tion of the entropy current, noting that the construction should be understood as being

done in the entropy frame, in which Sµ = suµ to all orders. In standard phenomenological

hydrodynamics, one instead of the entropy frame usually chooses either the Landau frame

or the Eckart frame [25]. As discussed in Chapter 2.1.3, the physical meaning of the Landau

frame is that there is no energy flow in the local rest frame of the fluid. The Eckart frame,
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useful for a description of charged fluids, means that there is no charge flow in the local

rest frame.

The first-order contribution to the Lagrangian (3.67) can be rewritten as a total deriva-

tive and hence does not contribute to T µ⌫ . As a final point in this construction, note that

the chemical potential is vanishing in the absence of a conserved U(1) Noether current [4],

which we will not consider in this work.

3.6 Hydrodynamics with dissipation

3.6.1 The setup

Variational methods in the usual e↵ective theory formalism cannot describe dissipation.

However, this limitation can be avoided by using the CTP scheme as introduced above.

Firstly, the degrees of freedom are doubled, giving us six Goldstone fields �±I . The action

must be invariant under pairs of translations, rotations and volume-preserving di↵eomor-

phisms, each acting independently on �I+ and �I�. The di↵eomorphisms act as

�±I ! ⇠±I
�

�±� , (3.73)

with conditions on the determinants

det

✓

@⇠+I

@�+J

◆

= 1, det

✓

@⇠�I

@��J

◆

= 1. (3.74)

The field content and symmetries allow for two independent currents Kiµ, both with the

same Lorentz structure as before, where {i, j, k, ...} 2 {0, 3} correspond to the number of

�+ fields inside Kiµ. We write

Kiµ =
1

6
✏µ↵1↵2↵3✏IJK@↵1�

�1I@↵2�
�2J@↵3�

�3K , (3.75)

with (�1�2�3) = {(���), (+ + +)} for i = {0, 3}. Both Kiµ are still conserved,

@µK
iµ = 0, (3.76)

and both Kiµ = Kµ after �+K = ��K is imposed. It is useful to define, as in Eq. (3.62),

K3µ ⌘ P 3µ↵
K @↵�

+K . (3.77)

Furthermore, we can introduce

P 0µ↵
K ⌘ 0, (3.78)

which will make it clear that the transformation �+ acting on K0µ gives a vanishing con-

tribution.
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We can now write down the CTP action for the first two orders in the gradient expansion

of Kiµ,

L(0)
CTP = F (K3

�K
3�)� F (K0

�K
0�) +G(Ki

�K
j�), (3.79)

L(1)
CTP =

X

i,j,k

fijk(K
l
�K

m�)KiµKj⌫@µK
k
⌫ . (3.80)

Small latin indices are always summed over {0, 3}. The single axis contributions, i.e. S1, to

L(0) remain the same as in (3.67) and the zeroth-order action S2, which includes couplings

between the two time axes, is parametrised by G. It mixesKiµ’s with di↵erent CTP indices.

We include no single axis action at first order, as it would be a total derivative [4], so L(1) is

purely a part of S2, as classified by Eq. (3.49). This means that f333 cannot be a function of

only K3µ and f000 not of only K0µ. The real coe�cient functions F , G and fijk can depend

on any Lorentz-contracted combination of Kiµ, but may include no derivatives. At first

order, we thus have 23 = 8 coe�cient functions fijk, which are reduced to 4 independent

functions by the CTP symmetry (3.53).

3.6.2 Energy-momentum balance equation

The variation of the current Kiµ with respect to �+ results in an expression that is weighted

by the number of �+ fields inside of Kiµ,

�+�K
iµ = iP iµ↵

K @↵��
+K . (3.81)

The zeroth-order Euler-Lagrange equations of motion are

@�
X

ij

@ (F +G)

@(Ki
↵K

j↵)

⇣

iP iµ�
K Kj

µ + jKi
µP

jµ�
K

⌘

= 0. (3.82)

To find the energy-momentum balance equation for the open system, we vary the space-

time dependence of �+ by x ! x+ a(x). This results in �+x �
+K = aµ@µ�+K , while leaving

�+x �
�K = 0. By using the definitions of Kiµ as stated in Eqs. (3.75), (3.77) and (3.78), it

follows that

�+x K
iµ = iP iµ↵

K

�

@↵a�@
��+K + a�@

�@↵�
+K

�

. (3.83)

After we identify �+K = ��K , which is implied by the equations of motion, and use projector

identities (3.65) and (3.66), the form of the left-hand-side of (3.58) remains that of T µ⌫
(0) in

(3.68). The energy density and pressure are now

✏ = �F, (3.84)

p = F � b@bF +
b2

3

X

ij

Ḡ0
ij (i+ j) , (3.85)
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and the non-conserved part of the balance equation is

R⌫
(0) =

X

ij

Ḡ0
ij (i+ j) b@⌫b/3. (3.86)

Throughout this work, we define the barred functions as being evaluated on the equations

of motion �+K = ��K ,

Ḡ0
ij ⌘ G0

ij

�

�

�+K=��K . (3.87)

Furthermore, we have defined the derivatives of Gij by

G0
ij ⌘

@G

@
�

K l
�K

m�
� . (3.88)

The first-order equations of motion for S(1)
CTP are

@�
X

i,j,k

n

ifijkP
iµ�
K Kj⌫@µK

k
⌫ + jfijkK

iµP j⌫�
K @µK

k
⌫ � kfijkK

iµ@µK
j
⌫P

k⌫�
K

+
X

lm

f 0
ijk,lm

h ⇣

lP l��
K Km

� +mK l
�P

m��
K

⌘

KiµKj⌫@µK
k
⌫

� k@µ
�

K l
�K

m�
�

KiµKj
⌫P

k⌫�
K

io

= 0, (3.89)

where

fijk,lm ⌘ @fijk
@K l

�K
m�

. (3.90)

The calculation of T µ⌫
(1) goes through as it did for T µ⌫

(0) , resulting in a non-symmetric tensor

T µ⌫ on the left-hand-side of (3.58),

T µ⌫ = ✏uµu⌫ + p�µ⌫ � ⌘1u
µu�@�u

⌫ + (�1⌘
µ⌫+ �2u

µu⌫) @�u
� + �uµ@⌫b, (3.91)

where the coe�cient functions are given by

⌘1 =
b3

3

X

i,j,k

(j � k) f̄ijk, (3.92)

�1 = �2 + b�, (3.93)

�2 =
b3

3

X

i,j,k

X

lm

⇥

(j � k) f̄ijk � Cijk,lm

⇤

, (3.94)

� =
b2

3

X

i,j,k

if̄ijk, (3.95)

with Cijk,lm ⌘ b2f̄ 0
ijk,lm (l +m� 2k). The contribution to the non-conserving R⌫ from the

first-order action is

R⌫
(1) = ⌘1u

↵@↵u�@
⌫u� +

�1

b
@�u

�@⌫b� �

b
@�b@

⌫u�. (3.96)
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3.6.3 Stress-energy tensor, the Navier-Stokes equations and bulk
viscosity

The remaining question is how the energy-momentum balance equation (3.58) relates to

viscous phenomenological hydrodynamics that can be obtained from the symmetric stress-

energy tensor

T µ⌫
ph = T µ⌫

(0)ph + T µ⌫
(1)ph. (3.97)

The form of T µ⌫
(0)ph equals that of T µ⌫

(0) in Eq. (3.68) and

T µ⌫
(1)ph = �⌘�µ⌫ � ⇣�µ⌫@�u

� + (qµu⌫ + q⌫uµ) . (3.98)

The tensor �µ⌫ is the transverse traceless symmetric tensor

�µ⌫ ⌘ �µ↵�⌫�

✓

@↵u� + @�u↵ �
2

3
⌘↵�@�u

�

◆

. (3.99)

Hydrodynamics is constructed (see e.g. [25, 112]) as a gradient expansion in temperature,

chemical potential and velocity fields: T (x), µ(x) and uµ(x). In our discussion, µ(x) = 0.

As discussed in Chapter 2.1.3, the stress-energy tensor is then written as

T µ⌫
ph = Euµu⌫ + P�µ⌫ + (uµq⌫ + u⌫ q̃µ) + tµ⌫ , (3.100)

with qµ, q̃µ and tµ⌫ all being transverse. In phenomenological hydrodynamics, the stress-

energy tensor is symmetric, hence q̃µ = qµ.

Despite the fact that the tensor T µ⌫ we derived in (3.91) is not conserved, we can write it

in the form of (3.100). It is important to note that T µ⌫
(1) is not symmetric, thus q̃µ 6= qµ. At

this point, the fact that T µ⌫ is not symmetric means that we cannot interpret it as a stress-

energy tensor, in the absence of the Belinfante-Rosenfeld procedure [113, 114]. However,

we will see below that within an approximate scheme, a simple symmetrisation of T µ⌫ can

lead to a hydrodynamic stress-energy tensor, which reproduces exactly the same physical

equations as the ones we have derived from the energy-momentum balance equation (3.58).

The tensor structure of (3.100) allows us to identify the coe�cient functions of (3.91)

as

E = uµu⌫T
µ⌫ = ✏, (3.101)

P = �µ⌫T
µ⌫/3 = p+ �1@�u

�, (3.102)

qµ = ��µ�u↵T
↵� = �@µb� b�uµ@�u

� � ⌘1u
�@�uµ, (3.103)

q̃µ = ��µ↵u�T
↵�= 0, (3.104)

tµ⌫ =
1

2



�µ↵�⌫� +�µ��⌫↵ �
2

3
�µ⌫�↵�

�

T ↵� = 0. (3.105)
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Phenomenological stress-energy tensor is by construction conserved. Its conservation

equations,

@µT
µ0
ph = 0, @µT

µi
ph = 0, (3.106)

respectively give the continuity equation and the Navier-Stokes equation. They can be

reduced to their standard compressible form by using the non-relativistic scaling [115]:

t ! t/✏2nr, x ! x/✏nr, vi ! ✏nrvi and p ! ✏2nrp,

@0⇢+ @i
�

⇢vi
�

= 0, (3.107)

⇢
�

@0 + vj@j
�

vi= �@ip+ ⌘@2vi+(⇣ + ⌘/3) @i@jv
j, (3.108)

where vi is the velocity field, ⇢ = ✏+ p and @2 = @j@j.

To show how (3.107) and (3.108) arise in our construction, we first note that the e↵ective

Goldstone action (3.79), (3.80) for �± fields describes an out-of-equilibrium theory in which

the gradient expansion is organised by counting derivatives of currents Kiµ at some IR

hydrodynamic scale ⇤h. To understand the near-equilibrium limit, we study the energy-

momentum balance equation (3.58) by introducing a near-equilibrium parameter `, so that

�I(x)= b1/30

�

xI + `⇡I(x)
�

. (3.109)

Expanding around a constant equilibrium current

Kµ
0 = (b0, 0, 0, 0) , (3.110)

it follows that

b = b0 + `�b+ . . . , (3.111)

uµ = uµ
0 + `vµ + . . . , (3.112)

with

uµ
0 = (1, 0, 0, 0) , vµ =

�

0, vi
�

. (3.113)

In terms of the fluctuation fields ⇡i, we find that

�b = b0@i⇡
i, (3.114)

vi = �@0⇡i. (3.115)

Conservation equation (3.63) then implies the order-` relation

b0@iv
i = �@0�b. (3.116)
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At the leading order in `, the force of the environment acting on the fluid that is encoded in

the non-conserving R⌫
(1), vanishes. The first-order T

µ⌫
(1) is thus approximately conserved near

equilibrium and can be treated as the viscous contribution to the total fluid’s stress-energy

tensor.

Since first-order contributions are suppressed in the double expansion by ` as well as a

derivative acting on vi, we expand the zeroth-order energy-momentum balance equation to

order `2. The contribution from R⌫
(0) remains non-vanishing, but it can be absorbed into

the small O(`)-suppressed shifts of the fluid’s energy and pressure,

✏! ✏+ `p0, p ! p� `p0, (3.117)

where the un-shifted expressions are those of Eqs. (3.84) and (3.85). Furthermore, p0 is

given by the expression

p0 =
(i+ j)

3
�b



b0Ḡ
0
ij +

1

2
`
�

Ḡ0
ij + b0@bḠ

0
ij

�

�b

�

, (3.118)

with G0
ij evaluated at b = b0 and the expression summed over i and j.

With this re-definition of ✏ and p, the tensor T µ⌫ in (3.91) becomes approximately

conserved near equilibrium and mimics the expected behaviour of a stress-energy tensor,

@µT
µ⌫ ⇡ 0. (3.119)

A further requirement for a genuine identification of T µ⌫ with the hydrodynamic stress-

energy tensor of the fluid described by our CTP construction, is that T µ⌫ needs to be

symmetric. We can show that to the order of ` we are working at, a symmetrised T (µi)

obeys

@µT
µi = @µT

(µi) =
1

2
@µ
�

T µi + T iµ
�

+O(`2) ⇡ 0. (3.120)

The symmetrisation of T µ0 does not work in the same way. However, in the non-relativistic

limit, only zeroth-order, ideal hydrodynamic terms of the T µ0 components contribute to

the continuity equation (3.107). Thus, for a non-relativistic, near-equilibirum Navier-Stokes

fluid, we can identify the symmetrised version of our tensor T µ⌫ with the phenomenological

stress-energy tensor,

T (µ⌫) ⇡ T µ⌫
ph . (3.121)

One should be aware that beyond the aesthetic desire to exactly match the phenomeno-

logical stress-energy tensor, what is important for the physics are dynamical equations of

motion. Those follow from Eq. (3.58), which is approximately conserved and does not
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require T µ⌫ to be symmetric. Dynamical equations derived in the near-equilibrium limit

of our CTP construction are equivalent to those derived from phenomenological hydrody-

namics with the use of conservation laws.

The Navier-Stokes equations (3.107) and (3.108) again follow from the near-equilibrium

expansion to O(`2) at zeroth order, and O(`) at first order in gradient expansion, followed

by a non-relativistic scaling limit ✏nr ! 0. From this expansion, or directly from (3.105),

we find that shear viscosity ⌘ vanishes while bulk viscosity is non-zero,

⌘ = 0, ⇣ = ��1|b=b0 . (3.122)

Note that the vanishing of shear viscosity was most likely caused by the very large symmetry

group of volume-preserving di↵eomorphisms, under which our fluid is invariant. In fact,

viscosity in [102] resulted from a Lagrangian term that explicitly broke this symmetry.

Because of the near-equilibrium expansion, the hydrodynamic coe�cient ⇣ becomes an

equilibrium b0-dependent constant. In terms of the four undetermined coe�cient functions

in Lagrangian (3.80),

⇣ =� b30
�

f̄333 + f̄300 � f303 + 3f̄330
�

|b=b0 � 2b50
�

f̄ 0
333,03 + f̄ 0

303,03 � f̄ 0
330,03 � f̄ 0

300,03

�

|b=b0

� 4b50
�

f̄ 0
333,00 + f̄ 0

303,00

�

|b=b0 + 4b50
�

f̄ 0
330,33 + f̄ 0

300,33

�

|b=b0 . (3.123)

Lastly, the entropy current Sµ, which can be associated with the system, must satisfy the

covariant thermodynamic relation [25],

TSµ = puµ � T ⌫µu⌫ , (3.124)

as well as the positive entropy production condition @µSµ � 0. Eq. (3.124) then implies

that in our theory the first-order correction to the entropy current, as identified in Eq.

(3.71), takes the frame-invariant form

Sµ =

✓

✏+ p

T

◆

uµ +
qµ

T
= Kµ +

qµ

T
. (3.125)

Since the zeroth-order entropy current Kµ is conserved, the positivity of the divergence of

(3.125) requires us to impose

@µ

✓

qµ

T

◆

� 0. (3.126)

This statement is frame-dependent and applies only in our frame with E = ", cf. Eq.

(3.101), and for a conserved zeroth-order entropy current Kµ. We can see that in our

e↵ective CTP theory, temperature T can be identified with the expression

T =
X

ij



�@bF +
b

3
Ḡ0

ij (i+ j)

�

, (3.127)
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with i, j 2 {0, 3}. The entropy density relation, s = b, remains valid at first order. At the

leading order in ` and in the non-relativistic limit, we find that positive entropy production

condition (3.126) demands that

�(b0)@
i@i�b � 0. (3.128)

This expression is consistent with the following fact pertaining to incompressible fluids,

which are characterised by the condition

@iv
i = 0. (3.129)

According to definitions (3.112) and (3.113), the incompressibility condition (3.129) implies

the relativistic relation, @µuµ = 0, to first order in `. Conservation of Kµ, cf. Eq. (3.63),

then implies that b must be a space-time independent constant. Given definition (3.111)

of b to order `, the fact that b must be constant means that we may absorb a constant

value �b into b0, and set �b = 0. Finally, Eq. (3.128) shows that incompressibility

implies conservation of entropy. These findings are therefore consistent with the fact that

an incompressible non-relativistic fluid with ⌘ = 0 behaves as an ideal fluid without any

entropy production. In such cases, the presence of bulk viscosity ⇣ alone cannot influence

the solutions of the Navier-Stokes equation (3.108).

3.7 Discussion

In this chapter, we showed that phenomenological relativistic hydrodynamics with dissi-

pation can be constructed using classical CTP e↵ective action. We were able to derive

closed-form equations describing the fluid from an action principle, containing dissipative

e↵ects triggered by the presence of non-zero bulk viscosity.

Of central importance were terms collected into S2, which coupled fields living on the

two time axes and reflected quantum and classical interactions between the open (sub)-

system and the integrated-out, UV degrees of freedom of the environment. Dissipation thus

manifested itself in the energy loss of the low-energy degrees of freedom to the UV micro-

scopic degrees of freedom, which was represented by the system-environment interactions.

We note that this physical interpretation is in accordance with the usual phenomenological

view of dissipation. However, in that approach one is able to maintain all conservation

laws. The relation between the approach presented in this chapter and phenomenology

should be understood in a more precise and quantitative manner.

Despite the lack of energy conservation, the stress-energy tensor was shown to be con-

served in the near-equilibrium regime. This enabled us to identify bulk viscosity of the
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family of fluids, which could be described by the action we constructed. Shear viscos-

ity, however, vanished in this setup, which is most likely the result of a large amount of

symmetry, namely the volume preserving di↵eomorphisms that were used to construct the

e↵ective action. A further study of this important problem, i.e. the identification of the

correct symmetries of dissipative fluids, as well as classification of di↵erent fluids described

by the presented formalism should be returned to in the future.
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Chapter 4

Fermi surfaces in supersymmetric
field theories

4.1 Motivation

Understanding the behaviour of quantum matter at finite temperature T and density µ

is a major challenge in many areas of physics, ranging from traditional condensed matter

topics to quark-gluon plasmas as explored at RHIC and the LHC, to the behaviour of

super-dense QCD matter in the cores of neutron stars. Developing such an understanding

is especially di�cult when the systems are strongly coupled and traditional perturbative

techniques are not useful. One powerful non-perturbative technique which has attracted

a great deal of attention in recent years is gauge/gravity duality, introduced in Chapter

2.2.2, which maps questions about some special strongly-coupled field theories to questions

about weakly-coupled theories of gravity, which are much easier to work with.1 This has

led to many interesting results for the study of finite-density quantum matter, but also a

number of puzzles, such as the fate of Fermi surfaces in the strongly-coupled systems which

have gravity duals.

The ability to do controlled calculations on the gravity side of the duality comes with

several conditions and costs. To justify treating the gravity side of the duality classically,

which is in general the only tractable limit, one needs the field theory to be (1) strongly

coupled, typically in the sense of having a tunable ’t Hooft coupling which is taken to be

large and (2) to be in some kind of large N limit. Indeed, in all of the cases where the

dual field theory Lagrangian is explicitly known, the field theory is a non-Abelian gauge

theory, and the parameter N is associated with the rank of the gauge group.2 Finally,

the class of theories which have strong-coupling limits and a large N limit is clearly rather

1For an additional review focusing on Fermi surfaces see reference [116].
2Finding such a large parameter in the known phenomenologically-relevant examples is a challenge,

especially in the examples from condensed matter.
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special,3 and in all of the cases where the dual field theory Lagrangians are known, they are

supersymmetric gauge theories or deformations thereof, see e.g. [10, 74, 117–119] for some

prototypical examples.

These considerations make it di�cult to tell a priori which of the many interesting

results gauge/gravity duality has yielded are due to strong coupling, large N , the special

nature of the field content and interactions in the theories which have gravity duals, or

some combination of these. In this sense, gauge/gravity duality is essentially a black box,

since it is only tractable in a limit where the field theory description is fundamentally

di�cult to work with. Moreover, while the duality has yielded many striking results, it

has also produced many mysteries, such as the fate of Fermi surfaces at strong coupling,

explored in e.g. [120–138]. The ‘microscopic’ field content of the theories with gravity

duals generally includes gauge bosons, fermions, and scalars, with the number of degrees of

freedom for all of these scaling as O(N2) in the 4D field theory examples. In these theories

chemical potentials for conserved charges usually couple to both the scalars and fermions

at the microscopic level. Hence if intuition derived from studies of weakly-coupled non-

supersymmetric theories were to be boldly applied to the strong coupling limit of the kind

of theories which have gravity duals, then one might have expected that Fermi surfaces

would be ubiquitous in systems with gravity duals.

However, while Fermi surfaces have shown up in some examples of gauge/gravity duality,

they do not seem to be at all ubiquitous. Signs of Fermi surfaces for the O(N2) degrees of

freedom have recently shown up in e.g. [125] in correlation functions of fermionic operators

in electron star geometries [124,139], and in some top-down calculations in [137,138] for 4D

theories. But in other examples Fermi surfaces appear to be absent [126,127]. Meanwhile,

Fermi surfaces have been observed in fermionic correlators of O(N0) densities of probe

fermions in work initiated in [120, 121]. To make the situation more complicated, näıvely

— that is, based on expectations from weak-coupling studies of systems familiar from

condensed matter — Fermi surfaces should have an imprint on bosonic correlation functions

as well, showing up as e.g. momentum-space singularities in density-density correlation

functions leading to Friedel oscillations. Indeed, in holography one only has access to

gauge-invariant observables, while Fermi surfaces for the quarks in a gauge theory would

not be gauge-invariant. So such Fermi surfaces might be ‘hidden’ [130] in the gravity duals,

and hence singularities in gauge-invariant charge density correlation functions may seem to

be especially promising places to look for traces of Fermi surface physics. But such density-

correlator signatures of underlying Fermi surfaces have not been seen in many holographic

3For instance, large N QCD is not such a theory, since its ’t Hooft coupling runs, and is thus not a
tunable control parameter.
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systems.4

These considerations motivate our belief that in order to better understand the results

of gauge/gravity duality calculations, it would be very useful to reexamine some observables

for which strong coupling results from holography are available at weak coupling using con-

ventional field-theory techniques, where one can see all of the moving pieces. In particular,

one would have direct access to any ‘hidden’ Fermi surfaces, since at weak coupling it makes

sense to work in a gauge-fixed formalism. We will focus on D = 3+1 dimensional theories

for simplicity, and confine our attention to the T = 0 limit. The metric signature convention

used in this chapter will be the one used in QFT, i.e. ⌘µ⌫ = diag (+1,�1,�1,�1).

An example of the kind of theory one might want to study at weak coupling is N = 4

super-Yang-Mills theory with a chemical potential for R-charge, where the number of

charged degrees of freedom scales as N2, originally studied in [142–145]. Another ex-

ample, where the number of charged degrees of freedom scales as N1, is the N = 2 gauge

theory dual to Nf D7 branes intersecting Nc D3 branes in the ‘quenched’ Nf/Nc ⌧ 1 ap-

proximation [74]. The study of this latter flavoured N = 2 system at finite quark number

density was initiated in [146]. Calculations using the gravity side of the duality predict

unusual thermodynamical features for this theory which are not known to arise from any

weakly-coupled theory, with e.g. a specific heat with the temperature scaling cV ⇠ T 6 [147],

in contrast to what one might expect from a Fermi liquid where cV ⇠ T . Moreover, [147]

found a gapless quasiparticle mode in the system which was argued to be Landau’s zero

sound mode (see also [148–152] for some further exploration of this identification). But the

cV scaling shows that the system is clearly a non-Fermi liquid, and to the extent that the

dual field theory is a gauge theory with gapless gauge interactions, a zero sound mode would

be surprising, at least at weak coupling, as we discuss further in Section 4.2. What is the

origin of the curious thermodynamic properties of this system and what is the true identity

of the quasiparticles modes? It is possible that the puzzling thermodynamics is driven by

some intrinsically strongly-coupled physics, or — as explored recently in e.g. [152–154] —

were the calculations of [147] done in some metastable vacuum? Another possibility, which

can be explored using weak-coupling techniques, is that at least some of these properties

are a consequence of the unusual field content and interactions of the field theory.

However, as with the other theories with known field theory Lagrangians and gravity

duals, the N = 4 super-Yang-Mills field theory examined in [10] is quite complicated, as

are its cousins discussed in the many follow-up works, and we will not address field theories

4In [135] it is observed that density-density correlation functions in theories with dual Lifshitz geometries
[140, 141] with z = 1 have momentum-space singularities which suggest the presence of a Fermi surface,
but z < 1 examples do not.
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with gravity duals directly in this work. Instead, as a first step we will study a few simpler

toy-model supersymmetric gauge theories. Specifically, we will explore the behaviour of

N = 1 super-QED (sQED) and N = 2 sQED in the presence of chemical potentials at

zero temperature. Even these simple toy models show some curious features, since from a

condensed-matter point of view they have unusual field content and interactions, with the

chemical potential coupling to both scalar fields and fermions, which are in turn coupled

to each other by the demands of supersymmetry.

Perhaps the simplest questions one can ask about such systems concern the nature of

their ground states. Do the bosons condense, and do the fermions develop a Fermi surface?

It seems natural to expect weakly-coupled scalars to condense at T = 0 in response to a

chemical potential, and we find that this is indeed what happens in our examples. One

might expect Fermi surfaces to be a generic consequence of turning on chemical potentials

that couple to weakly-interacting fermions based on a näıve application of the standard Lan-

dau Fermi liquid picture, and intuitions derived from thinking about non-supersymmetric

electron plasmas. But we find that dense plasmas based on N = 1 and N = 2 sQED fail

to be Fermi liquids in a fairly dramatic way, already at weak coupling. While the chemical

potential couples to the fermions in all of our examples, it does not lead to a Fermi surface

in most of them. This suggests another possible reason for the mysterious cases of missing

Fermi surfaces encountered in holographic studies, aside from strong coupling.

In this chapter, we will use Section 4.2 to give an overview of our toy models, ex-

plain their unusual features from a condensed-matter perspective, and discuss what one

might expect for their behaviour at finite density. The findings will be summarised in Sec-

tion 4.2.1. In Section 4.3, we explore N = 1 sQED at finite electron number density. Then

in Section 4.4 we discuss N = 2 sQED with a finite electron number density, where we are

forced to introduce some soft SUSY-breaking terms to stabilize the scalar sector. Next,

in Section 4.5 we look at N = 2 sQED with a finite R-charge density. Algebraically, the

N = 2 R-charged theory and its SUSY-broken cousins are our cleanest examples, and we

evaluate the fermion contribution to the charge density for some examples in this class of

theories. The somewhat surprising result of this investigation is described in Section 4.6.

Finally, in Section 4.7 we present an extended discussion of our findings and sketch some

of the many possible directions for future work.

We also make a brief comment on the scarce existing literature on SUSY gauge theories

at finite density using field-theoretic techniques. The works most closely related to the

approach of this chapter are [48,155] and [129]. Ref. [155] studied N = 4 SYM theory with

R-charge chemical potentials compactified on a 3-sphere, with a focus mostly on the high-T

limit, while [48] studied the finite-T properties of N = 2 super-Yang-Mills (SYM) theory.
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Ref. [130] studied physics related to Fermi surfaces in non-supersymmetric theories inspired

by 4D N = 4 SYM, among other examples, but with their choice of models they did not run

into many of the issues we deal with here. We also note the important work [156] exploring

the interplay between Luttinger’s theorem, Fermi surfaces, and Bose-Einstein condensation

in the context of cold atomic gases.

Also, the study of super-QCD at finite quark-number was initiated in [157] for N = 1

supersymmetry and in [158] for N = 2 supersymmetry, with an aim of understanding

colour superconductivity in a supersymmetric context. However, the issue of the existence

of Fermi surfaces in supersymmetric gauge theories at finite density was not examined in

these papers. Finally, the interesting recent works [159,160] constructed a supersymmetric

version of ‘BCS theory’, without dynamical gauge fields, and engineered things such that

there is no scalar condensation but there are Fermi surfaces.

4.2 What should we expect?

The standard example of a finite-density relativistic system involving fermions and gauge

fields is a QED plasma, which we now briefly describe before considering supersymmetric

theories. We do this because much of our intuition for what to expect for finite-density

physics is based on experience with this non-supersymmetric system.

The Lagrangian describing an electron plasma is just that of QED, involving the electron

field  and the photon gauge field Aµ, and is very simple:

LN=0 = �1

4
Fµ⌫F

µ⌫ +  ̄ (i /D �m) + AµJ
µ, (4.1)

where Dµ = @µ � iµ�µ0 � igAµ, g is the gauge coupling, µ is a chemical potential which

couples to the charge of the electrons, and Jµ encodes the e↵ects of other matter which

provides a neutralising background, such as some ions.

The requirement of having a neutralising background is essential. While the addition of

the chemical potential term is a gauge-invariant deformation of the theory, it couples to a

gauged charge. If one wants a finite density of matter in the vacuum in the infinite-volume

limit, with a finite free energy density, then any negative charge density carried by the

electrons must be compensated by a positive charge density carried by the ions. Otherwise

one would pay an infrared-divergent energy cost for having long-range electric fields. This

is a textbook observation for QED plasmas [161], and is also true for non-Abelian gauge

theories like QCD at high densities.5 As is explained in e.g. Section 2 in [163], neutrality

must be imposed even if the gauged charge is spontaneously broken, which will be relevant

5For some seminal papers exploring this issue e.g. see [162–164], for a review see [165].
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for our discussion of sQED. Otherwise a finite size chunk of the degenerate matter would

have electric fields outside of it which grow in strength with its size, again causing problems

with the infinite-volume limit.

Before beginning a discussion of supersymmetric plasmas, and exploring to what extent

they can be thought of as Fermi liquids, it is important to note that a standard dense low-

temperature electron gas described by Eq. (4.1) is already not a Fermi liquid. The issue is

the long range of the electromagnetic interactions, and the subtle nature of screening due

to the degenerate electrons. While Coulomb photons pick up a screening mass in the static

(zero-frequency) limit due to medium e↵ects, the transverse (‘magnetic’) photons do not

get a static screening mass so long as the photons do not become Higgsed. Consequently,

the magnetic photons continue to mediate long-range interactions, and this drives the

breakdown of Fermi liquid theory [166–169]. This leads to subtle e↵ects such as a non-

Fermi-liquid scaling of the specific heat with temperature, cv ⇠ T lnT , among others. At a

more pedestrian level, the non-trivial momentum and energy dependence of the Coulomb

screening e↵ects in an electron plasma are such that the residual Coulomb interaction

obliterates the would-be gapless Fermi zero-sound mode present in Fermi liquids, turning

it into the gapped plasmon mode of the dense electron gas as explained in e.g. Chapter 16

of the textbook [161].

Given these results for non-supersymmetric gauge theories at finite density, we clearly

cannot assume that the N = 1 and N = 2 sQED plasmas should be Fermi liquids. Never-

theless, while non-supersymmetric degenerate plasmas are not Fermi liquids, the fermions

populating the plasma still have a Fermi surface, at least before considering the standard

sort of pairing (superconducting) instabilities which can lead to its breakdown. This re-

mains true6 even in more exotic non-supersymmetric systems, such as degenerate quark

matter, and generalisations of Eq. (4.1) to include condensed dynamical scalar fields in

Jµ [170–173], or some types of Yukawa interactions [174]. As we will see, however, even the

very existence of a Fermi surface cannot be taken for granted in the supersymmetric case.

For a final observation about non-supersymmetric plasmas, we note that having g ⌧ 1

is necessary but not su�cient for a QED plasma to be weakly coupled. The reason is

that Coulomb interactions are, in a sense, strong at low energies, and tend to lead to

the formation of bound states — atoms — if the interaction energy dominates over the

characteristic momenta of the electrons and ions. Indeed, if we define l ⌘ [3/(4⇡n)]1/3 as

6Since electron and quark fields are not gauge invariant, the notion of a Fermi surface is easiest to
discuss in a gauge-fixed setting, and understanding its e↵ects in gauge-invariant language requires more
work. Fortunately, at weak coupling, where our attention will be confined, the use of such gauge-fixed
notions will be very useful, as it is in e.g. the standard discussions of gauge symmetry ‘breaking’ in the
Standard Model’s Higgs mechanism.
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the inter-electron ‘spacing’ and denote the Bohr radius by a0 ⌘ 1/(↵m), then it is well-

known that in an electron gas the physical expansion parameter is rs ⌘ l/a0, rather than

↵ ⌘ g2/4⇡, and one must have rs ⌧ 1 for calculability. We expect that our results in the

supersymmetric examples below will be reliable in a similar high density limit, but it will

be important to verify this in future work by doing higher-order calculations. For this work,

we simply assume that our number densities are large enough that we do not have to worry

about the formation of supersymmetric atoms, which were studied recently in [175–177].

In the terminology often used in the AdS/CMT literature, our focus on high density fully

ionised plasmas means that we work in the ‘fractionalised’ regime of super QED, as opposed

to the low-density atomic gas regime, which could be thought of as ‘confined’.

We now turn to a discussion of the subtleties particular to supersymmetric plasmas.

To keep the discussion streamlined, we use N = 1 sQED as our example. The action of

N = 1 sQED is significantly more complicated than that of QED. In addition to  and

Aµ, supersymmetry requires the addition of selectron fields �+, ��, as well as the gaugino

�, along with interaction terms amongst all of these mandated by the supersymmetrisation

of the gauge interaction. The resulting action is

LN=1 = �1

4
Fµ⌫F

µ⌫ +
1

2
�̄i/@�

+  ̄
�

i /D� �m
�

 +
�

�D�
µ ��

�

�

2
+
�

�D+
µ �+

�

�

2 � |m��|2 � |m�+|2

+
p
2ig

⇣

�†
+ ̄P��� �†

��̄P� � �+�̄P+ + �� ̄P+�
⌘

� g2

2

�

|�+|2 � |��|2
�2

+ Ions,

(4.2)

where � is a Majorana fermion, P± = 1
2
(1± �5), �± are complex scalar fields,

D±
µ = @µ ± iµ�µ0 ± igAµ (4.3)

and the +Ions term encodes couplings to neutralising ‘ion’ fields. We assume the ion sector

is supersymmetric as well, and defer writing out the relevant contributions to the action for

now. The physical motivation for assuming that the ion sector is supersymmetric is that

the theories we are really interested in — the ones with gravity duals — usually do not

include dynamical non-supersymmetric sectors. The action describing N = 2 matter at

finite density is even more complex, and we do not write it out here; the general comments

about N = 1 sQED below also apply to N = 2 sQED.

Before launching a search for Fermi surfaces in N = 1 sQED, and then N = 2 sQED,

we should emphasise a few features of Eq. (4.2) which make the analysis tricky. First,

note that before considering the ‘ions’, there is only one continuous symmetry in Eq. (4.2),

under which the fields have the transformation properties  ! e�i↵ , �+ ! ei↵�+, �� !
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e�i↵��, Aµ ! Aµ, �! �. So there are no separate fermion number or scalar number sym-

metries, in a striking contrast to familiar non-supersymmetric theories, even ones studied

in [156]. The fields are tied together by the Yukawa interactions in such a way that only

a single U(1) remains. Second, we observe that as usual, the chemical potential enters

the Lagrangian as the time component of a background gauge field. So both the selectron

and the electron fields directly experience the chemical potential. We note that in this

situation, one should interpret any expectations based on Luttinger’s theorem [178] or the

theory of ‘compressible quantum matter’ [129] with care, since the assumptions underlying

these frameworks do not apply in general to the systems we consider once the scalar fields

condense.

The issue we explore in this work concerns the response of the selectrons and electrons

to the chemical potential. Let us start by considering the behaviour of the scalar fields of

N = 1 sQED. The scalar e↵ective potential Ve↵ is the sum of the classical potential

V (0)
e↵ = (|m|2 � µ2)(|�+|2 + |��|2) +

g2

2
(|�+|2 � |��|2)2 (4.4)

plus quantum corrections. Interactions with the electrons and photons will contribute new

terms to the bosonic e↵ective potential starting at one loop level. But so long as the theory

is weakly coupled, and the classical potential is non-vanishing, the selectron ground state

should be determined by V (0)
e↵ , since quantum corrections to V (0)

e↵ should be comparatively

small.

From the form of V (0)
e↵ , one might think that once µ > m, the scalars should condense,

breaking the U(1) gauge symmetry and making the system a superconductor. Moreover,

since the masses of the electrons and selectrons are fixed to be identical due to supersym-

metry, the fermions should näıvely start populating a Fermi surfaces at the same time that

the scalars start condensing.

But there is an immediate subtlety we must deal with: supersymmetric gauge theories

typically have moduli spaces protected by supersymmetry at µ = 0. In the current context,

the moduli space for m = 0, µ = 0 is isomorphic to C, and is parametrised by the value of

�+ = ��. For any set of vacuum expectation values for the selectrons satisfying �+ = ��,

the potential energy vanishes. But as soon as we make µ > m, V (0)
e↵ develops a runaway

direction along �+ = ��. That is, the e↵ective potential becomes unbounded from below,

and the theory as defined in Eq. (4.2) does not make sense for µ > m.7

This should not be especially surprising. For a system comprised of weakly-interacting

7If both a finite µ and finite temperature T are turned on, things may be di↵erent, since the finite
temperature breaks supersymmetry, and should help lift the moduli space at µ = 0. For an interesting
recent exploration of finite-T physics in a supersymmetric gauge theory using field-theoretic techniques,
see [48].
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bosonic particles to be stable at finite chemical potential, the bosons must have su�ciently

repulsive interactions. If the interactions of the bosons were attractive, then the system

would be unstable against a collapse towards arbitrarily high densities, and there would

not be any equilibrium finite-density ground state. This is precisely the issue that one faces

in N = 1 sQED, where supersymmetry demands the presence of an attractive interaction

between the positive and negative selectrons �g2

2
|�+|2|��|2. The arguments above imply

that this issue indeed causes an instability which is unavoidable without deforming the

theory in some way.

Fortunately, in N = 1 sQED, it is possible to dodge this problem by turning on a

Fayet-Iliopulous term, which does not explicitly break the supersymmetry of the action,

and has the e↵ect of modifying the potential to

V (0)
e↵ = (|m|2 � µ2)(|�+|2 + |��|2) +

g2

2
(|�+|2 � |��|2 � ⇠2)2, (4.5)

where ⇠2 can be either positive or negative, and has mass dimension two. At µ = 0, this

lifts the moduli space, and indeed supersymmetry becomes spontaneously broken for ⇠ > 0

so long as m 6= 0. With ⇠ turned on, we will argue that the selectrons of the theory have

a stable non-trivial ground state for µ in a certain range. Hence the näıve expectation

that the U(1) gauge symmetry is broken at finite density is borne out, and the system is a

superconductor.

One might have hoped that so long as g ⌧ 1, and the system is weakly coupled, the

response of the electrons to the chemical potential should resemble that of the free limit

g = 0. This is true in a QED plasma. However, one should not expect it to be true in

general for supersymmetric plasmas, as we now explain.

First, it is clear from the structure of the Yukawa terms in Eq. (4.2), which include

terms of the form

g �†
+ ̄P��, (4.6)

that turning on scalar VEVs leads to mixing between the electron and gaugino fields, and

this makes it di�cult to guess what the fermionic fields will do in response to a chemical

potential for the electrons just by looking at Eq. (4.2). The way to deal with this is obvious

in principle, since one just has to rotate to an eigen-basis where the kinetic terms for

the fermions become diagonal in the in-medium ‘flavours’, but in practice actually doing

such a rotation can be algebraically involved. Since the coe�cient of the mixing term is

proportional to g, however, one might have hoped that when g ⌧ 1, the mixing would be

small, and the response of the fermions to a chemical potential would be close to that of

the g = 0 system.
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To see why this expectation is overly näıve, note that the coe�cient of the Yukawa terms

is forced to be the gauge coupling g by supersymmetry. But the coe�cient controlling the

strength of the self-interaction of the selectrons in Eq. (4.5) is g2, which is also fixed

by supersymmetry. So unlike in a non-supersymmetric system, here the strengths of the

Yukawa interactions and the selectron self-interactions cannot be tuned independently. In

particular, given the form of the selectron potential it is obvious that a non-zero selectron

VEV h�i must scale as

h�i ⇠ 1

g
. (4.7)

So since the size of the electron-gaugino mixing terms is controlled by gh�i, we see that

the fermion mixing will be essentially independent of g. The mixing alters the dispersion

relations of the fermion fields at the quadratic level, and so we cannot assume that the

response of the electrons to a chemical potential at g = 0, which involves the formation of a

Fermi surface, will necessarily persist to any g > 0, no matter how small. This observation

is generic, and applies to essentially any supersymmetric gauge theory in which one turns

on a chemical potential for selectrons or squarks which can also cause selectron or squark

condensation.

4.2.1 Summary of expectations

For the reasons discussed above, we expect that:

• The chemical potentials we will consider couple to both fermions and scalars, and so

long as the theory is supersymmetric we expect the scalars to condense at the same

time as the fermions begin to feel the chemical potential. This means the U(1) gauge

symmetry will be broken, and the supersymmetric plasmas will be superconductors.

• It is essential to take into account the electric neutrality constraint. In a related

context, this was also emphasised in [129].

• We assume that the densities are large enough that we do not have to worry about

the formation of supersymmetric atoms, so that we deal with a completely ionised

plasma. This means we are focusing on the fractionalized regime of the plasma, as

opposed to the low-density atomic gas confined regime.

• Achieving a stable finite-density ground state may be tricky due to possible run-away

directions in the scalar potential due to supersymmetry.
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• We should not expect the behaviour of the fermions to be close to that of a conven-

tional free system once there is scalar condensation, because of the structure of the

Yukawa interactions and the scalar self-interactions dictated by supersymmetry.

• If the scalars condense, the fact that the U(1) electron number symmetry is shared

between the scalars and the fermions means that the resulting quantum liquids will

not be ‘compressible quantum matter’ as it is defined in [130]. Moreover, the assump-

tions of Luttinger’s theorem [178], which ties the charge density carried by a fermionic

system to the volume of the Fermi surface, will not apply to such a liquid. So we

should not expect the existence of Fermi surfaces to be automatic for finite-density

supersymmetric QED.

With these observations in mind, we turn to a more detailed examination of these issues

in our N = 1 and N = 2 sQED toy models.

4.3 N = 1 sQED at finite electron number density

4.3.1 Scalar Ground State

We begin by writing down the complete N = 1 action that will be considered below. We

include two chiral superfields �+ and �� which supply the matter fields for the ‘electron’

sector: the electron Dirac spinor field  , as well the bosonic selectrons �+, ��. We also

include two other chiral superfields Q+ and Q�, which supply the matter fields for the ‘ion’

sector: the ion Dirac spinor field ⌘, as well as the bosonic sion fields q+, q�. We consider

a superpotential of the simplest possible form

W = m(�+�� +Q+Q�), (4.8)

so that the ions and the electrons have the same mass m. The tree-level Kahler potential

is

K = �†
+e

V�+ + �†
�e

�V�� +Q†
+e

VQ+ +Q†
�e

�VQ�, (4.9)

and V is the vector superfield, which includes the photon and photino fields Aµ, �. We

also allow a Fayet-Iliopoulos term

L⇠ = �⇠2
Z

d4✓V. (4.10)

The Lagrangian of the version of N = 1 SQED that we will consider is thus

LN=1 =

✓

1

4g2

Z

d2✓W 2 + h.c.

◆

+

Z

d4✓K +

✓

Z

d2✓W + h.c.

◆

+ L⇠, (4.11)

and W↵ is the photon field strength chiral super field.
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Transformation Properties in N = 1 sQED
Fields:  �+ �� � ⌘ q+ q�
U(1)e e�i↵ e+i↵�+ ei↵�� � ⌘ q+ q�
U(1)i  �+ �� � e�i↵⌘ e+i↵q+ e�i↵q�

Table 4.1: Matter field transformation properties under the U(1)e and U(1)i symmetries.

The matter sector has two obvious U(1) symmetries, U(1)e and U(1)i, which act on the

component fields as shown in Table 4.1. The diagonal U(1)e ⇥ U(1)i symmetry (acting as

 ! e�i↵ , ⌘ ! e�i↵⌘, and so on) is gauged, and we will refer to the gauged charge as the

‘electric’ charge.

We want to have a net density of electron-sector fields — electrons, selectrons, or both

— in the ground state. To do this we turn on a chemical potential µe for the U(1)e

symmetry, which appears in the action as the time component of a background gauge field

coupling only to U(1)e charge. At the same time, we wish to maintain charge neutrality.

To do this, we also turn on a chemical potential µi for the conserved charge associated with

the ion U(1)i symmetry. Then the µe chemical potential can be viewed as the parameter

controlling the matter density of the system, while µi is an auxiliary parameter determined

by the requirement of charge neutrality.

It turns out that setting µ ⌘ µe = �µi will be su�cient to maintain charge neutrality.

Heuristically, turning on µ > 0 gives an equal energetic subsidy to the particles created by

the field operators  , ��, �+ and the antiparticles created by ⌘, q�, q+. Since these two

sets of particles and antiparticles have the same masses but opposite electric charges, this

will create a ground state which is electrically neutral. To see this in a more quantitative

way, recall that we can read o↵ the expression for the charge density from the part of the

action which is linear in A0:

gA0Q 2 L, (4.12)

since A0 is, by definition, the source for Q. This yields

Q =�  ̄�0 + i[�†
+(@0 + iµ)�+ � ((@0 + iµ)�+)

†�+]

+ i[�†
�(@0 � iµ)�� � ((@0 � iµ)��)†��]

+ ⌘̄�0⌘ + i[q†+(@0 � iµ)q+ � ((@0 � iµ)q+)
†q+]

+ i[q†�(@0 + iµ)q� � ((@0 + iµ)q�)†q�]. (4.13)

If Q 6= 0 in the ground state, the system would not be electrically neutral. As explained

above, this would not be physically sensible, since the infinite-volume limit would come with

a divergent energetic cost. More formally, one can see that the situation when hQi 6= 0
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would be problematic because then the action for Aµ would involve a tadpole term for A0.

Once one adjusts µi to set hQi = 0, so that the ground state is electrically neutral, the

action for Aµ becomes quadratic.

We start by considering the scalar sector, and look for ground states in which the

bosonic fields get time-independent vacuum expectation values, so that @0�± = @0q± = 0.

We use unitary gauge in our analysis, so that if any of the scalars (which are all charged

under U(1)Q) condense, the gauge bosons pick up a mass via the Higgs mechanism. If

two scalars condense in such a way that both U(1)e and U(1)i are broken, then one of the

would-be Goldstone bosons will be eaten by the gauge field in unitary gauge, but the other

will remain as a bona-fide physical gapless Goldstone mode.

If we take µe = �µi ⌘ µ, then we get the tree-level matter sector scalar potential

V (0)
e↵ =

�

|m|2 � µ2
� �

|�+|2 + |��|2 + |q+|2 + |q�|2
�

+
g2

2

�

|�+|2 � |��|2 + |q+|2 � |q�|2 � ⇠2
�2

. (4.14)

To develop a heuristic understanding of the scalar field ground states, it is instructive to

rewrite the potential as

V (0)
e↵ =

�

|m|2 � µ2 � g2⇠2
� �

|�+|2 + |q+|2
�

+
�

|m|2 � µ2 + g2⇠2
� �

|��|2 + |q�|2
�

+
g2

2

�

|�+|2 + |q+|2 � |��|2 � |q�|2
�2

+
g2

2
⇠4. (4.15)

Now suppose that ⇠2 > 0, and consider m2
�+, q+

and m2
��, q� while we slowly increase µ

from 0. (What would happen if ⇠2 < 0 can be read o↵ from the following discussion by

exchanging �+, q+ with ��, q�.) When m2 � µ2 > g2⇠2 > 0, we have m2
�+,q+

> 0 and

m2
��,q� > 0, so none of the scalars condense. That is, all of the scalar VEVs are zero.

This regime of the theory is not interesting for our purposes, since the scalar sector does

not respond non-trivially to the chemical potential. Moreover, given that in this regime

µ2 < |m|2 and there is no scalar condensation to leading order in g, the fermion sector

responds to µ in the same way as a free theory would - which is to say, no spinor electrons

or ions populate the vacuum either.

Next, suppose that �g2⇠2 < m2 � µ2 < g2⇠2. Then m2
�+,q+

< 0 while m2
��,q� > 0 ,

and �+, q+ will develop non-trivial VEVs, and minimization of the scalar potential näıvely

implies that they must satisfy

|�+|2 + |q+|2 =
µ2 �m2 + ⇠2g2

g2
, |��|2 = |q�|2 = 0, (4.16)

Plugging these VEVs back into the potential to get a feeling for what happens to ��, q�,

we find that m2
��,q� vanishes due to contributions from cross-terms in the potential linking
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�+, q+ with ��, q�. This means that one should do a more careful analysis to understand

the regime in which it is consistent to assume that �+ and q+ are condensed, but �� and q�

are not. Computing the eigenvalues �1,�2 of the Hessian matrix describing the fluctuations

around the VEVs in Eq. (4.16) yields

�1 = m2 � µ2 � g2⇠2 + g2(|�+|2 + |q+|2), (4.17)

�2 = m2 � µ2 + g2⇠2 � g2(|�+|2 + |q+|2). (4.18)

Demanding that �1,�2 > 0, so that our field configuration is stable, implies that we must

ensure that m2 > µ2. Hence we learn that so long as 0 < m2 � µ2 < g2⇠2, �+, q+ are

condensed and must obey Eq. (4.16), but ��, q� do not condense. In this regime we expect

a non-trivial scalar ground state, and we do not have to worry about run-away directions

in the potential. But once m2 � µ2 < 0, all of the scalar fields are free to develop non-zero

VEVs. Given the form of the potential, there is clearly a run-away direction in the potential

along �+ = q+ = �� = q�, so the system has no stable ground state once µ2 > m2.

Given the remarks above, we can simplify the discussion without loss of generality by

assuming that ⇠2 > 0 from here onwards. We still have to take the constraint of charge

neutrality into account. The scalar contribution to Q is

Q|scalar = 2µe|�+|2 � 2µe|��|2 + 2µi|q+|2 � 2µi|q�|2, (4.19)

which becomes

Q|scalar = 2µ
�

|�+|2 � |q+|2
�

. (4.20)

If we now demand that Q|scalar !
= 0, we find that

|�+|2 = |q+|2 =
µ2 �m2 + ⇠2g2

2g2
, �� = q� = 0. (4.21)

Although here we have focused on the selectrons and sions, it is clear that the symmetric

way µ enters the action guarantees that if the fermionic electron and ion fields contribute

to the charge density, they do so in such a way that the sum of their electric charges is

separately zero. This is the reason that we are able to demand that the scalar contribution

to the electric charge vanishes separately from the one from the fermions.

4.3.2 Search for a Fermi surface

We now examine the fermionic part of the action to see whether the fermions organize into

a Fermi sphere at µ > 0. Of course, in view of the discussion above, while looking for a

Fermi surface, we have to always assume the condition

0 < m2 � µ2 < g2⇠2. (4.22)
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In particular, we emphasise that µ2 < m2 throughout this range. If we were to consider

µ2 > m2, the scalar sector would have no stable ground state. On the other hand, if µ2 < m2

but µ were to go outside the bound in Eq. (4.22), the scalars would have vanishing VEVs.

But then because at the same time µ would be smaller than the fermion mass, the ground

state could not possibly carry any U(1)e charge. So insisting on the condition in Eq. (4.22)

is essential to keep things interesting.

We recall that to see whether a system has a Fermi surface to leading order in pertur-

bation theory, one can examine the dispersion relations for the fermions. For instance, for

a free Dirac fermion with Lagrangian

L =  ̄
�

i/@ �m+ µ�0
�

 =  ̄M , (4.23)

this can be done by finding the momentum-space eigenvalues �i(p0, p) of M , and then

solving �i(p) = 0 for p0 in terms of p. This yields the dispersion relations p0 = ✏(p), where

✏ is the energy density, for the fermion and anti-fermion modes determined in the free case

by (p0 � µ)2 = p2 +m2. A Fermi surface can be defined as the solution to 0 = p0 = ✏(p)

for some p = pF > 0. For a free fermion, we obtain p2F = µ2 �m2. Our task in this section

is to carry out this simple procedure for the somewhat baroque fermion sector of sQED.

In four-component spinor notation, the fermion part of the N = 1 sQED Lagrangian is

LN=1|fermion =
1

2
�̄i/@�+  ̄

�

i /D� �m
�

 + ⌘̄
�

i /D� �m
�

⌘

+
p
2ig

⇣

�†
+ ̄P��� �†

��̄P� � ��̄P+ + �� ̄P+�
⌘

(4.24)

+
p
2ig

⇣

q†+⌘̄P��� q†��̄P�⌘ � q�̄P+⌘ + q⌘̄P+�
⌘

,

where

D�
µ  = @µ � iµ�µ,0 � igAµ, D�

µ ⌘ = @µ + iµ�µ,0 � igAµ (4.25)

In view of our discussion in Section 4.2 and the response of the scalar sector to the chemical

potential, once the scalar fields develop non-trivial VEVs in Eq. (4.21) all of the fermionic

fields mix with each other, with the mixing between electron and ion fields mediated by

the photino. Moreover, if for simplicity we scale ⇠ as ⇠ ⇠ 1/g, the mixing is g-independent.

It is thus di�cult to understand the response of the fermions to the chemical potential

through a visual examination of Eq. (4.24), in contrast to the free case in Eq. (4.23).

To look for a Fermi surface, we want to compute the dispersion relations of the fermionic

eigenmodes described by Eq. (4.24). This is easier if we switch to two-component spinor

notation,

 =

✓

 L↵

 †↵̇
R

◆

, ⌘ =

✓

⌘L↵
⌘†↵̇R

◆

, � =

✓

�↵
�†↵̇

◆

, (4.26)
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where � is the Majorana photino and we introduce the standard matrices �µ
↵↵̇ = (I2, �)

and �̄µ↵̇↵ = (I2, ��).

The fact that the VEVs are given by Eq. (4.21) means that one can write the quadratic

fermion action in terms of a 5⇥5 matrix, without the need to introduce Nambu-Gorkov-type

spinors. Defining

 =
⇣

 L↵  †↵̇
R �↵ ⌘L↵ ⌘†↵̇R

⌘T

, (4.27)

we can now write

LN=1|fermion =  † ·MN=1 · , (4.28)

where

MN=1 =

0

B

B

B

@

i�̄µ (@
µ

� iµ�
µ0

) �mI
2

0 0 0
�mI

2

i�µ (@
µ

� iµ�
µ0

) ig
p
2�†

+

0 0
0 �ig

p
2�

+

i�̄µ@
µ

0 �ig
p
2q

+

0 0 0 i�̄µ (@
µ

+ iµ�
µ0

) �mI
2

0 0 ig
p
2q†

+

�mI
2

i�µ (@
µ

+ iµ�
µ0

)

1

C

C

C

A

.

(4.29)

After going to momentum space we can compute the determinant of MN=1. Lorentz

invariance is broken by µ, but rotational invariance is unbroken and hence det(MN=1)

must depend on p0 and p =
p

p21 + p22 + p23. The dispersion relations may be found by

solving det(MN=1) = 0 for p0 as a function of p, but they are complicated and their form

unilluminating. Fortunately, once we set p0 = 0, as is needed in the search for the Fermi

surface, they simplify and give

det(MN=1)|p0=0 = �p2
�

�µ2 +m2 + p2
�4

. (4.30)

The contribution of the selectron and sion VEVs to det(MN=1)|p0=0 cancels thanks to charge

neutrality. Amusingly, what is left has the form which we would have obtained by dropping

the Yukawa terms in the first place! We emphasise that this dramatic simplification happens

only at p0 = 0.

Looking for values of p = pF > 0 which make det(MN=1)|p0=0 vanish, at first glance

p =
p

µ2 �m2 may seem work. But as we have seen, the scalar sector is under control

only for µ < m, and indeed we have assumed the condition in Eq. (4.22) at the start of the

fermion analysis. So p =
p

µ2 �m2 is not a legitimate solution of det(MN=1)|p0=0 = 0.

But there are no other solutions to det(MN=1)|p0=0 = 0.

Thus we conclude that within the domain of validity of our analysis, there is no p =

pF > 0 for which det(MN=1)|p0=0 vanishes, and hence there is no Fermi surface in finite-

density N = 1 sQED at weak coupling. Note also that changing the strength of the

Yukawa couplings (which would break supersymmetry) would not change this result due

to the structure of the determinant above.
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4.3.3 Non-supersymmetric cousin of N = 1 sQED

Before proceeding to N = 2 sQED, it is instructive to discuss what would have happened

if we had not insisted on charge neutrality, for instance by working with only the electron-

sector fields. The point of considering this example is to emphasise that U(1) breaking does

not necessarily lead to the obliteration of Fermi surfaces. One way to make this reasonable

would be to modify the Lagrangian by erasing the gauge field while leaving everything else

untouched. Then the Lagrangian would be

Lno ions = LN=1|fermion +
�

�D�
µ ��

�

�

2
+
�

�D+
µ �+

�

�

2 � |m��|2 � |m�+|2

� g2

2

�

|�+|2 � |��|2 � ⇠2
�2

, (4.31)

with the ion fields deleted from LN=1|fermion. Deleting the gauge fields breaks SUSY.

Going through the same analysis as above, we now obtain

det(Mno ions)p0=0 = 4g4 |�+|4
�

µ2 � p2
�

� p2
�

�µ2 +m2 + p2
� �

4g2|�+|2 � µ2 +m2 + p2
�

, (4.32)

with g2|�+|2 = m2 � µ2 + g2⇠2. Solving det(Mno ions)|p0=0 = 0, we obtain a solution for the

Fermi momentum:

pF =
[c+ 27µ (g2⇠2 � µ2 +m2)]2/3 � 6g2⇠2 + 9(µ2 �m2)

3 [c+ 27µ (g2⇠2 � µ2 +m2)]1/3
, (4.33)

where c ⌘
q

(6g2⇠2 � 9µ2 + 9m2)3 + 729µ2 (g2⇠2 � µ2 +m2)2. Since these expressions are

rather complicated, we plot Eq. (4.33) in Fig. 4.1. The plot shows this non-supersymmetric

system does have a Fermi surface, in contrast to the supersymmetric system we considered

above. Note that the Yukawa terms are essential to this result, since here we are still

considering µ < m, so that without the mixing terms the fermions would be free to leading

order, and would not develop a Fermi surface until µ > m.

However, as we have seen, when electric neutrality is taken into account, as it must be

in N = 1 sQED, the story is very di↵erent.

4.4 Softly broken N = 2 sQED at finite electron num-
ber density

4.4.1 Scalar Ground State

We start by attempting to work with the most obvious N = 2 generalisation of our N = 1

toy model. As the field content of our N = 2 sQED model, we will use essentially the
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Figure 4.1: A solution for the Fermi momentum pF which would have been obtained if we had
ignored the constraint of charge neutrality, and worked with a system including electrons only.
For simplicity we set ⇠ = m/g. In this case the infinite volume does not make sense, unless one
modifies the theory by removing the gauge fields but keeping all else fixed.

same chiral ‘electron’ and ‘ion’ super fields as the N = 1 model, with the following changes.

First, we must add an extra ‘adjoint’ N = 1 chiral multiplet ⇤ which contains an extra

Majorana photino � and a scalar a, which combines with the N = 1 vector multiplet to

form the N = 2 vector hypermultiplet. Second, the scalar fields from the N = 1 chiral

multiplets, �+ and �†
�, combine to form a single N = 2 matter hypermultiplet.8 The

same goes for the sion fields. Finally, to be consistent with N = 2 supersymmetry, the

superpotential must be modified to (in N = 1 language)

W = m (�+�� +Q+Q�) +
p
2⇤ (�+�� +Q+Q�) , (4.34)

where �+, �� are the electron-multiplet superfields and Q+, Q� are the ion-sector super-

fields. The tree-level Kahler potential is the same as before with the obvious changes to

account for the discussion above. We continue to include the FI term in the theory. This

N = 2 gauge theory has the scalar potential

V (0)
e↵ =

�

�

�

p
2ga+m

�

�

�

2
�

|�+|2 + |��|2 + |q+|2 + |q�|2
�

+ 2g2 (�+�� + q+q�)
⇣

�†
+�

†
� + q†+q

†
�
⌘

+
g2

2

�

|�+|2 � |��|2 + |q+|2 � |q�|2 � ⇠2
�2 � µ2

�

|�+|2 + |��|2 + |q+|2 + |q�|2
�

, (4.35)

and has the same U(1)e ⇥ U(1)i symmetry as the N = 1 theory, but also has an SU(2)R

non-anomalous R-symmetry. We explore the response of N = 2 sQED to an R-charge

chemical potential in Section 4.5, and focus on the U(1)e ⇥ U(1)i symmetries here. The

transformation properties of the matter fields are given in Table 4.2. Recalling the com-

ments about the way �+ and �†
� enter the N = 2 theory above, and noting that the fields

a and ⇠ do not contribute to the electric charge density, we find that the gauged (electric)

8The hypermultiplet contains the conjugate of �� since the gauge generators commute with the super-
symmetry generators and hence all fields within a multiplet have the same gauge charges.
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Transformation Properties in N = 2 sQED
Fields:  �+ �� ⌘ q+ q� � � a
U(1)e e�i↵ e+i↵�+ e�i↵�� ⌘ q+ q� � � a
U(1)i  �+ �� e�i↵⌘ e+i↵q+ e�i↵q� � � a

Table 4.2: Matter field transformation properties under the U(1)e and U(1)i symmetries.

charge density is unchanged from Eq. (4.13),

Q =�  ̄�0 + i[�†
+(@0 + iµ)�+ � ((@0 + iµ)�+)

†�+]

+ i[�†
�(@0 � iµ)�� � ((@0 � iµ)��)†��]

+ ⌘̄�0⌘ + i[q†+(@0 � iµ)q+ � ((@0 � iµ)q+)
†q+]

+ i[q†�(@0 + iµ)q� � ((@0 + iµ)q�)†q�]. (4.36)

Unfortunately, it turns out that once µ is turned on the scalars do not have a stable

ground state, since there are run-away directions in the scalar potential. The quickest way

to see this is to observe that minimizing Ve↵ for a implies that a picks up a VEV

hai = � mp
2g

. (4.37)

Heuristically, apart from the surviving group of terms in the first line of Eq. (4.35), the

potential for �1,2, q1,2 is the same as the massless limit of the potential in the N = 1 case,

for which there would be no stable solutions once µ > 0, even when a FI term is present.

The new terms demanded by N = 2 do not save the day if there is more than one flavour

hypermultiplet.

We have not figured out a way to prevent the emergence of run-away directions in the

scalar potential in two-flavour N = 2 sQED, but it is possible to get some insight into

what the supersymmetric interactions do to Fermi surfaces by modifying the theory above

in two simple ways:

A: Work with N = 2 sQED with only one flavour. This means giving up on elec-

tric neutrality, and requires a hard breaking of supersymmetry to be sensible in the

infinite-volume limit, much as in Section 4.3.3. We defer a discussion of this case in

Section 4.4.3.

B: Keep the ion fields, but add some soft SUSY-breaking terms.

Given the title of this section, we proceed with option B, and work with a theory defined

by

L = LN=2 +m2
s

�

|�+|2 + |��|2 + |q+|2 + |q�|2
�

, (4.38)
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where LN=2 is the Lagrangian of N = 2 sQED with electron and ion superfields we

presented above, and ms is the soft SUSY-breaking mass.

Minimizing the softly-broken scalar potential with respect to a, we again get hai =

� mp
2g
. The condition for the remaining scalars to have a stable condensate is

m2
s � g2⇠2 < µ2 < m2

s, (4.39)

where ms is the soft mass we introduced above. If the lower bound is violated none of

the scalars condense, while if the upper bound is violated there is a runaway direction. If

Eq. (4.39) is satisfied, the scalar VEVs must obey the relations

|�+|2 + |q+|2 =
µ2 � (m2

s � g2⇠2)

g2
, |��| = |q�| = 0. (4.40)

Taking into account the electric neutrality constraint means that the scalar VEVs become

|�+|2 = |q+|2 =
µ2 � (m2

s � g2⇠2)

2g2
, |��| = |q�| = 0. (4.41)

4.4.2 Search for a Fermi surface

The fermionic terms in the Lagrangian are the same as in Eq. (4.24) together with the

additional terms

LN=2|fermions = LN=1|fermions +
1

2
�̄i/@��

p
2g
�

a ̄P� + a† ̄P+ + a⌘̄P�⌘ + a†⌘̄P+⌘
�

�
p
2g
⇣

�� ̄P��+ �+�̄P� + �†
��̄P+ + �†

+ ̄P+�
⌘

(4.42)

�
p
2g
⇣

q�⌘̄P��+ q+�̄P�⌘ + q†��̄P+⌘ + q†+⌘̄P+�
⌘

.

Again, once the scalars pick up VEVs, all of the fermionic fields mix with each other, and

seeing the e↵ect of the chemical potential requires diagonalising the kinetic operator. To

look for a Fermi surface, paralleling the approach of Section 4.3.2, we introduce a single

column vector collecting all of our two-component spinors

 =
⇣

 L↵  †↵̇
R �↵ �†↵̇ ⌘L↵ ⌘†↵̇R

⌘T

. (4.43)

This allows us to rewrite Eq. (4.42) as

LN=2|fermion =  † ·MN=2 · , (4.44)

where

MN=2 =

0

B

B

B

@

i�̄µ (@µ � iµ�µ0) 0 0 �g
p
2�†+ 0 0

0 i�µ (@µ � iµ�µ0) ig
p
2�†+ 0 0 0

0 �ig
p
2�+ i�̄µ@µ 0 0 �ig

p
2q+

�g
p
2�+ 0 0 i�µ@µ �g

p
2q+ 0

0 0 0 �g
p
2q†+ i�̄µ (@µ + iµ�µ0) 0

0 0 ig
p
2q†+ 0 0 i�µ (@µ + iµ�µ0)

1

C

C

C

A

.

(4.45)
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Going to momentum space, calculating det(MN=2) and setting p0 = 0, we obtain

det(MN=2)|p0=0 = p2
�

4g2|�+|2 � µ2 + p2
�2

⇥
�

2g2|�+|2(µ+ p) + (p� µ)
�

2g2|q+|2 + p(µ+ p)
��

⇥
�

(p� µ)
�

2g2|�+|2 + p(µ+ p)
�

+ 2g2|q+|2(µ+ p)
�

, (4.46)

where we have used the charge neutrality relation between the scalar VEVs. If the scalars

condense, we can plug in Eq. (4.41) to get

det(MN=2)|p0=0 = p4
�

µ2 � 2m2
s + 2g2⇠2 + p2

�4
. (4.47)

Looking for a value of p 6= 0 which would make this vanish, we find that pF would have to

satisfy the relation

p2f = 2m2
s � µ2 � 2g2⇠2

!
> 0. (4.48)

This relation will be satisfied if

µ2 < 2(m2
s � g2⇠2). (4.49)
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Figure 4.2: Left: Fermi momenta as a function of µ with g2⇠2

m2
s
= 0.4. Right: Fermi momenta as

a function of µ with g2⇠2

m2
s
= 0.6. The area between the dashed lines is the region where the scalars

are condensed and stable. Values of µ to the right of this region make the scalars unstable, while
to the left, the scalars are not condensed. Note that past g2⇠2 > m2

s , where the scalars are always
condensed, there is no Fermi surface.

We are now in a position to classify all the things that can happen to the fermions in

this theory. To begin with, if µ2 < m2
s � g2⇠2, then the charged scalars do not condense.

The fermion sector consists of massless gauginos and massless matter fermions, which to

leading order are free. Since the matter fermions feel the chemical potential, there is a

fermi surface at pF = µ. Since the charged scalars are not condensed, the system is not a

superconductor (before considering fermion pairing e↵ects), and it is natural to speculate

that the physics in this regime resembles that of conventional QED plasmas.
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Next, if m2
s � g2⇠2 < µ2 < 2m2

s � 2g2⇠2 and µ2 < m2
s, the theory is stable, the charged

scalars are condensed, so that the quantum liquid is a superconductor, and there is a Fermi

surface.

If 2m2
s�2g2⇠2 < µ2 < m2

s, the scalar sector is stable, with the charged scalars condensed

and hence a broken U(1)Q, so that the system is a superconductor. But now there is no

Fermi surface.

Finally, if m2
s < µ2, the scalar sector becomes unstable, and there does not appear to

be a sensible finite-density ground state.

To help visualise the behaviour of the Fermi surfaces in this theory as a function the

parameters, see Fig 4.2. As seen in the plots, as the scalar condensates get larger, the Fermi

momentum decreases. näıvely, one could interpret Fig. 4.2 as implying that more and more

of the charge in the system leaks from the fermions into the scalars as µ is increased enough

to make the scalar condensate start growing. But see Section 4.6 for a result which suggests

that this is not necessarily the case.

4.4.3 Non-supersymmetric cousin of N = 2 sQED

We now briefly return to Option A from Section 4.4.1, where we start with N = 2 sQED

with one matter hypermultiplet, and delete the gauge fields just as in Section 4.3.3 to avoid

problems with electric neutrality. This is a hard breaking of supersymmetry.

The scalar potential is now

V (0)
e↵ =

�

�

�

p
2ga+m

�

�

�

2
�

|�+|2 + |��|2
�

+ 2g2|�+|2|��|2

+
g2

2

�

|�+|2 � |��|2 � ⇠
�2 � µ2

�

|�+|2 + |��|2
�

. (4.50)

The VEV of a is still given by Eq. (4.37), but now there is a stable minimum for the other

scalar fields as well, as can be seen by rewriting the potential in the manner of Eq. (4.15).

If ⇠2 > 0, minimizing V (0)
e↵ leads to

|�+|2 =
µ2 + g2⇠2

g2
, |��|2 = 0, (4.51)

while if ⇠2 < 0, we get

|��|2 =
µ2 � g2⇠2

g2
, |�+|2 = 0. (4.52)

(At ⇠ = 0, both scalar fields can condense, but for simplicity we do not consider this case

further.) As we have been saying, in this case there is no way to solve the charge neutrality

constraint within the scalar sector. If it were possible to adjust the chemical potential

which couples to the electrons independently from the one which couples to the selectrons,
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one could imagine that this electron chemical potential could be dialed in such a way that

the electrons would carry a charge density which precisely compensates that of the scalars.

But the structure of our supersymmetric theory does not allow us to introduce such an

independent chemical potential for the electrons, because the Yukawa interactions do not

respect the U(1) electron-number symmetry of the free action.

Hence, the solutions obtained in this section cannot yield an electrically-neutral back-

ground. Of course, since we have deleted the gauge fields from the theory with malice

aforethought, this is not a problem.

We now start the search for a Fermi surface for this non-supersymmetric theory. Again,

the diagonalisation of the fermion sector after scalar condensation is much easier if we

switch to two-component notation. So long as ⇠2 6= 0, LN=2|fermions can be written in a

matrix notation without introducing Nambu-Gorkov spinors, but at ⇠ = 0 we expect all of

the scalar fields to develop non-trivial VEVs, making the analysis more involved. To keep

things as simple as possible, we only discuss the ⇠2 6= 0 case in this chapter. Moreover, as

our previous discussion makes clear, to understand what happens for ⇠2 6= 0 we can focus

on ⇠2 > 0.

Paralleling the approach of Section 4.3.2, we introduce a single column vector collecting

all of the two-component spinors

 (1) =
⇣

 L↵  †↵̇
R �↵ �†↵̇

⌘T

. (4.53)

We rewrite Eq. (4.42) as

LN=2|fermion = [ (1)]† ·M (1)
N=2 · (1), (4.54)

with

M (1)
N=2 =

0

B

B

@

i�̄µ (@µ � iµ�µ0) 0 0 �g
p
2�†

+

0 i�µ (@µ � iµ�µ0) ig
p
2�†

+ 0
0 �ig

p
2�+ i�̄µ@µ 0

�g
p
2�+ 0 0 i�µ@µ

1

C

C

A

. (4.55)

Computing the determinant of M (1)
N=2 in frequency-momentum space, we find that the

dispersion relations for the fermions are

p0 =
1

2

✓

�µ±
q

8g2�2
+ + 4p2 ± 4pµ+ µ2

◆

. (4.56)

But one can now check that there is no value of p2 = p2F > 0 such that there is a solution

to the equation above for p0 = 0. Thus there is no Fermi surface if we work with the

non-electrically-neutral state in the N = 2 theory with only one flavour hypermultiplet,

or in the healthy but non-supersymmetric theory with the gauge fields removed. Note the

contrast of this result with what we saw in Section 4.3.3, where the analogous theory had

a Fermi surface.
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4.5 N = 2 sQED with a finite R-charge density

In this section, we will consider N = 2 sQED with one matter hypermultiplet. As we

mentioned in the previous section, N = 1 sQED has a U(2) = U(1)R ⇥ SU(2)R R-

symmetry group. The U(1)R subgroup is anomalous, whereas the SU(2)R remains anomaly

free. We focus on the anomaly-free symmetry. The SU(2)R symmetry acts by matrix

multiplication on the Weyl doublet (�↵,�↵) from the vector hypermultiplet and the charged

scalars (�+,�
†
�) from the matter hypermultiplet. The remaining fields in the theory are

SU(2)R singlets.

We can describe a system with a net R-charge by introducing a set of chemical po-

tentials µn for the R-symmetry charges. Any conserved charges Qn that one wishes to

introduce into the grand canonical partition function change the Hamiltonian by a shift,

H ! H �
P

n µnQn. However, the Qn charges must commute with each other in order to

be simultaneously observable, as discussed in Section 2.1.4. This means that Qn can only

belong to the maximally commuting (Cartan) sub-algebra of the non-Abelian algebra of

the charge operators. In our case this must pick a single U(1)R ⇢ SU(2)R to which we

associate the chemical potential µR. Furthermore, since this is a global un-gauged symme-

try we do not have to worry about making the system neutral with respect to U(1)R. Of

course, we still have to make sure we maintain electric neutrality!

Define the SU(2)R doublet fields

� ⌘
✓

�+

�†
�

◆

,  ↵ ⌘
✓

�↵
�↵

◆

. (4.57)

Our anomaly-free U(1)R subgroup acts on these fields as

�! ei↵⌧3�,  ↵ ! ei↵⌧3 ↵, (4.58)

where ⌧3 = �3, the diagonal Pauli matrix.

Hence, the µR chemical potential enters the Lagrangian in the following way

L = ( ↵)
†�µDµ ↵ + |Dµ�|2 + . . . , (4.59)

where we define9

Dµ� = @µ � iµR⌧3�µ0 + igAµ, Dµ = @µ � iµR⌧3�µ0. (4.60)

The R-charge density is

QR =  †�0⌧3 + i
h

�† (@0 � iµR⌧3) ⌧3�� [(@0 � iµR⌧3) ⌧3�]
†�

i

, (4.61)

9Recall that the fields in the vector hypermultiplet transform in the adjoint representation of the gauge
group, and hence are neutral under the Abelian U(1) gauge symmetry, while �

+

,�†
� inside � have the

same non-zero electric charge.

78



while the electric charge density is

QEM = i
h

�† (@0 � iµR⌧3)�� [(@0 � iµR⌧3)�]
†�

i

. (4.62)

For future reference, note that if �+,�� acquire identical time-independent VEVs, then

QR 6= 0, while QEM = 0. This is the key to ensuring that a finite R-charge density does

not violate the electric neutrality condition.

4.5.1 Scalar ground state

We look for time-independent scalar ground states, and work in unitary gauge, as we have

done throughout the chapter. The bosonic potential with the µR contributions included is

V (0)
e↵ =

�

�

�

p
2ga+m

�

�

�

2
�

|�+|2 + |��|2
�

+ 2g2 |�+|2 |��|2 (4.63)

+
g2

2

�

|�+|2 � |��|2 � ⇠2
�2 � µ2

R

�

|�+|2 + |��|2
�

,

where a is the scalar from the vector hypermultiplet. This theory always has a stable

non-trivial ground state when µR 6= 0, which can be seen from the fact that there is no

attractive |�+|2|��|2 term in the potential. Just as before, a picks up the VEV

hai = � mp
2g

, (4.64)

which is independent of ⇠. We will see below that charge neutrality requires that we set

⇠2 = 0, so we drop ⇠ from here onwards. Minimizing the scalar potential for the remaining

fields we find the condition

|�+|2 + |��|2 =
µ2
R

g2
. (4.65)

To see the consequences of electric neutrality, recall that �†
� feels a chemical potential �µR

compared to the field �+ which feels a chemical potential µR. Recalling the expression for

the electric charge density, it is clear that electric neutrality in the scalar sector will be

ensured if they have the same VEVs,10 leading to

|�+|2 = |��|2 =
µ2
R

2g2
. (4.66)

Since these VEVs are non-zero for µR 6= 0, and the scalars are charged, the U(1) electro-

magnetic symmetry is broken, and the system is a superconductor. Of course, the charged

scalars also transform non-trivially under U(1)R, so the R symmetry is also spontaneously

broken once they develop VEVs. Indeed, since both scalars develop VEVs, the R symmetry

is completely broken.

10If we had allowed ⇠ 6= 0, then the masses would of �� and �
+

would be split, and this argument would
not work.
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4.5.2 Search for a Fermi Surface

Paralleling the approach of the preceding sections, we again introduce a single column

vector collecting all of the two-component spinors

 R =
�

 L↵  R↵ �†↵̇ �†↵̇�T , (4.67)

and rewriting Eq. (4.42) as

LN=2|fermion = [ R]† ·MR
N=2 · R. (4.68)

Now, of course, the structure of MR
N=2 is di↵erent, since the gauginos feel the R-charge

chemical potential, and the matter fermions are rendered e↵ectively massless through the

VEV of a, so that

MR
N=2 =

0

B

B

@

i�̄µ@µ 0 ig
p
2�� �g

p
2�†

+

0 i�̄µ@µ �ig
p
2�+ �g

p
2�†

�
�ig

p
2�†

� ig
p
2�†

+ �µ (i@µ � µR�µ0) 0
�g

p
2�+ �g

p
2�� 0 �µ (i@µ + µR�µ0)

1

C

C

A

. (4.69)

Once we set �+ = �� = � in view of Eq. (4.66), the determinant of MR
N=2 takes a relatively

simple form. In fact, we find it instructive to write in two di↵erent ways. One way to write

it is

detMR
N=2 =

�⇥

p20 � p2
⇤ ⇥

(p0 + µR)
2 � p2

⇤

+ 8g2|�|2
⇥

p2 � p0(p0 + µR)
⇤

+ 16g4|�|4
�

⇥
�⇥

p20 � p2
⇤ ⇥

(p0 � µR)
2 � p2

⇤

+ 8g2|�|2
⇥

p2 � p0(p0 � µR)
⇤

+ 16g4|�|4
�

. (4.70)

This form makes it easy to see that the g2|�|2 = 0 consistency check is satisfied, where

the determinant must reduce to one expected for four massless Weyl fermions, two without

chemical potentials, and two with opposite-sign chemical potentials. But the dispersion

relations for g2|�|2 6= 0 are hard to see in this form.

The other way to write detMR
N=2 is

detMR
N=2 =

4
Y

i=1

⇥

(p0 � µ̃i)
2 � (|p|+ i)

2 + 4g2|�|2
⇤

, (4.71)

where

µ̃1,2 = µR/2, µ̃3,4 = �µR/2 and 1,3 = µR/2, 2,4 = �µR/2. (4.72)

This makes the form of the g2|�|2 6= 0 dispersion relations for the eigenmodes manifest.

These dispersion relations are simple but quite unusual.

Setting p0 = 0 to look for a Fermi surface, we find

detMR
N=2|p0=0 =

�

p4 � p2
�

µ2
R � 8g2|�|2

�

+ 16g4|�|4
�2

. (4.73)
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If g2|�|2 were zero, then there would be a Fermi surface at p2F = µ2. For general g2|�|2, the
Fermi momentum would have to satisfy the relation

p2F =
1

4

✓

µR ±
q

µ2
R � 16g2|�|2

◆2

> 0. (4.74)

In N = 2 sQED, minimizing the scalar potential leads to a VEV |�|2 = µ2
R/(2g

2). As a

result

detMR
N=2|p0=0 =

�

4µ4
R + p4 + 3µ2

Rp
2
�2

, (4.75)

which has no real zeros. Hence the fermions in N = 2 sQED with a chemical potential for

R-charge do not have a Fermi surface.

It is important to realise that the general structure of the fermion interaction terms

in this theory is, in and of itself, compatible with the existence of Fermi surfaces, even

after U(1) breaking. What prevents a Fermi surface for the fermions from appearing is

the precise relationship between the normalisation of the Yukawa terms and the scalar self-

interaction terms, which is dictated by supersymmetry. To see this, consider modifying

the Yukawa couplings by changing g ! g✏ and leaving everything else, including the scalar

sector, unchanged. When ✏ = 1, the theory is supersymmetric, but not otherwise. The

potential Fermi momenta are then modified to

p2F =
µ2
R

4

⇣

1±
p
1� 8✏2

⌘2

> 0. (4.76)

Tuning ✏  1/(2
p
2) < 1, a Fermi surface appears. Of course, in N = 2 sQED, we are

not allowed to vary the Yukawa couplings independently of the scalar potential, and we are

stuck with ✏ = 1, where there is no Fermi surface.

4.6 Fermion charge density without a Fermi surface

In the preceding sections we have seen that supersymmetric gauge theories and their cousins

often do not have Fermi surfaces, despite the fact that the chemical potential couples to the

fermions. How should this result be interpreted? Perhaps the simplest interpretation is that

in the Fermi-surface-less examples all of the charge which would normally be stored by the

fermions ‘leaks out’ into the scalars through the Yukawa couplings. In this scenario, when

the fermions have no Fermi surface, the charge density would only receive contributions

from the scalar fields.

In this section we show that this interpretation cannot be correct in general by explicitly

computing the charge density Q in a theory with fermions and scalars where no Fermi

surface develops at finite µ. The theory we consider in this section is chosen so as to simplify
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the calculation of the fermionic contribution to Q. We will see that this contribution is

non-vanishing.

The general idea of the calculation is to evaluate the T ! 0 limit of the fermion

contribution to the ‘grand potential’ ⌦ = u � Ts � µQ, where u is the internal energy

density, s is the entropy density, and Q is the particle number density. ⌦ also obeys

⌦ = �T

V
logZ, (4.77)

where Z is the grand canonical partition function, T is the temperature, and V is the

volume of the system. The contributions to ⌦ can generically be split into a contribution

from fermionic plus a contribution from bosonic energy eigenmodes, so that

⌦ = �⌦fermions + ⌦bosons, (4.78)

where the minus sign accounts for fermionic statistics when evaluating the fermion deter-

minant in Z. We write ⌦fermions and ⌦bosons as

⌦fermions =
X

i2 particles, antiparticles

Z

d3p

(2⇡)3
Ep,i

2
+

X

i2 particles

T

Z

d3p

(2⇡)3
log

⇥

1 + e�(Ep,i�µ)/T
⇤

+
X

i2 antiparticles

T

Z

d3p

(2⇡)3
log

⇥

1 + e�(Ep,i+µ)/T
⇤

, (4.79)

⌦bosons =
X

i2 particles, antiparticles

Z

d3p

(2⇡)3
Ep,i

2
+

X

i2 particles

T

Z

d3p

(2⇡)3
log

⇥

1� e�(Ep,i�µ)/T
⇤

+
X

i2 antiparticles

T

Z

d3p

(2⇡)3
log

⇥

1� e�(Ep,i+µ)/T
⇤

. (4.80)

The dispersion relations Ep,i one should use above are the ones appropriate to the interact-

ing theory. The forms above follow from a number of formalisms, with standard statistical

mechanics arguments being perhaps the most physically transparent.11 The charge density

can now be defined as

Q = �@⌦
@µ

. (4.81)

Note that the quantity Q defined in this way makes sense even when symmetry associated

to µ is spontaneously broken, as in the case of interest below. (Essentially, in the condensed

case, QV is the charge carried by a macroscopic condensate with volume V .)

11Another way to obtain Eq. (4.80) is to observe that e.g. ⌦|
fermion

= �T logZ|
fermion

= �tr logM
D

,
where M

D

is the appropriate Dirac operator taking into account interaction corrections to the fermion
propagators, compute the trace log using one’s choice of finite-T formalisms, Matsubara or Schwinger-
Keldysh, discussed in Chapter 3, and then take the T = 0 limit. Or one may use a T = 0 pole prescription
(which is derived from the results of the finite-T approach) to evaluate the trace log directly at T = 0. No
matter the formalism, the result is of course the same.
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We define the fermionic contribution to Q as

Qfermions = �@⌦fermions

@µ
. (4.82)

So to compute Qfermions, were must therefore first evaluate ⌦fermions.

The theory we will focus on has two Majorana fermions �, �, one Dirac fermion  , and

one complex scalar �, with interactions defined by the Lagrangian

L =
1

2
�̄ (i/@ + µ�0)�+

1

2
�̄
�

i/@ � µ�0
�

�+  ̄i/@ + | (@µ + iµ�µ,0)�|2

+ ig✏
�

�† ̄P��� �†�̄P� � ��̄P+ + � ̄P+�
�

� g✏
�

� ̄P��+ ��̄P� + �†�̄P+ + �† ̄P+�
�

� g2

2
|�|4 + LCT, (4.83)

where g and ✏ are dimensionless parameters characterizing the relative strengths of the

scalar self-interactions versus the Yukawa interactions, while µ is a chemical potential for

a U(1) symmetry acting as � ! e+i↵�,� ! e�i↵�,� ! e+i↵�. Finally, LCT collects the

counter-terms necessary to renormalise the theory

LCT = (�⇤cc)
4 + (�m)2|�|2 + . . . , (4.84)

and we have written only the vacuum energy (�⇤cc) and scalar mass (�m)2 counter-terms

explicitly since it turns out that they are the only ones we will need to compute Qfermions

to the order to which we work.

Our choice of the theory described by Eq. (4.83) is inspired by N = 2 super-QED with a

single matter hypermultiplet with mass m and a U(1)R chemical potential µR. Specifically,

the version of Eq. (4.83) with ✏ = 1 can be obtained from the N = 2 theory by the relations

Aµ = 0, �+ = �� = �/
p
2, a = �m/(g

p
2), and µR = µ. For our purposes in this section,

the case ✏ = 1/
p
2 will turn out to be the easiest to analyze. From the discussion at the

end of Section 4.5.2, it follows that the fermions in the theory we consider in this section

have no Fermi surface so long as ✏ > 1/(2
p
2), and this is the regime we focus on in this

section.

Before looking at the interesting examples of what happens when ✏ > 1/(2
p
2), we

quickly review the textbook calculation of the charge density Q carried by a non-interacting

Dirac fermion with a chemical potential µ, which help us stay oriented during calculations

in the interacting theory, which work out in an unusual way. Following the discussion

above, we write

�⌦(T, µ)Dirac = 4

Z

d3p

(2⇡)3
Ep

2
+ 2T

Z

d3p

(2⇡)3
log

⇥

1 + e�(Ep�µ)/T
⇤

+ 2T

Z

d3p

(2⇡)3
log

⇥

1 + e�(Ep+µ)/T
⇤

,

(4.85)
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where Ep =
p

p2 +m2 is the free-fermion dispersion relation. The first term is known as

the ‘vacuum’ contribution, while the second two terms are the ‘matter’ and ‘anti-matter’

contributions respectively. The factor of 4 on the vacuum term counts the total number

of degrees of freedom (spin up and spin down particle and anti-particle modes), and the

factors of 2 on the matter terms have the same origin, accounting for the spin up and down

contributions. In the zero-temperature limit, and with µ > 0, this reduces to

�⌦(µ)Dirac = 4

Z

d3p

(2⇡)3
Ep

2
+ 2

Z

d3p

(2⇡)3
(µ� Ep)✓(µ� Ep), (4.86)

where ✓ is the Heaviside step function, and ✓(µ�Ep) = ✓(pF ). Of course, the anti-fermion

contribution has dropped out at T = 0.

For the free Dirac fermion, the ‘vacuum’ term is obviously independent of µ, and is

irrelevant for the charge density. Setting m = 0 for simplicity and evaluating the remaining

‘matter’ term we obtain

�⌦(µ)Dirac =
µ4

12⇡2
=) QDirac =

µ3

3⇡2
, (4.87)

which is the standard result [179].

We now turn to the calculation of the fermion contribution to Q in the toy theory

described by Eq. (4.83). From Eq. (4.71) and Eq. (4.72), we see that we have four eigen-

modes contributing to ⌦, with

E2
p,i ⌘ (|p|+ i)

2 + 2✏2g2|�|2, i = 1, 2, 3, 4, (4.88)

with the i-th mode having the chemical potential µ̃i, but now we have |h�i|2 = µ2/g2.12

Note that µ̃i with i = 1, 2 are positive, while µ̃i with i = 3, 4 are negative for µ > 0. Also,

we observe that Eq. (4.88) describes eight fermionic degrees of freedom, since we have four

Weyl fermions coupled to each other when ✏ 6= 0.

These dispersion relations are highly unusual, and are a consequence of the spontaneous

U(1) breaking driven by scalar condensation communicated to the fermions through the

Yukawa couplings with strength set by ✏.13 Hence in addition to exploring the behaviour

of the ✏ = 1/
p
2 theory, we also verify that the ✏! 0 limit yields the expected free-fermion

results.

We now write down the fermionic contribution to ⌦, working with general ✏ for the

moment. Note that in view of the signs on the µ̃i’s, when writing down the matter con-

tributions to ⌦ at T = 0 we must take into account the particle contributions for the first

12The normalisation of � used in this section di↵ers from the one used in Section 4.5, with �
here

= �
there

/2,
so that the kinetic term of �

here

in Eq. (4.83) is canonically-normalised.
13It would be interesting to explore what happens if the U(1) symmetry is broken both spontaneously

and explicitly, by U(1)-violating mass terms. However, the dispersion relations become very complicated
in this case, and the integrals determining the fermion contribution to grand potential ⌦ appear to become
analytically intractable.
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two modes, while for the second two modes we have to take into account the antiparticle

contributions. Adding up the contributions, we get

�⌦(µ)|fermion =
4
X

i=1

2⇥
Z

d3p

(2⇡)3
Ep,i

2

+
2
X

i=1

Z

d3p

(2⇡)3
(µ̃i � Ep,i) ✓(µ̃i � Ep,i)

+
4
X

i=3

Z

d3p

(2⇡)3
(�µ̃i � Ep,i) ✓(�µ̃i � Ep,i). (4.89)

We begin by making sure that the ✏! 0 limit of �⌦|fermions behaves as expected in view

of the fact that at ✏ = 0 no spontaneous U(1) breaking is communicated to the fermions. In

the ✏! 0, we know that the fermionic part of the theory described by Eq. (4.83) becomes

a theory of a single free massless Dirac fermion that feels a chemical potential µ, and two

free Weyl fermions which do not feel the chemical potential. So as ✏! 0, we must recover

get Eq. (4.87). As already noted in Section 4.5.2, the dispersion relations in Eq. (4.88)

behave in a very peculiar way in this limit, so the way the consistency check is satisfied is

surprisingly subtle. Evaluating Eq. (4.89) and taking the ✏ ! 0 limit, and canceling the

standard UV-divergent vacuum energy contribution by adjusting the �⇤cc counter-term,

we find that

�⌦(µ)fermion =

✓

µ4

96⇡2
+ 2⇥ 7µ4

192⇡2

◆

=
µ4

12⇡2
, (4.90)

which matches Eq. (4.87). It is unusual that the first piece above comes from the vacuum

term, while the second comes from the matter and anti-matter terms. The fact that the

vacuum term makes a µ-dependent contribution to ⌦ is a consequence of the peculiar way

we must write the dispersion relations at ✏ = 0 to keep them diagonal when ✏ > 0.

Now consider the same calculation when ✏ > 1/(2
p
2). The ‘matter’ terms in Eq. (4.89)

vanish, which is the expected signature of the lack of a Fermi surface. The ‘vacuum’

contributions have UV divergences, as is usually the case, and must be regulated and

renormalised. For our purposes here, a simple momentum cut-o↵ regulator ⇤ is su�cient,

since we are considering a Yukawa theory, see Eq. (4.83), which is a classic case where

cut-o↵ regularisation is particularly e�cient.14 We obtain

14Dimensional regularisation (DR) is also often an e�cient regulator. However, the highly unusual
Lorentz-breaking dispersion relations that result after symmetry breaking make the standard DR formulas
inapplicable. Rather than common Gamma functions the analytically-continued integrals have to be written
in terms of Appell functions (hypergeometric functions in two variables) in DR. However, the necessary
asymptotic expansions of these functions are rather complicated [180], hence, DR will not be used in this
calculation. In any case, it is a standard principle of quantum field theory that if one obtains a finite and
cut-o↵ independent expression for an observable, using a systematic regularisation and renormalisation
procedure, any other regulator would give the same final expression.
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� ⌦fermion =
⇤4

2⇡2
+
✏2|�|2⇤2

⇡2
+



µ4

96⇡2
+

1

2⇡2
✏2|�|2

✓

1

2
✏2|�|2 � µ2

◆

� 1

2⇡2
✏2|�|2 log(2)

�

2✏2|�|2 � µ2
R

�

+
1

4⇡2
✏2|�|2

�

2✏2|�|2 � µ2
R

�

log

✓

8✏2|�|2
⇤2

◆�

. (4.91)

The power-law divergences above (together with any other ones coming from the non-

fermion parts of ⌦) are trivially cancelled o↵ by appropriate cosmological constant and

scalar mass counter-terms from Eq. (4.84). For generic ✏, one also has to turn on |�|4

counter-terms at this order, and this would lead to the need to renormalise g to compute

Qfermions.

However, if we consider a theory with ✏ = 1/
p
2, then on the one hand there is still

no Fermi surface since 1/
p
2 > 1/(2

p
2). On the other hand, at the order to which we

work above there are no logarithmic divergences proportional to |�|2 or |�|4. Hence in the

theory with ✏ = 1/
p
2 we do not need to introduce a |�|4 counter-term and renormalise

g to compute Qfermions to leading order. Since consideration of the theory described by

Eq. (4.83) with ✏ = 1/
p
2 is su�cient to make our point, we set ✏ = 1/

p
2 from here

onwards.

We are now in a position to write down the renormalised expression for ⌦fermion:

�⌦fermion|✏=1/
p
2 = �17µ4

96⇡2
=) Qfermion|✏=1/

p
2 = �17µ3

24⇡2
6= 0. (4.92)

Note that this has the same parametric dependence on µ as Eq. (4.87), but a di↵erent

numerical coe�cient. Looking back at Eq. (4.61) for the total U(1)R charge, we see that

in the ✏ = 1/
p
2 theory it is

Q|✏=1/
p
2 =

2µ3

g2
� 17µ3

24⇡2
+ . . . , (4.93)

where the first term is the tree-level scalar contribution from the scalars, the second is the

leading fermion contribution,15 and the ellipsis denotes the one-loop scalar contribution

and higher order terms. This example shows that fermions can contribute to a charge

density Q, as defined by Eq. (4.82), even when there is no Fermi surface. We emphasise

that this unusual result is obtained in the unusual situation where the U(1) symmetry

associated to Q is spontaneously broken due to scalar condensation. For this reason, there

is no conflict with Luttinger’s theorem, which relates Qfermions to the volume of the Fermi

surface, because Luttinger’s theorem assumes that the U(1) symmetry is not spontaneously

broken.
15As usual, the fermion contribution comes from a one-loop calculation, just as in the free case: fermions

are intrinsically quantum objects.
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Before closing this section, we find it illuminating to discuss how our results would be

modified in a theory with a more complicated mass matrix. In any free theory with fermion-

number symmetry preserving Dirac masses, the mass matrix can always be diagonalised by

a linear transformation of fields with the same charge under the symmetries of the theory.

After this procedure, the system is equivalent to one with free massive Dirac fermions that

feel a chemical potential. The dispersion relation for the mode i, with mass mD,i that

experiences a chemical potential µi is then given by

(Ei � µi)
2 = |p|2 +m2

D,i. (4.94)

Consequently, the charge of the system is necessarily stored in Fermi surfaces, which would

appear if there are modes with µi > mD,i. The same statement would apply in any weakly-

interacting system in which the interactions do not produce e↵ective mass terms which

break the fermion number symmetries. Such systems satisfy the assumptions that go into

Luttinger’s theorem, and their behaviour will necessarily follow its predictions. Symmetry

preserving masses can never lead to dispersion relations of the form of Eq. (4.88), as they

will never produce shifts of |p|, i.e. |p| + i, which lead to linear terms in |p|. Hence, the

g2�2 term in Eq. (4.88) cannot be thought of as m2
D, where mD is a Dirac mass.

The ‘mass terms’ that arise as a result of a scalar VEV in the Lagrangian (4.83) spon-

taneously break the U(1) R-symmetry. For example, the term ig✏
⌦

�†↵  ̄P�� couples (a

component of) the state �, which is charged under the symmetry, to  , which is uncharged.

The only way to write down a mass term which appears in the non-standard dispersion re-

lations in the same way as g2|�|2 does, without spontaneous symmetry breaking, is through

explicit symmetry breaking. Such a mass means that the mass matrix cannot be diago-

nalised by a rotation of fields with the same charge, as opposed to in theories containing

only Dirac masses. This is not surprising, in light of the fact that such terms in the disper-

sion relations break the assumptions going into Luttinger’s theorem. Such mass terms may

arise from symmetry-breaking Majorana mass terms, which would be an explicit rather

than spontaneous breaking of the symmetry.

A potentially interesting calculation would be to find the charge stored in a system,

qualitatively di↵erent from N = 2 theories, which contain both symmetry-preserving Dirac

and symmetry-violating masses from spontaneous symmetry breaking by a scalar (or alter-

natively, symmetry-breaking Majorana masses). However, the dispersion relations in such

systems are extremely complicated, and even in cases where closed forms for these can be

obtained, the integrals to evaluate the grand potential become very cumbersome. It would

be interesting to return to this problem in future, particularly in simple non-supersymmetric

theories where the dispersion relations may be tractable.
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4.7 Discussion

The most familiar finite density low-temperature systems that involve chemical potentials

coupling to fermions are Fermi liquids. The applicability of Landau’s Fermi liquid theory

requires two basic features:

1. A Fermi surface, showing up as e.g. the locus in spatial momentum space where the

inverse fermion propagator vanishes when p0 = 0.

2. Having short-range interactions amongst its degrees of freedom.

These two properties lead to the existence of well-defined quasiparticles and all of the

familiar Fermi liquid phenomenology like Landau’s zero sound, a specific heat linear in

temperature, etc.. Examples of theories which do not fit into this paradigm are intrinsically

interesting, and come about when one or both of these properties fail to hold.

Obviously, free systems satisfy both assumptions. Perhaps the simplest non-trivial

example of a non-Fermi liquid, which also happens to be relevant to this chapter, is the

non-supersymmetric electron plasma described by QED, which satisfies (1), but does not

satisfy (2), as reviewed in Sec. 4.2. When there are strong attractive interactions among

the fermions, one can also easily imagine (1) failing due to the formation of bosonic bound

states. The bosonic states obviously do not have a Fermi surface, and at low temperature

would typically tend to Bose condense instead. If there are only parametrically weak

attractive interactions between the fermions, then while the fermionic Green’s function

will have a sharp Fermi surface singularity at any finite order in perturbation theory, the

BCS mechanism generally leads to the formation of Cooper pairs and a non-perturbative

BCS gap, � ⇠ µe�1/g ⌧ µ ⇠ pF . The Fermi surface then gets smeared out by a non-

perturbatively small amount �/pF ⌧ 1. Systems showing both sorts of behaviour are well

known, and have been explored in e.g. the context of the so-called BCS-BEC crossover in

cold atomic gases [156,181]. Note that in both of these examples the U(1) particle number

symmetry of the fermions becomes broken by composite scalar condensation. Luttinger’s

theorem does not apply once this happens.

It is much less obvious to see how a Fermi surface could disappear in perturbation theory,

in the limit of arbitrarily weak interactions, where one does not expect the fermions to be

able to form bosonic bound states. Indeed, so long as Luttinger’s theorem is applicable, such

a thing should not happen. But 4D supersymmetric theories always have elementary scalar

fields, which couple to fermions, and these could condense even at arbitrarily weak coupling.

So for weakly coupled supersymmetric theories, the existence of Fermi surfaces is indeed

questionable. Our results indicate that at least some theories with interactions of the types
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found in supersymmetric gauge theories fail to satisfy (1) due to scalar condensation driving

quadratic mixing between Dirac fermions, which directly feel the chemical potential µ, and

Majorana fermions, which do not. Luttinger’s theorem does not apply because of scalar

condensation, which breaks the relevant U(1) symmetry. There does not appear to be any

modified Luttinger relation of sort explored in [156] that one could define in supersymmetric

QED, because of the lack of separate fermionic and bosonic number symmetries.

Furthermore, as explained in Section 4.2, in supersymmetric QED, this mixing is order

one, even when the gauge coupling is arbitrarily small. In a sharp contrast with the other

examples in which Fermi surfaces are endangered by interactions, in supersymmetric QED

there is no parameter which we could tune smoothly to interpolate between a regime where

there is a perturbative Fermi surface to one where there is not. The physics at any g > 0 is

sharply di↵erent from the physics at g = 0. After the diagonalisation which takes into ac-

count the scalar-condensate-induced mixing, the fermionic eigenmodes have highly peculiar

dispersion relations with a complex dependence on µ, and when the smoke clears we do not

see a Fermi surface in any of our supersymmetric examples. In our non-supersymmetric

examples, with hard and soft breaking of SUSY, where Luttinger’s theorem also does not

apply, whether a Fermi surface appears depends on the values of the parameters. Perhaps

this should not come as a surprise: just because Luttinger’s theorem is not available to

shield the Fermi surface from danger, this does not imply that interactions must destroy

the Fermi surface. This is illustrated by our non-supersymmetric examples in Section 4.3.3

and part of Section 4.5.2, where the relevant U(1) is broken, but there is nevertheless a

Fermi surface. But in our supersymmetric examples, it does turn out to be the case that

turning on any non-zero interaction, which results in the U(1) breaking, obliterates the

Fermi surface. Finally, we again emphasise that our supersymmetric examples all led to

superconducting ground states, with the U(1) breaking driven by charged elementary scalar

condensation, as opposed to any sort of BCS-like fermion pairing mechanism.

Clearly, the work presented in this chapter is only the starting point of many po-

tentially interesting research directions. With regard to super-QED, or the sort of non-

supersymmetric theories we considered in this chapter, one can ask for example, what is

the quasiparticle spectrum of such theories? What are their thermodynamic properties?

Perhaps the most conceptually interesting question is whether the fermions manage to store

any of the charge density, despite not having a Fermi surface. Relatedly, can one develop

a useful heuristic understanding of the reason for the disappearance of the Fermi surface?

näıvely, it may have seemed that the most natural possibility is that when there is no Fermi

surface, all of the charge ‘leaks out’ of the fermion sector through the Yukawa terms, and

gets stored by the scalars. However, in Section 4.6, we explicitly calculated the fermion

89



contribution to the charge density in an example where there is no Fermi surface, and

showed that the fermion contribution to the charge density is non-vanishing. We do not

yet know a heuristic physical interpretation for this result, which seems to go against the

conventional wisdom about how fermions behave at finite density. Of course, this conven-

tional wisdom is based on Luttinger-theorem-inspired pictures, and as we have emphasised

Luttinger’s theorem does not apply to our condensed-scalar examples.

If one hopes to try to make direct contact with condensed matter physics, it may

perhaps be of interest to start by analysing the questions we raised above in Abelian gauge

theories, since examples of dynamical Abelian gauge fields coupled to fundamental and

emergent matter of various statistics are ubiquitous in condensed matter. Perhaps there

are condensed matter systems for which theoretical models involving Yukawa interactions

of the sort seen in SUSY gauge theories may be useful.

To make contact with the results of gauge/gravity duality, it is important to generalise

our analysis to include non-Abelian gauge fields, and to begin working with theories that

actually have gravity duals at strong coupling. The details of the scalar stabilisation mech-

anisms may well be di↵erent, and presumably do not involve turning on FI terms (but

see [182]), as we had to do here in a number of examples. An interesting issue is that from

the weak-coupling side, it seems likely that finite density would drive squark condensation,

but this would lead to gauge symmetry breaking, which has not been seen in most systems

at strong coupling. (Of course, signs of breaking of global symmetries are ubiquitous in

gauge/gravity duality.) Two other options for the stabilisation of scalars are to either turn

on finite temperature or put the theory on a curved manifold, which could produce e↵ective

masses via the matter field-curvature couplings. Also, instead of electrical neutrality, colour

neutrality would play a central role in the analysis of non-Abelian theories, as has been

the case in studies of high density QCD. Once the generalisation to non-Abelian theories is

performed, one would have the opportunity to investigate many interesting phenomenolog-

ical and conceptual questions. Is the charge typically stored in fermions, or in the scalars?

The possibility that in some cases it may be stored in scalar condensates has been noted in

the AdS/CFT context in e.g. [150,183]. Are there actually Fermi surfaces at weak coupling

in theories that do not seem to have one holographically? Are there examples of theories

with the opposite behaviour — Fermi-surface like singularities at strong coupling, but no

Fermi surfaces at weak coupling?
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Chapter 5

Second-order hydrodynamics and
dissipationless limit in the
holographic Gauss-Bonnet liquid

5.1 Motivation and summary

Gauge/string duality has been used successfully to explore qualitative, quantitative and

conceptual issues in fluid dynamics [184–186]. Although the number of quantum field

theory models with known dual string or gravity description is limited, their transport

and spectral function properties at strong coupling can be fully determined, thus giving a

valuable insight into behaviour of generic strongly interacting quantum many-body systems.

Moreover, relating strongly coupled fluids to gravity clarified the understanding of fluid

dynamics as an e↵ective field theory and determined the number of independent transport

coe�cients at first and second order in the hydrodynamic derivative expansion. For generic

neutral fluids, there are two independent first-order transport coe�cients (shear viscosity ⌘

and bulk viscosity ⇣), and fifteen second-order coe�cients1 (see e.g. [189]). For conformal

fluids, additional constraints reduce the number of transport coe�cients to one at first order

(shear viscosity ⌘) and five at second order2 (usually denoted as ⌧⇧, , �1, �2, �3). In the

parameter regime where the dual supergravity description of conformal fluids is applicable,

the six transport coe�cients (in d space-time dimensions, d > 2) are given by [190]

⌘ = s/4⇡ , (5.1)

⌧⇧ =
d

4⇡T

✓

1 +
1

d



�E +  

✓

2

d

◆�◆

,  =
d

d� 2

⌘

2⇡T
, (5.2)

1The existence of a local entropy current with non-negative divergence implies ⌘ � 0, ⇣ � 0 [187] and
constrains the number of independent coe�cients at second order to ten [188].

2There are no further constraints in addition to ⌘ � 0 coming from the non-negativity of the divergence
of the entropy current in the conformal case, so long as the term proportional to viscosity provides the
dominant contribution to the entropy current [188]. This point will be discussed in detail in Section 5.6.4
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�1 =
d⌘

8⇡T
, �2 =



�E +  

✓

2

d

◆�

⌘

2⇡T
, �3 = 0 , (5.3)

where s is the entropy density,  (z) is the logarithmic derivative of the gamma function, and

�E is the Euler-Mascheroni constant. The linear combination of the transport coe�cients

2⌘⌧⇧ � 4�1 � �2 was found to vanish in theories dual to two-derivative gravity [191, 192]

and conjectured to vanish universally when higher-derivative terms on the gravity side of

the gauge/gravity duality are taken into account [192, 193]. As we will show below, this

conjecture does not hold for transport coe�cients derived from Gauss-Bonnet gravity, nor

does it hold for N = 4 transport coe�cients with the leading-order ’t Hooft correction.

For the finite-temperature N = 4 SU(Nc) supersymmetric Yang-Mills theory in d =

3 + 1 dimensions in the limit of infinite Nc and infinite ’t Hooft coupling � = g2YMNc,

first- and second-order transport coe�cients were computed, correspondingly, in [89] and

[98,185], using methods of gauge/gravity and fluid/gravity dualities3:

⌘ =
⇡

8
N2

c T
3 , (5.4)

⌧⇧ =
(2� log 2)

2⇡T
,  =

⌘

⇡T
, �1 =

⌘

2⇡T
, �2 = �⌘ log 2

⇡T
, �3 = 0 . (5.5)

Coupling constant corrections to the coe�cients (5.4), (5.5) can be computed using the

higher-derivative terms in the low-energy e↵ective action of type IIB string theory [194–200].

At first order in hydrodynamic expansion,

⌘ =
⇡

8
N2

c T
3

✓

1 +
135⇣(3)

8
��3/2 + . . .

◆

, (5.6)

and at second order,

⌧⇧ =
(2� log 2)

2⇡T
+

375⇣(3)

32⇡T
��3/2 + . . . , (5.7)

 =
N2

c T
2

8

✓

1� 5⇣(3)

4
��3/2 + . . .

◆

, (5.8)

�1 =
N2

c T
2

16

✓

1 +
175⇣(3)

4
��3/2 + . . .

◆

, (5.9)

�2 = �N2
c T

2

16

✓

2 log 2 +
5 (97 + 54 log 2) ⇣(3)

8
��3/2 + . . .

◆

, (5.10)

�3 =
N2

c T
2

16
25⇣(3)��3/2 + . . . . (5.11)

Temperature T can be given in terms of the infinite-’t Hooft coupling temperature T0 as

T = T0

✓

1 +
15⇣(3)

8
��3/2

◆

. (5.12)

3We use notations and conventions of [185].
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Second-order coe�cients ⌧⇧, , �1 and �3 were known before. The result for �2 is new and

was to our knowledge previously unknown.

The corrections in formulae (5.6) - (5.11) can be trusted so long as they remain (infinites-

imally) small relative to the leading order (�! 1) result, as they are obtained by treating

the higher-derivative terms in the equations of motion perturbatively. To leading order in

the limit � ! 1, the coe�cients (5.6) - (5.11) are independent of the coupling, in sharp

contrast with their weak coupling behavior [201]. The coe�cient �3 vanishes at � ! 1,

and was argued to vanish also at � ! 0 (this appears to be a generic property of weakly

coupled theories). The full coupling constant dependance of transport coe�cients (even at

infinite Nc) is beyond reach. Monotonicity and other properties of various combinations

of transport coe�cients are of interest for studies of near-equilibrium behavior at strong

coupling, in particular thermalisation, and for attempts to uncover a universality similar

to the one exhibited by the ratio of shear viscosity to entropy density [94], [202], [203–205].

In N = 4 SYM at infinite Nc, the shear viscosity to entropy density ratio appears to

be a monotonic function of the coupling [94], with the correction to the universal infinite

coupling result being positive [194,196],

⌘

s
=

1

4⇡

�

1 + 15⇣(3)��3/2 + . . .
�

. (5.13)

Subsequent calculations revealed that the corrections coming from higher derivative terms

in the action can have either sign [96,97]. In particular, for Gauss-Bonnet gravity with the

five-dimensional bulk action

S =
1

225

Z

d5x
p
�g



R� 2⇤+
�GB

2
L2

�

R2 � 4Rµ⌫R
µ⌫ +Rµ⌫⇢�R

µ⌫⇢�
�

�

, (5.14)

where the cosmological constant ⇤ = �6/L2, the shear viscosity to entropy density ratio

in a (hypothetical) dual field theory is given by [97]

⌘

s
=

1� 4�GB

4⇡
, (5.15)

non-perturbatively in the Gauss-Bonnet coupling4 �GB, and can at least formally be driven

all the way down to zero in the limit of �GB ! 1/4. Taking this limit in a hypothetical dual

field theory is problematic, since it leads to causality violation for su�ciently large values

of �GB [207]. On the other hand, one may hope that adding other fields to the action can

cure the acausal ultraviolet behavior of the dual theory without a↵ecting its hydrodynamic

(low-frequency) limit [208].

4An attractive feature of Gauss-Bonnet gravity and, more generally, Lovelock gravity is that the equa-
tions of motion remain second-order and thus the higher-curvature terms can be treated non-perturbatively
(implications of Lovelock gravity in the context of holography iare discussed in [206]). An obvious disad-
vantage of considering holography with Gauss-Bonnet action is that the quantum field theory dual to it is
unknown and one remains in the realm of the bottom-up approach.
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In a recent paper, Bhattacharya et al. [101] suggested the existence of non-trivial second-

order non-dissipative hydrodynamics, i.e. a theory whose fluid dynamics derivative expan-

sion has no contribution to the entropy production while still having some of the transport

coe�cients non-vanishing.5 For conformal fluids, the classification of [101] implies the ex-

istence of a four-parameter family of non-trivial non-dissipative fluids with ⌘ = 0 and

non-vanishing ⌧⇧, , �1 = /2, �2 and �3. Given the result (5.15), the hypothetical the-

ory dual to Gauss-Bonnet gravity in the limit of �GB ! 1/4 is a natural candidate for a

dissipationless fluid. In addition to shear viscosity, only two transport coe�cients (⌧⇧ and

) for the dual Gauss-Bonnet background have been previously known non-perturbatively

(to leading order in �GB, all coe�cients were found by Shaverin and Yarom [193]). In this

chapter, we compute all Gauss-Bonnet transport coe�cients non-perturbatively in �GB and

analyse the �GB ! 1/4 limit. The full set of transport coe�cients is given by

⌘ = s�2/4⇡ , (5.16)
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where we have defined � ⌘
p
1� 4�GB. In the limit of �GB ! 0 (� ! 1), which corre-

sponds to the pure Einstein gravity, one recovers the standard results for strongly coupled

conformal fluids, (5.4) and (5.5). The Gauss-Bonnet result for ⌘ was obtained in [97] and

the relaxation time ⌧⇧ was found numerically in [210]. Coe�cients ⌧⇧ and  were computed

analytically in [211]. The formulae for �1, �2, and �3 are new. To linear order in �GB, the

results coincide with those found in [193]. Note, however, that

2⌘⌧⇧ � 4�1 � �2 = � ⌘

⇡T

(1� �) (1� �2) (3 + 2�)

�2
= �40�2GB⌘

⇡T
+O

�

�3GB

�

. (5.22)

i.e. this particular linear combination of transport coe�cients vanishes only to linear order

in �GB, thus disproving the universality conjecture made for two-derivative gravity in [192].

5The authors of [101] considered an e↵ective field theory approach [3, 4] to non-dissipative uncharged
second-order hydrodynamics. The approach relies on a classical e↵ective action and standard variational
techniques to derive the stress-energy tensor, which were discussed in Chapter 3. It is thus unable to
incorporate dissipation. The inclusion of dissipation into the description of hydrodynamics, using the same
e↵ective description, was analysed in [102,209], which was also the central topic of Chapter 3.
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We observe that the inequality

2⌘⌧⇧ � 4�1 � �2  0 (5.23)

is still obeyed by the transport coe�cients of the holographic Gauss-Bonnet liquid.

It is very interesting to note that by having the knowledge of all leading-order ’t Hooft-

corrected N = 4 super Yang-Mills second-order transport coe�cients, we can confirm that

the relation 2⌘⌧⇧ � 4�1 � �2 = 0 still remains valid. In spite of the higher-derivative

corrections, the linear relation is not violated.

In the limit of �GB ! 1/4 (� ! 0) we find

⌘⌧⇧ = 0, �1 =
3⇡2T 2

2
p
225

, �2 = 0, �3 = �3
p
2⇡2T 2

25
,  = � ⇡2T 2

p
225

. (5.24)

At first glance, this result realises the dissipationless liquid scenario outlined in [101]: the

shear and bulk viscosities are zero while some of the second order coe�cients are not.

However, the relationship  = 2�1, which is required for ensuring zero entropy production,

does not hold among the coe�cients in (5.24). We therefore conclude that the holographic

Gauss-Bonnet liquid does not fall into the class of non-dissipative liquids discussed in [101].

This chapter is structured in the following way. We will begin by reviewing phenomeno-

logical second-order hydrodynamics in section 5.2. We will then move on to presenting the

holographic setup in 5.3, i.e. the Gauss-Bonnet theory, in which we will perform the ma-

jority of our calculations. We will present the calculations of two-point functions and the

analysis of the scalar, shear and sound modes in Section 5.4. In Section 5.5, we will study

the behaviour of the theory at the extreme value of the Gauss-Bonnet coupling, �GB = 1/4.

This will be followed by the calculation of three-point functions in Section 5.6, where we

will present the relevant Kubo formulae, outline the steps of the calculation, present the

results of the non-perturbative second-order transport coe�cients and discuss their impli-

cation for the Bjorken flow and the structure of the entropy current. We will then move

on to considering charge di↵usion in Section 5.7. Fluid/gravity correspondence will be

employed in Section 5.8 to test the validity of our non-perturbative transport coe�cients

and the calculation of �2 in the N = 4 theory will be presented in Section 5.9. We will

conclude this chapter with a discussion of results and an outline of potential future research

directions.

5.2 Second-order hydrodynamics

We begin by reviewing second-order conformal hydrodynamics of uncharged fluids [98,185],

which is a direct extension of our discussion in Chapter 2.1.3. The main idea, which
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we presented, was that phenomenological hydrodynamics can be organised as a gradient

expansion of conserved tensors in velocity ua(x), temperature, T (x), and chemical potential,

µ(x), fields. Since our primary interest in this chapter lies with uncharged fluids, which have

a vanishing chemical potential, the only conserved operator relevant for the construction

of the hydrodynamic expansion is the stress-energy tensor T ab [25, 187].6

The most general tensorial structure of the stress-energy tensor is

T ab = Euaub + P�ab + qaub + uaqb + tab, (5.25)

where E and P are scalars, qa is transverse, tab transverse, symmetric and traceless, and

�ab ⌘ gab + uaub. All E , P , qa and tab are expanded in derivatives of the fields ua(x) and

T (x). As discussed in Chapter 2.1.3, the lack of microscopic definition of the variables

results in an ambiguity (a choice of “frame”), whereby we can re-define ua(x) and T (x) by

any function of their derivatives. We will choose to work in the Landau frame and to set

E = ", where " is the energy density of the fluid. This further implies that qa = 0. Since we

are interested in fluids on curved manifolds, we will also include derivatives of the metric

tensor into the gradient expansion.

The stress-energy tensor can then be written as

T ab = "uaub + P�ab + ⇧ab, (5.26)

with the second-order conformal fluid in four dimension described by pressure P = "/3,

which receives no higher-order corrections. The spin-2 structure is given by

⇧ab = � ⌘�ab + ⌘⌧⇧



hD�abi +
1

d� 1
�ab (r · u)

�

+ 
⇥

Rhabi � (d� 2)ucR
chabidud

⇤

+ �1�
ha
c�

bic + �2�
ha
c⌦

bic + �3⌦
ha
c⌦

bic, (5.27)

where D ⌘ uara. The first-order coe�cient ⌘ is shear viscosity while the five second-order

coe�cients will sometimes be labeled by �n = {⌘⌧⇧,�1,�2,�3,}, where n = {0, 1, 2, 3, 4}.
For convenience, we have defined

Ahabi ⌘ 1

2
�ac�bd (Acd + Adc)�

1

d� 1
�ab�cdAcd ⌘ hAabi, (5.28)

which by construction forms tensors that are transverse, uaAhabi = 0, traceless, gabAhabi = 0,

and symmetric. In our case, d = 4. The tensor �ab is the one-derivative symmetric,

transverse and traceless tensor

�ab = 2hraubi. (5.29)

6In this chapter, we will be using Greek letters (µ, ⌫, etc.) to denote five-dimensional bulk indices, Latin
letter from the beginning of the alphabet (a, b, etc.) to denote four-dimensional field theory indices and
Latin indices from the middle of the alphabet (i, j, etc.) to denote spatial three-dimensional field theory
indices.

96



The vorticity ⌦µ⌫ is defined by the anti-symmetric, transverse and traceless one-derivative

tensor

⌦ab =
1

2
�ac�bd (rcud �rduc) . (5.30)

Finally, Rcabd and Rab are the Riemann and Ricci tensors with terms which include two

derivatives of the metric.

5.3 Einstein-Gauss-Bonnet gravity

In this section, we begin our holographic analysis of the Einstein-Gauss-Bonnet theory,

which is governed by the gravitational action (5.14) in five bulk dimensions. The coe�cients

of the four-derivative terms ensure that the equations of motion, which follow from the

action (5.14), only contain second derivatives of the metric. They are given by

Rµ⌫ �
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2
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4
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The black brane solution of equation (5.31) is

ds2 = �f(r)N2
#dt
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r2

L2

1

2�GB

"

1�
s

1� 4�GB

✓

1� r4+
r4

◆

#

. (5.33)

We will set the arbitrary constant N# so as to normalise the speed of light at the boundary

to unity,

N2
# =

1

2

⇣

1 +
p

1� 4�GB

⌘

, (5.34)

and henceforth use this value. For convenience, we also define a shifted Gauss-Bonnet

coupling,

� ⌘
p

1� 4�GB. (5.35)

Thermodynamic quantities associated with this background are the Hawking temperature

of the black brane (5.32),

T = N#
r+
⇡L2

=
r+p
2⇡L2

p

1 + �, (5.36)
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as well as energy density and entropy density of the dual conformal theory,

" = 3P =
3

4
Ts, (5.37)

s =
2⇡

25

⇣r+
L

⌘3

=
4
p
2⇡4L3

25

T 3

(1 + �)3/2
. (5.38)

We will set L = 1 in most of the sections below.

The shear viscosity to entropy density ratio was computed in [97] and found to equal

the expression given in Eq. (5.15), i.e. ⌘/s = �2/4⇡2, which can be tuned to zero in the

limit of �GB ! 1/4.

Based on various faster-than-speed of light and causality arguments, the behaviour of

gravitational perturbations was argued to be pathological for large �GB, and a bound on

�GB was established [97, 207,210,212],

� 7

36
 �GB  9

100
. (5.39)

However, all those arguments rely on the ultraviolet, large momentum limit of q ! 1.

Since we are only interested in the hydrodynamic transport properties of the Einstein-

Gauss-Bonnet dual, we can interpret the theory as an e↵ective field theory, valid only for

low frequencies and momenta. These arguments led [208] to explicitly construct a theory

with a low temperature phase transition, breaking the link between the hydrodynamic IR

and causality breaking UV modes. Since we wish to focus on the hydrodynamic regime

in which ⌘/s goes to zero, i.e. for �GB near 1/4, we will view the above setup as a

holographic dual of an e↵ective field theory with some unspecified fields responsible for the

UV completion.

5.4 Two-point function and quasi-normal modes

In this section, we will consider holographic retarded two-point functions of the stress-

energy tensor, Gµ⌫,⇢�
R (p1, p2) ⌘ hT µ⌫(p1), T ⇢�(p2)iR, and perform an analysis of the quasi-

normal mode spectrum to recover the dispersion relations of di↵usive and sound modes

for non-perturbative values of �GB. We will use the usual decomposition of the metric

perturbations into scalar, shear and sound modes. These modes transform as spin 2, 1 and

0 tensors, respectively, after we select a specific direction for the momentum flow and make

use of the remaining spatial rotational invariance [90, 91, 93].

5.4.1 Scalar mode

Let us begin by analysing the scalar sector of the metric perturbations to the second order

in the hydrodynamic expansion. To first order, this was done in [97]. Without loss of
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generality, we choose the metric fluctuations to have momentum in the z-direction, i.e.

hµ⌫(r)e�it!+iqz, which identifies the relevant scalar fluctuation to be

Z1 = hx
y. (5.40)

It is convenient to raise one of the indices of hxy so that the mode Z1 behaves as a min-

imally coupled massless scalar in the Gauss-Bonnet background. The Einstein-Gauss-

Bonnet equations (5.31) governing its dynamics can be written in a convenient form,

A2Z
00
1 + A1Z

0
1 + A0Z1 = 0, (5.41)

where the coe�cient functions are given by

A2 = rf (�GBf
0 � r) , (5.42)

A1 = rf 0 (�GBf
0 � r)� 3rf + �GBf (rf 00 + 2f 0) , (5.43)

A0 =
2

f
�

1 +
p
1� 4�GB

�



r!2 (�GBf
0 � r)�

⇣

1 +
p

1� 4�GB

⌘

f 2 (�GBf
00 � 1)

+
1

2

⇣

1 +
p

1� 4�GB

⌘

f
�

f 00 �r2 � �GBq
2
�

� 2�GBf
02 + 4rf 0 + q2 � 12r2

�

�

. (5.44)

The function f was defined in Eq. (5.33), r is the radial variable, while ! and q are the

frequency and the momentum of the background fluctuations. To solve the di↵erential

equation (5.41) for the purposes of extracting the retarded Green’s function, we must

impose the in-falling boundary conditions [87, 88] by writing

Z1 = f̃(r)�iw/2 (1 + g(r)) , (5.45)

where

f̃(r) =
1

2�GB



1�
q

1� 4�GB

�

1� (r+/r)
4�
�

. (5.46)

We have introduced dimensionless frequency and momentum,

w =
!

2⇡T
, q =

q

2⇡T
. (5.47)

It is convenient to follow the discussion of [97] and introduce a new radial coordinate,

v = 1�
q

1� 4�GB

�

1� (r+/r)
4�, (5.48)

so that Z1(v) = (v/(2�GB))
�iw/2 (1 + g(v)). We can now rewrite the equation (5.41) as

v (1� v) @2vg(v) + [1 + v + iw (v � 1)] @vg(v) + G(v) [g(v) + 1] = 0, (5.49)
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where G is a function of w and q, with the form

G(v) = �iw+w2Gw(v) + q2Gq(v). (5.50)

We have further defined

Gw(v) =
(v � 1)

h

(4�GB + v(v � 2))3/2 � 8�3/2GB(v � 1)2
i

4v (4�GB + v(v � 2))3/2
, (5.51)

Gq(v) =
(v � 1)

p
�GB

�

1 +
p
1� 4�GB

�

(1 + 8�GB + 3v(v � 2))

2 (4�GB + v(v � 2))3/2
. (5.52)

To find the retarded two-point function in the hydrodynamic, low frequency and mo-

mentum limit, we may solve for g(v) perturbatively in w = !/(2⇡T ) and q = q/(2⇡T ),

assuming that the magnitudes of both w and q are of the same scale µ. By writing

g(v) =
1
X

n=1

µngn(v), (5.53)

we find that to all orders in µ, the di↵erential equations for gn have the form

v (1� v) @2vgn(v) + (1 + v) @vgn(v) +Hn(v) = 0. (5.54)

Functions Hn can be determined recursively from G and gm, with m < n,

Hn(v) = iw@v [(1� v) gn�1(v)] +
�

w2Gw(v) + q2Gq(v)
�

gn�2(v), (5.55)

where n � 1. At first order, g0 = 1 and g�1 = 0, which gives H1 = �iw.

All functions gn are solved by the expression given in terms of the integrals,

gn(v) = Dn +

Z v

dv0
(1� v0)2

v0

 

Cn �
Z v0

dv00
Hn(v00)

(1� v00)3

!

, (5.56)

from which we can find the first-order result,

g1(v) = D1 �
1

2
C1 (4� v) v +

✓

C1 +
iw

2

◆

log v. (5.57)

We require all gn to be regular at the horizon, i.e. at v = 0, which can be ensured by

imposing a boundary condition that cancels the logarithmic divergences, i.e. terms propor-

tional to log v. In the case of g1, the cancellation occurs when C1 = �iw/2. Furthermore,

we must impose that all gn vanish at the boundary, where v = 1 �
p
1� 4�GB. At first

order this amounts to setting D1 = � iw
2

�

1 + 2�GB �
p
1� 4�GB

�

. Hence,

g1(v) = � iw

4

�

3� 2� � �2 � 4v + v2
�

, (5.58)

where we have used � =
p
1� 4�GB, as defined in Eq. (5.35).
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In order to find second-order hydrodynamic contributions to the scalar channel two-

point function, we need to find the solution at one order higher, i.e. g2. This can be done

by following exactly the same procedure that gave us g1; by using Eq. (5.55) with g1 and

g0 we first find H2, which can be integrated using Eq. (5.56) to find g2. The result has the

form

g2(v) = w2g(w)
2 (v) + q2g(q)2 (v)

+
w2

4

Z v (1� v0)2 log
h

�2 � 1 + v0 �
p

(�2 � 1) (�2 � (1� v0)2)
i

v0
dv0. (5.59)

Functions g(w)
2 and g(q)2 have lengthy, but closed-form expression. Even though we do not

have a closed-form expression for the remaining integral in g2(v), this is irrelevant for the

computation of the two-point function. The form of g2 is su�cient for fixing both boundary

conditions on g2 and for determining the near-boundary expansion of Z1. More precisely,

the undetermined integral comes from the outer integration of (5.56). Regularity at the

horizon, v = 0, can thus be imposed without a problem to fix C2. What remains is an

integral in (5.59), which can be integrated order-by-order in the near-boundary expansion

to determine D2. By treating it as an indefinite integral, an additional undetermined

constant can simply be absorbed into D2.

The retarded two-point function can be computed by only perturbing the Einstein-

Gauss-Bonnet action (5.14) in the scalar channel, gxy ! gxy + r2Z1, and evaluating the

on-shell contribution of Z1. The holographic Green’s function is given in terms of the

variable v by

Gxy,xy
R,hol(!, q) =

r4+�
2
p

2(1 + �)

25
lim

v!1��



v

(1� v)2
Z1(v,�w,�q)

@

@v
Z1(v,w, q)

�

(5.60)

=
r4+
25

(1� �)
p

2(1 + �)Z1(1� �,�w,�q)
@

@v
Z1(v,w, q)

�

�

�

�

v=1��
. (5.61)

From the field theory point of view, it was shown in [185] that we can use the retarded

two-point function of the stress-energy tensor, Gxy,xy
R (!, k), to extract two of the second-

order hydrodynamical coe�cients, ⌧⇧ and . Up to second order in energy and momentum,

the hydrodynamic correlation function takes the gradient expanded form,

Gxy,xy
R,hydro (!, q) = P � i⌘! + ⌘⌧⇧!

2 � 

2

�

!2 + q2
�

. (5.62)

From the solution for Z1 solved to second order, i.e. (5.45) with (5.58) and (5.59), we

can compute the retarded Green’s function (5.60) and match it with the hydrodynamic

expression (5.62). Note that since we only considered fluctuations about the background
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in the holographic calculation, we will only find the !- and q-dependent terms. The back-

ground itself gives the value of P . The procedure now enables us to find the shear viscosity

and its ratio over the entropy density to be

⌘ =

p
2⇡3T 3

25

�2

(1 + �)3/2
,

⌘

s
=

1

4⇡
�2, (5.63)

as previously computed in [97], with the Hawking temperature stated in (5.36).

The second-order coe�cients ⌧⇧ and  can now be found by matching (5.60) with (5.62),

giving us expressions which were previously computed in [213] by using a di↵erent method,

⌧⇧ =
1

8⇡T�



(1 + �) (� (5 + �)� 2) + 2� log

✓

(1� �)�

2 (1� �2)

◆�

, (5.64)

 =
⌘

⇡T

(1 + �) (2�2 � 1)

2�2
. (5.65)

In the limit of �GB ! 0, i.e. � ! 1, we can use the N = 4 relation, N2
c = 4⇡2/25, to

check that the expressions (5.63), (5.64) and (5.65) reproduce the N = 4 super Yang-Mills

results found in [185],

⌘ =
⇡

8
N2

c T
3, ⌧⇧ =

2� log 2

2⇡T
,  =

⌘

⇡T
. (5.66)

At linear order in �GB, we find

⌘⌧⇧ =
⇡2T 2

425



2� log 2 +
1

2
�GB (�21 + log 32) +O

�

�2GB

�

�

, (5.67)

which is in exact agreement with our three-point function calculation in section 5.6, the

fluid/gravity calculation of section 5.8 and a recent paper [193].7

In the limit of most interest to us in this work, namely �GB ! 1/4, i.e. � ! 0,

⌘ = 0, ⌧⇧ = � 1

4⇡T

✓

1

�
� log

�

2
� 3

2
+O(�)

◆

,  = � ⇡2T 2

p
225

. (5.68)

The expression for ⌧⇧ becomes negative and diverges as �1/
p
1� 4�GB, while  also be-

comes negative but finite. The physical hydrodynamic coe�cient ⌘⌧⇧, however, goes to

zero at �GB ! 0. Functions ⌧⇧ (�GB) and  (�GB) are presented in Figure 5.1.

Causality of the theory at second order in the hydrodynamic expansion of the sound

mode was analysed in [210], where they showed that one must demand the condition

⌧⇧T � 2⌘/s to be obeyed. The plot of the function, which determines the causality-

preserving region, is presented in Figure 5.2. It reproduces the shape of the numerically

obtained plot in [210]. The constraint on the coupling can be determined numerically and

matches the approximate values of �0.711  �GB  0.113 found in [210]. However, this
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Figure 5.1: Left: A plot of ⌧⇧T as a function of �GB. The function diverges in the limit of
�GB ! 1/4. Right: A plot of dimensionless 25/(4⇡

2T 2) as a function of �GB.
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Figure 5.2: A plot of ⌧⇧T � 2⌘/s as a function of �GB.

should not be seen as a problem in our case, as we are only treating the theory as an IR

e↵ective theory.

As a final comment on the behaviour of the scalar channel, let us look at the � ! 0

limit of the Green’s function (5.60),

Gxy,xy
R,hol(!, q) =

p
2r4+
25

Z1(1,�w,�q)
@

@v
Z1(v,w, q)

�

�

�

�

v=1

. (5.69)

It was observed in [97] that (5.60) vanishes at the leading order in w, thus giving ⌘ ! 0.

However, given that  is non-zero in the limit, this means that the full Green’s functions

does not vanish in the limit of � ! 0. In fact, this limit is very complicated as a result

of an intricate interplay of zeros and infinities in various terms. As a result, the order of

taking � ! 0 does not commute with the process of computing the two-point function.

This can be seen explicitly by using the exact analytic solution for Z1 at � = 0, which we

compute in section 5.5. It is given in terms of the hypergeometric function

Z1 = C1v
� iw

2 2F1



�1� iw

2
�

p
4� 3q2

2
,�1� iw

2
+

p
4� 3q2

2
, 1� iw, v

�

. (5.70)

7In [193], the authors used notation �
0

= ⌘⌧
⇧

and �
GB

= �/4. By writing 2

5

= 8⇡G
5

, our calculation
reproduces their expression.
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By using the expression (5.60), we now find

Gxy,xy
R,�=0(!, q) =

⇡2T 2 (3q2 � !2)

4
p
225

, (5.71)

which would give  = �3⇡2T 2/(2
p
225) and ⌘⌧⇧ = �⇡2T 2/(

p
225). This is therefore

di↵erent from what we obtained by first computing Gxy,xy
R and then taking � ! 0.

We will defer a more detailed discussion of the Green’s functions at �GB = 1/4 until

section 5.5. There, we will comment on a very peculiar feature of Z solutions and argue

why the Green’s function formula (5.69) is, in fact, most likely incorrect at �GB = 1/4.

5.4.2 Shear mode

We now consider the gauge-invariant shear mode of the metric perturbation hµ⌫(r)e�it!+iqz

in the radial gauge with hrµ = 0. The relevant scalar variable is given by

Z2 =
q

r2
htx +

!

r2
hxz. (5.72)

The di↵erential equation for Z2, written in the u = r2+/r
2 variable, is

Z 00
2 +B1Z

0
2 +B0Z2 = 0, (5.73)

with the coe�cients B1 and B0 given by

B1(u) = �
2�4(� + 1)

⇥

1
2
(1� �2) (u2 � 1) (U � 2) + U � 1

⇤

u(U � 1)U3 [�2(� + 1)(U � 1)q2 � (�2 � 1)U2w2]
q2 (5.74)

�
(1� �2)

⇣

�4 + (1� �2)2 u4 � 2 (1� �2) u2 (U � �2)� �2U
⌘

u(U � 1)U [�2(� + 1)(U � 1)q2 � (�2 � 1)U2w2]
w2, (5.75)

B0(u) =
�2(� + 1)(U + 1)

4u (u2 � 1)U2
q2 +

(U2 + 2U + 1)

4u (u2 � 1)2
w2. (5.76)

We have defined U2 ⌘ u2 + �2 � u2�2.

Quasi-normal modes are found by imposing the in-going boundary condition,

Z2(u) = (1� u2)�iw/2Z2(u,w, q), (5.77)

and looking for solutions, i.e. dispersion relations, w(q), of the equation Z2(u = 0,w, q) =

0. The dispersion relation of the hydrodynamical di↵usive mode that dominates the low-

energy shear sector is given by

w = �iDq2 +O
�

q4
�

, (5.78)

where D is the di↵usion constant. The exact form of the q4-order expression is unknown,

as it must include contributions from third-order hydrodynamic coe�cients that have not
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been classified. The di↵usive dispersion relation is given by the hydrodynamic expression

! = �i⌘q2/("+ P ), which translates for our conformal fluid with " = 3P into

D = 2⇡
⌘

s
=

1

2
(1� 4�GB) . (5.79)

We are particularly interested in the behaviour of the shear mode in the limit in which

�GB goes to 1/4, i.e. the limit in which both viscosity and, hence, D vanish. In fact,

we can analytically understand the e↵ects of the hydrodynamic expansion to all orders on

the di↵usive dispersion relation by studying only the structure of the di↵erential equation

(5.73). We know that the shear mode’s dispersion relation has the form

w = i
1
X

n=1

a2n q
2n, (5.80)

where a2n are real coe�cients, which depend on the hydrodynamic transport coe�cients at

all orders in gradient expansion. In the regime of �GB near 1/4, i.e. � ⌧ 1, by definition

lim�!0 U = u. We can then define q̃ ⌘ �q and keep only the leading-order terms in the

� ! 0 limit. Equation (5.73) becomes

Z 00
2 � (2� u)uw2

(1� u) (u2w2 � q̃2(1� u))
Z 0

2 +
u2w2 � (1� u)q̃2

4(1� u)2u3
Z2 = 0. (5.81)

We can immediately conclude that since the di↵erential equation (5.81) only depends on q̃

and not on q or � individually, its solutions will also only depend on the product q̃ = �q.

Hence, in the � ⌧ 1 regime, a2n = ã2n�2n, with the ã2n coe�cients having no dependence

on �. The shear dispersion relation thus takes the form

w = i
1
X

n=1

ã2n �
2nq2n, (5.82)

and therefore hydrodynamic contributions at all orders become suppressed by powers of �,

near � ! 0. The hydrodynamic shear mode will thus approach w ! �i✏+, with a real

positive ✏+ ! 0 in the limit in which viscosity vanishes. Away from this limit, ã2n will of

course have complicated dependences on �.

Note that we have so far only talked about the values of �GB near 1/4 and not at

�GB = 1/4. We will analyse the behaviour of the quasi-normal modes at �GB = 1/4 in

section 5.5. We will see that no quasi-normal mode with w = 0 exists at �GB = 1/4.

Instead, the entire mode will vanish from the spectrum. Therefore, again, the limit of

�GB ! 0 does not commute with the procedure of computing the Green’s functions.

An important question about the structure of the hydrodynamic expansion can be raised

at this point. Namely, whether the entire hydrodynamic tail may be controlled by shear

viscosity ⌘, such that all a2n / ⌘, or whether other hydrodynamic coe�cients responsible
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for the behaviour of this dissipative mode also vanish in the limit. At present, we do not

have an answer to this question.

Numerically, the quasi-normal mode spectrum is most easily found by searching for

complex values of w that satisfy Z2(u = 0) = 0 at various values of q. We had to resort to

these techniques to analyse the behaviour of the shear modes for a larger range of w, q and

for all vales of �GB between 0 and 1/4. We found that the lowest-frequency hydrodynamical

mode indeed approaches w ! 0 in the limit of �GB ! 1/4. There exist further higher-

frequency quasi-normal modes, as is usual in holography. Since their behaviour is not of

direct relevance to the analysis of dissipative hydrodynamics, we will not discuss them here.

As a final comment, we note that a sequence of quasi-normal modes appears on the

negative imaginary axis of the complex w plane. These modes were not seen in the numer-

ically computed spectrum of the N = 4 theory, i.e. at �GB = 0, in [93]. We observe that at

a fixed momentum q, they all travel upwards, i.e. closer to w = 0, as �GB increases towards

1/4. Interestingly, we find that in the strict limit of �GB ! 1/4, their location precisely

coincides with the quasi-normal spectrum computed from Z2(u) at �GB = 1/4. The details

of the calculation will be presented in 5.5. We will show that the limiting spectrum equals

to the following set of quasi-normal modes,

w = �2i (1 + n1) , w = �2i (3 + n2) , (5.83)

where n1 and n2 are non-negative integers.

5.4.3 Sound mode

We now turn our attention to the analysis of the sound channel. The relevant gauge-

invariant combination of the metric perturbations for the sound mode is

Z3 =
2q2

r2!2
htt +

4q

r2!
htz �

✓

1�
q2N2

# (4r3 � 2rf(r))

2r!2 (r2 � 2�GBf(r))

◆✓

hxx

r2
+

hyy

r2

◆

+
2

r2
hzz. (5.84)

We have again used the hrµ = 0 gauge. The di↵erential equation for the sound mode, using

the radial variable u = r2+/r
2, is given by

Z 00
3 + C1Z

0
3 + C0Z3 = 0, (5.85)

where the coe�cients are given by

C1(u) =
3

2u
+

3(� � 1) [(�2 � 1) u2 � �2] [(�2 � 1) u2(5U � 7)� 5�2(U � 1)]

2u(U � 1)U2D1

w2

+

h

(�2 � 1)2 u4 (�3�2 + 5U � 7) +N1

i

2u(U � 1)U2D1

q2, (5.86)
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with the expressions N1 ⌘ �2 (�2 � 1) u2 (18�2 � 13U + 10)�15�4 (�2 � 2U + 1) and D1 ⌘
[(�2 � 1) u2 (3(� � 1)w2 + q2) + 3�2 (q2(U � 1)� (� � 1)w2)]. Furthermore,

C0(u) =
(�2 � 1)2

D0

⇢

12(� � 1)2�2(� + 1)q2u5 � 4(� � 1)�2q2u3
�

3�2 � 7U + 4
�

+
�

�2 � 1
�3

q2u6
�

3(� � 1)w2 + q2
�

� u2�2
�

�2 � 1
� ⇥

q4
�

�2 + 2U
�

+ (� � 1)q2w2
�

9�2 � 4U
�

� 6(� � 1)2Uw4
⇤

+
�

�2 � 1
�2

u4
⇥

q4
�

3�2(U � 2) + U
�

+ 2(� � 1)q2Uw2 � 3(� � 1)2Uw4
⇤

� 3�4
⇥

q4
�

�2(U � 2) + U
�

+ 2(� � 1)q2w2
�

U � �2
�

+ (� � 1)2Uw4
⇤

�

, (5.87)

where

D0 ⌘ 4(� � 1)u(U � 1)2U3

⇥
⇥�

�2 � 1
�

u2
�

3(� � 1)w2 + q2
�

+ 3�2
�

q2(U � 1)� (� � 1)w2
�⇤

. (5.88)

We have again used U2 = u2 + �2 � u2�2.

To find the spectrum of the sound channel, we impose the in-falling boundary condition,

Z3(u) = (1� u2)�iw/2Z3(u,w, q). (5.89)

The lowest-frequency hydrodynamic quasi-normal mode, i.e. the sound mode, has a dis-

persion relation known analytically to second order in the hydrodynamic expansion [185],

w = ± qp
3
� 2⇡i�Tq2 ± 4

p
3⇡2�T

✓

1

3
⌧⇧T � 1

2
�T

◆

q3 + . . . . (5.90)

The attenuation of the mode is controlled by

� =
2

3

⌘

sT
. (5.91)

Both terms proportional to q2 and q3 therefore vanish in the limit of �GB ! 1/4, as

they are proportional to shear viscosity. In Figure 5.3, we plot the �GB-dependence of the

dimensionless coe�cient controlling the term proportional to q3,
p
3�T 2 (⌧⇧/3� �/2). The

question of how viscosity enters into higher-order terms again remains open in the absence

of analytic understanding of higher-order hydrodynamics, as in the case of the di↵usion

mode.

To study the sound mode spectrum beyond second-order hydrodynamics, we must again

resort to numerics. For better control over the numerics, we follow [214] and write

Z3(u) = A [1 + a1u+ . . .] + (Ah log u+ B) u2 [1 + b1u+ . . .] , (5.92)

which is a standard Frobenius expansion result. The retarded Green’s function is then

proportional to B/A. Because of the logarithmic term in Z3, it is beneficial to the precision
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Figure 5.3: A plot of the dimensionless coe�cient
p
3�T 2 (⌧⇧/3� �/2) controlling the q3 contri-

bution to the sound mode, as a function of �GB.

of our numerics to seek the poles of B/A (or zeros of A/B) as opposed to the zeros of A.

Furthermore, the full Green’s function includes information about the values of the residues

at the poles. By writing

B =
1

2
lim
u!0

(Z 00
3 (u)� 2Ah log u)� 3

2
Ah, (5.93)

we obtain the expression, which is convenient for the computation of quasi-normal modes,

B
A = lim

u!0



Z 00
3 (u)

2Z3(u)
� h log u� 3

2
h

�

. (5.94)

The coe�cient h can be found analytically, h = �8�4GB (w2 � q2)2 /
�

1�
p
1� 4�GB

�4
.

Numerical results indicate that the sound pole approaches w = ±q/
p
3 + ✏, with a

complex ✏! 0, in the limit of �GB ! 1/4. We plot the real part of the dispersion relation,

w(q), for �GB = 0.01 and �GB = 0.2 in Figure 5.4. Since this part of the analysis crucially

depend on numerical precision, it is impossible to claim that coe�cients of all terms in

w beyond the ideal fluid term go to zero in the limit. In fact, numerics get increasingly

di�cult as �GB approaches 1/4. Similarly to the di↵usion mode, the hydrodynamic sound

mode also disappears from the spectrum at �GB = 1/4.

The spectrum also includes the usual higher-frequency quasi-normal modes, which we

will not consider here. In addition to those, there are again new poles present on the

negative imaginary axis, which move towards the origin of the complex w plane as �GB

increases. In the limit of �GB ! 1/4, as in the shear sector, the poles coincide with the

quasi-normal mode spectrum computed at �GB = 1/4, which will be presented in the next

section. However, there is an important di↵erence between the behaviour of the imaginary

axis sound poles and the ones found in the shear channel. Namely, the sound channel poles

can cross the real axis on the complex w plane, which indicates instability in the spectrum.
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Figure 5.4: A plot of the real part of the sound mode’s dispersion relation, <[w(q)], at �GB =
0.01 (black line) and �GB = 0.2 (blue line). The red line corresponds to the ideal fluid result,
w = q/

p
3. Discrete data points are joined by lines of their respective colours. We notice that as

�GB approaches 1/4, the dispersion relations become increasingly close to w = q/
p
3.

However, if we restrict ourselves to a finite range of momenta q, we can in fact avoid this

instability. The value of q, below which the theory is stable at all �GB, will be computed

analytically in section 5.5 where we will use the fact that the imaginary axis poles rise

towards the origin of the complex w plane (any beyond), converging towards the spectrum

computed at �GB = 1/4.

5.5 Excitations at �GB = 1/4 coupling

In the previous section, we studied the behaviour of the standard hydrodynamic quasi-

normal modes. However, we also observed the emergence of poles on the imaginary axis

both in the shear and the sound spectrum for values of �GB approaching 1/4. In this

section, we will analyse the behaviour of quasi-normal modes in the extremal �GB ! 1/4

limit, and find the spectrum analytically. Our aim is also to point out a particularly curious

property of the scalar, shear and sound equations in this limit and to show that stability

of the Einstein-Gauss-Bonnet theory near �GB ! 1/4 imposes a constraint on the size of

allowed momenta.

Let us again perturb the metric tensor, gµ⌫ ! gµ⌫ + hµ⌫ , and as in section 5.4 use

the momentum space metric fluctuations, hµ⌫(r)e�it!+iqz, combined into gauge-invariant
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variables, i.e. the scalar, shear and sound modes, which we repeat for completeness.

Scalar: Z1 = hx
y, (5.95)

Shear: Z2 =
q

r2
htx +

!

r2
hxz, (5.96)

Sound: Z3 =
2q2

r2!2
htt +

4q

r2!
htz

�
✓

1�
q2N2

# (4r3 � 2rf(r))

2r!2 (r2 � 2�GBf(r))

◆✓

hxx

r2
+

hyy

r2

◆

+
2

r2
hzz. (5.97)

We can then use the di↵erential equations for Z1, Z2 and Z3, for a general �GB, divide

out potential factors of (1� 4�GB), set �GB = 1/4 and study the equations for the gauge-

invariant modes. The equations vastly simplify and become

Scalar: Z 00
1 � 2� u

u(1� u)
Z 0

1 +
w2 � 3(1� u)q2

4u(1� u)2
Z1 = 0, (5.98)

Shear: Z 00
2 � 2� u

u(1� u)
Z 0

2 +
w2

4u(1� u)2
Z2 = 0, (5.99)

Sound: Z 00
3 � 2� u

u(1� u)
Z 0

3 +
w2 + (1� u)q2

4u(1� u)2
Z3 = 0. (5.100)

We have used the variable u = r2+/r
2, as well as the dimensionless frequency and momen-

tum, w = !/(2⇡T ) and q = q/(2⇡T ).

The characteristic exponents Z = u� of the leading term in the Frobenius expansion at

�GB = 1/4 are {0, 3} and not {0, 2}, which are their values for all other �GB, also arbitrarily

close to 1/4. As is usual in holography, one would expect that, since Z are graviton modes

in five bulk dimensions, it is natural that they should couple to the stress-energy tensor of

the four-dimensional boundary theory, thus giving � = {0, 2}. At �GB = 1/4, however,

this is not the case. The dual theory operators scale as the spin-two stress-energy tensor

in six dimensions.

All three di↵erential equations can be solved in terms of the hypergeometric functions.

Imposing the in-falling boundary conditions, we find

Scalar: Z1 = (1� u)�
iw
2

2F1



⌦�
p
4� 3q2

2
,⌦+

p
4� 3q2

2
, 1� iw, 1� u

�

, (5.101)

Shear: Z2 = (1� u)�
iw
2

2F1

h

⌦� 1,⌦+ 1, 1� iw, 1� u
i

, (5.102)

Sound: Z3 = (1� u)�
iw
2

2F1



⌦�
p
4 + q2

2
,⌦+

p
4 + q2

2
, 1� iw, 1� u

�

, (5.103)

where ⌦ ⌘ �1 � iw
2
. Given the three solutions, we can analytically determine the quasi-

110



normal mode spectrum in each case to be

Scalar: w = �i
⇣

4 + 2n1 �
p

4� 3q2
⌘

, w = �i
⇣

4 + 2n2 +
p

4� 3q2
⌘

, (5.104)

Shear: w = �2i (1 + n1) , w = �2i (3 + n2) , (5.105)

Sound: w = �i
⇣

4 + 2n1 �
p

4 + q2
⌘

, w = �i
⇣

4 + 2n2 +
p

4 + q2
⌘

, (5.106)

where n1 and n2 are non-negative integers.

As indicated by numerics in section 5.4, the imaginary part of the sound mode dispersion

relation may become positive, i.e. Im[w] > 0, signalling an instability of the system.

However, this problem can be avoided by constraining q to only exist in the region of

q  2
p
3. (5.107)

The allowed range of q is thus set by the temperature scale, i.e. q  4⇡
p
3T . This finding

further reinforces our view that the Einstein-Gauss-Bonnet theory at large �GB may be

viewed as a legitimate e↵ective field theory, valid only at small momenta, with a well-

defined hydrodynamic limit.

Another interesting feature of the behaviour of the above quasi-normal modes is that

the poles of the scalar mode move o↵ the imaginary axis for momenta in the region of

q > 2/
p
3, i.e. their dispersion relations become complex as opposed to purely imaginary.

Finally, let us comment on the computation of retarded Green’s functions at �GB = 1/4.

We saw in section 5.4.1 that the two di↵erent calculations of the scalar Green’s function did

not coincide. We first computedGxy,xy
R for a general �GB and took the limit �GB ! 1/4. The

second way of computing Gxy,xy
R was to use the solution Z1 at �GB = 1/4 from this section

and plug it into the expression for the Green’s function. What is unusual is not only the fact

that the two limits did not commute, but that we found a transmutation from � = {0, 2}
to � = {0, 3} of the characteristic exponents in all three gauge-invariant solutions. This

means that the same expression for a holographic Green’s function, K(u)Z(u)Z 0(u), cannot

give B/A after the exponents change, unless K changes as well. It is therefore not clear what

the correct prescription for the two-point function should be at �GB = 1/4. We should note

that all these peculiarities arise only on the level of metric perturbations. The background

metric itself has no pathological features at �GB = 1/4. It would be particularly exciting if

this transmutation indicated that a five-dimensional bulk contains some knowledge about a

sector of a six dimensional CFT, along the lines of [215]. However, at this point we cannot

make any further claims to either substantiate or refute this speculation.
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5.6 Three-point functions and second-order transport
coe�cients

5.6.1 Three-point functions and the Kubo formulae

To find the remaining second-order hydrodynamic transport coe�cients we follow the work

of [216] and perform a holographic computation of three di↵erent stress-energy tensor

three-point correlation functions. We begin this section by reviewing the derivation of the

necessary Kubo formulae presented in [200, 216]. Since this procedure requires a manipu-

lation of retarded three-point functions, it is easiest to think of our microscopic CFT as

defined in the Schwinger-Keldysh Closed-Time-Path formalism [9,217], which was discussed

in detail in Chapter 3. However, in this case we will require the space-time to be curved

and also choose a somewhat di↵erent CTP contour.

Consider a theory described by some microscopic Lagrangian L [�, h], where � col-

lectively denotes some set of matter fields and h a metric perturbation around a fixed

background g. The degrees of freedom of the theory are then doubled, � ! �±, g ! g±,

h ! h±, and we use the index ± to denote whether the fields live on a “+”-time axis going

from some t0 towards the final time tf > t0, or the “�”-axis with time going from the

future tf backwards to t0. Since our field theory is at finite temperature T = 1/�, the two

separated real time contours can be joined together by a third, imaginary time axis running

between tf and tf � i�. We use ' to denote fields living in the Euclideanised theory on the

imaginary time contour. The generating functional of the stress-energy tensor correlation

functions can be written as

W
⇥

h+, h�⇤ = log

Z

D�+D��D' exp

⇢

i

Z

d4x+
p

�g+L
⇥

�+(x+), h+
⇤

�
Z �

0

d4yLE ['(y)]� i

Z

d4x�p�g�L
⇥

��(x�), h�⇤
�

. (5.108)

It is convenient to introduce the Keldysh basis �R = 1
2
(�+ + ��) and �A = �+ � ��, and

similarly for the metric perturbation and the stress-energy tensor. After variation, classical

expectation values always obey �+ = ��, hence all fields with an index A will vanish and

we can define T ab ⌘ T ab
R . Explicitly,

⌦

T ab
R (x)

↵

= � 2ip�g

@W

@hA ab(x)

�

�

�

�

h=0

. (5.109)

The expectation value of TR at x = 0 can then be expanded as

⌦

T ab
R (0)

↵

=Gab
R (0)� 1

2

Z

d4xGab,cd
RA (0, x)hcd(x)

+
1

8

Z

d4xd4yGab,cd,ef
RAA (0, x, y)hcd(x)hef (y) + . . . , (5.110)
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where GRAA... denote the fully retarded Green’s functions [218], which are obtained by

taking the following derivatives [216],

Gab,cd,...
RA... (0, x, . . .) =

(�i)n�1(�2i)n@nW

@hA ab(0)@hR cd(x) . . .

�

�

�

�

h=0

= (�i)n�1
⌦

T ab
R (0)T cd

A (x) . . .
↵

, (5.111)

where “. . .” indicate further insertions of @hR in the expression with derivatives as well as

the T ab
A insertions into the n-point function.

All the necessary Kubo formulae for hydrodynamics up to second order are given by

the following set of expressions, derived in [200,216]. By picking momentum to flow in the

z-direction, we will always perturb the scalar hxy mode. On top of that, we only need to

consider hxz and hyz perturbations to obtain

⌘ = i lim
p,q!0

@

@q0
Gxy,xz,yz

RAA (p, q), (5.112)

2⌘⌧⇧ �  = lim
p,q!0

@2

@ (p0)2
Gxy,xz,yz

RAA (p, q), (5.113)

�1 = ⌘⌧⇧ � lim
p,q!0

@2

@p0@q0
Gxy,xz,yz

RAA (p, q). (5.114)

By perturbing htx and tty we find

�3 = 4 lim
p,q!0

@2

@pz@qz
Gxy,tx,ty

RAA (p, q), (5.115)

 = lim
p,q!0

@2

@ (pz)2
Gxy,tx,ty

RAA (p, q), (5.116)

and finally, by considering only the hty and hxz perturbations, we can obtain

�2 = 2⌘⌧⇧ � 4 lim
p,q!0

@2

@p0@qz
Gxy,ty,xz

RAA (p, q). (5.117)

A consistency check on the validity of our calculations is provided by the following two

Kubo formulae, which both give the expressions for pressure,

P = lim
p0!0

lim
q0!0

Gxy,xz,yz
RAA (p, q) = � lim

pz!0
lim
qz!0

Gxy,tx,ty
RAA (p, q). (5.118)

Note that we have defined all hydro coe�cients as in [185], which means that our �3 is

minus the �3 used in [200], and our �2 is the negative value of the one used in [193].

The three-point functions are calculated by solving the Einstein-Gauss-Bonnet equa-

tions of motion (5.31) to second order in the relevant perturbations,

gµ⌫ + hµ⌫ = gµ⌫ + ✏r2h(1)
µ⌫ + ✏2r2h(2)

µ⌫ , (5.119)

where we impose the h(2)
µ⌫ = 0 boundary condition at the AdS boundary [200]. We are

using ✏ to indicate the order of perturbation. Once we find the relevant solutions, we
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can take three derivatives of the on-shell action with respect to the boundary value of

h(b)
µ⌫ = h(1)

µ⌫ (r ! 1). The simplifying feature of this procedure is that since equations

of motion are solved to order ✏2, only the boundary term contributes to the three-point

function and hence no bulk-to-bulk propagators appear in the calculation.

The computation of the three di↵erent three-point functions requires us to turn on the

following sets of polarisations:

1.) hxy = hxy(r)e
�i(p0+q0)t, hxz = hxz(r)e

�ip0t, hyz = hyz(r)e
�iq0t, (5.120)

2.) hxy = hxy(r)e
i(pz+qz)z, htx = htx(r)e

ipzz, hty = hty(r)e
iqzz, (5.121)

3.) hxy = hxy(r)e
�ip0t+iqzz, hxz = hxz(r)e

�ip0t, hty = hty(r)e
iqzz. (5.122)

To outline the steps used in the calculation, consider calculating the Gxy,xz,yz
RAA three-

point function. The calculation begins by first finding solutions to h(1)
xy , h

(1)
xz and h(1)

yz on

which we impose regular in-falling boundary conditions at the horizon and the h(1)
µ⌫ = h(b)

µ⌫

boundary condition at the boundary. It is again most convenient, as in section 5.4.1, to

perform the entire computation in the variable v (5.48).

Since we are only turning on temporal fluctuations, and turning the momentum o↵, it

is clear that the coe�cients in all three di↵erential equation will be the same. Hence up

to independent boundary values, h(b)
µ⌫ the solution of h(1)

xy , h
(1)
xz and h(1)

yz will have the same

functional dependence on v, with the relevant frequencies, p0 + q0, p0 and q0, inserted,

respectively. Furthermore, the solution is the same as the one obtained in section 5.4.1,

with q = 0,

h(1)
xy (v) = h(b)

xy

✓

v

1� �

◆� i(p0+q0)
4⇡T



1� i(p0 + q0)

8⇡T

�

3� 2� � �2 � 4v + v2
�

+
(p0 + q0)2

4⇡2T 2
g(w)
2 (v)

+
(p0 + q0)2

16⇡2T 2

Z v (1� v0)2 log
h

�2 � 1 + v0 �
p

(�2 � 1) (�2 � (1� v0)2)
i

v0
dv0, (5.123)

and similarly for h(1)
xz and h(1)

yz . We can deal with the remaining integral in the same way as

in 5.4.1, by only integrating it order-by-order in the near-boundary expansion, v ⇡ 1� �.

Next we have to look for the second-order solution h(2)
xy with the first-order metric back-

reacting on h(2)
xy . The di↵erential equation again has the form of Eq. (5.54),

v (1� v) @2vh(v) + (1 + v) @vh(v) +H(v) = 0, (5.124)

with a long and complicated function H(v). The equation is again solved by

h(v) = D +

Z v

dv0
(1� v0)2

v0

 

C �
Z v0

dv00
H(v00)

(1� v00)3

!

. (5.125)
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In the case of h(2)
xy , H is proportional to p0q0. We again impose the regular in-falling

boundary conditions and the h(2)
xy = 0 condition at the boundary. The solution then takes

the form

h(2)
xy = h(b)

xzh
(b)
yz

✓

v

1� �

◆�i(p0+q0)/(4⇡T ) p0q0

4⇡2T 2
h(v), (5.126)

with a complicated and unilluminating expression for h(v).

With the second-order solution in hand, we plug gµ⌫ + ✏r2h(1)
µ⌫ + ✏2r2h(2)

µ⌫ into the ex-

pression for the holographic stress-energy tensor [100] to compute T xy. For the Einstein-

Gauss-Bonnet theory, including counter-terms for a non-perturbative value of �GB,

hT µ⌫i = �
p
�� r

2

25

h

Kµ⌫ �K�µ⌫ + �GB (3Jµ⌫ � J�µ⌫) + c1�
µ⌫ + c2G

µ⌫
(�)

i

, (5.127)

with the counter-term coe�cients,

c1 = �
p
2
�

2 +
p
1� 4�GB

�

p

1 +
p
1� 4�GB

, c2 =

r

�GB

2

�

3� 4�GB � 3
p
1� 4�GB

�

�

1�
p
1� 4�GB

�3/2
. (5.128)

The induced metric on the boundary is �µ⌫ = gµ⌫ � nµn⌫ , where nµ is the vector normal

to the boundary and G(�)
µ⌫ = R(�)

µ⌫ � 1
2
R(�)�µ⌫ is the Einstein tensor constructed from the

induced metric. The extrinsic curvature is given by

Kµ⌫ = �1

2
(rµn⌫ +r⌫nµ) , (5.129)

K is its trace and the tensor Jµ⌫ is defined as

Jµ⌫ =
1

3

�

2KKµ⇢K
⇢
⌫ +K⇢�K

⇢�Kµ⌫ � 2Kµ⇢K
⇢�K�⌫ �K2Kµ⌫

�

. (5.130)

Similarly, J denotes the trace of Jµ⌫ . Note that the relative sign in front of the stress-energy

tensor (5.127) as well as the signs in front of c1 and c2 depend on the choice of direction that

nµ is pointing in. Once we have computed the relevant component of stress-energy tensor

T xy, we finally need to take derivatives with respect to h(b)
xz and h(b)

yz to obtain Gxy,xz,yz
RAA .

The other two three-point functions are computed via exactly the same procedure, with

all di↵erential equations always taking the form of (5.124). The only di↵erence is that

we cannot impose in-falling boundary conditions on either htx or hty from (5.121), and

similarly hty from (5.122), because they only fluctuate in the z-direction and not time. In

fact, regularity demands that we set htx = hty = 0 at the horizon. Consequently, hxy from

(5.121) also needs to vanish at the horizon.8

8The full expressions of the three-point functions are very long and will not be presented for conciseness.
For an example for a simpler calculation, going through exactly the same steps in the N = 4 super Yang-
Mills theory, see reference [200].
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5.6.2 Second-order transport coe�cients

Having computed all three three-point functions, we can use the Kubo formulae (5.118) to

first confirm the thermodynamic result from (5.37),

P =

p
2⇡4T 4

25 (1 + �)3/2
, (5.131)

where we have set L = 1 in this calculation. The expression for the Hawking temperature

T was given in (5.36). The shear viscosity is again confirmed to be

⌘ =

p
2⇡3T 3

25

�2

(1 + �)3/2
, (5.132)

while the second-order coe�cients are given by the following functions of � =
p
1� 4�GB,

⌘⌧⇧ =
⇡2T 2

4
p
225

 

�
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✓
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�◆

, (5.133)
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⇡2T 2

2
p
225

✓
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, (5.134)
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2
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225
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�3 = �
p
2⇡2T 2

25

✓

3 + � � 4�2p
1 + �

◆

, (5.136)

 =
⇡2T 2

p
225

✓

2�2 � 1p
1 + �

◆

. (5.137)

Alternatively, all the coe�cients �n can be expressed in terms of shear viscosity ⌘, giving

us expressions (5.17) to (5.21).

In the pure Einstein theory with �GB = 0, i.e. � = 1, all of the coe�cients exactly

reproduce those found in [98, 185],

⌘⌧⇧ =
⌘ (2� log 2)

2⇡T
, �1 =

⌘

2⇡T
, �2 = �⌘ log 2

⇡T
, �3 = 0,  =

⌘

⇡T
. (5.138)

The values of the coe�cients at the extreme limiting value of �GB = 1/4, i.e. � = 0, are

⌘⌧⇧ = 0, �1 =
3⇡2T 2

2
p
225

, �2 = 0, �3 = �3
p
2⇡2T 2

25
,  = � ⇡2T 2

p
225

. (5.139)

All five coe�cients are plotted as functions of �GB in Figure 5.5. We have represented them

by dimensionless ratios, �n25/(4⇡
2T 2).

While �1 is positive-definite for all �GB (�1 > 0), �2 and �3 are non-positive (�2,3  0)

on the interval �GB 2 [0, 1/4]. Coe�cients ⌘⌧⇧ and  both run from positive to negative

values as �GB increases, with  = 0 exactly half-way between the two ends of the allowed

positive values of �GB, at �GB = 1/8.
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Figure 5.5: A plot of the second-order coe�cients �n = {⌘⌧⇧,�1,�2,�3,} in units of 4⇡2T 2/25,
as a function of �GB 2 [0, 1/4].

By further analysing the derivatives of dimensionless coe�cients, @
@�GB

[�n25/(4⇡
2T 2)],

we can study the monotonicity of the hydrodynamic coe�cients. The derivatives are plotted

in Figure 5.6. Since all derivatives diverge at �GB = 1/4, we only plot them up to �GB =

0.24. We find that while ⌘⌧⇧, �1 and �2 are not monotonic as functions of �GB, �3 and

 are monotonic everywhere, including for all negative �GB. This can be seen from the

negative-definite expressions,

25
4⇡2T 2

@�3
@�GB

= � 1 + 15� + 12�2

2
p
2�(1 + �)3/2

< 0, (5.140)

25
4⇡2T 2

@

@�GB

= � 1 + 8� + 6�2

4
p
2�(1 + �)3/2

< 0. (5.141)

Both expressions (5.140) and (5.141) tend to zero in the limit of � ! 1, i.e. �GB ! �1.

It is especially interesting to note that the previously proposed and studied universality

of the second-order coe�cients, 2⌘⌧⇧ � 4�1 � �2 = 0 [191–193], is violated in the dual of

the Einstein-Gauss-Bonnet theory. We find the non-perturbative result

2⌘⌧⇧ � 4�1 � �2 = � ⌘

⇡T

(1� �) (1� �2) (3 + 2�)

�2
. (5.142)

In a perturbative �GB expansion, the right-hand-side of the expression (5.142) becomes

non-zero only at the quadratic order in �GB, giving us

2⌘⌧⇧ � 4�1 � �2 = �20⇡2T 2

25
�2GB +O

�

�3GB

�

, (5.143)
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Figure 5.6: A plot of derivatives of the second-order coe�cients �n = {⌘⌧⇧,�1,�2,�3,} with
respect to �GB, in units of 4⇡2T 2/25, as a function of �GB 2 [0, 0.24].

which is consistent with the findings of [193]. To our knowledge, this is the first known

example of the violation of the proposed universal linear combination of the three second-

order coe�cients.

In section 5.8, we will use the fluid/gravity correspondence to verify our expressions for

the second order coe�cients �n perturbatively in �GB. This will enable us to check the

validity of the expression (5.143).

5.6.3 Boost-invariant Bjorken flow

In this section we will look at an application of the results obtained in 5.6.2 to the behaviour

of boost-invariant plasmas as a function of the non-perturbative �GB. Bjorken flow is

a boost-invariant solution of hydrodynamics, which is relevant to the phenomenological

description of heavy-ion collisions [219]. In terms of AdS/CFT, the solution was constructed

in the N = 4 theory in [220]. The flow describes a one-dimensional motion of nuclei along

a coordinate we choose as z, following the conventions of [185]. The nuclei are assumed to

be infinitely large in the spatial dimensions transverse to z. In the co-moving coordinates,

where the proper time is defined as ⌧ =
p
t2 � z2 and rapidity as ⇠ = arctanh(z/t), each

fluid element is at rest, (u⌧ , u⇠,u?) = (1, 0,0). Furthermore, the field theory metric is

given by ds2 = �d⌧ 2 + ⌧ 2d⇠2 + dx2
?. Because velocity ua is constant in these coordinates,

the only non-trivial derivative of ua is r⇠u⇠ = ⌧ .

The description of a boost-invariant flow reduces to a di↵erential equation for a single
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undetermined function, energy density, expressed in terms of the proper time, "(⌧),

uara"+ ("+ P )rau
a + ⇧abraub = 0. (5.144)

For a conformal fluid with " = 3P in d = 4 (boundary) dimensions, the expression simplifies

to

@⌧"+
4

3

"

⌧
= �⌧⇧⇠⇠. (5.145)

The right-hand-side of Eq. (5.145) was first written to second order in the hydrodynamic

expansion in [185], and reads

�⌧⇧⇠⇠ = 2⌫⌘⌧�2 + 2⌫2 (⌘⌧⇧ � �1) ⌧
�3 + third-order hydro + . . . , (5.146)

where ⌫ ⌘ (d�2)/(d�1) = 2/3. One can then find a solution for "(⌧) in a large-⌧ expansion,

which is a manifestation of the gradient expansion of the hydrodynamic stress-energy tensor

in derivatives of ua. The solutions for "(⌧) takes the form [185]

"

C
= ⌧�2+⌫ � 2⌘0⌧

�2 +



3

2
⌘20 �

2

3

�

⌘0⌧
0
⇧ � �01

�

�

⌧�2�⌫ + . . . , (5.147)

where the transport coe�cient functions ⌘(⌧), ⌧⇧(⌧) and �(⌧) are fixed by conformal scal-

ings,

⌘ = C⌘0
⇣ "

C

⌘3/4

, ⌧⇧ = ⌧ 0⇧

⇣ "

C

⌘�1/4

, �1 = C�01

⇣ "

C

⌘1/2

. (5.148)

We would like to point out that with the knowledge of the second-order transport

coe�cients in the Gauss-Bonnet fluid, we know the solution of the Gauss-Bonnet Bjorken

flow to the ⌧�2�⌫ order. The only relevant combination of the second-order coe�cients,

which enters the equations is ⌘⌧⇧ � �1. We plot it as a function of �GB in Figure 5.7. It

is interesting to note that the combination of coe�cients vanishes at two values of �GB,

which can be found numerically, �GB = 0.050 and �GB = �0.662. Finally, in the limit of

�GB ! 1/4, the linear combination takes a finite and negative value,

⌘⌧⇧ � �1 = � 3⇡2T 2

2
p
225

. (5.149)

5.6.4 Entropy current

Entropy is an important concept in the theory of relativistic hydrodynamics. As a conse-

quence of Boltzmann’s H-theorem, the divergence of the entropy current, Sa, must always

be positive in order for the fluid to satisfy the positive entropy production condition,

raS
a � 0. (5.150)
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The existence of such a current in the theory of phenomenological hydrodynamics can thus

be used to constrain the structure of hydrodynamic coe�cients. This avenue of research

was explored in numerous papers, among others, in the recent works of [101,188,221,222].

The entropy current can be constructed by using the same gradient expansion logic we

used in writing down the stress-energy tensor. It can be expressed as a sum of the canonical

part, Sa
can, and corrections,

Sa = Sa
can + Sa

corr, Sa
can = sua � ub⇧ab

T
, (5.151)

where s is the entropy density. The vectorial quantity Sa
corr must be written in terms of

all possible tensor structures at a given order, defined by the number of derivatives acting

on hydrodynamic variables. Coe�cients are then introduced, multiplying each term. By

imposing Eq. (5.150), the new unknown coe�cients can (usually) be expressed in terms

of the standard hydrodynamic transport coe�cients. In second-order hydrodynamics, the

entropy current was computed and analysed in [188, 221]. In the notation of [221], the

divergence of the conformal entropy current is given by

raS
a =

⌘

2T
�ab�

ab +
� 2�1

4T
�ab�

a
c�

bc +

✓

A1

2
+
� ⌘⌧⇧

2T

◆

�ab



hD�abi +
1

3
�ab (r · u)

�

,

(5.152)

where A1 is a coe�cient of which the expression in terms of the second-order transport

coe�cients is unknown. We can see that Eq. (5.150) immediately implies that ⌘ � 0.

Similarly, in non-conformal hydrodynamics, bulk viscosity also has to satisfy ⇣ � 0.
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In the usual hydrodynamics, all second-order terms are sub-leading and therefore Eq.

(5.150) imposes no restrictions on the second-order hydrodynamic coe�cients [188]. How-

ever, when ⌘ ! 0, as in our analysis, the signs of second-order terms matter. The di�culty

in determining the constraints comes from the fact that all second-order terms include third

powers of raub, and hence the sign of tensorial quantities depends on the details of the

fluid solution. Furthermore, it was pointed out in [221] that one would probably need to

go to third-order hydrodynamics in order to find A1 in terms of the second-order trans-

port coe�cients. Since A1 is presently unknown, we cannot determine what type of fluid

solutions may give positive entropy production in the Gauss-Bonnet fluid near �GB ⇡ 1/4,

where ⌘ ! 0.

In [101], the authors studied dissipationless fluids by demanding raSa = 0. They

concluded that this constraint reduced the number of independent second-order transport

coe�cients to four. Clearly, one finds that ⌘ = 0 and  = 2�1. However, the dissipationless

field theory construction of [101] left only three of the transport coe�cients independent.

The additional constraint was the proposed universal relation, 2⌘⌧⇧�4�1��2 = 0, of [192].

We can thus conclude that at least in the dissipationless limit, and for fluids which are

invariant under volume-preserving di↵eomorphisms, SDi↵(R3,1), A1 = �2/(2T ).9

In the limit of �GB ! 1/4, our Gauss-Bonnet fluid does not behave as a dissipationless

fluid. Namely,  6= 2�1. We plot the di↵erence of the two coe�cients, relevant for the second

term in (5.150), in Figure 5.8. Furthermore, we also found that 2⌘⌧⇧�4�1��2 6= 0. We can

thus conclude that the Gauss-Bonnet fluid is in fact dissipative, even though its shear and

sound hydrodynamic excitations behave in an approximately dissipationless manner in the

limit of �GB ! 1/4. The Gauss-Bonnet fluid is thus not an example of a fluid constructed

in [101]. Finally, as we do not know the expression for A1, nor the possible solutions for

the fluid’s velocity profile, we cannot determine whether the fluid has positive or negative

entropy production.

5.7 Gauge field action and charge di↵usion

5.7.1 Four-derivative theory

In this section, we analyse the transport of charge in the theory dual to the charge neutral

Einstein-Gauss-Bonnet theory with the black brane metric (5.32). In constructing the

bottom-up vector-graviton theory, we are guided by the logic of gradient expansion, directly

equivalent to the construction of the Gauss-Bonnet term. Namely, we wish to find the most

9The field theory construction used in [101] was discussed in detail in Chapter 3. In our analysis
of dissipative first-order fluids with invariance under volume-preserving di↵eomorphisms, SDi↵(R3,1), we
similarly found a reduction in the number of independent transport coe�cients, i.e. ⌘ = 0 and ⇣ 6= 0.
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general four-derivative action of the metric gµ⌫ and the vector field Aµ, with the restriction

that their equations of motion may involve at most second derivatives. This avoids potential

problems with ghost fields and since we are interested in non-perturbative results in the

new couplings, this will also avoid problems of solving higher-order di↵erential equations.

Similar theories were previously considered in [223, 224] and in the context of e↵ective

target-space heterotic string theory action in [225].

We begin by writing down the Einstein-Gauss-Bonnet theory with the most general

four-derivative vector field Lagrangian,

S =
1

225

Z

d5x
p
�g [R� 2⇤+ LGB] +

Z

d5x
p
�gLA, (5.153)

where we have re-introduced the scale L. The Gauss-Bonnet Lagrangian LGB was given in

(5.14) and

LA = �1

4
Fµ⌫F

µ⌫ + ↵4RFµ⌫F
µ⌫ + ↵5R

µ⌫Fµ⇢F
⇢
⌫ + ↵6R

µ⌫⇢�Fµ⌫F⇢� + ↵7 (Fµ⌫F
µ⌫)2

+ ↵8rµF⇢�rµF ⇢� + ↵9rµF⇢�r⇢F µ� + ↵10rµF
µ⌫r⇢F⇢⌫ + ↵11F

µ⌫F⌫⇢F
⇢�F�µ. (5.154)

The modified Einstein’s equations are

Rµ⌫ �
1

2
gµ⌫R + gµ⌫⇤ = T GB

µ⌫ + 225T A
µ⌫ , (5.155)

where the gravitational stress-energy tensor term is given by

T GB
µ⌫ =

�GBL2

4
gµ⌫

�

R2 � 4Rµ⌫R
µ⌫ +Rµ⌫⇢�R

µ⌫⇢�
�

� �GBL
2
�

RRµ⌫ � 2Rµ↵R
↵
⌫ � 2Rµ↵⌫�R

↵� +Rµ↵��R
↵��
⌫

�

, (5.156)
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and the Maxwell field contribution takes the form

T A
µ⌫ = �1

8
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The modified Maxwell’s equations are

r⌫F
µ⌫ = 4↵4r⌫ (RF µ⌫) + 2↵5r⌫

�

Rµ⇢F ⌫
⇢ �R⌫⇢F µ

⇢

�

+ 4↵6r⌫

�

R↵�µ⌫F↵�
�

+ 8↵7r⌫

�

F↵�F
↵�F µ⌫

�

� 4↵8r⌫⇤F µ⌫ � 2↵9r⌫r⇢ (rµF ⇢⌫ �r⌫F ⇢µ)

+ 2↵10r⌫ (r⌫r⇢F
⇢µ �rµr⇢F

⇢⌫) + 8↵11r⌫ (F
⌫⇢F⇢�F

�µ) . (5.158)

To make third- and fourth-order derivatives of gµ⌫ and Aµ vanish in the equations of motion

(5.155), we must impose the following constraints on the coe�cients ↵n,

↵4 = ↵6, 8↵4 + ↵5 � 4↵6 = 0, (5.159)

4↵4 + ↵5 � 2↵8 � ↵9 = 0, 2↵8 + ↵9 + ↵10 = 0. (5.160)

The second constraint in (5.160) also ensures that all higher-order derivatives vanish from

the Maxwell’s equations. The constraints can be solved by setting

↵6 = ↵4, ↵5 = �4↵4, ↵9 = �2↵8, ↵10 = 0. (5.161)

Coe�cients ↵7 and ↵11 are left undetermined by this procedure. The reduced vector-field

Lagrangian is now

LA =� 1

4
Fµ⌫F

µ⌫ + �1L
2 (RFµ⌫F

µ⌫ � 4Rµ⌫Fµ⇢F
⇢
⌫ +Rµ⌫⇢�Fµ⌫F⇢�)

+ �4L
2rµF⇢� (rµF ⇢� � 2r⇢F µ�) + �2L

2 (Fµ⌫F
µ⌫)2 + �3L

2F µ⌫F⌫⇢F
⇢�F�µ, (5.162)
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where we have defined dimensionless couplings �1 ⌘ ↵4/L2, �2 ⌘ ↵7/L2, �3 ⌘ ↵11/L2 and

�4 ⌘ ↵8/L2. To simplify the Lagrangian further, we notice that the term proportional to

�4 can be rewritten as

rµF⇢� (rµF ⇢� � 2r⇢F µ�) = �2rµr⇢A�
�

R�
µ⇢� +R�

⇢�µ +R�
�µ⇢

�

A� = 0, (5.163)

hence the entire expression vanishes due to the cyclic property of the Riemann tensor. The

vector-field theory with the desired properties is thus governed by the Lagrangian

LA =� 1

4
Fµ⌫F

µ⌫ + �1L
2 (RFµ⌫F

µ⌫ � 4Rµ⌫Fµ⇢F
⇢
⌫ +Rµ⌫⇢�Fµ⌫F⇢�)

+ �2L
2 (Fµ⌫F

µ⌫)2 + �3L
2F µ⌫F⌫⇢F

⇢�F�µ. (5.164)

Note that the black brane metric (5.32) is automatically a solution of this theory when

Aµ = 0. Although it is easy to find perturbative corrections in �1, �2 and �3 to the five

dimensional AdS-Reissner-Nordström metric, this is not useful for the purposes of our non-

perturbative analysis. The techniques to find full non-perturbative solutions of the system

under consideration are not known and hence we do not yet have the corresponding black

brane metric.10

In the following section, we will analyse the vector field perturbation of (5.32), controlled

by the action (5.164).

5.7.2 Charge di↵usion

We are interested in understanding charge di↵usion properties in the field theory dual of

the bulk action we constructed in the previous section. To compute the charge di↵usion

constant, we will follow the procedure outlined in [93]. We begin by perturbing the Aµ = 0

vector field as Aµ ! Aµ+✏aµ, and writing the electromagnetic field strength corresponding

to the linearised perturbation as F = ✏da.

We can immediately notice that terms proportional to ↵7 and ↵11 only contribute at

orders of ✏ higher than first. Hence, they will not contribute to charge di↵usion. The con-

straint (5.160) ensures that the third- and fourth-order derivative terms in the equations of

motion cancel, which enables us to treat higher-derivative contributions non-perturbatively.

The vector field equations of motion simplify to

r⌫F
µ⌫ = 4�1L

2r⌫

�

RF µ⌫ +Rµ⌫⇢�F⇢� �Rµ⇢F ⌫
⇢ +R⌫⇢F µ

⇢

�

. (5.165)

10An asymptotically AdS black hole solution to the theory considered in this section with �
1

= 0 was
found in an integral form and studied in [223]. Unfortunately, the presence of a non-vanishing Lagrangian
term proportional to �

1

makes the equations significantly more complicated. In particular, in the usual
metric ansatz, ds2 = �e2�dt2 + e2⌫dt2 + . . ., the relation � = �⌫ is no longer true. It may nevertheless be
of interest to study charge di↵usion of the theory dual to the background presented in [223] in the future.
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Vector field perturbations can be decomposed into transverse and longitudinal modes,

with charge di↵usion controlling the low-energy hydrodynamical excitations in the longitu-

dinal sector. By selecting momentum to flow in the z-direction, the relevant gauge-invariant

variable in the longitudinal sector is

Z4 = qa0 +wa4. (5.166)

We first define a variable u = r2+/r
2, so that the boundary is now at u = 0 and horizon

at u = 1. Then we impose the in-falling boundary condition required for a calculation of

retarded correlators [87, 88],

Z4 =
�

1� u2
��iw/2 Z4(u). (5.167)

Z4(u) can be solved perturbatively in an energy-momentum expansion parameter µ, with

q and w scaling as w ! µ2w and q ! µq. We find it particularly useful to introduce a new

variable q, so that u =
p

q2 � �2/
p

1� �2. The boundary is now at q = � and horizon at

q = 1. At the order of O(µ0), the function Z4 can be written as Z4 = C1 + C2z(q), where

z(q) must be a solution of

d2z

dq2
� 48�1 (q3 � �2)� �2 (1� �2)

q (q2 � �2) (1� �2 + 48�1(1� q))

dz

dq
= 0. (5.168)

We solve for z(q) and impose the z(�) = 1 and z(1) = 0 boundary conditions. Constant C2

can then be solved as a function of C1, w, q and other parameters of the theory by plugging

z(q) into the original di↵erential equation, expanding to O(µ2) and imposing regularity at

the horizon.

The di↵usive quasi-normal mode can be found by solving the equation Z4 = 0 at the

boundary. The dispersion relation of this IR hydrodynamical mode has the form

w = �iDq2, (5.169)

where D is the charge di↵usion constant of the dual theory. We will write D as a function

of the two Lagrangian parameters �GB and �1 in terms of dimensionless � and �,

� ⌘
p

1� 4�GB and � ⌘ 1 + 48�1. (5.170)

The expression for the di↵usion constant, non-perturbatively in � and �, is then

D =
(1 + �)(1 + 2�)

⇣

� +
p

�2 � �2
⌘

6(� � 1)
h

�
⇣

� +
p

�2 � �2
⌘

� �2
i

⇥
(

p

(1� �2) (�2 � �2) log

"

�

1 +
p

1� �2

#

�
�

� � �2
�

log

"

�

� +
p

�2 � �2

#)

.

(5.171)
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In the pure two-derivative Maxwell limit with �1 = 0 (� = 1), we recover the expression

D =
1

2

⇣

1 +
p

1� 4�GB

⌘

. (5.172)

In the N = 4 theory, where �GB = 0 and �1 = 0, (5.172) reproduces the result of [93],

D = 1. (5.173)

At �GB = 1/4, Eq. (5.172) for the Einstein-Gauss-Bonnet-Maxwell theory gives

D = 1/2. (5.174)

In the presence of higher-derivative vector-field terms in the Lagrangian (5.164), we find

the di↵usion constant at the two limits of �GB to be

�GB = 0 : D =

 

1 + 32�1

4
p
6
p

�1 (1 + 24�1)

!

log



1 + 48�1 +
q

(1 + 48�1)
2 � 1

�

, (5.175)

�GB = 1/4 : D =

✓

1 + 32�1
96�1

◆

log (1 + 48�1) . (5.176)

It is important to notice that D is not real for all values of the coe�cients �1. We will

thus impose a restriction on the parameter �1, so that D 2 R. Furthermore, D may become

negative, which would signal an instability of the di↵usive mode. We will therefore also

demand that D � 0. From (5.171), we find that in order to have D 2 R,

�1 � � 1

48

⇣

1 +
p

1� 4�GB

⌘

. (5.177)

Charge di↵usion of the dual theory is therefore well-defined for all values of �GB 2 [0, 1/4]

if the dimensionless coupling constant �1 accompanying the only relevant four-derivative

vector field term is restricted to �1/48  �1. This parameter range also automatically

ensures that D � 0. Interestingly, we find that there is no value of �1 that would make

D = 0. We could, however, make D vanish by restricting the Gauss-Bonnet coupling �GB

to a smaller range. We can see from (5.171) that D = 0 when �1 = �1/32, which is,

according to (5.177), an allowed value of the coupling so long as �GB  3/16. The coupling

�1 is not bounded from above by any physical property of di↵usion.

5.8 Fluid/gravity correspondence

To verify some of our above results, which all came from calculations of correlation func-

tions, we will now turn our attention to an alternative method for extracting hydrodynamics

from holography, namely the fluid/gravity correspondence [98,186]. By using fluid/gravity

correspondence in the Einstein-Gauss-Bonnet gravity, shear viscosity was calculated in [226]
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and second-order hydrodynamic coe�cients in [193], both papers having worked perturba-

tively at the linear order in �GB.

Fluid/gravity uses the fact that metric perturbations hµ⌫ are dual, via holographic dic-

tionary, to the stress-energy tensor of the dual boundary CFT, in the sense that hµ⌫ sources

T µ⌫ in the CFT’s generating functional [11, 12]. Gravitational bulk action should thus be

able to capture all of the energy-momentum properties of the dual theory. The procedure

for the calculation of the holographic stress-energy tensor, inspired by the prescription of

Brown and York [227], was proposed by Balasubramanian and Kraus [100]. Fluid/gravity

uses the fact that in appropriate variables a gradient expansion of the metric should capture

the hydrodynamic gradient expansion of the CFT’s stress-energy tensor. The procedure

of [98] can thus be viewed as a test of the prescription established in [100].

We begin the calculation by following [98] and writing the Gauss-Bonnet black brane

background solution (5.32) of the Einstein-Gauss-Bonnet equations of motion, which we

repeat here for completeness,

Eµ⌫ ⌘ Rµ⌫ �
1

2
gµ⌫R + gµ⌫⇤� �GBL2

4
gµ⌫

�

R2 � 4Rµ⌫R
µ⌫ +Rµ⌫⇢�R

µ⌫⇢�
�

+ �GBL
2
�

RRµ⌫ � 2Rµ↵R
↵
⌫ � 2Rµ↵⌫�R

↵� +Rµ↵��R
↵��
⌫

�

= 0, (5.178)

in the Eddington-Finkelstein coordinates,

ds2 = �r2f(br)dv2 + 2N#dvdr + r2dxidxi. (5.179)

We will again set L = 1 for convenience. The function f(br) is still given by

f(br) =
N2

#

2�GB

 

1�
s

1� 4�GB

✓

1� 1

b4r4

◆

!

. (5.180)

The arbitrary constant N2
# = 1

2

�

1 +
p
1� 4�GB

�

was already defined in (5.34) and set in

such a way that it gives the boundary speed of light equal to unity. We also introduced b

instead of 1/r+, to be consistent with the conventions of [98]. The stress-energy tensor is

given by the expression

Tµ⌫ =
r2

25

⇥

Kµ⌫ �K�µ⌫ + �GB (3Jµ⌫ � J�µ⌫) + c1�µ⌫ + c2G
(�)
µ⌫

⇤

, (5.181)

where its ingredients were defined around Eq. (5.127).

The next step is to boost the brane solution (5.179) along a space-time dependent

velocity four-vector ua, where we define

ua =
1

p

1� �2

�

1, �i
�

, with i 2 {1, 2, 3}. (5.182)
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Small latin indices from the beginning of the alphabet indicate four-dimensional boundary

coordinates and xa = (v, x, y, z) in the Eddington-Finkelstein coordinates. The boosted

black brane metric, which we denote by g(0)µ⌫ , becomes

ds2(0) = �2N#ua (x
c) dxadr � r2f (b (xc) r) ua (x

c) ub (x
c) dxadxb + r2�ab (x

c) dxadxb.

(5.183)

The metric (5.183) is no longer a solution of the Einstein-Gauss-Bonnet equations of

motion and it is the essence of fluid/gravity to find corrections to the metric g(0)µ⌫ in a

gradient-expanded form so that the equations Eµ⌫ from (5.178) are again satisfied. We

will perform a gradient expansions in derivatives of �i (xa) and b (xa) fields to second

order, in correspondence with the boundary theory’s second-order hydrodynamic gradient

expansion in velocity and temperature fields described in section 5.2. The metric solution

of the problem will thus take the form

gµ⌫ = g(0)µ⌫ + ✏g(1)µ⌫ + ✏2g(2)µ⌫ , (5.184)

with g(0µ⌫ and g(1)µ⌫ expanded to terms with two derivatives of b and �i. We will use powers

of ✏ to denote the order of derivative expansion.

The procedure for solving (5.178), order-by-order, can be greatly simplified when one

notices that it is su�cient to only solve equations of motion locally around some point

xa = Xa. The global metric can be obtained from this data alone [98]. The local expansions

of the fields b and �i are given by

b = b(0)|Xa + ✏xa@ab(0)|Xa + ✏b(1)|Xa +
✏2

2
xaxb@a@bb(0)|Xa + ✏2xa@ab(1)|Xa , (5.185)

�i = �i
(0)|Xa + ✏xa@a�

i
(0)|Xa +

✏2

2
xaxb@a@b�

i
(0)|Xa . (5.186)

We will choose to work in a local frame at the origin, Xa = 0, in which

b0 = 1 and �i = 0. (5.187)

Furthermore, it is consistent to choose the gauge with �i
(1) = 0 at the point xa = Xa.

5.8.1 First-order solution

The most general form that the first-order metric g(1)µ⌫ can take is most conveniently written

in a scalar-vector-tensor form,

ds2(1) =
k1(r)

r2
dv2 � 3N#h1(r)dvdr +

2

r2

 

3
X

i=1

ji1(r)dx
i

!

dv

+ r2h2(r)
�

dx2 + dy2 + dz2
�

+ r2Aabdx
adxb, (5.188)
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where xi = (x, y, z), k1 and h1 are scalars, ji1 a three-vector and Aab a tensor. As discussed

above, we proceed by using the expanded forms of b and �i given in (5.185) and (5.186)

to write the order-✏ metric as gµ⌫ = g(0)µ⌫ + ✏g(1)µ⌫ . We then evaluate the equations of motion

(5.178), thus generating the following set of constraints and dynamical equations:

Scalar :

Constraint 1: r2f0(r)Evr +N#Evv = 0, (5.189)

Constraint 2: r2f0(r)Err +N#Evr = 0, (5.190)

Dynamical equation 1: Err = 0, (5.191)

Vector :

Constraint 3: r2f0(r)Eri +N#Evi = 0, (5.192)

Dynamical equation 2: Eri = 0, (5.193)

Tensor :

Dynamical equation 3: Eij = 0. (5.194)

It is easiest to first solve Dynamical equation 1 in (5.191) for h1(r). We then use

Constraint 2 in (5.190), which relates k0
1(r) to h1(r), to solve for k1(r). Constraints 1 and

3 in (5.189) and (5.192) give

@vb0 =
1

3
@i�

i and @ib0 = @v�
i. (5.195)

Finally, we can solve the two remaining Dynamical equations 2 and 3 in (5.193) and (5.194)

to find j1(r) and the tensor sector Aab, which contains the information about the shear

viscosity.

The structure of the global first-order metric, gµ⌫ = g(0)µ⌫ +✏g
(1)
µ⌫ , can be written as in [98].

It is given by the line element

ds2 =
6
X

n=1

An, (5.196)

where we have used abbreviations An defined as

A1 = �2N#uadx
adr, A2 = �r2f0(br)uaubdx

adxb, (5.197)

A3 = r2�abdx
adxb, A4 = 2r2bF0(br)�abdx

adxb, (5.198)

A5 =
2

3
N#ruaub@cu

cdxadxb, A6 = �N#ru
c@c (uaub) dx

adxb. (5.199)

Our last task is to solve for F0(r), which is a part of A4 in (5.198). This function arises

from the tensor Aab, governed by (5.194). The second-order di↵erential equation for F0 is

@

@r

" 

r5 � r7
p

1� (1� r4) �2

!

@F0

@r

#

=
(1� �2) (5� (5� 3r4) �2) r4

2
p
2
p
1 + � (1� (1� r4) �2)3/2

. (5.200)
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A pleasant feature of fluid/gravity is that, as in (5.54), the di↵erential part of dynamical

equations (the left-hand-side of (5.200)) remains the same for all unknown functions at all

orders in the gradient expansion.

A solution for F0, which is regular at the horizon and vanishes at the boundary is

F0(r) =
1

8
p
2

(

(1 + i) (1� �2)1/4 [(1� i) arctanh(�) + ⇡ � (1� i)�]

(1� �)1/4(1 + �)3/4

+
�3/2�

�

1
4

�2
2F1

h

1
4
, 1; 1

2
; 1
1��2

i

p
⇡(1� �)1/4(1 + �)3/4
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1� �2 � i⇡r4 + 2r2

p

1� (1� r4) �2
p
�r4

+
1p
1 + �

log
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4
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⇣

r2 �
p
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⌘

r4
⇣

r2 +
p

1� (1� r4) �2
⌘

3

5� 2p
1 + �

arctan(r)

+
4r
p

1� �2p
1 + �

F1



1

4
;�1

2
, 1;

5

4
;� �2r4

1� �2
, r4

�

)

, (5.201)

where F1 is the Appell hypergeometric function of two variables and 2F1 the Gauss hyper-

geometric function. The power-series expansion of F1 around r at infinity can be found

from theorems presented in [180], which we can apply to find

F1



1
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, 1;
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4
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4
, 1;
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+ . . . .

(5.202)

This enables us to find the expansion of F0(r) around the boundary,

F0(r) =

p
1 + �

2
p
2r

� �
p
1 + �

8
p
2r4

+O
�

r�5
�

, (5.203)

to order O(r�4), which is su�cient for the computation of the boundary stress-energy

tensor. Plugging F0 into the first-order metric gµ⌫(1) and computing the stress-energy tensor

(5.127) with the full first-order solution, we recover the non-perturbative result for the shear

viscosity ⌘ presented in (5.63).

5.8.2 Second-order solution

The calculation of second-order corrections to the boosted black brane metric proceeds in

exactly the same way as the first-order calculation. First we perturb g(0)µ⌫ + ✏g(1)µ⌫ to second

order and then look for g(2)µ⌫ so that the Einstein-Gauss-Bonnet equations of motion (5.178)

are satisfied.

130



To find the second-order coe�cients non-perturbatively, we would need to solve di↵eren-

tial equations with the di↵erential operator given in (5.200) and right-hand-sides involving

integrals over the Appell function (5.202). We were not able to find useful closed-form

expressions for the coe�cients, but instead had to resort to a perturbative expansion in

�GB to be able to at least partially verify our non-perturbative results for the second-order

transport coe�cients.

Since we already know from section 5.2 the tensor structure of second-order hydrody-

namics, it is easiest to write down an ansatz for the line element of the second-order metric

g(2)µ⌫ ,

ds2(2) =
k2(r)

r2
dv2 � 3N#h2(r)dvdr +

2

r2

 

3
X

i=1

ji2(r)dx
i

!

dv

+ r2h2(r)
�

dx2 + dy2 + dz2
�

+ r2
3
X

n=0

Pn(r)Bn, (5.204)

where xi = (x, y, z), k2 and h2 are scalars, ji2 a three-vector. We have also defined

B0 =

✓

hD�abi +
1

3
�ab (r · u)

◆

dxadxb, (5.205)

B1 = � c
ha �bic dx

adxb, (5.206)

B2 = � c
ha ⌦bic dxadxb, (5.207)

B3 = ⌦
c

ha ⌦bic dxadxb. (5.208)

We may at this point focus only on the four functions Pn with n = {0, 1, 2, 3}, which
will give us the four second-order coe�cients, �0 = ⌘⌧⇧, �1, �2 and �3, respectively. The

fact that the boundary theory is flat implies that this procedure does not enable us to

find . Furthermore, we know that in the Landau frame there are no other transport

coe�cients coming from either the scalar or the vector sector. However, we still need to

use the constraint equation r2f0(r)Err + N#Evr = 0 and the dynamical equation Err = 0

to eliminate h2, k2 and their derivatives from the dynamical equations for Pn.

The remaining di↵erential equations for Pn can be solved perturbatively, to an arbi-

trarily high order in �GB. Here we outline the most e�cient way to extract su�cient

information from the functions Pn to recover the four transport coe�cients. Let us expand

the functions Pn in a power series near the boundary,

Pn(r) =
1
X

i=1

p(i)n

ri
. (5.209)

We then plug the metric (5.204) with expanded forms of functions Pn, as in Eq. (5.209),

into the full second-order metric and evaluate the stress-energy tensor (5.127). The main
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observation is that in the limit of r ! 1, finite contributions to Tµ⌫ only depend on

coe�cients of Pn proportional to r�4, i.e. Tµ⌫ depends on p(4)1 , p(4)2 , p(4)3 and p(4)4 .

All p(4)n can be found by simply plugging (5.209) into the four di↵erential equations for

Pn and expanding around r ! 1. From the equation for P0, for example, we obtain

p(1)0

r2
+

2p(2)0

r3
+

3p(3)0

r4
+

1

r5



4p(4)0 +

✓

�1 +
log(2)

2

◆

+

✓

19

4
� log(2)

◆

�GB +

✓

1

8
� log(2)

◆

�2GB + . . .

�

+O
�

r�6
�

= 0, (5.210)

which enables us to find p(4)0 . By following exactly the same procedure, we can also obtain

p(4)2 , p(4)3 and p(4)4 .

With these four coe�cients in hand, we can plug the metric (5.204) with (5.209) into

(5.127) and take the limit r ! 1. The resulting stress-energy tensor allows us to read ⌘⌧⇧,

�1, �2 and �3 from the coe�cients of tensors (5.205) - (5.208). The results are in exact

agreement with the �GB-expansions of the four non-perturbative second-order transport

coe�cients (5.17), (5.18), (5.19) and (5.20), as well as those computed in [193] to linear

order. In matching these expressions, one only needs to be careful about the horizon scale

r+, which is in the fluid/gravity calculation promoted to a field b(r) and fixed at b0 = 1.

Finally, this enables us to verify the expression (5.143), which shows the violation of the

linear combination formula for the ⌘⌧⇧, �1 and �2 transport coe�cients.

5.9 ’t Hooft coupling corrections to the second-order
transport in N = 4 super Yang-Mills theory

In this section, we will analyse second-order hydrodynamics in a top-down example of a bulk

theory with a higher derivative gravitational action. We will study the N = 4 super Yang-

Mills theory, which is the best understood example of the AdS/CFT correspondence [10].

In particular, we will be interested in the leading ’t Hooft corrections to the hydrodynamic

transport coe�cients. Up to second order in gradient expansion, ⌘, ⌧⇧, �1, �3 and  have

previously been computed in [194–200]. Here, we will compute the last remaining one: the

�2 coe�cient. We will again follow the procedure of [200] and use the method of thee-point

functions that we already employed in Section 5.6.

It was argued in [228] that in order to compute hydrodynamic response of the original

ten dimensional Type IIB supergravity with five compact dimensions, it is su�cient to

consider only the reduced five dimensional action. This fact was used in [200], which we

will follow in this section to compute �2.

The relevant five dimensional action dual to the N = 4 theory with the leading ’t Hooft

132



correction is

S =
N2

c

8⇡2

Z

d5x
p
�g (R + 12 + �W) , (5.211)

where � = ↵03⇣(3)/8, which is related to the value of the ’t Hooft coupling �. The coupling

can be expressed in terms of the string scale as ↵0/L2 = ��1/2. The function ⇣ is the

Riemann zeta function. W is given in terms of the Weyl tensor Cµ⌫⇢� by

W = C↵���Cµ��⌫C
⇢�µ
↵ C⌫

⇢�� +
1

2
C↵���Cµ⌫��C

⇢�µ
↵ C⌫

⇢��. (5.212)

The background brane solution, which we will consider in order to have a field theory dual

at finite temperature, is the �-corrected metric (5.32) (at �GB = 0), given in terms of the

radial coordinate u = r2+/r
2 by

ds2 =
(⇡T0)2

u

�

�(1� u2)Ztdt
2 + dx2 + dy2 + dz2

�

+ Zu
du2

4u2(1� u2)
. (5.213)

The functions Zt and Zu are given to order � by

Zt = 1� 15�
�

5u2 + 5u4 � 3u6
�

, Zu = 1 + 15�
�

5u2 + 5u4 � 19u6
�

. (5.214)

The Hawking temperature is T = T0(1 + 15�), where T0 = r+/⇡. Note that we have again

set the AdS radius to L = 1.

The calculation proceeds in exactly the same way as the one in Section 5.6. The

expressions involved are extremely long and will therefore not be presented here. The

solutions of the relevant first-order metric fluctuations, gµ⌫ +
(⇡T0)2

u
✏h(1)

µ⌫ , have the forms,

h(1)
xy = e�iq0t+iqzz

�

Zxy + �Z(�)
xy

�

, h(1)
xz = e�iq0t

�

Zxz + �Z(�)
xz

�

, h(1)
ty = eiq

zz
⇣

Zty + �Z(�)
ty

⌘

,

(5.215)

where Z and Z(�) are expanded up to second order in q0 and qz. All of our solutions are

valid to linear order in �. As is usual, we need to impose in-falling boundary conditions on

the time-dependent fluctuations, h(1)
xy and h(1)

xz . The �-dependent exponent of (1 � u2)a is

now a = � iq0

4⇡T0
(1� 15�). With solutions of (5.215) in hand, we can find the second-order

fluctuation h(2)
xy , defined by gxy +

(⇡T0)2

u
✏h(1)

xy + (⇡T0)2

u
✏2h(2)

xy .

Next we compute the holographic stress-energy tensor for the induced metric �µ⌫ ,

T µ⌫ = �
p
�� N

2
c

4⇡2

(⇡T0)2

u



Kµ⌫ �K�µ⌫ + 3

✓

�µ⌫ � 1

6
Gµ⌫

(�)

◆�

, (5.216)

which has the same tensorial form as the one in pure Einstein theory. No higher-derivative

terms contribute to its form [200]. Taking two derivatives of T xy with respect to the

boundary values of h(1)
xz and h(1)

ty , we recover the three-point function,

Gxy,ty,xz
RAA (q0, qz) =

N2
c

16
q0qzT 2

0 (1 + 380�) . (5.217)
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Finally, by using the Kubo formula (5.117) along with the known results for ⌘ and ⌧⇧ given

in Eqs. (5.6) and (5.7), we find the expression (5.10) for �2. We can now show that the

relation 2⌘⌧⇧ � 4�1 � �2 = 0 remains valid in the presence of the leading-order ’t Hooft

corrections, similarly to the case of the leading-order Gauss-Bonnet corrections.

5.10 Discussion

In this chapter, we discussed second-order hydrodynamics in conformal field theories with

a holographic dual, particularly focusing on higher-derivative gravity corrections to the five

hydrodynamic coe�cients, ⌧⇧, �1, �2, �3 and , as well as charge di↵usion. We focused

on the neutral fluid dual to the Gauss-Bonnet gravity with the addition of photon fields

responsible for the transport of charge. The bulk theory was constructed in such a way

that the specially chosen coe�cients in the four-derivative action gave equations of motion

with at most two derivatives. In addition to our analysis of the Gauss-Bonnet fluid, we also

completed the catalogue of ’t Hooft coupling corrected second-order transport coe�cients

in the N = 4 superconformal Yang-Mills theory. Namely, we found the leading-order ’t

Hooft coupling correction to the previously known value of �2 at infinite coupling.

The main motivation for this investigation was the existence of a Gauss-Bonnet limit

�GB ! 1/4 in which viscosity vanishes and the possibility of finding a holographic ex-

ample of a recent field theory motivated construction of fluids without dissipative viscous

terms [101]. Such liquids and gases are interesting as they may posses novel types of fluid

behaviour, di↵erent from those in which dissipation is controlled by viscosity. It is impor-

tant to note that we have discussed a system in which no global symmetry was broken,

thus the vanishing of viscosity could not be attributed to superfluidity. We showed that

near �GB ⇡ 1/4, shear channel dissipation and sound channel attenuation were suppressed.

However, the fluid still managed to produce entropy even at second order, which could be

attributed to the fact that some of the second-order transport coe�cients remained non-zero

and that  6= 2�1 in the Gauss-Bonnet fluid. Furthermore, we saw that non-perturbative

Gauss-Bonnet hydrodynamics violates the previously proposed universal linear combina-

tion of transport coe�cients ⌘⌧⇧, �1 and �2. Similarly, ’t Hooft coupling corrections also

broke that relation in the N = 4 fluid.

We saw that in the limit of �GB ! 1/4, shear dissipation and sound attenuation were

completely suppressed. The limit did not commute with calculations of the field theory

correlation functions and spectra of excitations. More precisely, the field theory predictions

calculated for a general value of �GB and analysed in the limit of �GB ! 1/4 did not agree

with those obtained from setting �GB = 1/4 on the level of equations of motion and only
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then computing the correlation functions. In fact, the latter scenario completely eliminated

hydrodynamic modes. Understanding all the intricacies of this limit remains an interesting

open problem that should be addressed in the future.

Theories similar to the Einstein-Gauss-Bonnet action such as Lovelock gravity, with

or without matter fields, should also be analysed in the future to see whether some of

the di�culties related to causality and pathological behaviour in the disipationless limit

can be avoided. It would be very interesting to analyse the charged fluid dual to the

Gauss-Bonnet theory with the four-derivative Maxwell action discussed in Section 5.7.1.

In order to pursue this goal, we would first need to find a black hole solution of the theory.

And although it is easy to find perturbative corrections in �1, �2 and �3 to the AdS-

Reissner-Nordström black hole, such background is insu�cient for studies similar to the

one presented in this chapter. Unfortunately, we do not yet know of techniques able to find

the solution non-perturbatively. Beyond its importance to holographic fluids in unusual

and exciting regimes, the search for higher-derivative charged black holes is an important

future goal in its own right.

Perhaps the most important goal for the future is to generalise second-order hydrody-

namics to higher orders in derivative expansion. This could answer many open question

and provide a better understanding of convergence properties of the hydrodynamics expan-

sions. We could learn how the number of independent transport coe�cients grows with

the order of expansion and compute corrected dispersion relations. This could at least

partially answer the question of whether vanishing ⌘ itself plays any role in suppressing

higher-order contributions to di↵usion and propagation of sound, or whether numerous

other Gauss-Bonnet transport coe�cients conspire together to suppress dissipation in the

limit of extreme coupling.
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Chapter 6

Conclusion

In this thesis, we approached the vast subject of hydrodynamics from three points of view,

ranging from e↵ective classical field theory to quantum field theory and string theory. We

first introduced e↵ective field theories in the language of quantum field theory and discussed

the phenomenological approach to hydrodynamics, which is facilitated through the gradient

expansion in derivatives of hydrodynamical variables, the velocity field and near-equilibrium

generalisation of temperature and chemical potential. We then discussed why doubling

the time axes and degrees of freedom within the Schwinger-Keldysh CTP formalism is

necessary for computing expectation values of quantum operators acting on states that are

not pure state at asymptotic infinity. This motivation for the fundamental importance of

the CTP formalism in QFT was followed by an introduction to supersymmetry, dualities,

string theory and the gauge/string duality. We also commented on the connection between

holography and the Wilsonian interpretation of the renormalisation group in QFT [80].

The final part of the chapter was devoted to holographic methods for computing properties

of strongly-coupled theories in the hydrodynamical limit.

Chapter 3, which was based on [209], was devoted to an important open problem of

how hydrodynamics with dissipation arises as a classical e↵ective theory, knowing that

dissipation cannot be described using standard variational techniques. By adopting the

view that dissipation is the energy loss of hydrodynamic macroscopic degrees of freedom

to microscopic degrees of freedom, the theory of only hydrodynamic excitations should

be that of an open system. To better understand such physical setups, we analysed the

structure of e↵ective actions for open systems in the CTP formalism. Establishing that

such e↵ective actions generically include terms with coupled fields from the two time axes,

we used this observation to study an e↵ective action of Goldstone modes known to de-

scribe non-dissipative hydrodynamics. The main contribution of this chapter was to show

that dissipation could be incorporated into the language of CTP. We were able to recover

first-order hydrodynamics with non-zero bulk viscosity. Shear viscosity vanished in this
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setup, which was most likely the result of the large symmetry group of volume-preserving

di↵eomorphism used to construct the action. The main challenge for the future is to un-

derstand how this symmetry can be relaxed to find non-zero shear viscosity, and to use the

developed formalism to classify di↵erent fluids. From the point of view of QFT, the richer

structure of the CTP formalism should be used in the future to rethink the structure of

e↵ective theories and to classify physical systems, which are sensitive to complicated initial

states, formation of mixed states, decoherence and various other complications pertaining

to open systems. To this end, the thesis began analysing the structure of the Wilsonian

RG in scalar theories, something which should be built upon in future.

Gauge/string duality has provided us with invaluable insight into one of the greatest

problems in theoretical physics: the analytical access to physical predictions in theories

with strong coupling. However, the predictions it has thus far provided in strongly coupled

hydrodynamical and condensed matter systems have been restricted to supersymmetric,

large-N theories, and theories with exotic particle content. Holographic predictions for

the properties of strongly interacting phases of matter are thus ofter hard to interpret

and seem unusual in comparison with realistic theories. Supersymmetric low energy the-

ories have been very rarely studied in the past. To learn about holography, as well as

to uncover potential new phenomena arising from SUSY-inspired interactions and particle

content, we began exploring SUSY theories in the context of low-energy condensed matter

systems [229]. Chapter 4 discussed U(1) super-QED theories and their deformations at

finite density of electric and R-charge. We showed that, contrary to the intuition one de-

rives from QED, scalar-fermion interactions prevent the formation of Fermi surfaces, unless

SUSY is broken and the strength of interactions decreased. We also showed that, despite

there being no Fermi surface, fermions were able to contribute to the total charge density.

Beyond the usefulness of performing such studies to better understand the gauge/string

duality, it would be particularly exciting to apply our results to potentialy realistic systems

with Majorana and Dirac fermions in the presence of additional composite scalar-forming

fermionic condensates. A natural hydrodynamical system, which could realise such scenario

are superfluids.

In Chapter 5, we applied holographic techniques to study second-order hydrodynamics

in fluids dual to theories with higher-derivative gravity [230]. Our particular goal was to

analyse the Gauss-Bonnet fluid in the extreme coupling limit, �GB ! 1/4, which is dual to

a fluid with (nearly)-vanishing viscosity. We also added higher-derivative vector field terms

to analyse charge transport properties, finding a parameter regime of the neutral theory

in which charge di↵usion vanished. Because first-order hydrodynamical e↵ects are sup-

pressed in such a limit, we computed all five conformal second-order transport coe�cients,
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non-perturbatively in the coupling. This computation was the chapter’s main contribution

to the field, along with finding the last unknown ’t Hooft coupling corrected second-order

coe�cient, �2, in the N = 4 super Yang-Mills theory. The knowledge of these coe�cients

enabled us to provide a counter-example to the proposed holographic universality between

three of the second-order transport coe�cients. The peculiar behaviour of the fluid’s exci-

tations was also analysed in this chapter. Analytically for shear, and numerically for the

sound mode, we found that dissipation and attenuation were suppressed beyond second-

order e↵ects. The system’s hydrodynamic excitations approached the behaviour of an

ideal fluid. However, second-order e↵ects still managed to contribute to non-trivial entropy

production near �GB = 1/4, thus keeping the fluid dissipative. Precisely at �GB = 1/4,

hydrodynamic modes disappeared from the spectrum and we were, fascinatingly, able to

find the entire quasi-normal spectrum analytically. Several open questions regarding flu-

ids with nearly-vanishing viscosity remain. Can one formulate a holographic dual without

any pathological behaviour, which would posses dissipationless hydrodynamic modes? Can

such fluids be observed in nature? What e↵ect does third- and higher-order hydrodynamics

have on the behaviour of (nearly)-dissipationless fluids? Many of these questions will be

addressed in the future.
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