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Abstract

Hydrodynamics is an effective theory that is extremely successful in describing a wide
range of physical phenomena in liquids, gases and plasmas. However, our understanding of
the structure of the theory, its microscopic origins and its behaviour at strong coupling is
far from complete.

To understand how an effective theory of dissipative hydrodynamics could emerge from a
closed microscopic system, we analyse the structure of effective Schwinger-Keldysh Closed-
Time-Path theories. We use this structure and the action principle for open systems to
derive the energy-momentum balance equation for a dissipative fluid from an effective
CTP Goldstone action. Near hydrodynamical equilibrium, we construct the first-order
dissipative stress-energy tensor and derive the Navier-Stokes equations. Shear viscosity is
shown to vanish, while bulk viscosity and thermodynamical quantities are determined by
the form of the effective action.

The exploration of strongly interacting states of matter, particularly in the hydrody-
namic regime, has been a major recent application of gauge/string duality. The strongly
coupled theories involved are typically deformations of large-N SUSY gauge theories with
exotic matter that are unusual from a low-energy point of view. In order to better interpret
holographic results, an understanding of the weak-coupling behaviour of such gauge theories
is essential. We study the exact and SUSY-broken N' = 1 and N = 2 super-QED with finite
densities of electron number and R-charge, respectively. Despite the fact that fermionic
fields couple to the chemical potentials, the strength of scalar-fermion interactions, fixed
by SUSY, prevents a Fermi surface from forming. This is important for hydrodynamical
excitations such as zero sound. Intriguingly, in the absence of a Fermi surface, the total
charge need not be stored in the scalar condensates alone and fermions may contribute.

Gauss-Bonnet gravity is a useful laboratory for non-perturbative studies of the higher
derivative curvature effects on transport coefficients of conformal fluids with holographic
duals. It was previously known that shear viscosity can be tuned to zero by adjusting the
Gauss-Bonnet coupling, \gp, to its maximal critical value. To understand the behaviour of
the fluid in this limit, we compute the second-order transport coefficients non-perturbatively
in Agp and show that the fluid still produces entropy, while diffusion and sound attenu-
ation are suppressed at all order in the hydrodynamic expansion. We also show that the
theory violates a previously proposed universal relation between three of the second order
transport coefficients. We further compute the only second-order coefficient thus far un-
known, Ao, in the N' = 4 super Yang-Mills theory with the leading-order 't Hooft coupling
correction. Intriguingly, the universal relation is not violated by these leading-order per-
turbative corrections. Finally, by adding higher-derivative photon field terms to the action,
we study charge diffusion and non-perturbative parameter regimes in which the charge

diffusion constant vanishes.
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Chapter 1

Introduction

Hydrodynamics is an enormously successful theory that describes the collective dynamics
of gases, liquids and plasmas. Its applicability to physical systems extends through vast
ranges of energy scales, from low-energy dynamics of fluids seen in nature every day, to a
successful description of quark-gluon plasmas in the early universe and heavy-ion collision
experiments at RHIC and the LHC.

From a microscopic quantum field theory (QFT) point of view, hydrodynamics should
be understood as an effective theory of low-energy degrees of freedom, valid up to some
energy scale Ahydm.l However, the relevant degrees of freedom that such an effective theory
must describe can often be complicated bound states of various interacting nucleons and
electrons; think of, for example, water molecules made of two hydrogen atoms covalently
bonded to an oxygen atom. Given that the standard model of particle physics, phrased in
terms of a local microscopic QFT, is in excellent agreement with almost all experiments
done on Earth, one should, in principle, be able to derive and classify different types of
hydrodynamics from first principles, i.e. from QFT.

This thesis is aimed at presenting a few small steps in that direction. It will present
an effective field theory approach to dissipative hydrodynamics, as well as a stringy, su-
persymmetric point of view on hydrodynamics. We will further outline and study some
issues, which generically arise in attempts to draw analogies between supersymmetric and
non-supersymmetric low-energy systems.

Given enormous difficulties in treating realistic non-perturbative objects and strong
coupling in QFT, it is not surprising that a systematic derivation of hydrodynamics from

QFT is destined to be extremely complicated. Rather than deriving an effective field the-

IThe exact scale of applicability of hydrodynamics, the hydrodynamisation scale, is not known and
is a question of active research. It is believed to be somewhat higher, but comparable to the scale of
thermalisation and often significantly higher than the scale one would naively expect. Models of the
dynamics of quark-gluon plasma at RHIC and the LHC show its thermalisation length scale to be on the
order of one Fermi, i.e. 107 m [1,2]. Hence, Ahydro could in some cases be comparable to the inverse
proton size.



ory, standard approaches to hydrodynamics combine phenomenological and microscopic
inputs. Omne uses the notion of local thermodynamic equilibrium and the existence of
conserved quantities to write down a gradient expanded stress-energy tensor and other
relevant currents in terms of near-equilibrium fields, i.e. the generalisations of velocity,
u*(z), temperature, T'(x), and chemical potential, pu(x). The procedure leaves hydrody-
namic coefficients, e.g. shear and bulk viscosity, of various tensor structures undetermined.
They must be computed using microscopic techniques, such as kinetic theory or lattice
computations.

Beyond microscopic derivation, a problem concerning phenomenological hydrodynamics
is that the most general gradient expansion is not known beyond second order in derivatives
of hydrodynamics variables. Hence, the convergence properties of the hydrodynamic ex-
pansion, as well as higher-order dispersion relations are not known. In order to study these
problems and to have a systematic view of different hydrodynamic models, it would be ex-
tremely beneficial to have a Lagrangian approach to hydrodynamics, where well-understood
techniques of effective field theory could be employed.

Recently, work has been done showing that long-range Goldstone modes can be success-
fully used to encode hydrodynamic excitations in an effective theory [3-5], analogously with
the ideas behind the extremely successful phenomenological chiral pion Lagrangian [6, 7].
The benefit of this approach is clear; if one could write down a hydrodynamic Lagrangian,
then all conserved tensors and equations of motion would follow from variational principle,
including all hydrodynamic coefficients. However, problems arise when one tries to include
dissipative terms, which could encode viscosity. Standard variational methods are unable
to describe dissipation in the absence of an explicit environment. For example, a harmonic
oscillator must be explicitly coupled to an external system, which can serve as a forcing
term and cause damping. This appears to be incompatible with the philosophy of effective
field theory, where one would desire a theory of only the relevant, macroscopic degrees of
freedom in the system.

If one adopts the view that dissipation is the energy loss of macroscopic hydrodynamic
degrees of freedom to the integrated-out, microscopic degrees of freedom, then an effective
field theory of only long-range Goldstone modes can be constructed using the Schwinger-
Keldysh Closed-Time-Path (CTP) formalism [8,9]. This approach to hydrodynamics will
be discussed in Chapter 3. The CTP formalism was initially designed for the computation
of expectation values in out-of-equilibrium QFT involving mixed states, but it can also be
used to formulate an effective field theory of an open system. By analysing the possible
structures of effective CTP Lagrangians, we will construct a classical effective theory with

dissipation and non-zero bulk viscosity. We will also study its thermodynamic properties.



The second approach to hydrodynamics to be addressed in this thesis is through the
gauge/string duality, also known as the AdS/CFT correspondence or simply, holography
[10-12]. By duality we mean that all information about the physics in one theory is encoded
in the dual theory, and vice versa. AdS/CFT is a holographic duality between gauge
field theories and higher-dimensional string theory that reduces to an effective theory of
supergravity in the low-energy limit. Computational control over the gravity side of the
duality demands that we suppress stringy and quantum gravity corrections by taking the
two limits, N — oo, as well as the t Hooft coupling A = g%,,N — 00.? Gravity calculations
can then provide a window into the low-energy, hydrodynamical limit of certain strongly
coupled field theories.

The problem is that so far AdS/CFT has only given us computational access to strongly
coupled theories, which are not directly observable in nature. They are usually conformal
supersymmetric (SUSY) theories with a large number of colours. It is therefore important
to understand similarities and differences between field theories with known gravity duals
and reality. Many AdS/CFT calculations, for example, give thermodynamical scalings and
transport properties that have never been observed. One would therefore like to understand
whether those predictions are a result of strong coupling, unusual matter content or other
reasons.

Deriving from this motivation, Chapter 4 will study perturbative low-energy behaviour
of supersymmetric QED at finite density. This theory, which is a SUSY extension of quan-
tum electrodynamics, is the minimal SUSY theory containing many of the features of more
complicated theories with known duals. It is therefore a physically rich and natural start-
ing point for investigations of thermal and hydrodynamic properties in SUSY, previously
rarely investigated, yet essential for the understanding of AdS/CFT.

A ubiquitous feature of condensed matter systems at finite density are Fermi surfaces.
For example, Landau’s Fermi liquid theory is derived by considering quasiparticle exci-
tations around a Fermi surface, giving rise to hydrodynamic transport properties of the
system, such as zero sound. However, in a SUSY counterpart of such a theory, there are
always extra Majorana fermions and, most importantly, scalar fields with a non-trivial
moduli space of flat directions in the field space, which minimise the potential. In the
high-density regime with T'/u < 1, this may easily lead to instabilities.®> In Chapter 4,
we will discuss the moduli space stabilisation in super QED. This will lead to non-trivial

scalar vevs breaking the symmetries and a complicated fermion mass matrix due to Yukawa

2The ’t Hooft coupling A, rather than just the Yang-Mills coupling gy as, turns out to be an important
expansion parameter in field theories with a large number of colours V. More details on Yang-Mills theories
and the AdS/CFT correspondence will be presented in Chapter 2.

3T is the temperature and p the chemical potential of the system.



interactions with a schematic form of (¢) x fermion®. We will see that scalar-fermion inter-
actions cause the fermions to not form a Fermi surface while scalars undergo condensation.
This is thus in sharp contrast with the behaviour of a realistic Fermi gas in the absence
of fundamental scalars. To approach reality, we will tune the SUSY Yukawa interaction
and show that at weaker coupling, compared to the scalar self-interaction, a Fermi surface
begins to form. We will also analyse fermionic contributions to the total charge density,
finding that fermionic modes can contribute even in the absence of a Fermi surface, which
differs from the usual systems protected by Luttinger’s theorem.

In Chapter 5, we will turn our attention to a holographic, gravitational analysis of
hydrodynamic properties of a field theory dual to the Einstein-Gauss-Bonnet gravity in
five space-time dimensions. Even though a string theoretic construction of this duality
is not known, and hence we do not know the details of the CFT, this theory serves as
a great laboratory for explorations of higher curvature effects on dual hydrodynamics.*
The reason for this investigation is that holography can provide us with information about
different classes of fluids based on the behaviour of their transport coefficients. The power
of holography is precisely in its ability to determine them microscopically at all orders in
the hydrodynamic derivative expansion.

We will be particularly interested in non-dissipative fluids with non-trivial second-order
hydrodynamic transport properties.” To study such fluids, we will make use of large, non-
perturbative corrections of the Gauss-Bonnet coupling to results that follow from pure
Einstein theory.® They will allow us to analyse the conformal theory near a point where
shear viscosity 7 vanishes, i.e. as Agp — 1/4. Analytical and numerical studies of hy-
drodynamic dispersion relations will point towards the suppression of dissipation at all
hydrodynamic orders. In spite of that, we will analytically compute second-order confor-
mal hydrodynamic coefficients, which will remain non-trivial and produce entropy. The
fluid will thus still be dissipative. Using the values of the second-order transport coef-
ficients, we will show that a previously proposed universal holographic relation between
three of the coefficients is violated. Furthermore, we will compute the leading 't Hooft

correction to the last unknown coefficients in the A/ = 4 theory to show another example

4While the Einstein-Hilbert action includes two derivatives of the metric tensor, the Gauss-Bonnet term
includes four. However, its structure is such that it only gives non-trivial contributions with at most two
derivatives of the metric to the gravitational equations of motion. The absence of higher derivatives in the
equations of motion allows for convenient calculations with a non-perturbative value of the Gauss-Bonnet
coupling Agp.

5Note that viscosity is a first-order transport coefficient as it multiplies single derivatives of hydrody-
namic fields, u#, T and u, in the stress-energy tensor as well as the Navier-Stokes equations. Similarly,
second-order coefficients accompany terms with two derivatives.

SPure Einstein theory on AdSs x S° is itself a limit of Type IIB supergravity and is dual to the
stress-energy tensor sector of the N' = 4 superconformal Yang-Mills theory. The CFT dual of the Einstein-
Gauss-Bonnet theory is presently unknown.



of a holographic fluid, which violates the proposed relation. Finally, we will analyse charge
diffusion properties by adding the most general four-derivative photon and photon-graviton
terms to the Lagrangian that again only produce second-order differential equations.

The thesis is divided into four chapters. In Chapter 2, background material will be
presented, which is required to make the ideas in this work self-contained. We will begin
by discussing the concept of renormalisation group and effective field theory. This will
be followed by the construction of phenomenological hydrodynamics and the motivation
for the necessity of the Schwinger-Keldysh CTP formalism in out-of-equilibrium quantum
field theory. We will then move on to the discussion of supersymmetry and its power
in enabling strong/weak dualities in four-dimensional theories. A presentation of string
theory and gauge/string duality will follow. In particular, we will focus on the usefulness
of the AdS/CFT correspondence in computing transport properties of strongly coupled
hydrodynamical and condensed matter systems.

In Chapter 3, we will discuss in detail the CTP formalism and its applications to an
effective theory of hydrodynamics. In Chapter 4, we will analyse N' = 1 and N = 2
supersymmetric QED at finite density, focusing on the issues of stability of the moduli
space and the existence, or rather, the lack of Fermi surfaces. Chapter 5 will be devoted to
a holographic analysis of second-order hydrodynamics in a field theory dual to the Einstein-
Gauss-Bonnet gravity. Although each chapter will contain a discussion of results and an
outline of interesting future research directions, we will use Chapter 6 to present a summary

of the thesis’s main contributions to the field of study.”

"The thesis’s main body chapters will be using different sign conventions for the metric tensor in order
to remain consistent with the majority of the modern literature related to the subjects of study. Thus,
QFT calculations in Chapter 4 and the first part of Chapter 3, where we present the CTP formalism in
QFT, will use the signature 7,, = diag(+1,—1,—1,—1). Topics related to general relativity and string
theory in Chapter 2 as well as the entire Chapter 5 will use n,, = diag(—1,+1,+1,4+1). Same metric
conventions will be used in classical theory of hydrodynamics in Chapter 3.



Chapter 2

Effective field theory and the
gauge/string duality

2.1 Effective field theory

2.1.1 Quantum field theory and renormalisation group

Field theory is a language used in physics to describe a variety of subjects ranging across all
energy scales: from hydrodynamics and condensed matter, to cosmology, particle physics
and string field theory. Quantum field theory (QFT) [13-15] is the relativistic, second-
quantised theory, which can describe processes that occur in particle physics. It provides
a consistent, predictive quantum description of all observed forces, with the exception of
gravity. Some of its fundamental concepts that will be used throughout this work are
introduced in this chapter.

The main ingredients for specifying a QFT are its particle content, i.e. fields, and
symmetries, which leave the theory invariant. A theory can then be used to compute
correlation functions from a generating functional Z[J], which is a path integral over an

action defined on a d 4+ 1-dimensional space-time manifold M as

Z [J,] :/D¢exp{¢5[®]+¢Z/M Jn<I>n}. (2.1)

The symbol ® denotes an arbitrary set of quantum fields {®4,...,®,} and J,, are sources
with respect to which functional derivatives are taken.

Bare correlation functions, which naively follow from (2.1) are normally divergent and
thus un-physical. In renormalisable theories, e.g. QED and QCD, these divergences can be
successfully removed at an expense of introducing a new scale p into the problem. This is
done by regulating the bare quantities through an introduction of a cut-off A, or by using
some other regulator such as dimensional regularisation or the Pauli-Villars procedure.
Renormalisation conditions fixing values of certain vertices, mass poles and propagator

residues are then specified an at arbitrary scale . The momentum scale p?> = u? can be



either time-like or space-like, noting that in the time-like cases, additional singularities may
appear. Divergences can be absorbed into counter-terms, which yields finite renormalised
correlation functions that depend on p and obey the RG conditions.

Coupling constants in a renormalised theory, for example the Yang-Mills coupling,
become scale-dependent, ¢(u), and their running is described by a beta function B, =
dg/dlog pu. By introducing the wave-function renormalisation Z, the bare and renormalised

correlation functions become related by

QB (21) ... B (@) Dy = (Z1 . Z) 2 (Q By (1) ... )| Q) (2.2)

bare ren *

Great physical insight can be gained by noting that bare correlators that depend on A

cannot depend on p, hence

4018y (21) ... Do) Q)

” = 0. (2.3)

bare

The right-hand side of Eq. (2.2) then leads to the Callan-Symanzik equation [16-18],

0 0
a_,u + Xm:ﬁgmang + ;W% <Q |(I)1(331) s (I)n($n)| Q>ren = O’ (24)

where g,, are the couplings in the theory and =, are the anomalous dimensions v, =
(1/2)(dlog Z,,/dlog 11). The same considerations apply to correlators of composite opera-
tors, Ok, made of the fundamental fields ®. Each one of them acquires a ~,-independent
anomalous dimension ’y,go). Furthermore, the inclusion of composite operators requires us
to introduce further counter-terms into the theory.

Let us for simplicity focus on a theory with a single coupling g, e.g. the Yang-Mills
theory. The Callan-Symanzik equation can most easily be solved at a fized point, which is

a point in the space of couplings where the beta function vanishes, 3(¢g*) = 0. Eq. (2.3)

implies that a two-point correlator of an operator O scales as

1
(O(@)O(2)) & ———. 2.5)
|71 — 2o
at the scale-invariant fixed point, where A is the dimension of ©. The dimension A is the
sum of the operator’s “engineering” dimension and the anomalous dimension 7°.

As an example, a two-loop beta function in a Yang-Mills theory with N, colours and

N; massless flavours is given by 3(g) = —b1g® 4 bag®, where

1 11 2 1 34 N2 -1 10
b= —— | =N —ZN;|, b= ——— | N2 N, [ e N @26
! <47r>2[3 3 f] : (4@4[3 : f( A )} (2:6)

For a well-defined perturbation expansion, the two-loop contribution must be sub-leading,

i.e. |bag?| < |b1]. The theory has 3(g) < 0 and is said to be asymptotically free if by > 0,



which enforces the condition Ny < 11N,/2. In such theories, the coupling g(p) runs to zero
in the UV, i.e. at large momenta p. If by > 0 is also satisfied, then there exists an IR fixed
point g2 = b; /by < 1, known as the Caswell-Banks-Zaks fixed point for asymptotically free
theories in the conformal window,

682 11
_ 00N N < N 9.
16+ 20N, ~F =gt (2.7)

In theories with a positive beta function, e.g. QED, ¢* theory, the coupling diverges
at a Landau pole in the UV [19]. Such theories are called trivial because it is formally
impossible to remove the UV cut-off without tuning the coupling to zero. This occurs
in the standard model within the Higgs and the U(1) hypercharge sectors. Although the
Landau pole could signal the breakdown of perturbative expansion, it is believed that QED
and ¢* theory are also trivial non-perturbatively.

Another important scenario that will be of relevance in later chapters, are theories with
strongly coupled UV fixed points. For example, this may occur in theories, which run into
the N = 4 supersymmetric Yang-Mills theory in the UV. This super-conformal theory is
known to have a vanishing beta function at all energy scales and will be widely discussed
in the context of the AdS/CFT correspondence.

The trace of the stress-energy tensor 7" vanishes in a scale-invariant theory, such as
in massless QED. However, a theory may possess a trace anomaly, which makes T* #
0. Generically, the trace becomes proportional to the beta functions of the couplings.
Although the proofs of the following fact have not been fully accepted, it is believed that a
scale-invariant, unitary theory is also conformally invariant [20-22]. The conformal group in
four space-time dimensions has an SO(4, 2) algebra and is generated by dilatations D, which
correspond to scaling transformations, the special conformal transformations K,,, as well as

the Poincaré group generators M,, and P,, which correspond to Lorentz transformations

s

and translations, respectively. The full algebra is

D.K,) = ik,

s

[Dv Pu] = iP/u (28)
(K, P] = 2, D — 2iM,,, (K Myp) = i [ K, — nu,p KL (2.9)
[P/n M/w] =1 [npuPV - npupu] ) [M;w; Mpa] =1 [nupM;w + nuaMVp - (:u e V)] : (210)

The algebra of conformal field theories will play an important role in the identification of

the duality between conformal gauge theories and theories of gravity.

2.1.2 Effective field theory

In the 1970s, Wilson developed a new view of quantum field theory, by which theories

without a UV completion should necessarily be viewed as effective theories with a finite



range of scales over which they are applicable [23,24]. The idea can be seen by considering
the path integral (2.1), setting J,, = 0 and splitting the fields into low- and high-momentum
parts, ®(k) = ®_(k < A) + - (k > A), with respect to some scale A. The measure
factorises, allowing us to define the Wilsonian effective action Seg. It is the action that only
depends on the low-energy fields ®_, after all high-energy modes ®- have been integrated

out,

20T =0] = / D exp {iSur[®-]} = / Do [ / Do exp (iS[0., .} . (2.11)

Since this procedure keeps the partition function Zy = Z [J = 0] invariant, Seg fully de-
scribes all physics below the scale A, which is the new UV cut-off of the theory. It should
be noted that in gauge theories, a hard cut-off A breaks gauge invariance and one usually
uses a gauge-invariant smooth cut-off to avoid inconsistencies.

The effective action includes an infinite series of all possible operators O,,, built out
of the original fields ®,. All O,, must be consistent with the symmetries of the original
theory. If we further integrate out fields between A and A’ = A — §A, defining x = A’'/A,
the operators O,, evolve under the RG transformations. Consider an operator O with
dimension A and a coupling A in Seg[A], made of a scalar ® with a kinetic term (9,P)2.

The effective action Seg[A’] with a cut-off A’ then becomes
1
Set [A] = /ddaz {5 1+ AZ)0,00"p+ ...+ ( A+ AX) Oa + .. } : (2.12)

We can best compare Seg[A'] with Seg[A] by rescaling ' = xx and k' = k/x, so that k' < A.
Using d?z = x~4d%’, ¢/ = ¢/x> 4 (1 + AZ) and the operator scaling Oa(z) = x> O (2'),

the effective action becomes

1
Seg [A] = /ddx’ {5(7@’8%' + o TTANO A } : (2.13)

This analysis implies that only a finite subset of all operators remains important in
the deep IR, where y — 0. The operators with dimension A < d are thus known as (IR)
relevant, and those with A > d as irrelevant. Operators with A = d are called marginal, and
a quantum analysis is required to determine whether they are exactly marginal, i.e. do not
scale, or whether they are marginally relevant or marginally irrelevant. Another striking
result is the equivalence between irrelevant and non-renormalisable operators. This view
further allows us to understand various QFTs, potentially with a Landau pole, as theories
with a finite range of applicability and some unknown UV completion.

The effective reduction in the number of relevant operators in the IR implies universality
of low-energy phenomena that are insensitive to the details of short-distance UV physics. As

long as the right degrees of freedom are identified, the limited choice of relevant operators



should give the correct long-distance physics. Indeed, scalar ¢* theory can be used to

predict critical exponents in a wide variety of physical systems at their IR critical points.
The Wilsonian approach generates a quantum theory for energies with £ < A. However,

there is another type of effective theory, the 1PI effective action, which gives a classical

action with included quantum corrections. Consider a single scalar field theory

Z[J]) = /qu exp {lS[gb] —|—i/dde¢} =exp {—iW [J]}, (2.14)
where we have used the expression to define W[.J]. We further define a classical field ,
)
Pa(r) = (Q[¢(2)]€2) = _WW /] (2.15)

The effective action for the classical field is then the Legendre transform,

L l6u = —W [J] - / & T () b () (2.16)

The variation §I"'/0¢, = 0 generates the quantum-corrected equation of motion, after the
source J is set to zero. It turns out that as Z[J] generates correlation functions, W/[J|
is the generator functional of connected correlation functions. Furthermore, I'[¢y] is the

generator functional of one-particle-irreducible correlation functions.

2.1.3 Hydrodynamics

One of the core questions this thesis addresses is how hydrodynamics can arise from UV
physics in a systematic language of effective field theory. We know that gases, liquids,
plasmas, etc. exhibit collective behaviour that universally follows a hydrodynamical de-
scription. Hydrodynamics with its dissipative IR effects should thus arise naturally from
most QFTs. The theory of hydrodynamics is usually phrased as a phenomenological theory
using gradient expansion in the relevant variables [25,26]. It is certainly one of the most
widely used examples of an effective theory. Its phenomenological construction is presented
in this section.

Phenomenological hydrodynamics with a single conserved charge can be constructed as
the gradient expansion of conserved operators, i.e. the stress-energy tensor and the con-
served current, in terms of the metric tensor, velocity, temperature and chemical potential
fields.! The three fields, u*(z), T(z) and p(z), should be seen as near-equilibrium gen-
eralisations of their equilibrium thermodynamical counterparts. The assumption of local
equilibrium is necessary because the conservation laws in d dimensions, 9,7"" = 0 and

0, J" = 0, provide d + 1 equations. However, a symmetric stress-energy tensor 7" and a

IFor theories with more conserved charges, one can follow exactly the same line of reasoning as the one
presented in the section.
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vector Noether current J* have d(d + 1)/2 and d independent components, respectively,
giving more unknowns than variables. The assumption of local equilibrium thus restricts
the problem to solvable d + 1 variables.
The gradient expansion in a curved space with a metric g, takes the form
T =T (u, T, p, g) + 10 (Ou, 0T, 0p, 0g) + ... + 17,5 (0"u, ....), (2.17)
JH = J(‘(L)) (u, T, p,9) + J(“l) (Ou, 0T, 0, 0g) + ... + J(’;) (0"u,...). (2.18)

It is important to note that because the hydrodynamic fields, v*, T" and p, have no micro-

scopic definition, they can be re-defined by a choice of frame,

(u*, T, 1) — (1’1" =ut+ Zé”u“, T=T+ Zé"T, b=+ Zé“u) , (2.19)

where §"ut, 0™T and §"u can be arbitrary functions of n-th order derivatives of the three
fields. The metric tensor cannot be used in this sense, as metric variations, i.e. coordinate
changes, leave tensorial equations invariant. The simplest tensorial quantity, the Riemann
tensor, I,,,, will enter into the equations of second- and higher-order hydrodynamics.

T* and J* can be decomposed in terms of different tensor structures as

TH = Eufu” + PA™ + (q"u” + ulq”) + tH, (2.20)
JH = Nt + j*, (2.21)

where £, P and N are scalars, ¢" and j* transverse vector and t"” a transverse, traceless
and symmetric tensor. Each one of these is then gradient expanded as in (2.17) and (2.18).
Note that we define the projector A* as A" = g" + u*u”. These properties allow us to

find the constitutive relations,

1
& = u,u, T, P = c_iA’“'TW’ N = —u,J", Q= —Aus T, (2.22)
. v 1 2 o
I (AW,AW b ALA, — mAw) v (2.23)

At zeroth order in the gradient expansion we find that

Tigy = eut'n” + PA™, Sy = nu’, (2.24)

where gy = €, Py = P and Ny = n are the energy density, pressure and the charge
density, respectively. The two vectors and the tensor, qﬁ)) = jég) = tﬁ;’) = 0, at zeroth order.

At higher orders, frame dependence can be used to eliminate some terms from the
expansion. Imposing that under the frame re-definitions (2.19), 7" = 0 and 6J* = 0,

using the fact that w,0u* = 0, as well as Egs. (2.20), (2.21), (2.22) and (2.23), we see that
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0E = 0P = 0N = 6t" = 0. However, dq, = — (€ + P) du,, and dj, = —Ndu, up to higher
orders. A choice of du, to any order that sets ¢, = 0 is known as the Landau frame and
Ju = 0 as the Eckart frame. Furthermore, it is conventional to use € = 0, which enables

us to write
Eo(Topt) + .t En (0u,...) = & (T,ﬂ) b E 0. (2.25)

Expanding the re-defined fields, @*, T and i, allows us to order-by-order adjust the frame
choices so that £ = & = e. Having already used §"u*, we have two remaining freedoms,
which allows us to also set NV = n.

Working in the Landau frame, we are left with a scalar P, a vector j#* and a tensor
t*  which need to be gradient expanded in full generality. The only remaining source
of the reduction of terms are conservation equations at lower orders. In particular, we
can use the scalars, u,0,T (‘g)' = 0 and 8MJ(‘é)) = 0, to eliminate two terms from first-order
hydrodynamics. At other orders in derivative expansion, we can similarly form higher-
derivative scalars. Finally, each independent tensor structure is given an undetermined

transport coefficient, which can only be computed microscopically.

With these steps in mind, the first-order hydrodynamic terms are

Thy = —no — CAMNY \u, Jhy =

—oTAM™, (%) AR, T, (2.26)
with four transport coefficients, n, (, o and yr. Coeflicient 7 is the shear viscosity and ¢

the bulk viscosity. The tensor

ot = APCAVP (vauﬂ + Vgug — %gaﬁvw) : (2.27)
is the only one-derivative transverse, traceless and symmetric tensor.

This classification can be continued at higher orders in derivative expansion, exactly
following the procedure above. We will discuss second-order hydrodynamics in Chapter 5,
where we will compute second-order transport coefficients in a type of a conformal fluid,
using string theory techniques. Furthermore, it should be pointed out that as of third
order, the full classification of hydrodynamic coefficients is presently not known.

The above description of hydrodynamics can also be extended to include parity-violating
and anomalous effects [27,28], which will not be considered in detail here.

Beyond its conserved tensor structure, phenomenological hydrodynamics has an as-
sociated entropy current, S* [29], which is conserved for an ideal fluid and must satisfy

the positive entropy production condition, V,S* > 0, in the presence of dissipation. A

covariant expression for S*, which is sufficient in first-order hydrodynamics is given by

TS" = Pu* — T, — pJ*. (2.28)
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An important class of fluids, relevant for AdS/CFT calculations, are conformal fluids
in which the trace of the stress-energy tensor vanishes, 7, = 0. This implies the relation
¢ = (d — 1)P at zeroth order. Furthermore, conformality implies that the scalar P has to
vanish beyond zeroth order, therefore bulk viscosity ( must also vanish in any conformal
fluid.

We conclude this section by noting that the conservation laws, 9, 7" = 0 and 9,J* = 0,
provide differential equations which govern the dynamics of fluids. For example, if we
consider an uncharged fist-order fluid, then the non-relativistic Navier-Stokes equations
follow from equation 9,7" = 0, followed by a non-relativistic scaling limit. We will

further analyse these issues in Chapter 3.

2.1.4 Out-of-equilibrium and thermal field theory

In many-body physics of collective phenomena, QFT built for the analysis of transition
amplitudes between pure states is insufficient for the computation of expectation values
of quantum operators [8]. Furthermore, quantum processes are not the only types of
fluctuations that play an important role. In fact, to make any contact between quantum
field theory and hydrodynamics, it is essential to introduce the concept of temperature
and density into field theory. To bridge the gap between standard QFT and non-equibrium
physics, we will introduce the QF T techniques, which can successfully describe the evolution
of mixed states [8,9,30-33].

Consider an initial state density matrix p(t;) in the Schrodinger picture, specified at
time t;. The initial p(¢;) can be evolved to p(t) = Uy, p(t;) Up,+ by a unitary evolution

operator,

t
Uy =T exp {—z/ H(t)dt} : (2.29)
t/

where H (t) is the time-dependent Hamiltonian of the system and 7 denotes time-ordering.

An expectation value of a quantum operator O(t) at time t, is given by

Tr[Op®)] _ Tr U, O Uy, p(ti)]
Trp(t)] Trp(t)] ’

where the cyclic property of Tr was used. Eq. (2.30) can be interpreted as time evolution

(O(t)) = (2.30)

from t; to t, where the expectation value is calculated, followed by a backwards time
evolution from ¢ to t;. This doubling of time axes and associated doubling of degrees
of freedom is the central idea behind the Schwinger-Keldysh Closed-Time-Path (CTP)
formalism [8,9], which allows for out-of-equilibrium QFT computations. More details on
this formalism will be presented in Chapter 3, where CTP will be used to study IR effective

theories with hydrodynamic properties.
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To connect these ideas with the usual single time axis QFT, let us consider an equi-
librium QFT at zero temperature. In that case, one is usually interested in computing
(Q|0|Q2), where |Q2) is the interacting ground state, which follows by time-evolution from
a non-interacting vacuum state at asymptotic infinity, |Q) = U; _»|0), with (0[0) = 1.
The assumption at work is that interactions only turn on adiabatically when the evolution
reaches the state [2) at t. After that point, the interaction is again switched off adiabati-

cally, giving us only a phase shift factor,
Ul oo, —00|0) = €"]0), (0]U 4 0, — 00 = (O™, (2.31)

Throughout this procedure, it is necessary to assume that interacting adiabatic time evo-
lution keeps the system in its ground state. The CTP expression for an expectation value
(2|0|2) = (0|U_001OU; _]0), having used two time axes, can now be written as
0|Ust 0t O Ut —o0|0)

(01U 00,-00[0)

which implies that only forward time evolution is required for such computations.

(QOI) = = (O o U s Oy o]0 = (2.32)

At finite temperature and in equilibrium, the same reasoning implies that adiabatic
interactions only change the ground state up to a phase. Temperature is then encoded into
the length 0 < 7 < 8 = 1/T of the Euclidean time interval of a Wick-rotated theory on
a compactified 7-circle. This comes at the expense of eliminating time from the theory,
which is anyhow irrelevant in equilibrium. As in Eq. (2.32), only forward 7 evolution is
required.

The equilibrium partition function, Z = e #¥  in a canonical ensemble, can be promoted
to a grand-canonical, or a generalised Gibbs ensemble. This is done by identifying all
mutually commuting conserved charges in the theory, @);, and adding them to the partition

function,
7 — o PHTY, uin', (2.33)

where p; are the chemical potentials associated with conserved quantities. In a perturbative
expansion, Z can be computed by summing all vacuum bubble diagrams without external
legs. A theory with a chemical potential, and thus a finite density of a charge ), can lead
to a Bose-Einstein condensate in a system of bosons and a Fermi surface in a system of
fermions.

The concepts of temperature and density play a very important role in the theory
of hydrodynamics, as seen in Section 2.1.3, where T'(x) and pu(x) were treated as near-
equilibrium functions, i.e. generalisations of the equilibrium 7" and p considered in this

section. We will thus be forced to use the concepts presented in this section when discussing
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a QFT approach to hydrodynamics in Chapter 3. Furthermore, we will devote Chapter 4

to the analysis of Fermi surfaces in supersymmetric field theories.

2.1.5 Supersymmetry

Symmetries play an integral role in quantum field theory. It is therefore natural to ask
what are all possible symmetries a quantum field theory can possess. In 1967 Coleman and
Mandula [34] proved a powerful theorem of fundamental importance to QFT, stating that
the only possible Lie algebras of symmetries are those of the Poincaré group generators, P,

and M,

w, along with internal Hermitian symmetry generators, which must commute with

the Poincaré generators. The Poincaré algebra may be enlarged to the conformal algebra
of Egs. (2.8) - (2.10) when theories contain only massless particles.

A way to avoid this theorem is to generalise Lie algebras to graded Lie algebras,
[tasty} = taty — (=)™ tyt, =iy Cote, (2.34)
where 1’s equal either 1 or 0. The generators now obey the super-Jacobi identity,

(=)™ [[to, tp} , te} + (—=1)M™ [[ty, e}, ta} + (=1)™7 [[te, ta} , to} = 0. (2.35)

This algebra is used in introducing a new type of symmetry into quantum field theory, which
transforms bosonic states into fermionic states and vice versa, i.e. supersymmetry [35-37].
The supersymmetry transformations are generated by complex anti-commuting spinors,

which obey the algebra

{Qa,Qs} = {QL. QLY =0, {Qa, QLY =204, P, (2.36)

where o2, = (1,0") and ¢" are the Pauli matrices. SUSY generators commute with trans-
lations, FP,. An important property is that (), annihilates the vacuum. Furthermore, in
SUSY theories the energy of the ground state vanishes, (0|H|0) = 0.

Superspace, y* = x* —ifo*0, is a generalisation of coordinate space, z*, which includes
non-commuting Grassmannian coordinates, . It is convenient to assemble SUSY fields into
various superfield multiplets. The chiral multiplet with a complex scalar, ¢, and a Weyl
fermion, 6, is given by ®(y) = ¢(y) + vV20¢(y) + 0>F(y). A gauge theory further requires
a vector multiplet, V*, with a vector field Af, transforming under a representation ¢, a
gaugino, A%, and a field D. F and D are convenient auziliary fields and D ensures the
off-shell SUSY within the vector multiplet. A SUSY Lagrangian can in general be written

as a sum of two terms,

Ssusy = / d'z 0 d°0 K (@7, 9"V D) + / d*x >0 W (®), (2.37)

15



where K is the real Kdahler potential that encodes kinetic terms and non-renormalisable
interactions. The holomorphic function W is the superpotential, which encodes the standard
interactions. Its holomorphic property is the reason for the non-renormalisation theorems,
which simplify SUSY theories and constrain their quantum fluctuations.

Another important and generic property of SUSY theories is the classical moduli space
manifold of flat directions along the scalar (squark) potential. This can be most easily seen

from a typical D-term potential given by
1 1
_ amna __ 112
V= 5 Ea D*D® = —Zg2Tr[¢,d)] , (2.38)

which has V' = 0 for any ¢ = ¢t{,, where t¢. are the commuting Cartan sub-group genera-
tors of the full Lie gauge group. Hence, the scalar vev and the vacuum state are not fixed
by the classical potential and there exist flat directions in the field space. SUSY-breaking
and thermal corrections can easily stabilise or de-stabilise the theory.

In supersymmetric theories, there exists a new type of charge, the R-charge, with a

generator R, which obeys

[Qu. R] = Qu, [QL, Rl = —QL. (2.39)

In theories with only one SUSY generator, the R-symmetry group is U(1)g. We can also
consider theories with extended SUSY, which have N independent supercharges. Their
algebra generalises to {Q?, le} = 20% P07, and the R-symmetry group is enlarged to
U(N)g. Particle states with different spins form representations of the SUSY algebra and
the largest number of generators in a four-dimensional theory with particles of at most spin-
one is N = 4. The N = 4 supersymmetric Yang-Mills theory will receive much attention
in the following sections as it is the gauge theory side of the best understood AdS/CFT
example.

For higher spins, theories with [ocal supersymmetry can be constructed, i.e. supergravity
[37,38]. In four dimensions, the highest number of supercharges is N’ = 8, which produces
multiplets with spins of s < 2. This bound is set by the fact that no consistent theories with
higher spins are known in Minkowski space. A/ = 8 independent Q%’s in four dimensions
give in total 32 real supersymmetries. This is considered to be the highest number of
SUSYs of any higher dimensional theory, since a theory with more SUSY would produce
spins with s > 2 in R%!, after a compactification to R*! x M.

By counting supersymmetries, an AN/ = 1 supergravity can be formulated in at most
D = 11 dimensions. Remarkably, this theory is the low-energy effective action of the D = 11
M-theory with solutions describing M2 and M5 branes. In supergravity, all multiplets

contain a graviton and the number N also equals to the number of gravitinos with s = 3/2
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in the supergravity multiplet. Supergravities in D = 10 with either ' =1 or N’ = 2 can

describe low-energy limits of closed string theories and will be discussed in Chapter 2.2.1.

2.1.6 Duality

The concept of duality has fundamental importance both in QFT and string theory. It
enables us to understand the physics of one theory, by translating the problems to a different
theory. We define a strong version of duality to mean the following: given two theories, T,
and T, with generator functionals Z; and Z,, there exists a transformation, which maps
the degrees of freedom from T; to Ty, and vice-versa, so that Z; = Z;. We define a weak
form of duality to mean that there exists a sector of each theory, T; and T,, in which the
degrees of freedom and observables are dual to each other, but Z; # Z,.

A simple example of a strong duality is the equivalence between the Thirring model of
massive fermions and a sine-Gordon theory of bosons, both in 1 4 1 dimensions [39-42].

The generator functional Zr of the Thirring model in Euclidean space is
2
— - = 2 . =
Ir = /Dwa exp {—/dQ:U {—zzﬁ@zﬂ — % (wfyuw) + zzmww} } , (2.40)
where z is a cut-off dependent constant, v, are the Dirac matrices in two dimensions and

V5 = iY9Y1. By using the bosonisation relations, along with field re-scalings,

(07

—ip@ = = (Ou9)°, Yy = i%ewﬁy@, imzn) = —/8—(2) cos B, (2.41)

N

the Thirring Lagrangian L7 can be transformed into the sine-Gordon Lagrangian,

Loa = 5 (0u)" = 53 (cos () — 1). (2.42)

The two coupling constants g and 3 are related by the expression

4 2
B_Z — 14 g? (2.43)

However, the identification of the degrees of freedom in Eq. (2.41) is not sufficient to
establish the duality on a quantum level. It is necessary to show that Zp; = Zgg =
[ Dy exp{— [ &*z L5}, a result, which was proven in [39-41]. The relation (2.43) implies
that this duality is a weak-strong (coupling) duality. To understand the power of such
dualities, suppose we only had perturbative control over Z; and Zg¢, i.e. when ¢, < 1,
but were interested in a strongly-coupled phenomenon at g > 1. We could then use the
duality transformation (2.41) with (2.43), perform the calculation at § < 1 in Zgq, and
translate the result back to a prediction in Zr at strong coupling.

The holomorphic structure of the SUSY superpotential and the enlarged SUSY algebra

heavily constrain quantum corrections and gives rise to dualities in higher-dimensional
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theories that are absent in “realistic” non-supersymmetric theories, like QCD. A beautiful
example of this is the Seiberg- Witten theory, which provides a solution to the quantum
moduli space of the N' = 2 super Yang-Mills theory with the SU(2) gauge group [43].
Analogous approaches were later used to solve theories with flavour [44], with different
gauge groups and with various other extensions, see e.g. [45-47].

The field content of the original SU(2) example is an N' = 2 vector supermultiplet,
which contains A/ = 1 chiral and N' = 1 vector multiplets in the adjoint representation.
The theory is asymptotically free and has an SU(2)g x U(1)r R-symmetry, where the
U(1)g is anomalous and broken by instanton effects. In a theory with N, colours and Ny
flavours, the resulting R-symmetry group is (SU(2)r X Zan,-2n,)/Z2, where the division
by Zs arises because the centre of SU(2)g is contained in Z4NC_2Nf. The classical moduli
space of (2.1.7) with an SU(2) gauge symmetry can be parametrised by u = fa?, where

3

¢ = %aa . It possesses a Zy symmetry, u — —u. The interactions are controlled by the

holomorphic coupling,

0 4
= —+ —. 2.44

-

Because of the extended N/ = 2 SUSY, the entire low-energy effective action, up to two
derivatives and four fermions, can be described by a single holomorphic function, i.e. the
prepotential P(A). A is used to denote a chiral multiplet with a scalar field a. Seiberg and
Witten were able to identify two non-perturbative singularities on the moduli space (due
to Zs), the BPS monopole (or dyon) states with the mass, M? = 2|Z|2. In this equation,
Z is the central charge of the SUSY algebra, given by Z = an, + apn,,, where n, and n,,
are the electric and magnetic charges of the relevant non-perturbative state. Again, a is
related to the scalar vev at the dyon point on the moduli space and ap is its dual value.
They are related to the holomorphic coupling by 7 = dap/0da.

The duality at work here is the electric-magnetic duality, a version of the S-duality.
S-duality is fundamental in string theory and is a strong-weak duality generated by .S and

T transformations, together forming the SL(2,Z) symmetry group,

1 b
S:7—>—, T:7—>7+1 = SL(2,Z):T—>CLT+
T ct+d

Aad—bc=1. (2.45)

The effective theory near the non-perturbative points on the moduli space that behave
similarly to electrons is supersymmetric QED. The electric-magnetic duality (E — B and
B — —F) then provides a dual, perturbative theory (7p = —1/7) with mixed electric and
magnetic degrees of freedom. Because of this duality, one is able to find a perturbative
description everywhere on the moduli space. The prepotential, and thus the full non-

perturbative quantum low-energy effective theory can then be calculated. This is done
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using monodromy techniques, by a contour encircling the three singular points on the moduli
space, i.e. M., at the non-perturbative BPS states and M, at the asymptotically-free
infinity, with M built out of the S and T transformations. Furthermore, we can find the
full running coupling by using 7 = 9*P/0A?. The quantum moduli space is identified with
an elliptic curve and is thus a Riemann surface.

The same theory was analysed in [48] at finite temperature. It was found that the
strongly coupled monopole and dyon points on the moduli space minimise the free energy.
The moduli space lifts at large ¢, i.e. in the perturbative asymptotically-free regime.

To conclude this section, we present the Seiberg duality in N' = 1 theories [49,50]. This
is another example of an electric-magnetic S-duality in a weak sense, as it only relates the
IR fixed points of two different theories, T; and Ty. The duality addresses the chiral NV = 1
super QCD with N, and Ny flavours, which we call T;. The gauge group is SU(N,.) and the
internal global symmetries are SU(Ny) x SU(Ny)r x U(1)p x U(1)g, where U(1)p is the
baryon number and U(1)g the R-charge. The matter content is, beyond a vector multiplet,
described by two chiral multiplets () and Q¢. The phases of this theory can be classified by
the ranges of numbers N, and Ny. For Ny < N, the theory has no vacuum. For Ny = N,
the vacuum degeneracy is lifted by quantum corrections and the theory has confinement
and chiral symmetry breaking. Similarly, for Ny = N, + 1, there is confinement but no
chiral symmetry breaking.

From here on, we will focus on the regime of Ny > N, + 1, which is relevant for the
duality. The theory T, is asymptotically free when Ny < 3N.. Thus, when Ny > 3N,
the spectrum of quarks and gluons can be understood from a weakly coupled Lagrangian.
In the regime of %NC < Ny < 3N, the theory flows to a non-trivial, strongly coupled
superconformal IR fixed point in a non-Abelian Coulomb phase. For N; < %Nc, the
IR fixed point is trivial. Note that the identification of fixed points is exact because of
the holomorphicity of the superpotential. The analytic structure makes all two-loop and
higher-loop contributions to the beta function vanish, up to non-perturbative instanton
effects.

The dual theory, Ty, is an N' = 1 theory with the SU(N; — N.) gauge group and the
same internal global symmetries as T;. However, its matter content includes three, instead
of two, chiral multiplets, Q, Q¢ and M, where M is a neutral meson superfield.

The conjecture, for which much evidence has been gathered, states that the strongly
coupled IR fixed point of Ty, in the regime of %Nc < Ny < 3N, is related by electric-
magnetic duality to the weakly coupled IR fixed point of Ty. Furthermore, the RG flows
into the two IR fixed points, including all deformations of T; and T,, are also believed to

be dual to each other.
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2.1.7 N =4 supersymmetric Yang-Mills theory and S-duality

As an extension of the discussion on dualities, and in preparation for introducing the
AdS/CFT duality, we devote this section to the properties of the maximally supersymmetric
N = 4 Yang-Mills theory. The easiest way to obtain the Lagrangian is to dimensionally
reduce a D = 10, N’ = 1 Yang-Mills theory to four dimensions. The D = 10 vector field,
from the vector multiplet, becomes a D = 4 vector field and the remaining six components
become siz real scalars, ¢'. The fermionic content, which accounts for the eight real on-
shell degrees of freedom, are four Weyl gauginos, A'. All of the fields transform under the
adjoint representation of the same Lie Group G. The non-anomalous global R-symmetry
is SU(4)gr ~ SO(6)g, under which the fermions transform as a 4, and scalars as a 6.
The latter is a clear manifestation of rotations in the six internal dimensions in D = 10,
transverse to the remaining four.

The Lagrangian has standard kinetic terms, scalar potential and Yukawa couplings with
the form gy A[@, A]. Furthermore, we can again introduce the topological F, WF M term and
define the holomorphic coupling 7, as in (2.44). The full N' = 4 theory is conjectured to
possess the S-duality (2.45), known historically as the Montonen-Olive duality [51]. Beyond
the strong/weak coupling transformation, the gauge group of the dual is the Langlands’

dual group G, for example
LU(N) = U(N), LSU(N) = SU(N)/Zy, LSO(2N) = Sp(N). (2.46)

The theory has an ezactly vanishing beta function 5(gyy) = 0 to all order in per-
turbation theory. Furthermore, it is believed that the theory is superconformal non-

perturbatively [52].

2.2 Gauge/string duality

2.2.1 Strings, branes and effective actions

Perturbative string theory involves two types of objects: open and closed strings [53-57].
Both types are described by a two-dimensional world-sheet action with different boundary
conditions. The only fundamental parameter is their tension, 7' = 1/(27a’), where o/ = (2
and [, is the length scale of the fundamental strings. Strings with only bosonic excitations,
X*(r,0), must be embedded into D = 26 critical dimensions in order to avoid the Weyl
anomaly. However, their spectrum contains a tachyon, which is believed to signal an
instability.

Supersymmetric strings with both bosonic, X*, and fermionic, ¥* and Y*, excitations,

can have the tachyon eliminated from the spectrum by the space-time supersymmetry-
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preserving GSO projection. Their critical dimension is D = 10. There are five self-
consistent types of superstring theory: Type I (open strings), Type IIA and Type IIB
(closed strings), and two heterotic hybrids of bosonic and supersymmetric theories with
gauge groups SO(32) and Eg x Eg. Through the use of non-perturbative string dualities,
all five types can be obtained as limits of M-theory in D = 11. We will mostly focus on
Type IIB theory, which originally gave rise to the gauge/string duality.

2.2.1.1 Closed strings and p-branes

The world-sheet fermions on closed strings can either have Ramond (R) boundary condition

or satisfy the Neveu-Schwarz (NS) condition:

(R) : wu((]? T) = @H(Oj 7-)7 W(m T) = 1/1”(77 7—)7 (247>
(NS) : ¢“(07 T) = _&M(Oj 7-)7 ¢M(W7 T) = Qzbu(ﬂ-? T)' (248)

Massless bosonic excitations of all closed superstrings have the same NS sector with the
graviton g,,, the anti-symmetric B, field and the dilaton ¢. The vev of the dilaton
introduces a coupling parameter, g, = e?, for the perturbative world-sheet genus expansion.
We also define H = dB. In Type II theories, the massless Ramond-Ramond fields are form
fields, C', with an associated field strength, F' = dC'. In Type IIA, we have the one- and the
three-form, C'y and C3. In Type IIB, the spectrum includes the scalar axion, Cj, and form
fields, Cy and C4. Massless fermions in Type IIB are two Majorana-Weyl gravitini, 1, o
and two Weyl dilatini, A\,. The five-form, F5 = dCy is Hodge self-dual, i.e. F5 = xF5. It is
important to note that the field content of Type I strings is an ' = 2, D = 10 supergravity.
The spectrum of Type IIB theory is chiral, whereas the spectrum of type IIA is not chiral.

To understand how supergravity arises from the closed Type II string, its low-energy
effective action must be constructed. This is done by including the massless fields as

generalised couplings into the Polyakov action, which takes the form,

1
Spoly = 4ma!

/ Bo/=g{Gu(X)0. X" 0" X"+ 1B, (X)e®0, X X"+ ...},  (2.49)

where g4 is the D = 2 world-sheet metric and p label bosonic fields, X*, for which the
criticality of the string demands that = 0, 1, ..., 9. Beta functions of the new “couplings”,
B(G), B(B), B(¢), B(C,), etc., can then be computed on the world-sheet in a perturbative
o/-expansion, for which the Weyl invariance of the path integrals demands that 5(G) =
B(B) = ... = 0. However, these equations, coming from the consistency-condition of
the world-sheet theory, also have an alternative interpretation. They can be derived as

the Euler-Lagrange equations of motion from an AN/ = 2, D = 10 space-time effective
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supergravity action in the string frame,
1
(27)7a’

where Sy and S stand for other bosonic, including Chern—Simons, and fermionic terms in

Stp = /dlox\/ -G [e_2¢ (R+4(0,9) ) ’ F2 + S + SF, (2.50)

the effective supergravity action. Newton’s constant Gy in ten dimensions can be found
by transforming (2.50) into the Einstein frame, giving 167Gy = (27)"ag?. Furthermore,
note that the self-dual nature of Fj5 cannot be incorporated into the action, but has to be
added as a condition at the level of equations of motion.

We can consistently set all fields but G, ¢ and C} to zero in the equations of motion at
the lowest order in . Thus, it is sufficient to analyse the action (2.50) with Sg = Sg = 0.
An important family of gravitational objects solves the equations arising form (2.50), also

with a p-form term, s Tl Fp "o, instead of F5. These extended objects are known as p-branes

8— p)'
because they possess translationally-invariant horizons. For our purposes, it will suffice to

consider branes with p = 3. The solution of an extremal 3-brane is

ds® = H;lﬂnwdx“dx” + H;mdxmdxm, w, ve{0,...,3}, me{4,...,9},
L4

H3 =1+ —, L* = 4mg,No'?, r? = gmg™, (2.51)
r

with the dilaton and the R-R field given by
e* = g2, Cy = (Hy' —1) g7 da® A da' A da® A da. (2.52)

This is a conformal brane as the value of the dilaton is constant throughout the D = 10
space-time. The space with coordinates {x°, 2%, ..., 2%} is a 5-sphere, S°, with the line
element df)5. The integer N arises from the Dirac quantisation of the R-R five-form flux

through the 5-sphere,

/ <P = N. (2.53)

The brane is thus magnetically charged under the R-R field.

Branes with p+ 1 flat space-time dimensions, instead of four, can easily be generated in
Type ITA and Type IIB supergravity by using the F}, ;2 R-R flux mentioned above. In Type
ITA, these are F, and Fjy, while Type IIB supports Fi, F3 and F;. Furthermore, branes can
be electrically charged under the Hodge-dual dA7_, = xdA,+,. To summarise, we see that
Type IIA (IIB) theory supports p-branes with p even (odd). The dilaton is r-dependent

for all non-conformal branes, i.e. for all p # 3.

2.2.1.2 Open strings and D-branes

As supergravity is the low-energy effective theory of closed strings, open strings give rise

to (non-Abelian) gauge theories on hypersurfaces known as D-branes [58-60]. A variation
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of the world-sheet string action for an open string demands that the boundary condition,
0, X"0X, = 0, be satisfied at the two ends, 0 = 0 and o = m. We can thus select the von
Neumann boundary conditions, 0,X* = 0, for p = {0,..., p}, and the Dirichlet boundary
conditions, X* = C* for yp = {p+1,..., D—1}. C*" is a constant vector. Open strings can
thus be thought of as attached to a p+ 1-dimensional hypersurface, the Dirichlet (D)-brane,
on which they can move freely. The two types of boundary conditions are interchanged by
the T-duality, which is a duality between string spectra when a compactified dimension with
radius R is exchanged for radius 1/R. Many properties of D-branes follow from imposing
this duality, which is furthermore a duality within the M-theory relating Type IIA and I1B
theories, as well as the two heterotic theories.

The massless excitation of the open bosonic string is the vector field, A,, and supersym-
metric open strings include additional fermionic partners. The boundary conditions break
half of the 32 supersymmetries of the Type II theory, hence D-branes are BPS states in the
non-perturbative theory with 16 supersymmetries. The effective action of D-branes can be
derived in a similar manner as the supergravity action in Section 2.2.1.1: by coupling the
string to massless background fields and computing the world-sheet beta functions [61]. Tt
is important to note that D-branes interact with closed strings in the bulk. The effective
action is then a sum of the Dirac-Born-Infeld, Wess-Zumino and fermionic contributions,

i.e. Sp.prane = SpBI + Swz + Sk + anomalous curvature, where

SDBI = —Tp/ dp+lf 6_¢\/— det [Gab + Bab + 2mal ab]; (254)
Mpt1
SWZ = [Lp/ Cp+1. (255)
Mpt1
Tensor Gy, = %XT:%GHV is the metric pull-back onto the hypersurface. Similarly, By,

is the pull-back of the NS closed string spectrum 2-form field B,,. The action has re-
parametrisation invariance of its world-volume coordinates £%. It is convenient to choose
the static gauge, X* = & for u = {0, ..., p}, which removes longitudinal fluctuations of
the brane from Gyg.

The ends of open strings can further be equipped with Chan-Patton factors, so that
Fuy = 0,Ap — ObA4 + i[Ag, Ap] becomes the field strength of the non-Abelian vector field
transforming under the U(N) group. From the string theory point of view, this means
that we are describing the world-volume theory of N coincident D-branes. D-branes can be
further interpreted as sources of N units of the R-R charge flux in Type II theory [62], which
establishes the connection between p-branes and D-branes. A p-brane should be thought
of as a classical supergravity description of the gravitational field sourced by a heavy non-

perturbative D-brane with p + 1 extended dimensions. Similarly as with p-branes, Dp
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branes with even (odd) p exist in Type ITA (B) theory.

Let us now focus on the D3 brane. According to the above analysis, the world-volume
effective theory has 16 supersymmetries in four dimensions, which implies that the low-
energy limit of Sps should be the maximally supersymmetric N' = 4 Yang-Mills theory
with the gauge group U(N), presented in 2.1.7. Indeed, this can be seen by expanding
Sper, as well as the supersymmetric fermion contributions, Sg in powers of the massless
world-volume fields. The terms with real scalars ¢!, with I € {1,..., 6}, follow from the
expansion of the pull-back metric G, around a flat metric 7,, in the static gauge,

oxXTox’

Gap = Nab + 8_5“8_8’

Oabs (2.56)

where ¢! = X?/(2ra’). Each of the six scalars describes a transverse fluctuation of the
brane. The Yang-Mills coupling gy, and the 't Hooft coupling A for the D3 brane are

given in terms of the string parameters
gy m = \/ATgs, A= gyy N = dmg,N. (2.57)

2.2.2 AdS/CFT correspondence

The AdS/CFT correspondence is a holographic gauge/string duality formulated by Mal-
dacena in [10], where he considered the 3-brane solution (2.51) in the limit of o/ — 0,
while holding the quantity u = r/a’ fixed.> This is the near-horizon (r — 0) limit of
an asymptotically-flat brane background in which the metric becomes that of AdSs x S,
where AdS5 stands for the anti-de Sitter space, given in Poincaré coordinates by

T2

y dr?
ds? = ﬁnu,,dx“dm - LQT—2 + L2dS:. (2.58)

The scale L = (47g,Na'?)"/* known as the AdS radius, characterises the scale of curvature
of the gravitational p-brane solution.

In Sections 2.2.1.1 and 2.2.1.2, we established two different descriptions of the same
extended object, i.e. the D = 10 supergravity description and the D = 4, D-brane effective
world-volume theory. In order for supergravity to be a good effective description of the
underlying string dynamics, L > ¢, must be true. This implies that L*/a/? = 4rg,N =
A > 1. Hence, the 't Hooft coupling, as defined in (2.57), must be large for the supergravity
limit of closed string theory to be a suitable description of N D3-branes.

Alternatively, when N D-branes coincide, the relevant parameter in the open string
perturbative expansion is g,N. The D-brane effective world-volume description, i.e. N =4

SYM gauge theory, is thus a good description of the string spectrum when g,N < 1. This

2See references [52,63-70] for various summaries and lectures on AdS/CFT.
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implies that the 't Hooft coupling must be small, A < 1. The two different descriptions
are thus applicable in exactly the opposite limits of the ’t Hooft coupling.

Before stating the duality, let us consider more carefully the low-energy Wilsonian
effective action, Syp.ir = Shrane + Sbuik + Sint, of massless excitation of the full Type I1B
theory in the “open string picture” (gsN < 1). The key observation is that in the low
energy limit, the interaction term Siy; ~ O(w3Gy) — 0, hence the bulk (closed string) and
brane (open string) excitations decouple. Furthermore, since gravitational interactions are
irrelevant, the open string gauge theory with a marginal coupling in D = 4 dominates the
low-energy spectrum. Sy is simply classical gravity in D = 10 Minkowski space.

Similarly, in the “closed string picture” (g;/N > 1), the near-horizon and far from hori-
zon gravitational theories decouple. The region far away is again D = 10 Minkowski space
gravity, while the near-horizon spectrum includes higher energy closed-string excitations in
AdSs x S, because all energies are red-shifted by the warp factor ggy — 0. See figure 2.1

for a graphical representation of the geometry of the bulk.

Figure 2.1: A representation of the bulk geometry in the closed string picture. The near-horizon
anti de-Sitter throat extends towards the asymptotically flat far region.

The two near-horizon descriptions are then identified via the AdS/CFT duality con-
jecture, stating that the N' = 4, U(N) superconformal Yang-Mills theory in D = 4 is
dual to the Type IIB string theory on AdSs x S° [10]. Although this statement has not
been proven or explicitly constructed, there is much evidence supporting it. The simplest
check is the comparison of symmetries, namely the isometry group of AdSs x S%, which is
S0O(4,2) x SO(6), matches the conformal and R-symmetry groups in the ' = 4 theory.
Among other evidence, it has been shown that the spectra of supersymmetric states, as
well as many scattering amplitudes, match.

The strong/weak duality is holographic in the sense that all information about a theory

with gravity is encoded in a lower-dimensional field theory. Usually, one only considers
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the five-dimensional, asymptotically-AdS part of the bulk, which is a dimensionally re-
duced solution of Einstein’s equations with a negative cosmological constant. In this sense,
AdS/CFT is an explicit example of the holographic principle in gravity [71,72], which stems
from Bekenstein’s observation that the entropy of a black hole that scales as the area of its
event horizon, should be the maximal entropy in a volume of space-time [73].

AdS/CFT has been extended to numerous other examples of string theory and M-theory
brane constructions, including probe branes [74]. The brane-bulk decoupling can also be
achieved by a large density of smeared brane defects, as opposed to a large number of
colour branes [75]. The duality can be extended to bulks, which include a gravitational
object with an event horizon, such as a black hole or a black non-extremal brane. The
dual theory then has non-zero temperature. Its temperature is identified with the Hawking
temperature Ty of the black hole by resolving the conical space-time singularity at the
horizon. Furthermore, we can include finite density with a chemical potential through an
introduction of charge into the bulk [52,63-70].

In Euclidean space, the duality can be made precise by the GKPW formula [11,12],

Ztsing [cb(:c,r)}w — ¢0(x)} - <eXp { / d'z ¢0(x)(9(:v)}>CFT. (2.59)

The formula states that a generic supergravity field ® (dilaton, graviton, etc.), which
propagates in AdSs, sources a dual operator on the CFT side. By matching quantum
numbers, a scalar is dual to a scalar operator O, a graviton to the conserved stress-energy

tensor 7,

w, & vector field to a conserved current J,,, etc.

In order to make calculations possible, a further limit needs to be taken. This is the
limit of classical gravity in which all graviton loops are suppressed, L > {p, where {p is
the Planck length in D = 10, i.e. {p ~ GN°. Hence, L4/04 ~ (g,0/2N)/(gsa'?) = N > 1.
Eq. (2.59) then implies that classical gravity in AdS space gives us access to the strongly
coupled QFT with a large number of colours, N, > 1,

i Zysing [6(2. 7)o = 0(2)] = exp {~Sanl0]} (2.60)

AN

We conclude this section by noting that there exists a direct connection between effective
field theory, as interpreted in the Wilsonian renormalisation group picture, and AdS/CFT
correspondence. A fundamental feature of AdS/CFT is the IR/UV duality [76,77]. More
precisely, the extra radial dimension r is related to the energy scale of the field theory; the
near-boundary and the deep bulk regions correspond to the UV and IR regimes of the dual
field theory, respectively. This statement can be motivated from various points of view. The
divergence of the metric tensor near AdS infinity corresponds to the UV divergence of the

field theory, whereas the IR is controlled by the black hole thermodynamics. Furthermore,
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the longer the distance between two boundary points, the deeper the geodesic between
them extends into the bulk. We also know that, for example, the radial dependence of
the dilaton ¢(r), in non-conformal scenarios, can be interpreted as the beta function of
the gauge theory coupling [63]. Lastly, if we slice the bulk along the radial direction and
integrate the slices out by starting from the boundary, we can show that this corresponds

to the Wilsonian integration of high-momentum modes in the boundary field theory.?

2.2.3 Hydrodynamics from AdS/CFT

The GKPW prescription (2.59) enables us to compute Euclidean correlation functions
by taking functional derivatives of the supergravity action with respect to the boundary
(r — o0) values of the bulk fields, 6/d¢g. It is easiest to compute a connected two-point
function, (O(z)O(y)), by using the generator functional of connected correlation functions,
Wiy, where Z = exp {—W}, as discussed in Section 2.1.2. Using Eq. (2.60), we see that
W = Sgav. Hence, the on-shell classical gravity action evaluated at the boundary of the
asymptotically AdS space gives the holographic connected two-point function.

Consider, for example, a probe scalar field ¢ in a d + 1 dimensional Euclideanised AdS
background with a Poincaré-patch metric and the AdS-radius set to L =1,
dr?

ds® = (dt* + dx]_;) + o (2.61)

The action can be written purely in terms of space-time boundary contributions,

dlkd R .
Syrae = % / 4 /g B (aﬂ¢)2+..} _ / G () F k. K Ve (2.62)

where ¢(r,z) = [ (gi])“d ek f1.(r)go(k) and we are using the Dirichlet boundary conditions.

All other bulk terms vanish when Sgay is evaluated on ¢, which satisfies the equation of

motion. We have cut off the bulk near the AdS infinity by introducing a cut-off surface
at 7 = 1/e, for ¢ < 1. This regularisation scheme is required because the boundary
action diverges as r — oo. A procedure of holographic renormalisation [81-83] can then
be employed, which precisely cancels off divergent terms in (2.62). The scheme it employs
is the minimal subtraction scheme, which only subtracts the purely divergent terms. All
holographic counter-terms can be written in a covariant form, which manifestly preserves
the bulk diffeomorphisms.

Beyond imposing the Dirichlet boundary condition at » = 1/¢, we demand that ¢
vanishes deep in the bulk, which makes F(0, k, ¥’) = 0. The Euclidean two-point function

3For details on the correspondence between Wilsonian RG and holography, the discussion of the IR/UV
correspondence and the issues related to the identification of the momentum cut-off A(r) in terms of the
radial coordinate, see [78-80] and references therein.
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is then given by expression
(O(k)O(K)) = lim [2F (1/e, k, k") 4+ counter-terms | . (2.63)
e—

It can be shown that (O(k)O(k')) has exactly the right position-space scaling of a CFT,
as in the fixed-point Eq. (2.5), i.e. (O(2)O(y)) ~ |v — y|722°. The operator dimension
Ao is given in terms of the scalar field’s mass, Ap = d/2 + /(d/2)2 + m?. Furthermore,
expression (2.63) may include contact terms that can also be eliminated.?

If we consider a general asymptotically AdS background, it is very instructive to study
the solution of the massive scalar bulk equation of motion in a near-boundary expansion.
Using the Fourier decomposition of ¢(x, ), as before, and introducing a new radial variable

z=1/r, we find that fi(2) scales as fx(2) = 22, as z — 0. The two solutions of A are
Ay =d/2+1/(d/2)* +m?. (2.64)
The full Frobenius series solution of the second-order can then be written as
Pz, 2) = 2% do(x) (1 + O(2?)) + 22 (2) (1 + O(2?)) . (2.65)

In the standard quantisation with the Dirichlet boundary conditions, ¢, is the source of
the dual operator O, and ¢, is proportional to the vev, (O). Notice that A, is precisely
the dimension of O, i.e. Ap. In the alternative quantisation, von Neumann boundary
conditions are used and ¢g and ¢; reverse their roles in relation to the source and the vev
of O. Tt is clear from the form of Eq. (2.64) that m? > —(d/2)?, which is known as the
“Breitenlohner-Freedman” bound on the allowed range of tachyon masses in AdS [84, 85].
There exists a further, lower unitarity bound on the operator dimension, Ap > (d — 2)/2,
which is relevant for the alternative quantisation where Ap = A_.

Similarly to the above procedure, we can find the current J# correlators by considering
vector fields A, in the bulk, and the stress-energy tensor T correlators by perturbing
the background metric with a spin-two h,,. The dimensions of the dual J* and T"" are
Ay =d—1and Ar = d, respectively. Furthermore, fermionic boundary operators are
sourced by bulk fermions, . In gravity, the z < 1 expansion of the metric is known
as the Fefferman-Graham expansion [86]. For each of the bulk fields, there is an associ-
ated holographic renormalisation procedure, which renders n-point functions finite. It is
important to note that for dynamical graviton fields, one must add the Gibbons-Hawking
counter-term, which renders the variational principle well-defined and allows for the Dirich-
let boundary conditions. The term is proportional to the trace of the extrinsic curvature

K of the boundary hyper-surface with the induced metric v, Sgn = =2 [ ddxﬁK :

4Contact terms are terms analytic in momentum. Therefore, contact terms can only give contributions
proportional to derivatives of the Dirac delta function, after (OO) is Fourier transformed to position space.

28



In order to facilitate the computation of higher connected n-point correlation functions,
we must add interaction terms into the Sgy action, e.g. [ d? 'z /gA¢®. The correlation
functions can then be computed using standard diagrammatic techniques with external legs
fixed to the boundary of the bulk space-time. Such diagrams are often referred to as the
Witten diagrams [11].

In order to be able to use AdS/CFT for computations in the hydrodynamic limit of
strongly-coupled field theories with holographic duals, one must first understand how cor-
relation functions with Lorentzian signature can be recovered from gravity. A prescription
for the calculation of retarded and advanced two-point Green’s function was given in [87]
and will be summarised here. Consider for example a five dimensional asymptotically AdS

black brane metric with a horizon at z = zj,,

ds® = L—2 (1—2*/2) dt® + da® + d—ZQ : (2.66)
P2 & (1—24/z})

The dual field theory now has finite temperature, 7' = 7/ zy,.

If we consider a scalar momentum space mode, ¢ (z), propagating in Lorentzian back-
ground (2.66), we can no longer demand for ¢ to vanish in the interior of the geometry,
as we did in the Euclidean case. We find that the two solutions at the horizon corre-
spond to in-going and out-going modes, ¢y (2) = (1 — z/z,)*™/2F(z), where we have used
dimensionless frequency and momentum, w = w/(277") and q = |k|/(277T).

Since a black hole should absorb all information, the authors of [87] proposed the pre-
scription whereby a holographic retarded two-point Green’s function can be computed by
imposing the in-going boundary condition on ¢(z) and using the expression Gr(k, k') =
im0 [2F (€, k, k') + c.t.], in analogy with (2.63). The non-vanishing F(zp, k, k) does not
enter into the two-point function, hence this prescription cannot be derived from the
Lorentzian version of the GKPW formula (2.59). Similarly, the advanced Green’s func-
tion G4 requires us to impose the out-going boundary condition on ¢ (z), or a mode of
any other spin.

The prescription for the calculation of higher Lorentzian n-point functions was es-
tablished in [88], where the authors promoted the holographic bulk calculation to the
Schwinger-Keldysh formalism®, which allows one to have control over all real-time corre-
lation functions. The doubling of the time axes was shown to correspond to the maximal
extension of the black brane’s (hole’s) Penrose diagram in Kruskal-Szekeres coordinates.
This naturally mixes black and white hole regions, giving access to mixed retarded and

advanced correlation functions.

5See Section 2.1.4 and Chapter 3 for a detailed discussion of the Schwinger-Keldysh Closed-Time-Path
formalism in QFT.
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We are now ready to study the to — 0 and q — 0 limit of strongly coupled thermal and
dense systems, i.e. hydrodynamics of holographic gases, fluids and plasmas [89-91]. As
discussed in Section 2.1.3, hydrodynamic properties of a system can be understood from
the gradient expansion (to, q < 1) of the stress-energy tensor 7" and the conserved current
J#. To understand the hydrodynamic behaviour of the N/ = 4 theory, or other theories
with holographic duals, we must perturb the background, g,, — g, + I, as well as the
vector field A,, when the fluid is charged [90,92]. Here, we will only consider the simplest
case of an uncharged N = 4 fluid at finite temperature, and hence only perturb the metric
G, which was stated in Eq. (2.66).

Following [90,91,93], it is convenient to pick momentum to flow in the z-direction and
write the rotationally invariant metric perturbations as h,,(r)e™ %= Note that r is the
radial coordinate (as in (2.61), where r = 1/z of (2.66)) and that z is one of the three
flat spatial boundary coordinates, @ = (x,y, z). The metric perturbations decompose into

three independent sectors according to the remaining SO(2) symmetry,

Spin 0 (sound channel) : hety Dizy Bosy By By By, sy (2.67)
Spin 1 (shear channel) : hizy hiy, Pogy Payy Brgy By (2.68)
Spin 2 (scalar channel) : Py (2.69)

The scalar channel transforms as a rank 2 tensor and we have defined h = hy, + hy,.
Beyond the fact that the equations of motion in each of the sectors are decoupled from
the remaining two sectors, the fields can be assembled into three gauge invariant variables,
Z12,3. We thus end up with the total of three independent scalar second order differential
equations. Furthermore, the on-shell action Sgay can be written solely in terms of Z;. As
a result of this decomposition, there are three independent two-point Green’s functions of
T+ of which the poles give the gradient expanded hydrodynamic dispersion relations for

the shear and the sound modes. They have the form

N 2 4
Shear: = i1 k- Ok 2.70
ear w=—i (%), (2.70)
2
Sound: w=tek— EHLPkQ + Ok, (2.71)

where ¢, is the speed of sound fixed by conformal invariance to ¢, = 1/4/3. The retarded

Green’s function in the scalar sector is
(T (=0, k)T (w, k) = P = imw + O(?) + O(k?), (2.72)

and has no hydrodynamic poles. It is easy to see from this expression that shear viscosity
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can be computed using the Kubo formula®,

e | B - -
n ili% wllglg% <T ( wak)T (wak»R : (273)

Holography thus enables us to determine the transport coefficients 7, and others, as a
function of the microscopic parameters of a strongly coupled field theory.

These and similar gravitational methods were first used to show the universality of
n/s = h/(4mkp) in strongly coupled holographic theories with two-derivative bulk ac-
tions [94]. This value gives the correct order-of-magnitude prediction for /s in strongly
coupled theories, consistent with various experimental measurements [95]. The authors
of [94] further conjectured the n/s > 1/(4n) inequality for realistic fluids. Although no
experimental fluid has been found that would violate this bound, there exist phenomeno-
logical holographic, as well as top-down string theoretic constructions that do violate the
inequality [96,97]. These issues will be discussed in detail in Chapter 5.

As a final comment on AdS/CFT in this chapter, we would like to stress that holography
is deeply connected with the details of black hole physics. Thermodynamic properties of the
bulk black hole are those of the dual field theory. Beyond thermodynamics, hydrodynamic
transport can be understood in terms of the black hole’s quasi-normal modes [93]. To
better understand this fact, let us write a gauge-invariant Z(r) as in Eq. (2.65), i.e.
Z(r) = Ar~8- + Br~2+ + .. .. Imposing the Dirichlet boundary conditions, whereby Z = 1

at the boundary, the retarded two-point function becomes
B
(OO0)R ~ 1 + contact terms. (2.74)

The poles of the Green’s function correspond to zeros of A, subject to in-going boundary
conditions at the horizon. Setting A = 0 (¢ in our previous notation) as the second
boundary condition therefore precisely corresponds to the way the quasi-normal modes are
computed in a black hole background. The quasi-normal modes are seen to equal dispersion
relations, w(k), which solve the lim, ., Z(r) = 0 equation for in-going Z(r) solutions of the
background fluctuation equations. Taylor expanded lowest quasi-normal modes in terms
of k precisely reproduce the forms of the hydrodynamic dispersion relations (2.70) and
(2.71). Furthermore, the explicit coefficients of k& determine the transport properties of the
strongly coupled field theory, dual to the gravitational setup.

All of these methods will be used in Chapter 5, where we will analyse transport in theo-
ries with higher derivative gravity. An alternative approach to holographic hydrodynamics,
i.e. the fluid/gravity correspondence [98,99], which relies on a direct computation of the

holographic stress-energy tensor [100] will also be presented and employed in Chapter 5.

6See the end of Section 3.2 of Chapter 3 for a discussion on how Kubo formulas can be derived from
the CTP formalism of QFT.

31



Chapter 3

Hydrodynamics from quantum field
theory

3.1 Motivation

Effective field theories combine a set of tools, which are extremely useful in describing
physical systems of which the full microscopic details are either too complicated, or simply
irrelevant for questions under consideration. Since this thesis is motivated by a desire to
pursue a systematic understanding of hydrodynamics, we will devote this chapter to the
use of powerful effective field theory techniques to discuss hydrodynamics. Our main focus
will be the inclusion of dissipation into classical effective field theory of hydrodynamics,
which is a longstanding and difficult problem.

Effective theories of Goldstone modes have recently been shown to be the appropriate
framework to systematically derive hydrodynamics [3-5]. The equations of non-dissipative
hydrodynamics have previously been generated using this description at the zeroth order in
the gradient expansion for relativistic fluids that are insensitive to static, non-compressional
deformations [3,4] and at second order by [101]. This was achieved by constructing a
gradient-expanded action describing the long-range scalar modes that correspond to spatial
excitations around the equilibrium state of a fluid. The form of the action was restricted by
the identification of appropriate symmetries, with the volume-preserving diffeomorphisms
playing the central role in the reduction of potential Lagrangian terms.

A serious limitation of this scheme is that dissipative forces cannot be derived from
the variational principle. Our goal is, however, to develop a systematic scheme for the
construction of hydrodynamics at all orders - including dissipation. One approach to this
problem is to rely on linear response theory [102]. A different approach aimed at computing
hydrodynamic correlation functions from an effective action was recently proposed in [103].
In this chapter, we will present another method, which will enable us to describe dissipative

fluids using the variational principle. This will be done by considering a classical effective
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action with the characteristics of open-system effective field theories, which emerge in the
Schwinger-Keldysh Closed-Time-Path (CTP) formalism [8,9], first introduced by Schwinger
[8]. The formalism was invented to describe retarded time-evolution of operator expectation
values acting on mixed states, which are specified by density matrices.

We will begin this chapter by presenting the details of the CTP formalism as an ex-
tension of the usual quantum field theory used to compute scattering amplitudes between
asymptotic pure states. We will discuss CTP in quantum field theory as well as its im-
portance to low-energy classical field theory, which will be of direct relevance to hydro-
dynamics. We will focus on the matrix structure of the CTP propagators, which arises
from the doubling of the degrees of freedom and the introduction of two time azxes; one
evolving from past to future and the other evolving backwards in time. Effective theories
emerge when the unobserved degrees of freedom, called the environment, are eliminated.
The remaining degrees of freedom, called the system, follow more involved effective dynam-
ics than in a theory of pure states. This requires the use of the CTP formalism, which is
able to incorporate the entanglement between the system and the environment. We will
argue that, generically, effective field theories can include couplings between the two time
axes, expressed within the influence functional considered first by Feynman and Vernon
in [104], which includes all effective interactions. The coupling of the two time axes corre-
sponds to system-environment interactions that make the state of the system mixed. This
in turn leads to a theory with excited environment states at asymptotically long time. If
the spectrum of these states has no gap, then the system experiences dissipative dynamics.

The double axes structure of effective C'TP theory descends into a classical low-energy
theory, which we will use to derive dissipative hydrodynamical equations of motion from
the variational principle. This will be done at a phenomenological level, directly in terms
of an effective classical C'TP field theory without a microscopic derivation, in accordance
with the logic used in [3,4]. By varying the fields on only one of the two CTP time
axes, we will obtain the energy-momentum balance equation containing a two-tensor that
will not be conserved because of interactions between the fluid and the environment. Near
hydrodynamical equilibrium, however, we will show that this tensor becomes approximately
conserved. We will, therefore, identify it as the fluid’s stress-energy tensor. Using the
energy-momentum balance equation, we will also derive the Navier-Stokes equations. Shear
viscosity will be shown to vanish and a possible cause of this restriction will be discussed,
i.e. the theory’s invariance under volume-preserving diffeomorphisms. Thermodynamical
quantities and bulk viscosity will be identified in terms coefficient functions of the effective
Lagrangian. Finally, we will discuss entropy production and conclude this chapter by

summarising our results.
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3.2 Schwinger-Keldysh CTP formalism

In Section 2.1.4, we motivated the necessity for the Schwinger-Keldysh Closed-Time-Path
(CTP) formalism for understanding a variety of different physical systems, which evolve
from either a pure or a mixed state to a non-vacuum state at some later time. In fact,
the CTP formalism is generically required for all types of QFT computations with the
exception of transition amplitudes between two asymptotic vacua. We will devote this
section to introducing the formalism in more detail, of which the first part will follow the
presentation of reference [30].

To simplify the discussion, let us consider a simple many-body system of bosons de-

scribed by the free Hamiltonian,
H(a' a) =wad'a, (3.1)

where a' and a are the creation and annihilation operators satisfying [a,al] = 1. We can

further introduce the concept of coherent states |¢), which are defined by

alg) = ¢|9), (pla’ = ¢"(g]. (3.2)

This over-complete set of states, with (¢|¢') = exp{¢*¢’}, provides a convenient resolution

of the unity operator,

1= [ DDoe ool (33)

similarly to the usual 1 =Y 7 |n)(n|. We can use Eq. (3.3) to write
(0] = Y- 0lOln) = [ DoDoe (9/0}e). (3.4)

n=0
Let us now consider evaluating the partition function,
Tr [Ucp]

J=—"— 3.5
T &

where Upg is the operator, which takes the state around the entire discretised time contour,
introduced in 2.1.4. We will evolve the state |¢;) from ¢; = —o0 to |¢n) at tx = +oo, where
the state |¢y) will be identified with |¢n11) = |dn) at ty41 = ty and taken backwards in
time to |pon) at toy = t; = —00. We will assume the physics to be the same on both time
axes, which trivially implies Z = 1, and evolve the equilibrium bosonic density matrix,

po = [1— e Plmm] ! The expectation value (¢oy|po|¢an) takes the form

(2N |U_stlpan—1) - - - (N[ dN) (DN |Usst|on—1) - - - (d1]polPan), (3.6)
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which has to be integrated over each discrete time site with the weight exp{—|¢;|*}. For

infinitesimal time steps ¢, we can show that ULs; = exp{FiH (a',a)dt} gives
(PilUsst|pj1) = et ¥imt eFiwdioidt, (3.7)

Furthermore, (¢1|po|pan) = exp {¢*{¢2N -exp{—pf(w — u)a*a}}, which allows us to write

1 2N 2N
o * . *y—1 4
Z = Tl g/mkmk exp {zz]:qb G @}, (3.8)

where iGi_jl isa 2N x2N CTP matrix. Its non-zero components are iG;;' = —1, iG] 35 = po,
c~N—1 =1 =1 o c~y—1 o cy—1 =1 o o
iGy =iGs = ... =iGyy  =h Gy, vy =1and iGy,y ny =Gy 3Ny = .- =
iGz_]%mN_l = hy, where hy = 1 4 iwdt. Because the inverse propagator G~! includes

off-diagonal entries, the propagator (¢;¢;) has a matrix CTP structure as well.

We are interested in the continuum limit of the CTP partition function (3.8) with an
arbitrary initial density matrix, p;(;), in four space-time dimensions. The integrand inside
the path integral for Z always takes the form of an exponentiated action, exp{iS}, as in
Eq. (3.8). The main feature of this expression are the doubled microscopic physical degrees

of freedom, ¢(t, ). It is therefore convenient to introduce the doubling notation,

= p= (30+7 90_)7 (39)

where @1 is thought of as propagating on the positive time axis, from initial time ¢; to
the final ¢, and ¢~ propagating on the backwards time axis. Note that the length of the
axes may be finite depending on the details of the problem. The matching of the two axes
demands that we set ¢*(t;) = ¢~ (t7). The CTP action can now be written in terms of a

single time integral,

Senrld) = Sl =Sl = [ at [ dale -], (310

where the Lagrangian could be complex. There always exists the C'TP symmetry,

Scrple™, ¢7] = =Strple™, 07, (3.11)

which plays an important role in restricting the structure of the Green’s functions and
effective actions.

By introducing two sources, j*(x), we can generate n-point correlation functions and
facilitate the perturbation expansion. To develop the necessary tools for the evaluation
of expectation values at the final time ¢, given some initial p;, it is useful to write the

generator functional in the Heisenberg representation,

W] — Ty [T{e—ifdx[H(x)—jJr(x)gp(x)]} 0 T* {ez’fdx[H(x)H*(x)so(x)]H , (3.12)
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where 7T and T denotes the time ordering and anti-time ordering, respectively. The sources
j¥(x) then generate observables through functional differentiation 6/55%(z). At the end
of the calculation, both sources are set to the same physical value, j7(x) = —j~(x) =
j(x). As in standard QFT, however, it is most convenient to write down the path integral

representation of Eq. (3.12), which gives the generator functional

= / D Dy p; [p* (ti, @), ¢~ (1, )] WIS e} (31)

et (tpa)=¢~ (tyx)

On the level of the whole system, unitarity of the time evolution is expressed by the
preservation of total probability. The trace of the density matrix, (3.12), calculated for a
physical source, j© = —j= = j, gives exp{ W} = 1, as W{[j,—j] = 0. This is completely
equivalent to finding that Z = 1 in the case of free bosons, which we discussed above.

We should note that the continuum notation of Eq. (3.10) is misleading as it would
seem to imply that ¢ and ¢~ are uncorrelated. This is not true, as we saw in the discrete
CTP analysis above. From a continuum point of view, there exists a zero mode that is
sensitive to the boundaries of the two time axes.

One of the powers of the CTP formalism is that it allows us to set up perturbation ex-
pansion for retarded Green’s functions. They are completely encoded by the full continuum
CTP propagator,

iD% (z,2') = Tr [T{gpa(x)gp",(:v’)} pi] : (3.14)
where o and ¢’ indices can be either + or —. The generalised time ordering, 7, corresponds
to T on the positive time axis and 7* on the negative time axes. In vacuum, D** is the

Feynman propagator,

Tr [T {¢" ()¢ (") } 0){0]] = (0T {p(x)0(") }]0). (3.15)

The action of T is trivial if the two operators belong to different time axes,

Tr [T {¢™ (x)e" (@)} 0)(0]] = Trlp(=)e(y)0)(0] = (Ole(z)e(y)[0),  (3.16)

hence the off-diagonal components of the propagator give the Wightman function without
time ordering. The other components of the CTP propagator can be found by complex

conjugation, leading to the block matrix form,

- ~ ((Tle@e)])  (ew)ex))
ZD(‘”’”‘( (o(@)o(y)) <T[go<y>so<x>]>*)' (3:17)

The CTP propagators for free bosons in momentum space is given by

R e —27mi §(k* — m2)0(—k)
D(k) = (—2m’5(kk2 - 7712)@(1&) L )

k2—m?2—ie

— 3276 (k* — m?) np(k) G D : (3.18)
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where npg is the Bose-Einstein distribution function,

O(—k°) O(k")

np(k) = Blentn) — 1 " eBlen—n) — 1 (3.19)
The inversion of the propagator yields for A = D! the structure
A"(k)=k*—m? AYk)=¢ A(k)=isign(k°)e. (3.20)
The free fermionic propagator, defined by the generator functional
eiWd) — /DW]DW]Q;M‘%%%%@’ (3.21)
can be written as
R a B — (0|8 o
&= (oo omemree ) 6

which gives the momentum space expression G’(k) = (f+m) Dy, written here in terms of
the scalar propagator Dy. In case of finite temperature and density,

G(k) = (f+m) {D(k;) + 278 (k2 — m®)nm(k) G m | (3.23)

where nr is the Fermi-Dirac distribution,

_ Ok O(=k)
nr(k) = eBlee—n) + 1 + eBlertn) +1° (3.24)

The CTP identity,
T{A(ta)B(ts)} + T {A(ta)B(ts)} = A(ta)B(ts) + B(tp)A(ta), (3.25)
valid for bosonic operators, restricts the propagator to the standard CTP form,

) nini D LT
(D +1D D —i—zD)) (3.26)

D=A\pfyipi —pryip

where the functions D", D/ and D? appearing in the matrix elements are real. The ex-
change symmetry (o,7) < (0’,2) imposes D"(x,y) = D"(y,z), D'(z,y) = —D/(y,z),
and Di(x,y) = D'(y,z) in the bosonic case.

The Fourier transform of the Wightman function,

iD™*(p) = 0(p°)S(p), (3.27)

is the spectral function of excitations, which are generated by ¢(p) in a translationaly

invariant system with S(p) > 0. The relation allows us to express both D/ and D’ in terms
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of the spectral function, which leads to the spectral condition, D' (p) = sign(p®)iD*(p), and
the CTP propagator can thus be specified by only two real functions,

Aoy (DM(p) + sign(p®) DY (p) —20(—p°) D/ (p)
b= ("G DI " D semorpm) 6

where the positive definiteness of the norm imposes the bound, i©(p°) D (p) > 0.
The inverse of the propagator (3.26) is given by

Ao s (AT AT AT AT
1
D —0(:f AL AR ifi)a’ (3.29)

where ¢ is a diagonal “metric tensor” of the form & = diag (1, —1). Furthermore,
AP =1/D"?, Al = —A"D'AY, (3.30)

where A" (z,y) = A™(y,z), A (z,y) = —Af (y,x), Al(x,y) = Al(y,z), A" = A" + Af and
A% = A" — AJ. We also note that the spectral condition yields A/ (p) = sign(p°)iA%(p).

Even though the preceding discussion applies to interacting fields, it is instructive to
consider free fields in a harmonic model. The action is given by

w1 AT AT AT AT ot
Sharml[9] = 5 (97, ¢ )(_Af_w —A"+z'N) (so)' (3.31)

The external source generates a non-trivial expectation value, which can be obtained from

e (1) == [ (20, 3:32)

showing that D" = D" + D/ and D* = D" — D/ are the retarded and advanced Green’s

either time axes,

function, respectively. Since these Green’s functions are real in position space and complex
in momentum space, D"(p) = RD"(p) and D/ (p) = i3ID"(p).

In terms of the generator functional, the expectation value of the field ¢ can be expressed
as -

(o) = Yo [t o) (333)
which follows from Eq. (3.32). The quadratic approximation of the generator functional
(3.12) then reproduces the linear response formalism [105], including Kubo formulae, be-
cause W

D'(z,y) = EJ: om (3.34)
is the retarded Green’s function.
Hydrodynamics addresses the inverse problem. There, we are interested in the equations

(of motion), satisfied by the expectation values, where the external sources appear linearly.

It is easy to find the equation in question for the linear response,

j(z) = / dy (D)™ (z,9) (0()) . (3.35)
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The only subtlety is the necessity to exclude the null-space from the domain of the inverse
Green’s function, when necessary.
The generalisation of such an inverse linear response formula is provided by the func-

tional Legendre transform of W[;], the effective action,

(6] = Wj) - jé, (3.36)
where .
¢ = 5W—m (3.37)
0J

In fact, the inverse Legendre transform is given by Eq. (3.36) and

_OTlP]
0p

j = (3.38)

This expression plays the role of the equation of motion and produces a non-linear ex-
tension of the hydrodynamical equations. The inverse Legendre transform generates the
non-linearity necessary to close the equation without auxiliary variables, such as thermo-

dynamical functions.

3.3 CTP Wilsonian effective action

In this section, we will analyse the characteristic behaviour of a Wilsonian effective action
in the framework of the CTP formalism. Let us consider a microscopic real scalar field ¢,
with the single time axis action Ss[p]. The doubling of the degrees of freedom leads to the

quantum generator functional,
Zorp = /D@exp {iSS[g0+] —iS4[p7] —i—z/ﬂﬁ} : (3.39)

The full CTP action of ¢, Scrple™, 7| = Ss[eT] — S¥[¢ 7], possesses the CTP symmetry
(3.11). The generator functional with two sources, J = (J*, J7), leads to the free 2 x 2 ma-
trix propagator 15, discussed in detail in Section 3.2. D contains the F eynman propagator

as the diagonal block, D™, and the off-diagonal Wightman function,
(p(y)p(2)) = —2mid(k* — m*)O(—k?). (3.40)

The off-diagonal pieces of D induce interactions between ¢t and . Finite temperature,
T = 1/5, and density with a chemical potential u, in cases when ¢ is complex, further
modify the free propagator to give the full expression of Eq. (3.18).

Let us now consider a scalar Ap* theory in which we follow the Wilsonian approach

to effective field theory and integrate out UV-degrees of freedom. We introduce a scheme
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with two cut-offs in the original bare theory, one for frequency, |kyo| < Ao, and one for
momentum, k% +m? = g, < A.. We then split the fields, » = ¢- + ¢, and integrate

out ¢, with frequency and energy intervals, given by
fAO < |k‘0’ < Ao, CAE <ep < Ag. (341)

The UV-mode integrals must therefore run over three regions,

I : {SAO < k’() < Ao, 0<ep < A6}7 (342)
I : {—AO < ko < —on, 0<ep < Ag}, (343)
13 : {—Ag < ]{30 < A(), CAg <egp < Ag} . (344)

In a perturbative expansion of (3.39), we find various couplings between the two axes,
for example A2 (91)? (p3)? (p2)? (92)°. In the process of integrating out T and ¢, the
on-shell Wightman functions can connect vertices on different time axes, and give rise to
non-trivial pZy_ couplings in the effective theory, S.y; [0~]. We find that the effective

action includes the following type of terms,

Serild<] = Scrplot, o] + / d'z [ o202 + o o os — s 0t (3.45)

Due to the CTP symmetry, u; has to be purely imaginary, whereas py will be complex.
The equations of motion for é derived from a CTP effective action will thus also in general
be complex. The real part of the equations of motion, coming from $Scss, has the property
that ¢T = ¢~ is the solution, which is always true in real CTP actions. The imaginary
terms from 3S.py will be complex conjugates of each other in the equations for ¢ and
¢~. We should note that the same structure as in the Wilsonian effective action arises in
a 1PI effective action, which we introduced in Section 2.1.2. In both effective actions the
real part of the action is important for physical Hermitian expectation values, whereas the
imaginary part controls decoherence.

Beyond this proof of principle, which shows that coupling between ¢+ and ¢~ generically
arise in effective actions, we will discus the significance of such effective coupling in the
following section. Furthermore, note that this type of effective theory, which is constructed
with the full CTP machinery, is able to account for the time-evolution of any pure or mixed
state in a closed or open field theory system. The details of the system we are describing are
determined by the degrees of freedom that were integrated out, i.e the environment. The
remaining reduced density matriz of the sub-system encodes all of the information about the
entanglement with the environment and dissipation of energy from the sub-system. The
sub-system can thus either preserve or break various symmetries of the full closed system.

This fact will play an important role in our construction of dissipative hydrodynamics.
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3.4 CTP formalism in classical field theory

3.4.1 Closed system

To see how all of the features presented in section (3.3) apply to classical effective theory, let
us consider a classical field theory for an isolated system, described by the field ¢ (x), which
is invariant under time inversion. Instead of deriving the effective theory from microscopic
dynamics, we can directly use the CTP formalism in classical physics [106, 107]. This
is necessary when considering any physical problem in which we wish to specify initial
conditions for the equations of motion and to have the possibility of introducing effective
interactions with dissipative forces into the Lagrangian formalism. From the microscopic
point of view, the theory can be understood as an effective field theory; a special case of
those considered in Section 3.3, which keep the IR dynamics closed. All of the considerations
below would follow directly form such a derivation.

The procedure again begins by doubling the degrees of freedom [108],

==Y, (3.46)

in a way that both members of the CTP doublet satisfy the same equation of motion, initial
conditions and the relation " (ty,x) = )~ (t;, x) at the final time. The action describing
the dynamics of 1) is defined as in Eq. (3.39),

Soreld] = [ Yt e, 6] - £ [}, (3.47)

where L, [¢)] = L [, v +iep? now differs from the original Lagrangian in that it splits the
degeneracy of the CTP action for ¢)*(z) = ¢~ (x). The action (3.47) possesses the CTP

symmetry (3.11), related to the exchange of the two time axes, )™ < )™,

Scrp[Y", 7] = =StrplT, ¥, (3.48)

which must be obeyed by any classical CTP action.

3.4.2 Open systems

In order to describe an open system of IR hydrodynamical degrees of freedom in the language
of classical field theory, we first need to consider a question of how to construct a general
classical field theory of a subset ¢ of the degrees of freedom . The effective dynamics of ¢
can be obtained by eliminating the environment degrees of freedom by using their equations
of motion. Similarly, from the point of view of QFT presented in 3.3, the environment could

be seen as the degrees of freedom that are integrated out. This view is consistent with what
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dissipation in hydrodynamics really means; it is the energy loss of the fluid’s IR degrees of
freedom to the UV degrees of freedom of the environment. Only the total closed system,
combining all degrees of freedom, conserves energy.

In classical CTP theory, as in Section 3.3, the effective action again has a more involved

structure than (3.47), namely

Sersld] = S1l67] = Si[67] + S:2(4), (3.49)
where the indices 1 and 2 reflect the number of time axes entering the term in the action.

S and Sy can be uniquely distinguished by imposing

525,
5o (3.50)

Elimination of the environment generates contributions both to S; and S;. We would like

to point out that in the original terminology of Feynman and Vernon [104], all effective
contributions to S,y were collected into the influence functional S;,

Sers = Sol™] = Sglo~] + Sildl. (3.51)
In Eq. (3.51), Sy stands for the original single time-axis action preceding the elimination
of the environment. We find it is more convenient to separate the influence functional into
terms entering S; and Sy. In this language, Sy will be included in S;. This separation is
useful because the terms in S; preserve energy and momentum, while terms in Sy represent
dissipative forces. The inclusion of S5 into the classical action for hydrodynamics, discussed
in Section 3.6, will thus be our addition to the previous works on deriving hydrodynamics
from an action principle [3,4,101].

In the classical picture, the couplings between ¢+ and ¢~ appear due to the boundary
conditions for the environment coordinates at the final time. These contributions arise
from asymptotic long-time excitations of the environment and are usually approximated by
gradient expansion. We will assume that the imaginary part of the effective action obtained
by eliminating the environment remains small, as in the case of an isolated system. It will
be ignored below.

Let us assume that the gradient expansion in terms of space-time derivatives is ap-
plicable in the effective action (3.49). We impose identical initial conditions on the two
time axes, 0f'¢™ (t;, @) = 07 ¢~ (t;, x), together with the auxiliary conditions 0f¢™ (ts, @) =
07 ¢~ (ty, x), for all orders of derivatives labeled by n > 0.

Variational equations can thus still be derived in the CTP theory because the boundary
contributions arising from partial integration cancel, due to the above conditions. Further-

more, the solutions of the open system’s Euler-Lagrange equations of motion give

¢"(x) = ¢~ (). (3.52)
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The classical effective action must again obey the CTP symmetry,

Serrlg™ @71 = =Siilo™, 071 (3.53)

From the point of view of effective field theory, relation (3.53) can be seen as a constraint
on the form of terms one can write down in the effective action.
As an example of this formalism, it is instructive to consider a non-relativistic one-

dimensional particle whose effective theory is defined by the Lagrangians

Ly == (mi® — mws?), (3.54)

Lo=— (27t —ati7). (3.55)

N2 B | =

The corresponding equations of motion describe a damped harmonic oscillator,

mi* + yiT + mwirt =0 — T =a. (3.56)

The conservation of energy is obviously violated by L;.

In CTP, the naive application of the Noether theorem to the action (3.49) gives, due
to the CTP symmetry, an identically vanishing stress-energy tensor for fields that satisfy
the equations of motion. However, the trivial cancellation between the time axes can be

avoided and the energy-momentum balance equation can be derived by varying only one
of the CTP doublet fields,

¢"(x) = ¢"(x + al)),
¢~ (x) = ¢~ (2).

The equation of motion for a(x), the balance equation, can then be written in the form of

(3.57)

a tensor divergence as
0,T" = R". (3.58)

Note that the dynamics of ¢+ and dynamics of the ¢~ degrees of freedom on the two time
axes are related to each other by the CTP symmetry, (3.53). Either time axis could thus
have been used for the variation. In this work, we will always choose to treat the positive

axis with ¢* fields as the one directly relevant to physical observations.

3.5 Hydrodynamics as effective field theory

An effective field theory describing hydrodynamics has recently been developed in terms of
a gradient expansion of Goldstone modes arising from the broken spatial boost invariance

[3,4]. Reference [109] used the coset construction of a space-time symmetry breaking

43



pattern to show that three scalar modes were sufficient in parametrising the low energy
effective theory. The dynamics of the scalar modes ¢!, with I = {1,2,3}, in flat 3 + 1
dimensional space-time with the metric 7, = diag (—1,1,1,1)", is chosen to display internal

symmetries under rigid translations,

o' — ¢! +a', with o’ = const., (3.59)
rotations,

o' — RLe’, with R} € SO(3), (3.60)

and volume-preserving diffeomorphisms (reparametrisations), abbreviated by SDiff (R!?),

I
o' — £(¢), with det (%) = 1. (3.61)
The SDiff symmetry, which is imposed here, deserves special attention. Arnold showed
that non-dissipative ideal hydrodynamical equation on a manifold M, i.e. the Euler equa-
tion, can be generated as the co-adjoint orbit on the Lie group manifold of SDiff(M)
[110,111]. This symmetry should broken by dissipation, but this mechanism has not been
understood. We will proceed by making use of it and comment at the end on why this
symmetry is most likely too restrictive to construct the full equations of viscous fluids.
Returning to the setup of [3,4], we note that in equilibrium, the fields equal spatial

I

coordinates, ¢! = const. - . Furthermore, relativistic hydrodynamics also requires the

Poincaré symmetry. The gradient expansion is constructed by counting the number of

derivatives acting on the vector field,
1
K* = ge“aW?O‘Seijﬁm¢18a2gb‘]8a3qbK = PiY0,0", (3.62)

which is a combination of gradients of the Goldstone modes allowed by the symmetries
in three spatial dimensions. The vector field is conserved because of its anti-symmetric

structure,
0, K" =0, (3.63)

and keeps the comoving coordinates constant along its direction, K “8,@1 = 0. We can

introduce a scalar field b, such that
K" = but. (3.64)

The norm of the velocity vector, u*u, = —1, then implies that b* = —K*K,.

'This metric signature is normally used in string theory-motivated texts on hydrodynamics.
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Two useful projector identities can be derived for PL”, as defined in (3.62), by using

the properties of K*,

P or " = % (KFAY — KYAFY) (3.65)
1
PEO70,0" = Z0M K", (3.66)

with A* = n"* +utu”. The zeroth and first-order Lagrangians for the uncharged fluid are

then
LO 4 £V = F(b) + g(b)K* K", K,,. (3.67)

At zeroth order [4], the conserved stress-energy tensor of the closed system takes the form

of an ideal fluid,

T(’fg = eutu” + pAH, (3.68)

where the energy density € and pressure p are
e=—F, p=F — bo,F. (3.69)
Further thermodynamic analysis reveals that the temperature is given by
T = —0,F. (3.70)
Finally, vector field K* can be interpreted at this order as the conserved entropy current
K" =but = S* = su”, (3.71)
with
s=0b, (3.72)

playing the role of the entropy density. This identification was performed in [4] because
K* is parallel to u* and is by construction conserved, which is consistent with the entropy
conservation in an ideal fluid, i.e. in zeroth-order hydrodynamics. In reference [101], the
authors considered non-dissipative second-order hydrodynamics using the same identifica-
tion of the entropy current, noting that the construction should be understood as being
done in the entropy frame, in which S* = su* to all orders. In standard phenomenological
hydrodynamics, one instead of the entropy frame usually chooses either the Landau frame
or the Eckart frame [25]. As discussed in Chapter 2.1.3, the physical meaning of the Landau

frame is that there is no energy flow in the local rest frame of the fluid. The Eckart frame,

45



useful for a description of charged fluids, means that there is no charge flow in the local
rest frame.

The first-order contribution to the Lagrangian (3.67) can be rewritten as a total deriva-
tive and hence does not contribute to T#”. As a final point in this construction, note that
the chemical potential is vanishing in the absence of a conserved U(1) Noether current [4],

which we will not consider in this work.

3.6 Hydrodynamics with dissipation

3.6.1 The setup

Variational methods in the usual effective theory formalism cannot describe dissipation.
However, this limitation can be avoided by using the CTP scheme as introduced above.
Firstly, the degrees of freedom are doubled, giving us six Goldstone fields ¢*/. The action
must be invariant under pairs of translations, rotations and volume-preserving diffeomor-

phisms, each acting independently on ¢'* and ¢’~. The diffeomorphisms act as

¢* = & (%), (3.73)

with conditions on the determinants

det (g(i—:]]) =1, det (gi—i) = 1. (3.74)

The field content and symmetries allow for two independent currents K%, both with the
same Lorentz structure as before, where {i, 7, k, ...} € {0,3} correspond to the number of

¢t fields inside K. We write

- 1
K" = EEWIQWSEUKam $7 00y 0727 Doy 07, (3.75)
with (oy0903) = {(— — =), (+ + +)} for i = {0,3}. Both K are still conserved,
9, K™ =0, (3.76)

and both K = K* after ¢ = ¢~ is imposed. It is useful to define, as in Eq. (3.62),

K3 = P9 ¢tK. (3.77)
Furthermore, we can introduce
Pl =0, (3.78)

which will make it clear that the transformation 6% acting on K% gives a vanishing con-

tribution.
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We can now write down the CTP action for the first two orders in the gradient expansion

of K",

LO)p = F(K3K®) — F(KOK™) + G(K! K7), (3.79)
Lorp =Y fip(KLK™) K"K, K}, (3.80)
i,j,k

Small latin indices are always summed over {0, 3}. The single axis contributions, i.e. S7, to
L remain the same as in (3.67) and the zeroth-order action Sy, which includes couplings
between the two time axes, is parametrised by G. It mixes K*’s with different CTP indices.
We include no single axis action at first order, as it would be a total derivative [4], so £ is
purely a part of Sy, as classified by Eq. (3.49). This means that f333 cannot be a function of
only K3 and fooo not of only K%. The real coefficient functions F, G and f;;; can depend
on any Lorentz-contracted combination of K*, but may include no derivatives. At first
order, we thus have 2% = 8 coefficient functions f;;, which are reduced to 4 independent

functions by the CTP symmetry (3.53).

3.6.2 Energy-momentum balance equation

The variation of the current K% with respect to ¢+ results in an expression that is weighted

by the number of ¢* fields inside of K%,
0 K™ = iP 0,00 (3.81)
The zeroth-order Euler-Lagrange equations of motion are

0,y 20 (iPI K+ KL PEY) =0, (3.82)

To find the energy-momentum balance equation for the open system, we vary the space-
time dependence of ¢ by & — x + a(x). This results in 6 ¢ = ad,¢™, while leaving
67¢~% = 0. By using the definitions of K as stated in Eqs. (3.75), (3.77) and (3.78), it
follows that

0 K™ = i P (00000 ¢™ + 0002 0,0™) . (3.83)

After we identify 7% = ¢~ which is implied by the equations of motion, and use projector
identities (3.65) and (3.66), the form of the left-hand-side of (3.58) remains that of T(j in

(3.68). The energy density and pressure are now
e=—F, (3.84)
b? =~
p:F—babF+§ZG;j (i+ 7)), (3.85)

(]
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and the non-conserved part of the balance equation is
Riy =Y G (i +j)b0"b/3. (3.86)
1<j
Throughout this work, we define the barred functions as being evaluated on the equations

of motion ¢t = ¢~ K,

Gl = Gl yer_yore- (3.87)
Furthermore, we have defined the derivatives of G;; by
oG
G.=———. (3.88)
7O (KLK™)
The first-order equations of motion for Sél% p are
ny {z Fie P KO, K + j fin K PR, KE — ki f 1 K40, K PR
irj,k
D7 Fam | (IPROKT 4 mELPE) K K0, K
I<m
— k0, (KLE™) KWK,{P;;”} } —0, (3.89)
where
fij
= O (3.90)

Jijkim = W-

The calculation of T} goes through as it did for T}, resulting in a non-symmetric tensor

T on the left-hand-side of (3.58),
T = eulu” + pA" — muru o u” + (1™ + xau'u”) Ou® + Buld"b, (3.91)

where the coefficient functions are given by

b3 , .
m=7 > =k i (3.92)
.7,k
X1 = Xxz2 + bp, (3.93)
b , _
xe=3 > > (G = k) figr = Cijram] (3.94)
i,k 1<m
B -
p= E) ”Zk i fijks (3.95)

with Cjjpim = b2ﬁ-’jk7lm (I +m — 2k). The contribution to the non-conserving R” from the

first-order action is

8

RYyy = mu0,ud'u + 310 0h —

O\bO u, (3.96)
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3.6.3 Stress-energy tensor, the Navier-Stokes equations and bulk
viscosity

The remaining question is how the energy-momentum balance equation (3.58) relates to
viscous phenomenological hydrodynamics that can be obtained from the symmetric stress-

energy tensor

TW =TI TR (3.97)

The form of Ty . equals that of T(} in Eq. (3.68) and

T(%ph = —not” — CAM O\t + (q"u” + q"u"). (3.98)

The tensor o* is the transverse traceless symmetric tensor

2
o = AFATP (%Uﬁ + Optia — gnaﬁﬁxlﬂ) : (3.99)

Hydrodynamics is constructed (see e.g. [25,112]) as a gradient expansion in temperature,
chemical potential and velocity fields: T'(z), p(z) and w*(z). In our discussion, u(x) = 0.

As discussed in Chapter 2.1.3, the stress-energy tensor is then written as
T, = Eul'u” + PAM™ + (u'q” +u’q") + ", (3.100)

with ¢*, ¢* and t*” all being transverse. In phenomenological hydrodynamics, the stress-
energy tensor is symmetric, hence ¢* = ¢*.

Despite the fact that the tensor T"” we derived in (3.91) is not conserved, we can write it
in the form of (3.100). It is important to note that T(‘g is not symmetric, thus ¢* # ¢*. At
this point, the fact that T"" is not symmetric means that we cannot interpret it as a stress-
energy tensor, in the absence of the Belinfante-Rosenfeld procedure [113,114]. However,
we will see below that within an approximate scheme, a simple symmetrisation of T*” can
lead to a hydrodynamic stress-energy tensor, which reproduces exactly the same physical
equations as the ones we have derived from the energy-momentum balance equation (3.58).

The tensor structure of (3.100) allows us to identify the coefficient functions of (3.91)

as
E =uu, TH =, (3.101)
P=A,T"/[3=p+ 10z, (3.102)
Q= —AMBUQT‘)‘B = B0ub — bﬁuuﬁ,\u)‘ — mukﬁkuu, (3.103)
Gy = —DausT? =0, (3.104)
tw = % Aualus + AusAye — gAWAaﬁ T = 0. (3.105)
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Phenomenological stress-energy tensor is by construction conserved. Its conservation

equations,
0,14 =0, 0T =0, (3.106)

respectively give the continuity equation and the Navier-Stokes equation. They can be
reduced to their standard compressible form by using the non-relativistic scaling [115]:

t—t/e2 1 — /e, V0 — €,0° and p — €2, p,

nr?

dop + 0; (pv') =0, (3.107)
p (0o +170;) v' = =0'p + nd*v'+ (¢ +n/3) 9'0;v, (3.108)

where 0" is the velocity field, p = e + p and 8% = #79;.

To show how (3.107) and (3.108) arise in our construction, we first note that the effective
Goldstone action (3.79), (3.80) for ¢* fields describes an out-of-equilibrium theory in which
the gradient expansion is organised by counting derivatives of currents K* at some IR
hydrodynamic scale Ay. To understand the near-equilibrium limit, we study the energy-

momentum balance equation (3.58) by introducing a near-equilibrium parameter ¢, so that
o' (x)= by (7 + bl (). (3.109)

Expanding around a constant equilibrium current

K{ = (b0,0,0,0), (3.110)
it follows that
b="0by+(Ab+ ..., (3.111)
ut =y + 0+ (3.112)
with
uf = (1,0,0,0), o' = (0,0"). (3.113)

In terms of the fluctuation fields 7, we find that

Ab = byO;, (3.114)
v = =gy (3.115)

Conservation equation (3.63) then implies the order-¢ relation
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At the leading order in ¢, the force of the environment acting on the fluid that is encoded in
the non-conserving R(”l), vanishes. The first-order T(‘i'; is thus approximately conserved near
equilibrium and can be treated as the viscous contribution to the total fluid’s stress-energy
tensor.

Since first-order contributions are suppressed in the double expansion by ¢ as well as a
derivative acting on v?, we expand the zeroth-order energy-momentum balance equation to
order 2. The contribution from R(Vo) remains non-vanishing, but it can be absorbed into

the small O(¢)-suppressed shifts of the fluid’s energy and pressure,
€ — €+ lpo, p— p—{po, (3.117)

where the un-shifted expressions are those of Eqgs. (3.84) and (3.85). Furthermore, py is

given by the expression
v+ ~ 1 = _
po = %Ab bo Gy + 56 (Gy; + bo0G;) Ab| (3.118)
with G, evaluated at b = by and the expression summed over i and j.
With this re-definition of € and p, the tensor T in (3.91) becomes approximately

conserved near equilibrium and mimics the expected behaviour of a stress-energy tensor,
0,T" =~ 0. (3.119)

A further requirement for a genuine identification of T* with the hydrodynamic stress-
energy tensor of the fluid described by our CTP construction, is that T"” needs to be
symmetric. We can show that to the order of ¢ we are working at, a symmetrised 7

obeys
0,T" = 0,T") = 20, (T" + T*) + O(£*) = 0. (3.120)

The symmetrisation of T does not work in the same way. However, in the non-relativistic
limit, only zeroth-order, ideal hydrodynamic terms of the T components contribute to
the continuity equation (3.107). Thus, for a non-relativistic, near-equilibirum Navier-Stokes
fluid, we can identify the symmetrised version of our tensor T*” with the phenomenological

stress-energy tensor,
TW) =~ Th . (3.121)

One should be aware that beyond the aesthetic desire to exactly match the phenomeno-
logical stress-energy tensor, what is important for the physics are dynamical equations of

motion. Those follow from Eq. (3.58), which is approximately conserved and does not
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require 7" to be symmetric. Dynamical equations derived in the near-equilibrium limit
of our CTP construction are equivalent to those derived from phenomenological hydrody-
namics with the use of conservation laws.

The Navier-Stokes equations (3.107) and (3.108) again follow from the near-equilibrium
expansion to O(¢?) at zeroth order, and O(f) at first order in gradient expansion, followed
by a non-relativistic scaling limit €,, — 0. From this expansion, or directly from (3.105),

we find that shear viscosity 7 vanishes while bulk viscosity is non-zero,

n =0, C = —X1|p=bo- (3.122)

Note that the vanishing of shear viscosity was most likely caused by the very large symmetry
group of volume-preserving diffeomorphisms, under which our fluid is invariant. In fact,
viscosity in [102] resulted from a Lagrangian term that explicitly broke this symmetry.
Because of the near-equilibrium expansion, the hydrodynamic coefficient { becomes an
equilibrium byg-dependent constant. In terms of the four undetermined coefficient functions

in Lagrangian (3.80),

¢(=- bg (f333 + f300 — f303 + 3f330) |b:bo - 258 (f§33,03 + f?/,03,03 - f?/,30,03 - féoo,oza) |b:bo
- 468 (f§33,00 + féos,oo) |b=bo + 458 (J?:g3o,33 + f?/)OO,BB) ‘b=b0' (3-123)

Lastly, the entropy current S*, which can be associated with the system, must satisfy the

covariant thermodynamic relation [25],
TS" = put — T"u,, (3.124)

as well as the positive entropy production condition 9,5* > 0. Eq. (3.124) then implies
that in our theory the first-order correction to the entropy current, as identified in Eq.
(3.71), takes the frame-invariant form
ctp q" q"
St = —— = K* 3.125
( T ) T T T T ( )
Since the zeroth-order entropy current K* is conserved, the positivity of the divergence of

(3.125) requires us to impose

9, (q;) >0, (3.126)

This statement is frame-dependent and applies only in our frame with £ = ¢, cf. Eq.
(3.101), and for a conserved zeroth-order entropy current K*. We can see that in our

effective CTP theory, temperature T' can be identified with the expression

T = Z{ O F + G’ (z’+j)}, (3.127)

1<j
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with i, 7 € {0,3}. The entropy density relation, s = b, remains valid at first order. At the
leading order in ¢ and in the non-relativistic limit, we find that positive entropy production

condition (3.126) demands that
B(bo)d"0;Ab > 0. (3.128)

This expression is consistent with the following fact pertaining to incompressible fluids,

which are characterised by the condition
o' = 0. (3.129)

According to definitions (3.112) and (3.113), the incompressibility condition (3.129) implies
the relativistic relation, d,u* = 0, to first order in ¢. Conservation of K*, cf. Eq. (3.63),
then implies that b must be a space-time independent constant. Given definition (3.111)
of b to order ¢, the fact that b must be constant means that we may absorb a constant
value Ab into by, and set Ab = 0. Finally, Eq. (3.128) shows that incompressibility
implies conservation of entropy. These findings are therefore consistent with the fact that
an incompressible non-relativistic fluid with n = 0 behaves as an ideal fluid without any
entropy production. In such cases, the presence of bulk viscosity ¢ alone cannot influence

the solutions of the Navier-Stokes equation (3.108).

3.7 Discussion

In this chapter, we showed that phenomenological relativistic hydrodynamics with dissi-
pation can be constructed using classical CTP effective action. We were able to derive
closed-form equations describing the fluid from an action principle, containing dissipative
effects triggered by the presence of non-zero bulk viscosity.

Of central importance were terms collected into S, which coupled fields living on the
two time axes and reflected quantum and classical interactions between the open (sub)-
system and the integrated-out, UV degrees of freedom of the environment. Dissipation thus
manifested itself in the energy loss of the low-energy degrees of freedom to the UV micro-
scopic degrees of freedom, which was represented by the system-environment interactions.
We note that this physical interpretation is in accordance with the usual phenomenological
view of dissipation. However, in that approach one is able to maintain all conservation
laws. The relation between the approach presented in this chapter and phenomenology
should be understood in a more precise and quantitative manner.

Despite the lack of energy conservation, the stress-energy tensor was shown to be con-

served in the near-equilibrium regime. This enabled us to identify bulk viscosity of the
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family of fluids, which could be described by the action we constructed. Shear viscos-
ity, however, vanished in this setup, which is most likely the result of a large amount of
symmetry, namely the volume preserving diffeomorphisms that were used to construct the
effective action. A further study of this important problem, i.e. the identification of the
correct symmetries of dissipative fluids, as well as classification of different fluids described

by the presented formalism should be returned to in the future.
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Chapter 4

Fermi surfaces in supersymmetric
field theories

4.1 Motivation

Understanding the behaviour of quantum matter at finite temperature 7" and density pu
is a major challenge in many areas of physics, ranging from traditional condensed matter
topics to quark-gluon plasmas as explored at RHIC and the LHC, to the behaviour of
super-dense QCD matter in the cores of neutron stars. Developing such an understanding
is especially difficult when the systems are strongly coupled and traditional perturbative
techniques are not useful. One powerful non-perturbative technique which has attracted
a great deal of attention in recent years is gauge/gravity duality, introduced in Chapter
2.2.2, which maps questions about some special strongly-coupled field theories to questions
about weakly-coupled theories of gravity, which are much easier to work with.! This has
led to many interesting results for the study of finite-density quantum matter, but also a
number of puzzles, such as the fate of Fermi surfaces in the strongly-coupled systems which
have gravity duals.

The ability to do controlled calculations on the gravity side of the duality comes with
several conditions and costs. To justify treating the gravity side of the duality classically,
which is in general the only tractable limit, one needs the field theory to be (1) strongly
coupled, typically in the sense of having a tunable 't Hooft coupling which is taken to be
large and (2) to be in some kind of large N limit. Indeed, in all of the cases where the
dual field theory Lagrangian is explicitly known, the field theory is a non-Abelian gauge
theory, and the parameter N is associated with the rank of the gauge group.? Finally,

the class of theories which have strong-coupling limits and a large N limit is clearly rather

!For an additional review focusing on Fermi surfaces see reference [116].
2Finding such a large parameter in the known phenomenologically-relevant examples is a challenge,
especially in the examples from condensed matter.
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special,® and in all of the cases where the dual field theory Lagrangians are known, they are
supersymmetric gauge theories or deformations thereof, see e.g. [10,74,117-119] for some
prototypical examples.

These considerations make it difficult to tell a priori which of the many interesting
results gauge/gravity duality has yielded are due to strong coupling, large N, the special
nature of the field content and interactions in the theories which have gravity duals, or
some combination of these. In this sense, gauge/gravity duality is essentially a black box,
since it is only tractable in a limit where the field theory description is fundamentally
difficult to work with. Moreover, while the duality has yielded many striking results, it
has also produced many mysteries, such as the fate of Fermi surfaces at strong coupling,
explored in e.g. [120-138]. The ‘microscopic’ field content of the theories with gravity
duals generally includes gauge bosons, fermions, and scalars, with the number of degrees of
freedom for all of these scaling as O(N?) in the 4D field theory examples. In these theories
chemical potentials for conserved charges usually couple to both the scalars and fermions
at the microscopic level. Hence if intuition derived from studies of weakly-coupled non-
supersymmetric theories were to be boldly applied to the strong coupling limit of the kind
of theories which have gravity duals, then one might have expected that Fermi surfaces
would be ubiquitous in systems with gravity duals.

However, while Fermi surfaces have shown up in some examples of gauge/gravity duality,
they do not seem to be at all ubiquitous. Signs of Fermi surfaces for the O(N?) degrees of
freedom have recently shown up in e.g. [125] in correlation functions of fermionic operators
in electron star geometries [124,139], and in some top-down calculations in [137,138] for 4D
theories. But in other examples Fermi surfaces appear to be absent [126,127]. Meanwhile,
Fermi surfaces have been observed in fermionic correlators of O(N°) densities of probe
fermions in work initiated in [120,121]. To make the situation more complicated, naively
— that is, based on expectations from weak-coupling studies of systems familiar from
condensed matter — Fermi surfaces should have an imprint on bosonic correlation functions
as well, showing up as e.g. momentum-space singularities in density-density correlation
functions leading to Friedel oscillations. Indeed, in holography one only has access to
gauge-invariant observables, while Fermi surfaces for the quarks in a gauge theory would
not be gauge-invariant. So such Fermi surfaces might be ‘hidden’ [130] in the gravity duals,
and hence singularities in gauge-invariant charge density correlation functions may seem to
be especially promising places to look for traces of Fermi surface physics. But such density-

correlator signatures of underlying Fermi surfaces have not been seen in many holographic

3For instance, large N QCD is not such a theory, since its 't Hooft coupling runs, and is thus not a
tunable control parameter.
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systems.*

These considerations motivate our belief that in order to better understand the results
of gauge/gravity duality calculations, it would be very useful to reexamine some observables
for which strong coupling results from holography are available at weak coupling using con-
ventional field-theory techniques, where one can see all of the moving pieces. In particular,
one would have direct access to any ‘hidden’ Fermi surfaces, since at weak coupling it makes
sense to work in a gauge-fixed formalism. We will focus on D = 3+ 1 dimensional theories
for simplicity, and confine our attention to the 7' = 0 limit. The metric signature convention
used in this chapter will be the one used in QFT, i.e. n,, = diag(+1,—1,—1,—1).

An example of the kind of theory one might want to study at weak coupling is N = 4
super-Yang-Mills theory with a chemical potential for R-charge, where the number of
charged degrees of freedom scales as N?, originally studied in [142-145]. Another ex-
ample, where the number of charged degrees of freedom scales as N', is the A" = 2 gauge
theory dual to Ny D7 branes intersecting N, D3 branes in the ‘quenched” N¢/N, < 1 ap-
proximation [74]. The study of this latter flavoured A/ = 2 system at finite quark number
density was initiated in [146]. Calculations using the gravity side of the duality predict
unusual thermodynamical features for this theory which are not known to arise from any
weakly-coupled theory, with e.g. a specific heat with the temperature scaling ¢y, ~ T° [147],
in contrast to what one might expect from a Fermi liquid where ¢y, ~ T'. Moreover, [147]
found a gapless quasiparticle mode in the system which was argued to be Landau’s zero
sound mode (see also [148-152] for some further exploration of this identification). But the
cy scaling shows that the system is clearly a non-Fermi liquid, and to the extent that the
dual field theory is a gauge theory with gapless gauge interactions, a zero sound mode would
be surprising, at least at weak coupling, as we discuss further in Section 4.2. What is the
origin of the curious thermodynamic properties of this system and what is the true identity
of the quasiparticles modes? It is possible that the puzzling thermodynamics is driven by
some intrinsically strongly-coupled physics, or — as explored recently in e.g. [152-154] —
were the calculations of [147] done in some metastable vacuum? Another possibility, which
can be explored using weak-coupling techniques, is that at least some of these properties
are a consequence of the unusual field content and interactions of the field theory.

However, as with the other theories with known field theory Lagrangians and gravity
duals, the N' = 4 super-Yang-Mills field theory examined in [10] is quite complicated, as

are its cousins discussed in the many follow-up works, and we will not address field theories

4In [135] it is observed that density-density correlation functions in theories with dual Lifshitz geometries
[140,141] with z = oo have momentum-space singularities which suggest the presence of a Fermi surface,
but z < oo examples do not.
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with gravity duals directly in this work. Instead, as a first step we will study a few simpler
toy-model supersymmetric gauge theories. Specifically, we will explore the behaviour of
N = 1 super-QED (sQED) and A/ = 2 sQED in the presence of chemical potentials at
zero temperature. Even these simple toy models show some curious features, since from a
condensed-matter point of view they have unusual field content and interactions, with the
chemical potential coupling to both scalar fields and fermions, which are in turn coupled
to each other by the demands of supersymmetry.

Perhaps the simplest questions one can ask about such systems concern the nature of
their ground states. Do the bosons condense, and do the fermions develop a Fermi surface?
It seems natural to expect weakly-coupled scalars to condense at T" = 0 in response to a
chemical potential, and we find that this is indeed what happens in our examples. One
might expect Fermi surfaces to be a generic consequence of turning on chemical potentials
that couple to weakly-interacting fermions based on a naive application of the standard Lan-
dau Fermi liquid picture, and intuitions derived from thinking about non-supersymmetric
electron plasmas. But we find that dense plasmas based on N = 1 and N = 2 sQED fail
to be Fermi liquids in a fairly dramatic way, already at weak coupling. While the chemical
potential couples to the fermions in all of our examples, it does not lead to a Fermi surface
in most of them. This suggests another possible reason for the mysterious cases of missing
Fermi surfaces encountered in holographic studies, aside from strong coupling.

In this chapter, we will use Section 4.2 to give an overview of our toy models, ex-
plain their unusual features from a condensed-matter perspective, and discuss what one
might expect for their behaviour at finite density. The findings will be summarised in Sec-
tion 4.2.1. In Section 4.3, we explore N’ = 1 sQED at finite electron number density. Then
in Section 4.4 we discuss N' = 2 sQED with a finite electron number density, where we are
forced to introduce some soft SUSY-breaking terms to stabilize the scalar sector. Next,
in Section 4.5 we look at N’ = 2 sQED with a finite R-charge density. Algebraically, the
N = 2 R-charged theory and its SUSY-broken cousins are our cleanest examples, and we
evaluate the fermion contribution to the charge density for some examples in this class of
theories. The somewhat surprising result of this investigation is described in Section 4.6.
Finally, in Section 4.7 we present an extended discussion of our findings and sketch some
of the many possible directions for future work.

We also make a brief comment on the scarce existing literature on SUSY gauge theories
at finite density using field-theoretic techniques. The works most closely related to the
approach of this chapter are [48,155] and [129]. Ref. [155] studied N' = 4 SYM theory with
R-charge chemical potentials compactified on a 3-sphere, with a focus mostly on the high-T

limit, while [48] studied the finite-T properties of N’ = 2 super-Yang-Mills (SYM) theory.
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Ref. [130] studied physics related to Fermi surfaces in non-supersymmetric theories inspired
by 4D N = 4 SYM, among other examples, but with their choice of models they did not run
into many of the issues we deal with here. We also note the important work [156] exploring
the interplay between Luttinger’s theorem, Fermi surfaces, and Bose-Einstein condensation
in the context of cold atomic gases.

Also, the study of super-QCD at finite quark-number was initiated in [157] for N = 1
supersymmetry and in [158] for A/ = 2 supersymmetry, with an aim of understanding
colour superconductivity in a supersymmetric context. However, the issue of the existence
of Fermi surfaces in supersymmetric gauge theories at finite density was not examined in
these papers. Finally, the interesting recent works [159,160] constructed a supersymmetric
version of ‘BCS theory’, without dynamical gauge fields, and engineered things such that

there is no scalar condensation but there are Fermi surfaces.

4.2 What should we expect?

The standard example of a finite-density relativistic system involving fermions and gauge
fields is a QED plasma, which we now briefly describe before considering supersymmetric
theories. We do this because much of our intuition for what to expect for finite-density
physics is based on experience with this non-supersymmetric system.

The Lagrangian describing an electron plasma is just that of QED, involving the electron
field ¢ and the photon gauge field A,, and is very simple:

1 _
£N=0 = _Z ;WFMV —Hﬂ(“p - m)w —|—A“J“, (41>

where D, = 0, — ipd,0 — 1gA,, g is the gauge coupling, u is a chemical potential which
couples to the charge of the electrons, and J* encodes the effects of other matter which
provides a neutralising background, such as some ions.

The requirement of having a neutralising background is essential. While the addition of
the chemical potential term is a gauge-invariant deformation of the theory, it couples to a
gauged charge. If one wants a finite density of matter in the vacuum in the infinite-volume
limit, with a finite free energy density, then any negative charge density carried by the
electrons must be compensated by a positive charge density carried by the ions. Otherwise
one would pay an infrared-divergent energy cost for having long-range electric fields. This
is a textbook observation for QED plasmas [161], and is also true for non-Abelian gauge
theories like QCD at high densities.® As is explained in e.g. Section 2 in [163], neutrality

must be imposed even if the gauged charge is spontaneously broken, which will be relevant

SFor some seminal papers exploring this issue e.g. see [162-164], for a review see [165].
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for our discussion of SQED. Otherwise a finite size chunk of the degenerate matter would
have electric fields outside of it which grow in strength with its size, again causing problems
with the infinite-volume limit.

Before beginning a discussion of supersymmetric plasmas, and exploring to what extent
they can be thought of as Fermi liquids, it is important to note that a standard dense low-
temperature electron gas described by Eq. (4.1) is already not a Fermi liquid. The issue is
the long range of the electromagnetic interactions, and the subtle nature of screening due
to the degenerate electrons. While Coulomb photons pick up a screening mass in the static
(zero-frequency) limit due to medium effects, the transverse (‘magnetic’) photons do not
get a static screening mass so long as the photons do not become Higgsed. Consequently,
the magnetic photons continue to mediate long-range interactions, and this drives the
breakdown of Fermi liquid theory [166-169]. This leads to subtle effects such as a non-
Fermi-liquid scaling of the specific heat with temperature, ¢, ~ T InT, among others. At a
more pedestrian level, the non-trivial momentum and energy dependence of the Coulomb
screening effects in an electron plasma are such that the residual Coulomb interaction
obliterates the would-be gapless Fermi zero-sound mode present in Fermi liquids, turning
it into the gapped plasmon mode of the dense electron gas as explained in e.g. Chapter 16
of the textbook [161].

Given these results for non-supersymmetric gauge theories at finite density, we clearly
cannot assume that the N'= 1 and /' = 2 sQED plasmas should be Fermi liquids. Never-
theless, while non-supersymmetric degenerate plasmas are not Fermi liquids, the fermions
populating the plasma still have a Fermi surface, at least before considering the standard
sort of pairing (superconducting) instabilities which can lead to its breakdown. This re-
mains true® even in more exotic non-supersymmetric systems, such as degenerate quark
matter, and generalisations of Eq. (4.1) to include condensed dynamical scalar fields in
JH [170-173], or some types of Yukawa interactions [174]. As we will see, however, even the
very existence of a Fermi surface cannot be taken for granted in the supersymmetric case.

For a final observation about non-supersymmetric plasmas, we note that having g < 1
is necessary but not sufficient for a QED plasma to be weakly coupled. The reason is
that Coulomb interactions are, in a sense, strong at low energies, and tend to lead to
the formation of bound states — atoms — if the interaction energy dominates over the

characteristic momenta of the electrons and ions. Indeed, if we define | = [3/(47n)]'/? as

6Since electron and quark fields are not gauge invariant, the notion of a Fermi surface is easiest to
discuss in a gauge-fixed setting, and understanding its effects in gauge-invariant language requires more
work. Fortunately, at weak coupling, where our attention will be confined, the use of such gauge-fixed
notions will be very useful, as it is in e.g. the standard discussions of gauge symmetry ‘breaking’ in the
Standard Model’s Higgs mechanism.
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the inter-electron ‘spacing’ and denote the Bohr radius by ap = 1/(am), then it is well-
known that in an electron gas the physical expansion parameter is rs = [/ag, rather than
a = ¢g? /4, and one must have r, < 1 for calculability. We expect that our results in the
supersymmetric examples below will be reliable in a similar high density limit, but it will
be important to verify this in future work by doing higher-order calculations. For this work,
we simply assume that our number densities are large enough that we do not have to worry
about the formation of supersymmetric atoms, which were studied recently in [175-177].
In the terminology often used in the AdS/CMT literature, our focus on high density fully
ionised plasmas means that we work in the ‘fractionalised’ regime of super QED, as opposed
to the low-density atomic gas regime, which could be thought of as ‘confined’.

We now turn to a discussion of the subtleties particular to supersymmetric plasmas.
To keep the discussion streamlined, we use N' = 1 sQED as our example. The action of
N = 1 sQED is significantly more complicated than that of QED. In addition to ¢ and
A, supersymmetry requires the addition of selectron fields ¢, ¢_, as well as the gaugino
A, along with interaction terms amongst all of these mandated by the supersymmetrisation

of the gauge interaction. The resulting action is

1 1.
Lx—1= =7 FuF" + SXipA

3 (i —m) Y+ | Dy oo |+ [ DEoy |t — [mo|” — |mey |

4.2)
2 (
_ - - < - 2
+V2ig (6LdP-A = 6LAP-Y = 6. AP 1 + 6-0PA) = L (I8 = [o-)
+ Ions,
where \ is a Majorana fermion, Py = %(1 +75), ¢+ are complex scalar fields,
Dy =0, +ipbuo £igA, (4.3)

and the +Ions term encodes couplings to neutralising ‘ion’ fields. We assume the ion sector
is supersymmetric as well, and defer writing out the relevant contributions to the action for
now. The physical motivation for assuming that the ion sector is supersymmetric is that
the theories we are really interested in — the ones with gravity duals — usually do not
include dynamical non-supersymmetric sectors. The action describing N' = 2 matter at
finite density is even more complex, and we do not write it out here; the general comments
about /' = 1 sQED below also apply to N' = 2 sQED.

Before launching a search for Fermi surfaces in N’ = 1 sQED, and then N = 2 sQED,
we should emphasise a few features of Eq. (4.2) which make the analysis tricky. First,
note that before considering the ‘ions’, there is only one continuous symmetry in Eq. (4.2),

under which the fields have the transformation properties ¢ — e~"1), ¢, — €®p,, p_ —
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e p_, A, — A,, A = \. So there are no separate fermion number or scalar number sym-
metries, in a striking contrast to familiar non-supersymmetric theories, even ones studied
in [156]. The fields are tied together by the Yukawa interactions in such a way that only
a single U(1) remains. Second, we observe that as usual, the chemical potential enters
the Lagrangian as the time component of a background gauge field. So both the selectron
and the electron fields directly experience the chemical potential. We note that in this
situation, one should interpret any expectations based on Luttinger’s theorem [178] or the
theory of ‘compressible quantum matter’ [129] with care, since the assumptions underlying
these frameworks do not apply in general to the systems we consider once the scalar fields
condense.

The issue we explore in this work concerns the response of the selectrons and electrons
to the chemical potential. Let us start by considering the behaviour of the scalar fields of

N = 1 sQED. The scalar effective potential Vg is the sum of the classical potential

2
Vit = (ml? = 12) (164 + o) + (164> = o-)? (4.4)

plus quantum corrections. Interactions with the electrons and photons will contribute new
terms to the bosonic effective potential starting at one loop level. But so long as the theory
is weakly coupled, and the classical potential is non-vanishing, the selectron ground state
should be determined by Ve(f?), since quantum corrections to Ve(f(f)) should be comparatively
small.

From the form of Ve(f?), one might think that once u > m, the scalars should condense,
breaking the U(1) gauge symmetry and making the system a superconductor. Moreover,
since the masses of the electrons and selectrons are fixed to be identical due to supersym-
metry, the fermions should naively start populating a Fermi surfaces at the same time that
the scalars start condensing.

But there is an immediate subtlety we must deal with: supersymmetric gauge theories
typically have moduli spaces protected by supersymmetry at @ = 0. In the current context,
the moduli space for m = 0, u = 0 is isomorphic to C, and is parametrised by the value of
¢+ = ¢_. For any set of vacuum expectation values for the selectrons satisfying ¢, = ¢_,
the potential energy vanishes. But as soon as we make p > m, V;}(f(f)) develops a runaway
direction along ¢, = ¢_. That is, the effective potential becomes unbounded from below,
and the theory as defined in Eq. (4.2) does not make sense for 1 > m.”

This should not be especially surprising. For a system comprised of weakly-interacting

If both a finite 1 and finite temperature T are turned on, things may be different, since the finite
temperature breaks supersymmetry, and should help lift the moduli space at 4 = 0. For an interesting
recent exploration of finite-T physics in a supersymmetric gauge theory using field-theoretic techniques,
see [48].
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bosonic particles to be stable at finite chemical potential, the bosons must have sufficiently
repulsive interactions. If the interactions of the bosons were attractive, then the system
would be unstable against a collapse towards arbitrarily high densities, and there would
not be any equilibrium finite-density ground state. This is precisely the issue that one faces
in N = 1 sQED, where supersymmetry demands the presence of an attractive interaction
between the positive and negative selectrons —%]¢+|2|¢_]2. The arguments above imply
that this issue indeed causes an instability which is unavoidable without deforming the
theory in some way.

Fortunately, in A/ = 1 sQED, it is possible to dodge this problem by turning on a
Fayet-Iliopulous term, which does not explicitly break the supersymmetry of the action,

and has the effect of modifying the potential to

2
Vit = (ml? = 1) (16 P +16-) + (|4 — lo- P — €)% (45)

where £2 can be either positive or negative, and has mass dimension two. At p = 0, this
lifts the moduli space, and indeed supersymmetry becomes spontaneously broken for £ > 0
so long as m # 0. With £ turned on, we will argue that the selectrons of the theory have
a stable non-trivial ground state for g in a certain range. Hence the naive expectation
that the U(1) gauge symmetry is broken at finite density is borne out, and the system is a
superconductor.

One might have hoped that so long as g < 1, and the system is weakly coupled, the
response of the electrons to the chemical potential should resemble that of the free limit
g = 0. This is true in a QED plasma. However, one should not expect it to be true in
general for supersymmetric plasmas, as we now explain.

First, it is clear from the structure of the Yukawa terms in Eq. (4.2), which include

terms of the form

gt PPN, (4.6)

that turning on scalar VEVs leads to mixing between the electron and gaugino fields, and
this makes it difficult to guess what the fermionic fields will do in response to a chemical
potential for the electrons just by looking at Eq. (4.2). The way to deal with this is obvious
in principle, since one just has to rotate to an eigen-basis where the kinetic terms for
the fermions become diagonal in the in-medium ‘flavours’, but in practice actually doing
such a rotation can be algebraically involved. Since the coefficient of the mixing term is
proportional to g, however, one might have hoped that when g < 1, the mixing would be
small, and the response of the fermions to a chemical potential would be close to that of

the g = 0 system.
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To see why this expectation is overly naive, note that the coefficient of the Yukawa terms
is forced to be the gauge coupling g by supersymmetry. But the coefficient controlling the
strength of the self-interaction of the selectrons in Eq. (4.5) is g%, which is also fixed
by supersymmetry. So unlike in a non-supersymmetric system, here the strengths of the
Yukawa interactions and the selectron self-interactions cannot be tuned independently. In

particular, given the form of the selectron potential it is obvious that a non-zero selectron
VEV (¢) must scale as

(¢) ~ 7 (4.7)

So since the size of the electron-gaugino mixing terms is controlled by g(¢), we see that
the fermion mixing will be essentially independent of g. The mixing alters the dispersion
relations of the fermion fields at the quadratic level, and so we cannot assume that the
response of the electrons to a chemical potential at ¢ = 0, which involves the formation of a
Fermi surface, will necessarily persist to any g > 0, no matter how small. This observation
is generic, and applies to essentially any supersymmetric gauge theory in which one turns
on a chemical potential for selectrons or squarks which can also cause selectron or squark

condensation.

4.2.1 Summary of expectations

For the reasons discussed above, we expect that:

e The chemical potentials we will consider couple to both fermions and scalars, and so
long as the theory is supersymmetric we expect the scalars to condense at the same
time as the fermions begin to feel the chemical potential. This means the U(1) gauge

symmetry will be broken, and the supersymmetric plasmas will be superconductors.

e [t is essential to take into account the electric neutrality constraint. In a related

context, this was also emphasised in [129].

e We assume that the densities are large enough that we do not have to worry about
the formation of supersymmetric atoms, so that we deal with a completely ionised
plasma. This means we are focusing on the fractionalized regime of the plasma, as

opposed to the low-density atomic gas confined regime.

e Achieving a stable finite-density ground state may be tricky due to possible run-away

directions in the scalar potential due to supersymmetry.
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e We should not expect the behaviour of the fermions to be close to that of a conven-
tional free system once there is scalar condensation, because of the structure of the

Yukawa interactions and the scalar self-interactions dictated by supersymmetry.

o If the scalars condense, the fact that the U(1) electron number symmetry is shared
between the scalars and the fermions means that the resulting quantum liquids will
not be ‘compressible quantum matter’ as it is defined in [130]. Moreover, the assump-
tions of Luttinger’s theorem [178], which ties the charge density carried by a fermionic
system to the volume of the Fermi surface, will not apply to such a liquid. So we
should not expect the existence of Fermi surfaces to be automatic for finite-density

supersymmetric QED.

With these observations in mind, we turn to a more detailed examination of these issues

in our "= 1 and N = 2 sQED toy models.

4.3 N =1 sQED at finite electron number density

4.3.1 Scalar Ground State

We begin by writing down the complete N/ = 1 action that will be considered below. We
include two chiral superfields @, and ®_ which supply the matter fields for the ‘electron’
sector: the electron Dirac spinor field v, as well the bosonic selectrons ¢, ¢_. We also
include two other chiral superfields @), and ()_, which supply the matter fields for the ‘ion’
sector: the ion Dirac spinor field 7, as well as the bosonic sion fields g, g_. We consider

a superpotential of the simplest possible form
W =m(@,d +Q,Q), (4.8)

so that the ions and the electrons have the same mass m. The tree-level Kahler potential
is
K=adle"o, +0le Vo +QeVQ, +Q'e™VQ., (4.9)

and V is the vector superfield, which includes the photon and photino fields A,, \. We

also allow a Fayet-Iliopoulos term

Le=—¢ / d*ov. (4.10)

The Lagrangian of the version of ' = 1 SQED that we will consider is thus

1
Ly=1= (4—g2/d20W2+h.c.) +/d491C+ (/d29W+h.c.> + L, (4.11)

and W, is the photon field strength chiral super field.
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Transformation Properties in A/ = 1 sQED

Fields: 2/1 ¢+ Aqb_ A n qs q-
Ul | e™p et™@p, Yo A U] q+ q-
U(l)z P ¢+ O_ A ey 6+Zaq+ e~iog_

Table 4.1: Matter field transformation properties under the U(1), and U(1); symmetries.

The matter sector has two obvious U(1) symmetries, U(1). and U(1);, which act on the
component fields as shown in Table 4.1. The diagonal U(1), x U(1); symmetry (acting as
P — e h,n — e*p, and so on) is gauged, and we will refer to the gauged charge as the
‘electric’ charge.

We want to have a net density of electron-sector fields — electrons, selectrons, or both
— in the ground state. To do this we turn on a chemical potential u. for the U(1),
symmetry, which appears in the action as the time component of a background gauge field
coupling only to U(1). charge. At the same time, we wish to maintain charge neutrality.
To do this, we also turn on a chemical potential y; for the conserved charge associated with
the ion U(1); symmetry. Then the u. chemical potential can be viewed as the parameter
controlling the matter density of the system, while p; is an auxiliary parameter determined
by the requirement of charge neutrality.

It turns out that setting u = p. = —p; will be sufficient to maintain charge neutrality.
Heuristically, turning on p > 0 gives an equal energetic subsidy to the particles created by
the field operators ¥, ¢_, ¢, and the antiparticles created by 7, q_, q.. Since these two
sets of particles and antiparticles have the same masses but opposite electric charges, this
will create a ground state which is electrically neutral. To see this in a more quantitative
way, recall that we can read off the expression for the charge density from the part of the

action which is linear in Ag:
gAQ € L, (4.12)

since Ay is, by definition, the source for (). This yields

Q = — 97°% + 019 + ip)dy — (o +in)dy) o]
+io" (0o — ip)d— — (Do — ip)p-) o]
+ 117" + gk (9o — i) gy — (9o — in)as) ay]
+ilg" (9o + ip)g- — (0o + ip)g-)Tq-]. (4.13)

If @ # 0 in the ground state, the system would not be electrically neutral. As explained
above, this would not be physically sensible, since the infinite-volume limit would come with

a divergent energetic cost. More formally, one can see that the situation when (@) # 0
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would be problematic because then the action for A, would involve a tadpole term for A,.
Once one adjusts p; to set (@) = 0, so that the ground state is electrically neutral, the
action for A, becomes quadratic.

We start by considering the scalar sector, and look for ground states in which the
bosonic fields get time-independent vacuum expectation values, so that dy¢+ = Jpgr = 0.
We use unitary gauge in our analysis, so that if any of the scalars (which are all charged
under U(1)g) condense, the gauge bosons pick up a mass via the Higgs mechanism. If
two scalars condense in such a way that both U(1). and U(1); are broken, then one of the
would-be Goldstone bosons will be eaten by the gauge field in unitary gauge, but the other
will remain as a bona-fide physical gapless Goldstone mode.

If we take p, = —pu; = p, then we get the tree-level matter sector scalar potential

VO = (1m = 1) (165> + [o- 2 + las > + g )

2

2
+ 5 (19 = lo-I? + s — lo-I? - €. (4.14)

To develop a heuristic understanding of the scalar field ground states, it is instructive to

rewrite the potential as

VO = (Imf? = 1 = ¢°€) (164> + g ?) + (Im[* — 1 + 6°€%) (|o_> + lg_I)

92

2
+ T (04 + a2 = lo- P — 1a-12)* + T¢" (4.15)

Now suppose that £* > 0, and consider m? , and m3 , while we slowly increase p
from 0. (What would happen if £€2 < 0 can be read off from the following discussion by
exchanging ¢, ¢y with ¢_,q_.) When m* — p? > ¢*¢* > 0, we have m3 , > 0 and
m;ﬂqf > 0, so none of the scalars condense. That is, all of the scalar VEVs are zero.
This regime of the theory is not interesting for our purposes, since the scalar sector does
not respond non-trivially to the chemical potential. Moreover, given that in this regime
p? < |m|? and there is no scalar condensation to leading order in g, the fermion sector
responds to p in the same way as a free theory would - which is to say, no spinor electrons
or ions populate the vacuum either.

Next, suppose that —g*¢* < m* — p* < ¢g*¢*. Then m? , < 0 while m , >0,
and ¢, ¢, will develop non-trivial VEVs, and minimization of the scalar potential naively

implies that they must satisfy

2 2 2 .2
p—m*+ &g
o1 + g4 |* = e : o> =[q_|* =0, (4.16)

Plugging these VEVs back into the potential to get a feeling for what happens to ¢_, ¢q_,

we find that mi_jq_ vanishes due to contributions from cross-terms in the potential linking
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¢4, qr with ¢_, g_. This means that one should do a more careful analysis to understand
the regime in which it is consistent to assume that ¢, and ¢, are condensed, but ¢_ and ¢_
are not. Computing the eigenvalues A1, Ay of the Hessian matrix describing the fluctuations

around the VEVs in Eq. (4.16) yields

M o=m?— i’ — g€ + (|6 P + g ), (4.17)
Ay =m® — 12+ g2 — (|04 + a4 ) (4.18)

Demanding that Aj, Ay > 0, so that our field configuration is stable, implies that we must

2 2

- lu2 < g2§27 ¢+7Q+ are

condensed and must obey Eq. (4.16), but ¢_, g_ do not condense. In this regime we expect

ensure that m? > pu?. Hence we learn that so long as 0 < m
a non-trivial scalar ground state, and we do not have to worry about run-away directions
in the potential. But once m? — p? < 0, all of the scalar fields are free to develop non-zero
VEVs. Given the form of the potential, there is clearly a run-away direction in the potential
along ¢, = q4 = ¢_ = q_, so the system has no stable ground state once pu? > m?.

Given the remarks above, we can simplify the discussion without loss of generality by
assuming that 2 > 0 from here onwards. We still have to take the constraint of charge

neutrality into account. The scalar contribution to Q is

Q|scalar - 2Ne‘¢+’2 - 2,ue|¢—|2 + 2/’LZ|Q+|2 - 2Mi|Q—|27 (419)

which becomes

Q|scalar = 2,“/ (|¢+|2 - \QHQ) . (420)

If we now demand that Q|scalar . 0, we find that

42— m? 4 £2g2
2g2 ’

|0+ = |+ |* = ¢-=q-=0. (4.21)

Although here we have focused on the selectrons and sions, it is clear that the symmetric
way p enters the action guarantees that if the fermionic electron and ion fields contribute
to the charge density, they do so in such a way that the sum of their electric charges is
separately zero. This is the reason that we are able to demand that the scalar contribution

to the electric charge vanishes separately from the one from the fermions.

4.3.2 Search for a Fermi surface

We now examine the fermionic part of the action to see whether the fermions organize into
a Fermi sphere at p > 0. Of course, in view of the discussion above, while looking for a

Fermi surface, we have to always assume the condition

0 <m?—pu? < g*€. (4.22)
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In particular, we emphasise that u? < m? throughout this range. If we were to consider
1% > m?, the scalar sector would have no stable ground state. On the other hand, if 4? < m?
but p were to go outside the bound in Eq. (4.22), the scalars would have vanishing VEVs.
But then because at the same time p would be smaller than the fermion mass, the ground
state could not possibly carry any U(1), charge. So insisting on the condition in Eq. (4.22)
is essential to keep things interesting.

We recall that to see whether a system has a Fermi surface to leading order in pertur-
bation theory, one can examine the dispersion relations for the fermions. For instance, for

a free Dirac fermion with Lagrangian

L= (i@ —m+p°) Y =PMy, (4.23)

this can be done by finding the momentum-space eigenvalues \;(pg,p) of M, and then
solving \;(p) = 0 for py in terms of p. This yields the dispersion relations py = €(p), where
€ is the energy density, for the fermion and anti-fermion modes determined in the free case
by (po — i)* = p* + m?. A Fermi surface can be defined as the solution to 0 = py = €(p)
for some p = pr > 0. For a free fermion, we obtain p% = p? — m?. Our task in this section
is to carry out this simple procedure for the somewhat baroque fermion sector of sQED.

In four-component spinor notation, the fermion part of the N’ = 1 sQED Lagrangian is
1. - e
L= 1]fermion = 5)\1;?9/\ + ¢ (i —m)Y+7(ih” —m)n
+v/2ig (quP_A — AP — GNP + ¢_@ZP+)\> (4.24)
+/2ig (QLﬁP—A — q" AP_n — g\Pyn + qﬁPM) ,
where
D=0, —ipduo—igA,, D, n=0,+iudu0 — igA, (4.25)

In view of our discussion in Section 4.2 and the response of the scalar sector to the chemical
potential, once the scalar fields develop non-trivial VEVs in Eq. (4.21) all of the fermionic
fields mix with each other, with the mixing between electron and ion fields mediated by
the photino. Moreover, if for simplicity we scale £ as £ ~ 1/g, the mixing is g-independent.
It is thus difficult to understand the response of the fermions to the chemical potential
through a visual examination of Eq. (4.24), in contrast to the free case in Eq. (4.23).

To look for a Fermi surface, we want to compute the dispersion relations of the fermionic

eigenmodes described by Eq. (4.24). This is easier if we switch to two-component spinor

VrLa NLa Aa
¢:( %) U:(nia)7 :<W)’ (4.26)
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where A is the Majorana photino and we introduce the standard matrices o, = (I2, o)
and 6" = (I, —o).

The fact that the VEVs are given by Eq. (4.21) means that one can write the quadratic
fermion action in terms of a 5x 5 matrix, without the need to introduce Nambu-Gorkov-type

spinors. Defining

. T
v = <wLo¢ @ZJ}L%Q )\a NLa 77}‘;) ) (427)
we can now write
‘CN:1|fermion = \IIT : MN:l . \117 (428)
where
gt (8,L - ’i,LL(SILQ) 77’)1[2 0 0 0
—mly iot (O — 16 ,0) Zg\@qbl 0 0
Mpy=1 = 0 —igv/2¢ ictd, 0 —igv/2q4
0 0 0 i (D, +iubuo) —ml;
0 0 igv/2q, —ml, iot (8, + iptd,0)
(4.29)

After going to momentum space we can compute the determinant of My—;. Lorentz
invariance is broken by pu, but rotational invariance is unbroken and hence det(My—;)
must depend on py and p = \/m The dispersion relations may be found by
solving det(My—1) = 0 for py as a function of p, but they are complicated and their form
unilluminating. Fortunately, once we set py = 0, as is needed in the search for the Fermi

surface, they simplify and give
det(My—1)lpo—o = —p* (=1 +m? + p?)". (4.30)

The contribution of the selectron and sion VEVs to det(M—1)|p0—0 cancels thanks to charge
neutrality. Amusingly, what is left has the form which we would have obtained by dropping
the Yukawa terms in the first place! We emphasise that this dramatic simplification happens
only at py = 0.

Looking for values of p = pp > 0 which make det(My—1)|py—0 vanish, at first glance
p = \/m may seem work. But as we have seen, the scalar sector is under control
only for y < m, and indeed we have assumed the condition in Eq. (4.22) at the start of the
fermion analysis. So p = /u? —m?2 is not a legitimate solution of det(Mp—1)|p—0 = 0.
But there are no other solutions to det(Mpr—1)|p,=0 = 0.

Thus we conclude that within the domain of validity of our analysis, there is no p =
pr > 0 for which det(Mpr—1)|p,=0 vanishes, and hence there is no Fermi surface in finite-
density N/ = 1 sQED at weak coupling. Note also that changing the strength of the
Yukawa couplings (which would break supersymmetry) would not change this result due

to the structure of the determinant above.
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4.3.3 Non-supersymmetric cousin of N = 1 sQED

Before proceeding to N = 2 sQED, it is instructive to discuss what would have happened
if we had not insisted on charge neutrality, for instance by working with only the electron-
sector fields. The point of considering this example is to emphasise that U(1) breaking does
not necessarily lead to the obliteration of Fermi surfaces. One way to make this reasonable
would be to modify the Lagrangian by erasing the gauge field while leaving everything else
untouched. Then the Lagrangian would be

Eno ions — LN:l‘fermion + |D;¢—’2 + ‘D:¢+|2 - ‘m¢—|2 - ’m(b—l-’Q

2
=L (6P —lo-P -’ (4.31)

with the ion fields deleted from Lxr—1|fermion- Deleting the gauge fields breaks SUSY.

Going through the same analysis as above, we now obtain

det (Mo ions)po=0 = 49" [¢4|* (1 — p%)

—p* (=2 +m? +p?) (4¢%(¢4|* — 1> + m> +p?) (4.32)

with ¢2|¢4|* = m? — p? + g2¢*. Solving det(Myo ions)|po=0 = 0, we obtain a solution for the

Fermi momentum:

oo [ 2T (PE = 2+ ] — 6P+ O(u? = m?) (4.33)
3[e+27p (¢2€? — p2 +m?))° 7

where ¢ = \/(69252 — 912 + 9m2)® 4+ 72912 (g2€2 — 12 + m?)®. Since these expressions are
rather complicated, we plot Eq. (4.33) in Fig. 4.1. The plot shows this non-supersymmetric
system does have a Fermi surface, in contrast to the supersymmetric system we considered
above. Note that the Yukawa terms are essential to this result, since here we are still
considering 1 < m, so that without the mixing terms the fermions would be free to leading
order, and would not develop a Fermi surface until p > m.

However, as we have seen, when electric neutrality is taken into account, as it must be

in N = 1 sQED, the story is very different.
4.4 Softly broken N =2 sQED at finite electron num-
ber density

4.4.1 Scalar Ground State

We start by attempting to work with the most obvious A/ = 2 generalisation of our N' = 1
toy model. As the field content of our N' = 2 sQED model, we will use essentially the
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Figure 4.1: A solution for the Fermi momentum pr which would have been obtained if we had
ignored the constraint of charge neutrality, and worked with a system including electrons only.
For simplicity we set £ = m/g. In this case the infinite volume does not make sense, unless one
modifies the theory by removing the gauge fields but keeping all else fixed.

same chiral ‘electron’ and ‘ion’ super fields as the N' = 1 model, with the following changes.
First, we must add an extra ‘adjoint’ N/ = 1 chiral multiplet A which contains an extra
Majorana photino y and a scalar a, which combines with the A/ = 1 vector multiplet to
form the N/ = 2 vector hypermultiplet. Second, the scalar fields from the N/ = 1 chiral
multiplets, ¢, and (bT_, combine to form a single N' = 2 matter hypermultiplet.® The
same goes for the sion fields. Finally, to be consistent with A" = 2 supersymmetry, the

superpotential must be modified to (in /' = 1 language)
W=m (D0 +QiQ )+ V2A (2,0 +QQ-), (4.34)

where @, ®_ are the electron-multiplet superfields and @), ) are the ion-sector super-
fields. The tree-level Kahler potential is the same as before with the obvious changes to
account for the discussion above. We continue to include the FI term in the theory. This

N = 2 gauge theory has the scalar potential

2
Ve = |V2gasml| (162 +10- + la: + la-I") +29° (60— + q0-) (o107 +dld')
2
g 2
+ 5 (164 = 1o +lasl® — la-* =€) =2 (04 + 10— +la +1a-) . (4.35)

and has the same U(1), x U(1); symmetry as the N' = 1 theory, but also has an SU(2)r
non-anomalous R-symmetry. We explore the response of N' = 2 sQED to an R-charge
chemical potential in Section 4.5, and focus on the U(1), x U(1); symmetries here. The
transformation properties of the matter fields are given in Table 4.2. Recalling the com-
ments about the way ¢, and gbi enter the N' = 2 theory above, and noting that the fields
a and ¢ do not contribute to the electric charge density, we find that the gauged (electric)

8The hypermultiplet contains the conjugate of ¢_ since the gauge generators commute with the super-
symmetry generators and hence all fields within a multiplet have the same gauge charges.
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Transformation Properties in /' = 2 sQED

Fields: w qﬁ+ ¢_ n qs q- A X a
Ul | e e e™@o_ q+ - A X a
U) | ¢ ¢y ¢ e’ etqy e A X a

Table 4.2: Matter field transformation properties under the U(1), and U(1); symmetries.

charge density is unchanged from Eq. (4.13),

Q = — 97°% +i[0L(9 + ip)dy — (o +in)dy) o]
+io" (9o — ip)d— — (Do — ip)p-) o]
+ 117" + ilgk (0o — im)ar — (B — in)qs) ay]
+ilg" (9o + ip)g- — (0o + im)g-)Tq-]. (4.36)

Unfortunately, it turns out that once p is turned on the scalars do not have a stable
ground state, since there are run-away directions in the scalar potential. The quickest way

to see this is to observe that minimizing Vg for a implies that a picks up a VEV

(a) = (4.37)

m
_\/__29.
Heuristically, apart from the surviving group of terms in the first line of Eq. (4.35), the
potential for ¢ 2, g1 2 is the same as the massless limit of the potential in the N' = 1 case,
for which there would be no stable solutions once p > 0, even when a FI term is present.
The new terms demanded by /' = 2 do not save the day if there is more than one flavour
hypermultiplet.

We have not figured out a way to prevent the emergence of run-away directions in the
scalar potential in two-flavour A = 2 sQED, but it is possible to get some insight into
what the supersymmetric interactions do to Fermi surfaces by modifying the theory above

in two simple ways:

A: Work with A/ = 2 sQED with only one flavour. This means giving up on elec-
tric neutrality, and requires a hard breaking of supersymmetry to be sensible in the
infinite-volume limit, much as in Section 4.3.3. We defer a discussion of this case in

Section 4.4.3.
B: Keep the ion fields, but add some soft SUSY-breaking terms.

Given the title of this section, we proceed with option B, and work with a theory defined
by

L= Ly—o+m?(|o4* +10-” + g+ 1>+ la-I?) , (4.38)
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where Lp—o is the Lagrangian of N' = 2 sQED with electron and ion superfields we
presented above, and my is the soft SUSY-breaking mass.

Minimizing the softly-broken scalar potential with respect to a, we again get (a) =

—__m

N The condition for the remaining scalars to have a stable condensate is

m2 — g’ <y’ <m, (4.39)

where m, is the soft mass we introduced above. If the lower bound is violated none of
the scalars condense, while if the upper bound is violated there is a runaway direction. If

Eq. (4.39) is satisfied, the scalar VEVs must obey the relations

p? — (m2 — g°¢?)

64" + lg1|* = e : ¢-| = la-| = 0. (4.40)

Taking into account the electric neutrality constraint means that the scalar VEVs become
2 2 2¢2
= (ms = g°¢)

64 ° = |qi|* = 27 : 6-| =lg-| = 0. (4.41)

4.4.2 Search for a Fermi surface

The fermionic terms in the Lagrangian are the same as in Eq. (4.24) together with the

additional terms

1_. - - _ _
L/\/:2|fermions - E./\/:1|fermions + 5)@@)( - \/ﬁg (G¢P—¢ + GWP+¢ + C”]P—Tl + GTTIP+7])
= V2g (9GP X+ 6, XP + 6L XP.w + 6L 0P, x) (4.42)
—V2g <Q—77P—X +qiXPon+ ¢ xPin+ fﬂﬁﬂx) -

Again, once the scalars pick up VEVs, all of the fermionic fields mix with each other, and
seeing the effect of the chemical potential requires diagonalising the kinetic operator. To
look for a Fermi surface, paralleling the approach of Section 4.3.2, we introduce a single

column vector collecting all of our two-component spinors

. . N\T
U = (wLa w;za )\a XTa NLa 77;;) . (443)

This allows us to rewrite Eq. (4.42) as

ﬁN:2|fermion - \IIT : MN:2 : \I[, (444)
where
i (Op — ipdp0) 0 0 fg\/iqﬁl 0 0
0 ioh (au - 7;“5#0) Zg\/§¢i 0 0 0
0 —igv2¢4 it o), 0 0 —igv/2q4
MN?Q - —gV2¢4 0 0 oM 0y —9v2q+ 0
0 0 0 —gv2¢}  ia# (O + ipduo) 0
0 0 igV2q, 0 0 io™ (D + ipdu0)
(4.45)
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Going to momentum space, calculating det(My—2) and setting py = 0, we obtain

det(Mar=2)|pomo = P? (4|04 [> — 1® + )"
% (20%] 64 [ (1 +p) + (0 — 1) (26%)a4 > + p(p + p)))
x ((p— 1) 2214 P> + plu +p)) + 26104 (1 +p)) | (4.46)

where we have used the charge neutrality relation between the scalar VEVs. If the scalars

condense, we can plug in Eq. (4.41) to get
det(My—2)[p—0 = p* (1* — 2m? +2¢%€* +p?)". (4.47)

Looking for a value of p # 0 which would make this vanish, we find that pr would have to
satisfy the relation

!
p; =2m? — p® — 297> > 0. (4.48)

This relation will be satisfied if

2 2 22
pe < 2(mg —g°¢). (4.49)
rr rr
mg my
08¢ , . 08¢ . .
06" : : 06" v
04} ; 04}
1] 1] \
0.2} ; 02} \ -
‘ ‘ o ' K ‘ ‘ o \ ' M
02 04 06 08 10 12m, 02 04 06 08 10 12m

Figure 4.2: Left: Fermi momenta as a function of y with g;—g; = 0.4. Right: Fermi momenta as
92 2 °

a function of p with = 0.6. The area between the dashed lines is the region where the scalars

m3
are condensed and stable. Values of u to the right of this region make the scalars unstable, while
to the left, the scalars are not condensed. Note that past g?¢2 > m?2 | where the scalars are always
condensed, there is no Fermi surface.

We are now in a position to classify all the things that can happen to the fermions in
this theory. To begin with, if y? < m? — g?¢?, then the charged scalars do not condense.
The fermion sector consists of massless gauginos and massless matter fermions, which to
leading order are free. Since the matter fermions feel the chemical potential, there is a
fermi surface at pp = p. Since the charged scalars are not condensed, the system is not a
superconductor (before considering fermion pairing effects), and it is natural to speculate

that the physics in this regime resembles that of conventional QED plasmas.
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Next, if m2 — g2¢% < p? < 2m? — 2¢%¢% and p? < m?, the theory is stable, the charged
scalars are condensed, so that the quantum liquid is a superconductor, and there is a Fermi
surface.

If 2m?2 —2¢%¢? < pu? < m?, the scalar sector is stable, with the charged scalars condensed
and hence a broken U(1)g, so that the system is a superconductor. But now there is no
Fermi surface.

Finally, if m? < u?, the scalar sector becomes unstable, and there does not appear to
be a sensible finite-density ground state.

To help visualise the behaviour of the Fermi surfaces in this theory as a function the
parameters, see Fig 4.2. As seen in the plots, as the scalar condensates get larger, the Fermi
momentum decreases. naively, one could interpret Fig. 4.2 as implying that more and more
of the charge in the system leaks from the fermions into the scalars as y is increased enough
to make the scalar condensate start growing. But see Section 4.6 for a result which suggests

that this is not necessarily the case.

4.4.3 Non-supersymmetric cousin of N = 2 sQED

We now briefly return to Option A from Section 4.4.1, where we start with N’ = 2 sQED
with one matter hypermultiplet, and delete the gauge fields just as in Section 4.3.3 to avoid
problems with electric neutrality. This is a hard breaking of supersymmetry.

The scalar potential is now
2
Ve = [Vaga+m| (194 +16-P) + 26710 Plo-?
2
g 2
+ 5 (10 = lo-I = €)" = ® (o= * + |o-I) (4.50)

The VEV of a is still given by Eq. (4.37), but now there is a stable minimum for the other
scalar fields as well, as can be seen by rewriting the potential in the manner of Eq. (4.15).

If £€2 > 0, minimizing Ve(f?) leads to

- #2_|_g2£2

X T o-|* =0, (4.51)
while if €2 < 0, we get
2 22
o = I 6. =0, (4.52)

(At £ = 0, both scalar fields can condense, but for simplicity we do not consider this case
further.) As we have been saying, in this case there is no way to solve the charge neutrality
constraint within the scalar sector. If it were possible to adjust the chemical potential

which couples to the electrons independently from the one which couples to the selectrons,
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one could imagine that this electron chemical potential could be dialed in such a way that
the electrons would carry a charge density which precisely compensates that of the scalars.
But the structure of our supersymmetric theory does not allow us to introduce such an
independent chemical potential for the electrons, because the Yukawa interactions do not
respect the U(1) electron-number symmetry of the free action.

Hence, the solutions obtained in this section cannot yield an electrically-neutral back-
ground. Of course, since we have deleted the gauge fields from the theory with malice
aforethought, this is not a problem.

We now start the search for a Fermi surface for this non-supersymmetric theory. Again,
the diagonalisation of the fermion sector after scalar condensation is much easier if we
switch to two-component notation. So long as €2 # 0, Lxr—2fermions can be written in a
matrix notation without introducing Nambu-Gorkov spinors, but at £ = 0 we expect all of
the scalar fields to develop non-trivial VEVs, making the analysis more involved. To keep
things as simple as possible, we only discuss the ¢2 # 0 case in this chapter. Moreover, as
our previous discussion makes clear, to understand what happens for £2 # 0 we can focus
on &2 > 0.

Paralleling the approach of Section 4.3.2, we introduce a single column vector collecting

all of the two-component spinors

1 té AT
g = (¢La o, X*ﬂ) . (4.53)
We rewrite Eq. (4.42) as
‘CN:2|fermion = [\Ij(l)]T : M'/(\/l’)zg : \D(l), (454)
with
i+ (0 — i116,0) 0 0 —gv2el
0 o™ (0, — ipdu) g2 0
M, = w = tHOuo + 4,55
N=2 0 —igV26, i, 0 (4.55)
—g9V20, 0 0 io*d,

Computing the determinant of M/(\})ZQ in frequency-momentum space, we find that the

dispersion relations for the fermions are

1
Po=5 (—M + \/89%1 + 4p® £ dpp + MQ) : (4.56)

But one can now check that there is no value of p* = p% > 0 such that there is a solution
to the equation above for po = 0. Thus there is no Fermi surface if we work with the
non-electrically-neutral state in the AV = 2 theory with only one flavour hypermultiplet,
or in the healthy but non-supersymmetric theory with the gauge fields removed. Note the
contrast of this result with what we saw in Section 4.3.3, where the analogous theory had

a Fermi surface.
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4.5 N = 2 sQED with a finite R-charge density

In this section, we will consider N' = 2 sQED with one matter hypermultiplet. As we
mentioned in the previous section, N' = 1 sQED has a U(2) = U(1)gr x SU(2)r R-
symmetry group. The U(1)g subgroup is anomalous, whereas the SU(2) g remains anomaly
free.  We focus on the anomaly-free symmetry. The SU(2)gr symmetry acts by matrix
multiplication on the Weyl doublet (A, xo) from the vector hypermultiplet and the charged
scalars (¢, ngT,) from the matter hypermultiplet. The remaining fields in the theory are
SU(2)g singlets.

We can describe a system with a net R-charge by introducing a set of chemical po-
tentials pu, for the R-symmetry charges. Any conserved charges ), that one wishes to
introduce into the grand canonical partition function change the Hamiltonian by a shift,
H—=H -, @y However, the @, charges must commute with each other in order to
be simultaneously observable, as discussed in Section 2.1.4. This means that ), can only
belong to the maximally commuting (Cartan) sub-algebra of the non-Abelian algebra of
the charge operators. In our case this must pick a single U(1)g C SU(2)g to which we
associate the chemical potential pg. Furthermore, since this is a global un-gauged symme-
try we do not have to worry about making the system neutral with respect to U(1)g. Of
course, we still have to make sure we maintain electric neutrality!

Define the SU(2)r doublet fields
A
“ . 4.57
() (457

o= (z;_*) , T,
P — TP, U, — ™0, (4.58)

Our anomaly-free U(1)g subgroup acts on these fields as

where 73 = 03, the diagonal Pauli matrix.

Hence, the ugr chemical potential enters the Lagrangian in the following way

L= (V,)o"D,V, +|D,®?+..., (4.59)
where we define’
D,® =0, —ipurT30,0 + igA,, D,V =0, — iftrT30,0. (4.60)
The R-charge density is
Qr =0V +i | (0y — ipprs) 3P — [(Oy — iptrTs) TgCI)]T o, (4.61)

9Recall that the fields in the vector hypermultiplet transform in the adjoint representation of the gauge
group, and hence are neutral under the Abelian U(1) gauge symmetry, while ¢+,¢T_ inside ® have the
same non-zero electric charge.

78



while the electric charge density is

For future reference, note that if ¢,,¢_ acquire identical time-independent VEVs, then
Qr # 0, while Qgp = 0. This is the key to ensuring that a finite R-charge density does

not violate the electric neutrality condition.

4.5.1 Scalar ground state

We look for time-independent scalar ground states, and work in unitary gauge, as we have

done throughout the chapter. The bosonic potential with the pg contributions included is
2
Ve = [Vaga+m| (19 +16-P) + 2464 |6 (4.63)
g’ 2 2 2\ 2 2 2 2
F L (10 = 16 =) = i (194 + 16,

where a is the scalar from the vector hypermultiplet. This theory always has a stable
non-trivial ground state when pgr # 0, which can be seen from the fact that there is no

attractive |¢|?|¢_|? term in the potential. Just as before, a picks up the VEV
(4.64)

which is independent of £&. We will see below that charge neutrality requires that we set
€2 =0, so we drop ¢ from here onwards. Minimizing the scalar potential for the remaining

fields we find the condition
2 2 /ﬁz
0+]" +lo-|" = el (4.65)

To see the consequences of electric neutrality, recall that d)T_ feels a chemical potential —ug
compared to the field ¢, which feels a chemical potential ur. Recalling the expression for
the electric charge density, it is clear that electric neutrality in the scalar sector will be

ensured if they have the same VEVs,!? leading to

0, = o = 2 (466)
292

Since these VEVs are non-zero for ugr # 0, and the scalars are charged, the U(1) electro-
magnetic symmetry is broken, and the system is a superconductor. Of course, the charged
scalars also transform non-trivially under U(1)g, so the R symmetry is also spontaneously
broken once they develop VEVs. Indeed, since both scalars develop VEVs, the R symmetry

is completely broken.

101f we had allowed & # 0, then the masses would of ¢_ and ¢, would be split, and this argument would
not work.

79



4.5.2 Search for a Fermi Surface

Paralleling the approach of the preceding sections, we again introduce a single column

vector collecting all of the two-component spinors
U = (V0 tra A X19) (4.67)
and rewriting Eq. (4.42) as
Lr=2ltermion = [P - ME_, - U, (4.68)

Now, of course, the structure of M¥_, is different, since the gauginos feel the R-charge
chemical potential, and the matter fermions are rendered effectively massless through the

VEV of a, so that

i"0), 0 igV/2¢_ —gV2¢),
0 i —igv/2¢ —gv2¢"
ME . — _ w . + 4.69
N=2 _ig\/§¢i Zg\/ﬁﬂﬁ o (10 — prOp0) 0 ( )
—gV20.  —gV2¢_ 0 o' (10, + HRrOu0)

Once we set ¢ = ¢_ = ¢ in view of Eq. (4.66), the determinant of M7¥_, takes a relatively
simple form. In fact, we find it instructive to write in two different ways. One way to write

it is

det My_, = ([p§ — p*] [(po + 1r)? — P°] + 86761 [p* — po(po + 1r)] + 169 |¢|")
x ([ps = p*] [(po — r)* — P°] + 89%|0|* [p* — po(po — pr)] + 16g*|0[*) . (4.70)

This form makes it easy to see that the g?|¢|> = 0 consistency check is satisfied, where
the determinant must reduce to one expected for four massless Weyl fermions, two without
chemical potentials, and two with opposite-sign chemical potentials. But the dispersion
relations for g?|¢|? # 0 are hard to see in this form.

The other way to write det M%_, is

4

det Mﬁ:z = H [(Po - ﬂi)2 — (Ip| + Hz’)z + 492|¢|2} ) (4.71)

=1

where

fie = fR/2, fiza = —[ir/2 and K13 = [R/2, Koa = —R/2. (4.72)

This makes the form of the ¢g?|¢|?> # 0 dispersion relations for the eigenmodes manifest.
These dispersion relations are simple but quite unusual.

Setting po = 0 to look for a Fermi surface, we find

2
det M{_,|p=0 = (0" — p* (17, — 8¢%8]*) + 164" 0]")" . (4.73)
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If g%|$|* were zero, then there would be a Fermi surface at p% = p?. For general g°?|¢|?, the

Fermi momentum would have to satisfy the relation

1 2
Pr = 1 (,UR £\ 1R~ 1692|¢!2) > 0. (4.74)

In N' = 2 sQED, minimizing the scalar potential leads to a VEV [¢]* = u%/(2¢°%). As a

result
2
det My olpo—o = (4pik + p* + 3u7p")", (4.75)

which has no real zeros. Hence the fermions in N' = 2 sQED with a chemical potential for
R-charge do not have a Fermi surface.

It is important to realise that the general structure of the fermion interaction terms
in this theory is, in and of itself, compatible with the existence of Fermi surfaces, even
after U(1) breaking. What prevents a Fermi surface for the fermions from appearing is
the precise relationship between the normalisation of the Yukawa terms and the scalar self-
interaction terms, which is dictated by supersymmetry. To see this, consider modifying
the Yukawa couplings by changing g — ge and leaving everything else, including the scalar
sector, unchanged. When € = 1, the theory is supersymmetric, but not otherwise. The
potential Fermi momenta are then modified to

2 2
ph = ‘;—R (1 VI 8e2> > 0. (4.76)

Tuning € < 1/(2v/2) < 1, a Fermi surface appears. Of course, in N' = 2 sQED, we are
not allowed to vary the Yukawa couplings independently of the scalar potential, and we are

stuck with € = 1, where there is no Fermi surface.

4.6 Fermion charge density without a Fermi surface

In the preceding sections we have seen that supersymmetric gauge theories and their cousins
often do not have Fermi surfaces, despite the fact that the chemical potential couples to the
fermions. How should this result be interpreted? Perhaps the simplest interpretation is that
in the Fermi-surface-less examples all of the charge which would normally be stored by the
fermions ‘leaks out’ into the scalars through the Yukawa couplings. In this scenario, when
the fermions have no Fermi surface, the charge density would only receive contributions
from the scalar fields.

In this section we show that this interpretation cannot be correct in general by explicitly
computing the charge density () in a theory with fermions and scalars where no Fermi

surface develops at finite u. The theory we consider in this section is chosen so as to simplify
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the calculation of the fermionic contribution to ). We will see that this contribution is
non-vanishing.

The general idea of the calculation is to evaluate the T' — 0 limit of the fermion
contribution to the ‘grand potential’ 2 = u — T's — u@), where u is the internal energy

density, s is the entropy density, and @ is the particle number density. 2 also obeys
T
Q=——logZ 4.77
08 Z, (4.77)

where Z is the grand canonical partition function, 7' is the temperature, and V is the
volume of the system. The contributions to ) can generically be split into a contribution

from fermionic plus a contribution from bosonic energy eigenmodes, so that
Q= _Qfermions + Qbosonsa (478)

where the minus sign accounts for fermionic statistics when evaluating the fermion deter-

minant in Z. We write Q¢ermions and Qposons as

dp E,;
Qfermions = Z / (27Tp :

1 € particles, antiparticles

+ Z / il 1og +e ’”J”‘)/T} (4.79)

1 € antiparticles

d3p E,;
Qbosons - Z /(27_‘_

i € particles, antiparticles

+ Y / P = log [1 — e~ Fritm/T] (4.80)

i € antiparticles

p

log _|_ e Ep,i N)/T]

i € particles

p log P i ,u,)/T]

i € particles

The dispersion relations E,; one should use above are the ones appropriate to the interact-
ing theory. The forms above follow from a number of formalisms, with standard statistical
mechanics arguments being perhaps the most physically transparent.'! The charge density

can now be defined as

Q=—=. (4.81)

Note that the quantity ) defined in this way makes sense even when symmetry associated
to p is spontaneously broken, as in the case of interest below. (Essentially, in the condensed

case, QV is the charge carried by a macroscopic condensate with volume V'.)

1 Another way to obtain Eq. (4.80) is to observe that e.g. Qltermion = —7'108 Z|termion = —trlog Mp,
where Mp is the appropriate Dirac operator taking into account interaction corrections to the fermion
propagators, compute the trace log using one’s choice of finite-T formalisms, Matsubara or Schwinger-
Keldysh, discussed in Chapter 3, and then take the 7" = 0 limit. Or one may use a 7" = 0 pole prescription
(which is derived from the results of the finite-T approach) to evaluate the trace log directly at 7= 0. No
matter the formalism, the result is of course the same.
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We define the fermionic contribution to () as

89fermions
ermions — . 4.82
Q. o (4.82)

So to compute Qfermions, Were must therefore first evaluate Qgermions-
The theory we will focus on has two Majorana fermions A, y, one Dirac fermion 1, and

one complex scalar ¢, with interactions defined by the Lagrangian

1. | .
L= 5019+ pr0) A+ 5X (19 = p2°) X+ Dighp + | (9 + i) S
+ige (TP — 9TAP_1) — AP + G Py N)
2
— e (9UP-x + OXP-1 + 6 XPrv + 610 Prx) — Tlof' + Lo, (4.83)

where g and e are dimensionless parameters characterizing the relative strengths of the
scalar self-interactions versus the Yukawa interactions, while p is a chemical potential for
a U(1) symmetry acting as ¢ — eT@@, A — e\, x — e™@y. Finally, Lo collects the

counter-terms necessary to renormalise the theory
Lo = (6Ac)* + (6m)?[o]* + ..., (4.84)

and we have written only the vacuum energy (dA..) and scalar mass (6m)? counter-terms
explicitly since it turns out that they are the only ones we will need to compute Qfermions
to the order to which we work.

Our choice of the theory described by Eq. (4.83) is inspired by ' = 2 super-QED with a
single matter hypermultiplet with mass m and a U(1)g chemical potential pg. Specifically,
the version of Eq. (4.83) with e = 1 can be obtained from the ' = 2 theory by the relations
A, =06y =¢_=¢/V2, a=-m/(gv2), and g = p. For our purposes in this section,
the case e = 1/ V2 will turn out to be the easiest to analyze. From the discussion at the
end of Section 4.5.2, it follows that the fermions in the theory we consider in this section
have no Fermi surface so long as € > 1/(2v/2), and this is the regime we focus on in this
section.

Before looking at the interesting examples of what happens when ¢ > 1/(2v/2), we
quickly review the textbook calculation of the charge density () carried by a non-interacting
Dirac fermion with a chemical potential y, which help us stay oriented during calculations
in the interacting theory, which work out in an unusual way. Following the discussion

above, we write

d*p E d3
—SUT, pt)Dirac = 4/ oP Ty + 2T/ —2 log [1 + e’(EP’“)/T}

(2m)3 2 (2m) (4.85)
\ .
+2T / (;i—’;g log [1 + e~ (Brti/T]
T
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where E, = \/m is the free-fermion dispersion relation. The first term is known as
the ‘vacuum’ contribution, while the second two terms are the ‘matter’ and ‘anti-matter’
contributions respectively. The factor of 4 on the vacuum term counts the total number
of degrees of freedom (spin up and spin down particle and anti-particle modes), and the
factors of 2 on the matter terms have the same origin, accounting for the spin up and down

contributions. In the zero-temperature limit, and with g > 0, this reduces to

Ui =4 [ 55 P42 [ G (= Boi— By (4.86)

where 6 is the Heaviside step function, and 8(p — E,) = 0(pr). Of course, the anti-fermion
contribution has dropped out at 7" = 0.

For the free Dirac fermion, the ‘vacuum’ term is obviously independent of u, and is
irrelevant for the charge density. Setting m = 0 for simplicity and evaluating the remaining

‘matter’ term we obtain
4 3

1
- QDirac = Qa

- (ﬂ) Dirac —

which is the standard result [179].
We now turn to the calculation of the fermion contribution to ) in the toy theory
described by Eq. (4.83). From Eq. (4.71) and Eq. (4.72), we see that we have four eigen-

modes contributing to €2, with

2 2 2 2 2 .
E,; = (lpl+r:)” +2eg7|o], i=1,2,34, (4.88)

2 = p2/g2.12

Note that fi; with ¢ = 1,2 are positive, while ji; with ¢ = 3,4 are negative for u > 0. Also,

with the i-th mode having the chemical potential ji;, but now we have [(¢)

we observe that Eq. (4.88) describes eight fermionic degrees of freedom, since we have four
Weyl fermions coupled to each other when € # 0.

These dispersion relations are highly unusual, and are a consequence of the spontaneous
U(1) breaking driven by scalar condensation communicated to the fermions through the
Yukawa couplings with strength set by e.!* Hence in addition to exploring the behaviour
of the € = 1/4/2 theory, we also verify that the ¢ — 0 limit yields the expected free-fermion
results.

We now write down the fermionic contribution to €2, working with general e for the
moment. Note that in view of the signs on the ji;’s, when writing down the matter con-

tributions to 2 at T" = 0 we must take into account the particle contributions for the first

12The normalisation of ¢ used in this section differs from the one used in Section 4.5, with ¢pere = Pthere/2,
so that the kinetic term of ¢pere in Eq. (4.83) is canonically-normalised.

131t would be interesting to explore what happens if the U(1) symmetry is broken both spontaneously
and explicitly, by U(1)-violating mass terms. However, the dispersion relations become very complicated
in this case, and the integrals determining the fermion contribution to grand potential 2 appear to become
analytically intractable.
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two modes, while for the second two modes we have to take into account the antiparticle

contributions. Adding up the contributions, we get

&y E,;

_Q |ferm10n - 22 / p 57
+Z/d_p (iii — E,3) 0(iis — B,,)

2 amyp e B 0=

+ ;/ (;i];?, (=i — Epi) 0(—f1i — Ep). (4.89)

We begin by making sure that the € — 0 limit of —|¢ermions behaves as expected in view
of the fact that at ¢ = 0 no spontaneous U(1) breaking is communicated to the fermions. In
the € — 0, we know that the fermionic part of the theory described by Eq. (4.83) becomes
a theory of a single free massless Dirac fermion that feels a chemical potential y, and two
free Weyl fermions which do not feel the chemical potential. So as € — 0, we must recover
get Eq. (4.87). As already noted in Section 4.5.2, the dispersion relations in Eq. (4.88)
behave in a very peculiar way in this limit, so the way the consistency check is satisfied is
surprisingly subtle. Evaluating Eq. (4.89) and taking the ¢ — 0 limit, and canceling the
standard UV-divergent vacuum energy contribution by adjusting the dA.. counter-term,
we find that

4 7 4 4
_Q<:u)fermi0n = ( a + 2 % K ) - M— (490)

9672 19272 1272’

which matches Eq. (4.87). It is unusual that the first piece above comes from the vacuum
term, while the second comes from the matter and anti-matter terms. The fact that the
vacuum term makes a p-dependent contribution to €2 is a consequence of the peculiar way
we must write the dispersion relations at € = 0 to keep them diagonal when ¢ > 0.

Now consider the same calculation when e > 1/(2v/2). The ‘matter’ terms in Eq. (4.89)
vanish, which is the expected signature of the lack of a Fermi surface. The ‘vacuum’
contributions have UV divergences, as is usually the case, and must be regulated and
renormalised. For our purposes here, a simple momentum cut-off regulator A is sufficient,
since we are considering a Yukawa theory, see Eq. (4.83), which is a classic case where

cut-off regularisation is particularly efficient.'* We obtain

4Dimensional regularisation (DR) is also often an efficient regulator. However, the highly unusual
Lorentz-breaking dispersion relations that result after symmetry breaking make the standard DR formulas
inapplicable. Rather than common Gamma functions the analytically-continued integrals have to be written
in terms of Appell functions (hypergeometric functions in two variables) in DR. However, the necessary
asymptotic expansions of these functions are rather complicated [180], hence, DR will not be used in this
calculation. In any case, it is a standard principle of quantum field theory that if one obtains a finite and
cut-off independent expression for an observable, using a systematic regularisation and renormalisation
procedure, any other regulator would give the same final expression.
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The power-law divergences above (together with any other ones coming from the non-
fermion parts of €2) are trivially cancelled off by appropriate cosmological constant and
scalar mass counter-terms from Eq. (4.84). For generic €, one also has to turn on |¢|*
counter-terms at this order, and this would lead to the need to renormalise g to compute
Qfermions-

However, if we consider a theory with € = 1/ v/2, then on the one hand there is still
no Fermi surface since 1/v/2 > 1/(2v/2). On the other hand, at the order to which we
work above there are no logarithmic divergences proportional to |¢[* or |¢|*. Hence in the
theory with € = 1/4/2 we do not need to introduce a |¢|* counter-term and renormalise
g to compute Qfermions t0 leading order. Since consideration of the theory described by
Eq. (4.83) with € = 1/4/2 is sufficient to make our point, we set ¢ = 1/y/2 from here
onwards.

We are now in a position to write down the renormalised expression for Q¢ermion:

4 3
VI T Qi = 0 (42)

—Q ermion
fermion| 9672 2472

Note that this has the same parametric dependence on p as Eq. (4.87), but a different
numerical coefficient. Looking back at Eq. (4.61) for the total U(1)g charge, we see that
in the ¢ = 1/4/2 theory it is

2u 178
Q| R (4.93)

where the first term is the tree-level scalar contribution from the scalars, the second is the

leading fermion contribution,®

and the ellipsis denotes the one-loop scalar contribution
and higher order terms. This example shows that fermions can contribute to a charge
density @, as defined by Eq. (4.82), even when there is no Fermi surface. We emphasise
that this unusual result is obtained in the unusual situation where the U(1) symmetry
associated to () is spontaneously broken due to scalar condensation. For this reason, there
is no conflict with Luttinger’s theorem, which relates Qfermions t0 the volume of the Fermi
surface, because Luttinger’s theorem assumes that the U(1) symmetry is not spontaneously

broken.

15 As usual, the fermion contribution comes from a one-loop calculation, just as in the free case: fermions
are intrinsically quantum objects.
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Before closing this section, we find it illuminating to discuss how our results would be
modified in a theory with a more complicated mass matrix. In any free theory with fermion-
number symmetry preserving Dirac masses, the mass matrix can always be diagonalised by
a linear transformation of fields with the same charge under the symmetries of the theory.
After this procedure, the system is equivalent to one with free massive Dirac fermions that
feel a chemical potential. The dispersion relation for the mode ¢, with mass mp; that

experiences a chemical potential u; is then given by
(E; — Mz’)Z = ‘P’Q + m%,i‘ (4.94)

Consequently, the charge of the system is necessarily stored in Fermi surfaces, which would
appear if there are modes with p; > mp;. The same statement would apply in any weakly-
interacting system in which the interactions do not produce effective mass terms which
break the fermion number symmetries. Such systems satisfy the assumptions that go into
Luttinger’s theorem, and their behaviour will necessarily follow its predictions. Symmetry
preserving masses can never lead to dispersion relations of the form of Eq. (4.88), as they
will never produce shifts of |p|, i.e. |p| + k;, which lead to linear terms in |p|. Hence, the
g*¢? term in Eq. (4.88) cannot be thought of as m?,, where mp is a Dirac mass.

The ‘mass terms’ that arise as a result of a scalar VEV in the Lagrangian (4.83) spon-
taneously break the U(1) R-symmetry. For example, the term ige <¢T> Y P_\ couples (a
component of) the state A, which is charged under the symmetry, to ¢, which is uncharged.
The only way to write down a mass term which appears in the non-standard dispersion re-
lations in the same way as ¢g2|¢|? does, without spontaneous symmetry breaking, is through
explicit symmetry breaking. Such a mass means that the mass matrix cannot be diago-
nalised by a rotation of fields with the same charge, as opposed to in theories containing
only Dirac masses. This is not surprising, in light of the fact that such terms in the disper-
sion relations break the assumptions going into Luttinger’s theorem. Such mass terms may
arise from symmetry-breaking Majorana mass terms, which would be an explicit rather
than spontaneous breaking of the symmetry.

A potentially interesting calculation would be to find the charge stored in a system,
qualitatively different from N = 2 theories, which contain both symmetry-preserving Dirac
and symmetry-violating masses from spontaneous symmetry breaking by a scalar (or alter-
natively, symmetry-breaking Majorana masses). However, the dispersion relations in such
systems are extremely complicated, and even in cases where closed forms for these can be
obtained, the integrals to evaluate the grand potential become very cumbersome. It would
be interesting to return to this problem in future, particularly in simple non-supersymmetric

theories where the dispersion relations may be tractable.
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4.7 Discussion

The most familiar finite density low-temperature systems that involve chemical potentials
coupling to fermions are Fermi liquids. The applicability of Landau’s Fermi liquid theory

requires two basic features:

1. A Fermi surface, showing up as e.g. the locus in spatial momentum space where the

inverse fermion propagator vanishes when pg = 0.
2. Having short-range interactions amongst its degrees of freedom.

These two properties lead to the existence of well-defined quasiparticles and all of the
familiar Fermi liquid phenomenology like Landau’s zero sound, a specific heat linear in
temperature, etc.. Examples of theories which do not fit into this paradigm are intrinsically
interesting, and come about when one or both of these properties fail to hold.

Obviously, free systems satisfy both assumptions. Perhaps the simplest non-trivial
example of a non-Fermi liquid, which also happens to be relevant to this chapter, is the
non-supersymmetric electron plasma described by QED, which satisfies (1), but does not
satisfy (2), as reviewed in Sec. 4.2. When there are strong attractive interactions among
the fermions, one can also easily imagine (1) failing due to the formation of bosonic bound
states. The bosonic states obviously do not have a Fermi surface, and at low temperature
would typically tend to Bose condense instead. If there are only parametrically weak
attractive interactions between the fermions, then while the fermionic Green’s function
will have a sharp Fermi surface singularity at any finite order in perturbation theory, the
BCS mechanism generally leads to the formation of Cooper pairs and a non-perturbative
BCS gap, A ~ pe Y9 < i ~ pp. The Fermi surface then gets smeared out by a non-
perturbatively small amount A/ppr < 1. Systems showing both sorts of behaviour are well
known, and have been explored in e.g. the context of the so-called BCS-BEC crossover in
cold atomic gases [156,181]. Note that in both of these examples the U(1) particle number
symmetry of the fermions becomes broken by composite scalar condensation. Luttinger’s
theorem does not apply once this happens.

It is much less obvious to see how a Fermi surface could disappear in perturbation theory,
in the limit of arbitrarily weak interactions, where one does not expect the fermions to be
able to form bosonic bound states. Indeed, so long as Luttinger’s theorem is applicable, such
a thing should not happen. But 4D supersymmetric theories always have elementary scalar
fields, which couple to fermions, and these could condense even at arbitrarily weak coupling.
So for weakly coupled supersymmetric theories, the existence of Fermi surfaces is indeed

questionable. Our results indicate that at least some theories with interactions of the types
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found in supersymmetric gauge theories fail to satisfy (1) due to scalar condensation driving
quadratic mixing between Dirac fermions, which directly feel the chemical potential u, and
Majorana fermions, which do not. Luttinger’s theorem does not apply because of scalar
condensation, which breaks the relevant U(1) symmetry. There does not appear to be any
modified Luttinger relation of sort explored in [156] that one could define in supersymmetric
QED, because of the lack of separate fermionic and bosonic number symmetries.

Furthermore, as explained in Section 4.2, in supersymmetric QED, this mixing is order
one, even when the gauge coupling is arbitrarily small. In a sharp contrast with the other
examples in which Fermi surfaces are endangered by interactions, in supersymmetric QED
there is no parameter which we could tune smoothly to interpolate between a regime where
there is a perturbative Fermi surface to one where there is not. The physics at any g > 0 is
sharply different from the physics at g = 0. After the diagonalisation which takes into ac-
count the scalar-condensate-induced mixing, the fermionic eigenmodes have highly peculiar
dispersion relations with a complex dependence on i, and when the smoke clears we do not
see a Fermi surface in any of our supersymmetric examples. In our non-supersymmetric
examples, with hard and soft breaking of SUSY, where Luttinger’s theorem also does not
apply, whether a Fermi surface appears depends on the values of the parameters. Perhaps
this should not come as a surprise: just because Luttinger’s theorem is not available to
shield the Fermi surface from danger, this does not imply that interactions must destroy
the Fermi surface. This is illustrated by our non-supersymmetric examples in Section 4.3.3
and part of Section 4.5.2, where the relevant U(1) is broken, but there is nevertheless a
Fermi surface. But in our supersymmetric examples, it does turn out to be the case that
turning on any non-zero interaction, which results in the U(1) breaking, obliterates the
Fermi surface. Finally, we again emphasise that our supersymmetric examples all led to
superconducting ground states, with the U(1) breaking driven by charged elementary scalar
condensation, as opposed to any sort of BCS-like fermion pairing mechanism.

Clearly, the work presented in this chapter is only the starting point of many po-
tentially interesting research directions. With regard to super-QED, or the sort of non-
supersymmetric theories we considered in this chapter, one can ask for example, what is
the quasiparticle spectrum of such theories? What are their thermodynamic properties?
Perhaps the most conceptually interesting question is whether the fermions manage to store
any of the charge density, despite not having a Fermi surface. Relatedly, can one develop
a useful heuristic understanding of the reason for the disappearance of the Fermi surface?
naively, it may have seemed that the most natural possibility is that when there is no Fermi
surface, all of the charge ‘leaks out’ of the fermion sector through the Yukawa terms, and

gets stored by the scalars. However, in Section 4.6, we explicitly calculated the fermion
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contribution to the charge density in an example where there is no Fermi surface, and
showed that the fermion contribution to the charge density is non-vanishing. We do not
yet know a heuristic physical interpretation for this result, which seems to go against the
conventional wisdom about how fermions behave at finite density. Of course, this conven-
tional wisdom is based on Luttinger-theorem-inspired pictures, and as we have emphasised
Luttinger’s theorem does not apply to our condensed-scalar examples.

If one hopes to try to make direct contact with condensed matter physics, it may
perhaps be of interest to start by analysing the questions we raised above in Abelian gauge
theories, since examples of dynamical Abelian gauge fields coupled to fundamental and
emergent matter of various statistics are ubiquitous in condensed matter. Perhaps there
are condensed matter systems for which theoretical models involving Yukawa interactions
of the sort seen in SUSY gauge theories may be useful.

To make contact with the results of gauge/gravity duality, it is important to generalise
our analysis to include non-Abelian gauge fields, and to begin working with theories that
actually have gravity duals at strong coupling. The details of the scalar stabilisation mech-
anisms may well be different, and presumably do not involve turning on FI terms (but
see [182]), as we had to do here in a number of examples. An interesting issue is that from
the weak-coupling side, it seems likely that finite density would drive squark condensation,
but this would lead to gauge symmetry breaking, which has not been seen in most systems
at strong coupling. (Of course, signs of breaking of global symmetries are ubiquitous in
gauge/gravity duality.) Two other options for the stabilisation of scalars are to either turn
on finite temperature or put the theory on a curved manifold, which could produce effective
masses via the matter field-curvature couplings. Also, instead of electrical neutrality, colour
neutrality would play a central role in the analysis of non-Abelian theories, as has been
the case in studies of high density QCD. Once the generalisation to non-Abelian theories is
performed, one would have the opportunity to investigate many interesting phenomenolog-
ical and conceptual questions. Is the charge typically stored in fermions, or in the scalars?
The possibility that in some cases it may be stored in scalar condensates has been noted in
the AdS/CFT context in e.g. [150,183]. Are there actually Fermi surfaces at weak coupling
in theories that do not seem to have one holographically? Are there examples of theories
with the opposite behaviour — Fermi-surface like singularities at strong coupling, but no

Fermi surfaces at weak coupling?
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Chapter 5

Second-order hydrodynamics and
dissipationless limit in the
holographic Gauss-Bonnet liquid

5.1 Motivation and summary

Gauge/string duality has been used successfully to explore qualitative, quantitative and
conceptual issues in fluid dynamics [184-186]. Although the number of quantum field
theory models with known dual string or gravity description is limited, their transport
and spectral function properties at strong coupling can be fully determined, thus giving a
valuable insight into behaviour of generic strongly interacting quantum many-body systems.
Moreover, relating strongly coupled fluids to gravity clarified the understanding of fluid
dynamics as an effective field theory and determined the number of independent transport
coefficients at first and second order in the hydrodynamic derivative expansion. For generic
neutral fluids, there are two independent first-order transport coefficients (shear viscosity 1
and bulk viscosity (), and fifteen second-order coefficients' (see e.g. [189]). For conformal
fluids, additional constraints reduce the number of transport coefficients to one at first order
(shear viscosity 1) and five at second order? (usually denoted as 7, %, A1, A2, Az). In the
parameter regime where the dual supergravity description of conformal fluids is applicable,

the six transport coefficients (in d space-time dimensions, d > 2) are given by [190]
n =s/4m, (5.1)

_d 1 2 _d n
Tﬂ—m(”a{ww(am’ F =2 9T (5:2)

IThe existence of a local entropy current with non-negative divergence implies n > 0, ¢ > 0 [187] and
constrains the number of independent coefficients at second order to ten [188].

2There are no further constraints in addition to 7 > 0 coming from the non-negativity of the divergence
of the entropy current in the conformal case, so long as the term proportional to viscosity provides the
dominant contribution to the entropy current [188]. This point will be discussed in detail in Section 5.6.4
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where s is the entropy density, ¥(z) is the logarithmic derivative of the gamma function, and
~vg is the Euler-Mascheroni constant. The linear combination of the transport coefficients
2nm — 4A\1 — Ay was found to vanish in theories dual to two-derivative gravity [191,192]
and conjectured to vanish universally when higher-derivative terms on the gravity side of
the gauge/gravity duality are taken into account [192,193]. As we will show below, this
conjecture does not hold for transport coefficients derived from Gauss-Bonnet gravity, nor
does it hold for N' = 4 transport coefficients with the leading-order 't Hooft correction.
For the finite-temperature N' = 4 SU(N,) supersymmetric Yang-Mills theory in d =
3 + 1 dimensions in the limit of infinite N, and infinite 't Hooft coupling A\ = g¢%,,N,,
first- and second-order transport coefficients were computed, correspondingly, in [89] and

(98, 185], using methods of gauge/gravity and fluid/gravity dualities®:

n= SN, (5.4)
(2 —log?2) n n 1log 2

_ le—log?) _ _ Ay = — AM=0. (55

m 0w T are LT o 2 T 3 (5.5)

Coupling constant corrections to the coefficients (5.4), (5.5) can be computed using the
higher-derivative terms in the low-energy effective action of type IIB string theory [194-200].

At first order in hydrodynamic expansion,

n= ngT3 (1 + %C(?’)A—?’/Q +. ) , (5.6)

and at second order,

(2—1log2) 375((3) A2

T = o 327‘(‘T cee (57)
N2T? 5¢(3)
= —¢ 1— AT .
K g ( 1 + ) : (5.8)
N2T? 175¢(3)
A = —¢ 1 A2 .
1= 6 ( +— + ) (5.9)
N2T? 4log 2
do = N0 (g10g g 4 29T 541082 C) yap ) (5.10)
16 8
N2T?
Ag = =1 25((3) A2 (5.11)

Temperature 1" can be given in terms of the infinite-'t Hooft coupling temperature T as

T =T, <1 + %(B)A—W) : (5.12)

3We use notations and conventions of [185].
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Second-order coefficients 711, x, A1 and A3 were known before. The result for A\, is new and
was to our knowledge previously unknown.

The corrections in formulae (5.6) - (5.11) can be trusted so long as they remain (infinites-
imally) small relative to the leading order (A — oo) result, as they are obtained by treating
the higher-derivative terms in the equations of motion perturbatively. To leading order in
the limit A — oo, the coefficients (5.6) - (5.11) are independent of the coupling, in sharp
contrast with their weak coupling behavior [201]. The coefficient A3 vanishes at A — o0,
and was argued to vanish also at A\ — 0 (this appears to be a generic property of weakly
coupled theories). The full coupling constant dependance of transport coefficients (even at
infinite N,) is beyond reach. Monotonicity and other properties of various combinations
of transport coefficients are of interest for studies of near-equilibrium behavior at strong
coupling, in particular thermalisation, and for attempts to uncover a universality similar
to the one exhibited by the ratio of shear viscosity to entropy density [94], [202], [203-205].
In N = 4 SYM at infinite N,, the shear viscosity to entropy density ratio appears to
be a monotonic function of the coupling [94], with the correction to the universal infinite
coupling result being positive [194,196],

T (15BN ) (5.13)

Subsequent calculations revealed that the corrections coming from higher derivative terms
in the action can have either sign [96,97]. In particular, for Gauss-Bonnet gravity with the

five-dimensional bulk action

1 )\GB v vpo
S = 2—,%/d5x\/_—g {R —2A + TL2 (R* — 4R, R"™ + Ry,,x R | , (5.14)
where the cosmological constant A = —6/L? the shear viscosity to entropy density ratio

in a (hypothetical) dual field theory is given by [97]

1—4)\
T_ - 6B (5.15)

s 47
non-perturbatively in the Gauss-Bonnet coupling? \gp, and can at least formally be driven
all the way down to zero in the limit of A\gp — 1/4. Taking this limit in a hypothetical dual
field theory is problematic, since it leads to causality violation for sufficiently large values
of Agp [207]. On the other hand, one may hope that adding other fields to the action can
cure the acausal ultraviolet behavior of the dual theory without affecting its hydrodynamic

(low-frequency) limit [208].

4An attractive feature of Gauss-Bonnet gravity and, more generally, Lovelock gravity is that the equa-
tions of motion remain second-order and thus the higher-curvature terms can be treated non-perturbatively
(implications of Lovelock gravity in the context of holography iare discussed in [206]). An obvious disad-
vantage of considering holography with Gauss-Bonnet action is that the quantum field theory dual to it is
unknown and one remains in the realm of the bottom-up approach.
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In a recent paper, Bhattacharya et al. [101] suggested the existence of non-trivial second-
order non-dissipative hydrodynamics, i.e. a theory whose fluid dynamics derivative expan-
sion has no contribution to the entropy production while still having some of the transport
coefficients non-vanishing.® For conformal fluids, the classification of [101] implies the ex-
istence of a four-parameter family of non-trivial non-dissipative fluids with n = 0 and
non-vanishing iy, K, Ay = £/2, A2 and A3. Given the result (5.15), the hypothetical the-
ory dual to Gauss-Bonnet gravity in the limit of A\gp — 1/4 is a natural candidate for a
dissipationless fluid. In addition to shear viscosity, only two transport coefficients (77 and
k) for the dual Gauss-Bonnet background have been previously known non-perturbatively
(to leading order in Agp, all coefficients were found by Shaverin and Yarom [193]). In this
chapter, we compute all Gauss-Bonnet transport coefficients non-perturbatively in Agp and

analyse the Agp — 1/4 limit. The full set of transport coefficients is given by

n = 572 /4, (5.16)
i O ) o 1 o
(

M= 2nT (1+7) (32— 4y + 273)> (5.18)
T 72 ’
Agz—% (—i(lJrv) <1+’y—%>+%log [MD (5.19)
A?’:_iT ((1+7)(342r7—472)> 7 (5.20)
= iTW((l +7)2(2727— 1)) (5.21)
s ~2 ’

where we have defined v = /1 — 4)\gp. In the limit of A\gp — 0 (v — 1), which corre-
sponds to the pure Einstein gravity, one recovers the standard results for strongly coupled
conformal fluids, (5.4) and (5.5). The Gauss-Bonnet result for 7 was obtained in [97] and
the relaxation time 77 was found numerically in [210]. Coefficients 71 and x were computed
analytically in [211]. The formulae for A, Ao, and A3 are new. To linear order in Agp, the

results coincide with those found in [193]. Note, however, that

1—9) (1= (B3 +2 402
27]7H_4A1_A2:_i( NA-7)B+2y)  40AgEn
T ~2 T

+0(Np) . (5.22)

i.e. this particular linear combination of transport coefficients vanishes only to linear order

in Agp, thus disproving the universality conjecture made for two-derivative gravity in [192].

5The authors of [101] considered an effective field theory approach [3,4] to non-dissipative uncharged
second-order hydrodynamics. The approach relies on a classical effective action and standard variational
techniques to derive the stress-energy tensor, which were discussed in Chapter 3. It is thus unable to
incorporate dissipation. The inclusion of dissipation into the description of hydrodynamics, using the same
effective description, was analysed in [102,209], which was also the central topic of Chapter 3.
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We observe that the inequality
2T — 4N — A <0 (5.23)

is still obeyed by the transport coefficients of the holographic Gauss-Bonnet liquid.

It is very interesting to note that by having the knowledge of all leading-order 't Hooft-
corrected N/ = 4 super Yang-Mills second-order transport coefficients, we can confirm that
the relation 2nm — 4\ — Ay = 0 still remains valid. In spite of the higher-derivative
corrections, the linear relation is not violated.

In the limit of A\gp — 1/4 (v — 0) we find

3 2T2 32 2T2 2T2
= T ) >\2 = 07 )\3 = - \/_7; ) K== d : (524>
22532 K5 V2r3

At first glance, this result realises the dissipationless liquid scenario outlined in [101]: the

7]7'1'[ = 07 )\1

shear and bulk viscosities are zero while some of the second order coefficients are not.
However, the relationship k = 2\, which is required for ensuring zero entropy production,
does not hold among the coefficients in (5.24). We therefore conclude that the holographic
Gauss-Bonnet liquid does not fall into the class of non-dissipative liquids discussed in [101].

This chapter is structured in the following way. We will begin by reviewing phenomeno-
logical second-order hydrodynamics in section 5.2. We will then move on to presenting the
holographic setup in 5.3, i.e. the Gauss-Bonnet theory, in which we will perform the ma-
jority of our calculations. We will present the calculations of two-point functions and the
analysis of the scalar, shear and sound modes in Section 5.4. In Section 5.5, we will study
the behaviour of the theory at the extreme value of the Gauss-Bonnet coupling, A\gp = 1/4.
This will be followed by the calculation of three-point functions in Section 5.6, where we
will present the relevant Kubo formulae, outline the steps of the calculation, present the
results of the non-perturbative second-order transport coefficients and discuss their impli-
cation for the Bjorken flow and the structure of the entropy current. We will then move
on to considering charge diffusion in Section 5.7. Fluid/gravity correspondence will be
employed in Section 5.8 to test the validity of our non-perturbative transport coefficients
and the calculation of Ay in the A/ = 4 theory will be presented in Section 5.9. We will
conclude this chapter with a discussion of results and an outline of potential future research

directions.

5.2 Second-order hydrodynamics

We begin by reviewing second-order conformal hydrodynamics of uncharged fluids [98,185],

which is a direct extension of our discussion in Chapter 2.1.3. The main idea, which
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we presented, was that phenomenological hydrodynamics can be organised as a gradient
expansion of conserved tensors in velocity u(z), temperature, T'(z), and chemical potential,
w(x), fields. Since our primary interest in this chapter lies with uncharged fluids, which have
a vanishing chemical potential, the only conserved operator relevant for the construction
of the hydrodynamic expansion is the stress-energy tensor 7% [25,187].9

The most general tensorial structure of the stress-energy tensor is
T% = Euu’ + PA™ + ¢"u’ + u’q” + ™, (5.25)

where € and P are scalars, ¢ is transverse, t* transverse, symmetric and traceless, and
A% = g 4 2yt All €, P, ¢* and t* are expanded in derivatives of the fields u®(z) and
T(z). As discussed in Chapter 2.1.3, the lack of microscopic definition of the variables
results in an ambiguity (a choice of “frame”), whereby we can re-define u*(x) and T'(x) by
any function of their derivatives. We will choose to work in the Landau frame and to set
&€ = ¢, where ¢ is the energy density of the fluid. This further implies that ¢* = 0. Since we
are interested in fluids on curved manifolds, we will also include derivatives of the metric
tensor into the gradient expansion.

The stress-energy tensor can then be written as
T = euu’ + PA® + 117, (5.26)

with the second-order conformal fluid in four dimension described by pressure P = ¢/3,

which receives no higher-order corrections. The spin-2 structure is given by

1
% = —no® + nry |{De® + -1 1J“b (V-u)| + k& [RW’) —(d— 2)ucRc<“b>dud]

Aol o 4 Ao QP 4 A0 Qble, (5.27)

where D = u®V,. The first-order coefficient 7 is shear viscosity while the five second-order
coefficients will sometimes be labeled by A\, = {nm, A1, Ao, A3, k}, where n = {0,1,2,3,4}.

For convenience, we have defined

Alab) — = Aac \bd (Acd + Adc) _ %AabACdAcd = (Aab>’ (528)

1
2 d—

which by construction forms tensors that are transverse, u, A% = 0, traceless, g A% = 0,
and symmetric. In our case, d = 4. The tensor 0® is the one-derivative symmetric,

transverse and traceless tensor

o = 2wyt (5.29)

6In this chapter, we will be using Greek letters (u, v, etc.) to denote five-dimensional bulk indices, Latin
letter from the beginning of the alphabet (a, b, etc.) to denote four-dimensional field theory indices and
Latin indices from the middle of the alphabet (i, j, etc.) to denote spatial three-dimensional field theory
indices.
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The vorticity Q2* is defined by the anti-symmetric, transverse and traceless one-derivative

tensor
1
Qb = §A“0Abd (Voug — Vaue) . (5.30)

Finally, R..q¢ and R, are the Riemann and Ricci tensors with terms which include two

derivatives of the metric.

5.3 Einstein-Gauss-Bonnet gravity

In this section, we begin our holographic analysis of the Einstein-Gauss-Bonnet theory,
which is governed by the gravitational action (5.14) in five bulk dimensions. The coefficients
of the four-derivative terms ensure that the equations of motion, which follow from the

action (5.14), only contain second derivatives of the metric. They are given by

1 AapL?
Ry = 59w R + g = Gi G (R* — AR, R™ + Ry RP7) —
—AesL? (RRu — 2R, R, — 2R,00s R + Ryuasy RE7Y) . (5.31)

The black brane solution of equation (5.31) is

1 r?
— drt s+ =
i

f(r)= %2)\108 [1 - \/1 —4)\(;]3’( - :_Z)] : (5.33)

We will set the arbitrary constant N4 so as to normalise the speed of light at the boundary

ds® = —f(r)NLdt* + (da® + dy? + dz?) (5.32)

where

to unity,

N2 = % (1 /1o 4)\GB> , (5.34)

and henceforth use this value. For convenience, we also define a shifted Gauss-Bonnet

coupling,

Y=V 1-— 4)\GB- (535)

Thermodynamic quantities associated with this background are the Hawking temperature

of the black brane (5.32),

ry Ty
T=N. = V1 5.36
w2 VarrV T (5.36)
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as well as energy density and entropy density of the dual conformal theory,

3
e =3P =1Ts, (5.37)
o (r_+)3 _ 4ortld T8

K3 RS (1+9)°%

L
We will set L = 1 in most of the sections below.

s (5.38)

The shear viscosity to entropy density ratio was computed in [97] and found to equal
the expression given in Eq. (5.15), i.e. n/s = 7?/4n?, which can be tuned to zero in the
limit of A\gp — 1/4.

Based on various faster-than-speed of light and causality arguments, the behaviour of
gravitational perturbations was argued to be pathological for large A\gp, and a bound on
Agp was established [97,207,210,212],

S dan < oo (5.39)
However, all those arguments rely on the ultraviolet, large momentum limit of ¢ — oo.
Since we are only interested in the hydrodynamic transport properties of the Einstein-
Gauss-Bonnet dual, we can interpret the theory as an effective field theory, valid only for
low frequencies and momenta. These arguments led [208] to explicitly construct a theory
with a low temperature phase transition, breaking the link between the hydrodynamic IR
and causality breaking UV modes. Since we wish to focus on the hydrodynamic regime
in which n/s goes to zero, i.e. for A\gp near 1/4, we will view the above setup as a

holographic dual of an effective field theory with some unspecified fields responsible for the
UV completion.

5.4 Two-point function and quasi-normal modes

In this section, we will consider holographic retarded two-point functions of the stress-
energy tensor, G (p1,p2) = (T*(p1), T’ (p2)) r, and perform an analysis of the quasi-
normal mode spectrum to recover the dispersion relations of diffusive and sound modes
for non-perturbative values of \gg. We will use the usual decomposition of the metric
perturbations into scalar, shear and sound modes. These modes transform as spin 2, 1 and
0 tensors, respectively, after we select a specific direction for the momentum flow and make

use of the remaining spatial rotational invariance [90,91,93].

5.4.1 Scalar mode

Let us begin by analysing the scalar sector of the metric perturbations to the second order

in the hydrodynamic expansion. To first order, this was done in [97]. Without loss of
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generality, we choose the metric fluctuations to have momentum in the z-direction, i.e.

B, (r)e” 9% which identifies the relevant scalar fluctuation to be

Zy = h",. (5.40)

Y

It is convenient to raise one of the indices of h;, so that the mode Z; behaves as a min-
imally coupled massless scalar in the Gauss-Bonnet background. The Einstein-Gauss-

Bonnet equations (5.31) governing its dynamics can be written in a convenient form,
A2V + AL Zy + Ao Zy = 0, (5.41)
where the coefficient functions are given by
Ay =rf(Aepf — 1), (5.42)

Ay =rf (Aepf —r)=3rf + Xapf (rf" +2f"), (5.43)

o= e U Cens =) = (14 VT Bhan) D -

+ % (1 +1— 4)\GB> F(f" (r* = XeBq®) = 2Xapf? +4rf + ¢ — 127“2)]. (5.44)

The function f was defined in Eq. (5.33), r is the radial variable, while w and ¢ are the
frequency and the momentum of the background fluctuations. To solve the differential
equation (5.41) for the purposes of extracting the retarded Green’s function, we must

impose the in-falling boundary conditions [87,88] by writing
Zy = f(r) ™2 (14 g(r)), (5.45)

where

. 1
f)= 55—

{1 — 1= 4has (- (/)| (5.46)

We have introduced dimensionless frequency and momentum,

w 4q

= ==
9= 5T

5.47
5T (5.47)

It is convenient to follow the discussion of [97] and introduce a new radial coordinate,

v=1- \/1 —4Xgp (1 - (r+/r)4), (5.48)
so that Z,(v) = (v/(2Aas)) ™% (1 + g(v)). We can now rewrite the equation (5.41) as

v (1 —v)0g(v) + [1+v+ir (v —1)]0yg(v) + G(v) [gv) + 1] =0, (5.49)
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where G is a function of w and g, with the form
G(v) = =it + 10?Gp(v) + 9°G4(v). (5.50)

We have further defined

) _(v—n[@&w+u@—2ﬁm—sﬁg@—1y -
i) = 4 (Argp +v(v — 2))*? ’ 551

Gu(0) = (v—1)vVAes (1+v1I—4g5) (1 +32j2AGB + 3v(v — 2)). (5.52)
2 (4 e +v(v — 2))

To find the retarded two-point function in the hydrodynamic, low frequency and mo-
mentum limit, we may solve for g(v) perturbatively in w = w/(277T) and q = ¢/(277T),

assuming that the magnitudes of both v and q are of the same scale p. By writing

o) = 5 1wl (5.53)
n=1
we find that to all orders in u, the differential equations for g, have the form
v (1 —=0)02g,(v) + (1 +v) Bygn(v) + Hu(v) = 0. (5.54)
Functions H,, can be determined recursively from G and g,,, with m < n,
Hy(v) = i00, [(1 = v) g1 (v)] + (107G (v) + 4°Gq(v)) gn2(v), (5.55)

where n > 1. At first order, go = 1 and g_; = 0, which gives H; = —it.

All functions g,, are solved by the expression given in terms of the integrals,

gn(v) = Dy, + / g L=V (cn - / M(mﬂ> , (5.56)

v 1 — o)

from which we can find the first-order result,

] ‘
g1(v) =Dy — 501 (4—v)v+ (Cl + %) log v. (5.57)

We require all g,, to be regular at the horizon, i.e. at v = 0, which can be ensured by
imposing a boundary condition that cancels the logarithmic divergences, i.e. terms propor-
tional to logv. In the case of g;, the cancellation occurs when C; = —iw /2. Furthermore,
we must impose that all g, vanish at the boundary, where v = 1 — /1 — 4\gp. At first
order this amounts to setting D = —%‘” (1 + 2 gB — m) Hence,

10
g1(v) = —ZZ (3 — 2y -~ —dv+ U2) , (5.58)

where we have used v = /1 — 4)\gp, as defined in Eq. (5.35).

100



In order to find second-order hydrodynamic contributions to the scalar channel two-
point function, we need to find the solution at one order higher, i.e. go. This can be done
by following exactly the same procedure that gave us g1; by using Eq. (5.55) with ¢; and
go we first find Hs, which can be integrated using Eq. (5.56) to find go. The result has the

form

92(v) = 002g{™ (v) + g2g5" (v)
w? (1= 0Plog [ =140 = VEE D F — (1= 09
+ = /

,U/

dv'.  (5.59)

Functions gém) and géq) have lengthy, but closed-form expression. Even though we do not
have a closed-form expression for the remaining integral in go(v), this is irrelevant for the
computation of the two-point function. The form of g5 is sufficient for fixing both boundary
conditions on g, and for determining the near-boundary expansion of Z;. More precisely,
the undetermined integral comes from the outer integration of (5.56). Regularity at the
horizon, v = 0, can thus be imposed without a problem to fix C5. What remains is an
integral in (5.59), which can be integrated order-by-order in the near-boundary expansion
to determine D,. By treating it as an indefinite integral, an additional undetermined
constant can simply be absorbed into Ds.

The retarded two-point function can be computed by only perturbing the Einstein-
Gauss-Bonnet action (5.14) in the scalar channel, g,, — ¢., + r°Z1, and evaluating the
on-shell contribution of Z;. The holographic Green’s function is given in terms of the

variable v by

wy,x riy?V20 +9) v 0
Glrnol (W, @) = + 2 UB{IEV mzl(% —, —Q)%Zl(v,my CI)} (5.60)
rd P
= (1 =)V2(1+7) Zi(1 =7, =W, =4) - Z1 (v, 0, 9) (5.61)
5 v=1—7v

From the field theory point of view, it was shown in [185] that we can use the retarded
two-point function of the stress-energy tensor, G5 (w, k), to extract two of the second-
order hydrodynamical coefficients, 77 and x. Up to second order in energy and momentum,
the hydrodynamic correlation function takes the gradient expanded form,

TY,T . K
G hiro (0, @) = P —inw +nmw” = 2 (0* +¢7) (5.62)

From the solution for Z; solved to second order, i.e. (5.45) with (5.58) and (5.59), we
can compute the retarded Green’s function (5.60) and match it with the hydrodynamic

expression (5.62). Note that since we only considered fluctuations about the background
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in the holographic calculation, we will only find the w- and ¢-dependent terms. The back-
ground itself gives the value of P. The procedure now enables us to find the shear viscosity

and its ratio over the entropy density to be

- \/§7T3T3 ,.>/2 Q 1 )
S

, = 2 (5.63)
K3 (1+47)%? A

as previously computed in [97], with the Hawking temperature stated in (5.36).
The second-order coefficients 711 and x can now be found by matching (5.60) with (5.62),

giving us expressions which were previously computed in [213] by using a different method,

™= g (L4+7) (v(5+7) —2) + 2vlog (H)} (5.64)
o (1+7)(2y* - 1)
== o . (5.65)

In the limit of A\gp — 0, i.e. ¥ — 1, we can use the N' = 4 relation, N? = 47%/kZ, to
check that the expressions (5.63), (5.64) and (5.65) reproduce the N' = 4 super Yang-Mills
results found in [185],

s 2 —log?2 n
— ZN278 =—_°° = —. 5.66
77 8 C Y TH 27TT 9 K 7TT ( )
At linear order in Agp, we find
w2712 1
= {2 —log2 + §AGB (=21 +1og32) + O (AéB)] : (5.67)
K5

which is in exact agreement with our three-point function calculation in section 5.6, the
fluid /gravity calculation of section 5.8 and a recent paper [193].7

In the limit of most interest to us in this work, namely Agp — 1/4, i.e. 7 — 0,

1 1 v o3 2 T?
=0, m=——-=—|(——log=—=-+0 , K= — . 5.68
. n= o (4o ) T 6

The expression for 7i; becomes negative and diverges as —1/v/1 — 4\gp, while & also be-
comes negative but finite. The physical hydrodynamic coefficient nr, however, goes to
zero at Agp — 0. Functions 11 (A¢p) and k (Agp) are presented in Figure 5.1.

Causality of the theory at second order in the hydrodynamic expansion of the sound
mode was analysed in [210], where they showed that one must demand the condition
1 > 2n/s to be obeyed. The plot of the function, which determines the causality-
preserving region, is presented in Figure 5.2. It reproduces the shape of the numerically
obtained plot in [210]. The constraint on the coupling can be determined numerically and

matches the approximate values of —0.711 < Agp < 0.113 found in [210]. However, this
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Figure 5.1: Left: A plot of T as a function of A\gp. The function diverges in the limit of
A¢B — 1/4. Right: A plot of dimensionless k2 /(472T?) as a function of Agp.
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Figure 5.2: A plot of T — 2n/s as a function of A\gp.

should not be seen as a problem in our case, as we are only treating the theory as an IR
effective theory.

As a final comment on the behaviour of the scalar channel, let us look at the v — 0
limit of the Green’s function (5.60),

V2rd

2
Ky

9,
Zl(l,—m,—CI)%Zl('U,m,CD : (569>

Grhol (@, @) =

v=1
It was observed in [97] that (5.60) vanishes at the leading order in to, thus giving n — 0.
However, given that x is non-zero in the limit, this means that the full Green’s functions
does not vanish in the limit of v — 0. In fact, this limit is very complicated as a result
of an intricate interplay of zeros and infinities in various terms. As a result, the order of
taking v — 0 does not commute with the process of computing the two-point function.
This can be seen explicitly by using the exact analytic solution for Z; at v = 0, which we

compute in section 5.5. It is given in terms of the hypergeometric function

ito 10 4 — 302 10 4 — 3q2
R o B L A k[ L B Ak

1—1 : .
5 5 5 5 ito, v (5.70)

"In [193], the authors used notation Ao = nr and Agp = §/4. By writing x2 = 87G5, our calculation
reproduces their expression.
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By using the expression (5.60), we now find

7272 (3¢% — w?)
4\/5/1% ’

which would give x = —372T2/(2v/2k2) and nm = —72T?/(v/2k2). This is therefore

Grizo(w,q) = (5.71)

different from what we obtained by first computing G"* and then taking v — 0.
We will defer a more detailed discussion of the Green’s functions at Agp = 1/4 until
section 5.5. There, we will comment on a very peculiar feature of Z solutions and argue

why the Green’s function formula (5.69) is, in fact, most likely incorrect at Agp = 1/4.

5.4.2 Shear mode

We now consider the gauge-invariant shear mode of the metric perturbation h,,, (r)e~“*%=

in the radial gauge with h,, = 0. The relevant scalar variable is given by
q w
The differential equation for Zs, written in the u = r2 /r? variable, is
ZY + B1Zy+ ByZy = 0, (5.73)

with the coefficients B; and By given by

2'(y+ D) [ (1 - -1)(U—-2)+U -1
B 20D 0@y rU—1] 5
wU =D [y?(y + DU = 1)g* — (v* — 1) U?w?]
(=7 (v + (1= )2u4—2(1—72)u2(U—72)—72U> s e
_ to~, .
wU =U (v + 1)U = 1)¢* = (v* = 1) U*w?]
2 2
VAy+1)U+1) , (U*4+20+1) ,
B = :
T e | L B Yy (576)
We have defined U? = u? + % — u?~2.
Quasi-normal modes are found by imposing the in-going boundary condition,
Zy(u) = (1 —u?) ™2 Z5(u, 0, ), (5.77)

and looking for solutions, i.e. dispersion relations, t(q), of the equation Z5(u = 0,10, q) =
0. The dispersion relation of the hydrodynamical diffusive mode that dominates the low-

energy shear sector is given by
w=—iDg*+ O (q), (5.78)

where D is the diffusion constant. The exact form of the g*-order expression is unknown,

as it must include contributions from third-order hydrodynamic coefficients that have not
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been classified. The diffusive dispersion relation is given by the hydrodynamic expression

w = —ing*/(e + P), which translates for our conformal fluid with e = 3P into
n 1
D=2r== 5 (1 - 4)\@3) . (579)
s

We are particularly interested in the behaviour of the shear mode in the limit in which
Agp goes to 1/4, i.e. the limit in which both viscosity and, hence, D vanish. In fact,
we can analytically understand the effects of the hydrodynamic expansion to all orders on
the diffusive dispersion relation by studying only the structure of the differential equation
(5.73). We know that the shear mode’s dispersion relation has the form

o0

=i asq” (5.80)

n=1
where ao,, are real coefficients, which depend on the hydrodynamic transport coefficients at
all orders in gradient expansion. In the regime of Agp near 1/4, i.e. v < 1, by definition
lim,_,oU = u. We can then define q = ~q and keep only the leading-order terms in the
v — 0 limit. Equation (5.73) becomes

(2 — u)uto? ;o ut? — (1 —u)g?

2~ A w) (e — P a2 T a1 = w)t

Zy = 0. (5.81)

We can immediately conclude that since the differential equation (5.81) only depends on g
and not on q or v individually, its solutions will also only depend on the product q = ~q.
Hence, in the v < 1 regime, as, = G9,7*", with the o, coefficients having no dependence

on 7. The shear dispersion relation thus takes the form
=i a7, (5.82)
n=1

and therefore hydrodynamic contributions at all orders become suppressed by powers of ~,
near v — 0. The hydrodynamic shear mode will thus approach to — —ie,, with a real
positive e, — 0 in the limit in which viscosity vanishes. Away from this limit, as, will of
course have complicated dependences on 7.

Note that we have so far only talked about the values of A\gp near 1/4 and not at
Aep = 1/4. We will analyse the behaviour of the quasi-normal modes at Agp = 1/4 in
section 5.5. We will see that no quasi-normal mode with w = 0 exists at A\gp = 1/4.
Instead, the entire mode will vanish from the spectrum. Therefore, again, the limit of
Ags — 0 does not commute with the procedure of computing the Green’s functions.

An important question about the structure of the hydrodynamic expansion can be raised
at this point. Namely, whether the entire hydrodynamic tail may be controlled by shear

viscosity 7, such that all as, o< 7, or whether other hydrodynamic coefficients responsible
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for the behaviour of this dissipative mode also vanish in the limit. At present, we do not
have an answer to this question.

Numerically, the quasi-normal mode spectrum is most easily found by searching for
complex values of tv that satisfy Zy(u = 0) = 0 at various values of q. We had to resort to
these techniques to analyse the behaviour of the shear modes for a larger range of 1, q and
for all vales of A\gp between 0 and 1/4. We found that the lowest-frequency hydrodynamical
mode indeed approaches wv — 0 in the limit of A\gp — 1/4. There exist further higher-
frequency quasi-normal modes, as is usual in holography. Since their behaviour is not of
direct relevance to the analysis of dissipative hydrodynamics, we will not discuss them here.

As a final comment, we note that a sequence of quasi-normal modes appears on the
negative imaginary axis of the complex v plane. These modes were not seen in the numer-
ically computed spectrum of the N' = 4 theory, i.e. at A\gg = 0, in [93]. We observe that at
a fixed momentum q, they all travel upwards, i.e. closer to tv = 0, as A\gp increases towards
1/4. Interestingly, we find that in the strict limit of A\gp — 1/4, their location precisely
coincides with the quasi-normal spectrum computed from Zs(u) at A\gp = 1/4. The details
of the calculation will be presented in 5.5. We will show that the limiting spectrum equals

to the following set of quasi-normal modes,
= —21¢ (1 + nl) , w=—-2 (3 + TLQ) , (583)

where n; and ny are non-negative integers.

5.4.3 Sound mode

We now turn our attention to the analysis of the sound channel. The relevant gauge-

invariant combination of the metric perturbations for the sound mode is

2 4q e — ( ¢*NZ (4% = 2r f(r)) ) (hm Py

2
N Raz Doy ) L 2p 0 (5.84
r2w? + r2w 2rw? (12 — 2Xgp f(r)) r2 + ) * r2 ( )

L3 =
712

We have again used the h,, = 0 gauge. The differential equation for the sound mode, using

the radial variable v = r3 /r?, is given by
Z3 + C1Z5 + CoZs = 0, (5.85)

where the coefficients are given by
_ 3 30" =D = 7[(y* = D5V =7) = 59U = )] o
2u 2u(U — 1)U%D,
(72 — 1) ut (=372 +5U — 7) + Nl]
2u(U — 1)U?D,

Cl (U)

_|_

0, (5.86)
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with the expressions Ny = 42 (v* — 1) u? (18y* — 13U + 10) — 15y* (v —2U + 1) and D, =
(72 = 1) u? (3(y — 1)w? 4+ q?) + 392 (¢*(U — 1) — (v — 1)w?)]. Furthermore,

Co(u) = %{ 12(y = 1)*7*(v + Dg*u’ — 4(y — 1)7*q*u® (37 — TU + 4)
+ ("= 1)’ (3 = hw’ + )
— (v = 1) [q* (v +20) + (v — 1)g°w® (99° — 4U) — 6(y — 1)°Uno”]
+ (= 1)%ut g (373U - 2) + U) +2(y — 1)g°Un® — 3(y — 1)*Unv?]
=37 [q* (VU =2)+U) +2(y = 1)g*w”* (U — %) + (v — 1)’ U] } (5.87)
where

Dy = 4(y — Du(U — 1)*U?

x [(* =1 u*(3(y—Dw’+g*) + 3+ (*(U = 1) — (v — 1)w?)]. (5.88)

We have again used U? = u? + 72 — u?42.

To find the spectrum of the sound channel, we impose the in-falling boundary condition,
Zs(u) = (1 — u?)"™/2Z5(u, w0, q). (5.89)

The lowest-frequency hydrodynamic quasi-normal mode, i.e. the sound mode, has a dis-

persion relation known analytically to second order in the hydrodynamic expansion [185],

1 1
o = :i:% — 2miTTq? + 4V/37°T'T <§THT — §PT> P+ (5.90)
The attenuation of the mode is controlled by
21
N=-—. 5.91
3sT ( )

Both terms proportional to ¢* and ¢® therefore vanish in the limit of A\gp — 1/4, as
they are proportional to shear viscosity. In Figure 5.3, we plot the Agg-dependence of the
dimensionless coefficient controlling the term proportional to ¢*, v/3I'T? (71/3 — I'/2). The
question of how viscosity enters into higher-order terms again remains open in the absence
of analytic understanding of higher-order hydrodynamics, as in the case of the diffusion
mode.

To study the sound mode spectrum beyond second-order hydrodynamics, we must again

resort to numerics. For better control over the numerics, we follow [214] and write
Zs(u) = A[l +au+ .. ]+ (Ahlogu + B)u? [1 4+ bju + .. ], (5.92)
which is a standard Frobenius expansion result. The retarded Green’s function is then

proportional to B/.A. Because of the logarithmic term in Z3, it is beneficial to the precision
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Figure 5.3: A plot of the dimensionless coefficient v/3I'T2 (111/3 — I'/2) controlling the ¢® contri-
bution to the sound mode, as a function of Agp.

of our numerics to seek the poles of B/A (or zeros of A/B) as opposed to the zeros of A.
Furthermore, the full Green’s function includes information about the values of the residues

at the poles. By writing
1. y 3
B = - lim (Z{(u) —2Ahlogu) — =Ah, (5.93)
2 u—0 2

we obtain the expression, which is convenient for the computation of quasi-normal modes,

B ZY(u 3
i 11}31(1) 2233((13) — hlogu — ih . (5.94)

The coefficient h can be found analytically, h = —8\&y; (w? — %)% / (1 — my.

Numerical results indicate that the sound pole approaches w = +q/ V3 + €, with a
complex € — 0, in the limit of Agp — 1/4. We plot the real part of the dispersion relation,
w(q), for A\gg = 0.01 and A\gp = 0.2 in Figure 5.4. Since this part of the analysis crucially
depend on numerical precision, it is impossible to claim that coefficients of all terms in
tv beyond the ideal fluid term go to zero in the limit. In fact, numerics get increasingly
difficult as Agp approaches 1/4. Similarly to the diffusion mode, the hydrodynamic sound
mode also disappears from the spectrum at Agp = 1/4.

The spectrum also includes the usual higher-frequency quasi-normal modes, which we
will not consider here. In addition to those, there are again new poles present on the
negative imaginary axis, which move towards the origin of the complex to plane as A\gp
increases. In the limit of Agp — 1/4, as in the shear sector, the poles coincide with the
quasi-normal mode spectrum computed at Agp = 1/4, which will be presented in the next
section. However, there is an important difference between the behaviour of the imaginary
axis sound poles and the ones found in the shear channel. Namely, the sound channel poles

can cross the real axis on the complex to plane, which indicates instability in the spectrum.
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Figure 5.4: A plot of the real part of the sound mode’s dispersion relation, R[w(q)], at A\gp =
0.01 (black line) and Agp = 0.2 (blue line). The red line corresponds to the ideal fluid result,
o = q/+/3. Discrete data points are joined by lines of their respective colours. We notice that as
A approaches 1/4, the dispersion relations become increasingly close to o = q/+/3.

However, if we restrict ourselves to a finite range of momenta ¢, we can in fact avoid this
instability. The value of ¢, below which the theory is stable at all A\gp, will be computed
analytically in section 5.5 where we will use the fact that the imaginary axis poles rise
towards the origin of the complex to plane (any beyond), converging towards the spectrum

computed at Agp = 1/4.

5.5 Excitations at \gp = 1/4 coupling

In the previous section, we studied the behaviour of the standard hydrodynamic quasi-
normal modes. However, we also observed the emergence of poles on the imaginary axis
both in the shear and the sound spectrum for values of A\gp approaching 1/4. In this
section, we will analyse the behaviour of quasi-normal modes in the extremal A\gp — 1/4
limit, and find the spectrum analytically. Our aim is also to point out a particularly curious
property of the scalar, shear and sound equations in this limit and to show that stability
of the Einstein-Gauss-Bonnet theory near Agp — 1/4 imposes a constraint on the size of
allowed momenta.

Let us again perturb the metric tensor, g,, — ¢u + hu, and as in section 5.4 use

the momentum space metric fluctuations, hy, (r)e” " *4% combined into gauge-invariant
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variables, i.e. the scalar, shear and sound modes, which we repeat for completeness.

Scalar: Zy=h", (5.95)
) _ 4 w
Shear: ZQ = ﬁhm + T—th«z, (596)
24> 4
Sound: Jy = 2q 3 Iy + 2q hy.
r 2w

2N2 (43 — O f(r
(1o SRR (b 2,

22 (r2 —2Xgpf(r)) 722
We can then use the differential equations for 7y, Zs and Z3, for a general \gp, divide

out potential factors of (1 — 4Agp), set Agp = 1/4 and study the equations for the gauge-

invariant modes. The equations vastly simplify and become

2—u w? —3(1 —u)g?
lar: Z — ——— 7 7 = .
Scalar e 1+ Tl — u)? 1=0, (5.98)
2—u to?
hear: Zy — ———— T+ ———Ty = .
Shear T 5+ Tl —u)p 22 0, (5.99)
2—u w2 + (1 — u)g?
: Zy — ———— 7} Z3 = 0. 1
Sound T 3+ Tl =z 2 0 (5.100)

We have used the variable u = 7% /r?, as well as the dimensionless frequency and momen-
tum, 0 = w/(277T) and q = ¢/(277T).

The characteristic exponents Z = u® of the leading term in the Frobenius expansion at
Ao = 1/4 are {0, 3} and not {0, 2}, which are their values for all other Agp, also arbitrarily
close to 1/4. As is usual in holography, one would expect that, since Z are graviton modes
in five bulk dimensions, it is natural that they should couple to the stress-energy tensor of
the four-dimensional boundary theory, thus giving A = {0,2}. At A\gp = 1/4, however,
this is not the case. The dual theory operators scale as the spin-two stress-energy tensor
in six dimensions.

All three differential equations can be solved in terms of the hypergeometric functions.

Imposing the in-falling boundary conditions, we find

i i \/4— 2 \/4— 2
Scalar: Zl = (1—/&)_7 2F1 Q—T?)CI,Q—FTSCI,l

—ito, 1 —u] . (5.101)
Shear: 22:(1—u)_52F1 -Q—l,Q—l—l,l—im,l—u

, (5.102)

in [ V4 + g2 4+ g2
Sound: Zz=(1—wu) 2 oF |Q— ;Lq,Q—i- ;—q,l—im,l—u}, (5.103)
where ) = —1 — %“’. Given the three solutions, we can analytically determine the quasi-
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normal mode spectrum in each case to be

Scalar: 10 = —i (4 +2n; — /4 — 3q2> , = — (4 +2ny + /4 — 3q2> . (5.104)

Shear:  w=—-2i(1+ny), = —2i(3+ng), (5.105)

Sound: =~ (4+42m — VAT @),  w=—i(4+2m+VITE),  (5106)

where n; and nsy are non-negative integers.
As indicated by numerics in section 5.4, the imaginary part of the sound mode dispersion
relation may become positive, i.e. Im[to] > 0, signalling an instability of the system.

However, this problem can be avoided by constraining ¢ to only exist in the region of
q < 2v/3. (5.107)

The allowed range of ¢ is thus set by the temperature scale, i.e. ¢ < 47v/3T. This finding
further reinforces our view that the Einstein-Gauss-Bonnet theory at large Ao may be
viewed as a legitimate effective field theory, valid only at small momenta, with a well-
defined hydrodynamic limit.

Another interesting feature of the behaviour of the above quasi-normal modes is that
the poles of the scalar mode move off the imaginary axis for momenta in the region of
q > 2/4/3, i.e. their dispersion relations become complex as opposed to purely imaginary.

Finally, let us comment on the computation of retarded Green’s functions at Agp = 1/4.
We saw in section 5.4.1 that the two different calculations of the scalar Green’s function did
not coincide. We first computed G for a general A\ p and took the limit Aqg — 1/4. The
second way of computing G5""Y was to use the solution Z; at A\gp = 1/4 from this section
and plug it into the expression for the Green’s function. What is unusual is not only the fact
that the two limits did not commute, but that we found a transmutation from A = {0,2}
to A = {0,3} of the characteristic exponents in all three gauge-invariant solutions. This
means that the same expression for a holographic Green’s function, K(u)Z(u)Z’'(u), cannot
give B/ A after the exponents change, unless IC changes as well. It is therefore not clear what
the correct prescription for the two-point function should be at A\gp = 1/4. We should note
that all these peculiarities arise only on the level of metric perturbations. The background
metric itself has no pathological features at A\gp = 1/4. It would be particularly exciting if
this transmutation indicated that a five-dimensional bulk contains some knowledge about a
sector of a six dimensional CFT, along the lines of [215]. However, at this point we cannot

make any further claims to either substantiate or refute this speculation.
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5.6 Three-point functions and second-order transport
coefficients

5.6.1 Three-point functions and the Kubo formulae

To find the remaining second-order hydrodynamic transport coefficients we follow the work
of [216] and perform a holographic computation of three different stress-energy tensor
three-point correlation functions. We begin this section by reviewing the derivation of the
necessary Kubo formulae presented in [200,216]. Since this procedure requires a manipu-
lation of retarded three-point functions, it is easiest to think of our microscopic CFT as
defined in the Schwinger-Keldysh Closed-Time-Path formalism [9,217], which was discussed
in detail in Chapter 3. However, in this case we will require the space-time to be curved
and also choose a somewhat different CTP contour.

Consider a theory described by some microscopic Lagrangian L [¢, h], where ¢ col-
lectively denotes some set of matter fields and h a metric perturbation around a fixed
background g. The degrees of freedom of the theory are then doubled, ¢ — ¢*, g — g+,
h — h*, and we use the index & to denote whether the fields live on a “4+”-time axis going

“_»

from some t; towards the final time t; > ¢y, or the -axis with time going from the
future t¢ backwards to ¢y. Since our field theory is at finite temperature 7' = 1/, the two
separated real time contours can be joined together by a third, imaginary time axis running
between t; and ty —i3. We use ¢ to denote fields living in the Euclideanised theory on the
imaginary time contour. The generating functional of the stress-energy tensor correlation

functions can be written as
W [k, h~] zlog/D¢+D¢_Dg0 exp {i/d4x+\/—g+£ [0t (zT), ]
B
- [Catvestew - [ e vzl ]} s

It is convenient to introduce the Keldysh basis ¢ = 5 (67 + ¢~) and ¢4 = ¢T — ¢, and
similarly for the metric perturbation and the stress-energy tensor. After variation, classical
expectation values always obey ¢ = ¢, hence all fields with an index A will vanish and

we can define 7% = T4, Explicitly,

27 ow
T (z)) = — . 5.109
(T (x)) = O ()|, (5.109)
The expectation value of T at = 0 can then be expanded as
a a 1 ab,c
(TR(0) =G3(0) ~ 5 [ aaGi0.0)hus(z)

1

+ 3 / d*zd*y G (0, 2, y) hea(x)hep (y) + ..., (5.110)
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where Graa.. denote the fully retarded Green’s functions [218], which are obtained by
taking the following derivatives [216],

G (0 ) = a%}l):@(aﬁgw =T IROTE @) ), (G

indicate further insertions of Ohp in the expression with derivatives as well as

13 7

where
the T insertions into the n-point function.

All the necessary Kubo formulae for hydrodynamics up to second order are given by
the following set of expressions, derived in [200,216]. By picking momentum to flow in the
z-direction, we will always perturb the scalar h,, mode. On top of that, we only need to

consider h,, and h,. perturbations to obtain

a Y, T2, Yz
n =1 lim 0 080 5Grin (i a), (5.112)
82 XY, TZ, Yz
2T — K = 1¢1]I—I>10 WGR%;‘A’Z/ (p,q), (5.113)
82 TY,TZ,YZ
A= = i o es 99007 5Graa (P q). (5.114)
By perturbing f, and t,, we find
A3 =4 lim i G (p, q) (5.115)
p.a—0 Op?0q? RAA T
o2
k= lim G (p, q), (5.116)

P,g—0 a(pz)Q RAA

and finally, by considering only the h, and h,. perturbations, we can obtain
52
Ao =2 — 4 lim = 5o o Cran (pa). (5.117)
A consistency check on the validity of our calculations is provided by the following two
Kubo formulae, which both give the expressions for pressure,
P~ i lim GREE"(.0) = — limy i G5 (9. 0). (5.118)
Note that we have defined all hydro coefficients as in [185], which means that our Aj is
minus the Az used in [200], and our Ay is the negative value of the one used in [193].
The three-point functions are calculated by solving the Einstein-Gauss-Bonnet equa-

tions of motion (5.31) to second order in the relevant perturbations,
G + Py = g + er2h )+ ér hf,/), (5.119)

where we impose the h,(f,,) = 0 boundary condition at the AdS boundary [200]. We are

using € to indicate the order of perturbation. Once we find the relevant solutions, we
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can take three derivatives of the on-shell action with respect to the boundary value of
h,(fy) = h,(},,) (r — 00). The simplifying feature of this procedure is that since equations

of motion are solved to order €2,

only the boundary term contributes to the three-point
function and hence no bulk-to-bulk propagators appear in the calculation.
The computation of the three different three-point functions requires us to turn on the

following sets of polarisations:

1) hay = hay (e OO = (r)e hyz = hy(r)e @™ (5.120)
2.) Ry = hyy (1)@ H0)7 hip = (1), = hyy(r)e' ", (5.121)
3)  hay = hey(P)e P h = by (r)e P, — hugy (r)e'Z, (5.122)

To outline the steps used in the calculation, consider calculating the G7;%Y" three-
point function. The calculation begins by first finding solutions to h%}, hSJ and hz(,? on
which we impose regular in-falling boundary conditions at the horizon and the h,(fy) = hf}?
boundary condition at the boundary. It is again most convenient, as in section 5.4.1, to
perform the entire computation in the variable v (5.48).

Since we are only turning on temporal fluctuations, and turning the momentum off, it
is clear that the coefficients in all three differential equation will be the same. Hence up
to independent boundary values, h,(LbV) the solution of hg}, hé? and hl(ﬁz) will have the same
functional dependence on v, with the relevant frequencies, p° + ¢°, p® and ¢°, inserted,

respectively. Furthermore, the solution is the same as the one obtained in section 5.4.1,

with q = 0,
(20440
1) v\ i(p° +¢°) 2 oy, (" +4°)? w)
(0" + )2 [ (1 —v')%log [72 —14+v —/(2-1) (- (1— v’)Q)] o 5.123)
+ v .
167272 / v ’

and similarly for ALY and h§}2 We can deal with the remaining integral in the same way as
in 5.4.1, by only integrating it order-by-order in the near-boundary expansion, v ~ 1 — 7.
Next we have to look for the second-order solution h%) with the first-order metric back-

reacting on h&? The differential equation again has the form of Eq. (5.54),
v (1 —v)02h(v) + (1 + v) d,h(v) + H(v) =0, (5.124)

with a long and complicated function H(v). The equation is again solved by
v 11— 2 v’ "
h(v) = D+/ dv’# (C’ —/ dv”ﬂ)?)) . (5.125)
v 1—v)
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In the case of h,(,;?, H is proportional to p°¢°. We again impose the regular in-falling
boundary conditions and the hﬁ) = ( condition at the boundary. The solution then takes

the form

o 0 ) v —i(pO+4¢°)/(47T) °q°
hmy = ha:z hyz (m) 47‘[‘2T2h(v)7 (5126)

with a complicated and unilluminating expression for h(v).

With the second-order solution in hand, we plug g,, + er2hls) + ¢2r2h{) into the ex-
pression for the holographic stress-energy tensor [100] to compute T*¥. For the Einstein-
Gauss-Bonnet theory, including counter-terms for a non-perturbative value of Agp,

2
ks

with the counter-term coefficients,

o V2 (2+ V1T =4Xgp) o [Aas (3 —4Aa — 3v1 —4X¢p)
' \/1—|—\/1—4)\GB ’ ’ 2 (1—\/1—4)\03)3/2 '

The induced metric on the boundary is v,, = g,, — n,n,, where n* is the vector normal

(5.128)

to the boundary and G,(]V) = RE;L) — %R(W)’yw, is the Einstein tensor constructed from the

induced metric. The extrinsic curvature is given by

1
K, = —3 (Vun, +Vun,), (5.129)

K is its trace and the tensor J,, is defined as

Juw = (ZKKW,K’)V + Kpo K Ky — 2K, K" Ky — K2KW) . (5.130)

W =

Similarly, J denotes the trace of .J,,,. Note that the relative sign in front of the stress-energy
tensor (5.127) as well as the signs in front of ¢; and ¢o depend on the choice of direction that
n, is pointing in. Once we have computed the relevant component of stress-energy tensor
T, we finally need to take derivatives with respect to h{ and A{Y to obtain Gv*
The other two three-point functions are computed via exactly the same procedure, with
all differential equations always taking the form of (5.124). The only difference is that
we cannot impose in-falling boundary conditions on either hy, or hy, from (5.121), and
similarly hy, from (5.122), because they only fluctuate in the z-direction and not time. In
fact, regularity demands that we set hy, = hy, = 0 at the horizon. Consequently, h,, from

(5.121) also needs to vanish at the horizon.®

8The full expressions of the three-point functions are very long and will not be presented for conciseness.
For an example for a simpler calculation, going through exactly the same steps in the A/ = 4 super Yang-
Mills theory, see reference [200].
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5.6.2 Second-order transport coefficients

Having computed all three three-point functions, we can use the Kubo formulae (5.118) to

first confirm the thermodynamic result from (5.37),

2miT
pP= % (5.131)
K5 (1+7)

where we have set L = 1 in this calculation. The expression for the Hawking temperature

T was given in (5.36). The shear viscosity is again confirmed to be

\/§7T3T3 ,.)/2
n= )
K3 (14+9)*?

(5.132)

while the second-order coefficients are given by the following functions of v = /1 — 4\gp,

w212 9
nTn=4\/§K§( ! 3/2> <(1+7) (57 +9" —2) — 27log {MD (5.133)

(147)
N — 2T (3—47—1—273)
! 2\/§/@§ V1+ry ’

Ay = _273% ((1;7)3/2) ((1+7) (2 =7 —~?) + 2y 1log [@D (5.135)
V2T <3+7—472>
; =)

Kj

w2 T? (292 —1
= ) 1
" 2R (\/m) (5.137)

Alternatively, all the coefficients A, can be expressed in terms of shear viscosity 7, giving

us expressions (5.17) to (5.21).

(5.134)

)\3:

(5.136)

In the pure Einstein theory with A\gp = 0, i.e. v = 1, all of the coefficients exactly
reproduce those found in [98, 185],

2 —log?2 log 2
TITH:??( & )7 >\1: 17 ) /\2:_77 &
27T

— A3=0, r=—.(5.138)

7l T
The values of the coefficients at the extreme limiting value of Agp = 1/4, i.e. v =0, are

3 2T2 32 2T2 2T2
=T XA=0, M= ——\/_7; L R=—t— (5.139)
2v/2k32 K5 V253

All five coefficients are plotted as functions of Agp in Figure 5.5. We have represented them

nm = 07 )\1

by dimensionless ratios, \,x2/(4m*T?).

While \; is positive-definite for all Agp (A1 > 0), A2 and A3 are non-positive (Ag3 < 0)
on the interval Agp € [0,1/4]. Coefficients nm; and x both run from positive to negative
values as \gp increases, with k = 0 exactly half-way between the two ends of the allowed

positive values of Agp, at A\gp = 1/8.
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Figure 5.5: A plot of the second-order coefficients A\, = {9711, A1, A2, A3, £} in units of 47272 /K2,
as a function of A\gp € [0,1/4].

By further analysing the derivatives of dimensionless coefficients, % [A\nk2/(4m2T?)],
we can study the monotonicity of the hydrodynamic coefficients. The derivatives are plotted
in Figure 5.6. Since all derivatives diverge at A\gg = 1/4, we only plot them up to A\gp =
0.24. We find that while 7, A; and Ay are not monotonic as functions of Agp, A3 and
k are monotonic everywhere, including for all negative Agg. This can be seen from the

negative-definite expressions,

) 1+ 15y + 1242

SR R ) (5.140)
Am2T? OANGB 2v/27(1 + 7)3/2

2 9 1+ 87 + 672

L . e A R (5.141)

ATT2 0N 4V/27(1 + )32

Both expressions (5.140) and (5.141) tend to zero in the limit of v — oo, i.e. Agp — —o0.
It is especially interesting to note that the previously proposed and studied universality
of the second-order coefficients, 2nm — 4\ — Ay = 0 [191-193], is violated in the dual of

the Einstein-Gauss-Bonnet theory. We find the non-perturbative result

1—~) (1 —~2 2
ann—4A1—A2:—7riT< ) 7;’)<3+ 7). (5.142)

In a perturbative A\gp expansion, the right-hand-side of the expression (5.142) becomes

non-zero only at the quadratic order in Agg, giving us

20727
2T — A\ — Ny = — 7;2 My + 0 (M) ) (5.143)
5
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Figure 5.6: A plot of derivatives of the second-order coefficients A, = {17, A\1, A2, A3, k} with
respect to Agp, in units of 47272 /k2, as a function of A\gp € [0,0.24].

which is consistent with the findings of [193]. To our knowledge, this is the first known
example of the violation of the proposed universal linear combination of the three second-
order coefficients.

In section 5.8, we will use the fluid/gravity correspondence to verify our expressions for
the second order coefficients \,, perturbatively in Agp. This will enable us to check the

validity of the expression (5.143).

5.6.3 Boost-invariant Bjorken flow

In this section we will look at an application of the results obtained in 5.6.2 to the behaviour
of boost-invariant plasmas as a function of the non-perturbative A\gp. Bjorken flow is
a boost-invariant solution of hydrodynamics, which is relevant to the phenomenological
description of heavy-ion collisions [219]. In terms of AdS/CFT, the solution was constructed
in the N' = 4 theory in [220]. The flow describes a one-dimensional motion of nuclei along
a coordinate we choose as z, following the conventions of [185]. The nuclei are assumed to
be infinitely large in the spatial dimensions transverse to z. In the co-moving coordinates,
where the proper time is defined as 7 = /12 — 22 and rapidity as £ = arctanh(z/t), each
fluid element is at rest, (u™,u,ut) = (1,0,0). Furthermore, the field theory metric is
given by ds* = —dr? + 72d¢? + dx’ . Because velocity u® is constant in these coordinates,
the only non-trivial derivative of u, is Veue = 7.

The description of a boost-invariant flow reduces to a differential equation for a single
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undetermined function, energy density, expressed in terms of the proper time, (1),
UVt + (e 4+ P) Vau® + 11V uy = 0. (5.144)

For a conformal fluid with e = 3P in d = 4 (boundary) dimensions, the expression simplifies
to

4e
O,e + —— = —7TII%. 5.145
£+ 37 T ( )

The right-hand-side of Eq. (5.145) was first written to second order in the hydrodynamic

expansion in [185], and reads
—7I1% = 2un7 =2 + 2% (nrp — A1) 72 + third-order hydro + ..., (5.146)

where v = (d—2)/(d—1) = 2/3. One can then find a solution for £(7) in a large-7 expansion,
which is a manifestation of the gradient expansion of the hydrodynamic stress-energy tensor

in derivatives of u®. The solutions for £(7) takes the form [185]

€ 3 2
E — 2 2?707_*2 + |:§n(2) _ § (7]07-19[ — )\(1])} T2 + ..y (5147)

where the transport coefficient functions 7(7), 71(7) and A(7) are fixed by conformal scal-
ings,
n = Cno (%)3/4, =14 (%)1/4, A = CX0 (%)1/2. (5.148)
We would like to point out that with the knowledge of the second-order transport
coefficients in the Gauss-Bonnet fluid, we know the solution of the Gauss-Bonnet Bjorken
flow to the 7727 order. The only relevant combination of the second-order coefficients,
which enters the equations is n — A;. We plot it as a function of A\gp in Figure 5.7. It
is interesting to note that the combination of coefficients vanishes at two values of A\gp,
which can be found numerically, Aqp = 0.050 and A = —0.662. Finally, in the limit of
A¢p — 1/4, the linear combination takes a finite and negative value,
S _37T2T2‘
2\/5&%

(5.149)

5.6.4 Entropy current

Entropy is an important concept in the theory of relativistic hydrodynamics. As a conse-
quence of Boltzmann’s H-theorem, the divergence of the entropy current, 5S¢, must always

be positive in order for the fluid to satisfy the positive entropy production condition,

V,5% > 0. (5.150)
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Figure 5.7: A plot of the combination of coefficients 17y — Ay in units of 47272/ /i%, as a function of
AgB, relevant for second-order hydrodynamic contribution to the dynamics of the boost-invariant
Bjorken flow.

The existence of such a current in the theory of phenomenological hydrodynamics can thus
be used to constrain the structure of hydrodynamic coefficients. This avenue of research
was explored in numerous papers, among others, in the recent works of [101,188,221,222].

The entropy current can be constructed by using the same gradient expansion logic we
used in writing down the stress-energy tensor. It can be expressed as a sum of the canonical

part, S¢

can’

and corrections,

Hab
S =82 +8° G gy U

can corr) can T ?

(5.151)

where s is the entropy density. The vectorial quantity S% . must be written in terms of
all possible tensor structures at a given order, defined by the number of derivatives acting
on hydrodynamic variables. Coefficients are then introduced, multiplying each term. By
imposing Eq. (5.150), the new unknown coefficients can (usually) be expressed in terms
of the standard hydrodynamic transport coefficients. In second-order hydrodynamics, the
entropy current was computed and analysed in [188,221]. In the notation of [221], the

divergence of the conformal entropy current is given by

— 2 A — 1
VaSa = %aabaab —+ %O’aboﬂcabc -+ (71 + %) Oab |:<DO'ab> —+ gO’ab (V . u) y
(5.152)

where A; is a coefficient of which the expression in terms of the second-order transport

coefficients is unknown. We can see that Eq. (5.150) immediately implies that n > 0.

Similarly, in non-conformal hydrodynamics, bulk viscosity also has to satisfy ¢ > 0.

120



In the usual hydrodynamics, all second-order terms are sub-leading and therefore Eq.
(5.150) imposes no restrictions on the second-order hydrodynamic coefficients [188]. How-
ever, when 1 — 0, as in our analysis, the signs of second-order terms matter. The difficulty
in determining the constraints comes from the fact that all second-order terms include third
powers of V,u,, and hence the sign of tensorial quantities depends on the details of the
fluid solution. Furthermore, it was pointed out in [221] that one would probably need to
go to third-order hydrodynamics in order to find A; in terms of the second-order trans-
port coefficients. Since A; is presently unknown, we cannot determine what type of fluid
solutions may give positive entropy production in the Gauss-Bonnet fluid near Agp ~ 1/4,
where n — 0.

In [101], the authors studied dissipationless fluids by demanding V,S* = 0. They
concluded that this constraint reduced the number of independent second-order transport
coefficients to four. Clearly, one finds that n = 0 and x = 2)\;. However, the dissipationless
field theory construction of [101] left only three of the transport coefficients independent.
The additional constraint was the proposed universal relation, 2nm — 4\ — Ay = 0, of [192].
We can thus conclude that at least in the dissipationless limit, and for fluids which are
invariant under volume-preserving diffeomorphisms, SDiff(R*!), A; = \,/(2T).°

In the limit of Agp — 1/4, our Gauss-Bonnet fluid does not behave as a dissipationless
fluid. Namely, k # 2\;. We plot the difference of the two coefficients, relevant for the second
term in (5.150), in Figure 5.8. Furthermore, we also found that 2nm—4A; — Ay # 0. We can
thus conclude that the Gauss-Bonnet fluid is in fact dissipative, even though its shear and
sound hydrodynamic excitations behave in an approximately dissipationless manner in the
limit of A\gp — 1/4. The Gauss-Bonnet fluid is thus not an example of a fluid constructed
in [101]. Finally, as we do not know the expression for A, nor the possible solutions for
the fluid’s velocity profile, we cannot determine whether the fluid has positive or negative

entropy production.

5.7 Gauge field action and charge diffusion

5.7.1 Four-derivative theory

In this section, we analyse the transport of charge in the theory dual to the charge neutral
Einstein-Gauss-Bonnet theory with the black brane metric (5.32). In constructing the
bottom-up vector-graviton theory, we are guided by the logic of gradient expansion, directly

equivalent to the construction of the Gauss-Bonnet term. Namely, we wish to find the most

9The field theory construction used in [101] was discussed in detail in Chapter 3. In our analysis
of dissipative first-order fluids with invariance under volume-preserving diffeomorphisms, SDiff(R*1), we
similarly found a reduction in the number of independent transport coefficients, i.e. n =0 and ¢ # 0.
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Figure 5.8: A plot of the combination of coefficients x — 2); in units of 47272/ n%, as a function
of A\gp, relevant for the second-order hydrodynamic contribution to the divergence of the entropy
current.

general four-derivative action of the metric g,,, and the vector field A,, with the restriction
that their equations of motion may involve at most second derivatives. This avoids potential
problems with ghost fields and since we are interested in non-perturbative results in the
new couplings, this will also avoid problems of solving higher-order differential equations.
Similar theories were previously considered in [223,224] and in the context of effective
target-space heterotic string theory action in [225].

We begin by writing down the Einstein-Gauss-Bonnet theory with the most general

four-derivative vector field Lagrangian,

1
S = o /d%x/—g [R—2A + Lgp] + / d°x\/—gL 4, (5.153)
ks
where we have re-introduced the scale L. The Gauss-Bonnet Lagrangian Lgp was given in

(5.14) and

1
La= _ZF’“’FW +ayRE,, F" + asR"F,,F,” + ag R"" F,,, F,; + oy (FWF"”)2

+ sV Fo o VEF? + gV, Foo VPR 4 0y, F*NPF,, + a1 F*F,, FP F,,.  (5.154)

The modified Einstein’s equations are

1
Ryy = 59 + g = TSP + 2637, (5.155)
where the gravitational stress-energy tensor term is given by
AgpL?
7;CV;B - G%gw (R2 — 4R, R + RMVPURWW>
— A¢eL? (RR,, — 2Ry R, — 2Ru0us R + Ryuap, R7) (5.156)
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and the Maxwell field contribution takes the form

T =~ (guF? — 4FaF)

8
+ 5 (9 RE? = ARE,WF," = 2R, F? + 2V, F? = 2, OF]
+ 5 [0 B FarFy) = 4RyaFyp P = 2R F,0F = O(FuuF,”) = 9, VoV (FAF™)

+VoV, (FpF*P) + VoV, (FsF?)]
+ % (G0 B Fog s — 6 Ry B, " FPY — VPV (FluFyp)]
+ % [gm, (F2)* - 8F2FMFUA]
+ % (9,0 Vo F3,VOF? — 2V, F, 5V, F*® — AV ,F,sV°F,’ + 4V, (V,F*°F,5)
AV (VF,Fp) = AV (VP F5)]
[0V aF3, VP F = 2V FsVPF,* — 4V, F,sV°F,” + 2V, (V*F /F5)

+2V, (VW F*PF,5) — 2V, (F4V,F,7)]

Qg

3

+ % (G Vo 'VPFyy — 20,V (FOIVPFay) — AV, Fs Vo F™ — 2V F, V F g
+4V,, (F sV o F*) + AV (F,uVF,5)]
a1

+ 5 (9 F*° F F° Fyo — 8F o FL g F*TF7 ] . (5.157)

The modified Maxwell’s equations are

V,F* =44V, (RF™) + 205V, (R*F,” — R F ") + 406V, (R*" Fop)
+ 80V, (FagF*PFM) — 4asV,0O0F™ — 209V, V, (VFF — VY FPH)
+ 20(10Vl, (VVVPFP‘LL — V’MVPFPV) + 80[11Vl, (FV’DFPUFO“) . (5158)

To make third- and fourth-order derivatives of g,, and A, vanish in the equations of motion

(5.155), we must impose the following constraints on the coefficients a,,

gy = Qg, 80./4 + a5 — 40(6 = 0, (5159)
4C(4 + a5 — 20&8 — Qg = O, 2@8 + Qg + Qg = 0. (5160)

The second constraint in (5.160) also ensures that all higher-order derivatives vanish from

the Maxwell’s equations. The constraints can be solved by setting
Qg = Oy, ar = —4064, Qg = —2068, 190 = 0. (5161)

Coefficients a; and «q; are left undetermined by this procedure. The reduced vector-field
Lagrangian is now
1

La=~— 4 o F" + B1L? (RF,, F*" — AR"F,,F,” + R*"" F,, F,,)

+ B4L*V  Fy (VREPT — 2NVPFR) 4 By L% (F, F™)? + B3 L2 F*E,,F F,,, (5.162)
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where we have defined dimensionless couplings 31 = ay/L?, By = ay/L?, B3 = ay1/L* and
B4 = ag/L?. To simplify the Lagrangian further, we notice that the term proportional to
[, can be rewritten as

A
+ R,

VMFPU (V“F/’" — QVPF“") = _IVHVPA° (RA + R

wpo pop

) Ay =0,  (5.163)

hence the entire expression vanishes due to the cyclic property of the Riemann tensor. The

vector-field theory with the desired properties is thus governed by the Lagrangian

1
La=— JFuF" + BiL* (RE,F" — AR E,F,” + R"" F,, Fy)
+ BoL? (F F™)? 4 B3 L*F* F,, F* F,,. (5.164)

Note that the black brane metric (5.32) is automatically a solution of this theory when
A, = 0. Although it is easy to find perturbative corrections in 8, 5> and 33 to the five
dimensional AdS-Reissner-Nordstrom metric, this is not useful for the purposes of our non-
perturbative analysis. The techniques to find full non-perturbative solutions of the system
under consideration are not known and hence we do not yet have the corresponding black
brane metric.'’

In the following section, we will analyse the vector field perturbation of (5.32), controlled

by the action (5.164).

5.7.2 Charge diffusion

We are interested in understanding charge diffusion properties in the field theory dual of
the bulk action we constructed in the previous section. To compute the charge diffusion
constant, we will follow the procedure outlined in [93]. We begin by perturbing the 4, =0
vector field as A, — A, +ea,, and writing the electromagnetic field strength corresponding
to the linearised perturbation as F' = eda.

We can immediately notice that terms proportional to a; and «y; only contribute at
orders of € higher than first. Hence, they will not contribute to charge diffusion. The con-
straint (5.160) ensures that the third- and fourth-order derivative terms in the equations of
motion cancel, which enables us to treat higher-derivative contributions non-perturbatively.

The vector field equations of motion simplify to

V,F* =48, L°V, (RF* + R** F,, — R*F,” + R"’F *) . (5.165)

10 An asymptotically AdS black hole solution to the theory considered in this section with 3; = 0 was
found in an integral form and studied in [223]. Unfortunately, the presence of a non-vanishing Lagrangian
term proportional to 81 makes the equations significantly more complicated. In particular, in the usual
metric ansatz, ds?> = —e? dt? + e2Vdt? + ..., the relation A = —v is no longer true. It may nevertheless be
of interest to study charge diffusion of the theory dual to the background presented in [223] in the future.
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Vector field perturbations can be decomposed into transverse and longitudinal modes,
with charge diffusion controlling the low-energy hydrodynamical excitations in the longitu-
dinal sector. By selecting momentum to flow in the z-direction, the relevant gauge-invariant

variable in the longitudinal sector is
Jy = qag + toay. (5166)

We first define a variable u = 73 /r?, so that the boundary is now at u = 0 and horizon
at v = 1. Then we impose the in-falling boundary condition required for a calculation of

retarded correlators [87,88],
Zy = (1—u?) "™ Z,(u). (5.167)

Z4(u) can be solved perturbatively in an energy-momentum expansion parameter pu, with

g and to scaling as wv — %t and q — pgq. We find it particularly useful to introduce a new

variable ¢, so that u = y/q? — 42/4/1 — 2. The boundary is now at ¢ = v and horizon at
q = 1. At the order of O(u°), the function Z, can be written as Z, = C} + Cy2(q), where
z(q) must be a solution of
d*z 48531 (¢* — %) =2 (1 —+*)  dz
A q(@—7)(1—+4831(1—q))dg
We solve for z(q) and impose the z(y) = 1 and z(1) = 0 boundary conditions. Constant Cy

(5.168)

can then be solved as a function of C1, v, q and other parameters of the theory by plugging
2(q) into the original differential equation, expanding to O(u?) and imposing regularity at
the horizon.

The diffusive quasi-normal mode can be found by solving the equation Z, = 0 at the

boundary. The dispersion relation of this IR hydrodynamical mode has the form
o = —iDg?, (5.169)

where D is the charge diffusion constant of the dual theory. We will write D as a function

of the two Lagrangian parameters A\gp and (; in terms of dimensionless v and S,

vy=+v1—4X\gB and 0 =1+4480,. (5.170)
The expression for the diffusion constant, non-perturbatively in v and g, is then

(1+9)(1+28) (B+ VB = 7?)
6(3-1)[8(8+ VB —7) -

X {\/(1 — %) (8% —2) log

D —

v R Pl

(5.171)

125



In the pure two-derivative Maxwell limit with $; = 0 (8 = 1), we recover the expression
D= % (1 v m) . (5.172)
In the N' = 4 theory, where A\gp = 0 and 5; = 0, (5.172) reproduces the result of [93],
D=1 (5.173)
At A\gp = 1/4, Eq. (5.172) for the Einstein-Gauss-Bonnet-Maxwell theory gives
D=1/2. (5.174)

In the presence of higher-derivative vector-field terms in the Lagrangian (5.164), we find

the diffusion constant at the two limits of A\gg to be

o 1+ 326, -
Aap =0: D_<4\/6 61(1”451))1% {1+48B1+\/(1+4851) 1}, (5.175)

1+ 325

A =1/4: D=[——
o5 =1/ (9651

) log (1 + 484;) . (5.176)

It is important to notice that D is not real for all values of the coefficients ;. We will
thus impose a restriction on the parameter 31, so that D € R. Furthermore, D may become
negative, which would signal an instability of the diffusive mode. We will therefore also

demand that D > 0. From (5.171), we find that in order to have D € R,

B > —% (1 +1— 4)\GB) . (5.177)

Charge diffusion of the dual theory is therefore well-defined for all values of A\gp € [0, 1/4]
if the dimensionless coupling constant (5, accompanying the only relevant four-derivative
vector field term is restricted to —1/48 < ;. This parameter range also automatically
ensures that D > 0. Interestingly, we find that there is no value of 5, that would make
D = 0. We could, however, make D vanish by restricting the Gauss-Bonnet coupling Agp
to a smaller range. We can see from (5.171) that D = 0 when f; = —1/32, which is,
according to (5.177), an allowed value of the coupling so long as Agp < 3/16. The coupling
[ is not bounded from above by any physical property of diffusion.

5.8 Fluid/gravity correspondence

To verify some of our above results, which all came from calculations of correlation func-
tions, we will now turn our attention to an alternative method for extracting hydrodynamics
from holography, namely the fluid/gravity correspondence [98,186]. By using fluid /gravity

correspondence in the Einstein-Gauss-Bonnet gravity, shear viscosity was calculated in [226]
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and second-order hydrodynamic coefficients in [193], both papers having worked perturba-
tively at the linear order in A\gp.

Fluid/gravity uses the fact that metric perturbations h,, are dual, via holographic dic-
tionary, to the stress-energy tensor of the dual boundary CF'T, in the sense that h,, sources
T" in the CFT’s generating functional [11,12]. Gravitational bulk action should thus be
able to capture all of the energy-momentum properties of the dual theory. The procedure
for the calculation of the holographic stress-energy tensor, inspired by the prescription of
Brown and York [227], was proposed by Balasubramanian and Kraus [100]. Fluid/gravity
uses the fact that in appropriate variables a gradient expansion of the metric should capture
the hydrodynamic gradient expansion of the CFT’s stress-energy tensor. The procedure
of [98] can thus be viewed as a test of the prescription established in [100].

We begin the calculation by following [98] and writing the Gauss-Bonnet black brane
background solution (5.32) of the Einstein-Gauss-Bonnet equations of motion, which we

repeat here for completeness,

1 AapL?
E.U'V = RNV - §glﬂ/R + g/JVA - G%g/ﬂ/ (R2 - 4Ry,1/RHU + R“ypo—R'quo)
+ AeaL? (RRu — 2Ry R, — 2R,005 R + Ryap, R2PT) = 0, (5.178)

in the Eddington-Finkelstein coordinates,
ds® = —r? f(br)dv® + 2Nydvdr + r*dx'dz’. (5.179)

We will again set L = 1 for convenience. The function f(br) is still given by

Flor) = ;Ii <1 - \/1 — dap (1 - #)) . (5.180)

The arbitrary constant Ni = % (1 +1 - 4)\GB) was already defined in (5.34) and set in
such a way that it gives the boundary speed of light equal to unity. We also introduced b

instead of 1/7,, to be consistent with the conventions of [98]. The stress-energy tensor is
given by the expression
2

r
T,uu - li_g [K,uz/ - K'Y,uz/ + >\GB (SJ,uu - J’Yul/) + C1Vuv + CQG/(,DI//)} ’ (5181)

where its ingredients were defined around Eq. (5.127).

The next step is to boost the brane solution (5.179) along a space-time dependent

velocity four-vector u®, where we define

1 :
u' = ———(1,4"), withie {1,2,3}. (5.182)

S5
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Small latin indices from the beginning of the alphabet indicate four-dimensional boundary
coordinates and z% = (v, x,y, z) in the Eddington-Finkelstein coordinates. The boosted

black brane metric, which we denote by g,g(,l), becomes

ds%o) = —2Nyug (2°) dzdr — r2 f (b(2°) 1) ug (%) up (2°) dzda® + 12 A gy (2°) da’da’.
(5.183)
The metric (5.183) is no longer a solution of the Einstein-Gauss-Bonnet equations of
motion and it is the essence of fluid/gravity to find corrections to the metric g,(f’) in a
gradient-expanded form so that the equations E,, from (5.178) are again satisfied. We
will perform a gradient expansions in derivatives of 3% (z*) and b(z®) fields to second
order, in correspondence with the boundary theory’s second-order hydrodynamic gradient

expansion in velocity and temperature fields described in section 5.2. The metric solution

of the problem will thus take the form

G = 9 + €gls) + €982, (5.184)

with g,(ﬁ, and g,(}l,) expanded to terms with two derivatives of b and 3*. We will use powers

of € to denote the order of derivative expansion.

The procedure for solving (5.178), order-by-order, can be greatly simplified when one
notices that it is sufficient to only solve equations of motion locally around some point
x® = X The global metric can be obtained from this data alone [98]. The local expansions

of the fields b and 3 are given by

2
€
b= b(0)|Xa + ex“&ab(0)|xa + Gb(l)‘Xa + Ex“xb&zabb(oﬂxa + e2x“8ab(1)|xa, (5185)

3" = Bloylxa + €x*0afg)|xa + gx“xbﬁaabﬁfoﬂxa. (5.186)
We will choose to work in a local frame at the origin, X* = 0, in which
bo =1 and B =0. (5.187)
Furthermore, it is consistent to choose the gauge with 521) = 0 at the point z¢ = X*“.

5.8.1 First-order solution

The most general form that the first-order metric gl(tly) can take is most conveniently written

in a scalar-vector-tensor form,

e (7) 2 (=
2 1 2 i 7
dsf)y = —5 dv® — 3Ny hy (r)dvdr + 2 (El Ji(r)dx ) dv
+ 1%ho(r) (da® + dy® + d2*) + r* Agda®da®, (5.188)
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where 2 = (x,y,2), k1 and h; are scalars, j{ a three-vector and Ay, a tensor. As discussed
above, we proceed by using the expanded forms of b and 3¢ given in (5.185) and (5.186)
to write the order-e metric as g, = g,(g,) + eg,(},,). We then evaluate the equations of motion

(5.178), thus generating the following set of constraints and dynamical equations:

Scalar :
Constraint 1: 72 fo(r) By + NuE,, =0, (5.189)
Constraint 2: 72 fo(r)Epp + Ny By = 0, (5.190)
Dynamical equation 1: E.. =0, (5.191)
Vector :
Constraint 3: 72 fo(r)Ep; + NyE,; = 0, (5.192)
Dynamical equation 2: E,. =0, (5.193)
Tensor :
Dynamical equation 3: E;; =0. (5.194)

It is easiest to first solve Dynamical equation 1 in (5.191) for hi(r). We then use
Constraint 2 in (5.190), which relates ki (r) to hy(r), to solve for ki(r). Constraints 1 and
3 in (5.189) and (5.192) give

(%bo = é Zﬂz and &bo = &)B’ (5195)

Finally, we can solve the two remaining Dynamical equations 2 and 3 in (5.193) and (5.194)
to find j;(r) and the tensor sector A, which contains the information about the shear
viscosity.

The structure of the global first-order metric, g, = gEPJ +eg£11,), can be written as in [98].

It is given by the line element

ds* = 26:,4”, (5.196)
n=1
where we have used abbreviations A,, defined as
Ay = —2Nu,dzdr, Ay = —12 fo (br)ugupda®da’, (5.197)
Az = 72 A gydada®, Ay = 2r2bFy(br)ogpdada®, (5.198)
As = gN#ruaubacucda:“dxb, A = —Nyru‘d, (uqup) dzda®. (5.199)

Our last task is to solve for Fy(r), which is a part of A in (5.198). This function arises
from the tensor Ay, governed by (5.194). The second-order differential equation for Fj is

9 [(TS_ rt >8F0 1= G-(=3")r
or |\ VIS ) 0 | T (1= (=) )

(5.200)
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A pleasant feature of fluid/gravity is that, as in (5.54), the differential part of dynamical
equations (the left-hand-side of (5.200)) remains the same for all unknown functions at all
orders in the gradient expansion.

A solution for Fjy, which is regular at the horizon and vanishes at the boundary is

_ 1+ =" — ) arctanh(y) + 7 — (1 — i)y
8v/2 (1 =) V/4 L+ )%

3/21 (1)2 1 1.1, 1
VL (3) 2 F [717175’ 1772} 1—~% —imrt 4+ 2r2/1 — (1 — r1) 42
1

Fy(r)

+

VA= A+ ) Ve

log — arctan(r)
V31t rd <7"2+\/1—(1—r4)72> V1t

(5.201)

where F} is the Appell hypergeometric function of two variables and 5 F; the Gauss hyper-
geometric function. The power-series expansion of F; around r at infinity can be found

from theorems presented in [180], which we can apply to find

P L R i B F(i)r(i)ﬁl[%,l;%;l}ﬁ] N
Yl 2w 1—727T Bl VT 1 —~2
3

1=72) 2" 2048y (1— )7 T (4)

3 .1 1 1 .1 1 1
2 .. 2 R

(5.202)

This enables us to find the expansion of Fy(r) around the boundary,

_Vitr ity
Folr) = 24/2r 8/ 2r4

to order O(r~*), which is sufficient for the computation of the boundary stress-energy

+0(r), (5.203)

tensor. Plugging Fj into the first-order metric gé‘l") and computing the stress-energy tensor
(5.127) with the full first-order solution, we recover the non-perturbative result for the shear

viscosity n presented in (5.63).

5.8.2 Second-order solution

The calculation of second-order corrections to the boosted black brane metric proceeds in
exactly the same way as the first-order calculation. First we perturb g,(f,),) + eg,(ﬁ) to second
order and then look for g,(f,) so that the Einstein-Gauss-Bonnet equations of motion (5.178)

are satisfied.
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To find the second-order coefficients non-perturbatively, we would need to solve differen-
tial equations with the differential operator given in (5.200) and right-hand-sides involving
integrals over the Appell function (5.202). We were not able to find useful closed-form
expressions for the coefficients, but instead had to resort to a perturbative expansion in
Agp to be able to at least partially verify our non-perturbative results for the second-order
transport coefficients.

Since we already know from section 5.2 the tensor structure of second-order hydrody-

namics, it is easiest to write down an ansatz for the line element of the second-order metric
(2)

gHV )
k 2 (S~ .
dsly = #dzﬂ — 3Nyha(r)dvdr + (Z j;(r)d:vZ) dv
i=1
3
+ 72hy(r) (do® + dy® + dz°) +r? Z P,(r)B,, (5.204)
n=0

where z° = (z,y, ), ko and hy are scalars, ji a three-vector. We have also defined

By = (<Daab> + %aab (V- u)) dzda®,
By = 0, 0p)c dzda®,
By = 0<aCQb>C dzda®,
Bs =, Qe dztda®.

We may at this point focus only on the four functions P, with n = {0, 1,2, 3}, which
will give us the four second-order coefficients, \g = n7y, A1, A2 and A3, respectively. The
fact that the boundary theory is flat implies that this procedure does not enable us to
find k. Furthermore, we know that in the Landau frame there are no other transport
coefficients coming from either the scalar or the vector sector. However, we still need to
use the constraint equation r2 fo(r)E,. + Nz E,, = 0 and the dynamical equation E,, =0
to eliminate ho, ko and their derivatives from the dynamical equations for P,.

The remaining differential equations for P, can be solved perturbatively, to an arbi-
trarily high order in Agp. Here we outline the most efficient way to extract sufficient
information from the functions P, to recover the four transport coefficients. Let us expand
the functions P, in a power series near the boundary,

oo (1)

Py(r)=> . (5.209)

We then plug the metric (5.204) with expanded forms of functions P,, as in Eq. (5.209),

into the full second-order metric and evaluate the stress-energy tensor (5.127). The main
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observation is that in the limit of » — oo, finite contributions to 7}, only depend on

4) (4) (4

* ie. T, depends on p;’, ps , p3  and pff).

coefficients of P, proportional to r—*, i.e
All p%) can be found by simply plugging (5.209) into the four differential equations for

P, and expanding around r — oo. From the equation for Py, for example, we obtain

(1) 9p(? 3)

Do 3P0 1 (4) log(2)
—— + — |4 -1

’1“2 - 3 + r4 + ro {po T T 2

+ (? - log(2)> Aep + (é — log(2)) Mg+ - ] +0(r % =0, (5.210)

which enables us to find p(()4). By following exactly the same procedure, we can also obtain

4 4 4
ps”, py and pi”

With these four coefficients in hand, we can plug the metric (5.204) with (5.209) into
(5.127) and take the limit 7 — oco. The resulting stress-energy tensor allows us to read 7,
A1, Ay and Az from the coefficients of tensors (5.205) - (5.208). The results are in exact
agreement with the A\gp-expansions of the four non-perturbative second-order transport
coefficients (5.17), (5.18), (5.19) and (5.20), as well as those computed in [193] to linear
order. In matching these expressions, one only needs to be careful about the horizon scale
74+, which is in the fluid/gravity calculation promoted to a field b(r) and fixed at by = 1.
Finally, this enables us to verify the expression (5.143), which shows the violation of the

linear combination formula for the nry, A\ and As transport coefficients.

5.9 ’t Hooft coupling corrections to the second-order
transport in A = 4 super Yang-Mills theory

In this section, we will analyse second-order hydrodynamics in a top-down example of a bulk
theory with a higher derivative gravitational action. We will study the N = 4 super Yang-
Mills theory, which is the best understood example of the AdS/CFT correspondence [10].
In particular, we will be interested in the leading 't Hooft corrections to the hydrodynamic
transport coefficients. Up to second order in gradient expansion, 7, 11, A1, A3 and x have
previously been computed in [194-200]. Here, we will compute the last remaining one: the
Ay coefficient. We will again follow the procedure of [200] and use the method of thee-point
functions that we already employed in Section 5.6.

It was argued in [228] that in order to compute hydrodynamic response of the original
ten dimensional Type IIB supergravity with five compact dimensions, it is sufficient to
consider only the reduced five dimensional action. This fact was used in [200], which we
will follow in this section to compute As.

The relevant five dimensional action dual to the N' = 4 theory with the leading 't Hooft
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correction is

2
S = Ne /d%\/—g (R+12+~yW), (5.211)

872

where v = o/3((3)/8, which is related to the value of the 't Hooft coupling . The coupling
can be expressed in terms of the string scale as o//L? = A~Y/2. The function ( is the

Riemann zeta function. W is given in terms of the Weyl tensor C,,,» by
afyé pop W 1 adBy pop W
W = C°C,,CLHCY 05 + 50 CrvprCL O s (5.212)

The background brane solution, which we will consider in order to have a field theory dual
at finite temperature, is the y-corrected metric (5.32) (at A\gp = 0), given in terms of the

radial coordinate u = r? /r? by

2 (7Tp)? 2 2 2 2 2 du?
The functions Z; and Z, are given to order v by
Zy =1—15v (5u® + 5u* — 3u®) Zy =14 157 (5u® + 5u* — 19u°) . (5.214)

The Hawking temperature is 7' = Ty(1 + 157), where Ty = r /7. Note that we have again
set the AdS radius to L = 1.
The calculation proceeds in exactly the same way as the one in Section 5.6. The

expressions involved are extremely long and will therefore not be presented here. The

(7TT0)2

solutions of the relevant first-order metric fluctuations, g,, + eh,(}V), have the forms,

By = et (7, 4 Z0), Y = e 0 (2, +v2D) | hg) _ ez ( Zyy + 7Zg)) 7

(5.215)
where Z and Z) are expanded up to second order in ¢° and ¢*. All of our solutions are
valid to linear order in . As is usual, we need to impose in-falling boundary conditions on
the time-dependent fluctuations, hg(gly) and hg(clz). The y-dependent exponent of (1 — u?)? is
now a = — -2 (1 — 15v). With solutions of (5.215) in hand, we can find the second-order

47Ty
fluctuation hgfy), defined by g, + @ehgj + @6%&?.

Next we compute the holographic stress-energy tensor for the induced metric 7,,,

]\/YC2 (7TT0)2
472w

1
THY — _ /—'7 KM K,ylw +3 (,YMV _ EGII(L’YV)):| , (5216)

which has the same tensorial form as the one in pure Einstein theory. No higher-derivative

terms contribute to its form [200]. Taking two derivatives of T with respect to the
1)

boundary values of ALY and hy, s

we recover the three-point function,

2

< °¢ Ty (14 3807) . (5.217)

G%ﬂajx'z(q07 qz) = 16
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Finally, by using the Kubo formula (5.117) along with the known results for n and 711 given
in Egs. (5.6) and (5.7), we find the expression (5.10) for A\y. We can now show that the
relation 29 — 4\ — Ay = 0 remains valid in the presence of the leading-order 't Hooft

corrections, similarly to the case of the leading-order Gauss-Bonnet corrections.

5.10 Discussion

In this chapter, we discussed second-order hydrodynamics in conformal field theories with
a holographic dual, particularly focusing on higher-derivative gravity corrections to the five
hydrodynamic coefficients, 71, A1, A2, A3 and k, as well as charge diffusion. We focused
on the neutral fluid dual to the Gauss-Bonnet gravity with the addition of photon fields
responsible for the transport of charge. The bulk theory was constructed in such a way
that the specially chosen coefficients in the four-derivative action gave equations of motion
with at most two derivatives. In addition to our analysis of the Gauss-Bonnet fluid, we also
completed the catalogue of 't Hooft coupling corrected second-order transport coefficients
in the A/ = 4 superconformal Yang-Mills theory. Namely, we found the leading-order 't
Hooft coupling correction to the previously known value of Ay at infinite coupling.

The main motivation for this investigation was the existence of a Gauss-Bonnet limit
A¢p — 1/4 in which viscosity vanishes and the possibility of finding a holographic ex-
ample of a recent field theory motivated construction of fluids without dissipative viscous
terms [101]. Such liquids and gases are interesting as they may posses novel types of fluid
behaviour, different from those in which dissipation is controlled by viscosity. It is impor-
tant to note that we have discussed a system in which no global symmetry was broken,
thus the vanishing of viscosity could not be attributed to superfluidity. We showed that
near A\gp =~ 1/4, shear channel dissipation and sound channel attenuation were suppressed.
However, the fluid still managed to produce entropy even at second order, which could be
attributed to the fact that some of the second-order transport coefficients remained non-zero
and that k # 2); in the Gauss-Bonnet fluid. Furthermore, we saw that non-perturbative
Gauss-Bonnet hydrodynamics violates the previously proposed universal linear combina-
tion of transport coefficients n, Ay and Ao, Similarly, 't Hooft coupling corrections also
broke that relation in the N = 4 fluid.

We saw that in the limit of A\gp — 1/4, shear dissipation and sound attenuation were
completely suppressed. The limit did not commute with calculations of the field theory
correlation functions and spectra of excitations. More precisely, the field theory predictions
calculated for a general value of A\gp and analysed in the limit of A\gp — 1/4 did not agree

with those obtained from setting Agp = 1/4 on the level of equations of motion and only
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then computing the correlation functions. In fact, the latter scenario completely eliminated
hydrodynamic modes. Understanding all the intricacies of this limit remains an interesting
open problem that should be addressed in the future.

Theories similar to the Einstein-Gauss-Bonnet action such as Lovelock gravity, with
or without matter fields, should also be analysed in the future to see whether some of
the difficulties related to causality and pathological behaviour in the disipationless limit
can be avoided. It would be very interesting to analyse the charged fluid dual to the
Gauss-Bonnet theory with the four-derivative Maxwell action discussed in Section 5.7.1.
In order to pursue this goal, we would first need to find a black hole solution of the theory.
And although it is easy to find perturbative corrections in S;, S and [3 to the AdS-
Reissner-Nordstrom black hole, such background is insufficient for studies similar to the
one presented in this chapter. Unfortunately, we do not yet know of techniques able to find
the solution non-perturbatively. Beyond its importance to holographic fluids in unusual
and exciting regimes, the search for higher-derivative charged black holes is an important
future goal in its own right.

Perhaps the most important goal for the future is to generalise second-order hydrody-
namics to higher orders in derivative expansion. This could answer many open question
and provide a better understanding of convergence properties of the hydrodynamics expan-
sions. We could learn how the number of independent transport coefficients grows with
the order of expansion and compute corrected dispersion relations. This could at least
partially answer the question of whether vanishing 7 itself plays any role in suppressing
higher-order contributions to diffusion and propagation of sound, or whether numerous
other Gauss-Bonnet transport coefficients conspire together to suppress dissipation in the

limit of extreme coupling.
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Chapter 6

Conclusion

In this thesis, we approached the vast subject of hydrodynamics from three points of view,
ranging from effective classical field theory to quantum field theory and string theory. We
first introduced effective field theories in the language of quantum field theory and discussed
the phenomenological approach to hydrodynamics, which is facilitated through the gradient
expansion in derivatives of hydrodynamical variables, the velocity field and near-equilibrium
generalisation of temperature and chemical potential. We then discussed why doubling
the time axes and degrees of freedom within the Schwinger-Keldysh CTP formalism is
necessary for computing expectation values of quantum operators acting on states that are
not pure state at asymptotic infinity. This motivation for the fundamental importance of
the CTP formalism in QFT was followed by an introduction to supersymmetry, dualities,
string theory and the gauge/string duality. We also commented on the connection between
holography and the Wilsonian interpretation of the renormalisation group in QFT [80].
The final part of the chapter was devoted to holographic methods for computing properties
of strongly-coupled theories in the hydrodynamical limit.

Chapter 3, which was based on [209], was devoted to an important open problem of
how hydrodynamics with dissipation arises as a classical effective theory, knowing that
dissipation cannot be described using standard variational techniques. By adopting the
view that dissipation is the energy loss of hydrodynamic macroscopic degrees of freedom
to microscopic degrees of freedom, the theory of only hydrodynamic excitations should
be that of an open system. To better understand such physical setups, we analysed the
structure of effective actions for open systems in the CTP formalism. Establishing that
such effective actions generically include terms with coupled fields from the two time axes,
we used this observation to study an effective action of Goldstone modes known to de-
scribe non-dissipative hydrodynamics. The main contribution of this chapter was to show
that dissipation could be incorporated into the language of CTP. We were able to recover

first-order hydrodynamics with non-zero bulk viscosity. Shear viscosity vanished in this
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setup, which was most likely the result of the large symmetry group of volume-preserving
diffeomorphism used to construct the action. The main challenge for the future is to un-
derstand how this symmetry can be relaxed to find non-zero shear viscosity, and to use the
developed formalism to classify different fluids. From the point of view of QFT, the richer
structure of the CTP formalism should be used in the future to rethink the structure of
effective theories and to classify physical systems, which are sensitive to complicated initial
states, formation of mixed states, decoherence and various other complications pertaining
to open systems. To this end, the thesis began analysing the structure of the Wilsonian
RG in scalar theories, something which should be built upon in future.

Gauge/string duality has provided us with invaluable insight into one of the greatest
problems in theoretical physics: the analytical access to physical predictions in theories
with strong coupling. However, the predictions it has thus far provided in strongly coupled
hydrodynamical and condensed matter systems have been restricted to supersymmetric,
large-N theories, and theories with exotic particle content. Holographic predictions for
the properties of strongly interacting phases of matter are thus ofter hard to interpret
and seem unusual in comparison with realistic theories. Supersymmetric low energy the-
ories have been very rarely studied in the past. To learn about holography, as well as
to uncover potential new phenomena arising from SUSY-inspired interactions and particle
content, we began exploring SUSY theories in the context of low-energy condensed matter
systems [229]. Chapter 4 discussed U(1) super-QED theories and their deformations at
finite density of electric and R-charge. We showed that, contrary to the intuition one de-
rives from QED, scalar-fermion interactions prevent the formation of Fermi surfaces, unless
SUSY is broken and the strength of interactions decreased. We also showed that, despite
there being no Fermi surface, fermions were able to contribute to the total charge density.
Beyond the usefulness of performing such studies to better understand the gauge/string
duality, it would be particularly exciting to apply our results to potentialy realistic systems
with Majorana and Dirac fermions in the presence of additional composite scalar-forming
fermionic condensates. A natural hydrodynamical system, which could realise such scenario
are superfluids.

In Chapter 5, we applied holographic techniques to study second-order hydrodynamics
in fluids dual to theories with higher-derivative gravity [230]. Our particular goal was to
analyse the Gauss-Bonnet fluid in the extreme coupling limit, Agp — 1/4, which is dual to
a fluid with (nearly)-vanishing viscosity. We also added higher-derivative vector field terms
to analyse charge transport properties, finding a parameter regime of the neutral theory
in which charge diffusion vanished. Because first-order hydrodynamical effects are sup-

pressed in such a limit, we computed all five conformal second-order transport coefficients,
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non-perturbatively in the coupling. This computation was the chapter’s main contribution
to the field, along with finding the last unknown ’t Hooft coupling corrected second-order
coefficient, Mg, in the N = 4 super Yang-Mills theory. The knowledge of these coefficients
enabled us to provide a counter-example to the proposed holographic universality between
three of the second-order transport coefficients. The peculiar behaviour of the fluid’s exci-
tations was also analysed in this chapter. Analytically for shear, and numerically for the
sound mode, we found that dissipation and attenuation were suppressed beyond second-
order effects. The system’s hydrodynamic excitations approached the behaviour of an
ideal fluid. However, second-order effects still managed to contribute to non-trivial entropy
production near A\gp = 1/4, thus keeping the fluid dissipative. Precisely at \gp = 1/4,
hydrodynamic modes disappeared from the spectrum and we were, fascinatingly, able to
find the entire quasi-normal spectrum analytically. Several open questions regarding flu-
ids with nearly-vanishing viscosity remain. Can one formulate a holographic dual without
any pathological behaviour, which would posses dissipationless hydrodynamic modes? Can
such fluids be observed in nature? What effect does third- and higher-order hydrodynamics
have on the behaviour of (nearly)-dissipationless fluids? Many of these questions will be

addressed in the future.
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